| 1 |
280 |
jeremybenn |
/* Allocation for dataflow support routines.
|
| 2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
| 3 |
|
|
2008, 2009, 2010 Free Software Foundation, Inc.
|
| 4 |
|
|
Originally contributed by Michael P. Hayes
|
| 5 |
|
|
(m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
|
| 6 |
|
|
Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
|
| 7 |
|
|
and Kenneth Zadeck (zadeck@naturalbridge.com).
|
| 8 |
|
|
|
| 9 |
|
|
This file is part of GCC.
|
| 10 |
|
|
|
| 11 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 12 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 13 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 14 |
|
|
version.
|
| 15 |
|
|
|
| 16 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 17 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 18 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 19 |
|
|
for more details.
|
| 20 |
|
|
|
| 21 |
|
|
You should have received a copy of the GNU General Public License
|
| 22 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 23 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 24 |
|
|
|
| 25 |
|
|
/*
|
| 26 |
|
|
OVERVIEW:
|
| 27 |
|
|
|
| 28 |
|
|
The files in this collection (df*.c,df.h) provide a general framework
|
| 29 |
|
|
for solving dataflow problems. The global dataflow is performed using
|
| 30 |
|
|
a good implementation of iterative dataflow analysis.
|
| 31 |
|
|
|
| 32 |
|
|
The file df-problems.c provides problem instance for the most common
|
| 33 |
|
|
dataflow problems: reaching defs, upward exposed uses, live variables,
|
| 34 |
|
|
uninitialized variables, def-use chains, and use-def chains. However,
|
| 35 |
|
|
the interface allows other dataflow problems to be defined as well.
|
| 36 |
|
|
|
| 37 |
|
|
Dataflow analysis is available in most of the rtl backend (the parts
|
| 38 |
|
|
between pass_df_initialize and pass_df_finish). It is quite likely
|
| 39 |
|
|
that these boundaries will be expanded in the future. The only
|
| 40 |
|
|
requirement is that there be a correct control flow graph.
|
| 41 |
|
|
|
| 42 |
|
|
There are three variations of the live variable problem that are
|
| 43 |
|
|
available whenever dataflow is available. The LR problem finds the
|
| 44 |
|
|
areas that can reach a use of a variable, the UR problems finds the
|
| 45 |
|
|
areas that can be reached from a definition of a variable. The LIVE
|
| 46 |
|
|
problem finds the intersection of these two areas.
|
| 47 |
|
|
|
| 48 |
|
|
There are several optional problems. These can be enabled when they
|
| 49 |
|
|
are needed and disabled when they are not needed.
|
| 50 |
|
|
|
| 51 |
|
|
Dataflow problems are generally solved in three layers. The bottom
|
| 52 |
|
|
layer is called scanning where a data structure is built for each rtl
|
| 53 |
|
|
insn that describes the set of defs and uses of that insn. Scanning
|
| 54 |
|
|
is generally kept up to date, i.e. as the insns changes, the scanned
|
| 55 |
|
|
version of that insn changes also. There are various mechanisms for
|
| 56 |
|
|
making this happen and are described in the INCREMENTAL SCANNING
|
| 57 |
|
|
section.
|
| 58 |
|
|
|
| 59 |
|
|
In the middle layer, basic blocks are scanned to produce transfer
|
| 60 |
|
|
functions which describe the effects of that block on the global
|
| 61 |
|
|
dataflow solution. The transfer functions are only rebuilt if the
|
| 62 |
|
|
some instruction within the block has changed.
|
| 63 |
|
|
|
| 64 |
|
|
The top layer is the dataflow solution itself. The dataflow solution
|
| 65 |
|
|
is computed by using an efficient iterative solver and the transfer
|
| 66 |
|
|
functions. The dataflow solution must be recomputed whenever the
|
| 67 |
|
|
control changes or if one of the transfer function changes.
|
| 68 |
|
|
|
| 69 |
|
|
|
| 70 |
|
|
USAGE:
|
| 71 |
|
|
|
| 72 |
|
|
Here is an example of using the dataflow routines.
|
| 73 |
|
|
|
| 74 |
|
|
df_[chain,live,note,rd]_add_problem (flags);
|
| 75 |
|
|
|
| 76 |
|
|
df_set_blocks (blocks);
|
| 77 |
|
|
|
| 78 |
|
|
df_analyze ();
|
| 79 |
|
|
|
| 80 |
|
|
df_dump (stderr);
|
| 81 |
|
|
|
| 82 |
|
|
df_finish_pass (false);
|
| 83 |
|
|
|
| 84 |
|
|
DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
|
| 85 |
|
|
instance to struct df_problem, to the set of problems solved in this
|
| 86 |
|
|
instance of df. All calls to add a problem for a given instance of df
|
| 87 |
|
|
must occur before the first call to DF_ANALYZE.
|
| 88 |
|
|
|
| 89 |
|
|
Problems can be dependent on other problems. For instance, solving
|
| 90 |
|
|
def-use or use-def chains is dependent on solving reaching
|
| 91 |
|
|
definitions. As long as these dependencies are listed in the problem
|
| 92 |
|
|
definition, the order of adding the problems is not material.
|
| 93 |
|
|
Otherwise, the problems will be solved in the order of calls to
|
| 94 |
|
|
df_add_problem. Note that it is not necessary to have a problem. In
|
| 95 |
|
|
that case, df will just be used to do the scanning.
|
| 96 |
|
|
|
| 97 |
|
|
|
| 98 |
|
|
|
| 99 |
|
|
DF_SET_BLOCKS is an optional call used to define a region of the
|
| 100 |
|
|
function on which the analysis will be performed. The normal case is
|
| 101 |
|
|
to analyze the entire function and no call to df_set_blocks is made.
|
| 102 |
|
|
DF_SET_BLOCKS only effects the blocks that are effected when computing
|
| 103 |
|
|
the transfer functions and final solution. The insn level information
|
| 104 |
|
|
is always kept up to date.
|
| 105 |
|
|
|
| 106 |
|
|
When a subset is given, the analysis behaves as if the function only
|
| 107 |
|
|
contains those blocks and any edges that occur directly between the
|
| 108 |
|
|
blocks in the set. Care should be taken to call df_set_blocks right
|
| 109 |
|
|
before the call to analyze in order to eliminate the possibility that
|
| 110 |
|
|
optimizations that reorder blocks invalidate the bitvector.
|
| 111 |
|
|
|
| 112 |
|
|
DF_ANALYZE causes all of the defined problems to be (re)solved. When
|
| 113 |
|
|
DF_ANALYZE is completes, the IN and OUT sets for each basic block
|
| 114 |
|
|
contain the computer information. The DF_*_BB_INFO macros can be used
|
| 115 |
|
|
to access these bitvectors. All deferred rescannings are down before
|
| 116 |
|
|
the transfer functions are recomputed.
|
| 117 |
|
|
|
| 118 |
|
|
DF_DUMP can then be called to dump the information produce to some
|
| 119 |
|
|
file. This calls DF_DUMP_START, to print the information that is not
|
| 120 |
|
|
basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
|
| 121 |
|
|
for each block to print the basic specific information. These parts
|
| 122 |
|
|
can all be called separately as part of a larger dump function.
|
| 123 |
|
|
|
| 124 |
|
|
|
| 125 |
|
|
DF_FINISH_PASS causes df_remove_problem to be called on all of the
|
| 126 |
|
|
optional problems. It also causes any insns whose scanning has been
|
| 127 |
|
|
deferred to be rescanned as well as clears all of the changeable flags.
|
| 128 |
|
|
Setting the pass manager TODO_df_finish flag causes this function to
|
| 129 |
|
|
be run. However, the pass manager will call df_finish_pass AFTER the
|
| 130 |
|
|
pass dumping has been done, so if you want to see the results of the
|
| 131 |
|
|
optional problems in the pass dumps, use the TODO flag rather than
|
| 132 |
|
|
calling the function yourself.
|
| 133 |
|
|
|
| 134 |
|
|
INCREMENTAL SCANNING
|
| 135 |
|
|
|
| 136 |
|
|
There are four ways of doing the incremental scanning:
|
| 137 |
|
|
|
| 138 |
|
|
1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
|
| 139 |
|
|
df_bb_delete, df_insn_change_bb have been added to most of
|
| 140 |
|
|
the low level service functions that maintain the cfg and change
|
| 141 |
|
|
rtl. Calling and of these routines many cause some number of insns
|
| 142 |
|
|
to be rescanned.
|
| 143 |
|
|
|
| 144 |
|
|
For most modern rtl passes, this is certainly the easiest way to
|
| 145 |
|
|
manage rescanning the insns. This technique also has the advantage
|
| 146 |
|
|
that the scanning information is always correct and can be relied
|
| 147 |
|
|
upon even after changes have been made to the instructions. This
|
| 148 |
|
|
technique is contra indicated in several cases:
|
| 149 |
|
|
|
| 150 |
|
|
a) If def-use chains OR use-def chains (but not both) are built,
|
| 151 |
|
|
using this is SIMPLY WRONG. The problem is that when a ref is
|
| 152 |
|
|
deleted that is the target of an edge, there is not enough
|
| 153 |
|
|
information to efficiently find the source of the edge and
|
| 154 |
|
|
delete the edge. This leaves a dangling reference that may
|
| 155 |
|
|
cause problems.
|
| 156 |
|
|
|
| 157 |
|
|
b) If def-use chains AND use-def chains are built, this may
|
| 158 |
|
|
produce unexpected results. The problem is that the incremental
|
| 159 |
|
|
scanning of an insn does not know how to repair the chains that
|
| 160 |
|
|
point into an insn when the insn changes. So the incremental
|
| 161 |
|
|
scanning just deletes the chains that enter and exit the insn
|
| 162 |
|
|
being changed. The dangling reference issue in (a) is not a
|
| 163 |
|
|
problem here, but if the pass is depending on the chains being
|
| 164 |
|
|
maintained after insns have been modified, this technique will
|
| 165 |
|
|
not do the correct thing.
|
| 166 |
|
|
|
| 167 |
|
|
c) If the pass modifies insns several times, this incremental
|
| 168 |
|
|
updating may be expensive.
|
| 169 |
|
|
|
| 170 |
|
|
d) If the pass modifies all of the insns, as does register
|
| 171 |
|
|
allocation, it is simply better to rescan the entire function.
|
| 172 |
|
|
|
| 173 |
|
|
2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
|
| 174 |
|
|
df_insn_delete do not immediately change the insn but instead make
|
| 175 |
|
|
a note that the insn needs to be rescanned. The next call to
|
| 176 |
|
|
df_analyze, df_finish_pass, or df_process_deferred_rescans will
|
| 177 |
|
|
cause all of the pending rescans to be processed.
|
| 178 |
|
|
|
| 179 |
|
|
This is the technique of choice if either 1a, 1b, or 1c are issues
|
| 180 |
|
|
in the pass. In the case of 1a or 1b, a call to df_finish_pass
|
| 181 |
|
|
(either manually or via TODO_df_finish) should be made before the
|
| 182 |
|
|
next call to df_analyze or df_process_deferred_rescans.
|
| 183 |
|
|
|
| 184 |
|
|
This mode is also used by a few passes that still rely on note_uses,
|
| 185 |
|
|
note_stores and for_each_rtx instead of using the DF data. This
|
| 186 |
|
|
can be said to fall under case 1c.
|
| 187 |
|
|
|
| 188 |
|
|
To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
|
| 189 |
|
|
(This mode can be cleared by calling df_clear_flags
|
| 190 |
|
|
(DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
|
| 191 |
|
|
be rescanned.
|
| 192 |
|
|
|
| 193 |
|
|
3) Total rescanning - In this mode the rescanning is disabled.
|
| 194 |
|
|
Only when insns are deleted is the df information associated with
|
| 195 |
|
|
it also deleted. At the end of the pass, a call must be made to
|
| 196 |
|
|
df_insn_rescan_all. This method is used by the register allocator
|
| 197 |
|
|
since it generally changes each insn multiple times (once for each ref)
|
| 198 |
|
|
and does not need to make use of the updated scanning information.
|
| 199 |
|
|
|
| 200 |
|
|
4) Do it yourself - In this mechanism, the pass updates the insns
|
| 201 |
|
|
itself using the low level df primitives. Currently no pass does
|
| 202 |
|
|
this, but it has the advantage that it is quite efficient given
|
| 203 |
|
|
that the pass generally has exact knowledge of what it is changing.
|
| 204 |
|
|
|
| 205 |
|
|
DATA STRUCTURES
|
| 206 |
|
|
|
| 207 |
|
|
Scanning produces a `struct df_ref' data structure (ref) is allocated
|
| 208 |
|
|
for every register reference (def or use) and this records the insn
|
| 209 |
|
|
and bb the ref is found within. The refs are linked together in
|
| 210 |
|
|
chains of uses and defs for each insn and for each register. Each ref
|
| 211 |
|
|
also has a chain field that links all the use refs for a def or all
|
| 212 |
|
|
the def refs for a use. This is used to create use-def or def-use
|
| 213 |
|
|
chains.
|
| 214 |
|
|
|
| 215 |
|
|
Different optimizations have different needs. Ultimately, only
|
| 216 |
|
|
register allocation and schedulers should be using the bitmaps
|
| 217 |
|
|
produced for the live register and uninitialized register problems.
|
| 218 |
|
|
The rest of the backend should be upgraded to using and maintaining
|
| 219 |
|
|
the linked information such as def use or use def chains.
|
| 220 |
|
|
|
| 221 |
|
|
|
| 222 |
|
|
PHILOSOPHY:
|
| 223 |
|
|
|
| 224 |
|
|
While incremental bitmaps are not worthwhile to maintain, incremental
|
| 225 |
|
|
chains may be perfectly reasonable. The fastest way to build chains
|
| 226 |
|
|
from scratch or after significant modifications is to build reaching
|
| 227 |
|
|
definitions (RD) and build the chains from this.
|
| 228 |
|
|
|
| 229 |
|
|
However, general algorithms for maintaining use-def or def-use chains
|
| 230 |
|
|
are not practical. The amount of work to recompute the chain any
|
| 231 |
|
|
chain after an arbitrary change is large. However, with a modest
|
| 232 |
|
|
amount of work it is generally possible to have the application that
|
| 233 |
|
|
uses the chains keep them up to date. The high level knowledge of
|
| 234 |
|
|
what is really happening is essential to crafting efficient
|
| 235 |
|
|
incremental algorithms.
|
| 236 |
|
|
|
| 237 |
|
|
As for the bit vector problems, there is no interface to give a set of
|
| 238 |
|
|
blocks over with to resolve the iteration. In general, restarting a
|
| 239 |
|
|
dataflow iteration is difficult and expensive. Again, the best way to
|
| 240 |
|
|
keep the dataflow information up to data (if this is really what is
|
| 241 |
|
|
needed) it to formulate a problem specific solution.
|
| 242 |
|
|
|
| 243 |
|
|
There are fine grained calls for creating and deleting references from
|
| 244 |
|
|
instructions in df-scan.c. However, these are not currently connected
|
| 245 |
|
|
to the engine that resolves the dataflow equations.
|
| 246 |
|
|
|
| 247 |
|
|
|
| 248 |
|
|
DATA STRUCTURES:
|
| 249 |
|
|
|
| 250 |
|
|
The basic object is a DF_REF (reference) and this may either be a
|
| 251 |
|
|
DEF (definition) or a USE of a register.
|
| 252 |
|
|
|
| 253 |
|
|
These are linked into a variety of lists; namely reg-def, reg-use,
|
| 254 |
|
|
insn-def, insn-use, def-use, and use-def lists. For example, the
|
| 255 |
|
|
reg-def lists contain all the locations that define a given register
|
| 256 |
|
|
while the insn-use lists contain all the locations that use a
|
| 257 |
|
|
register.
|
| 258 |
|
|
|
| 259 |
|
|
Note that the reg-def and reg-use chains are generally short for
|
| 260 |
|
|
pseudos and long for the hard registers.
|
| 261 |
|
|
|
| 262 |
|
|
ACCESSING INSNS:
|
| 263 |
|
|
|
| 264 |
|
|
1) The df insn information is kept in an array of DF_INSN_INFO objects.
|
| 265 |
|
|
The array is indexed by insn uid, and every DF_REF points to the
|
| 266 |
|
|
DF_INSN_INFO object of the insn that contains the reference.
|
| 267 |
|
|
|
| 268 |
|
|
2) Each insn has three sets of refs, which are linked into one of three
|
| 269 |
|
|
lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
|
| 270 |
|
|
DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
|
| 271 |
|
|
(accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
|
| 272 |
|
|
DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
|
| 273 |
|
|
DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
|
| 274 |
|
|
The latter list are the list of references in REG_EQUAL or REG_EQUIV
|
| 275 |
|
|
notes. These macros produce a ref (or NULL), the rest of the list
|
| 276 |
|
|
can be obtained by traversal of the NEXT_REF field (accessed by the
|
| 277 |
|
|
DF_REF_NEXT_REF macro.) There is no significance to the ordering of
|
| 278 |
|
|
the uses or refs in an instruction.
|
| 279 |
|
|
|
| 280 |
|
|
3) Each insn has a logical uid field (LUID) which is stored in the
|
| 281 |
|
|
DF_INSN_INFO object for the insn. The LUID field is accessed by
|
| 282 |
|
|
the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
|
| 283 |
|
|
When properly set, the LUID is an integer that numbers each insn in
|
| 284 |
|
|
the basic block, in order from the start of the block.
|
| 285 |
|
|
The numbers are only correct after a call to df_analyze. They will
|
| 286 |
|
|
rot after insns are added deleted or moved round.
|
| 287 |
|
|
|
| 288 |
|
|
ACCESSING REFS:
|
| 289 |
|
|
|
| 290 |
|
|
There are 4 ways to obtain access to refs:
|
| 291 |
|
|
|
| 292 |
|
|
1) References are divided into two categories, REAL and ARTIFICIAL.
|
| 293 |
|
|
|
| 294 |
|
|
REAL refs are associated with instructions.
|
| 295 |
|
|
|
| 296 |
|
|
ARTIFICIAL refs are associated with basic blocks. The heads of
|
| 297 |
|
|
these lists can be accessed by calling df_get_artificial_defs or
|
| 298 |
|
|
df_get_artificial_uses for the particular basic block.
|
| 299 |
|
|
|
| 300 |
|
|
Artificial defs and uses occur both at the beginning and ends of blocks.
|
| 301 |
|
|
|
| 302 |
|
|
For blocks that area at the destination of eh edges, the
|
| 303 |
|
|
artificial uses and defs occur at the beginning. The defs relate
|
| 304 |
|
|
to the registers specified in EH_RETURN_DATA_REGNO and the uses
|
| 305 |
|
|
relate to the registers specified in ED_USES. Logically these
|
| 306 |
|
|
defs and uses should really occur along the eh edge, but there is
|
| 307 |
|
|
no convenient way to do this. Artificial edges that occur at the
|
| 308 |
|
|
beginning of the block have the DF_REF_AT_TOP flag set.
|
| 309 |
|
|
|
| 310 |
|
|
Artificial uses occur at the end of all blocks. These arise from
|
| 311 |
|
|
the hard registers that are always live, such as the stack
|
| 312 |
|
|
register and are put there to keep the code from forgetting about
|
| 313 |
|
|
them.
|
| 314 |
|
|
|
| 315 |
|
|
Artificial defs occur at the end of the entry block. These arise
|
| 316 |
|
|
from registers that are live at entry to the function.
|
| 317 |
|
|
|
| 318 |
|
|
2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
|
| 319 |
|
|
uses that appear inside a REG_EQUAL or REG_EQUIV note.)
|
| 320 |
|
|
|
| 321 |
|
|
All of the eq_uses, uses and defs associated with each pseudo or
|
| 322 |
|
|
hard register may be linked in a bidirectional chain. These are
|
| 323 |
|
|
called reg-use or reg_def chains. If the changeable flag
|
| 324 |
|
|
DF_EQ_NOTES is set when the chains are built, the eq_uses will be
|
| 325 |
|
|
treated like uses. If it is not set they are ignored.
|
| 326 |
|
|
|
| 327 |
|
|
The first use, eq_use or def for a register can be obtained using
|
| 328 |
|
|
the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
|
| 329 |
|
|
macros. Subsequent uses for the same regno can be obtained by
|
| 330 |
|
|
following the next_reg field of the ref. The number of elements in
|
| 331 |
|
|
each of the chains can be found by using the DF_REG_USE_COUNT,
|
| 332 |
|
|
DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
|
| 333 |
|
|
|
| 334 |
|
|
In previous versions of this code, these chains were ordered. It
|
| 335 |
|
|
has not been practical to continue this practice.
|
| 336 |
|
|
|
| 337 |
|
|
3) If def-use or use-def chains are built, these can be traversed to
|
| 338 |
|
|
get to other refs. If the flag DF_EQ_NOTES has been set, the chains
|
| 339 |
|
|
include the eq_uses. Otherwise these are ignored when building the
|
| 340 |
|
|
chains.
|
| 341 |
|
|
|
| 342 |
|
|
4) An array of all of the uses (and an array of all of the defs) can
|
| 343 |
|
|
be built. These arrays are indexed by the value in the id
|
| 344 |
|
|
structure. These arrays are only lazily kept up to date, and that
|
| 345 |
|
|
process can be expensive. To have these arrays built, call
|
| 346 |
|
|
df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
|
| 347 |
|
|
has been set the array will contain the eq_uses. Otherwise these
|
| 348 |
|
|
are ignored when building the array and assigning the ids. Note
|
| 349 |
|
|
that the values in the id field of a ref may change across calls to
|
| 350 |
|
|
df_analyze or df_reorganize_defs or df_reorganize_uses.
|
| 351 |
|
|
|
| 352 |
|
|
If the only use of this array is to find all of the refs, it is
|
| 353 |
|
|
better to traverse all of the registers and then traverse all of
|
| 354 |
|
|
reg-use or reg-def chains.
|
| 355 |
|
|
|
| 356 |
|
|
NOTES:
|
| 357 |
|
|
|
| 358 |
|
|
Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
|
| 359 |
|
|
both a use and a def. These are both marked read/write to show that they
|
| 360 |
|
|
are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
|
| 361 |
|
|
will generate a use of reg 42 followed by a def of reg 42 (both marked
|
| 362 |
|
|
read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
|
| 363 |
|
|
generates a use of reg 41 then a def of reg 41 (both marked read/write),
|
| 364 |
|
|
even though reg 41 is decremented before it is used for the memory
|
| 365 |
|
|
address in this second example.
|
| 366 |
|
|
|
| 367 |
|
|
A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
|
| 368 |
|
|
for which the number of word_mode units covered by the outer mode is
|
| 369 |
|
|
smaller than that covered by the inner mode, invokes a read-modify-write
|
| 370 |
|
|
operation. We generate both a use and a def and again mark them
|
| 371 |
|
|
read/write.
|
| 372 |
|
|
|
| 373 |
|
|
Paradoxical subreg writes do not leave a trace of the old content, so they
|
| 374 |
|
|
are write-only operations.
|
| 375 |
|
|
*/
|
| 376 |
|
|
|
| 377 |
|
|
|
| 378 |
|
|
#include "config.h"
|
| 379 |
|
|
#include "system.h"
|
| 380 |
|
|
#include "coretypes.h"
|
| 381 |
|
|
#include "tm.h"
|
| 382 |
|
|
#include "rtl.h"
|
| 383 |
|
|
#include "tm_p.h"
|
| 384 |
|
|
#include "insn-config.h"
|
| 385 |
|
|
#include "recog.h"
|
| 386 |
|
|
#include "function.h"
|
| 387 |
|
|
#include "regs.h"
|
| 388 |
|
|
#include "output.h"
|
| 389 |
|
|
#include "alloc-pool.h"
|
| 390 |
|
|
#include "flags.h"
|
| 391 |
|
|
#include "hard-reg-set.h"
|
| 392 |
|
|
#include "basic-block.h"
|
| 393 |
|
|
#include "sbitmap.h"
|
| 394 |
|
|
#include "bitmap.h"
|
| 395 |
|
|
#include "timevar.h"
|
| 396 |
|
|
#include "df.h"
|
| 397 |
|
|
#include "tree-pass.h"
|
| 398 |
|
|
#include "params.h"
|
| 399 |
|
|
|
| 400 |
|
|
static void *df_get_bb_info (struct dataflow *, unsigned int);
|
| 401 |
|
|
static void df_set_bb_info (struct dataflow *, unsigned int, void *);
|
| 402 |
|
|
#ifdef DF_DEBUG_CFG
|
| 403 |
|
|
static void df_set_clean_cfg (void);
|
| 404 |
|
|
#endif
|
| 405 |
|
|
|
| 406 |
|
|
/* An obstack for bitmap not related to specific dataflow problems.
|
| 407 |
|
|
This obstack should e.g. be used for bitmaps with a short life time
|
| 408 |
|
|
such as temporary bitmaps. */
|
| 409 |
|
|
|
| 410 |
|
|
bitmap_obstack df_bitmap_obstack;
|
| 411 |
|
|
|
| 412 |
|
|
|
| 413 |
|
|
/*----------------------------------------------------------------------------
|
| 414 |
|
|
Functions to create, destroy and manipulate an instance of df.
|
| 415 |
|
|
----------------------------------------------------------------------------*/
|
| 416 |
|
|
|
| 417 |
|
|
struct df *df;
|
| 418 |
|
|
|
| 419 |
|
|
/* Add PROBLEM (and any dependent problems) to the DF instance. */
|
| 420 |
|
|
|
| 421 |
|
|
void
|
| 422 |
|
|
df_add_problem (struct df_problem *problem)
|
| 423 |
|
|
{
|
| 424 |
|
|
struct dataflow *dflow;
|
| 425 |
|
|
int i;
|
| 426 |
|
|
|
| 427 |
|
|
/* First try to add the dependent problem. */
|
| 428 |
|
|
if (problem->dependent_problem)
|
| 429 |
|
|
df_add_problem (problem->dependent_problem);
|
| 430 |
|
|
|
| 431 |
|
|
/* Check to see if this problem has already been defined. If it
|
| 432 |
|
|
has, just return that instance, if not, add it to the end of the
|
| 433 |
|
|
vector. */
|
| 434 |
|
|
dflow = df->problems_by_index[problem->id];
|
| 435 |
|
|
if (dflow)
|
| 436 |
|
|
return;
|
| 437 |
|
|
|
| 438 |
|
|
/* Make a new one and add it to the end. */
|
| 439 |
|
|
dflow = XCNEW (struct dataflow);
|
| 440 |
|
|
dflow->problem = problem;
|
| 441 |
|
|
dflow->computed = false;
|
| 442 |
|
|
dflow->solutions_dirty = true;
|
| 443 |
|
|
df->problems_by_index[dflow->problem->id] = dflow;
|
| 444 |
|
|
|
| 445 |
|
|
/* Keep the defined problems ordered by index. This solves the
|
| 446 |
|
|
problem that RI will use the information from UREC if UREC has
|
| 447 |
|
|
been defined, or from LIVE if LIVE is defined and otherwise LR.
|
| 448 |
|
|
However for this to work, the computation of RI must be pushed
|
| 449 |
|
|
after which ever of those problems is defined, but we do not
|
| 450 |
|
|
require any of those except for LR to have actually been
|
| 451 |
|
|
defined. */
|
| 452 |
|
|
df->num_problems_defined++;
|
| 453 |
|
|
for (i = df->num_problems_defined - 2; i >= 0; i--)
|
| 454 |
|
|
{
|
| 455 |
|
|
if (problem->id < df->problems_in_order[i]->problem->id)
|
| 456 |
|
|
df->problems_in_order[i+1] = df->problems_in_order[i];
|
| 457 |
|
|
else
|
| 458 |
|
|
{
|
| 459 |
|
|
df->problems_in_order[i+1] = dflow;
|
| 460 |
|
|
return;
|
| 461 |
|
|
}
|
| 462 |
|
|
}
|
| 463 |
|
|
df->problems_in_order[0] = dflow;
|
| 464 |
|
|
}
|
| 465 |
|
|
|
| 466 |
|
|
|
| 467 |
|
|
/* Set the MASK flags in the DFLOW problem. The old flags are
|
| 468 |
|
|
returned. If a flag is not allowed to be changed this will fail if
|
| 469 |
|
|
checking is enabled. */
|
| 470 |
|
|
int
|
| 471 |
|
|
df_set_flags (int changeable_flags)
|
| 472 |
|
|
{
|
| 473 |
|
|
int old_flags = df->changeable_flags;
|
| 474 |
|
|
df->changeable_flags |= changeable_flags;
|
| 475 |
|
|
return old_flags;
|
| 476 |
|
|
}
|
| 477 |
|
|
|
| 478 |
|
|
|
| 479 |
|
|
/* Clear the MASK flags in the DFLOW problem. The old flags are
|
| 480 |
|
|
returned. If a flag is not allowed to be changed this will fail if
|
| 481 |
|
|
checking is enabled. */
|
| 482 |
|
|
int
|
| 483 |
|
|
df_clear_flags (int changeable_flags)
|
| 484 |
|
|
{
|
| 485 |
|
|
int old_flags = df->changeable_flags;
|
| 486 |
|
|
df->changeable_flags &= ~changeable_flags;
|
| 487 |
|
|
return old_flags;
|
| 488 |
|
|
}
|
| 489 |
|
|
|
| 490 |
|
|
|
| 491 |
|
|
/* Set the blocks that are to be considered for analysis. If this is
|
| 492 |
|
|
not called or is called with null, the entire function in
|
| 493 |
|
|
analyzed. */
|
| 494 |
|
|
|
| 495 |
|
|
void
|
| 496 |
|
|
df_set_blocks (bitmap blocks)
|
| 497 |
|
|
{
|
| 498 |
|
|
if (blocks)
|
| 499 |
|
|
{
|
| 500 |
|
|
if (dump_file)
|
| 501 |
|
|
bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
|
| 502 |
|
|
if (df->blocks_to_analyze)
|
| 503 |
|
|
{
|
| 504 |
|
|
/* This block is called to change the focus from one subset
|
| 505 |
|
|
to another. */
|
| 506 |
|
|
int p;
|
| 507 |
|
|
bitmap diff = BITMAP_ALLOC (&df_bitmap_obstack);
|
| 508 |
|
|
bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
|
| 509 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
| 510 |
|
|
{
|
| 511 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
| 512 |
|
|
if (dflow->optional_p && dflow->problem->reset_fun)
|
| 513 |
|
|
dflow->problem->reset_fun (df->blocks_to_analyze);
|
| 514 |
|
|
else if (dflow->problem->free_blocks_on_set_blocks)
|
| 515 |
|
|
{
|
| 516 |
|
|
bitmap_iterator bi;
|
| 517 |
|
|
unsigned int bb_index;
|
| 518 |
|
|
|
| 519 |
|
|
EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
|
| 520 |
|
|
{
|
| 521 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
| 522 |
|
|
if (bb)
|
| 523 |
|
|
{
|
| 524 |
|
|
void *bb_info = df_get_bb_info (dflow, bb_index);
|
| 525 |
|
|
if (bb_info)
|
| 526 |
|
|
{
|
| 527 |
|
|
dflow->problem->free_bb_fun (bb, bb_info);
|
| 528 |
|
|
df_set_bb_info (dflow, bb_index, NULL);
|
| 529 |
|
|
}
|
| 530 |
|
|
}
|
| 531 |
|
|
}
|
| 532 |
|
|
}
|
| 533 |
|
|
}
|
| 534 |
|
|
|
| 535 |
|
|
BITMAP_FREE (diff);
|
| 536 |
|
|
}
|
| 537 |
|
|
else
|
| 538 |
|
|
{
|
| 539 |
|
|
/* This block of code is executed to change the focus from
|
| 540 |
|
|
the entire function to a subset. */
|
| 541 |
|
|
bitmap blocks_to_reset = NULL;
|
| 542 |
|
|
int p;
|
| 543 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
| 544 |
|
|
{
|
| 545 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
| 546 |
|
|
if (dflow->optional_p && dflow->problem->reset_fun)
|
| 547 |
|
|
{
|
| 548 |
|
|
if (!blocks_to_reset)
|
| 549 |
|
|
{
|
| 550 |
|
|
basic_block bb;
|
| 551 |
|
|
blocks_to_reset =
|
| 552 |
|
|
BITMAP_ALLOC (&df_bitmap_obstack);
|
| 553 |
|
|
FOR_ALL_BB(bb)
|
| 554 |
|
|
{
|
| 555 |
|
|
bitmap_set_bit (blocks_to_reset, bb->index);
|
| 556 |
|
|
}
|
| 557 |
|
|
}
|
| 558 |
|
|
dflow->problem->reset_fun (blocks_to_reset);
|
| 559 |
|
|
}
|
| 560 |
|
|
}
|
| 561 |
|
|
if (blocks_to_reset)
|
| 562 |
|
|
BITMAP_FREE (blocks_to_reset);
|
| 563 |
|
|
|
| 564 |
|
|
df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
|
| 565 |
|
|
}
|
| 566 |
|
|
bitmap_copy (df->blocks_to_analyze, blocks);
|
| 567 |
|
|
df->analyze_subset = true;
|
| 568 |
|
|
}
|
| 569 |
|
|
else
|
| 570 |
|
|
{
|
| 571 |
|
|
/* This block is executed to reset the focus to the entire
|
| 572 |
|
|
function. */
|
| 573 |
|
|
if (dump_file)
|
| 574 |
|
|
fprintf (dump_file, "clearing blocks_to_analyze\n");
|
| 575 |
|
|
if (df->blocks_to_analyze)
|
| 576 |
|
|
{
|
| 577 |
|
|
BITMAP_FREE (df->blocks_to_analyze);
|
| 578 |
|
|
df->blocks_to_analyze = NULL;
|
| 579 |
|
|
}
|
| 580 |
|
|
df->analyze_subset = false;
|
| 581 |
|
|
}
|
| 582 |
|
|
|
| 583 |
|
|
/* Setting the blocks causes the refs to be unorganized since only
|
| 584 |
|
|
the refs in the blocks are seen. */
|
| 585 |
|
|
df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
|
| 586 |
|
|
df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
|
| 587 |
|
|
df_mark_solutions_dirty ();
|
| 588 |
|
|
}
|
| 589 |
|
|
|
| 590 |
|
|
|
| 591 |
|
|
/* Delete a DFLOW problem (and any problems that depend on this
|
| 592 |
|
|
problem). */
|
| 593 |
|
|
|
| 594 |
|
|
void
|
| 595 |
|
|
df_remove_problem (struct dataflow *dflow)
|
| 596 |
|
|
{
|
| 597 |
|
|
struct df_problem *problem;
|
| 598 |
|
|
int i;
|
| 599 |
|
|
|
| 600 |
|
|
if (!dflow)
|
| 601 |
|
|
return;
|
| 602 |
|
|
|
| 603 |
|
|
problem = dflow->problem;
|
| 604 |
|
|
gcc_assert (problem->remove_problem_fun);
|
| 605 |
|
|
|
| 606 |
|
|
/* Delete any problems that depended on this problem first. */
|
| 607 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
| 608 |
|
|
if (df->problems_in_order[i]->problem->dependent_problem == problem)
|
| 609 |
|
|
df_remove_problem (df->problems_in_order[i]);
|
| 610 |
|
|
|
| 611 |
|
|
/* Now remove this problem. */
|
| 612 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
| 613 |
|
|
if (df->problems_in_order[i] == dflow)
|
| 614 |
|
|
{
|
| 615 |
|
|
int j;
|
| 616 |
|
|
for (j = i + 1; j < df->num_problems_defined; j++)
|
| 617 |
|
|
df->problems_in_order[j-1] = df->problems_in_order[j];
|
| 618 |
|
|
df->problems_in_order[j-1] = NULL;
|
| 619 |
|
|
df->num_problems_defined--;
|
| 620 |
|
|
break;
|
| 621 |
|
|
}
|
| 622 |
|
|
|
| 623 |
|
|
(problem->remove_problem_fun) ();
|
| 624 |
|
|
df->problems_by_index[problem->id] = NULL;
|
| 625 |
|
|
}
|
| 626 |
|
|
|
| 627 |
|
|
|
| 628 |
|
|
/* Remove all of the problems that are not permanent. Scanning, LR
|
| 629 |
|
|
and (at -O2 or higher) LIVE are permanent, the rest are removable.
|
| 630 |
|
|
Also clear all of the changeable_flags. */
|
| 631 |
|
|
|
| 632 |
|
|
void
|
| 633 |
|
|
df_finish_pass (bool verify ATTRIBUTE_UNUSED)
|
| 634 |
|
|
{
|
| 635 |
|
|
int i;
|
| 636 |
|
|
int removed = 0;
|
| 637 |
|
|
|
| 638 |
|
|
#ifdef ENABLE_DF_CHECKING
|
| 639 |
|
|
int saved_flags;
|
| 640 |
|
|
#endif
|
| 641 |
|
|
|
| 642 |
|
|
if (!df)
|
| 643 |
|
|
return;
|
| 644 |
|
|
|
| 645 |
|
|
df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
|
| 646 |
|
|
df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
|
| 647 |
|
|
|
| 648 |
|
|
#ifdef ENABLE_DF_CHECKING
|
| 649 |
|
|
saved_flags = df->changeable_flags;
|
| 650 |
|
|
#endif
|
| 651 |
|
|
|
| 652 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
| 653 |
|
|
{
|
| 654 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
| 655 |
|
|
struct df_problem *problem = dflow->problem;
|
| 656 |
|
|
|
| 657 |
|
|
if (dflow->optional_p)
|
| 658 |
|
|
{
|
| 659 |
|
|
gcc_assert (problem->remove_problem_fun);
|
| 660 |
|
|
(problem->remove_problem_fun) ();
|
| 661 |
|
|
df->problems_in_order[i] = NULL;
|
| 662 |
|
|
df->problems_by_index[problem->id] = NULL;
|
| 663 |
|
|
removed++;
|
| 664 |
|
|
}
|
| 665 |
|
|
}
|
| 666 |
|
|
df->num_problems_defined -= removed;
|
| 667 |
|
|
|
| 668 |
|
|
/* Clear all of the flags. */
|
| 669 |
|
|
df->changeable_flags = 0;
|
| 670 |
|
|
df_process_deferred_rescans ();
|
| 671 |
|
|
|
| 672 |
|
|
/* Set the focus back to the whole function. */
|
| 673 |
|
|
if (df->blocks_to_analyze)
|
| 674 |
|
|
{
|
| 675 |
|
|
BITMAP_FREE (df->blocks_to_analyze);
|
| 676 |
|
|
df->blocks_to_analyze = NULL;
|
| 677 |
|
|
df_mark_solutions_dirty ();
|
| 678 |
|
|
df->analyze_subset = false;
|
| 679 |
|
|
}
|
| 680 |
|
|
|
| 681 |
|
|
#ifdef ENABLE_DF_CHECKING
|
| 682 |
|
|
/* Verification will fail in DF_NO_INSN_RESCAN. */
|
| 683 |
|
|
if (!(saved_flags & DF_NO_INSN_RESCAN))
|
| 684 |
|
|
{
|
| 685 |
|
|
df_lr_verify_transfer_functions ();
|
| 686 |
|
|
if (df_live)
|
| 687 |
|
|
df_live_verify_transfer_functions ();
|
| 688 |
|
|
}
|
| 689 |
|
|
|
| 690 |
|
|
#ifdef DF_DEBUG_CFG
|
| 691 |
|
|
df_set_clean_cfg ();
|
| 692 |
|
|
#endif
|
| 693 |
|
|
#endif
|
| 694 |
|
|
|
| 695 |
|
|
#ifdef ENABLE_CHECKING
|
| 696 |
|
|
if (verify)
|
| 697 |
|
|
df->changeable_flags |= DF_VERIFY_SCHEDULED;
|
| 698 |
|
|
#endif
|
| 699 |
|
|
}
|
| 700 |
|
|
|
| 701 |
|
|
|
| 702 |
|
|
/* Set up the dataflow instance for the entire back end. */
|
| 703 |
|
|
|
| 704 |
|
|
static unsigned int
|
| 705 |
|
|
rest_of_handle_df_initialize (void)
|
| 706 |
|
|
{
|
| 707 |
|
|
gcc_assert (!df);
|
| 708 |
|
|
df = XCNEW (struct df);
|
| 709 |
|
|
df->changeable_flags = 0;
|
| 710 |
|
|
|
| 711 |
|
|
bitmap_obstack_initialize (&df_bitmap_obstack);
|
| 712 |
|
|
|
| 713 |
|
|
/* Set this to a conservative value. Stack_ptr_mod will compute it
|
| 714 |
|
|
correctly later. */
|
| 715 |
|
|
current_function_sp_is_unchanging = 0;
|
| 716 |
|
|
|
| 717 |
|
|
df_scan_add_problem ();
|
| 718 |
|
|
df_scan_alloc (NULL);
|
| 719 |
|
|
|
| 720 |
|
|
/* These three problems are permanent. */
|
| 721 |
|
|
df_lr_add_problem ();
|
| 722 |
|
|
if (optimize > 1)
|
| 723 |
|
|
df_live_add_problem ();
|
| 724 |
|
|
|
| 725 |
|
|
df->postorder = XNEWVEC (int, last_basic_block);
|
| 726 |
|
|
df->postorder_inverted = XNEWVEC (int, last_basic_block);
|
| 727 |
|
|
df->n_blocks = post_order_compute (df->postorder, true, true);
|
| 728 |
|
|
df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
|
| 729 |
|
|
gcc_assert (df->n_blocks == df->n_blocks_inverted);
|
| 730 |
|
|
|
| 731 |
|
|
df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
|
| 732 |
|
|
memset (df->hard_regs_live_count, 0,
|
| 733 |
|
|
sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
|
| 734 |
|
|
|
| 735 |
|
|
df_hard_reg_init ();
|
| 736 |
|
|
/* After reload, some ports add certain bits to regs_ever_live so
|
| 737 |
|
|
this cannot be reset. */
|
| 738 |
|
|
df_compute_regs_ever_live (true);
|
| 739 |
|
|
df_scan_blocks ();
|
| 740 |
|
|
df_compute_regs_ever_live (false);
|
| 741 |
|
|
return 0;
|
| 742 |
|
|
}
|
| 743 |
|
|
|
| 744 |
|
|
|
| 745 |
|
|
static bool
|
| 746 |
|
|
gate_opt (void)
|
| 747 |
|
|
{
|
| 748 |
|
|
return optimize > 0;
|
| 749 |
|
|
}
|
| 750 |
|
|
|
| 751 |
|
|
|
| 752 |
|
|
struct rtl_opt_pass pass_df_initialize_opt =
|
| 753 |
|
|
{
|
| 754 |
|
|
{
|
| 755 |
|
|
RTL_PASS,
|
| 756 |
|
|
"dfinit", /* name */
|
| 757 |
|
|
gate_opt, /* gate */
|
| 758 |
|
|
rest_of_handle_df_initialize, /* execute */
|
| 759 |
|
|
NULL, /* sub */
|
| 760 |
|
|
NULL, /* next */
|
| 761 |
|
|
0, /* static_pass_number */
|
| 762 |
|
|
TV_NONE, /* tv_id */
|
| 763 |
|
|
0, /* properties_required */
|
| 764 |
|
|
0, /* properties_provided */
|
| 765 |
|
|
0, /* properties_destroyed */
|
| 766 |
|
|
0, /* todo_flags_start */
|
| 767 |
|
|
|
| 768 |
|
|
}
|
| 769 |
|
|
};
|
| 770 |
|
|
|
| 771 |
|
|
|
| 772 |
|
|
static bool
|
| 773 |
|
|
gate_no_opt (void)
|
| 774 |
|
|
{
|
| 775 |
|
|
return optimize == 0;
|
| 776 |
|
|
}
|
| 777 |
|
|
|
| 778 |
|
|
|
| 779 |
|
|
struct rtl_opt_pass pass_df_initialize_no_opt =
|
| 780 |
|
|
{
|
| 781 |
|
|
{
|
| 782 |
|
|
RTL_PASS,
|
| 783 |
|
|
"no-opt dfinit", /* name */
|
| 784 |
|
|
gate_no_opt, /* gate */
|
| 785 |
|
|
rest_of_handle_df_initialize, /* execute */
|
| 786 |
|
|
NULL, /* sub */
|
| 787 |
|
|
NULL, /* next */
|
| 788 |
|
|
0, /* static_pass_number */
|
| 789 |
|
|
TV_NONE, /* tv_id */
|
| 790 |
|
|
0, /* properties_required */
|
| 791 |
|
|
0, /* properties_provided */
|
| 792 |
|
|
0, /* properties_destroyed */
|
| 793 |
|
|
0, /* todo_flags_start */
|
| 794 |
|
|
|
| 795 |
|
|
}
|
| 796 |
|
|
};
|
| 797 |
|
|
|
| 798 |
|
|
|
| 799 |
|
|
/* Free all the dataflow info and the DF structure. This should be
|
| 800 |
|
|
called from the df_finish macro which also NULLs the parm. */
|
| 801 |
|
|
|
| 802 |
|
|
static unsigned int
|
| 803 |
|
|
rest_of_handle_df_finish (void)
|
| 804 |
|
|
{
|
| 805 |
|
|
int i;
|
| 806 |
|
|
|
| 807 |
|
|
gcc_assert (df);
|
| 808 |
|
|
|
| 809 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
| 810 |
|
|
{
|
| 811 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
| 812 |
|
|
dflow->problem->free_fun ();
|
| 813 |
|
|
}
|
| 814 |
|
|
|
| 815 |
|
|
if (df->postorder)
|
| 816 |
|
|
free (df->postorder);
|
| 817 |
|
|
if (df->postorder_inverted)
|
| 818 |
|
|
free (df->postorder_inverted);
|
| 819 |
|
|
free (df->hard_regs_live_count);
|
| 820 |
|
|
free (df);
|
| 821 |
|
|
df = NULL;
|
| 822 |
|
|
|
| 823 |
|
|
bitmap_obstack_release (&df_bitmap_obstack);
|
| 824 |
|
|
return 0;
|
| 825 |
|
|
}
|
| 826 |
|
|
|
| 827 |
|
|
|
| 828 |
|
|
struct rtl_opt_pass pass_df_finish =
|
| 829 |
|
|
{
|
| 830 |
|
|
{
|
| 831 |
|
|
RTL_PASS,
|
| 832 |
|
|
"dfinish", /* name */
|
| 833 |
|
|
NULL, /* gate */
|
| 834 |
|
|
rest_of_handle_df_finish, /* execute */
|
| 835 |
|
|
NULL, /* sub */
|
| 836 |
|
|
NULL, /* next */
|
| 837 |
|
|
0, /* static_pass_number */
|
| 838 |
|
|
TV_NONE, /* tv_id */
|
| 839 |
|
|
0, /* properties_required */
|
| 840 |
|
|
0, /* properties_provided */
|
| 841 |
|
|
0, /* properties_destroyed */
|
| 842 |
|
|
0, /* todo_flags_start */
|
| 843 |
|
|
|
| 844 |
|
|
}
|
| 845 |
|
|
};
|
| 846 |
|
|
|
| 847 |
|
|
|
| 848 |
|
|
|
| 849 |
|
|
|
| 850 |
|
|
|
| 851 |
|
|
/*----------------------------------------------------------------------------
|
| 852 |
|
|
The general data flow analysis engine.
|
| 853 |
|
|
----------------------------------------------------------------------------*/
|
| 854 |
|
|
|
| 855 |
|
|
|
| 856 |
|
|
/* Helper function for df_worklist_dataflow.
|
| 857 |
|
|
Propagate the dataflow forward.
|
| 858 |
|
|
Given a BB_INDEX, do the dataflow propagation
|
| 859 |
|
|
and set bits on for successors in PENDING
|
| 860 |
|
|
if the out set of the dataflow has changed. */
|
| 861 |
|
|
|
| 862 |
|
|
static void
|
| 863 |
|
|
df_worklist_propagate_forward (struct dataflow *dataflow,
|
| 864 |
|
|
unsigned bb_index,
|
| 865 |
|
|
unsigned *bbindex_to_postorder,
|
| 866 |
|
|
bitmap pending,
|
| 867 |
|
|
sbitmap considered)
|
| 868 |
|
|
{
|
| 869 |
|
|
edge e;
|
| 870 |
|
|
edge_iterator ei;
|
| 871 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
| 872 |
|
|
|
| 873 |
|
|
/* Calculate <conf_op> of incoming edges. */
|
| 874 |
|
|
if (EDGE_COUNT (bb->preds) > 0)
|
| 875 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 876 |
|
|
{
|
| 877 |
|
|
if (TEST_BIT (considered, e->src->index))
|
| 878 |
|
|
dataflow->problem->con_fun_n (e);
|
| 879 |
|
|
}
|
| 880 |
|
|
else if (dataflow->problem->con_fun_0)
|
| 881 |
|
|
dataflow->problem->con_fun_0 (bb);
|
| 882 |
|
|
|
| 883 |
|
|
if (dataflow->problem->trans_fun (bb_index))
|
| 884 |
|
|
{
|
| 885 |
|
|
/* The out set of this block has changed.
|
| 886 |
|
|
Propagate to the outgoing blocks. */
|
| 887 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 888 |
|
|
{
|
| 889 |
|
|
unsigned ob_index = e->dest->index;
|
| 890 |
|
|
|
| 891 |
|
|
if (TEST_BIT (considered, ob_index))
|
| 892 |
|
|
bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
|
| 893 |
|
|
}
|
| 894 |
|
|
}
|
| 895 |
|
|
}
|
| 896 |
|
|
|
| 897 |
|
|
|
| 898 |
|
|
/* Helper function for df_worklist_dataflow.
|
| 899 |
|
|
Propagate the dataflow backward. */
|
| 900 |
|
|
|
| 901 |
|
|
static void
|
| 902 |
|
|
df_worklist_propagate_backward (struct dataflow *dataflow,
|
| 903 |
|
|
unsigned bb_index,
|
| 904 |
|
|
unsigned *bbindex_to_postorder,
|
| 905 |
|
|
bitmap pending,
|
| 906 |
|
|
sbitmap considered)
|
| 907 |
|
|
{
|
| 908 |
|
|
edge e;
|
| 909 |
|
|
edge_iterator ei;
|
| 910 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
| 911 |
|
|
|
| 912 |
|
|
/* Calculate <conf_op> of incoming edges. */
|
| 913 |
|
|
if (EDGE_COUNT (bb->succs) > 0)
|
| 914 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 915 |
|
|
{
|
| 916 |
|
|
if (TEST_BIT (considered, e->dest->index))
|
| 917 |
|
|
dataflow->problem->con_fun_n (e);
|
| 918 |
|
|
}
|
| 919 |
|
|
else if (dataflow->problem->con_fun_0)
|
| 920 |
|
|
dataflow->problem->con_fun_0 (bb);
|
| 921 |
|
|
|
| 922 |
|
|
if (dataflow->problem->trans_fun (bb_index))
|
| 923 |
|
|
{
|
| 924 |
|
|
/* The out set of this block has changed.
|
| 925 |
|
|
Propagate to the outgoing blocks. */
|
| 926 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 927 |
|
|
{
|
| 928 |
|
|
unsigned ob_index = e->src->index;
|
| 929 |
|
|
|
| 930 |
|
|
if (TEST_BIT (considered, ob_index))
|
| 931 |
|
|
bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
|
| 932 |
|
|
}
|
| 933 |
|
|
}
|
| 934 |
|
|
}
|
| 935 |
|
|
|
| 936 |
|
|
|
| 937 |
|
|
|
| 938 |
|
|
/* This will free "pending". */
|
| 939 |
|
|
|
| 940 |
|
|
static void
|
| 941 |
|
|
df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
|
| 942 |
|
|
bitmap pending,
|
| 943 |
|
|
sbitmap considered,
|
| 944 |
|
|
int *blocks_in_postorder,
|
| 945 |
|
|
unsigned *bbindex_to_postorder)
|
| 946 |
|
|
{
|
| 947 |
|
|
enum df_flow_dir dir = dataflow->problem->dir;
|
| 948 |
|
|
int dcount = 0;
|
| 949 |
|
|
bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
|
| 950 |
|
|
|
| 951 |
|
|
/* Double-queueing. Worklist is for the current iteration,
|
| 952 |
|
|
and pending is for the next. */
|
| 953 |
|
|
while (!bitmap_empty_p (pending))
|
| 954 |
|
|
{
|
| 955 |
|
|
/* Swap pending and worklist. */
|
| 956 |
|
|
bitmap temp = worklist;
|
| 957 |
|
|
worklist = pending;
|
| 958 |
|
|
pending = temp;
|
| 959 |
|
|
|
| 960 |
|
|
do
|
| 961 |
|
|
{
|
| 962 |
|
|
int index;
|
| 963 |
|
|
unsigned bb_index;
|
| 964 |
|
|
dcount++;
|
| 965 |
|
|
|
| 966 |
|
|
index = bitmap_first_set_bit (worklist);
|
| 967 |
|
|
bitmap_clear_bit (worklist, index);
|
| 968 |
|
|
|
| 969 |
|
|
bb_index = blocks_in_postorder[index];
|
| 970 |
|
|
|
| 971 |
|
|
if (dir == DF_FORWARD)
|
| 972 |
|
|
df_worklist_propagate_forward (dataflow, bb_index,
|
| 973 |
|
|
bbindex_to_postorder,
|
| 974 |
|
|
pending, considered);
|
| 975 |
|
|
else
|
| 976 |
|
|
df_worklist_propagate_backward (dataflow, bb_index,
|
| 977 |
|
|
bbindex_to_postorder,
|
| 978 |
|
|
pending, considered);
|
| 979 |
|
|
}
|
| 980 |
|
|
while (!bitmap_empty_p (worklist));
|
| 981 |
|
|
}
|
| 982 |
|
|
|
| 983 |
|
|
BITMAP_FREE (worklist);
|
| 984 |
|
|
BITMAP_FREE (pending);
|
| 985 |
|
|
|
| 986 |
|
|
/* Dump statistics. */
|
| 987 |
|
|
if (dump_file)
|
| 988 |
|
|
fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
|
| 989 |
|
|
"n_basic_blocks %d n_edges %d"
|
| 990 |
|
|
" count %d (%5.2g)\n",
|
| 991 |
|
|
n_basic_blocks, n_edges,
|
| 992 |
|
|
dcount, dcount / (float)n_basic_blocks);
|
| 993 |
|
|
}
|
| 994 |
|
|
|
| 995 |
|
|
/* Worklist-based dataflow solver. It uses sbitmap as a worklist,
|
| 996 |
|
|
with "n"-th bit representing the n-th block in the reverse-postorder order.
|
| 997 |
|
|
The solver is a double-queue algorithm similar to the "double stack" solver
|
| 998 |
|
|
from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
|
| 999 |
|
|
The only significant difference is that the worklist in this implementation
|
| 1000 |
|
|
is always sorted in RPO of the CFG visiting direction. */
|
| 1001 |
|
|
|
| 1002 |
|
|
void
|
| 1003 |
|
|
df_worklist_dataflow (struct dataflow *dataflow,
|
| 1004 |
|
|
bitmap blocks_to_consider,
|
| 1005 |
|
|
int *blocks_in_postorder,
|
| 1006 |
|
|
int n_blocks)
|
| 1007 |
|
|
{
|
| 1008 |
|
|
bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
|
| 1009 |
|
|
sbitmap considered = sbitmap_alloc (last_basic_block);
|
| 1010 |
|
|
bitmap_iterator bi;
|
| 1011 |
|
|
unsigned int *bbindex_to_postorder;
|
| 1012 |
|
|
int i;
|
| 1013 |
|
|
unsigned int index;
|
| 1014 |
|
|
enum df_flow_dir dir = dataflow->problem->dir;
|
| 1015 |
|
|
|
| 1016 |
|
|
gcc_assert (dir != DF_NONE);
|
| 1017 |
|
|
|
| 1018 |
|
|
/* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
|
| 1019 |
|
|
bbindex_to_postorder =
|
| 1020 |
|
|
(unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
|
| 1021 |
|
|
|
| 1022 |
|
|
/* Initialize the array to an out-of-bound value. */
|
| 1023 |
|
|
for (i = 0; i < last_basic_block; i++)
|
| 1024 |
|
|
bbindex_to_postorder[i] = last_basic_block;
|
| 1025 |
|
|
|
| 1026 |
|
|
/* Initialize the considered map. */
|
| 1027 |
|
|
sbitmap_zero (considered);
|
| 1028 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
|
| 1029 |
|
|
{
|
| 1030 |
|
|
SET_BIT (considered, index);
|
| 1031 |
|
|
}
|
| 1032 |
|
|
|
| 1033 |
|
|
/* Initialize the mapping of block index to postorder. */
|
| 1034 |
|
|
for (i = 0; i < n_blocks; i++)
|
| 1035 |
|
|
{
|
| 1036 |
|
|
bbindex_to_postorder[blocks_in_postorder[i]] = i;
|
| 1037 |
|
|
/* Add all blocks to the worklist. */
|
| 1038 |
|
|
bitmap_set_bit (pending, i);
|
| 1039 |
|
|
}
|
| 1040 |
|
|
|
| 1041 |
|
|
/* Initialize the problem. */
|
| 1042 |
|
|
if (dataflow->problem->init_fun)
|
| 1043 |
|
|
dataflow->problem->init_fun (blocks_to_consider);
|
| 1044 |
|
|
|
| 1045 |
|
|
/* Solve it. */
|
| 1046 |
|
|
df_worklist_dataflow_doublequeue (dataflow, pending, considered,
|
| 1047 |
|
|
blocks_in_postorder,
|
| 1048 |
|
|
bbindex_to_postorder);
|
| 1049 |
|
|
|
| 1050 |
|
|
sbitmap_free (considered);
|
| 1051 |
|
|
free (bbindex_to_postorder);
|
| 1052 |
|
|
}
|
| 1053 |
|
|
|
| 1054 |
|
|
|
| 1055 |
|
|
/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
|
| 1056 |
|
|
the order of the remaining entries. Returns the length of the resulting
|
| 1057 |
|
|
list. */
|
| 1058 |
|
|
|
| 1059 |
|
|
static unsigned
|
| 1060 |
|
|
df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
|
| 1061 |
|
|
{
|
| 1062 |
|
|
unsigned act, last;
|
| 1063 |
|
|
|
| 1064 |
|
|
for (act = 0, last = 0; act < len; act++)
|
| 1065 |
|
|
if (bitmap_bit_p (blocks, list[act]))
|
| 1066 |
|
|
list[last++] = list[act];
|
| 1067 |
|
|
|
| 1068 |
|
|
return last;
|
| 1069 |
|
|
}
|
| 1070 |
|
|
|
| 1071 |
|
|
|
| 1072 |
|
|
/* Execute dataflow analysis on a single dataflow problem.
|
| 1073 |
|
|
|
| 1074 |
|
|
BLOCKS_TO_CONSIDER are the blocks whose solution can either be
|
| 1075 |
|
|
examined or will be computed. For calls from DF_ANALYZE, this is
|
| 1076 |
|
|
the set of blocks that has been passed to DF_SET_BLOCKS.
|
| 1077 |
|
|
*/
|
| 1078 |
|
|
|
| 1079 |
|
|
void
|
| 1080 |
|
|
df_analyze_problem (struct dataflow *dflow,
|
| 1081 |
|
|
bitmap blocks_to_consider,
|
| 1082 |
|
|
int *postorder, int n_blocks)
|
| 1083 |
|
|
{
|
| 1084 |
|
|
timevar_push (dflow->problem->tv_id);
|
| 1085 |
|
|
|
| 1086 |
|
|
#ifdef ENABLE_DF_CHECKING
|
| 1087 |
|
|
if (dflow->problem->verify_start_fun)
|
| 1088 |
|
|
dflow->problem->verify_start_fun ();
|
| 1089 |
|
|
#endif
|
| 1090 |
|
|
|
| 1091 |
|
|
/* (Re)Allocate the datastructures necessary to solve the problem. */
|
| 1092 |
|
|
if (dflow->problem->alloc_fun)
|
| 1093 |
|
|
dflow->problem->alloc_fun (blocks_to_consider);
|
| 1094 |
|
|
|
| 1095 |
|
|
/* Set up the problem and compute the local information. */
|
| 1096 |
|
|
if (dflow->problem->local_compute_fun)
|
| 1097 |
|
|
dflow->problem->local_compute_fun (blocks_to_consider);
|
| 1098 |
|
|
|
| 1099 |
|
|
/* Solve the equations. */
|
| 1100 |
|
|
if (dflow->problem->dataflow_fun)
|
| 1101 |
|
|
dflow->problem->dataflow_fun (dflow, blocks_to_consider,
|
| 1102 |
|
|
postorder, n_blocks);
|
| 1103 |
|
|
|
| 1104 |
|
|
/* Massage the solution. */
|
| 1105 |
|
|
if (dflow->problem->finalize_fun)
|
| 1106 |
|
|
dflow->problem->finalize_fun (blocks_to_consider);
|
| 1107 |
|
|
|
| 1108 |
|
|
#ifdef ENABLE_DF_CHECKING
|
| 1109 |
|
|
if (dflow->problem->verify_end_fun)
|
| 1110 |
|
|
dflow->problem->verify_end_fun ();
|
| 1111 |
|
|
#endif
|
| 1112 |
|
|
|
| 1113 |
|
|
timevar_pop (dflow->problem->tv_id);
|
| 1114 |
|
|
|
| 1115 |
|
|
dflow->computed = true;
|
| 1116 |
|
|
}
|
| 1117 |
|
|
|
| 1118 |
|
|
|
| 1119 |
|
|
/* Analyze dataflow info for the basic blocks specified by the bitmap
|
| 1120 |
|
|
BLOCKS, or for the whole CFG if BLOCKS is zero. */
|
| 1121 |
|
|
|
| 1122 |
|
|
void
|
| 1123 |
|
|
df_analyze (void)
|
| 1124 |
|
|
{
|
| 1125 |
|
|
bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
|
| 1126 |
|
|
bool everything;
|
| 1127 |
|
|
int i;
|
| 1128 |
|
|
|
| 1129 |
|
|
if (df->postorder)
|
| 1130 |
|
|
free (df->postorder);
|
| 1131 |
|
|
if (df->postorder_inverted)
|
| 1132 |
|
|
free (df->postorder_inverted);
|
| 1133 |
|
|
df->postorder = XNEWVEC (int, last_basic_block);
|
| 1134 |
|
|
df->postorder_inverted = XNEWVEC (int, last_basic_block);
|
| 1135 |
|
|
df->n_blocks = post_order_compute (df->postorder, true, true);
|
| 1136 |
|
|
df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
|
| 1137 |
|
|
|
| 1138 |
|
|
/* These should be the same. */
|
| 1139 |
|
|
gcc_assert (df->n_blocks == df->n_blocks_inverted);
|
| 1140 |
|
|
|
| 1141 |
|
|
/* We need to do this before the df_verify_all because this is
|
| 1142 |
|
|
not kept incrementally up to date. */
|
| 1143 |
|
|
df_compute_regs_ever_live (false);
|
| 1144 |
|
|
df_process_deferred_rescans ();
|
| 1145 |
|
|
|
| 1146 |
|
|
if (dump_file)
|
| 1147 |
|
|
fprintf (dump_file, "df_analyze called\n");
|
| 1148 |
|
|
|
| 1149 |
|
|
#ifndef ENABLE_DF_CHECKING
|
| 1150 |
|
|
if (df->changeable_flags & DF_VERIFY_SCHEDULED)
|
| 1151 |
|
|
#endif
|
| 1152 |
|
|
df_verify ();
|
| 1153 |
|
|
|
| 1154 |
|
|
for (i = 0; i < df->n_blocks; i++)
|
| 1155 |
|
|
bitmap_set_bit (current_all_blocks, df->postorder[i]);
|
| 1156 |
|
|
|
| 1157 |
|
|
#ifdef ENABLE_CHECKING
|
| 1158 |
|
|
/* Verify that POSTORDER_INVERTED only contains blocks reachable from
|
| 1159 |
|
|
the ENTRY block. */
|
| 1160 |
|
|
for (i = 0; i < df->n_blocks_inverted; i++)
|
| 1161 |
|
|
gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
|
| 1162 |
|
|
#endif
|
| 1163 |
|
|
|
| 1164 |
|
|
/* Make sure that we have pruned any unreachable blocks from these
|
| 1165 |
|
|
sets. */
|
| 1166 |
|
|
if (df->analyze_subset)
|
| 1167 |
|
|
{
|
| 1168 |
|
|
everything = false;
|
| 1169 |
|
|
bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
|
| 1170 |
|
|
df->n_blocks = df_prune_to_subcfg (df->postorder,
|
| 1171 |
|
|
df->n_blocks, df->blocks_to_analyze);
|
| 1172 |
|
|
df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
|
| 1173 |
|
|
df->n_blocks_inverted,
|
| 1174 |
|
|
df->blocks_to_analyze);
|
| 1175 |
|
|
BITMAP_FREE (current_all_blocks);
|
| 1176 |
|
|
}
|
| 1177 |
|
|
else
|
| 1178 |
|
|
{
|
| 1179 |
|
|
everything = true;
|
| 1180 |
|
|
df->blocks_to_analyze = current_all_blocks;
|
| 1181 |
|
|
current_all_blocks = NULL;
|
| 1182 |
|
|
}
|
| 1183 |
|
|
|
| 1184 |
|
|
/* Skip over the DF_SCAN problem. */
|
| 1185 |
|
|
for (i = 1; i < df->num_problems_defined; i++)
|
| 1186 |
|
|
{
|
| 1187 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
| 1188 |
|
|
if (dflow->solutions_dirty)
|
| 1189 |
|
|
{
|
| 1190 |
|
|
if (dflow->problem->dir == DF_FORWARD)
|
| 1191 |
|
|
df_analyze_problem (dflow,
|
| 1192 |
|
|
df->blocks_to_analyze,
|
| 1193 |
|
|
df->postorder_inverted,
|
| 1194 |
|
|
df->n_blocks_inverted);
|
| 1195 |
|
|
else
|
| 1196 |
|
|
df_analyze_problem (dflow,
|
| 1197 |
|
|
df->blocks_to_analyze,
|
| 1198 |
|
|
df->postorder,
|
| 1199 |
|
|
df->n_blocks);
|
| 1200 |
|
|
}
|
| 1201 |
|
|
}
|
| 1202 |
|
|
|
| 1203 |
|
|
if (everything)
|
| 1204 |
|
|
{
|
| 1205 |
|
|
BITMAP_FREE (df->blocks_to_analyze);
|
| 1206 |
|
|
df->blocks_to_analyze = NULL;
|
| 1207 |
|
|
}
|
| 1208 |
|
|
|
| 1209 |
|
|
#ifdef DF_DEBUG_CFG
|
| 1210 |
|
|
df_set_clean_cfg ();
|
| 1211 |
|
|
#endif
|
| 1212 |
|
|
}
|
| 1213 |
|
|
|
| 1214 |
|
|
|
| 1215 |
|
|
/* Return the number of basic blocks from the last call to df_analyze. */
|
| 1216 |
|
|
|
| 1217 |
|
|
int
|
| 1218 |
|
|
df_get_n_blocks (enum df_flow_dir dir)
|
| 1219 |
|
|
{
|
| 1220 |
|
|
gcc_assert (dir != DF_NONE);
|
| 1221 |
|
|
|
| 1222 |
|
|
if (dir == DF_FORWARD)
|
| 1223 |
|
|
{
|
| 1224 |
|
|
gcc_assert (df->postorder_inverted);
|
| 1225 |
|
|
return df->n_blocks_inverted;
|
| 1226 |
|
|
}
|
| 1227 |
|
|
|
| 1228 |
|
|
gcc_assert (df->postorder);
|
| 1229 |
|
|
return df->n_blocks;
|
| 1230 |
|
|
}
|
| 1231 |
|
|
|
| 1232 |
|
|
|
| 1233 |
|
|
/* Return a pointer to the array of basic blocks in the reverse postorder.
|
| 1234 |
|
|
Depending on the direction of the dataflow problem,
|
| 1235 |
|
|
it returns either the usual reverse postorder array
|
| 1236 |
|
|
or the reverse postorder of inverted traversal. */
|
| 1237 |
|
|
int *
|
| 1238 |
|
|
df_get_postorder (enum df_flow_dir dir)
|
| 1239 |
|
|
{
|
| 1240 |
|
|
gcc_assert (dir != DF_NONE);
|
| 1241 |
|
|
|
| 1242 |
|
|
if (dir == DF_FORWARD)
|
| 1243 |
|
|
{
|
| 1244 |
|
|
gcc_assert (df->postorder_inverted);
|
| 1245 |
|
|
return df->postorder_inverted;
|
| 1246 |
|
|
}
|
| 1247 |
|
|
gcc_assert (df->postorder);
|
| 1248 |
|
|
return df->postorder;
|
| 1249 |
|
|
}
|
| 1250 |
|
|
|
| 1251 |
|
|
static struct df_problem user_problem;
|
| 1252 |
|
|
static struct dataflow user_dflow;
|
| 1253 |
|
|
|
| 1254 |
|
|
/* Interface for calling iterative dataflow with user defined
|
| 1255 |
|
|
confluence and transfer functions. All that is necessary is to
|
| 1256 |
|
|
supply DIR, a direction, CONF_FUN_0, a confluence function for
|
| 1257 |
|
|
blocks with no logical preds (or NULL), CONF_FUN_N, the normal
|
| 1258 |
|
|
confluence function, TRANS_FUN, the basic block transfer function,
|
| 1259 |
|
|
and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
|
| 1260 |
|
|
postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
|
| 1261 |
|
|
|
| 1262 |
|
|
void
|
| 1263 |
|
|
df_simple_dataflow (enum df_flow_dir dir,
|
| 1264 |
|
|
df_init_function init_fun,
|
| 1265 |
|
|
df_confluence_function_0 con_fun_0,
|
| 1266 |
|
|
df_confluence_function_n con_fun_n,
|
| 1267 |
|
|
df_transfer_function trans_fun,
|
| 1268 |
|
|
bitmap blocks, int * postorder, int n_blocks)
|
| 1269 |
|
|
{
|
| 1270 |
|
|
memset (&user_problem, 0, sizeof (struct df_problem));
|
| 1271 |
|
|
user_problem.dir = dir;
|
| 1272 |
|
|
user_problem.init_fun = init_fun;
|
| 1273 |
|
|
user_problem.con_fun_0 = con_fun_0;
|
| 1274 |
|
|
user_problem.con_fun_n = con_fun_n;
|
| 1275 |
|
|
user_problem.trans_fun = trans_fun;
|
| 1276 |
|
|
user_dflow.problem = &user_problem;
|
| 1277 |
|
|
df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
|
| 1278 |
|
|
}
|
| 1279 |
|
|
|
| 1280 |
|
|
|
| 1281 |
|
|
|
| 1282 |
|
|
/*----------------------------------------------------------------------------
|
| 1283 |
|
|
Functions to support limited incremental change.
|
| 1284 |
|
|
----------------------------------------------------------------------------*/
|
| 1285 |
|
|
|
| 1286 |
|
|
|
| 1287 |
|
|
/* Get basic block info. */
|
| 1288 |
|
|
|
| 1289 |
|
|
static void *
|
| 1290 |
|
|
df_get_bb_info (struct dataflow *dflow, unsigned int index)
|
| 1291 |
|
|
{
|
| 1292 |
|
|
if (dflow->block_info == NULL)
|
| 1293 |
|
|
return NULL;
|
| 1294 |
|
|
if (index >= dflow->block_info_size)
|
| 1295 |
|
|
return NULL;
|
| 1296 |
|
|
return (struct df_scan_bb_info *) dflow->block_info[index];
|
| 1297 |
|
|
}
|
| 1298 |
|
|
|
| 1299 |
|
|
|
| 1300 |
|
|
/* Set basic block info. */
|
| 1301 |
|
|
|
| 1302 |
|
|
static void
|
| 1303 |
|
|
df_set_bb_info (struct dataflow *dflow, unsigned int index,
|
| 1304 |
|
|
void *bb_info)
|
| 1305 |
|
|
{
|
| 1306 |
|
|
gcc_assert (dflow->block_info);
|
| 1307 |
|
|
dflow->block_info[index] = bb_info;
|
| 1308 |
|
|
}
|
| 1309 |
|
|
|
| 1310 |
|
|
|
| 1311 |
|
|
/* Mark the solutions as being out of date. */
|
| 1312 |
|
|
|
| 1313 |
|
|
void
|
| 1314 |
|
|
df_mark_solutions_dirty (void)
|
| 1315 |
|
|
{
|
| 1316 |
|
|
if (df)
|
| 1317 |
|
|
{
|
| 1318 |
|
|
int p;
|
| 1319 |
|
|
for (p = 1; p < df->num_problems_defined; p++)
|
| 1320 |
|
|
df->problems_in_order[p]->solutions_dirty = true;
|
| 1321 |
|
|
}
|
| 1322 |
|
|
}
|
| 1323 |
|
|
|
| 1324 |
|
|
|
| 1325 |
|
|
/* Return true if BB needs it's transfer functions recomputed. */
|
| 1326 |
|
|
|
| 1327 |
|
|
bool
|
| 1328 |
|
|
df_get_bb_dirty (basic_block bb)
|
| 1329 |
|
|
{
|
| 1330 |
|
|
if (df && df_live)
|
| 1331 |
|
|
return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
|
| 1332 |
|
|
else
|
| 1333 |
|
|
return false;
|
| 1334 |
|
|
}
|
| 1335 |
|
|
|
| 1336 |
|
|
|
| 1337 |
|
|
/* Mark BB as needing it's transfer functions as being out of
|
| 1338 |
|
|
date. */
|
| 1339 |
|
|
|
| 1340 |
|
|
void
|
| 1341 |
|
|
df_set_bb_dirty (basic_block bb)
|
| 1342 |
|
|
{
|
| 1343 |
|
|
if (df)
|
| 1344 |
|
|
{
|
| 1345 |
|
|
int p;
|
| 1346 |
|
|
for (p = 1; p < df->num_problems_defined; p++)
|
| 1347 |
|
|
{
|
| 1348 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
| 1349 |
|
|
if (dflow->out_of_date_transfer_functions)
|
| 1350 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
|
| 1351 |
|
|
}
|
| 1352 |
|
|
df_mark_solutions_dirty ();
|
| 1353 |
|
|
}
|
| 1354 |
|
|
}
|
| 1355 |
|
|
|
| 1356 |
|
|
|
| 1357 |
|
|
/* Mark BB as needing it's transfer functions as being out of
|
| 1358 |
|
|
date, except for LR problem. Used when analyzing DEBUG_INSNs,
|
| 1359 |
|
|
as LR problem can trigger DCE, and DEBUG_INSNs shouldn't ever
|
| 1360 |
|
|
shorten or enlarge lifetime of regs. */
|
| 1361 |
|
|
|
| 1362 |
|
|
void
|
| 1363 |
|
|
df_set_bb_dirty_nonlr (basic_block bb)
|
| 1364 |
|
|
{
|
| 1365 |
|
|
if (df)
|
| 1366 |
|
|
{
|
| 1367 |
|
|
int p;
|
| 1368 |
|
|
for (p = 1; p < df->num_problems_defined; p++)
|
| 1369 |
|
|
{
|
| 1370 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
| 1371 |
|
|
if (dflow == df_lr)
|
| 1372 |
|
|
continue;
|
| 1373 |
|
|
if (dflow->out_of_date_transfer_functions)
|
| 1374 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
|
| 1375 |
|
|
dflow->solutions_dirty = true;
|
| 1376 |
|
|
}
|
| 1377 |
|
|
}
|
| 1378 |
|
|
}
|
| 1379 |
|
|
|
| 1380 |
|
|
|
| 1381 |
|
|
/* Clear the dirty bits. This is called from places that delete
|
| 1382 |
|
|
blocks. */
|
| 1383 |
|
|
static void
|
| 1384 |
|
|
df_clear_bb_dirty (basic_block bb)
|
| 1385 |
|
|
{
|
| 1386 |
|
|
int p;
|
| 1387 |
|
|
for (p = 1; p < df->num_problems_defined; p++)
|
| 1388 |
|
|
{
|
| 1389 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
| 1390 |
|
|
if (dflow->out_of_date_transfer_functions)
|
| 1391 |
|
|
bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
|
| 1392 |
|
|
}
|
| 1393 |
|
|
}
|
| 1394 |
|
|
/* Called from the rtl_compact_blocks to reorganize the problems basic
|
| 1395 |
|
|
block info. */
|
| 1396 |
|
|
|
| 1397 |
|
|
void
|
| 1398 |
|
|
df_compact_blocks (void)
|
| 1399 |
|
|
{
|
| 1400 |
|
|
int i, p;
|
| 1401 |
|
|
basic_block bb;
|
| 1402 |
|
|
void **problem_temps;
|
| 1403 |
|
|
int size = last_basic_block * sizeof (void *);
|
| 1404 |
|
|
bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
|
| 1405 |
|
|
problem_temps = XNEWVAR (void *, size);
|
| 1406 |
|
|
|
| 1407 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
| 1408 |
|
|
{
|
| 1409 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
| 1410 |
|
|
|
| 1411 |
|
|
/* Need to reorganize the out_of_date_transfer_functions for the
|
| 1412 |
|
|
dflow problem. */
|
| 1413 |
|
|
if (dflow->out_of_date_transfer_functions)
|
| 1414 |
|
|
{
|
| 1415 |
|
|
bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
|
| 1416 |
|
|
bitmap_clear (dflow->out_of_date_transfer_functions);
|
| 1417 |
|
|
if (bitmap_bit_p (tmp, ENTRY_BLOCK))
|
| 1418 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
|
| 1419 |
|
|
if (bitmap_bit_p (tmp, EXIT_BLOCK))
|
| 1420 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
|
| 1421 |
|
|
|
| 1422 |
|
|
i = NUM_FIXED_BLOCKS;
|
| 1423 |
|
|
FOR_EACH_BB (bb)
|
| 1424 |
|
|
{
|
| 1425 |
|
|
if (bitmap_bit_p (tmp, bb->index))
|
| 1426 |
|
|
bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
|
| 1427 |
|
|
i++;
|
| 1428 |
|
|
}
|
| 1429 |
|
|
}
|
| 1430 |
|
|
|
| 1431 |
|
|
/* Now shuffle the block info for the problem. */
|
| 1432 |
|
|
if (dflow->problem->free_bb_fun)
|
| 1433 |
|
|
{
|
| 1434 |
|
|
df_grow_bb_info (dflow);
|
| 1435 |
|
|
memcpy (problem_temps, dflow->block_info, size);
|
| 1436 |
|
|
|
| 1437 |
|
|
/* Copy the bb info from the problem tmps to the proper
|
| 1438 |
|
|
place in the block_info vector. Null out the copied
|
| 1439 |
|
|
item. The entry and exit blocks never move. */
|
| 1440 |
|
|
i = NUM_FIXED_BLOCKS;
|
| 1441 |
|
|
FOR_EACH_BB (bb)
|
| 1442 |
|
|
{
|
| 1443 |
|
|
df_set_bb_info (dflow, i, problem_temps[bb->index]);
|
| 1444 |
|
|
problem_temps[bb->index] = NULL;
|
| 1445 |
|
|
i++;
|
| 1446 |
|
|
}
|
| 1447 |
|
|
memset (dflow->block_info + i, 0,
|
| 1448 |
|
|
(last_basic_block - i) *sizeof (void *));
|
| 1449 |
|
|
|
| 1450 |
|
|
/* Free any block infos that were not copied (and NULLed).
|
| 1451 |
|
|
These are from orphaned blocks. */
|
| 1452 |
|
|
for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
|
| 1453 |
|
|
{
|
| 1454 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
| 1455 |
|
|
if (problem_temps[i] && bb)
|
| 1456 |
|
|
dflow->problem->free_bb_fun
|
| 1457 |
|
|
(bb, problem_temps[i]);
|
| 1458 |
|
|
}
|
| 1459 |
|
|
}
|
| 1460 |
|
|
}
|
| 1461 |
|
|
|
| 1462 |
|
|
/* Shuffle the bits in the basic_block indexed arrays. */
|
| 1463 |
|
|
|
| 1464 |
|
|
if (df->blocks_to_analyze)
|
| 1465 |
|
|
{
|
| 1466 |
|
|
if (bitmap_bit_p (tmp, ENTRY_BLOCK))
|
| 1467 |
|
|
bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
|
| 1468 |
|
|
if (bitmap_bit_p (tmp, EXIT_BLOCK))
|
| 1469 |
|
|
bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
|
| 1470 |
|
|
bitmap_copy (tmp, df->blocks_to_analyze);
|
| 1471 |
|
|
bitmap_clear (df->blocks_to_analyze);
|
| 1472 |
|
|
i = NUM_FIXED_BLOCKS;
|
| 1473 |
|
|
FOR_EACH_BB (bb)
|
| 1474 |
|
|
{
|
| 1475 |
|
|
if (bitmap_bit_p (tmp, bb->index))
|
| 1476 |
|
|
bitmap_set_bit (df->blocks_to_analyze, i);
|
| 1477 |
|
|
i++;
|
| 1478 |
|
|
}
|
| 1479 |
|
|
}
|
| 1480 |
|
|
|
| 1481 |
|
|
BITMAP_FREE (tmp);
|
| 1482 |
|
|
|
| 1483 |
|
|
free (problem_temps);
|
| 1484 |
|
|
|
| 1485 |
|
|
i = NUM_FIXED_BLOCKS;
|
| 1486 |
|
|
FOR_EACH_BB (bb)
|
| 1487 |
|
|
{
|
| 1488 |
|
|
SET_BASIC_BLOCK (i, bb);
|
| 1489 |
|
|
bb->index = i;
|
| 1490 |
|
|
i++;
|
| 1491 |
|
|
}
|
| 1492 |
|
|
|
| 1493 |
|
|
gcc_assert (i == n_basic_blocks);
|
| 1494 |
|
|
|
| 1495 |
|
|
for (; i < last_basic_block; i++)
|
| 1496 |
|
|
SET_BASIC_BLOCK (i, NULL);
|
| 1497 |
|
|
|
| 1498 |
|
|
#ifdef DF_DEBUG_CFG
|
| 1499 |
|
|
if (!df_lr->solutions_dirty)
|
| 1500 |
|
|
df_set_clean_cfg ();
|
| 1501 |
|
|
#endif
|
| 1502 |
|
|
}
|
| 1503 |
|
|
|
| 1504 |
|
|
|
| 1505 |
|
|
/* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
|
| 1506 |
|
|
block. There is no excuse for people to do this kind of thing. */
|
| 1507 |
|
|
|
| 1508 |
|
|
void
|
| 1509 |
|
|
df_bb_replace (int old_index, basic_block new_block)
|
| 1510 |
|
|
{
|
| 1511 |
|
|
int new_block_index = new_block->index;
|
| 1512 |
|
|
int p;
|
| 1513 |
|
|
|
| 1514 |
|
|
if (dump_file)
|
| 1515 |
|
|
fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
|
| 1516 |
|
|
|
| 1517 |
|
|
gcc_assert (df);
|
| 1518 |
|
|
gcc_assert (BASIC_BLOCK (old_index) == NULL);
|
| 1519 |
|
|
|
| 1520 |
|
|
for (p = 0; p < df->num_problems_defined; p++)
|
| 1521 |
|
|
{
|
| 1522 |
|
|
struct dataflow *dflow = df->problems_in_order[p];
|
| 1523 |
|
|
if (dflow->block_info)
|
| 1524 |
|
|
{
|
| 1525 |
|
|
df_grow_bb_info (dflow);
|
| 1526 |
|
|
gcc_assert (df_get_bb_info (dflow, old_index) == NULL);
|
| 1527 |
|
|
df_set_bb_info (dflow, old_index,
|
| 1528 |
|
|
df_get_bb_info (dflow, new_block_index));
|
| 1529 |
|
|
}
|
| 1530 |
|
|
}
|
| 1531 |
|
|
|
| 1532 |
|
|
df_clear_bb_dirty (new_block);
|
| 1533 |
|
|
SET_BASIC_BLOCK (old_index, new_block);
|
| 1534 |
|
|
new_block->index = old_index;
|
| 1535 |
|
|
df_set_bb_dirty (BASIC_BLOCK (old_index));
|
| 1536 |
|
|
SET_BASIC_BLOCK (new_block_index, NULL);
|
| 1537 |
|
|
}
|
| 1538 |
|
|
|
| 1539 |
|
|
|
| 1540 |
|
|
/* Free all of the per basic block dataflow from all of the problems.
|
| 1541 |
|
|
This is typically called before a basic block is deleted and the
|
| 1542 |
|
|
problem will be reanalyzed. */
|
| 1543 |
|
|
|
| 1544 |
|
|
void
|
| 1545 |
|
|
df_bb_delete (int bb_index)
|
| 1546 |
|
|
{
|
| 1547 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
| 1548 |
|
|
int i;
|
| 1549 |
|
|
|
| 1550 |
|
|
if (!df)
|
| 1551 |
|
|
return;
|
| 1552 |
|
|
|
| 1553 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
| 1554 |
|
|
{
|
| 1555 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
| 1556 |
|
|
if (dflow->problem->free_bb_fun)
|
| 1557 |
|
|
{
|
| 1558 |
|
|
void *bb_info = df_get_bb_info (dflow, bb_index);
|
| 1559 |
|
|
if (bb_info)
|
| 1560 |
|
|
{
|
| 1561 |
|
|
dflow->problem->free_bb_fun (bb, bb_info);
|
| 1562 |
|
|
df_set_bb_info (dflow, bb_index, NULL);
|
| 1563 |
|
|
}
|
| 1564 |
|
|
}
|
| 1565 |
|
|
}
|
| 1566 |
|
|
df_clear_bb_dirty (bb);
|
| 1567 |
|
|
df_mark_solutions_dirty ();
|
| 1568 |
|
|
}
|
| 1569 |
|
|
|
| 1570 |
|
|
|
| 1571 |
|
|
/* Verify that there is a place for everything and everything is in
|
| 1572 |
|
|
its place. This is too expensive to run after every pass in the
|
| 1573 |
|
|
mainline. However this is an excellent debugging tool if the
|
| 1574 |
|
|
dataflow information is not being updated properly. You can just
|
| 1575 |
|
|
sprinkle calls in until you find the place that is changing an
|
| 1576 |
|
|
underlying structure without calling the proper updating
|
| 1577 |
|
|
routine. */
|
| 1578 |
|
|
|
| 1579 |
|
|
void
|
| 1580 |
|
|
df_verify (void)
|
| 1581 |
|
|
{
|
| 1582 |
|
|
df_scan_verify ();
|
| 1583 |
|
|
#ifdef ENABLE_DF_CHECKING
|
| 1584 |
|
|
df_lr_verify_transfer_functions ();
|
| 1585 |
|
|
if (df_live)
|
| 1586 |
|
|
df_live_verify_transfer_functions ();
|
| 1587 |
|
|
#endif
|
| 1588 |
|
|
}
|
| 1589 |
|
|
|
| 1590 |
|
|
#ifdef DF_DEBUG_CFG
|
| 1591 |
|
|
|
| 1592 |
|
|
/* Compute an array of ints that describes the cfg. This can be used
|
| 1593 |
|
|
to discover places where the cfg is modified by the appropriate
|
| 1594 |
|
|
calls have not been made to the keep df informed. The internals of
|
| 1595 |
|
|
this are unexciting, the key is that two instances of this can be
|
| 1596 |
|
|
compared to see if any changes have been made to the cfg. */
|
| 1597 |
|
|
|
| 1598 |
|
|
static int *
|
| 1599 |
|
|
df_compute_cfg_image (void)
|
| 1600 |
|
|
{
|
| 1601 |
|
|
basic_block bb;
|
| 1602 |
|
|
int size = 2 + (2 * n_basic_blocks);
|
| 1603 |
|
|
int i;
|
| 1604 |
|
|
int * map;
|
| 1605 |
|
|
|
| 1606 |
|
|
FOR_ALL_BB (bb)
|
| 1607 |
|
|
{
|
| 1608 |
|
|
size += EDGE_COUNT (bb->succs);
|
| 1609 |
|
|
}
|
| 1610 |
|
|
|
| 1611 |
|
|
map = XNEWVEC (int, size);
|
| 1612 |
|
|
map[0] = size;
|
| 1613 |
|
|
i = 1;
|
| 1614 |
|
|
FOR_ALL_BB (bb)
|
| 1615 |
|
|
{
|
| 1616 |
|
|
edge_iterator ei;
|
| 1617 |
|
|
edge e;
|
| 1618 |
|
|
|
| 1619 |
|
|
map[i++] = bb->index;
|
| 1620 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1621 |
|
|
map[i++] = e->dest->index;
|
| 1622 |
|
|
map[i++] = -1;
|
| 1623 |
|
|
}
|
| 1624 |
|
|
map[i] = -1;
|
| 1625 |
|
|
return map;
|
| 1626 |
|
|
}
|
| 1627 |
|
|
|
| 1628 |
|
|
static int *saved_cfg = NULL;
|
| 1629 |
|
|
|
| 1630 |
|
|
|
| 1631 |
|
|
/* This function compares the saved version of the cfg with the
|
| 1632 |
|
|
current cfg and aborts if the two are identical. The function
|
| 1633 |
|
|
silently returns if the cfg has been marked as dirty or the two are
|
| 1634 |
|
|
the same. */
|
| 1635 |
|
|
|
| 1636 |
|
|
void
|
| 1637 |
|
|
df_check_cfg_clean (void)
|
| 1638 |
|
|
{
|
| 1639 |
|
|
int *new_map;
|
| 1640 |
|
|
|
| 1641 |
|
|
if (!df)
|
| 1642 |
|
|
return;
|
| 1643 |
|
|
|
| 1644 |
|
|
if (df_lr->solutions_dirty)
|
| 1645 |
|
|
return;
|
| 1646 |
|
|
|
| 1647 |
|
|
if (saved_cfg == NULL)
|
| 1648 |
|
|
return;
|
| 1649 |
|
|
|
| 1650 |
|
|
new_map = df_compute_cfg_image ();
|
| 1651 |
|
|
gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
|
| 1652 |
|
|
free (new_map);
|
| 1653 |
|
|
}
|
| 1654 |
|
|
|
| 1655 |
|
|
|
| 1656 |
|
|
/* This function builds a cfg fingerprint and squirrels it away in
|
| 1657 |
|
|
saved_cfg. */
|
| 1658 |
|
|
|
| 1659 |
|
|
static void
|
| 1660 |
|
|
df_set_clean_cfg (void)
|
| 1661 |
|
|
{
|
| 1662 |
|
|
if (saved_cfg)
|
| 1663 |
|
|
free (saved_cfg);
|
| 1664 |
|
|
saved_cfg = df_compute_cfg_image ();
|
| 1665 |
|
|
}
|
| 1666 |
|
|
|
| 1667 |
|
|
#endif /* DF_DEBUG_CFG */
|
| 1668 |
|
|
/*----------------------------------------------------------------------------
|
| 1669 |
|
|
PUBLIC INTERFACES TO QUERY INFORMATION.
|
| 1670 |
|
|
----------------------------------------------------------------------------*/
|
| 1671 |
|
|
|
| 1672 |
|
|
|
| 1673 |
|
|
/* Return first def of REGNO within BB. */
|
| 1674 |
|
|
|
| 1675 |
|
|
df_ref
|
| 1676 |
|
|
df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
|
| 1677 |
|
|
{
|
| 1678 |
|
|
rtx insn;
|
| 1679 |
|
|
df_ref *def_rec;
|
| 1680 |
|
|
unsigned int uid;
|
| 1681 |
|
|
|
| 1682 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 1683 |
|
|
{
|
| 1684 |
|
|
if (!INSN_P (insn))
|
| 1685 |
|
|
continue;
|
| 1686 |
|
|
|
| 1687 |
|
|
uid = INSN_UID (insn);
|
| 1688 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
| 1689 |
|
|
{
|
| 1690 |
|
|
df_ref def = *def_rec;
|
| 1691 |
|
|
if (DF_REF_REGNO (def) == regno)
|
| 1692 |
|
|
return def;
|
| 1693 |
|
|
}
|
| 1694 |
|
|
}
|
| 1695 |
|
|
return NULL;
|
| 1696 |
|
|
}
|
| 1697 |
|
|
|
| 1698 |
|
|
|
| 1699 |
|
|
/* Return last def of REGNO within BB. */
|
| 1700 |
|
|
|
| 1701 |
|
|
df_ref
|
| 1702 |
|
|
df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
|
| 1703 |
|
|
{
|
| 1704 |
|
|
rtx insn;
|
| 1705 |
|
|
df_ref *def_rec;
|
| 1706 |
|
|
unsigned int uid;
|
| 1707 |
|
|
|
| 1708 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
| 1709 |
|
|
{
|
| 1710 |
|
|
if (!INSN_P (insn))
|
| 1711 |
|
|
continue;
|
| 1712 |
|
|
|
| 1713 |
|
|
uid = INSN_UID (insn);
|
| 1714 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
| 1715 |
|
|
{
|
| 1716 |
|
|
df_ref def = *def_rec;
|
| 1717 |
|
|
if (DF_REF_REGNO (def) == regno)
|
| 1718 |
|
|
return def;
|
| 1719 |
|
|
}
|
| 1720 |
|
|
}
|
| 1721 |
|
|
|
| 1722 |
|
|
return NULL;
|
| 1723 |
|
|
}
|
| 1724 |
|
|
|
| 1725 |
|
|
/* Finds the reference corresponding to the definition of REG in INSN.
|
| 1726 |
|
|
DF is the dataflow object. */
|
| 1727 |
|
|
|
| 1728 |
|
|
df_ref
|
| 1729 |
|
|
df_find_def (rtx insn, rtx reg)
|
| 1730 |
|
|
{
|
| 1731 |
|
|
unsigned int uid;
|
| 1732 |
|
|
df_ref *def_rec;
|
| 1733 |
|
|
|
| 1734 |
|
|
if (GET_CODE (reg) == SUBREG)
|
| 1735 |
|
|
reg = SUBREG_REG (reg);
|
| 1736 |
|
|
gcc_assert (REG_P (reg));
|
| 1737 |
|
|
|
| 1738 |
|
|
uid = INSN_UID (insn);
|
| 1739 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
| 1740 |
|
|
{
|
| 1741 |
|
|
df_ref def = *def_rec;
|
| 1742 |
|
|
if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
|
| 1743 |
|
|
return def;
|
| 1744 |
|
|
}
|
| 1745 |
|
|
|
| 1746 |
|
|
return NULL;
|
| 1747 |
|
|
}
|
| 1748 |
|
|
|
| 1749 |
|
|
|
| 1750 |
|
|
/* Return true if REG is defined in INSN, zero otherwise. */
|
| 1751 |
|
|
|
| 1752 |
|
|
bool
|
| 1753 |
|
|
df_reg_defined (rtx insn, rtx reg)
|
| 1754 |
|
|
{
|
| 1755 |
|
|
return df_find_def (insn, reg) != NULL;
|
| 1756 |
|
|
}
|
| 1757 |
|
|
|
| 1758 |
|
|
|
| 1759 |
|
|
/* Finds the reference corresponding to the use of REG in INSN.
|
| 1760 |
|
|
DF is the dataflow object. */
|
| 1761 |
|
|
|
| 1762 |
|
|
df_ref
|
| 1763 |
|
|
df_find_use (rtx insn, rtx reg)
|
| 1764 |
|
|
{
|
| 1765 |
|
|
unsigned int uid;
|
| 1766 |
|
|
df_ref *use_rec;
|
| 1767 |
|
|
|
| 1768 |
|
|
if (GET_CODE (reg) == SUBREG)
|
| 1769 |
|
|
reg = SUBREG_REG (reg);
|
| 1770 |
|
|
gcc_assert (REG_P (reg));
|
| 1771 |
|
|
|
| 1772 |
|
|
uid = INSN_UID (insn);
|
| 1773 |
|
|
for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
|
| 1774 |
|
|
{
|
| 1775 |
|
|
df_ref use = *use_rec;
|
| 1776 |
|
|
if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
|
| 1777 |
|
|
return use;
|
| 1778 |
|
|
}
|
| 1779 |
|
|
if (df->changeable_flags & DF_EQ_NOTES)
|
| 1780 |
|
|
for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
|
| 1781 |
|
|
{
|
| 1782 |
|
|
df_ref use = *use_rec;
|
| 1783 |
|
|
if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
|
| 1784 |
|
|
return use;
|
| 1785 |
|
|
}
|
| 1786 |
|
|
return NULL;
|
| 1787 |
|
|
}
|
| 1788 |
|
|
|
| 1789 |
|
|
|
| 1790 |
|
|
/* Return true if REG is referenced in INSN, zero otherwise. */
|
| 1791 |
|
|
|
| 1792 |
|
|
bool
|
| 1793 |
|
|
df_reg_used (rtx insn, rtx reg)
|
| 1794 |
|
|
{
|
| 1795 |
|
|
return df_find_use (insn, reg) != NULL;
|
| 1796 |
|
|
}
|
| 1797 |
|
|
|
| 1798 |
|
|
|
| 1799 |
|
|
/*----------------------------------------------------------------------------
|
| 1800 |
|
|
Debugging and printing functions.
|
| 1801 |
|
|
----------------------------------------------------------------------------*/
|
| 1802 |
|
|
|
| 1803 |
|
|
|
| 1804 |
|
|
/* Write information about registers and basic blocks into FILE.
|
| 1805 |
|
|
This is part of making a debugging dump. */
|
| 1806 |
|
|
|
| 1807 |
|
|
void
|
| 1808 |
|
|
df_print_regset (FILE *file, bitmap r)
|
| 1809 |
|
|
{
|
| 1810 |
|
|
unsigned int i;
|
| 1811 |
|
|
bitmap_iterator bi;
|
| 1812 |
|
|
|
| 1813 |
|
|
if (r == NULL)
|
| 1814 |
|
|
fputs (" (nil)", file);
|
| 1815 |
|
|
else
|
| 1816 |
|
|
{
|
| 1817 |
|
|
EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
|
| 1818 |
|
|
{
|
| 1819 |
|
|
fprintf (file, " %d", i);
|
| 1820 |
|
|
if (i < FIRST_PSEUDO_REGISTER)
|
| 1821 |
|
|
fprintf (file, " [%s]", reg_names[i]);
|
| 1822 |
|
|
}
|
| 1823 |
|
|
}
|
| 1824 |
|
|
fprintf (file, "\n");
|
| 1825 |
|
|
}
|
| 1826 |
|
|
|
| 1827 |
|
|
|
| 1828 |
|
|
/* Write information about registers and basic blocks into FILE. The
|
| 1829 |
|
|
bitmap is in the form used by df_byte_lr. This is part of making a
|
| 1830 |
|
|
debugging dump. */
|
| 1831 |
|
|
|
| 1832 |
|
|
void
|
| 1833 |
|
|
df_print_byte_regset (FILE *file, bitmap r)
|
| 1834 |
|
|
{
|
| 1835 |
|
|
unsigned int max_reg = max_reg_num ();
|
| 1836 |
|
|
bitmap_iterator bi;
|
| 1837 |
|
|
|
| 1838 |
|
|
if (r == NULL)
|
| 1839 |
|
|
fputs (" (nil)", file);
|
| 1840 |
|
|
else
|
| 1841 |
|
|
{
|
| 1842 |
|
|
unsigned int i;
|
| 1843 |
|
|
for (i = 0; i < max_reg; i++)
|
| 1844 |
|
|
{
|
| 1845 |
|
|
unsigned int first = df_byte_lr_get_regno_start (i);
|
| 1846 |
|
|
unsigned int len = df_byte_lr_get_regno_len (i);
|
| 1847 |
|
|
|
| 1848 |
|
|
if (len > 1)
|
| 1849 |
|
|
{
|
| 1850 |
|
|
bool found = false;
|
| 1851 |
|
|
unsigned int j;
|
| 1852 |
|
|
|
| 1853 |
|
|
EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
|
| 1854 |
|
|
{
|
| 1855 |
|
|
found = j < first + len;
|
| 1856 |
|
|
break;
|
| 1857 |
|
|
}
|
| 1858 |
|
|
if (found)
|
| 1859 |
|
|
{
|
| 1860 |
|
|
const char * sep = "";
|
| 1861 |
|
|
fprintf (file, " %d", i);
|
| 1862 |
|
|
if (i < FIRST_PSEUDO_REGISTER)
|
| 1863 |
|
|
fprintf (file, " [%s]", reg_names[i]);
|
| 1864 |
|
|
fprintf (file, "(");
|
| 1865 |
|
|
EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
|
| 1866 |
|
|
{
|
| 1867 |
|
|
if (j > first + len - 1)
|
| 1868 |
|
|
break;
|
| 1869 |
|
|
fprintf (file, "%s%d", sep, j-first);
|
| 1870 |
|
|
sep = ", ";
|
| 1871 |
|
|
}
|
| 1872 |
|
|
fprintf (file, ")");
|
| 1873 |
|
|
}
|
| 1874 |
|
|
}
|
| 1875 |
|
|
else
|
| 1876 |
|
|
{
|
| 1877 |
|
|
if (bitmap_bit_p (r, first))
|
| 1878 |
|
|
{
|
| 1879 |
|
|
fprintf (file, " %d", i);
|
| 1880 |
|
|
if (i < FIRST_PSEUDO_REGISTER)
|
| 1881 |
|
|
fprintf (file, " [%s]", reg_names[i]);
|
| 1882 |
|
|
}
|
| 1883 |
|
|
}
|
| 1884 |
|
|
|
| 1885 |
|
|
}
|
| 1886 |
|
|
}
|
| 1887 |
|
|
fprintf (file, "\n");
|
| 1888 |
|
|
}
|
| 1889 |
|
|
|
| 1890 |
|
|
|
| 1891 |
|
|
/* Dump dataflow info. */
|
| 1892 |
|
|
|
| 1893 |
|
|
void
|
| 1894 |
|
|
df_dump (FILE *file)
|
| 1895 |
|
|
{
|
| 1896 |
|
|
basic_block bb;
|
| 1897 |
|
|
df_dump_start (file);
|
| 1898 |
|
|
|
| 1899 |
|
|
FOR_ALL_BB (bb)
|
| 1900 |
|
|
{
|
| 1901 |
|
|
df_print_bb_index (bb, file);
|
| 1902 |
|
|
df_dump_top (bb, file);
|
| 1903 |
|
|
df_dump_bottom (bb, file);
|
| 1904 |
|
|
}
|
| 1905 |
|
|
|
| 1906 |
|
|
fprintf (file, "\n");
|
| 1907 |
|
|
}
|
| 1908 |
|
|
|
| 1909 |
|
|
|
| 1910 |
|
|
/* Dump dataflow info for df->blocks_to_analyze. */
|
| 1911 |
|
|
|
| 1912 |
|
|
void
|
| 1913 |
|
|
df_dump_region (FILE *file)
|
| 1914 |
|
|
{
|
| 1915 |
|
|
if (df->blocks_to_analyze)
|
| 1916 |
|
|
{
|
| 1917 |
|
|
bitmap_iterator bi;
|
| 1918 |
|
|
unsigned int bb_index;
|
| 1919 |
|
|
|
| 1920 |
|
|
fprintf (file, "\n\nstarting region dump\n");
|
| 1921 |
|
|
df_dump_start (file);
|
| 1922 |
|
|
|
| 1923 |
|
|
EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
|
| 1924 |
|
|
{
|
| 1925 |
|
|
basic_block bb = BASIC_BLOCK (bb_index);
|
| 1926 |
|
|
|
| 1927 |
|
|
df_print_bb_index (bb, file);
|
| 1928 |
|
|
df_dump_top (bb, file);
|
| 1929 |
|
|
df_dump_bottom (bb, file);
|
| 1930 |
|
|
}
|
| 1931 |
|
|
fprintf (file, "\n");
|
| 1932 |
|
|
}
|
| 1933 |
|
|
else
|
| 1934 |
|
|
df_dump (file);
|
| 1935 |
|
|
}
|
| 1936 |
|
|
|
| 1937 |
|
|
|
| 1938 |
|
|
/* Dump the introductory information for each problem defined. */
|
| 1939 |
|
|
|
| 1940 |
|
|
void
|
| 1941 |
|
|
df_dump_start (FILE *file)
|
| 1942 |
|
|
{
|
| 1943 |
|
|
int i;
|
| 1944 |
|
|
|
| 1945 |
|
|
if (!df || !file)
|
| 1946 |
|
|
return;
|
| 1947 |
|
|
|
| 1948 |
|
|
fprintf (file, "\n\n%s\n", current_function_name ());
|
| 1949 |
|
|
fprintf (file, "\nDataflow summary:\n");
|
| 1950 |
|
|
if (df->blocks_to_analyze)
|
| 1951 |
|
|
fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
|
| 1952 |
|
|
DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
|
| 1953 |
|
|
|
| 1954 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
| 1955 |
|
|
{
|
| 1956 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
| 1957 |
|
|
if (dflow->computed)
|
| 1958 |
|
|
{
|
| 1959 |
|
|
df_dump_problem_function fun = dflow->problem->dump_start_fun;
|
| 1960 |
|
|
if (fun)
|
| 1961 |
|
|
fun(file);
|
| 1962 |
|
|
}
|
| 1963 |
|
|
}
|
| 1964 |
|
|
}
|
| 1965 |
|
|
|
| 1966 |
|
|
|
| 1967 |
|
|
/* Dump the top of the block information for BB. */
|
| 1968 |
|
|
|
| 1969 |
|
|
void
|
| 1970 |
|
|
df_dump_top (basic_block bb, FILE *file)
|
| 1971 |
|
|
{
|
| 1972 |
|
|
int i;
|
| 1973 |
|
|
|
| 1974 |
|
|
if (!df || !file)
|
| 1975 |
|
|
return;
|
| 1976 |
|
|
|
| 1977 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
| 1978 |
|
|
{
|
| 1979 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
| 1980 |
|
|
if (dflow->computed)
|
| 1981 |
|
|
{
|
| 1982 |
|
|
df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
|
| 1983 |
|
|
if (bbfun)
|
| 1984 |
|
|
bbfun (bb, file);
|
| 1985 |
|
|
}
|
| 1986 |
|
|
}
|
| 1987 |
|
|
}
|
| 1988 |
|
|
|
| 1989 |
|
|
|
| 1990 |
|
|
/* Dump the bottom of the block information for BB. */
|
| 1991 |
|
|
|
| 1992 |
|
|
void
|
| 1993 |
|
|
df_dump_bottom (basic_block bb, FILE *file)
|
| 1994 |
|
|
{
|
| 1995 |
|
|
int i;
|
| 1996 |
|
|
|
| 1997 |
|
|
if (!df || !file)
|
| 1998 |
|
|
return;
|
| 1999 |
|
|
|
| 2000 |
|
|
for (i = 0; i < df->num_problems_defined; i++)
|
| 2001 |
|
|
{
|
| 2002 |
|
|
struct dataflow *dflow = df->problems_in_order[i];
|
| 2003 |
|
|
if (dflow->computed)
|
| 2004 |
|
|
{
|
| 2005 |
|
|
df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
|
| 2006 |
|
|
if (bbfun)
|
| 2007 |
|
|
bbfun (bb, file);
|
| 2008 |
|
|
}
|
| 2009 |
|
|
}
|
| 2010 |
|
|
}
|
| 2011 |
|
|
|
| 2012 |
|
|
|
| 2013 |
|
|
void
|
| 2014 |
|
|
df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
|
| 2015 |
|
|
{
|
| 2016 |
|
|
fprintf (file, "{ ");
|
| 2017 |
|
|
while (*ref_rec)
|
| 2018 |
|
|
{
|
| 2019 |
|
|
df_ref ref = *ref_rec;
|
| 2020 |
|
|
fprintf (file, "%c%d(%d)",
|
| 2021 |
|
|
DF_REF_REG_DEF_P (ref) ? 'd' : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
|
| 2022 |
|
|
DF_REF_ID (ref),
|
| 2023 |
|
|
DF_REF_REGNO (ref));
|
| 2024 |
|
|
if (follow_chain)
|
| 2025 |
|
|
df_chain_dump (DF_REF_CHAIN (ref), file);
|
| 2026 |
|
|
ref_rec++;
|
| 2027 |
|
|
}
|
| 2028 |
|
|
fprintf (file, "}");
|
| 2029 |
|
|
}
|
| 2030 |
|
|
|
| 2031 |
|
|
|
| 2032 |
|
|
/* Dump either a ref-def or reg-use chain. */
|
| 2033 |
|
|
|
| 2034 |
|
|
void
|
| 2035 |
|
|
df_regs_chain_dump (df_ref ref, FILE *file)
|
| 2036 |
|
|
{
|
| 2037 |
|
|
fprintf (file, "{ ");
|
| 2038 |
|
|
while (ref)
|
| 2039 |
|
|
{
|
| 2040 |
|
|
fprintf (file, "%c%d(%d) ",
|
| 2041 |
|
|
DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
|
| 2042 |
|
|
DF_REF_ID (ref),
|
| 2043 |
|
|
DF_REF_REGNO (ref));
|
| 2044 |
|
|
ref = DF_REF_NEXT_REG (ref);
|
| 2045 |
|
|
}
|
| 2046 |
|
|
fprintf (file, "}");
|
| 2047 |
|
|
}
|
| 2048 |
|
|
|
| 2049 |
|
|
|
| 2050 |
|
|
static void
|
| 2051 |
|
|
df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
|
| 2052 |
|
|
{
|
| 2053 |
|
|
while (*mws)
|
| 2054 |
|
|
{
|
| 2055 |
|
|
fprintf (file, "mw %c r[%d..%d]\n",
|
| 2056 |
|
|
(DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
|
| 2057 |
|
|
(*mws)->start_regno, (*mws)->end_regno);
|
| 2058 |
|
|
mws++;
|
| 2059 |
|
|
}
|
| 2060 |
|
|
}
|
| 2061 |
|
|
|
| 2062 |
|
|
|
| 2063 |
|
|
static void
|
| 2064 |
|
|
df_insn_uid_debug (unsigned int uid,
|
| 2065 |
|
|
bool follow_chain, FILE *file)
|
| 2066 |
|
|
{
|
| 2067 |
|
|
fprintf (file, "insn %d luid %d",
|
| 2068 |
|
|
uid, DF_INSN_UID_LUID (uid));
|
| 2069 |
|
|
|
| 2070 |
|
|
if (DF_INSN_UID_DEFS (uid))
|
| 2071 |
|
|
{
|
| 2072 |
|
|
fprintf (file, " defs ");
|
| 2073 |
|
|
df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
|
| 2074 |
|
|
}
|
| 2075 |
|
|
|
| 2076 |
|
|
if (DF_INSN_UID_USES (uid))
|
| 2077 |
|
|
{
|
| 2078 |
|
|
fprintf (file, " uses ");
|
| 2079 |
|
|
df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
|
| 2080 |
|
|
}
|
| 2081 |
|
|
|
| 2082 |
|
|
if (DF_INSN_UID_EQ_USES (uid))
|
| 2083 |
|
|
{
|
| 2084 |
|
|
fprintf (file, " eq uses ");
|
| 2085 |
|
|
df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
|
| 2086 |
|
|
}
|
| 2087 |
|
|
|
| 2088 |
|
|
if (DF_INSN_UID_MWS (uid))
|
| 2089 |
|
|
{
|
| 2090 |
|
|
fprintf (file, " mws ");
|
| 2091 |
|
|
df_mws_dump (DF_INSN_UID_MWS (uid), file);
|
| 2092 |
|
|
}
|
| 2093 |
|
|
fprintf (file, "\n");
|
| 2094 |
|
|
}
|
| 2095 |
|
|
|
| 2096 |
|
|
|
| 2097 |
|
|
void
|
| 2098 |
|
|
df_insn_debug (rtx insn, bool follow_chain, FILE *file)
|
| 2099 |
|
|
{
|
| 2100 |
|
|
df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
|
| 2101 |
|
|
}
|
| 2102 |
|
|
|
| 2103 |
|
|
void
|
| 2104 |
|
|
df_insn_debug_regno (rtx insn, FILE *file)
|
| 2105 |
|
|
{
|
| 2106 |
|
|
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
|
| 2107 |
|
|
|
| 2108 |
|
|
fprintf (file, "insn %d bb %d luid %d defs ",
|
| 2109 |
|
|
INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
|
| 2110 |
|
|
DF_INSN_INFO_LUID (insn_info));
|
| 2111 |
|
|
df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
|
| 2112 |
|
|
|
| 2113 |
|
|
fprintf (file, " uses ");
|
| 2114 |
|
|
df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
|
| 2115 |
|
|
|
| 2116 |
|
|
fprintf (file, " eq_uses ");
|
| 2117 |
|
|
df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
|
| 2118 |
|
|
fprintf (file, "\n");
|
| 2119 |
|
|
}
|
| 2120 |
|
|
|
| 2121 |
|
|
void
|
| 2122 |
|
|
df_regno_debug (unsigned int regno, FILE *file)
|
| 2123 |
|
|
{
|
| 2124 |
|
|
fprintf (file, "reg %d defs ", regno);
|
| 2125 |
|
|
df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
|
| 2126 |
|
|
fprintf (file, " uses ");
|
| 2127 |
|
|
df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
|
| 2128 |
|
|
fprintf (file, " eq_uses ");
|
| 2129 |
|
|
df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
|
| 2130 |
|
|
fprintf (file, "\n");
|
| 2131 |
|
|
}
|
| 2132 |
|
|
|
| 2133 |
|
|
|
| 2134 |
|
|
void
|
| 2135 |
|
|
df_ref_debug (df_ref ref, FILE *file)
|
| 2136 |
|
|
{
|
| 2137 |
|
|
fprintf (file, "%c%d ",
|
| 2138 |
|
|
DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
|
| 2139 |
|
|
DF_REF_ID (ref));
|
| 2140 |
|
|
fprintf (file, "reg %d bb %d insn %d flag 0x%x type 0x%x ",
|
| 2141 |
|
|
DF_REF_REGNO (ref),
|
| 2142 |
|
|
DF_REF_BBNO (ref),
|
| 2143 |
|
|
DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
|
| 2144 |
|
|
DF_REF_FLAGS (ref),
|
| 2145 |
|
|
DF_REF_TYPE (ref));
|
| 2146 |
|
|
if (DF_REF_LOC (ref))
|
| 2147 |
|
|
{
|
| 2148 |
|
|
if (flag_dump_noaddr)
|
| 2149 |
|
|
fprintf (file, "loc #(#) chain ");
|
| 2150 |
|
|
else
|
| 2151 |
|
|
fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
|
| 2152 |
|
|
(void *)*DF_REF_LOC (ref));
|
| 2153 |
|
|
}
|
| 2154 |
|
|
else
|
| 2155 |
|
|
fprintf (file, "chain ");
|
| 2156 |
|
|
df_chain_dump (DF_REF_CHAIN (ref), file);
|
| 2157 |
|
|
fprintf (file, "\n");
|
| 2158 |
|
|
}
|
| 2159 |
|
|
|
| 2160 |
|
|
/* Functions for debugging from GDB. */
|
| 2161 |
|
|
|
| 2162 |
|
|
void
|
| 2163 |
|
|
debug_df_insn (rtx insn)
|
| 2164 |
|
|
{
|
| 2165 |
|
|
df_insn_debug (insn, true, stderr);
|
| 2166 |
|
|
debug_rtx (insn);
|
| 2167 |
|
|
}
|
| 2168 |
|
|
|
| 2169 |
|
|
|
| 2170 |
|
|
void
|
| 2171 |
|
|
debug_df_reg (rtx reg)
|
| 2172 |
|
|
{
|
| 2173 |
|
|
df_regno_debug (REGNO (reg), stderr);
|
| 2174 |
|
|
}
|
| 2175 |
|
|
|
| 2176 |
|
|
|
| 2177 |
|
|
void
|
| 2178 |
|
|
debug_df_regno (unsigned int regno)
|
| 2179 |
|
|
{
|
| 2180 |
|
|
df_regno_debug (regno, stderr);
|
| 2181 |
|
|
}
|
| 2182 |
|
|
|
| 2183 |
|
|
|
| 2184 |
|
|
void
|
| 2185 |
|
|
debug_df_ref (df_ref ref)
|
| 2186 |
|
|
{
|
| 2187 |
|
|
df_ref_debug (ref, stderr);
|
| 2188 |
|
|
}
|
| 2189 |
|
|
|
| 2190 |
|
|
|
| 2191 |
|
|
void
|
| 2192 |
|
|
debug_df_defno (unsigned int defno)
|
| 2193 |
|
|
{
|
| 2194 |
|
|
df_ref_debug (DF_DEFS_GET (defno), stderr);
|
| 2195 |
|
|
}
|
| 2196 |
|
|
|
| 2197 |
|
|
|
| 2198 |
|
|
void
|
| 2199 |
|
|
debug_df_useno (unsigned int defno)
|
| 2200 |
|
|
{
|
| 2201 |
|
|
df_ref_debug (DF_USES_GET (defno), stderr);
|
| 2202 |
|
|
}
|
| 2203 |
|
|
|
| 2204 |
|
|
|
| 2205 |
|
|
void
|
| 2206 |
|
|
debug_df_chain (struct df_link *link)
|
| 2207 |
|
|
{
|
| 2208 |
|
|
df_chain_dump (link, stderr);
|
| 2209 |
|
|
fputc ('\n', stderr);
|
| 2210 |
|
|
}
|