1 |
280 |
jeremybenn |
/* Common subexpression elimination library for GNU compiler.
|
2 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "tm_p.h"
|
29 |
|
|
#include "regs.h"
|
30 |
|
|
#include "hard-reg-set.h"
|
31 |
|
|
#include "flags.h"
|
32 |
|
|
#include "real.h"
|
33 |
|
|
#include "insn-config.h"
|
34 |
|
|
#include "recog.h"
|
35 |
|
|
#include "function.h"
|
36 |
|
|
#include "emit-rtl.h"
|
37 |
|
|
#include "toplev.h"
|
38 |
|
|
#include "output.h"
|
39 |
|
|
#include "ggc.h"
|
40 |
|
|
#include "hashtab.h"
|
41 |
|
|
#include "tree-pass.h"
|
42 |
|
|
#include "cselib.h"
|
43 |
|
|
#include "params.h"
|
44 |
|
|
#include "alloc-pool.h"
|
45 |
|
|
#include "target.h"
|
46 |
|
|
|
47 |
|
|
static bool cselib_record_memory;
|
48 |
|
|
static bool cselib_preserve_constants;
|
49 |
|
|
static int entry_and_rtx_equal_p (const void *, const void *);
|
50 |
|
|
static hashval_t get_value_hash (const void *);
|
51 |
|
|
static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
|
52 |
|
|
static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
|
53 |
|
|
static void unchain_one_value (cselib_val *);
|
54 |
|
|
static void unchain_one_elt_list (struct elt_list **);
|
55 |
|
|
static void unchain_one_elt_loc_list (struct elt_loc_list **);
|
56 |
|
|
static int discard_useless_locs (void **, void *);
|
57 |
|
|
static int discard_useless_values (void **, void *);
|
58 |
|
|
static void remove_useless_values (void);
|
59 |
|
|
static unsigned int cselib_hash_rtx (rtx, int);
|
60 |
|
|
static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
|
61 |
|
|
static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
|
62 |
|
|
static cselib_val *cselib_lookup_mem (rtx, int);
|
63 |
|
|
static void cselib_invalidate_regno (unsigned int, enum machine_mode);
|
64 |
|
|
static void cselib_invalidate_mem (rtx);
|
65 |
|
|
static void cselib_record_set (rtx, cselib_val *, cselib_val *);
|
66 |
|
|
static void cselib_record_sets (rtx);
|
67 |
|
|
|
68 |
|
|
struct expand_value_data
|
69 |
|
|
{
|
70 |
|
|
bitmap regs_active;
|
71 |
|
|
cselib_expand_callback callback;
|
72 |
|
|
void *callback_arg;
|
73 |
|
|
bool dummy;
|
74 |
|
|
};
|
75 |
|
|
|
76 |
|
|
static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
|
77 |
|
|
|
78 |
|
|
/* There are three ways in which cselib can look up an rtx:
|
79 |
|
|
- for a REG, the reg_values table (which is indexed by regno) is used
|
80 |
|
|
- for a MEM, we recursively look up its address and then follow the
|
81 |
|
|
addr_list of that value
|
82 |
|
|
- for everything else, we compute a hash value and go through the hash
|
83 |
|
|
table. Since different rtx's can still have the same hash value,
|
84 |
|
|
this involves walking the table entries for a given value and comparing
|
85 |
|
|
the locations of the entries with the rtx we are looking up. */
|
86 |
|
|
|
87 |
|
|
/* A table that enables us to look up elts by their value. */
|
88 |
|
|
static htab_t cselib_hash_table;
|
89 |
|
|
|
90 |
|
|
/* This is a global so we don't have to pass this through every function.
|
91 |
|
|
It is used in new_elt_loc_list to set SETTING_INSN. */
|
92 |
|
|
static rtx cselib_current_insn;
|
93 |
|
|
|
94 |
|
|
/* The unique id that the next create value will take. */
|
95 |
|
|
static unsigned int next_uid;
|
96 |
|
|
|
97 |
|
|
/* The number of registers we had when the varrays were last resized. */
|
98 |
|
|
static unsigned int cselib_nregs;
|
99 |
|
|
|
100 |
|
|
/* Count values without known locations, or with only locations that
|
101 |
|
|
wouldn't have been known except for debug insns. Whenever this
|
102 |
|
|
grows too big, we remove these useless values from the table.
|
103 |
|
|
|
104 |
|
|
Counting values with only debug values is a bit tricky. We don't
|
105 |
|
|
want to increment n_useless_values when we create a value for a
|
106 |
|
|
debug insn, for this would get n_useless_values out of sync, but we
|
107 |
|
|
want increment it if all locs in the list that were ever referenced
|
108 |
|
|
in nondebug insns are removed from the list.
|
109 |
|
|
|
110 |
|
|
In the general case, once we do that, we'd have to stop accepting
|
111 |
|
|
nondebug expressions in the loc list, to avoid having two values
|
112 |
|
|
equivalent that, without debug insns, would have been made into
|
113 |
|
|
separate values. However, because debug insns never introduce
|
114 |
|
|
equivalences themselves (no assignments), the only means for
|
115 |
|
|
growing loc lists is through nondebug assignments. If the locs
|
116 |
|
|
also happen to be referenced in debug insns, it will work just fine.
|
117 |
|
|
|
118 |
|
|
A consequence of this is that there's at most one debug-only loc in
|
119 |
|
|
each loc list. If we keep it in the first entry, testing whether
|
120 |
|
|
we have a debug-only loc list takes O(1).
|
121 |
|
|
|
122 |
|
|
Furthermore, since any additional entry in a loc list containing a
|
123 |
|
|
debug loc would have to come from an assignment (nondebug) that
|
124 |
|
|
references both the initial debug loc and the newly-equivalent loc,
|
125 |
|
|
the initial debug loc would be promoted to a nondebug loc, and the
|
126 |
|
|
loc list would not contain debug locs any more.
|
127 |
|
|
|
128 |
|
|
So the only case we have to be careful with in order to keep
|
129 |
|
|
n_useless_values in sync between debug and nondebug compilations is
|
130 |
|
|
to avoid incrementing n_useless_values when removing the single loc
|
131 |
|
|
from a value that turns out to not appear outside debug values. We
|
132 |
|
|
increment n_useless_debug_values instead, and leave such values
|
133 |
|
|
alone until, for other reasons, we garbage-collect useless
|
134 |
|
|
values. */
|
135 |
|
|
static int n_useless_values;
|
136 |
|
|
static int n_useless_debug_values;
|
137 |
|
|
|
138 |
|
|
/* Count values whose locs have been taken exclusively from debug
|
139 |
|
|
insns for the entire life of the value. */
|
140 |
|
|
static int n_debug_values;
|
141 |
|
|
|
142 |
|
|
/* Number of useless values before we remove them from the hash table. */
|
143 |
|
|
#define MAX_USELESS_VALUES 32
|
144 |
|
|
|
145 |
|
|
/* This table maps from register number to values. It does not
|
146 |
|
|
contain pointers to cselib_val structures, but rather elt_lists.
|
147 |
|
|
The purpose is to be able to refer to the same register in
|
148 |
|
|
different modes. The first element of the list defines the mode in
|
149 |
|
|
which the register was set; if the mode is unknown or the value is
|
150 |
|
|
no longer valid in that mode, ELT will be NULL for the first
|
151 |
|
|
element. */
|
152 |
|
|
static struct elt_list **reg_values;
|
153 |
|
|
static unsigned int reg_values_size;
|
154 |
|
|
#define REG_VALUES(i) reg_values[i]
|
155 |
|
|
|
156 |
|
|
/* The largest number of hard regs used by any entry added to the
|
157 |
|
|
REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
|
158 |
|
|
static unsigned int max_value_regs;
|
159 |
|
|
|
160 |
|
|
/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
|
161 |
|
|
in cselib_clear_table() for fast emptying. */
|
162 |
|
|
static unsigned int *used_regs;
|
163 |
|
|
static unsigned int n_used_regs;
|
164 |
|
|
|
165 |
|
|
/* We pass this to cselib_invalidate_mem to invalidate all of
|
166 |
|
|
memory for a non-const call instruction. */
|
167 |
|
|
static GTY(()) rtx callmem;
|
168 |
|
|
|
169 |
|
|
/* Set by discard_useless_locs if it deleted the last location of any
|
170 |
|
|
value. */
|
171 |
|
|
static int values_became_useless;
|
172 |
|
|
|
173 |
|
|
/* Used as stop element of the containing_mem list so we can check
|
174 |
|
|
presence in the list by checking the next pointer. */
|
175 |
|
|
static cselib_val dummy_val;
|
176 |
|
|
|
177 |
|
|
/* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
|
178 |
|
|
that is constant through the whole function and should never be
|
179 |
|
|
eliminated. */
|
180 |
|
|
static cselib_val *cfa_base_preserved_val;
|
181 |
|
|
static unsigned int cfa_base_preserved_regno;
|
182 |
|
|
|
183 |
|
|
/* Used to list all values that contain memory reference.
|
184 |
|
|
May or may not contain the useless values - the list is compacted
|
185 |
|
|
each time memory is invalidated. */
|
186 |
|
|
static cselib_val *first_containing_mem = &dummy_val;
|
187 |
|
|
static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
|
188 |
|
|
|
189 |
|
|
/* If nonnull, cselib will call this function before freeing useless
|
190 |
|
|
VALUEs. A VALUE is deemed useless if its "locs" field is null. */
|
191 |
|
|
void (*cselib_discard_hook) (cselib_val *);
|
192 |
|
|
|
193 |
|
|
/* If nonnull, cselib will call this function before recording sets or
|
194 |
|
|
even clobbering outputs of INSN. All the recorded sets will be
|
195 |
|
|
represented in the array sets[n_sets]. new_val_min can be used to
|
196 |
|
|
tell whether values present in sets are introduced by this
|
197 |
|
|
instruction. */
|
198 |
|
|
void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
|
199 |
|
|
int n_sets);
|
200 |
|
|
|
201 |
|
|
#define PRESERVED_VALUE_P(RTX) \
|
202 |
|
|
(RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
|
203 |
|
|
|
204 |
|
|
|
205 |
|
|
|
206 |
|
|
/* Allocate a struct elt_list and fill in its two elements with the
|
207 |
|
|
arguments. */
|
208 |
|
|
|
209 |
|
|
static inline struct elt_list *
|
210 |
|
|
new_elt_list (struct elt_list *next, cselib_val *elt)
|
211 |
|
|
{
|
212 |
|
|
struct elt_list *el;
|
213 |
|
|
el = (struct elt_list *) pool_alloc (elt_list_pool);
|
214 |
|
|
el->next = next;
|
215 |
|
|
el->elt = elt;
|
216 |
|
|
return el;
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
/* Allocate a struct elt_loc_list and fill in its two elements with the
|
220 |
|
|
arguments. */
|
221 |
|
|
|
222 |
|
|
static inline struct elt_loc_list *
|
223 |
|
|
new_elt_loc_list (struct elt_loc_list *next, rtx loc)
|
224 |
|
|
{
|
225 |
|
|
struct elt_loc_list *el;
|
226 |
|
|
el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
|
227 |
|
|
el->next = next;
|
228 |
|
|
el->loc = loc;
|
229 |
|
|
el->setting_insn = cselib_current_insn;
|
230 |
|
|
gcc_assert (!next || !next->setting_insn
|
231 |
|
|
|| !DEBUG_INSN_P (next->setting_insn));
|
232 |
|
|
|
233 |
|
|
/* If we're creating the first loc in a debug insn context, we've
|
234 |
|
|
just created a debug value. Count it. */
|
235 |
|
|
if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
|
236 |
|
|
n_debug_values++;
|
237 |
|
|
|
238 |
|
|
return el;
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* Promote loc L to a nondebug cselib_current_insn if L is marked as
|
242 |
|
|
originating from a debug insn, maintaining the debug values
|
243 |
|
|
count. */
|
244 |
|
|
|
245 |
|
|
static inline void
|
246 |
|
|
promote_debug_loc (struct elt_loc_list *l)
|
247 |
|
|
{
|
248 |
|
|
if (l->setting_insn && DEBUG_INSN_P (l->setting_insn)
|
249 |
|
|
&& (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
|
250 |
|
|
{
|
251 |
|
|
n_debug_values--;
|
252 |
|
|
l->setting_insn = cselib_current_insn;
|
253 |
|
|
gcc_assert (!l->next);
|
254 |
|
|
}
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
/* The elt_list at *PL is no longer needed. Unchain it and free its
|
258 |
|
|
storage. */
|
259 |
|
|
|
260 |
|
|
static inline void
|
261 |
|
|
unchain_one_elt_list (struct elt_list **pl)
|
262 |
|
|
{
|
263 |
|
|
struct elt_list *l = *pl;
|
264 |
|
|
|
265 |
|
|
*pl = l->next;
|
266 |
|
|
pool_free (elt_list_pool, l);
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
/* Likewise for elt_loc_lists. */
|
270 |
|
|
|
271 |
|
|
static void
|
272 |
|
|
unchain_one_elt_loc_list (struct elt_loc_list **pl)
|
273 |
|
|
{
|
274 |
|
|
struct elt_loc_list *l = *pl;
|
275 |
|
|
|
276 |
|
|
*pl = l->next;
|
277 |
|
|
pool_free (elt_loc_list_pool, l);
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
/* Likewise for cselib_vals. This also frees the addr_list associated with
|
281 |
|
|
V. */
|
282 |
|
|
|
283 |
|
|
static void
|
284 |
|
|
unchain_one_value (cselib_val *v)
|
285 |
|
|
{
|
286 |
|
|
while (v->addr_list)
|
287 |
|
|
unchain_one_elt_list (&v->addr_list);
|
288 |
|
|
|
289 |
|
|
pool_free (cselib_val_pool, v);
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
/* Remove all entries from the hash table. Also used during
|
293 |
|
|
initialization. */
|
294 |
|
|
|
295 |
|
|
void
|
296 |
|
|
cselib_clear_table (void)
|
297 |
|
|
{
|
298 |
|
|
cselib_reset_table (1);
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
/* Remove from hash table all VALUEs except constants. */
|
302 |
|
|
|
303 |
|
|
static int
|
304 |
|
|
preserve_only_constants (void **x, void *info ATTRIBUTE_UNUSED)
|
305 |
|
|
{
|
306 |
|
|
cselib_val *v = (cselib_val *)*x;
|
307 |
|
|
|
308 |
|
|
if (v->locs != NULL
|
309 |
|
|
&& v->locs->next == NULL)
|
310 |
|
|
{
|
311 |
|
|
if (CONSTANT_P (v->locs->loc)
|
312 |
|
|
&& (GET_CODE (v->locs->loc) != CONST
|
313 |
|
|
|| !references_value_p (v->locs->loc, 0)))
|
314 |
|
|
return 1;
|
315 |
|
|
if (cfa_base_preserved_val)
|
316 |
|
|
{
|
317 |
|
|
if (v == cfa_base_preserved_val)
|
318 |
|
|
return 1;
|
319 |
|
|
if (GET_CODE (v->locs->loc) == PLUS
|
320 |
|
|
&& CONST_INT_P (XEXP (v->locs->loc, 1))
|
321 |
|
|
&& XEXP (v->locs->loc, 0) == cfa_base_preserved_val->val_rtx)
|
322 |
|
|
return 1;
|
323 |
|
|
}
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
htab_clear_slot (cselib_hash_table, x);
|
327 |
|
|
return 1;
|
328 |
|
|
}
|
329 |
|
|
|
330 |
|
|
/* Remove all entries from the hash table, arranging for the next
|
331 |
|
|
value to be numbered NUM. */
|
332 |
|
|
|
333 |
|
|
void
|
334 |
|
|
cselib_reset_table (unsigned int num)
|
335 |
|
|
{
|
336 |
|
|
unsigned int i;
|
337 |
|
|
|
338 |
|
|
max_value_regs = 0;
|
339 |
|
|
|
340 |
|
|
if (cfa_base_preserved_val)
|
341 |
|
|
{
|
342 |
|
|
unsigned int regno = cfa_base_preserved_regno;
|
343 |
|
|
unsigned int new_used_regs = 0;
|
344 |
|
|
for (i = 0; i < n_used_regs; i++)
|
345 |
|
|
if (used_regs[i] == regno)
|
346 |
|
|
{
|
347 |
|
|
new_used_regs = 1;
|
348 |
|
|
continue;
|
349 |
|
|
}
|
350 |
|
|
else
|
351 |
|
|
REG_VALUES (used_regs[i]) = 0;
|
352 |
|
|
gcc_assert (new_used_regs == 1);
|
353 |
|
|
n_used_regs = new_used_regs;
|
354 |
|
|
used_regs[0] = regno;
|
355 |
|
|
max_value_regs
|
356 |
|
|
= hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
|
357 |
|
|
}
|
358 |
|
|
else
|
359 |
|
|
{
|
360 |
|
|
for (i = 0; i < n_used_regs; i++)
|
361 |
|
|
REG_VALUES (used_regs[i]) = 0;
|
362 |
|
|
n_used_regs = 0;
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
if (cselib_preserve_constants)
|
366 |
|
|
htab_traverse (cselib_hash_table, preserve_only_constants, NULL);
|
367 |
|
|
else
|
368 |
|
|
htab_empty (cselib_hash_table);
|
369 |
|
|
|
370 |
|
|
n_useless_values = 0;
|
371 |
|
|
n_useless_debug_values = 0;
|
372 |
|
|
n_debug_values = 0;
|
373 |
|
|
|
374 |
|
|
next_uid = num;
|
375 |
|
|
|
376 |
|
|
first_containing_mem = &dummy_val;
|
377 |
|
|
}
|
378 |
|
|
|
379 |
|
|
/* Return the number of the next value that will be generated. */
|
380 |
|
|
|
381 |
|
|
unsigned int
|
382 |
|
|
cselib_get_next_uid (void)
|
383 |
|
|
{
|
384 |
|
|
return next_uid;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
/* The equality test for our hash table. The first argument ENTRY is a table
|
388 |
|
|
element (i.e. a cselib_val), while the second arg X is an rtx. We know
|
389 |
|
|
that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
|
390 |
|
|
CONST of an appropriate mode. */
|
391 |
|
|
|
392 |
|
|
static int
|
393 |
|
|
entry_and_rtx_equal_p (const void *entry, const void *x_arg)
|
394 |
|
|
{
|
395 |
|
|
struct elt_loc_list *l;
|
396 |
|
|
const cselib_val *const v = (const cselib_val *) entry;
|
397 |
|
|
rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
|
398 |
|
|
enum machine_mode mode = GET_MODE (x);
|
399 |
|
|
|
400 |
|
|
gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
|
401 |
|
|
&& (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
|
402 |
|
|
|
403 |
|
|
if (mode != GET_MODE (v->val_rtx))
|
404 |
|
|
return 0;
|
405 |
|
|
|
406 |
|
|
/* Unwrap X if necessary. */
|
407 |
|
|
if (GET_CODE (x) == CONST
|
408 |
|
|
&& (CONST_INT_P (XEXP (x, 0))
|
409 |
|
|
|| GET_CODE (XEXP (x, 0)) == CONST_FIXED
|
410 |
|
|
|| GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
|
411 |
|
|
x = XEXP (x, 0);
|
412 |
|
|
|
413 |
|
|
/* We don't guarantee that distinct rtx's have different hash values,
|
414 |
|
|
so we need to do a comparison. */
|
415 |
|
|
for (l = v->locs; l; l = l->next)
|
416 |
|
|
if (rtx_equal_for_cselib_p (l->loc, x))
|
417 |
|
|
{
|
418 |
|
|
promote_debug_loc (l);
|
419 |
|
|
return 1;
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
return 0;
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
/* The hash function for our hash table. The value is always computed with
|
426 |
|
|
cselib_hash_rtx when adding an element; this function just extracts the
|
427 |
|
|
hash value from a cselib_val structure. */
|
428 |
|
|
|
429 |
|
|
static hashval_t
|
430 |
|
|
get_value_hash (const void *entry)
|
431 |
|
|
{
|
432 |
|
|
const cselib_val *const v = (const cselib_val *) entry;
|
433 |
|
|
return v->hash;
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
|
437 |
|
|
only return true for values which point to a cselib_val whose value
|
438 |
|
|
element has been set to zero, which implies the cselib_val will be
|
439 |
|
|
removed. */
|
440 |
|
|
|
441 |
|
|
int
|
442 |
|
|
references_value_p (const_rtx x, int only_useless)
|
443 |
|
|
{
|
444 |
|
|
const enum rtx_code code = GET_CODE (x);
|
445 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
446 |
|
|
int i, j;
|
447 |
|
|
|
448 |
|
|
if (GET_CODE (x) == VALUE
|
449 |
|
|
&& (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
|
450 |
|
|
return 1;
|
451 |
|
|
|
452 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
453 |
|
|
{
|
454 |
|
|
if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
|
455 |
|
|
return 1;
|
456 |
|
|
else if (fmt[i] == 'E')
|
457 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
458 |
|
|
if (references_value_p (XVECEXP (x, i, j), only_useless))
|
459 |
|
|
return 1;
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
return 0;
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
/* For all locations found in X, delete locations that reference useless
|
466 |
|
|
values (i.e. values without any location). Called through
|
467 |
|
|
htab_traverse. */
|
468 |
|
|
|
469 |
|
|
static int
|
470 |
|
|
discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
|
471 |
|
|
{
|
472 |
|
|
cselib_val *v = (cselib_val *)*x;
|
473 |
|
|
struct elt_loc_list **p = &v->locs;
|
474 |
|
|
bool had_locs = v->locs != NULL;
|
475 |
|
|
rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
|
476 |
|
|
|
477 |
|
|
while (*p)
|
478 |
|
|
{
|
479 |
|
|
if (references_value_p ((*p)->loc, 1))
|
480 |
|
|
unchain_one_elt_loc_list (p);
|
481 |
|
|
else
|
482 |
|
|
p = &(*p)->next;
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
|
486 |
|
|
{
|
487 |
|
|
if (setting_insn && DEBUG_INSN_P (setting_insn))
|
488 |
|
|
n_useless_debug_values++;
|
489 |
|
|
else
|
490 |
|
|
n_useless_values++;
|
491 |
|
|
values_became_useless = 1;
|
492 |
|
|
}
|
493 |
|
|
return 1;
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
/* If X is a value with no locations, remove it from the hashtable. */
|
497 |
|
|
|
498 |
|
|
static int
|
499 |
|
|
discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
|
500 |
|
|
{
|
501 |
|
|
cselib_val *v = (cselib_val *)*x;
|
502 |
|
|
|
503 |
|
|
if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
|
504 |
|
|
{
|
505 |
|
|
if (cselib_discard_hook)
|
506 |
|
|
cselib_discard_hook (v);
|
507 |
|
|
|
508 |
|
|
CSELIB_VAL_PTR (v->val_rtx) = NULL;
|
509 |
|
|
htab_clear_slot (cselib_hash_table, x);
|
510 |
|
|
unchain_one_value (v);
|
511 |
|
|
n_useless_values--;
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
return 1;
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
/* Clean out useless values (i.e. those which no longer have locations
|
518 |
|
|
associated with them) from the hash table. */
|
519 |
|
|
|
520 |
|
|
static void
|
521 |
|
|
remove_useless_values (void)
|
522 |
|
|
{
|
523 |
|
|
cselib_val **p, *v;
|
524 |
|
|
|
525 |
|
|
/* First pass: eliminate locations that reference the value. That in
|
526 |
|
|
turn can make more values useless. */
|
527 |
|
|
do
|
528 |
|
|
{
|
529 |
|
|
values_became_useless = 0;
|
530 |
|
|
htab_traverse (cselib_hash_table, discard_useless_locs, 0);
|
531 |
|
|
}
|
532 |
|
|
while (values_became_useless);
|
533 |
|
|
|
534 |
|
|
/* Second pass: actually remove the values. */
|
535 |
|
|
|
536 |
|
|
p = &first_containing_mem;
|
537 |
|
|
for (v = *p; v != &dummy_val; v = v->next_containing_mem)
|
538 |
|
|
if (v->locs)
|
539 |
|
|
{
|
540 |
|
|
*p = v;
|
541 |
|
|
p = &(*p)->next_containing_mem;
|
542 |
|
|
}
|
543 |
|
|
*p = &dummy_val;
|
544 |
|
|
|
545 |
|
|
n_useless_values += n_useless_debug_values;
|
546 |
|
|
n_debug_values -= n_useless_debug_values;
|
547 |
|
|
n_useless_debug_values = 0;
|
548 |
|
|
|
549 |
|
|
htab_traverse (cselib_hash_table, discard_useless_values, 0);
|
550 |
|
|
|
551 |
|
|
gcc_assert (!n_useless_values);
|
552 |
|
|
}
|
553 |
|
|
|
554 |
|
|
/* Arrange for a value to not be removed from the hash table even if
|
555 |
|
|
it becomes useless. */
|
556 |
|
|
|
557 |
|
|
void
|
558 |
|
|
cselib_preserve_value (cselib_val *v)
|
559 |
|
|
{
|
560 |
|
|
PRESERVED_VALUE_P (v->val_rtx) = 1;
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
/* Test whether a value is preserved. */
|
564 |
|
|
|
565 |
|
|
bool
|
566 |
|
|
cselib_preserved_value_p (cselib_val *v)
|
567 |
|
|
{
|
568 |
|
|
return PRESERVED_VALUE_P (v->val_rtx);
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* Arrange for a REG value to be assumed constant through the whole function,
|
572 |
|
|
never invalidated and preserved across cselib_reset_table calls. */
|
573 |
|
|
|
574 |
|
|
void
|
575 |
|
|
cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
|
576 |
|
|
{
|
577 |
|
|
if (cselib_preserve_constants
|
578 |
|
|
&& v->locs
|
579 |
|
|
&& REG_P (v->locs->loc))
|
580 |
|
|
{
|
581 |
|
|
cfa_base_preserved_val = v;
|
582 |
|
|
cfa_base_preserved_regno = regno;
|
583 |
|
|
}
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
/* Clean all non-constant expressions in the hash table, but retain
|
587 |
|
|
their values. */
|
588 |
|
|
|
589 |
|
|
void
|
590 |
|
|
cselib_preserve_only_values (void)
|
591 |
|
|
{
|
592 |
|
|
int i;
|
593 |
|
|
|
594 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
595 |
|
|
cselib_invalidate_regno (i, reg_raw_mode[i]);
|
596 |
|
|
|
597 |
|
|
cselib_invalidate_mem (callmem);
|
598 |
|
|
|
599 |
|
|
remove_useless_values ();
|
600 |
|
|
|
601 |
|
|
gcc_assert (first_containing_mem == &dummy_val);
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
/* Return the mode in which a register was last set. If X is not a
|
605 |
|
|
register, return its mode. If the mode in which the register was
|
606 |
|
|
set is not known, or the value was already clobbered, return
|
607 |
|
|
VOIDmode. */
|
608 |
|
|
|
609 |
|
|
enum machine_mode
|
610 |
|
|
cselib_reg_set_mode (const_rtx x)
|
611 |
|
|
{
|
612 |
|
|
if (!REG_P (x))
|
613 |
|
|
return GET_MODE (x);
|
614 |
|
|
|
615 |
|
|
if (REG_VALUES (REGNO (x)) == NULL
|
616 |
|
|
|| REG_VALUES (REGNO (x))->elt == NULL)
|
617 |
|
|
return VOIDmode;
|
618 |
|
|
|
619 |
|
|
return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
/* Return nonzero if we can prove that X and Y contain the same value, taking
|
623 |
|
|
our gathered information into account. */
|
624 |
|
|
|
625 |
|
|
int
|
626 |
|
|
rtx_equal_for_cselib_p (rtx x, rtx y)
|
627 |
|
|
{
|
628 |
|
|
enum rtx_code code;
|
629 |
|
|
const char *fmt;
|
630 |
|
|
int i;
|
631 |
|
|
|
632 |
|
|
if (REG_P (x) || MEM_P (x))
|
633 |
|
|
{
|
634 |
|
|
cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
|
635 |
|
|
|
636 |
|
|
if (e)
|
637 |
|
|
x = e->val_rtx;
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
if (REG_P (y) || MEM_P (y))
|
641 |
|
|
{
|
642 |
|
|
cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
|
643 |
|
|
|
644 |
|
|
if (e)
|
645 |
|
|
y = e->val_rtx;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
if (x == y)
|
649 |
|
|
return 1;
|
650 |
|
|
|
651 |
|
|
if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
|
652 |
|
|
return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
|
653 |
|
|
|
654 |
|
|
if (GET_CODE (x) == VALUE)
|
655 |
|
|
{
|
656 |
|
|
cselib_val *e = CSELIB_VAL_PTR (x);
|
657 |
|
|
struct elt_loc_list *l;
|
658 |
|
|
|
659 |
|
|
for (l = e->locs; l; l = l->next)
|
660 |
|
|
{
|
661 |
|
|
rtx t = l->loc;
|
662 |
|
|
|
663 |
|
|
/* Avoid infinite recursion. */
|
664 |
|
|
if (REG_P (t) || MEM_P (t))
|
665 |
|
|
continue;
|
666 |
|
|
else if (rtx_equal_for_cselib_p (t, y))
|
667 |
|
|
return 1;
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
return 0;
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
if (GET_CODE (y) == VALUE)
|
674 |
|
|
{
|
675 |
|
|
cselib_val *e = CSELIB_VAL_PTR (y);
|
676 |
|
|
struct elt_loc_list *l;
|
677 |
|
|
|
678 |
|
|
for (l = e->locs; l; l = l->next)
|
679 |
|
|
{
|
680 |
|
|
rtx t = l->loc;
|
681 |
|
|
|
682 |
|
|
if (REG_P (t) || MEM_P (t))
|
683 |
|
|
continue;
|
684 |
|
|
else if (rtx_equal_for_cselib_p (x, t))
|
685 |
|
|
return 1;
|
686 |
|
|
}
|
687 |
|
|
|
688 |
|
|
return 0;
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
|
692 |
|
|
return 0;
|
693 |
|
|
|
694 |
|
|
/* These won't be handled correctly by the code below. */
|
695 |
|
|
switch (GET_CODE (x))
|
696 |
|
|
{
|
697 |
|
|
case CONST_DOUBLE:
|
698 |
|
|
case CONST_FIXED:
|
699 |
|
|
case DEBUG_EXPR:
|
700 |
|
|
return 0;
|
701 |
|
|
|
702 |
|
|
case LABEL_REF:
|
703 |
|
|
return XEXP (x, 0) == XEXP (y, 0);
|
704 |
|
|
|
705 |
|
|
default:
|
706 |
|
|
break;
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
code = GET_CODE (x);
|
710 |
|
|
fmt = GET_RTX_FORMAT (code);
|
711 |
|
|
|
712 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
713 |
|
|
{
|
714 |
|
|
int j;
|
715 |
|
|
|
716 |
|
|
switch (fmt[i])
|
717 |
|
|
{
|
718 |
|
|
case 'w':
|
719 |
|
|
if (XWINT (x, i) != XWINT (y, i))
|
720 |
|
|
return 0;
|
721 |
|
|
break;
|
722 |
|
|
|
723 |
|
|
case 'n':
|
724 |
|
|
case 'i':
|
725 |
|
|
if (XINT (x, i) != XINT (y, i))
|
726 |
|
|
return 0;
|
727 |
|
|
break;
|
728 |
|
|
|
729 |
|
|
case 'V':
|
730 |
|
|
case 'E':
|
731 |
|
|
/* Two vectors must have the same length. */
|
732 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
733 |
|
|
return 0;
|
734 |
|
|
|
735 |
|
|
/* And the corresponding elements must match. */
|
736 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
737 |
|
|
if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
|
738 |
|
|
XVECEXP (y, i, j)))
|
739 |
|
|
return 0;
|
740 |
|
|
break;
|
741 |
|
|
|
742 |
|
|
case 'e':
|
743 |
|
|
if (i == 1
|
744 |
|
|
&& targetm.commutative_p (x, UNKNOWN)
|
745 |
|
|
&& rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
|
746 |
|
|
&& rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
|
747 |
|
|
return 1;
|
748 |
|
|
if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
|
749 |
|
|
return 0;
|
750 |
|
|
break;
|
751 |
|
|
|
752 |
|
|
case 'S':
|
753 |
|
|
case 's':
|
754 |
|
|
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
755 |
|
|
return 0;
|
756 |
|
|
break;
|
757 |
|
|
|
758 |
|
|
case 'u':
|
759 |
|
|
/* These are just backpointers, so they don't matter. */
|
760 |
|
|
break;
|
761 |
|
|
|
762 |
|
|
case '0':
|
763 |
|
|
case 't':
|
764 |
|
|
break;
|
765 |
|
|
|
766 |
|
|
/* It is believed that rtx's at this level will never
|
767 |
|
|
contain anything but integers and other rtx's,
|
768 |
|
|
except for within LABEL_REFs and SYMBOL_REFs. */
|
769 |
|
|
default:
|
770 |
|
|
gcc_unreachable ();
|
771 |
|
|
}
|
772 |
|
|
}
|
773 |
|
|
return 1;
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
/* We need to pass down the mode of constants through the hash table
|
777 |
|
|
functions. For that purpose, wrap them in a CONST of the appropriate
|
778 |
|
|
mode. */
|
779 |
|
|
static rtx
|
780 |
|
|
wrap_constant (enum machine_mode mode, rtx x)
|
781 |
|
|
{
|
782 |
|
|
if (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
|
783 |
|
|
&& (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
|
784 |
|
|
return x;
|
785 |
|
|
gcc_assert (mode != VOIDmode);
|
786 |
|
|
return gen_rtx_CONST (mode, x);
|
787 |
|
|
}
|
788 |
|
|
|
789 |
|
|
/* Hash an rtx. Return 0 if we couldn't hash the rtx.
|
790 |
|
|
For registers and memory locations, we look up their cselib_val structure
|
791 |
|
|
and return its VALUE element.
|
792 |
|
|
Possible reasons for return 0 are: the object is volatile, or we couldn't
|
793 |
|
|
find a register or memory location in the table and CREATE is zero. If
|
794 |
|
|
CREATE is nonzero, table elts are created for regs and mem.
|
795 |
|
|
N.B. this hash function returns the same hash value for RTXes that
|
796 |
|
|
differ only in the order of operands, thus it is suitable for comparisons
|
797 |
|
|
that take commutativity into account.
|
798 |
|
|
If we wanted to also support associative rules, we'd have to use a different
|
799 |
|
|
strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
|
800 |
|
|
We used to have a MODE argument for hashing for CONST_INTs, but that
|
801 |
|
|
didn't make sense, since it caused spurious hash differences between
|
802 |
|
|
(set (reg:SI 1) (const_int))
|
803 |
|
|
(plus:SI (reg:SI 2) (reg:SI 1))
|
804 |
|
|
and
|
805 |
|
|
(plus:SI (reg:SI 2) (const_int))
|
806 |
|
|
If the mode is important in any context, it must be checked specifically
|
807 |
|
|
in a comparison anyway, since relying on hash differences is unsafe. */
|
808 |
|
|
|
809 |
|
|
static unsigned int
|
810 |
|
|
cselib_hash_rtx (rtx x, int create)
|
811 |
|
|
{
|
812 |
|
|
cselib_val *e;
|
813 |
|
|
int i, j;
|
814 |
|
|
enum rtx_code code;
|
815 |
|
|
const char *fmt;
|
816 |
|
|
unsigned int hash = 0;
|
817 |
|
|
|
818 |
|
|
code = GET_CODE (x);
|
819 |
|
|
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
820 |
|
|
|
821 |
|
|
switch (code)
|
822 |
|
|
{
|
823 |
|
|
case MEM:
|
824 |
|
|
case REG:
|
825 |
|
|
e = cselib_lookup (x, GET_MODE (x), create);
|
826 |
|
|
if (! e)
|
827 |
|
|
return 0;
|
828 |
|
|
|
829 |
|
|
return e->hash;
|
830 |
|
|
|
831 |
|
|
case DEBUG_EXPR:
|
832 |
|
|
hash += ((unsigned) DEBUG_EXPR << 7)
|
833 |
|
|
+ DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
|
834 |
|
|
return hash ? hash : (unsigned int) DEBUG_EXPR;
|
835 |
|
|
|
836 |
|
|
case CONST_INT:
|
837 |
|
|
hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
|
838 |
|
|
return hash ? hash : (unsigned int) CONST_INT;
|
839 |
|
|
|
840 |
|
|
case CONST_DOUBLE:
|
841 |
|
|
/* This is like the general case, except that it only counts
|
842 |
|
|
the integers representing the constant. */
|
843 |
|
|
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
844 |
|
|
if (GET_MODE (x) != VOIDmode)
|
845 |
|
|
hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
|
846 |
|
|
else
|
847 |
|
|
hash += ((unsigned) CONST_DOUBLE_LOW (x)
|
848 |
|
|
+ (unsigned) CONST_DOUBLE_HIGH (x));
|
849 |
|
|
return hash ? hash : (unsigned int) CONST_DOUBLE;
|
850 |
|
|
|
851 |
|
|
case CONST_FIXED:
|
852 |
|
|
hash += (unsigned int) code + (unsigned int) GET_MODE (x);
|
853 |
|
|
hash += fixed_hash (CONST_FIXED_VALUE (x));
|
854 |
|
|
return hash ? hash : (unsigned int) CONST_FIXED;
|
855 |
|
|
|
856 |
|
|
case CONST_VECTOR:
|
857 |
|
|
{
|
858 |
|
|
int units;
|
859 |
|
|
rtx elt;
|
860 |
|
|
|
861 |
|
|
units = CONST_VECTOR_NUNITS (x);
|
862 |
|
|
|
863 |
|
|
for (i = 0; i < units; ++i)
|
864 |
|
|
{
|
865 |
|
|
elt = CONST_VECTOR_ELT (x, i);
|
866 |
|
|
hash += cselib_hash_rtx (elt, 0);
|
867 |
|
|
}
|
868 |
|
|
|
869 |
|
|
return hash;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
/* Assume there is only one rtx object for any given label. */
|
873 |
|
|
case LABEL_REF:
|
874 |
|
|
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
|
875 |
|
|
differences and differences between each stage's debugging dumps. */
|
876 |
|
|
hash += (((unsigned int) LABEL_REF << 7)
|
877 |
|
|
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
|
878 |
|
|
return hash ? hash : (unsigned int) LABEL_REF;
|
879 |
|
|
|
880 |
|
|
case SYMBOL_REF:
|
881 |
|
|
{
|
882 |
|
|
/* Don't hash on the symbol's address to avoid bootstrap differences.
|
883 |
|
|
Different hash values may cause expressions to be recorded in
|
884 |
|
|
different orders and thus different registers to be used in the
|
885 |
|
|
final assembler. This also avoids differences in the dump files
|
886 |
|
|
between various stages. */
|
887 |
|
|
unsigned int h = 0;
|
888 |
|
|
const unsigned char *p = (const unsigned char *) XSTR (x, 0);
|
889 |
|
|
|
890 |
|
|
while (*p)
|
891 |
|
|
h += (h << 7) + *p++; /* ??? revisit */
|
892 |
|
|
|
893 |
|
|
hash += ((unsigned int) SYMBOL_REF << 7) + h;
|
894 |
|
|
return hash ? hash : (unsigned int) SYMBOL_REF;
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
case PRE_DEC:
|
898 |
|
|
case PRE_INC:
|
899 |
|
|
case POST_DEC:
|
900 |
|
|
case POST_INC:
|
901 |
|
|
case POST_MODIFY:
|
902 |
|
|
case PRE_MODIFY:
|
903 |
|
|
case PC:
|
904 |
|
|
case CC0:
|
905 |
|
|
case CALL:
|
906 |
|
|
case UNSPEC_VOLATILE:
|
907 |
|
|
return 0;
|
908 |
|
|
|
909 |
|
|
case ASM_OPERANDS:
|
910 |
|
|
if (MEM_VOLATILE_P (x))
|
911 |
|
|
return 0;
|
912 |
|
|
|
913 |
|
|
break;
|
914 |
|
|
|
915 |
|
|
default:
|
916 |
|
|
break;
|
917 |
|
|
}
|
918 |
|
|
|
919 |
|
|
i = GET_RTX_LENGTH (code) - 1;
|
920 |
|
|
fmt = GET_RTX_FORMAT (code);
|
921 |
|
|
for (; i >= 0; i--)
|
922 |
|
|
{
|
923 |
|
|
switch (fmt[i])
|
924 |
|
|
{
|
925 |
|
|
case 'e':
|
926 |
|
|
{
|
927 |
|
|
rtx tem = XEXP (x, i);
|
928 |
|
|
unsigned int tem_hash = cselib_hash_rtx (tem, create);
|
929 |
|
|
|
930 |
|
|
if (tem_hash == 0)
|
931 |
|
|
return 0;
|
932 |
|
|
|
933 |
|
|
hash += tem_hash;
|
934 |
|
|
}
|
935 |
|
|
break;
|
936 |
|
|
case 'E':
|
937 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
938 |
|
|
{
|
939 |
|
|
unsigned int tem_hash
|
940 |
|
|
= cselib_hash_rtx (XVECEXP (x, i, j), create);
|
941 |
|
|
|
942 |
|
|
if (tem_hash == 0)
|
943 |
|
|
return 0;
|
944 |
|
|
|
945 |
|
|
hash += tem_hash;
|
946 |
|
|
}
|
947 |
|
|
break;
|
948 |
|
|
|
949 |
|
|
case 's':
|
950 |
|
|
{
|
951 |
|
|
const unsigned char *p = (const unsigned char *) XSTR (x, i);
|
952 |
|
|
|
953 |
|
|
if (p)
|
954 |
|
|
while (*p)
|
955 |
|
|
hash += *p++;
|
956 |
|
|
break;
|
957 |
|
|
}
|
958 |
|
|
|
959 |
|
|
case 'i':
|
960 |
|
|
hash += XINT (x, i);
|
961 |
|
|
break;
|
962 |
|
|
|
963 |
|
|
case '0':
|
964 |
|
|
case 't':
|
965 |
|
|
/* unused */
|
966 |
|
|
break;
|
967 |
|
|
|
968 |
|
|
default:
|
969 |
|
|
gcc_unreachable ();
|
970 |
|
|
}
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
return hash ? hash : 1 + (unsigned int) GET_CODE (x);
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
/* Create a new value structure for VALUE and initialize it. The mode of the
|
977 |
|
|
value is MODE. */
|
978 |
|
|
|
979 |
|
|
static inline cselib_val *
|
980 |
|
|
new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
|
981 |
|
|
{
|
982 |
|
|
cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
|
983 |
|
|
|
984 |
|
|
gcc_assert (hash);
|
985 |
|
|
gcc_assert (next_uid);
|
986 |
|
|
|
987 |
|
|
e->hash = hash;
|
988 |
|
|
e->uid = next_uid++;
|
989 |
|
|
/* We use an alloc pool to allocate this RTL construct because it
|
990 |
|
|
accounts for about 8% of the overall memory usage. We know
|
991 |
|
|
precisely when we can have VALUE RTXen (when cselib is active)
|
992 |
|
|
so we don't need to put them in garbage collected memory.
|
993 |
|
|
??? Why should a VALUE be an RTX in the first place? */
|
994 |
|
|
e->val_rtx = (rtx) pool_alloc (value_pool);
|
995 |
|
|
memset (e->val_rtx, 0, RTX_HDR_SIZE);
|
996 |
|
|
PUT_CODE (e->val_rtx, VALUE);
|
997 |
|
|
PUT_MODE (e->val_rtx, mode);
|
998 |
|
|
CSELIB_VAL_PTR (e->val_rtx) = e;
|
999 |
|
|
e->addr_list = 0;
|
1000 |
|
|
e->locs = 0;
|
1001 |
|
|
e->next_containing_mem = 0;
|
1002 |
|
|
|
1003 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1004 |
|
|
{
|
1005 |
|
|
fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
|
1006 |
|
|
if (flag_dump_noaddr || flag_dump_unnumbered)
|
1007 |
|
|
fputs ("# ", dump_file);
|
1008 |
|
|
else
|
1009 |
|
|
fprintf (dump_file, "%p ", (void*)e);
|
1010 |
|
|
print_rtl_single (dump_file, x);
|
1011 |
|
|
fputc ('\n', dump_file);
|
1012 |
|
|
}
|
1013 |
|
|
|
1014 |
|
|
return e;
|
1015 |
|
|
}
|
1016 |
|
|
|
1017 |
|
|
/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
|
1018 |
|
|
contains the data at this address. X is a MEM that represents the
|
1019 |
|
|
value. Update the two value structures to represent this situation. */
|
1020 |
|
|
|
1021 |
|
|
static void
|
1022 |
|
|
add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
|
1023 |
|
|
{
|
1024 |
|
|
struct elt_loc_list *l;
|
1025 |
|
|
|
1026 |
|
|
/* Avoid duplicates. */
|
1027 |
|
|
for (l = mem_elt->locs; l; l = l->next)
|
1028 |
|
|
if (MEM_P (l->loc)
|
1029 |
|
|
&& CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
|
1030 |
|
|
{
|
1031 |
|
|
promote_debug_loc (l);
|
1032 |
|
|
return;
|
1033 |
|
|
}
|
1034 |
|
|
|
1035 |
|
|
addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
|
1036 |
|
|
mem_elt->locs
|
1037 |
|
|
= new_elt_loc_list (mem_elt->locs,
|
1038 |
|
|
replace_equiv_address_nv (x, addr_elt->val_rtx));
|
1039 |
|
|
if (mem_elt->next_containing_mem == NULL)
|
1040 |
|
|
{
|
1041 |
|
|
mem_elt->next_containing_mem = first_containing_mem;
|
1042 |
|
|
first_containing_mem = mem_elt;
|
1043 |
|
|
}
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
|
1047 |
|
|
If CREATE, make a new one if we haven't seen it before. */
|
1048 |
|
|
|
1049 |
|
|
static cselib_val *
|
1050 |
|
|
cselib_lookup_mem (rtx x, int create)
|
1051 |
|
|
{
|
1052 |
|
|
enum machine_mode mode = GET_MODE (x);
|
1053 |
|
|
void **slot;
|
1054 |
|
|
cselib_val *addr;
|
1055 |
|
|
cselib_val *mem_elt;
|
1056 |
|
|
struct elt_list *l;
|
1057 |
|
|
|
1058 |
|
|
if (MEM_VOLATILE_P (x) || mode == BLKmode
|
1059 |
|
|
|| !cselib_record_memory
|
1060 |
|
|
|| (FLOAT_MODE_P (mode) && flag_float_store))
|
1061 |
|
|
return 0;
|
1062 |
|
|
|
1063 |
|
|
/* Look up the value for the address. */
|
1064 |
|
|
addr = cselib_lookup (XEXP (x, 0), mode, create);
|
1065 |
|
|
if (! addr)
|
1066 |
|
|
return 0;
|
1067 |
|
|
|
1068 |
|
|
/* Find a value that describes a value of our mode at that address. */
|
1069 |
|
|
for (l = addr->addr_list; l; l = l->next)
|
1070 |
|
|
if (GET_MODE (l->elt->val_rtx) == mode)
|
1071 |
|
|
{
|
1072 |
|
|
promote_debug_loc (l->elt->locs);
|
1073 |
|
|
return l->elt;
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
if (! create)
|
1077 |
|
|
return 0;
|
1078 |
|
|
|
1079 |
|
|
mem_elt = new_cselib_val (next_uid, mode, x);
|
1080 |
|
|
add_mem_for_addr (addr, mem_elt, x);
|
1081 |
|
|
slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
|
1082 |
|
|
mem_elt->hash, INSERT);
|
1083 |
|
|
*slot = mem_elt;
|
1084 |
|
|
return mem_elt;
|
1085 |
|
|
}
|
1086 |
|
|
|
1087 |
|
|
/* Search thru the possible substitutions in P. We prefer a non reg
|
1088 |
|
|
substitution because this allows us to expand the tree further. If
|
1089 |
|
|
we find, just a reg, take the lowest regno. There may be several
|
1090 |
|
|
non-reg results, we just take the first one because they will all
|
1091 |
|
|
expand to the same place. */
|
1092 |
|
|
|
1093 |
|
|
static rtx
|
1094 |
|
|
expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
|
1095 |
|
|
int max_depth)
|
1096 |
|
|
{
|
1097 |
|
|
rtx reg_result = NULL;
|
1098 |
|
|
unsigned int regno = UINT_MAX;
|
1099 |
|
|
struct elt_loc_list *p_in = p;
|
1100 |
|
|
|
1101 |
|
|
for (; p; p = p -> next)
|
1102 |
|
|
{
|
1103 |
|
|
/* Avoid infinite recursion trying to expand a reg into a
|
1104 |
|
|
the same reg. */
|
1105 |
|
|
if ((REG_P (p->loc))
|
1106 |
|
|
&& (REGNO (p->loc) < regno)
|
1107 |
|
|
&& !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
|
1108 |
|
|
{
|
1109 |
|
|
reg_result = p->loc;
|
1110 |
|
|
regno = REGNO (p->loc);
|
1111 |
|
|
}
|
1112 |
|
|
/* Avoid infinite recursion and do not try to expand the
|
1113 |
|
|
value. */
|
1114 |
|
|
else if (GET_CODE (p->loc) == VALUE
|
1115 |
|
|
&& CSELIB_VAL_PTR (p->loc)->locs == p_in)
|
1116 |
|
|
continue;
|
1117 |
|
|
else if (!REG_P (p->loc))
|
1118 |
|
|
{
|
1119 |
|
|
rtx result, note;
|
1120 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1121 |
|
|
{
|
1122 |
|
|
print_inline_rtx (dump_file, p->loc, 0);
|
1123 |
|
|
fprintf (dump_file, "\n");
|
1124 |
|
|
}
|
1125 |
|
|
if (GET_CODE (p->loc) == LO_SUM
|
1126 |
|
|
&& GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
|
1127 |
|
|
&& p->setting_insn
|
1128 |
|
|
&& (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
|
1129 |
|
|
&& XEXP (note, 0) == XEXP (p->loc, 1))
|
1130 |
|
|
return XEXP (p->loc, 1);
|
1131 |
|
|
result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
|
1132 |
|
|
if (result)
|
1133 |
|
|
return result;
|
1134 |
|
|
}
|
1135 |
|
|
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
if (regno != UINT_MAX)
|
1139 |
|
|
{
|
1140 |
|
|
rtx result;
|
1141 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1142 |
|
|
fprintf (dump_file, "r%d\n", regno);
|
1143 |
|
|
|
1144 |
|
|
result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
|
1145 |
|
|
if (result)
|
1146 |
|
|
return result;
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1150 |
|
|
{
|
1151 |
|
|
if (reg_result)
|
1152 |
|
|
{
|
1153 |
|
|
print_inline_rtx (dump_file, reg_result, 0);
|
1154 |
|
|
fprintf (dump_file, "\n");
|
1155 |
|
|
}
|
1156 |
|
|
else
|
1157 |
|
|
fprintf (dump_file, "NULL\n");
|
1158 |
|
|
}
|
1159 |
|
|
return reg_result;
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
|
1163 |
|
|
/* Forward substitute and expand an expression out to its roots.
|
1164 |
|
|
This is the opposite of common subexpression. Because local value
|
1165 |
|
|
numbering is such a weak optimization, the expanded expression is
|
1166 |
|
|
pretty much unique (not from a pointer equals point of view but
|
1167 |
|
|
from a tree shape point of view.
|
1168 |
|
|
|
1169 |
|
|
This function returns NULL if the expansion fails. The expansion
|
1170 |
|
|
will fail if there is no value number for one of the operands or if
|
1171 |
|
|
one of the operands has been overwritten between the current insn
|
1172 |
|
|
and the beginning of the basic block. For instance x has no
|
1173 |
|
|
expansion in:
|
1174 |
|
|
|
1175 |
|
|
r1 <- r1 + 3
|
1176 |
|
|
x <- r1 + 8
|
1177 |
|
|
|
1178 |
|
|
REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
|
1179 |
|
|
It is clear on return. */
|
1180 |
|
|
|
1181 |
|
|
rtx
|
1182 |
|
|
cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
|
1183 |
|
|
{
|
1184 |
|
|
struct expand_value_data evd;
|
1185 |
|
|
|
1186 |
|
|
evd.regs_active = regs_active;
|
1187 |
|
|
evd.callback = NULL;
|
1188 |
|
|
evd.callback_arg = NULL;
|
1189 |
|
|
evd.dummy = false;
|
1190 |
|
|
|
1191 |
|
|
return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
|
1192 |
|
|
}
|
1193 |
|
|
|
1194 |
|
|
/* Same as cselib_expand_value_rtx, but using a callback to try to
|
1195 |
|
|
resolve some expressions. The CB function should return ORIG if it
|
1196 |
|
|
can't or does not want to deal with a certain RTX. Any other
|
1197 |
|
|
return value, including NULL, will be used as the expansion for
|
1198 |
|
|
VALUE, without any further changes. */
|
1199 |
|
|
|
1200 |
|
|
rtx
|
1201 |
|
|
cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
|
1202 |
|
|
cselib_expand_callback cb, void *data)
|
1203 |
|
|
{
|
1204 |
|
|
struct expand_value_data evd;
|
1205 |
|
|
|
1206 |
|
|
evd.regs_active = regs_active;
|
1207 |
|
|
evd.callback = cb;
|
1208 |
|
|
evd.callback_arg = data;
|
1209 |
|
|
evd.dummy = false;
|
1210 |
|
|
|
1211 |
|
|
return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
/* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
|
1215 |
|
|
or simplified. Useful to find out whether cselib_expand_value_rtx_cb
|
1216 |
|
|
would return NULL or non-NULL, without allocating new rtx. */
|
1217 |
|
|
|
1218 |
|
|
bool
|
1219 |
|
|
cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
|
1220 |
|
|
cselib_expand_callback cb, void *data)
|
1221 |
|
|
{
|
1222 |
|
|
struct expand_value_data evd;
|
1223 |
|
|
|
1224 |
|
|
evd.regs_active = regs_active;
|
1225 |
|
|
evd.callback = cb;
|
1226 |
|
|
evd.callback_arg = data;
|
1227 |
|
|
evd.dummy = true;
|
1228 |
|
|
|
1229 |
|
|
return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
/* Internal implementation of cselib_expand_value_rtx and
|
1233 |
|
|
cselib_expand_value_rtx_cb. */
|
1234 |
|
|
|
1235 |
|
|
static rtx
|
1236 |
|
|
cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
|
1237 |
|
|
int max_depth)
|
1238 |
|
|
{
|
1239 |
|
|
rtx copy, scopy;
|
1240 |
|
|
int i, j;
|
1241 |
|
|
RTX_CODE code;
|
1242 |
|
|
const char *format_ptr;
|
1243 |
|
|
enum machine_mode mode;
|
1244 |
|
|
|
1245 |
|
|
code = GET_CODE (orig);
|
1246 |
|
|
|
1247 |
|
|
/* For the context of dse, if we end up expand into a huge tree, we
|
1248 |
|
|
will not have a useful address, so we might as well just give up
|
1249 |
|
|
quickly. */
|
1250 |
|
|
if (max_depth <= 0)
|
1251 |
|
|
return NULL;
|
1252 |
|
|
|
1253 |
|
|
switch (code)
|
1254 |
|
|
{
|
1255 |
|
|
case REG:
|
1256 |
|
|
{
|
1257 |
|
|
struct elt_list *l = REG_VALUES (REGNO (orig));
|
1258 |
|
|
|
1259 |
|
|
if (l && l->elt == NULL)
|
1260 |
|
|
l = l->next;
|
1261 |
|
|
for (; l; l = l->next)
|
1262 |
|
|
if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
|
1263 |
|
|
{
|
1264 |
|
|
rtx result;
|
1265 |
|
|
int regno = REGNO (orig);
|
1266 |
|
|
|
1267 |
|
|
/* The only thing that we are not willing to do (this
|
1268 |
|
|
is requirement of dse and if others potential uses
|
1269 |
|
|
need this function we should add a parm to control
|
1270 |
|
|
it) is that we will not substitute the
|
1271 |
|
|
STACK_POINTER_REGNUM, FRAME_POINTER or the
|
1272 |
|
|
HARD_FRAME_POINTER.
|
1273 |
|
|
|
1274 |
|
|
These expansions confuses the code that notices that
|
1275 |
|
|
stores into the frame go dead at the end of the
|
1276 |
|
|
function and that the frame is not effected by calls
|
1277 |
|
|
to subroutines. If you allow the
|
1278 |
|
|
STACK_POINTER_REGNUM substitution, then dse will
|
1279 |
|
|
think that parameter pushing also goes dead which is
|
1280 |
|
|
wrong. If you allow the FRAME_POINTER or the
|
1281 |
|
|
HARD_FRAME_POINTER then you lose the opportunity to
|
1282 |
|
|
make the frame assumptions. */
|
1283 |
|
|
if (regno == STACK_POINTER_REGNUM
|
1284 |
|
|
|| regno == FRAME_POINTER_REGNUM
|
1285 |
|
|
|| regno == HARD_FRAME_POINTER_REGNUM)
|
1286 |
|
|
return orig;
|
1287 |
|
|
|
1288 |
|
|
bitmap_set_bit (evd->regs_active, regno);
|
1289 |
|
|
|
1290 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1291 |
|
|
fprintf (dump_file, "expanding: r%d into: ", regno);
|
1292 |
|
|
|
1293 |
|
|
result = expand_loc (l->elt->locs, evd, max_depth);
|
1294 |
|
|
bitmap_clear_bit (evd->regs_active, regno);
|
1295 |
|
|
|
1296 |
|
|
if (result)
|
1297 |
|
|
return result;
|
1298 |
|
|
else
|
1299 |
|
|
return orig;
|
1300 |
|
|
}
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
case CONST_INT:
|
1304 |
|
|
case CONST_DOUBLE:
|
1305 |
|
|
case CONST_VECTOR:
|
1306 |
|
|
case SYMBOL_REF:
|
1307 |
|
|
case CODE_LABEL:
|
1308 |
|
|
case PC:
|
1309 |
|
|
case CC0:
|
1310 |
|
|
case SCRATCH:
|
1311 |
|
|
/* SCRATCH must be shared because they represent distinct values. */
|
1312 |
|
|
return orig;
|
1313 |
|
|
case CLOBBER:
|
1314 |
|
|
if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
|
1315 |
|
|
return orig;
|
1316 |
|
|
break;
|
1317 |
|
|
|
1318 |
|
|
case CONST:
|
1319 |
|
|
if (shared_const_p (orig))
|
1320 |
|
|
return orig;
|
1321 |
|
|
break;
|
1322 |
|
|
|
1323 |
|
|
case SUBREG:
|
1324 |
|
|
{
|
1325 |
|
|
rtx subreg;
|
1326 |
|
|
|
1327 |
|
|
if (evd->callback)
|
1328 |
|
|
{
|
1329 |
|
|
subreg = evd->callback (orig, evd->regs_active, max_depth,
|
1330 |
|
|
evd->callback_arg);
|
1331 |
|
|
if (subreg != orig)
|
1332 |
|
|
return subreg;
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
|
1336 |
|
|
max_depth - 1);
|
1337 |
|
|
if (!subreg)
|
1338 |
|
|
return NULL;
|
1339 |
|
|
scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
|
1340 |
|
|
GET_MODE (SUBREG_REG (orig)),
|
1341 |
|
|
SUBREG_BYTE (orig));
|
1342 |
|
|
if (scopy == NULL
|
1343 |
|
|
|| (GET_CODE (scopy) == SUBREG
|
1344 |
|
|
&& !REG_P (SUBREG_REG (scopy))
|
1345 |
|
|
&& !MEM_P (SUBREG_REG (scopy))))
|
1346 |
|
|
return NULL;
|
1347 |
|
|
|
1348 |
|
|
return scopy;
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
case VALUE:
|
1352 |
|
|
{
|
1353 |
|
|
rtx result;
|
1354 |
|
|
|
1355 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1356 |
|
|
{
|
1357 |
|
|
fputs ("\nexpanding ", dump_file);
|
1358 |
|
|
print_rtl_single (dump_file, orig);
|
1359 |
|
|
fputs (" into...", dump_file);
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
if (evd->callback)
|
1363 |
|
|
{
|
1364 |
|
|
result = evd->callback (orig, evd->regs_active, max_depth,
|
1365 |
|
|
evd->callback_arg);
|
1366 |
|
|
|
1367 |
|
|
if (result != orig)
|
1368 |
|
|
return result;
|
1369 |
|
|
}
|
1370 |
|
|
|
1371 |
|
|
result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
|
1372 |
|
|
return result;
|
1373 |
|
|
}
|
1374 |
|
|
|
1375 |
|
|
case DEBUG_EXPR:
|
1376 |
|
|
if (evd->callback)
|
1377 |
|
|
return evd->callback (orig, evd->regs_active, max_depth,
|
1378 |
|
|
evd->callback_arg);
|
1379 |
|
|
return orig;
|
1380 |
|
|
|
1381 |
|
|
default:
|
1382 |
|
|
break;
|
1383 |
|
|
}
|
1384 |
|
|
|
1385 |
|
|
/* Copy the various flags, fields, and other information. We assume
|
1386 |
|
|
that all fields need copying, and then clear the fields that should
|
1387 |
|
|
not be copied. That is the sensible default behavior, and forces
|
1388 |
|
|
us to explicitly document why we are *not* copying a flag. */
|
1389 |
|
|
if (evd->dummy)
|
1390 |
|
|
copy = NULL;
|
1391 |
|
|
else
|
1392 |
|
|
copy = shallow_copy_rtx (orig);
|
1393 |
|
|
|
1394 |
|
|
format_ptr = GET_RTX_FORMAT (code);
|
1395 |
|
|
|
1396 |
|
|
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
1397 |
|
|
switch (*format_ptr++)
|
1398 |
|
|
{
|
1399 |
|
|
case 'e':
|
1400 |
|
|
if (XEXP (orig, i) != NULL)
|
1401 |
|
|
{
|
1402 |
|
|
rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
|
1403 |
|
|
max_depth - 1);
|
1404 |
|
|
if (!result)
|
1405 |
|
|
return NULL;
|
1406 |
|
|
if (copy)
|
1407 |
|
|
XEXP (copy, i) = result;
|
1408 |
|
|
}
|
1409 |
|
|
break;
|
1410 |
|
|
|
1411 |
|
|
case 'E':
|
1412 |
|
|
case 'V':
|
1413 |
|
|
if (XVEC (orig, i) != NULL)
|
1414 |
|
|
{
|
1415 |
|
|
if (copy)
|
1416 |
|
|
XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
|
1417 |
|
|
for (j = 0; j < XVECLEN (orig, i); j++)
|
1418 |
|
|
{
|
1419 |
|
|
rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
|
1420 |
|
|
evd, max_depth - 1);
|
1421 |
|
|
if (!result)
|
1422 |
|
|
return NULL;
|
1423 |
|
|
if (copy)
|
1424 |
|
|
XVECEXP (copy, i, j) = result;
|
1425 |
|
|
}
|
1426 |
|
|
}
|
1427 |
|
|
break;
|
1428 |
|
|
|
1429 |
|
|
case 't':
|
1430 |
|
|
case 'w':
|
1431 |
|
|
case 'i':
|
1432 |
|
|
case 's':
|
1433 |
|
|
case 'S':
|
1434 |
|
|
case 'T':
|
1435 |
|
|
case 'u':
|
1436 |
|
|
case 'B':
|
1437 |
|
|
case '0':
|
1438 |
|
|
/* These are left unchanged. */
|
1439 |
|
|
break;
|
1440 |
|
|
|
1441 |
|
|
default:
|
1442 |
|
|
gcc_unreachable ();
|
1443 |
|
|
}
|
1444 |
|
|
|
1445 |
|
|
if (evd->dummy)
|
1446 |
|
|
return orig;
|
1447 |
|
|
|
1448 |
|
|
mode = GET_MODE (copy);
|
1449 |
|
|
/* If an operand has been simplified into CONST_INT, which doesn't
|
1450 |
|
|
have a mode and the mode isn't derivable from whole rtx's mode,
|
1451 |
|
|
try simplify_*_operation first with mode from original's operand
|
1452 |
|
|
and as a fallback wrap CONST_INT into gen_rtx_CONST. */
|
1453 |
|
|
scopy = copy;
|
1454 |
|
|
switch (GET_RTX_CLASS (code))
|
1455 |
|
|
{
|
1456 |
|
|
case RTX_UNARY:
|
1457 |
|
|
if (CONST_INT_P (XEXP (copy, 0))
|
1458 |
|
|
&& GET_MODE (XEXP (orig, 0)) != VOIDmode)
|
1459 |
|
|
{
|
1460 |
|
|
scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
|
1461 |
|
|
GET_MODE (XEXP (orig, 0)));
|
1462 |
|
|
if (scopy)
|
1463 |
|
|
return scopy;
|
1464 |
|
|
}
|
1465 |
|
|
break;
|
1466 |
|
|
case RTX_COMM_ARITH:
|
1467 |
|
|
case RTX_BIN_ARITH:
|
1468 |
|
|
/* These expressions can derive operand modes from the whole rtx's mode. */
|
1469 |
|
|
break;
|
1470 |
|
|
case RTX_TERNARY:
|
1471 |
|
|
case RTX_BITFIELD_OPS:
|
1472 |
|
|
if (CONST_INT_P (XEXP (copy, 0))
|
1473 |
|
|
&& GET_MODE (XEXP (orig, 0)) != VOIDmode)
|
1474 |
|
|
{
|
1475 |
|
|
scopy = simplify_ternary_operation (code, mode,
|
1476 |
|
|
GET_MODE (XEXP (orig, 0)),
|
1477 |
|
|
XEXP (copy, 0), XEXP (copy, 1),
|
1478 |
|
|
XEXP (copy, 2));
|
1479 |
|
|
if (scopy)
|
1480 |
|
|
return scopy;
|
1481 |
|
|
}
|
1482 |
|
|
break;
|
1483 |
|
|
case RTX_COMPARE:
|
1484 |
|
|
case RTX_COMM_COMPARE:
|
1485 |
|
|
if (CONST_INT_P (XEXP (copy, 0))
|
1486 |
|
|
&& GET_MODE (XEXP (copy, 1)) == VOIDmode
|
1487 |
|
|
&& (GET_MODE (XEXP (orig, 0)) != VOIDmode
|
1488 |
|
|
|| GET_MODE (XEXP (orig, 1)) != VOIDmode))
|
1489 |
|
|
{
|
1490 |
|
|
scopy = simplify_relational_operation (code, mode,
|
1491 |
|
|
(GET_MODE (XEXP (orig, 0))
|
1492 |
|
|
!= VOIDmode)
|
1493 |
|
|
? GET_MODE (XEXP (orig, 0))
|
1494 |
|
|
: GET_MODE (XEXP (orig, 1)),
|
1495 |
|
|
XEXP (copy, 0),
|
1496 |
|
|
XEXP (copy, 1));
|
1497 |
|
|
if (scopy)
|
1498 |
|
|
return scopy;
|
1499 |
|
|
}
|
1500 |
|
|
break;
|
1501 |
|
|
default:
|
1502 |
|
|
break;
|
1503 |
|
|
}
|
1504 |
|
|
scopy = simplify_rtx (copy);
|
1505 |
|
|
if (scopy)
|
1506 |
|
|
return scopy;
|
1507 |
|
|
return copy;
|
1508 |
|
|
}
|
1509 |
|
|
|
1510 |
|
|
/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
|
1511 |
|
|
with VALUE expressions. This way, it becomes independent of changes
|
1512 |
|
|
to registers and memory.
|
1513 |
|
|
X isn't actually modified; if modifications are needed, new rtl is
|
1514 |
|
|
allocated. However, the return value can share rtl with X. */
|
1515 |
|
|
|
1516 |
|
|
rtx
|
1517 |
|
|
cselib_subst_to_values (rtx x)
|
1518 |
|
|
{
|
1519 |
|
|
enum rtx_code code = GET_CODE (x);
|
1520 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
1521 |
|
|
cselib_val *e;
|
1522 |
|
|
struct elt_list *l;
|
1523 |
|
|
rtx copy = x;
|
1524 |
|
|
int i;
|
1525 |
|
|
|
1526 |
|
|
switch (code)
|
1527 |
|
|
{
|
1528 |
|
|
case REG:
|
1529 |
|
|
l = REG_VALUES (REGNO (x));
|
1530 |
|
|
if (l && l->elt == NULL)
|
1531 |
|
|
l = l->next;
|
1532 |
|
|
for (; l; l = l->next)
|
1533 |
|
|
if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
|
1534 |
|
|
return l->elt->val_rtx;
|
1535 |
|
|
|
1536 |
|
|
gcc_unreachable ();
|
1537 |
|
|
|
1538 |
|
|
case MEM:
|
1539 |
|
|
e = cselib_lookup_mem (x, 0);
|
1540 |
|
|
if (! e)
|
1541 |
|
|
{
|
1542 |
|
|
/* This happens for autoincrements. Assign a value that doesn't
|
1543 |
|
|
match any other. */
|
1544 |
|
|
e = new_cselib_val (next_uid, GET_MODE (x), x);
|
1545 |
|
|
}
|
1546 |
|
|
return e->val_rtx;
|
1547 |
|
|
|
1548 |
|
|
case CONST_DOUBLE:
|
1549 |
|
|
case CONST_VECTOR:
|
1550 |
|
|
case CONST_INT:
|
1551 |
|
|
case CONST_FIXED:
|
1552 |
|
|
return x;
|
1553 |
|
|
|
1554 |
|
|
case POST_INC:
|
1555 |
|
|
case PRE_INC:
|
1556 |
|
|
case POST_DEC:
|
1557 |
|
|
case PRE_DEC:
|
1558 |
|
|
case POST_MODIFY:
|
1559 |
|
|
case PRE_MODIFY:
|
1560 |
|
|
e = new_cselib_val (next_uid, GET_MODE (x), x);
|
1561 |
|
|
return e->val_rtx;
|
1562 |
|
|
|
1563 |
|
|
default:
|
1564 |
|
|
break;
|
1565 |
|
|
}
|
1566 |
|
|
|
1567 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1568 |
|
|
{
|
1569 |
|
|
if (fmt[i] == 'e')
|
1570 |
|
|
{
|
1571 |
|
|
rtx t = cselib_subst_to_values (XEXP (x, i));
|
1572 |
|
|
|
1573 |
|
|
if (t != XEXP (x, i))
|
1574 |
|
|
{
|
1575 |
|
|
if (x == copy)
|
1576 |
|
|
copy = shallow_copy_rtx (x);
|
1577 |
|
|
XEXP (copy, i) = t;
|
1578 |
|
|
}
|
1579 |
|
|
}
|
1580 |
|
|
else if (fmt[i] == 'E')
|
1581 |
|
|
{
|
1582 |
|
|
int j;
|
1583 |
|
|
|
1584 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
1585 |
|
|
{
|
1586 |
|
|
rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
|
1587 |
|
|
|
1588 |
|
|
if (t != XVECEXP (x, i, j))
|
1589 |
|
|
{
|
1590 |
|
|
if (XVEC (x, i) == XVEC (copy, i))
|
1591 |
|
|
{
|
1592 |
|
|
if (x == copy)
|
1593 |
|
|
copy = shallow_copy_rtx (x);
|
1594 |
|
|
XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
|
1595 |
|
|
}
|
1596 |
|
|
XVECEXP (copy, i, j) = t;
|
1597 |
|
|
}
|
1598 |
|
|
}
|
1599 |
|
|
}
|
1600 |
|
|
}
|
1601 |
|
|
|
1602 |
|
|
return copy;
|
1603 |
|
|
}
|
1604 |
|
|
|
1605 |
|
|
/* Look up the rtl expression X in our tables and return the value it has.
|
1606 |
|
|
If CREATE is zero, we return NULL if we don't know the value. Otherwise,
|
1607 |
|
|
we create a new one if possible, using mode MODE if X doesn't have a mode
|
1608 |
|
|
(i.e. because it's a constant). */
|
1609 |
|
|
|
1610 |
|
|
static cselib_val *
|
1611 |
|
|
cselib_lookup_1 (rtx x, enum machine_mode mode, int create)
|
1612 |
|
|
{
|
1613 |
|
|
void **slot;
|
1614 |
|
|
cselib_val *e;
|
1615 |
|
|
unsigned int hashval;
|
1616 |
|
|
|
1617 |
|
|
if (GET_MODE (x) != VOIDmode)
|
1618 |
|
|
mode = GET_MODE (x);
|
1619 |
|
|
|
1620 |
|
|
if (GET_CODE (x) == VALUE)
|
1621 |
|
|
return CSELIB_VAL_PTR (x);
|
1622 |
|
|
|
1623 |
|
|
if (REG_P (x))
|
1624 |
|
|
{
|
1625 |
|
|
struct elt_list *l;
|
1626 |
|
|
unsigned int i = REGNO (x);
|
1627 |
|
|
|
1628 |
|
|
l = REG_VALUES (i);
|
1629 |
|
|
if (l && l->elt == NULL)
|
1630 |
|
|
l = l->next;
|
1631 |
|
|
for (; l; l = l->next)
|
1632 |
|
|
if (mode == GET_MODE (l->elt->val_rtx))
|
1633 |
|
|
{
|
1634 |
|
|
promote_debug_loc (l->elt->locs);
|
1635 |
|
|
return l->elt;
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
if (! create)
|
1639 |
|
|
return 0;
|
1640 |
|
|
|
1641 |
|
|
if (i < FIRST_PSEUDO_REGISTER)
|
1642 |
|
|
{
|
1643 |
|
|
unsigned int n = hard_regno_nregs[i][mode];
|
1644 |
|
|
|
1645 |
|
|
if (n > max_value_regs)
|
1646 |
|
|
max_value_regs = n;
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
e = new_cselib_val (next_uid, GET_MODE (x), x);
|
1650 |
|
|
e->locs = new_elt_loc_list (e->locs, x);
|
1651 |
|
|
if (REG_VALUES (i) == 0)
|
1652 |
|
|
{
|
1653 |
|
|
/* Maintain the invariant that the first entry of
|
1654 |
|
|
REG_VALUES, if present, must be the value used to set the
|
1655 |
|
|
register, or NULL. */
|
1656 |
|
|
used_regs[n_used_regs++] = i;
|
1657 |
|
|
REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
|
1658 |
|
|
}
|
1659 |
|
|
REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
|
1660 |
|
|
slot = htab_find_slot_with_hash (cselib_hash_table, x, e->hash, INSERT);
|
1661 |
|
|
*slot = e;
|
1662 |
|
|
return e;
|
1663 |
|
|
}
|
1664 |
|
|
|
1665 |
|
|
if (MEM_P (x))
|
1666 |
|
|
return cselib_lookup_mem (x, create);
|
1667 |
|
|
|
1668 |
|
|
hashval = cselib_hash_rtx (x, create);
|
1669 |
|
|
/* Can't even create if hashing is not possible. */
|
1670 |
|
|
if (! hashval)
|
1671 |
|
|
return 0;
|
1672 |
|
|
|
1673 |
|
|
slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
|
1674 |
|
|
hashval, create ? INSERT : NO_INSERT);
|
1675 |
|
|
if (slot == 0)
|
1676 |
|
|
return 0;
|
1677 |
|
|
|
1678 |
|
|
e = (cselib_val *) *slot;
|
1679 |
|
|
if (e)
|
1680 |
|
|
return e;
|
1681 |
|
|
|
1682 |
|
|
e = new_cselib_val (hashval, mode, x);
|
1683 |
|
|
|
1684 |
|
|
/* We have to fill the slot before calling cselib_subst_to_values:
|
1685 |
|
|
the hash table is inconsistent until we do so, and
|
1686 |
|
|
cselib_subst_to_values will need to do lookups. */
|
1687 |
|
|
*slot = (void *) e;
|
1688 |
|
|
e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
|
1689 |
|
|
return e;
|
1690 |
|
|
}
|
1691 |
|
|
|
1692 |
|
|
/* Wrapper for cselib_lookup, that indicates X is in INSN. */
|
1693 |
|
|
|
1694 |
|
|
cselib_val *
|
1695 |
|
|
cselib_lookup_from_insn (rtx x, enum machine_mode mode,
|
1696 |
|
|
int create, rtx insn)
|
1697 |
|
|
{
|
1698 |
|
|
cselib_val *ret;
|
1699 |
|
|
|
1700 |
|
|
gcc_assert (!cselib_current_insn);
|
1701 |
|
|
cselib_current_insn = insn;
|
1702 |
|
|
|
1703 |
|
|
ret = cselib_lookup (x, mode, create);
|
1704 |
|
|
|
1705 |
|
|
cselib_current_insn = NULL;
|
1706 |
|
|
|
1707 |
|
|
return ret;
|
1708 |
|
|
}
|
1709 |
|
|
|
1710 |
|
|
/* Wrapper for cselib_lookup_1, that logs the lookup result and
|
1711 |
|
|
maintains invariants related with debug insns. */
|
1712 |
|
|
|
1713 |
|
|
cselib_val *
|
1714 |
|
|
cselib_lookup (rtx x, enum machine_mode mode, int create)
|
1715 |
|
|
{
|
1716 |
|
|
cselib_val *ret = cselib_lookup_1 (x, mode, create);
|
1717 |
|
|
|
1718 |
|
|
/* ??? Should we return NULL if we're not to create an entry, the
|
1719 |
|
|
found loc is a debug loc and cselib_current_insn is not DEBUG?
|
1720 |
|
|
If so, we should also avoid converting val to non-DEBUG; probably
|
1721 |
|
|
easiest setting cselib_current_insn to NULL before the call
|
1722 |
|
|
above. */
|
1723 |
|
|
|
1724 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1725 |
|
|
{
|
1726 |
|
|
fputs ("cselib lookup ", dump_file);
|
1727 |
|
|
print_inline_rtx (dump_file, x, 2);
|
1728 |
|
|
fprintf (dump_file, " => %u:%u\n",
|
1729 |
|
|
ret ? ret->uid : 0,
|
1730 |
|
|
ret ? ret->hash : 0);
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
return ret;
|
1734 |
|
|
}
|
1735 |
|
|
|
1736 |
|
|
/* Invalidate any entries in reg_values that overlap REGNO. This is called
|
1737 |
|
|
if REGNO is changing. MODE is the mode of the assignment to REGNO, which
|
1738 |
|
|
is used to determine how many hard registers are being changed. If MODE
|
1739 |
|
|
is VOIDmode, then only REGNO is being changed; this is used when
|
1740 |
|
|
invalidating call clobbered registers across a call. */
|
1741 |
|
|
|
1742 |
|
|
static void
|
1743 |
|
|
cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
|
1744 |
|
|
{
|
1745 |
|
|
unsigned int endregno;
|
1746 |
|
|
unsigned int i;
|
1747 |
|
|
|
1748 |
|
|
/* If we see pseudos after reload, something is _wrong_. */
|
1749 |
|
|
gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
|
1750 |
|
|
|| reg_renumber[regno] < 0);
|
1751 |
|
|
|
1752 |
|
|
/* Determine the range of registers that must be invalidated. For
|
1753 |
|
|
pseudos, only REGNO is affected. For hard regs, we must take MODE
|
1754 |
|
|
into account, and we must also invalidate lower register numbers
|
1755 |
|
|
if they contain values that overlap REGNO. */
|
1756 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
1757 |
|
|
{
|
1758 |
|
|
gcc_assert (mode != VOIDmode);
|
1759 |
|
|
|
1760 |
|
|
if (regno < max_value_regs)
|
1761 |
|
|
i = 0;
|
1762 |
|
|
else
|
1763 |
|
|
i = regno - max_value_regs;
|
1764 |
|
|
|
1765 |
|
|
endregno = end_hard_regno (mode, regno);
|
1766 |
|
|
}
|
1767 |
|
|
else
|
1768 |
|
|
{
|
1769 |
|
|
i = regno;
|
1770 |
|
|
endregno = regno + 1;
|
1771 |
|
|
}
|
1772 |
|
|
|
1773 |
|
|
for (; i < endregno; i++)
|
1774 |
|
|
{
|
1775 |
|
|
struct elt_list **l = ®_VALUES (i);
|
1776 |
|
|
|
1777 |
|
|
/* Go through all known values for this reg; if it overlaps the range
|
1778 |
|
|
we're invalidating, remove the value. */
|
1779 |
|
|
while (*l)
|
1780 |
|
|
{
|
1781 |
|
|
cselib_val *v = (*l)->elt;
|
1782 |
|
|
bool had_locs;
|
1783 |
|
|
rtx setting_insn;
|
1784 |
|
|
struct elt_loc_list **p;
|
1785 |
|
|
unsigned int this_last = i;
|
1786 |
|
|
|
1787 |
|
|
if (i < FIRST_PSEUDO_REGISTER && v != NULL)
|
1788 |
|
|
this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
|
1789 |
|
|
|
1790 |
|
|
if (this_last < regno || v == NULL
|
1791 |
|
|
|| (v == cfa_base_preserved_val
|
1792 |
|
|
&& i == cfa_base_preserved_regno))
|
1793 |
|
|
{
|
1794 |
|
|
l = &(*l)->next;
|
1795 |
|
|
continue;
|
1796 |
|
|
}
|
1797 |
|
|
|
1798 |
|
|
/* We have an overlap. */
|
1799 |
|
|
if (*l == REG_VALUES (i))
|
1800 |
|
|
{
|
1801 |
|
|
/* Maintain the invariant that the first entry of
|
1802 |
|
|
REG_VALUES, if present, must be the value used to set
|
1803 |
|
|
the register, or NULL. This is also nice because
|
1804 |
|
|
then we won't push the same regno onto user_regs
|
1805 |
|
|
multiple times. */
|
1806 |
|
|
(*l)->elt = NULL;
|
1807 |
|
|
l = &(*l)->next;
|
1808 |
|
|
}
|
1809 |
|
|
else
|
1810 |
|
|
unchain_one_elt_list (l);
|
1811 |
|
|
|
1812 |
|
|
had_locs = v->locs != NULL;
|
1813 |
|
|
setting_insn = v->locs ? v->locs->setting_insn : NULL;
|
1814 |
|
|
|
1815 |
|
|
/* Now, we clear the mapping from value to reg. It must exist, so
|
1816 |
|
|
this code will crash intentionally if it doesn't. */
|
1817 |
|
|
for (p = &v->locs; ; p = &(*p)->next)
|
1818 |
|
|
{
|
1819 |
|
|
rtx x = (*p)->loc;
|
1820 |
|
|
|
1821 |
|
|
if (REG_P (x) && REGNO (x) == i)
|
1822 |
|
|
{
|
1823 |
|
|
unchain_one_elt_loc_list (p);
|
1824 |
|
|
break;
|
1825 |
|
|
}
|
1826 |
|
|
}
|
1827 |
|
|
|
1828 |
|
|
if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
|
1829 |
|
|
{
|
1830 |
|
|
if (setting_insn && DEBUG_INSN_P (setting_insn))
|
1831 |
|
|
n_useless_debug_values++;
|
1832 |
|
|
else
|
1833 |
|
|
n_useless_values++;
|
1834 |
|
|
}
|
1835 |
|
|
}
|
1836 |
|
|
}
|
1837 |
|
|
}
|
1838 |
|
|
|
1839 |
|
|
/* Return 1 if X has a value that can vary even between two
|
1840 |
|
|
executions of the program. 0 means X can be compared reliably
|
1841 |
|
|
against certain constants or near-constants. */
|
1842 |
|
|
|
1843 |
|
|
static bool
|
1844 |
|
|
cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
|
1845 |
|
|
{
|
1846 |
|
|
/* We actually don't need to verify very hard. This is because
|
1847 |
|
|
if X has actually changed, we invalidate the memory anyway,
|
1848 |
|
|
so assume that all common memory addresses are
|
1849 |
|
|
invariant. */
|
1850 |
|
|
return 0;
|
1851 |
|
|
}
|
1852 |
|
|
|
1853 |
|
|
/* Invalidate any locations in the table which are changed because of a
|
1854 |
|
|
store to MEM_RTX. If this is called because of a non-const call
|
1855 |
|
|
instruction, MEM_RTX is (mem:BLK const0_rtx). */
|
1856 |
|
|
|
1857 |
|
|
static void
|
1858 |
|
|
cselib_invalidate_mem (rtx mem_rtx)
|
1859 |
|
|
{
|
1860 |
|
|
cselib_val **vp, *v, *next;
|
1861 |
|
|
int num_mems = 0;
|
1862 |
|
|
rtx mem_addr;
|
1863 |
|
|
|
1864 |
|
|
mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
|
1865 |
|
|
mem_rtx = canon_rtx (mem_rtx);
|
1866 |
|
|
|
1867 |
|
|
vp = &first_containing_mem;
|
1868 |
|
|
for (v = *vp; v != &dummy_val; v = next)
|
1869 |
|
|
{
|
1870 |
|
|
bool has_mem = false;
|
1871 |
|
|
struct elt_loc_list **p = &v->locs;
|
1872 |
|
|
bool had_locs = v->locs != NULL;
|
1873 |
|
|
rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
|
1874 |
|
|
|
1875 |
|
|
while (*p)
|
1876 |
|
|
{
|
1877 |
|
|
rtx x = (*p)->loc;
|
1878 |
|
|
cselib_val *addr;
|
1879 |
|
|
struct elt_list **mem_chain;
|
1880 |
|
|
|
1881 |
|
|
/* MEMs may occur in locations only at the top level; below
|
1882 |
|
|
that every MEM or REG is substituted by its VALUE. */
|
1883 |
|
|
if (!MEM_P (x))
|
1884 |
|
|
{
|
1885 |
|
|
p = &(*p)->next;
|
1886 |
|
|
continue;
|
1887 |
|
|
}
|
1888 |
|
|
if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
|
1889 |
|
|
&& ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
|
1890 |
|
|
x, NULL_RTX, cselib_rtx_varies_p))
|
1891 |
|
|
{
|
1892 |
|
|
has_mem = true;
|
1893 |
|
|
num_mems++;
|
1894 |
|
|
p = &(*p)->next;
|
1895 |
|
|
continue;
|
1896 |
|
|
}
|
1897 |
|
|
|
1898 |
|
|
/* This one overlaps. */
|
1899 |
|
|
/* We must have a mapping from this MEM's address to the
|
1900 |
|
|
value (E). Remove that, too. */
|
1901 |
|
|
addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
|
1902 |
|
|
mem_chain = &addr->addr_list;
|
1903 |
|
|
for (;;)
|
1904 |
|
|
{
|
1905 |
|
|
if ((*mem_chain)->elt == v)
|
1906 |
|
|
{
|
1907 |
|
|
unchain_one_elt_list (mem_chain);
|
1908 |
|
|
break;
|
1909 |
|
|
}
|
1910 |
|
|
|
1911 |
|
|
mem_chain = &(*mem_chain)->next;
|
1912 |
|
|
}
|
1913 |
|
|
|
1914 |
|
|
unchain_one_elt_loc_list (p);
|
1915 |
|
|
}
|
1916 |
|
|
|
1917 |
|
|
if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
|
1918 |
|
|
{
|
1919 |
|
|
if (setting_insn && DEBUG_INSN_P (setting_insn))
|
1920 |
|
|
n_useless_debug_values++;
|
1921 |
|
|
else
|
1922 |
|
|
n_useless_values++;
|
1923 |
|
|
}
|
1924 |
|
|
|
1925 |
|
|
next = v->next_containing_mem;
|
1926 |
|
|
if (has_mem)
|
1927 |
|
|
{
|
1928 |
|
|
*vp = v;
|
1929 |
|
|
vp = &(*vp)->next_containing_mem;
|
1930 |
|
|
}
|
1931 |
|
|
else
|
1932 |
|
|
v->next_containing_mem = NULL;
|
1933 |
|
|
}
|
1934 |
|
|
*vp = &dummy_val;
|
1935 |
|
|
}
|
1936 |
|
|
|
1937 |
|
|
/* Invalidate DEST, which is being assigned to or clobbered. */
|
1938 |
|
|
|
1939 |
|
|
void
|
1940 |
|
|
cselib_invalidate_rtx (rtx dest)
|
1941 |
|
|
{
|
1942 |
|
|
while (GET_CODE (dest) == SUBREG
|
1943 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
1944 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
1945 |
|
|
dest = XEXP (dest, 0);
|
1946 |
|
|
|
1947 |
|
|
if (REG_P (dest))
|
1948 |
|
|
cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
|
1949 |
|
|
else if (MEM_P (dest))
|
1950 |
|
|
cselib_invalidate_mem (dest);
|
1951 |
|
|
|
1952 |
|
|
/* Some machines don't define AUTO_INC_DEC, but they still use push
|
1953 |
|
|
instructions. We need to catch that case here in order to
|
1954 |
|
|
invalidate the stack pointer correctly. Note that invalidating
|
1955 |
|
|
the stack pointer is different from invalidating DEST. */
|
1956 |
|
|
if (push_operand (dest, GET_MODE (dest)))
|
1957 |
|
|
cselib_invalidate_rtx (stack_pointer_rtx);
|
1958 |
|
|
}
|
1959 |
|
|
|
1960 |
|
|
/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
|
1961 |
|
|
|
1962 |
|
|
static void
|
1963 |
|
|
cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
|
1964 |
|
|
void *data ATTRIBUTE_UNUSED)
|
1965 |
|
|
{
|
1966 |
|
|
cselib_invalidate_rtx (dest);
|
1967 |
|
|
}
|
1968 |
|
|
|
1969 |
|
|
/* Record the result of a SET instruction. DEST is being set; the source
|
1970 |
|
|
contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
|
1971 |
|
|
describes its address. */
|
1972 |
|
|
|
1973 |
|
|
static void
|
1974 |
|
|
cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
|
1975 |
|
|
{
|
1976 |
|
|
int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
|
1977 |
|
|
|
1978 |
|
|
if (src_elt == 0 || side_effects_p (dest))
|
1979 |
|
|
return;
|
1980 |
|
|
|
1981 |
|
|
if (dreg >= 0)
|
1982 |
|
|
{
|
1983 |
|
|
if (dreg < FIRST_PSEUDO_REGISTER)
|
1984 |
|
|
{
|
1985 |
|
|
unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
|
1986 |
|
|
|
1987 |
|
|
if (n > max_value_regs)
|
1988 |
|
|
max_value_regs = n;
|
1989 |
|
|
}
|
1990 |
|
|
|
1991 |
|
|
if (REG_VALUES (dreg) == 0)
|
1992 |
|
|
{
|
1993 |
|
|
used_regs[n_used_regs++] = dreg;
|
1994 |
|
|
REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
|
1995 |
|
|
}
|
1996 |
|
|
else
|
1997 |
|
|
{
|
1998 |
|
|
/* The register should have been invalidated. */
|
1999 |
|
|
gcc_assert (REG_VALUES (dreg)->elt == 0);
|
2000 |
|
|
REG_VALUES (dreg)->elt = src_elt;
|
2001 |
|
|
}
|
2002 |
|
|
|
2003 |
|
|
if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
|
2004 |
|
|
n_useless_values--;
|
2005 |
|
|
src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
|
2006 |
|
|
}
|
2007 |
|
|
else if (MEM_P (dest) && dest_addr_elt != 0
|
2008 |
|
|
&& cselib_record_memory)
|
2009 |
|
|
{
|
2010 |
|
|
if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
|
2011 |
|
|
n_useless_values--;
|
2012 |
|
|
add_mem_for_addr (dest_addr_elt, src_elt, dest);
|
2013 |
|
|
}
|
2014 |
|
|
}
|
2015 |
|
|
|
2016 |
|
|
/* There is no good way to determine how many elements there can be
|
2017 |
|
|
in a PARALLEL. Since it's fairly cheap, use a really large number. */
|
2018 |
|
|
#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
|
2019 |
|
|
|
2020 |
|
|
/* Record the effects of any sets in INSN. */
|
2021 |
|
|
static void
|
2022 |
|
|
cselib_record_sets (rtx insn)
|
2023 |
|
|
{
|
2024 |
|
|
int n_sets = 0;
|
2025 |
|
|
int i;
|
2026 |
|
|
struct cselib_set sets[MAX_SETS];
|
2027 |
|
|
rtx body = PATTERN (insn);
|
2028 |
|
|
rtx cond = 0;
|
2029 |
|
|
|
2030 |
|
|
body = PATTERN (insn);
|
2031 |
|
|
if (GET_CODE (body) == COND_EXEC)
|
2032 |
|
|
{
|
2033 |
|
|
cond = COND_EXEC_TEST (body);
|
2034 |
|
|
body = COND_EXEC_CODE (body);
|
2035 |
|
|
}
|
2036 |
|
|
|
2037 |
|
|
/* Find all sets. */
|
2038 |
|
|
if (GET_CODE (body) == SET)
|
2039 |
|
|
{
|
2040 |
|
|
sets[0].src = SET_SRC (body);
|
2041 |
|
|
sets[0].dest = SET_DEST (body);
|
2042 |
|
|
n_sets = 1;
|
2043 |
|
|
}
|
2044 |
|
|
else if (GET_CODE (body) == PARALLEL)
|
2045 |
|
|
{
|
2046 |
|
|
/* Look through the PARALLEL and record the values being
|
2047 |
|
|
set, if possible. Also handle any CLOBBERs. */
|
2048 |
|
|
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
2049 |
|
|
{
|
2050 |
|
|
rtx x = XVECEXP (body, 0, i);
|
2051 |
|
|
|
2052 |
|
|
if (GET_CODE (x) == SET)
|
2053 |
|
|
{
|
2054 |
|
|
sets[n_sets].src = SET_SRC (x);
|
2055 |
|
|
sets[n_sets].dest = SET_DEST (x);
|
2056 |
|
|
n_sets++;
|
2057 |
|
|
}
|
2058 |
|
|
}
|
2059 |
|
|
}
|
2060 |
|
|
|
2061 |
|
|
if (n_sets == 1
|
2062 |
|
|
&& MEM_P (sets[0].src)
|
2063 |
|
|
&& !cselib_record_memory
|
2064 |
|
|
&& MEM_READONLY_P (sets[0].src))
|
2065 |
|
|
{
|
2066 |
|
|
rtx note = find_reg_equal_equiv_note (insn);
|
2067 |
|
|
|
2068 |
|
|
if (note && CONSTANT_P (XEXP (note, 0)))
|
2069 |
|
|
sets[0].src = XEXP (note, 0);
|
2070 |
|
|
}
|
2071 |
|
|
|
2072 |
|
|
/* Look up the values that are read. Do this before invalidating the
|
2073 |
|
|
locations that are written. */
|
2074 |
|
|
for (i = 0; i < n_sets; i++)
|
2075 |
|
|
{
|
2076 |
|
|
rtx dest = sets[i].dest;
|
2077 |
|
|
|
2078 |
|
|
/* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
|
2079 |
|
|
the low part after invalidating any knowledge about larger modes. */
|
2080 |
|
|
if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
|
2081 |
|
|
sets[i].dest = dest = XEXP (dest, 0);
|
2082 |
|
|
|
2083 |
|
|
/* We don't know how to record anything but REG or MEM. */
|
2084 |
|
|
if (REG_P (dest)
|
2085 |
|
|
|| (MEM_P (dest) && cselib_record_memory))
|
2086 |
|
|
{
|
2087 |
|
|
rtx src = sets[i].src;
|
2088 |
|
|
if (cond)
|
2089 |
|
|
src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
|
2090 |
|
|
sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
|
2091 |
|
|
if (MEM_P (dest))
|
2092 |
|
|
{
|
2093 |
|
|
enum machine_mode address_mode
|
2094 |
|
|
= targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
|
2095 |
|
|
|
2096 |
|
|
sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
|
2097 |
|
|
address_mode, 1);
|
2098 |
|
|
}
|
2099 |
|
|
else
|
2100 |
|
|
sets[i].dest_addr_elt = 0;
|
2101 |
|
|
}
|
2102 |
|
|
}
|
2103 |
|
|
|
2104 |
|
|
if (cselib_record_sets_hook)
|
2105 |
|
|
cselib_record_sets_hook (insn, sets, n_sets);
|
2106 |
|
|
|
2107 |
|
|
/* Invalidate all locations written by this insn. Note that the elts we
|
2108 |
|
|
looked up in the previous loop aren't affected, just some of their
|
2109 |
|
|
locations may go away. */
|
2110 |
|
|
note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
|
2111 |
|
|
|
2112 |
|
|
/* If this is an asm, look for duplicate sets. This can happen when the
|
2113 |
|
|
user uses the same value as an output multiple times. This is valid
|
2114 |
|
|
if the outputs are not actually used thereafter. Treat this case as
|
2115 |
|
|
if the value isn't actually set. We do this by smashing the destination
|
2116 |
|
|
to pc_rtx, so that we won't record the value later. */
|
2117 |
|
|
if (n_sets >= 2 && asm_noperands (body) >= 0)
|
2118 |
|
|
{
|
2119 |
|
|
for (i = 0; i < n_sets; i++)
|
2120 |
|
|
{
|
2121 |
|
|
rtx dest = sets[i].dest;
|
2122 |
|
|
if (REG_P (dest) || MEM_P (dest))
|
2123 |
|
|
{
|
2124 |
|
|
int j;
|
2125 |
|
|
for (j = i + 1; j < n_sets; j++)
|
2126 |
|
|
if (rtx_equal_p (dest, sets[j].dest))
|
2127 |
|
|
{
|
2128 |
|
|
sets[i].dest = pc_rtx;
|
2129 |
|
|
sets[j].dest = pc_rtx;
|
2130 |
|
|
}
|
2131 |
|
|
}
|
2132 |
|
|
}
|
2133 |
|
|
}
|
2134 |
|
|
|
2135 |
|
|
/* Now enter the equivalences in our tables. */
|
2136 |
|
|
for (i = 0; i < n_sets; i++)
|
2137 |
|
|
{
|
2138 |
|
|
rtx dest = sets[i].dest;
|
2139 |
|
|
if (REG_P (dest)
|
2140 |
|
|
|| (MEM_P (dest) && cselib_record_memory))
|
2141 |
|
|
cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
|
2142 |
|
|
}
|
2143 |
|
|
}
|
2144 |
|
|
|
2145 |
|
|
/* Record the effects of INSN. */
|
2146 |
|
|
|
2147 |
|
|
void
|
2148 |
|
|
cselib_process_insn (rtx insn)
|
2149 |
|
|
{
|
2150 |
|
|
int i;
|
2151 |
|
|
rtx x;
|
2152 |
|
|
|
2153 |
|
|
cselib_current_insn = insn;
|
2154 |
|
|
|
2155 |
|
|
/* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
|
2156 |
|
|
if (LABEL_P (insn)
|
2157 |
|
|
|| (CALL_P (insn)
|
2158 |
|
|
&& find_reg_note (insn, REG_SETJMP, NULL))
|
2159 |
|
|
|| (NONJUMP_INSN_P (insn)
|
2160 |
|
|
&& GET_CODE (PATTERN (insn)) == ASM_OPERANDS
|
2161 |
|
|
&& MEM_VOLATILE_P (PATTERN (insn))))
|
2162 |
|
|
{
|
2163 |
|
|
cselib_reset_table (next_uid);
|
2164 |
|
|
cselib_current_insn = NULL_RTX;
|
2165 |
|
|
return;
|
2166 |
|
|
}
|
2167 |
|
|
|
2168 |
|
|
if (! INSN_P (insn))
|
2169 |
|
|
{
|
2170 |
|
|
cselib_current_insn = NULL_RTX;
|
2171 |
|
|
return;
|
2172 |
|
|
}
|
2173 |
|
|
|
2174 |
|
|
/* If this is a call instruction, forget anything stored in a
|
2175 |
|
|
call clobbered register, or, if this is not a const call, in
|
2176 |
|
|
memory. */
|
2177 |
|
|
if (CALL_P (insn))
|
2178 |
|
|
{
|
2179 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
2180 |
|
|
if (call_used_regs[i]
|
2181 |
|
|
|| (REG_VALUES (i) && REG_VALUES (i)->elt
|
2182 |
|
|
&& HARD_REGNO_CALL_PART_CLOBBERED (i,
|
2183 |
|
|
GET_MODE (REG_VALUES (i)->elt->val_rtx))))
|
2184 |
|
|
cselib_invalidate_regno (i, reg_raw_mode[i]);
|
2185 |
|
|
|
2186 |
|
|
/* Since it is not clear how cselib is going to be used, be
|
2187 |
|
|
conservative here and treat looping pure or const functions
|
2188 |
|
|
as if they were regular functions. */
|
2189 |
|
|
if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
|
2190 |
|
|
|| !(RTL_CONST_OR_PURE_CALL_P (insn)))
|
2191 |
|
|
cselib_invalidate_mem (callmem);
|
2192 |
|
|
}
|
2193 |
|
|
|
2194 |
|
|
cselib_record_sets (insn);
|
2195 |
|
|
|
2196 |
|
|
#ifdef AUTO_INC_DEC
|
2197 |
|
|
/* Clobber any registers which appear in REG_INC notes. We
|
2198 |
|
|
could keep track of the changes to their values, but it is
|
2199 |
|
|
unlikely to help. */
|
2200 |
|
|
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
2201 |
|
|
if (REG_NOTE_KIND (x) == REG_INC)
|
2202 |
|
|
cselib_invalidate_rtx (XEXP (x, 0));
|
2203 |
|
|
#endif
|
2204 |
|
|
|
2205 |
|
|
/* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
|
2206 |
|
|
after we have processed the insn. */
|
2207 |
|
|
if (CALL_P (insn))
|
2208 |
|
|
for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
|
2209 |
|
|
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
|
2210 |
|
|
cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
|
2211 |
|
|
|
2212 |
|
|
cselib_current_insn = NULL_RTX;
|
2213 |
|
|
|
2214 |
|
|
if (n_useless_values > MAX_USELESS_VALUES
|
2215 |
|
|
/* remove_useless_values is linear in the hash table size. Avoid
|
2216 |
|
|
quadratic behavior for very large hashtables with very few
|
2217 |
|
|
useless elements. */
|
2218 |
|
|
&& ((unsigned int)n_useless_values
|
2219 |
|
|
> (cselib_hash_table->n_elements
|
2220 |
|
|
- cselib_hash_table->n_deleted
|
2221 |
|
|
- n_debug_values) / 4))
|
2222 |
|
|
remove_useless_values ();
|
2223 |
|
|
}
|
2224 |
|
|
|
2225 |
|
|
/* Initialize cselib for one pass. The caller must also call
|
2226 |
|
|
init_alias_analysis. */
|
2227 |
|
|
|
2228 |
|
|
void
|
2229 |
|
|
cselib_init (int record_what)
|
2230 |
|
|
{
|
2231 |
|
|
elt_list_pool = create_alloc_pool ("elt_list",
|
2232 |
|
|
sizeof (struct elt_list), 10);
|
2233 |
|
|
elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
|
2234 |
|
|
sizeof (struct elt_loc_list), 10);
|
2235 |
|
|
cselib_val_pool = create_alloc_pool ("cselib_val_list",
|
2236 |
|
|
sizeof (cselib_val), 10);
|
2237 |
|
|
value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
|
2238 |
|
|
cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
|
2239 |
|
|
cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
|
2240 |
|
|
|
2241 |
|
|
/* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
|
2242 |
|
|
see canon_true_dependence. This is only created once. */
|
2243 |
|
|
if (! callmem)
|
2244 |
|
|
callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
|
2245 |
|
|
|
2246 |
|
|
cselib_nregs = max_reg_num ();
|
2247 |
|
|
|
2248 |
|
|
/* We preserve reg_values to allow expensive clearing of the whole thing.
|
2249 |
|
|
Reallocate it however if it happens to be too large. */
|
2250 |
|
|
if (!reg_values || reg_values_size < cselib_nregs
|
2251 |
|
|
|| (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
|
2252 |
|
|
{
|
2253 |
|
|
if (reg_values)
|
2254 |
|
|
free (reg_values);
|
2255 |
|
|
/* Some space for newly emit instructions so we don't end up
|
2256 |
|
|
reallocating in between passes. */
|
2257 |
|
|
reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
|
2258 |
|
|
reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
|
2259 |
|
|
}
|
2260 |
|
|
used_regs = XNEWVEC (unsigned int, cselib_nregs);
|
2261 |
|
|
n_used_regs = 0;
|
2262 |
|
|
cselib_hash_table = htab_create (31, get_value_hash,
|
2263 |
|
|
entry_and_rtx_equal_p, NULL);
|
2264 |
|
|
next_uid = 1;
|
2265 |
|
|
}
|
2266 |
|
|
|
2267 |
|
|
/* Called when the current user is done with cselib. */
|
2268 |
|
|
|
2269 |
|
|
void
|
2270 |
|
|
cselib_finish (void)
|
2271 |
|
|
{
|
2272 |
|
|
cselib_discard_hook = NULL;
|
2273 |
|
|
cselib_preserve_constants = false;
|
2274 |
|
|
cfa_base_preserved_val = NULL;
|
2275 |
|
|
cfa_base_preserved_regno = INVALID_REGNUM;
|
2276 |
|
|
free_alloc_pool (elt_list_pool);
|
2277 |
|
|
free_alloc_pool (elt_loc_list_pool);
|
2278 |
|
|
free_alloc_pool (cselib_val_pool);
|
2279 |
|
|
free_alloc_pool (value_pool);
|
2280 |
|
|
cselib_clear_table ();
|
2281 |
|
|
htab_delete (cselib_hash_table);
|
2282 |
|
|
free (used_regs);
|
2283 |
|
|
used_regs = 0;
|
2284 |
|
|
cselib_hash_table = 0;
|
2285 |
|
|
n_useless_values = 0;
|
2286 |
|
|
n_useless_debug_values = 0;
|
2287 |
|
|
n_debug_values = 0;
|
2288 |
|
|
next_uid = 0;
|
2289 |
|
|
}
|
2290 |
|
|
|
2291 |
|
|
/* Dump the cselib_val *X to FILE *info. */
|
2292 |
|
|
|
2293 |
|
|
static int
|
2294 |
|
|
dump_cselib_val (void **x, void *info)
|
2295 |
|
|
{
|
2296 |
|
|
cselib_val *v = (cselib_val *)*x;
|
2297 |
|
|
FILE *out = (FILE *)info;
|
2298 |
|
|
bool need_lf = true;
|
2299 |
|
|
|
2300 |
|
|
print_inline_rtx (out, v->val_rtx, 0);
|
2301 |
|
|
|
2302 |
|
|
if (v->locs)
|
2303 |
|
|
{
|
2304 |
|
|
struct elt_loc_list *l = v->locs;
|
2305 |
|
|
if (need_lf)
|
2306 |
|
|
{
|
2307 |
|
|
fputc ('\n', out);
|
2308 |
|
|
need_lf = false;
|
2309 |
|
|
}
|
2310 |
|
|
fputs (" locs:", out);
|
2311 |
|
|
do
|
2312 |
|
|
{
|
2313 |
|
|
fprintf (out, "\n from insn %i ",
|
2314 |
|
|
INSN_UID (l->setting_insn));
|
2315 |
|
|
print_inline_rtx (out, l->loc, 4);
|
2316 |
|
|
}
|
2317 |
|
|
while ((l = l->next));
|
2318 |
|
|
fputc ('\n', out);
|
2319 |
|
|
}
|
2320 |
|
|
else
|
2321 |
|
|
{
|
2322 |
|
|
fputs (" no locs", out);
|
2323 |
|
|
need_lf = true;
|
2324 |
|
|
}
|
2325 |
|
|
|
2326 |
|
|
if (v->addr_list)
|
2327 |
|
|
{
|
2328 |
|
|
struct elt_list *e = v->addr_list;
|
2329 |
|
|
if (need_lf)
|
2330 |
|
|
{
|
2331 |
|
|
fputc ('\n', out);
|
2332 |
|
|
need_lf = false;
|
2333 |
|
|
}
|
2334 |
|
|
fputs (" addr list:", out);
|
2335 |
|
|
do
|
2336 |
|
|
{
|
2337 |
|
|
fputs ("\n ", out);
|
2338 |
|
|
print_inline_rtx (out, e->elt->val_rtx, 2);
|
2339 |
|
|
}
|
2340 |
|
|
while ((e = e->next));
|
2341 |
|
|
fputc ('\n', out);
|
2342 |
|
|
}
|
2343 |
|
|
else
|
2344 |
|
|
{
|
2345 |
|
|
fputs (" no addrs", out);
|
2346 |
|
|
need_lf = true;
|
2347 |
|
|
}
|
2348 |
|
|
|
2349 |
|
|
if (v->next_containing_mem == &dummy_val)
|
2350 |
|
|
fputs (" last mem\n", out);
|
2351 |
|
|
else if (v->next_containing_mem)
|
2352 |
|
|
{
|
2353 |
|
|
fputs (" next mem ", out);
|
2354 |
|
|
print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
|
2355 |
|
|
fputc ('\n', out);
|
2356 |
|
|
}
|
2357 |
|
|
else if (need_lf)
|
2358 |
|
|
fputc ('\n', out);
|
2359 |
|
|
|
2360 |
|
|
return 1;
|
2361 |
|
|
}
|
2362 |
|
|
|
2363 |
|
|
/* Dump to OUT everything in the CSELIB table. */
|
2364 |
|
|
|
2365 |
|
|
void
|
2366 |
|
|
dump_cselib_table (FILE *out)
|
2367 |
|
|
{
|
2368 |
|
|
fprintf (out, "cselib hash table:\n");
|
2369 |
|
|
htab_traverse (cselib_hash_table, dump_cselib_val, out);
|
2370 |
|
|
if (first_containing_mem != &dummy_val)
|
2371 |
|
|
{
|
2372 |
|
|
fputs ("first mem ", out);
|
2373 |
|
|
print_inline_rtx (out, first_containing_mem->val_rtx, 2);
|
2374 |
|
|
fputc ('\n', out);
|
2375 |
|
|
}
|
2376 |
|
|
fprintf (out, "next uid %i\n", next_uid);
|
2377 |
|
|
}
|
2378 |
|
|
|
2379 |
|
|
#include "gt-cselib.h"
|