1 |
280 |
jeremybenn |
/* Calculate (post)dominators in slightly super-linear time.
|
2 |
|
|
Copyright (C) 2000, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Michael Matz (matz@ifh.de).
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
9 |
|
|
under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
14 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
15 |
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
|
16 |
|
|
License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* This file implements the well known algorithm from Lengauer and Tarjan
|
23 |
|
|
to compute the dominators in a control flow graph. A basic block D is said
|
24 |
|
|
to dominate another block X, when all paths from the entry node of the CFG
|
25 |
|
|
to X go also over D. The dominance relation is a transitive reflexive
|
26 |
|
|
relation and its minimal transitive reduction is a tree, called the
|
27 |
|
|
dominator tree. So for each block X besides the entry block exists a
|
28 |
|
|
block I(X), called the immediate dominator of X, which is the parent of X
|
29 |
|
|
in the dominator tree.
|
30 |
|
|
|
31 |
|
|
The algorithm computes this dominator tree implicitly by computing for
|
32 |
|
|
each block its immediate dominator. We use tree balancing and path
|
33 |
|
|
compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
|
34 |
|
|
slowly growing functional inverse of the Ackerman function. */
|
35 |
|
|
|
36 |
|
|
#include "config.h"
|
37 |
|
|
#include "system.h"
|
38 |
|
|
#include "coretypes.h"
|
39 |
|
|
#include "tm.h"
|
40 |
|
|
#include "rtl.h"
|
41 |
|
|
#include "hard-reg-set.h"
|
42 |
|
|
#include "obstack.h"
|
43 |
|
|
#include "basic-block.h"
|
44 |
|
|
#include "toplev.h"
|
45 |
|
|
#include "et-forest.h"
|
46 |
|
|
#include "timevar.h"
|
47 |
|
|
#include "vecprim.h"
|
48 |
|
|
#include "pointer-set.h"
|
49 |
|
|
#include "graphds.h"
|
50 |
|
|
|
51 |
|
|
/* We name our nodes with integers, beginning with 1. Zero is reserved for
|
52 |
|
|
'undefined' or 'end of list'. The name of each node is given by the dfs
|
53 |
|
|
number of the corresponding basic block. Please note, that we include the
|
54 |
|
|
artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
|
55 |
|
|
support multiple entry points. Its dfs number is of course 1. */
|
56 |
|
|
|
57 |
|
|
/* Type of Basic Block aka. TBB */
|
58 |
|
|
typedef unsigned int TBB;
|
59 |
|
|
|
60 |
|
|
/* We work in a poor-mans object oriented fashion, and carry an instance of
|
61 |
|
|
this structure through all our 'methods'. It holds various arrays
|
62 |
|
|
reflecting the (sub)structure of the flowgraph. Most of them are of type
|
63 |
|
|
TBB and are also indexed by TBB. */
|
64 |
|
|
|
65 |
|
|
struct dom_info
|
66 |
|
|
{
|
67 |
|
|
/* The parent of a node in the DFS tree. */
|
68 |
|
|
TBB *dfs_parent;
|
69 |
|
|
/* For a node x key[x] is roughly the node nearest to the root from which
|
70 |
|
|
exists a way to x only over nodes behind x. Such a node is also called
|
71 |
|
|
semidominator. */
|
72 |
|
|
TBB *key;
|
73 |
|
|
/* The value in path_min[x] is the node y on the path from x to the root of
|
74 |
|
|
the tree x is in with the smallest key[y]. */
|
75 |
|
|
TBB *path_min;
|
76 |
|
|
/* bucket[x] points to the first node of the set of nodes having x as key. */
|
77 |
|
|
TBB *bucket;
|
78 |
|
|
/* And next_bucket[x] points to the next node. */
|
79 |
|
|
TBB *next_bucket;
|
80 |
|
|
/* After the algorithm is done, dom[x] contains the immediate dominator
|
81 |
|
|
of x. */
|
82 |
|
|
TBB *dom;
|
83 |
|
|
|
84 |
|
|
/* The following few fields implement the structures needed for disjoint
|
85 |
|
|
sets. */
|
86 |
|
|
/* set_chain[x] is the next node on the path from x to the representative
|
87 |
|
|
of the set containing x. If set_chain[x]==0 then x is a root. */
|
88 |
|
|
TBB *set_chain;
|
89 |
|
|
/* set_size[x] is the number of elements in the set named by x. */
|
90 |
|
|
unsigned int *set_size;
|
91 |
|
|
/* set_child[x] is used for balancing the tree representing a set. It can
|
92 |
|
|
be understood as the next sibling of x. */
|
93 |
|
|
TBB *set_child;
|
94 |
|
|
|
95 |
|
|
/* If b is the number of a basic block (BB->index), dfs_order[b] is the
|
96 |
|
|
number of that node in DFS order counted from 1. This is an index
|
97 |
|
|
into most of the other arrays in this structure. */
|
98 |
|
|
TBB *dfs_order;
|
99 |
|
|
/* If x is the DFS-index of a node which corresponds with a basic block,
|
100 |
|
|
dfs_to_bb[x] is that basic block. Note, that in our structure there are
|
101 |
|
|
more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
|
102 |
|
|
is true for every basic block bb, but not the opposite. */
|
103 |
|
|
basic_block *dfs_to_bb;
|
104 |
|
|
|
105 |
|
|
/* This is the next free DFS number when creating the DFS tree. */
|
106 |
|
|
unsigned int dfsnum;
|
107 |
|
|
/* The number of nodes in the DFS tree (==dfsnum-1). */
|
108 |
|
|
unsigned int nodes;
|
109 |
|
|
|
110 |
|
|
/* Blocks with bits set here have a fake edge to EXIT. These are used
|
111 |
|
|
to turn a DFS forest into a proper tree. */
|
112 |
|
|
bitmap fake_exit_edge;
|
113 |
|
|
};
|
114 |
|
|
|
115 |
|
|
static void init_dom_info (struct dom_info *, enum cdi_direction);
|
116 |
|
|
static void free_dom_info (struct dom_info *);
|
117 |
|
|
static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
|
118 |
|
|
static void calc_dfs_tree (struct dom_info *, bool);
|
119 |
|
|
static void compress (struct dom_info *, TBB);
|
120 |
|
|
static TBB eval (struct dom_info *, TBB);
|
121 |
|
|
static void link_roots (struct dom_info *, TBB, TBB);
|
122 |
|
|
static void calc_idoms (struct dom_info *, bool);
|
123 |
|
|
void debug_dominance_info (enum cdi_direction);
|
124 |
|
|
void debug_dominance_tree (enum cdi_direction, basic_block);
|
125 |
|
|
|
126 |
|
|
/* Helper macro for allocating and initializing an array,
|
127 |
|
|
for aesthetic reasons. */
|
128 |
|
|
#define init_ar(var, type, num, content) \
|
129 |
|
|
do \
|
130 |
|
|
{ \
|
131 |
|
|
unsigned int i = 1; /* Catch content == i. */ \
|
132 |
|
|
if (! (content)) \
|
133 |
|
|
(var) = XCNEWVEC (type, num); \
|
134 |
|
|
else \
|
135 |
|
|
{ \
|
136 |
|
|
(var) = XNEWVEC (type, (num)); \
|
137 |
|
|
for (i = 0; i < num; i++) \
|
138 |
|
|
(var)[i] = (content); \
|
139 |
|
|
} \
|
140 |
|
|
} \
|
141 |
|
|
while (0)
|
142 |
|
|
|
143 |
|
|
/* Allocate all needed memory in a pessimistic fashion (so we round up).
|
144 |
|
|
This initializes the contents of DI, which already must be allocated. */
|
145 |
|
|
|
146 |
|
|
static void
|
147 |
|
|
init_dom_info (struct dom_info *di, enum cdi_direction dir)
|
148 |
|
|
{
|
149 |
|
|
/* We need memory for n_basic_blocks nodes. */
|
150 |
|
|
unsigned int num = n_basic_blocks;
|
151 |
|
|
init_ar (di->dfs_parent, TBB, num, 0);
|
152 |
|
|
init_ar (di->path_min, TBB, num, i);
|
153 |
|
|
init_ar (di->key, TBB, num, i);
|
154 |
|
|
init_ar (di->dom, TBB, num, 0);
|
155 |
|
|
|
156 |
|
|
init_ar (di->bucket, TBB, num, 0);
|
157 |
|
|
init_ar (di->next_bucket, TBB, num, 0);
|
158 |
|
|
|
159 |
|
|
init_ar (di->set_chain, TBB, num, 0);
|
160 |
|
|
init_ar (di->set_size, unsigned int, num, 1);
|
161 |
|
|
init_ar (di->set_child, TBB, num, 0);
|
162 |
|
|
|
163 |
|
|
init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
|
164 |
|
|
init_ar (di->dfs_to_bb, basic_block, num, 0);
|
165 |
|
|
|
166 |
|
|
di->dfsnum = 1;
|
167 |
|
|
di->nodes = 0;
|
168 |
|
|
|
169 |
|
|
switch (dir)
|
170 |
|
|
{
|
171 |
|
|
case CDI_DOMINATORS:
|
172 |
|
|
di->fake_exit_edge = NULL;
|
173 |
|
|
break;
|
174 |
|
|
case CDI_POST_DOMINATORS:
|
175 |
|
|
di->fake_exit_edge = BITMAP_ALLOC (NULL);
|
176 |
|
|
break;
|
177 |
|
|
default:
|
178 |
|
|
gcc_unreachable ();
|
179 |
|
|
break;
|
180 |
|
|
}
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
#undef init_ar
|
184 |
|
|
|
185 |
|
|
/* Map dominance calculation type to array index used for various
|
186 |
|
|
dominance information arrays. This version is simple -- it will need
|
187 |
|
|
to be modified, obviously, if additional values are added to
|
188 |
|
|
cdi_direction. */
|
189 |
|
|
|
190 |
|
|
static unsigned int
|
191 |
|
|
dom_convert_dir_to_idx (enum cdi_direction dir)
|
192 |
|
|
{
|
193 |
|
|
gcc_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
|
194 |
|
|
return dir - 1;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/* Free all allocated memory in DI, but not DI itself. */
|
198 |
|
|
|
199 |
|
|
static void
|
200 |
|
|
free_dom_info (struct dom_info *di)
|
201 |
|
|
{
|
202 |
|
|
free (di->dfs_parent);
|
203 |
|
|
free (di->path_min);
|
204 |
|
|
free (di->key);
|
205 |
|
|
free (di->dom);
|
206 |
|
|
free (di->bucket);
|
207 |
|
|
free (di->next_bucket);
|
208 |
|
|
free (di->set_chain);
|
209 |
|
|
free (di->set_size);
|
210 |
|
|
free (di->set_child);
|
211 |
|
|
free (di->dfs_order);
|
212 |
|
|
free (di->dfs_to_bb);
|
213 |
|
|
BITMAP_FREE (di->fake_exit_edge);
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
/* The nonrecursive variant of creating a DFS tree. DI is our working
|
217 |
|
|
structure, BB the starting basic block for this tree and REVERSE
|
218 |
|
|
is true, if predecessors should be visited instead of successors of a
|
219 |
|
|
node. After this is done all nodes reachable from BB were visited, have
|
220 |
|
|
assigned their dfs number and are linked together to form a tree. */
|
221 |
|
|
|
222 |
|
|
static void
|
223 |
|
|
calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
|
224 |
|
|
{
|
225 |
|
|
/* We call this _only_ if bb is not already visited. */
|
226 |
|
|
edge e;
|
227 |
|
|
TBB child_i, my_i = 0;
|
228 |
|
|
edge_iterator *stack;
|
229 |
|
|
edge_iterator ei, einext;
|
230 |
|
|
int sp;
|
231 |
|
|
/* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
|
232 |
|
|
problem). */
|
233 |
|
|
basic_block en_block;
|
234 |
|
|
/* Ending block. */
|
235 |
|
|
basic_block ex_block;
|
236 |
|
|
|
237 |
|
|
stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
|
238 |
|
|
sp = 0;
|
239 |
|
|
|
240 |
|
|
/* Initialize our border blocks, and the first edge. */
|
241 |
|
|
if (reverse)
|
242 |
|
|
{
|
243 |
|
|
ei = ei_start (bb->preds);
|
244 |
|
|
en_block = EXIT_BLOCK_PTR;
|
245 |
|
|
ex_block = ENTRY_BLOCK_PTR;
|
246 |
|
|
}
|
247 |
|
|
else
|
248 |
|
|
{
|
249 |
|
|
ei = ei_start (bb->succs);
|
250 |
|
|
en_block = ENTRY_BLOCK_PTR;
|
251 |
|
|
ex_block = EXIT_BLOCK_PTR;
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
/* When the stack is empty we break out of this loop. */
|
255 |
|
|
while (1)
|
256 |
|
|
{
|
257 |
|
|
basic_block bn;
|
258 |
|
|
|
259 |
|
|
/* This loop traverses edges e in depth first manner, and fills the
|
260 |
|
|
stack. */
|
261 |
|
|
while (!ei_end_p (ei))
|
262 |
|
|
{
|
263 |
|
|
e = ei_edge (ei);
|
264 |
|
|
|
265 |
|
|
/* Deduce from E the current and the next block (BB and BN), and the
|
266 |
|
|
next edge. */
|
267 |
|
|
if (reverse)
|
268 |
|
|
{
|
269 |
|
|
bn = e->src;
|
270 |
|
|
|
271 |
|
|
/* If the next node BN is either already visited or a border
|
272 |
|
|
block the current edge is useless, and simply overwritten
|
273 |
|
|
with the next edge out of the current node. */
|
274 |
|
|
if (bn == ex_block || di->dfs_order[bn->index])
|
275 |
|
|
{
|
276 |
|
|
ei_next (&ei);
|
277 |
|
|
continue;
|
278 |
|
|
}
|
279 |
|
|
bb = e->dest;
|
280 |
|
|
einext = ei_start (bn->preds);
|
281 |
|
|
}
|
282 |
|
|
else
|
283 |
|
|
{
|
284 |
|
|
bn = e->dest;
|
285 |
|
|
if (bn == ex_block || di->dfs_order[bn->index])
|
286 |
|
|
{
|
287 |
|
|
ei_next (&ei);
|
288 |
|
|
continue;
|
289 |
|
|
}
|
290 |
|
|
bb = e->src;
|
291 |
|
|
einext = ei_start (bn->succs);
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
gcc_assert (bn != en_block);
|
295 |
|
|
|
296 |
|
|
/* Fill the DFS tree info calculatable _before_ recursing. */
|
297 |
|
|
if (bb != en_block)
|
298 |
|
|
my_i = di->dfs_order[bb->index];
|
299 |
|
|
else
|
300 |
|
|
my_i = di->dfs_order[last_basic_block];
|
301 |
|
|
child_i = di->dfs_order[bn->index] = di->dfsnum++;
|
302 |
|
|
di->dfs_to_bb[child_i] = bn;
|
303 |
|
|
di->dfs_parent[child_i] = my_i;
|
304 |
|
|
|
305 |
|
|
/* Save the current point in the CFG on the stack, and recurse. */
|
306 |
|
|
stack[sp++] = ei;
|
307 |
|
|
ei = einext;
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
if (!sp)
|
311 |
|
|
break;
|
312 |
|
|
ei = stack[--sp];
|
313 |
|
|
|
314 |
|
|
/* OK. The edge-list was exhausted, meaning normally we would
|
315 |
|
|
end the recursion. After returning from the recursive call,
|
316 |
|
|
there were (may be) other statements which were run after a
|
317 |
|
|
child node was completely considered by DFS. Here is the
|
318 |
|
|
point to do it in the non-recursive variant.
|
319 |
|
|
E.g. The block just completed is in e->dest for forward DFS,
|
320 |
|
|
the block not yet completed (the parent of the one above)
|
321 |
|
|
in e->src. This could be used e.g. for computing the number of
|
322 |
|
|
descendants or the tree depth. */
|
323 |
|
|
ei_next (&ei);
|
324 |
|
|
}
|
325 |
|
|
free (stack);
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
/* The main entry for calculating the DFS tree or forest. DI is our working
|
329 |
|
|
structure and REVERSE is true, if we are interested in the reverse flow
|
330 |
|
|
graph. In that case the result is not necessarily a tree but a forest,
|
331 |
|
|
because there may be nodes from which the EXIT_BLOCK is unreachable. */
|
332 |
|
|
|
333 |
|
|
static void
|
334 |
|
|
calc_dfs_tree (struct dom_info *di, bool reverse)
|
335 |
|
|
{
|
336 |
|
|
/* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
|
337 |
|
|
basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
|
338 |
|
|
di->dfs_order[last_basic_block] = di->dfsnum;
|
339 |
|
|
di->dfs_to_bb[di->dfsnum] = begin;
|
340 |
|
|
di->dfsnum++;
|
341 |
|
|
|
342 |
|
|
calc_dfs_tree_nonrec (di, begin, reverse);
|
343 |
|
|
|
344 |
|
|
if (reverse)
|
345 |
|
|
{
|
346 |
|
|
/* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
|
347 |
|
|
They are reverse-unreachable. In the dom-case we disallow such
|
348 |
|
|
nodes, but in post-dom we have to deal with them.
|
349 |
|
|
|
350 |
|
|
There are two situations in which this occurs. First, noreturn
|
351 |
|
|
functions. Second, infinite loops. In the first case we need to
|
352 |
|
|
pretend that there is an edge to the exit block. In the second
|
353 |
|
|
case, we wind up with a forest. We need to process all noreturn
|
354 |
|
|
blocks before we know if we've got any infinite loops. */
|
355 |
|
|
|
356 |
|
|
basic_block b;
|
357 |
|
|
bool saw_unconnected = false;
|
358 |
|
|
|
359 |
|
|
FOR_EACH_BB_REVERSE (b)
|
360 |
|
|
{
|
361 |
|
|
if (EDGE_COUNT (b->succs) > 0)
|
362 |
|
|
{
|
363 |
|
|
if (di->dfs_order[b->index] == 0)
|
364 |
|
|
saw_unconnected = true;
|
365 |
|
|
continue;
|
366 |
|
|
}
|
367 |
|
|
bitmap_set_bit (di->fake_exit_edge, b->index);
|
368 |
|
|
di->dfs_order[b->index] = di->dfsnum;
|
369 |
|
|
di->dfs_to_bb[di->dfsnum] = b;
|
370 |
|
|
di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
|
371 |
|
|
di->dfsnum++;
|
372 |
|
|
calc_dfs_tree_nonrec (di, b, reverse);
|
373 |
|
|
}
|
374 |
|
|
|
375 |
|
|
if (saw_unconnected)
|
376 |
|
|
{
|
377 |
|
|
FOR_EACH_BB_REVERSE (b)
|
378 |
|
|
{
|
379 |
|
|
if (di->dfs_order[b->index])
|
380 |
|
|
continue;
|
381 |
|
|
bitmap_set_bit (di->fake_exit_edge, b->index);
|
382 |
|
|
di->dfs_order[b->index] = di->dfsnum;
|
383 |
|
|
di->dfs_to_bb[di->dfsnum] = b;
|
384 |
|
|
di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
|
385 |
|
|
di->dfsnum++;
|
386 |
|
|
calc_dfs_tree_nonrec (di, b, reverse);
|
387 |
|
|
}
|
388 |
|
|
}
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
di->nodes = di->dfsnum - 1;
|
392 |
|
|
|
393 |
|
|
/* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
|
394 |
|
|
gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
|
395 |
|
|
}
|
396 |
|
|
|
397 |
|
|
/* Compress the path from V to the root of its set and update path_min at the
|
398 |
|
|
same time. After compress(di, V) set_chain[V] is the root of the set V is
|
399 |
|
|
in and path_min[V] is the node with the smallest key[] value on the path
|
400 |
|
|
from V to that root. */
|
401 |
|
|
|
402 |
|
|
static void
|
403 |
|
|
compress (struct dom_info *di, TBB v)
|
404 |
|
|
{
|
405 |
|
|
/* Btw. It's not worth to unrecurse compress() as the depth is usually not
|
406 |
|
|
greater than 5 even for huge graphs (I've not seen call depth > 4).
|
407 |
|
|
Also performance wise compress() ranges _far_ behind eval(). */
|
408 |
|
|
TBB parent = di->set_chain[v];
|
409 |
|
|
if (di->set_chain[parent])
|
410 |
|
|
{
|
411 |
|
|
compress (di, parent);
|
412 |
|
|
if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
|
413 |
|
|
di->path_min[v] = di->path_min[parent];
|
414 |
|
|
di->set_chain[v] = di->set_chain[parent];
|
415 |
|
|
}
|
416 |
|
|
}
|
417 |
|
|
|
418 |
|
|
/* Compress the path from V to the set root of V if needed (when the root has
|
419 |
|
|
changed since the last call). Returns the node with the smallest key[]
|
420 |
|
|
value on the path from V to the root. */
|
421 |
|
|
|
422 |
|
|
static inline TBB
|
423 |
|
|
eval (struct dom_info *di, TBB v)
|
424 |
|
|
{
|
425 |
|
|
/* The representative of the set V is in, also called root (as the set
|
426 |
|
|
representation is a tree). */
|
427 |
|
|
TBB rep = di->set_chain[v];
|
428 |
|
|
|
429 |
|
|
/* V itself is the root. */
|
430 |
|
|
if (!rep)
|
431 |
|
|
return di->path_min[v];
|
432 |
|
|
|
433 |
|
|
/* Compress only if necessary. */
|
434 |
|
|
if (di->set_chain[rep])
|
435 |
|
|
{
|
436 |
|
|
compress (di, v);
|
437 |
|
|
rep = di->set_chain[v];
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
|
441 |
|
|
return di->path_min[v];
|
442 |
|
|
else
|
443 |
|
|
return di->path_min[rep];
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
/* This essentially merges the two sets of V and W, giving a single set with
|
447 |
|
|
the new root V. The internal representation of these disjoint sets is a
|
448 |
|
|
balanced tree. Currently link(V,W) is only used with V being the parent
|
449 |
|
|
of W. */
|
450 |
|
|
|
451 |
|
|
static void
|
452 |
|
|
link_roots (struct dom_info *di, TBB v, TBB w)
|
453 |
|
|
{
|
454 |
|
|
TBB s = w;
|
455 |
|
|
|
456 |
|
|
/* Rebalance the tree. */
|
457 |
|
|
while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
|
458 |
|
|
{
|
459 |
|
|
if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
|
460 |
|
|
>= 2 * di->set_size[di->set_child[s]])
|
461 |
|
|
{
|
462 |
|
|
di->set_chain[di->set_child[s]] = s;
|
463 |
|
|
di->set_child[s] = di->set_child[di->set_child[s]];
|
464 |
|
|
}
|
465 |
|
|
else
|
466 |
|
|
{
|
467 |
|
|
di->set_size[di->set_child[s]] = di->set_size[s];
|
468 |
|
|
s = di->set_chain[s] = di->set_child[s];
|
469 |
|
|
}
|
470 |
|
|
}
|
471 |
|
|
|
472 |
|
|
di->path_min[s] = di->path_min[w];
|
473 |
|
|
di->set_size[v] += di->set_size[w];
|
474 |
|
|
if (di->set_size[v] < 2 * di->set_size[w])
|
475 |
|
|
{
|
476 |
|
|
TBB tmp = s;
|
477 |
|
|
s = di->set_child[v];
|
478 |
|
|
di->set_child[v] = tmp;
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
/* Merge all subtrees. */
|
482 |
|
|
while (s)
|
483 |
|
|
{
|
484 |
|
|
di->set_chain[s] = v;
|
485 |
|
|
s = di->set_child[s];
|
486 |
|
|
}
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
/* This calculates the immediate dominators (or post-dominators if REVERSE is
|
490 |
|
|
true). DI is our working structure and should hold the DFS forest.
|
491 |
|
|
On return the immediate dominator to node V is in di->dom[V]. */
|
492 |
|
|
|
493 |
|
|
static void
|
494 |
|
|
calc_idoms (struct dom_info *di, bool reverse)
|
495 |
|
|
{
|
496 |
|
|
TBB v, w, k, par;
|
497 |
|
|
basic_block en_block;
|
498 |
|
|
edge_iterator ei, einext;
|
499 |
|
|
|
500 |
|
|
if (reverse)
|
501 |
|
|
en_block = EXIT_BLOCK_PTR;
|
502 |
|
|
else
|
503 |
|
|
en_block = ENTRY_BLOCK_PTR;
|
504 |
|
|
|
505 |
|
|
/* Go backwards in DFS order, to first look at the leafs. */
|
506 |
|
|
v = di->nodes;
|
507 |
|
|
while (v > 1)
|
508 |
|
|
{
|
509 |
|
|
basic_block bb = di->dfs_to_bb[v];
|
510 |
|
|
edge e;
|
511 |
|
|
|
512 |
|
|
par = di->dfs_parent[v];
|
513 |
|
|
k = v;
|
514 |
|
|
|
515 |
|
|
ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
|
516 |
|
|
|
517 |
|
|
if (reverse)
|
518 |
|
|
{
|
519 |
|
|
/* If this block has a fake edge to exit, process that first. */
|
520 |
|
|
if (bitmap_bit_p (di->fake_exit_edge, bb->index))
|
521 |
|
|
{
|
522 |
|
|
einext = ei;
|
523 |
|
|
einext.index = 0;
|
524 |
|
|
goto do_fake_exit_edge;
|
525 |
|
|
}
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
/* Search all direct predecessors for the smallest node with a path
|
529 |
|
|
to them. That way we have the smallest node with also a path to
|
530 |
|
|
us only over nodes behind us. In effect we search for our
|
531 |
|
|
semidominator. */
|
532 |
|
|
while (!ei_end_p (ei))
|
533 |
|
|
{
|
534 |
|
|
TBB k1;
|
535 |
|
|
basic_block b;
|
536 |
|
|
|
537 |
|
|
e = ei_edge (ei);
|
538 |
|
|
b = (reverse) ? e->dest : e->src;
|
539 |
|
|
einext = ei;
|
540 |
|
|
ei_next (&einext);
|
541 |
|
|
|
542 |
|
|
if (b == en_block)
|
543 |
|
|
{
|
544 |
|
|
do_fake_exit_edge:
|
545 |
|
|
k1 = di->dfs_order[last_basic_block];
|
546 |
|
|
}
|
547 |
|
|
else
|
548 |
|
|
k1 = di->dfs_order[b->index];
|
549 |
|
|
|
550 |
|
|
/* Call eval() only if really needed. If k1 is above V in DFS tree,
|
551 |
|
|
then we know, that eval(k1) == k1 and key[k1] == k1. */
|
552 |
|
|
if (k1 > v)
|
553 |
|
|
k1 = di->key[eval (di, k1)];
|
554 |
|
|
if (k1 < k)
|
555 |
|
|
k = k1;
|
556 |
|
|
|
557 |
|
|
ei = einext;
|
558 |
|
|
}
|
559 |
|
|
|
560 |
|
|
di->key[v] = k;
|
561 |
|
|
link_roots (di, par, v);
|
562 |
|
|
di->next_bucket[v] = di->bucket[k];
|
563 |
|
|
di->bucket[k] = v;
|
564 |
|
|
|
565 |
|
|
/* Transform semidominators into dominators. */
|
566 |
|
|
for (w = di->bucket[par]; w; w = di->next_bucket[w])
|
567 |
|
|
{
|
568 |
|
|
k = eval (di, w);
|
569 |
|
|
if (di->key[k] < di->key[w])
|
570 |
|
|
di->dom[w] = k;
|
571 |
|
|
else
|
572 |
|
|
di->dom[w] = par;
|
573 |
|
|
}
|
574 |
|
|
/* We don't need to cleanup next_bucket[]. */
|
575 |
|
|
di->bucket[par] = 0;
|
576 |
|
|
v--;
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
/* Explicitly define the dominators. */
|
580 |
|
|
di->dom[1] = 0;
|
581 |
|
|
for (v = 2; v <= di->nodes; v++)
|
582 |
|
|
if (di->dom[v] != di->key[v])
|
583 |
|
|
di->dom[v] = di->dom[di->dom[v]];
|
584 |
|
|
}
|
585 |
|
|
|
586 |
|
|
/* Assign dfs numbers starting from NUM to NODE and its sons. */
|
587 |
|
|
|
588 |
|
|
static void
|
589 |
|
|
assign_dfs_numbers (struct et_node *node, int *num)
|
590 |
|
|
{
|
591 |
|
|
struct et_node *son;
|
592 |
|
|
|
593 |
|
|
node->dfs_num_in = (*num)++;
|
594 |
|
|
|
595 |
|
|
if (node->son)
|
596 |
|
|
{
|
597 |
|
|
assign_dfs_numbers (node->son, num);
|
598 |
|
|
for (son = node->son->right; son != node->son; son = son->right)
|
599 |
|
|
assign_dfs_numbers (son, num);
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
node->dfs_num_out = (*num)++;
|
603 |
|
|
}
|
604 |
|
|
|
605 |
|
|
/* Compute the data necessary for fast resolving of dominator queries in a
|
606 |
|
|
static dominator tree. */
|
607 |
|
|
|
608 |
|
|
static void
|
609 |
|
|
compute_dom_fast_query (enum cdi_direction dir)
|
610 |
|
|
{
|
611 |
|
|
int num = 0;
|
612 |
|
|
basic_block bb;
|
613 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
614 |
|
|
|
615 |
|
|
gcc_assert (dom_info_available_p (dir));
|
616 |
|
|
|
617 |
|
|
if (dom_computed[dir_index] == DOM_OK)
|
618 |
|
|
return;
|
619 |
|
|
|
620 |
|
|
FOR_ALL_BB (bb)
|
621 |
|
|
{
|
622 |
|
|
if (!bb->dom[dir_index]->father)
|
623 |
|
|
assign_dfs_numbers (bb->dom[dir_index], &num);
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
dom_computed[dir_index] = DOM_OK;
|
627 |
|
|
}
|
628 |
|
|
|
629 |
|
|
/* The main entry point into this module. DIR is set depending on whether
|
630 |
|
|
we want to compute dominators or postdominators. */
|
631 |
|
|
|
632 |
|
|
void
|
633 |
|
|
calculate_dominance_info (enum cdi_direction dir)
|
634 |
|
|
{
|
635 |
|
|
struct dom_info di;
|
636 |
|
|
basic_block b;
|
637 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
638 |
|
|
bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
|
639 |
|
|
|
640 |
|
|
if (dom_computed[dir_index] == DOM_OK)
|
641 |
|
|
return;
|
642 |
|
|
|
643 |
|
|
timevar_push (TV_DOMINANCE);
|
644 |
|
|
if (!dom_info_available_p (dir))
|
645 |
|
|
{
|
646 |
|
|
gcc_assert (!n_bbs_in_dom_tree[dir_index]);
|
647 |
|
|
|
648 |
|
|
FOR_ALL_BB (b)
|
649 |
|
|
{
|
650 |
|
|
b->dom[dir_index] = et_new_tree (b);
|
651 |
|
|
}
|
652 |
|
|
n_bbs_in_dom_tree[dir_index] = n_basic_blocks;
|
653 |
|
|
|
654 |
|
|
init_dom_info (&di, dir);
|
655 |
|
|
calc_dfs_tree (&di, reverse);
|
656 |
|
|
calc_idoms (&di, reverse);
|
657 |
|
|
|
658 |
|
|
FOR_EACH_BB (b)
|
659 |
|
|
{
|
660 |
|
|
TBB d = di.dom[di.dfs_order[b->index]];
|
661 |
|
|
|
662 |
|
|
if (di.dfs_to_bb[d])
|
663 |
|
|
et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
|
664 |
|
|
}
|
665 |
|
|
|
666 |
|
|
free_dom_info (&di);
|
667 |
|
|
dom_computed[dir_index] = DOM_NO_FAST_QUERY;
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
compute_dom_fast_query (dir);
|
671 |
|
|
|
672 |
|
|
timevar_pop (TV_DOMINANCE);
|
673 |
|
|
}
|
674 |
|
|
|
675 |
|
|
/* Free dominance information for direction DIR. */
|
676 |
|
|
void
|
677 |
|
|
free_dominance_info (enum cdi_direction dir)
|
678 |
|
|
{
|
679 |
|
|
basic_block bb;
|
680 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
681 |
|
|
|
682 |
|
|
if (!dom_info_available_p (dir))
|
683 |
|
|
return;
|
684 |
|
|
|
685 |
|
|
FOR_ALL_BB (bb)
|
686 |
|
|
{
|
687 |
|
|
et_free_tree_force (bb->dom[dir_index]);
|
688 |
|
|
bb->dom[dir_index] = NULL;
|
689 |
|
|
}
|
690 |
|
|
et_free_pools ();
|
691 |
|
|
|
692 |
|
|
n_bbs_in_dom_tree[dir_index] = 0;
|
693 |
|
|
|
694 |
|
|
dom_computed[dir_index] = DOM_NONE;
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
/* Return the immediate dominator of basic block BB. */
|
698 |
|
|
basic_block
|
699 |
|
|
get_immediate_dominator (enum cdi_direction dir, basic_block bb)
|
700 |
|
|
{
|
701 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
702 |
|
|
struct et_node *node = bb->dom[dir_index];
|
703 |
|
|
|
704 |
|
|
gcc_assert (dom_computed[dir_index]);
|
705 |
|
|
|
706 |
|
|
if (!node->father)
|
707 |
|
|
return NULL;
|
708 |
|
|
|
709 |
|
|
return (basic_block) node->father->data;
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
/* Set the immediate dominator of the block possibly removing
|
713 |
|
|
existing edge. NULL can be used to remove any edge. */
|
714 |
|
|
void
|
715 |
|
|
set_immediate_dominator (enum cdi_direction dir, basic_block bb,
|
716 |
|
|
basic_block dominated_by)
|
717 |
|
|
{
|
718 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
719 |
|
|
struct et_node *node = bb->dom[dir_index];
|
720 |
|
|
|
721 |
|
|
gcc_assert (dom_computed[dir_index]);
|
722 |
|
|
|
723 |
|
|
if (node->father)
|
724 |
|
|
{
|
725 |
|
|
if (node->father->data == dominated_by)
|
726 |
|
|
return;
|
727 |
|
|
et_split (node);
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
if (dominated_by)
|
731 |
|
|
et_set_father (node, dominated_by->dom[dir_index]);
|
732 |
|
|
|
733 |
|
|
if (dom_computed[dir_index] == DOM_OK)
|
734 |
|
|
dom_computed[dir_index] = DOM_NO_FAST_QUERY;
|
735 |
|
|
}
|
736 |
|
|
|
737 |
|
|
/* Returns the list of basic blocks immediately dominated by BB, in the
|
738 |
|
|
direction DIR. */
|
739 |
|
|
VEC (basic_block, heap) *
|
740 |
|
|
get_dominated_by (enum cdi_direction dir, basic_block bb)
|
741 |
|
|
{
|
742 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
743 |
|
|
struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
|
744 |
|
|
VEC (basic_block, heap) *bbs = NULL;
|
745 |
|
|
|
746 |
|
|
gcc_assert (dom_computed[dir_index]);
|
747 |
|
|
|
748 |
|
|
if (!son)
|
749 |
|
|
return NULL;
|
750 |
|
|
|
751 |
|
|
VEC_safe_push (basic_block, heap, bbs, (basic_block) son->data);
|
752 |
|
|
for (ason = son->right; ason != son; ason = ason->right)
|
753 |
|
|
VEC_safe_push (basic_block, heap, bbs, (basic_block) ason->data);
|
754 |
|
|
|
755 |
|
|
return bbs;
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
/* Returns the list of basic blocks that are immediately dominated (in
|
759 |
|
|
direction DIR) by some block between N_REGION ones stored in REGION,
|
760 |
|
|
except for blocks in the REGION itself. */
|
761 |
|
|
|
762 |
|
|
VEC (basic_block, heap) *
|
763 |
|
|
get_dominated_by_region (enum cdi_direction dir, basic_block *region,
|
764 |
|
|
unsigned n_region)
|
765 |
|
|
{
|
766 |
|
|
unsigned i;
|
767 |
|
|
basic_block dom;
|
768 |
|
|
VEC (basic_block, heap) *doms = NULL;
|
769 |
|
|
|
770 |
|
|
for (i = 0; i < n_region; i++)
|
771 |
|
|
region[i]->flags |= BB_DUPLICATED;
|
772 |
|
|
for (i = 0; i < n_region; i++)
|
773 |
|
|
for (dom = first_dom_son (dir, region[i]);
|
774 |
|
|
dom;
|
775 |
|
|
dom = next_dom_son (dir, dom))
|
776 |
|
|
if (!(dom->flags & BB_DUPLICATED))
|
777 |
|
|
VEC_safe_push (basic_block, heap, doms, dom);
|
778 |
|
|
for (i = 0; i < n_region; i++)
|
779 |
|
|
region[i]->flags &= ~BB_DUPLICATED;
|
780 |
|
|
|
781 |
|
|
return doms;
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
/* Returns the list of basic blocks including BB dominated by BB, in the
|
785 |
|
|
direction DIR. The vector will be sorted in preorder. */
|
786 |
|
|
|
787 |
|
|
VEC (basic_block, heap) *
|
788 |
|
|
get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
|
789 |
|
|
{
|
790 |
|
|
VEC(basic_block, heap) *bbs = NULL;
|
791 |
|
|
unsigned i;
|
792 |
|
|
|
793 |
|
|
i = 0;
|
794 |
|
|
VEC_safe_push (basic_block, heap, bbs, bb);
|
795 |
|
|
|
796 |
|
|
do
|
797 |
|
|
{
|
798 |
|
|
basic_block son;
|
799 |
|
|
|
800 |
|
|
bb = VEC_index (basic_block, bbs, i++);
|
801 |
|
|
for (son = first_dom_son (dir, bb);
|
802 |
|
|
son;
|
803 |
|
|
son = next_dom_son (dir, son))
|
804 |
|
|
VEC_safe_push (basic_block, heap, bbs, son);
|
805 |
|
|
}
|
806 |
|
|
while (i < VEC_length (basic_block, bbs));
|
807 |
|
|
|
808 |
|
|
return bbs;
|
809 |
|
|
}
|
810 |
|
|
|
811 |
|
|
/* Redirect all edges pointing to BB to TO. */
|
812 |
|
|
void
|
813 |
|
|
redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
|
814 |
|
|
basic_block to)
|
815 |
|
|
{
|
816 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
817 |
|
|
struct et_node *bb_node, *to_node, *son;
|
818 |
|
|
|
819 |
|
|
bb_node = bb->dom[dir_index];
|
820 |
|
|
to_node = to->dom[dir_index];
|
821 |
|
|
|
822 |
|
|
gcc_assert (dom_computed[dir_index]);
|
823 |
|
|
|
824 |
|
|
if (!bb_node->son)
|
825 |
|
|
return;
|
826 |
|
|
|
827 |
|
|
while (bb_node->son)
|
828 |
|
|
{
|
829 |
|
|
son = bb_node->son;
|
830 |
|
|
|
831 |
|
|
et_split (son);
|
832 |
|
|
et_set_father (son, to_node);
|
833 |
|
|
}
|
834 |
|
|
|
835 |
|
|
if (dom_computed[dir_index] == DOM_OK)
|
836 |
|
|
dom_computed[dir_index] = DOM_NO_FAST_QUERY;
|
837 |
|
|
}
|
838 |
|
|
|
839 |
|
|
/* Find first basic block in the tree dominating both BB1 and BB2. */
|
840 |
|
|
basic_block
|
841 |
|
|
nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
|
842 |
|
|
{
|
843 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
844 |
|
|
|
845 |
|
|
gcc_assert (dom_computed[dir_index]);
|
846 |
|
|
|
847 |
|
|
if (!bb1)
|
848 |
|
|
return bb2;
|
849 |
|
|
if (!bb2)
|
850 |
|
|
return bb1;
|
851 |
|
|
|
852 |
|
|
return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
|
856 |
|
|
/* Find the nearest common dominator for the basic blocks in BLOCKS,
|
857 |
|
|
using dominance direction DIR. */
|
858 |
|
|
|
859 |
|
|
basic_block
|
860 |
|
|
nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
|
861 |
|
|
{
|
862 |
|
|
unsigned i, first;
|
863 |
|
|
bitmap_iterator bi;
|
864 |
|
|
basic_block dom;
|
865 |
|
|
|
866 |
|
|
first = bitmap_first_set_bit (blocks);
|
867 |
|
|
dom = BASIC_BLOCK (first);
|
868 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
|
869 |
|
|
if (dom != BASIC_BLOCK (i))
|
870 |
|
|
dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
|
871 |
|
|
|
872 |
|
|
return dom;
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
/* Given a dominator tree, we can determine whether one thing
|
876 |
|
|
dominates another in constant time by using two DFS numbers:
|
877 |
|
|
|
878 |
|
|
1. The number for when we visit a node on the way down the tree
|
879 |
|
|
2. The number for when we visit a node on the way back up the tree
|
880 |
|
|
|
881 |
|
|
You can view these as bounds for the range of dfs numbers the
|
882 |
|
|
nodes in the subtree of the dominator tree rooted at that node
|
883 |
|
|
will contain.
|
884 |
|
|
|
885 |
|
|
The dominator tree is always a simple acyclic tree, so there are
|
886 |
|
|
only three possible relations two nodes in the dominator tree have
|
887 |
|
|
to each other:
|
888 |
|
|
|
889 |
|
|
1. Node A is above Node B (and thus, Node A dominates node B)
|
890 |
|
|
|
891 |
|
|
A
|
892 |
|
|
|
|
893 |
|
|
C
|
894 |
|
|
/ \
|
895 |
|
|
B D
|
896 |
|
|
|
897 |
|
|
|
898 |
|
|
In the above case, DFS_Number_In of A will be <= DFS_Number_In of
|
899 |
|
|
B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
|
900 |
|
|
because we must hit A in the dominator tree *before* B on the walk
|
901 |
|
|
down, and we will hit A *after* B on the walk back up
|
902 |
|
|
|
903 |
|
|
2. Node A is below node B (and thus, node B dominates node A)
|
904 |
|
|
|
905 |
|
|
|
906 |
|
|
B
|
907 |
|
|
|
|
908 |
|
|
A
|
909 |
|
|
/ \
|
910 |
|
|
C D
|
911 |
|
|
|
912 |
|
|
In the above case, DFS_Number_In of A will be >= DFS_Number_In of
|
913 |
|
|
B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
|
914 |
|
|
|
915 |
|
|
This is because we must hit A in the dominator tree *after* B on
|
916 |
|
|
the walk down, and we will hit A *before* B on the walk back up
|
917 |
|
|
|
918 |
|
|
3. Node A and B are siblings (and thus, neither dominates the other)
|
919 |
|
|
|
920 |
|
|
C
|
921 |
|
|
|
|
922 |
|
|
D
|
923 |
|
|
/ \
|
924 |
|
|
A B
|
925 |
|
|
|
926 |
|
|
In the above case, DFS_Number_In of A will *always* be <=
|
927 |
|
|
DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
|
928 |
|
|
DFS_Number_Out of B. This is because we will always finish the dfs
|
929 |
|
|
walk of one of the subtrees before the other, and thus, the dfs
|
930 |
|
|
numbers for one subtree can't intersect with the range of dfs
|
931 |
|
|
numbers for the other subtree. If you swap A and B's position in
|
932 |
|
|
the dominator tree, the comparison changes direction, but the point
|
933 |
|
|
is that both comparisons will always go the same way if there is no
|
934 |
|
|
dominance relationship.
|
935 |
|
|
|
936 |
|
|
Thus, it is sufficient to write
|
937 |
|
|
|
938 |
|
|
A_Dominates_B (node A, node B)
|
939 |
|
|
{
|
940 |
|
|
return DFS_Number_In(A) <= DFS_Number_In(B)
|
941 |
|
|
&& DFS_Number_Out (A) >= DFS_Number_Out(B);
|
942 |
|
|
}
|
943 |
|
|
|
944 |
|
|
A_Dominated_by_B (node A, node B)
|
945 |
|
|
{
|
946 |
|
|
return DFS_Number_In(A) >= DFS_Number_In(A)
|
947 |
|
|
&& DFS_Number_Out (A) <= DFS_Number_Out(B);
|
948 |
|
|
} */
|
949 |
|
|
|
950 |
|
|
/* Return TRUE in case BB1 is dominated by BB2. */
|
951 |
|
|
bool
|
952 |
|
|
dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
|
953 |
|
|
{
|
954 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
955 |
|
|
struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
|
956 |
|
|
|
957 |
|
|
gcc_assert (dom_computed[dir_index]);
|
958 |
|
|
|
959 |
|
|
if (dom_computed[dir_index] == DOM_OK)
|
960 |
|
|
return (n1->dfs_num_in >= n2->dfs_num_in
|
961 |
|
|
&& n1->dfs_num_out <= n2->dfs_num_out);
|
962 |
|
|
|
963 |
|
|
return et_below (n1, n2);
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
/* Returns the entry dfs number for basic block BB, in the direction DIR. */
|
967 |
|
|
|
968 |
|
|
unsigned
|
969 |
|
|
bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
|
970 |
|
|
{
|
971 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
972 |
|
|
struct et_node *n = bb->dom[dir_index];
|
973 |
|
|
|
974 |
|
|
gcc_assert (dom_computed[dir_index] == DOM_OK);
|
975 |
|
|
return n->dfs_num_in;
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
/* Returns the exit dfs number for basic block BB, in the direction DIR. */
|
979 |
|
|
|
980 |
|
|
unsigned
|
981 |
|
|
bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
|
982 |
|
|
{
|
983 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
984 |
|
|
struct et_node *n = bb->dom[dir_index];
|
985 |
|
|
|
986 |
|
|
gcc_assert (dom_computed[dir_index] == DOM_OK);
|
987 |
|
|
return n->dfs_num_out;
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
/* Verify invariants of dominator structure. */
|
991 |
|
|
void
|
992 |
|
|
verify_dominators (enum cdi_direction dir)
|
993 |
|
|
{
|
994 |
|
|
int err = 0;
|
995 |
|
|
basic_block bb, imm_bb, imm_bb_correct;
|
996 |
|
|
struct dom_info di;
|
997 |
|
|
bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
|
998 |
|
|
|
999 |
|
|
gcc_assert (dom_info_available_p (dir));
|
1000 |
|
|
|
1001 |
|
|
init_dom_info (&di, dir);
|
1002 |
|
|
calc_dfs_tree (&di, reverse);
|
1003 |
|
|
calc_idoms (&di, reverse);
|
1004 |
|
|
|
1005 |
|
|
FOR_EACH_BB (bb)
|
1006 |
|
|
{
|
1007 |
|
|
imm_bb = get_immediate_dominator (dir, bb);
|
1008 |
|
|
if (!imm_bb)
|
1009 |
|
|
{
|
1010 |
|
|
error ("dominator of %d status unknown", bb->index);
|
1011 |
|
|
err = 1;
|
1012 |
|
|
}
|
1013 |
|
|
|
1014 |
|
|
imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
|
1015 |
|
|
if (imm_bb != imm_bb_correct)
|
1016 |
|
|
{
|
1017 |
|
|
error ("dominator of %d should be %d, not %d",
|
1018 |
|
|
bb->index, imm_bb_correct->index, imm_bb->index);
|
1019 |
|
|
err = 1;
|
1020 |
|
|
}
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
free_dom_info (&di);
|
1024 |
|
|
gcc_assert (!err);
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
/* Determine immediate dominator (or postdominator, according to DIR) of BB,
|
1028 |
|
|
assuming that dominators of other blocks are correct. We also use it to
|
1029 |
|
|
recompute the dominators in a restricted area, by iterating it until it
|
1030 |
|
|
reaches a fixed point. */
|
1031 |
|
|
|
1032 |
|
|
basic_block
|
1033 |
|
|
recompute_dominator (enum cdi_direction dir, basic_block bb)
|
1034 |
|
|
{
|
1035 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1036 |
|
|
basic_block dom_bb = NULL;
|
1037 |
|
|
edge e;
|
1038 |
|
|
edge_iterator ei;
|
1039 |
|
|
|
1040 |
|
|
gcc_assert (dom_computed[dir_index]);
|
1041 |
|
|
|
1042 |
|
|
if (dir == CDI_DOMINATORS)
|
1043 |
|
|
{
|
1044 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1045 |
|
|
{
|
1046 |
|
|
if (!dominated_by_p (dir, e->src, bb))
|
1047 |
|
|
dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
|
1048 |
|
|
}
|
1049 |
|
|
}
|
1050 |
|
|
else
|
1051 |
|
|
{
|
1052 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1053 |
|
|
{
|
1054 |
|
|
if (!dominated_by_p (dir, e->dest, bb))
|
1055 |
|
|
dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
|
1056 |
|
|
}
|
1057 |
|
|
}
|
1058 |
|
|
|
1059 |
|
|
return dom_bb;
|
1060 |
|
|
}
|
1061 |
|
|
|
1062 |
|
|
/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
|
1063 |
|
|
of BBS. We assume that all the immediate dominators except for those of the
|
1064 |
|
|
blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
|
1065 |
|
|
currently recorded immediate dominators of blocks in BBS really dominate the
|
1066 |
|
|
blocks. The basic blocks for that we determine the dominator are removed
|
1067 |
|
|
from BBS. */
|
1068 |
|
|
|
1069 |
|
|
static void
|
1070 |
|
|
prune_bbs_to_update_dominators (VEC (basic_block, heap) *bbs,
|
1071 |
|
|
bool conservative)
|
1072 |
|
|
{
|
1073 |
|
|
unsigned i;
|
1074 |
|
|
bool single;
|
1075 |
|
|
basic_block bb, dom = NULL;
|
1076 |
|
|
edge_iterator ei;
|
1077 |
|
|
edge e;
|
1078 |
|
|
|
1079 |
|
|
for (i = 0; VEC_iterate (basic_block, bbs, i, bb);)
|
1080 |
|
|
{
|
1081 |
|
|
if (bb == ENTRY_BLOCK_PTR)
|
1082 |
|
|
goto succeed;
|
1083 |
|
|
|
1084 |
|
|
if (single_pred_p (bb))
|
1085 |
|
|
{
|
1086 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
|
1087 |
|
|
goto succeed;
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
if (!conservative)
|
1091 |
|
|
goto fail;
|
1092 |
|
|
|
1093 |
|
|
single = true;
|
1094 |
|
|
dom = NULL;
|
1095 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1096 |
|
|
{
|
1097 |
|
|
if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
|
1098 |
|
|
continue;
|
1099 |
|
|
|
1100 |
|
|
if (!dom)
|
1101 |
|
|
dom = e->src;
|
1102 |
|
|
else
|
1103 |
|
|
{
|
1104 |
|
|
single = false;
|
1105 |
|
|
dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
|
1106 |
|
|
}
|
1107 |
|
|
}
|
1108 |
|
|
|
1109 |
|
|
gcc_assert (dom != NULL);
|
1110 |
|
|
if (single
|
1111 |
|
|
|| find_edge (dom, bb))
|
1112 |
|
|
{
|
1113 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb, dom);
|
1114 |
|
|
goto succeed;
|
1115 |
|
|
}
|
1116 |
|
|
|
1117 |
|
|
fail:
|
1118 |
|
|
i++;
|
1119 |
|
|
continue;
|
1120 |
|
|
|
1121 |
|
|
succeed:
|
1122 |
|
|
VEC_unordered_remove (basic_block, bbs, i);
|
1123 |
|
|
}
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
/* Returns root of the dominance tree in the direction DIR that contains
|
1127 |
|
|
BB. */
|
1128 |
|
|
|
1129 |
|
|
static basic_block
|
1130 |
|
|
root_of_dom_tree (enum cdi_direction dir, basic_block bb)
|
1131 |
|
|
{
|
1132 |
|
|
return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
|
1133 |
|
|
}
|
1134 |
|
|
|
1135 |
|
|
/* See the comment in iterate_fix_dominators. Finds the immediate dominators
|
1136 |
|
|
for the sons of Y, found using the SON and BROTHER arrays representing
|
1137 |
|
|
the dominance tree of graph G. BBS maps the vertices of G to the basic
|
1138 |
|
|
blocks. */
|
1139 |
|
|
|
1140 |
|
|
static void
|
1141 |
|
|
determine_dominators_for_sons (struct graph *g, VEC (basic_block, heap) *bbs,
|
1142 |
|
|
int y, int *son, int *brother)
|
1143 |
|
|
{
|
1144 |
|
|
bitmap gprime;
|
1145 |
|
|
int i, a, nc;
|
1146 |
|
|
VEC (int, heap) **sccs;
|
1147 |
|
|
basic_block bb, dom, ybb;
|
1148 |
|
|
unsigned si;
|
1149 |
|
|
edge e;
|
1150 |
|
|
edge_iterator ei;
|
1151 |
|
|
|
1152 |
|
|
if (son[y] == -1)
|
1153 |
|
|
return;
|
1154 |
|
|
if (y == (int) VEC_length (basic_block, bbs))
|
1155 |
|
|
ybb = ENTRY_BLOCK_PTR;
|
1156 |
|
|
else
|
1157 |
|
|
ybb = VEC_index (basic_block, bbs, y);
|
1158 |
|
|
|
1159 |
|
|
if (brother[son[y]] == -1)
|
1160 |
|
|
{
|
1161 |
|
|
/* Handle the common case Y has just one son specially. */
|
1162 |
|
|
bb = VEC_index (basic_block, bbs, son[y]);
|
1163 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb,
|
1164 |
|
|
recompute_dominator (CDI_DOMINATORS, bb));
|
1165 |
|
|
identify_vertices (g, y, son[y]);
|
1166 |
|
|
return;
|
1167 |
|
|
}
|
1168 |
|
|
|
1169 |
|
|
gprime = BITMAP_ALLOC (NULL);
|
1170 |
|
|
for (a = son[y]; a != -1; a = brother[a])
|
1171 |
|
|
bitmap_set_bit (gprime, a);
|
1172 |
|
|
|
1173 |
|
|
nc = graphds_scc (g, gprime);
|
1174 |
|
|
BITMAP_FREE (gprime);
|
1175 |
|
|
|
1176 |
|
|
sccs = XCNEWVEC (VEC (int, heap) *, nc);
|
1177 |
|
|
for (a = son[y]; a != -1; a = brother[a])
|
1178 |
|
|
VEC_safe_push (int, heap, sccs[g->vertices[a].component], a);
|
1179 |
|
|
|
1180 |
|
|
for (i = nc - 1; i >= 0; i--)
|
1181 |
|
|
{
|
1182 |
|
|
dom = NULL;
|
1183 |
|
|
for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
|
1184 |
|
|
{
|
1185 |
|
|
bb = VEC_index (basic_block, bbs, a);
|
1186 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1187 |
|
|
{
|
1188 |
|
|
if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
|
1189 |
|
|
continue;
|
1190 |
|
|
|
1191 |
|
|
dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
|
1192 |
|
|
}
|
1193 |
|
|
}
|
1194 |
|
|
|
1195 |
|
|
gcc_assert (dom != NULL);
|
1196 |
|
|
for (si = 0; VEC_iterate (int, sccs[i], si, a); si++)
|
1197 |
|
|
{
|
1198 |
|
|
bb = VEC_index (basic_block, bbs, a);
|
1199 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb, dom);
|
1200 |
|
|
}
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
for (i = 0; i < nc; i++)
|
1204 |
|
|
VEC_free (int, heap, sccs[i]);
|
1205 |
|
|
free (sccs);
|
1206 |
|
|
|
1207 |
|
|
for (a = son[y]; a != -1; a = brother[a])
|
1208 |
|
|
identify_vertices (g, y, a);
|
1209 |
|
|
}
|
1210 |
|
|
|
1211 |
|
|
/* Recompute dominance information for basic blocks in the set BBS. The
|
1212 |
|
|
function assumes that the immediate dominators of all the other blocks
|
1213 |
|
|
in CFG are correct, and that there are no unreachable blocks.
|
1214 |
|
|
|
1215 |
|
|
If CONSERVATIVE is true, we additionally assume that all the ancestors of
|
1216 |
|
|
a block of BBS in the current dominance tree dominate it. */
|
1217 |
|
|
|
1218 |
|
|
void
|
1219 |
|
|
iterate_fix_dominators (enum cdi_direction dir, VEC (basic_block, heap) *bbs,
|
1220 |
|
|
bool conservative)
|
1221 |
|
|
{
|
1222 |
|
|
unsigned i;
|
1223 |
|
|
basic_block bb, dom;
|
1224 |
|
|
struct graph *g;
|
1225 |
|
|
int n, y;
|
1226 |
|
|
size_t dom_i;
|
1227 |
|
|
edge e;
|
1228 |
|
|
edge_iterator ei;
|
1229 |
|
|
struct pointer_map_t *map;
|
1230 |
|
|
int *parent, *son, *brother;
|
1231 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1232 |
|
|
|
1233 |
|
|
/* We only support updating dominators. There are some problems with
|
1234 |
|
|
updating postdominators (need to add fake edges from infinite loops
|
1235 |
|
|
and noreturn functions), and since we do not currently use
|
1236 |
|
|
iterate_fix_dominators for postdominators, any attempt to handle these
|
1237 |
|
|
problems would be unused, untested, and almost surely buggy. We keep
|
1238 |
|
|
the DIR argument for consistency with the rest of the dominator analysis
|
1239 |
|
|
interface. */
|
1240 |
|
|
gcc_assert (dir == CDI_DOMINATORS);
|
1241 |
|
|
gcc_assert (dom_computed[dir_index]);
|
1242 |
|
|
|
1243 |
|
|
/* The algorithm we use takes inspiration from the following papers, although
|
1244 |
|
|
the details are quite different from any of them:
|
1245 |
|
|
|
1246 |
|
|
[1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
|
1247 |
|
|
Dominator Tree of a Reducible Flowgraph
|
1248 |
|
|
[2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
|
1249 |
|
|
dominator trees
|
1250 |
|
|
[3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
|
1251 |
|
|
Algorithm
|
1252 |
|
|
|
1253 |
|
|
First, we use the following heuristics to decrease the size of the BBS
|
1254 |
|
|
set:
|
1255 |
|
|
a) if BB has a single predecessor, then its immediate dominator is this
|
1256 |
|
|
predecessor
|
1257 |
|
|
additionally, if CONSERVATIVE is true:
|
1258 |
|
|
b) if all the predecessors of BB except for one (X) are dominated by BB,
|
1259 |
|
|
then X is the immediate dominator of BB
|
1260 |
|
|
c) if the nearest common ancestor of the predecessors of BB is X and
|
1261 |
|
|
X -> BB is an edge in CFG, then X is the immediate dominator of BB
|
1262 |
|
|
|
1263 |
|
|
Then, we need to establish the dominance relation among the basic blocks
|
1264 |
|
|
in BBS. We split the dominance tree by removing the immediate dominator
|
1265 |
|
|
edges from BBS, creating a forest F. We form a graph G whose vertices
|
1266 |
|
|
are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
|
1267 |
|
|
X' -> Y in CFG such that X' belongs to the tree of the dominance forest
|
1268 |
|
|
whose root is X. We then determine dominance tree of G. Note that
|
1269 |
|
|
for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
|
1270 |
|
|
In this step, we can use arbitrary algorithm to determine dominators.
|
1271 |
|
|
We decided to prefer the algorithm [3] to the algorithm of
|
1272 |
|
|
Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
|
1273 |
|
|
10 during gcc bootstrap), and [3] should perform better in this case.
|
1274 |
|
|
|
1275 |
|
|
Finally, we need to determine the immediate dominators for the basic
|
1276 |
|
|
blocks of BBS. If the immediate dominator of X in G is Y, then
|
1277 |
|
|
the immediate dominator of X in CFG belongs to the tree of F rooted in
|
1278 |
|
|
Y. We process the dominator tree T of G recursively, starting from leaves.
|
1279 |
|
|
Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
|
1280 |
|
|
subtrees of the dominance tree of CFG rooted in X_i are already correct.
|
1281 |
|
|
Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
|
1282 |
|
|
the following observations:
|
1283 |
|
|
(i) the immediate dominator of all blocks in a strongly connected
|
1284 |
|
|
component of G' is the same
|
1285 |
|
|
(ii) if X has no predecessors in G', then the immediate dominator of X
|
1286 |
|
|
is the nearest common ancestor of the predecessors of X in the
|
1287 |
|
|
subtree of F rooted in Y
|
1288 |
|
|
Therefore, it suffices to find the topological ordering of G', and
|
1289 |
|
|
process the nodes X_i in this order using the rules (i) and (ii).
|
1290 |
|
|
Then, we contract all the nodes X_i with Y in G, so that the further
|
1291 |
|
|
steps work correctly. */
|
1292 |
|
|
|
1293 |
|
|
if (!conservative)
|
1294 |
|
|
{
|
1295 |
|
|
/* Split the tree now. If the idoms of blocks in BBS are not
|
1296 |
|
|
conservatively correct, setting the dominators using the
|
1297 |
|
|
heuristics in prune_bbs_to_update_dominators could
|
1298 |
|
|
create cycles in the dominance "tree", and cause ICE. */
|
1299 |
|
|
for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
|
1300 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
|
1301 |
|
|
}
|
1302 |
|
|
|
1303 |
|
|
prune_bbs_to_update_dominators (bbs, conservative);
|
1304 |
|
|
n = VEC_length (basic_block, bbs);
|
1305 |
|
|
|
1306 |
|
|
if (n == 0)
|
1307 |
|
|
return;
|
1308 |
|
|
|
1309 |
|
|
if (n == 1)
|
1310 |
|
|
{
|
1311 |
|
|
bb = VEC_index (basic_block, bbs, 0);
|
1312 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb,
|
1313 |
|
|
recompute_dominator (CDI_DOMINATORS, bb));
|
1314 |
|
|
return;
|
1315 |
|
|
}
|
1316 |
|
|
|
1317 |
|
|
/* Construct the graph G. */
|
1318 |
|
|
map = pointer_map_create ();
|
1319 |
|
|
for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
|
1320 |
|
|
{
|
1321 |
|
|
/* If the dominance tree is conservatively correct, split it now. */
|
1322 |
|
|
if (conservative)
|
1323 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
|
1324 |
|
|
*pointer_map_insert (map, bb) = (void *) (size_t) i;
|
1325 |
|
|
}
|
1326 |
|
|
*pointer_map_insert (map, ENTRY_BLOCK_PTR) = (void *) (size_t) n;
|
1327 |
|
|
|
1328 |
|
|
g = new_graph (n + 1);
|
1329 |
|
|
for (y = 0; y < g->n_vertices; y++)
|
1330 |
|
|
g->vertices[y].data = BITMAP_ALLOC (NULL);
|
1331 |
|
|
for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
|
1332 |
|
|
{
|
1333 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1334 |
|
|
{
|
1335 |
|
|
dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
|
1336 |
|
|
if (dom == bb)
|
1337 |
|
|
continue;
|
1338 |
|
|
|
1339 |
|
|
dom_i = (size_t) *pointer_map_contains (map, dom);
|
1340 |
|
|
|
1341 |
|
|
/* Do not include parallel edges to G. */
|
1342 |
|
|
if (bitmap_bit_p ((bitmap) g->vertices[dom_i].data, i))
|
1343 |
|
|
continue;
|
1344 |
|
|
|
1345 |
|
|
bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i);
|
1346 |
|
|
add_edge (g, dom_i, i);
|
1347 |
|
|
}
|
1348 |
|
|
}
|
1349 |
|
|
for (y = 0; y < g->n_vertices; y++)
|
1350 |
|
|
BITMAP_FREE (g->vertices[y].data);
|
1351 |
|
|
pointer_map_destroy (map);
|
1352 |
|
|
|
1353 |
|
|
/* Find the dominator tree of G. */
|
1354 |
|
|
son = XNEWVEC (int, n + 1);
|
1355 |
|
|
brother = XNEWVEC (int, n + 1);
|
1356 |
|
|
parent = XNEWVEC (int, n + 1);
|
1357 |
|
|
graphds_domtree (g, n, parent, son, brother);
|
1358 |
|
|
|
1359 |
|
|
/* Finally, traverse the tree and find the immediate dominators. */
|
1360 |
|
|
for (y = n; son[y] != -1; y = son[y])
|
1361 |
|
|
continue;
|
1362 |
|
|
while (y != -1)
|
1363 |
|
|
{
|
1364 |
|
|
determine_dominators_for_sons (g, bbs, y, son, brother);
|
1365 |
|
|
|
1366 |
|
|
if (brother[y] != -1)
|
1367 |
|
|
{
|
1368 |
|
|
y = brother[y];
|
1369 |
|
|
while (son[y] != -1)
|
1370 |
|
|
y = son[y];
|
1371 |
|
|
}
|
1372 |
|
|
else
|
1373 |
|
|
y = parent[y];
|
1374 |
|
|
}
|
1375 |
|
|
|
1376 |
|
|
free (son);
|
1377 |
|
|
free (brother);
|
1378 |
|
|
free (parent);
|
1379 |
|
|
|
1380 |
|
|
free_graph (g);
|
1381 |
|
|
}
|
1382 |
|
|
|
1383 |
|
|
void
|
1384 |
|
|
add_to_dominance_info (enum cdi_direction dir, basic_block bb)
|
1385 |
|
|
{
|
1386 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1387 |
|
|
|
1388 |
|
|
gcc_assert (dom_computed[dir_index]);
|
1389 |
|
|
gcc_assert (!bb->dom[dir_index]);
|
1390 |
|
|
|
1391 |
|
|
n_bbs_in_dom_tree[dir_index]++;
|
1392 |
|
|
|
1393 |
|
|
bb->dom[dir_index] = et_new_tree (bb);
|
1394 |
|
|
|
1395 |
|
|
if (dom_computed[dir_index] == DOM_OK)
|
1396 |
|
|
dom_computed[dir_index] = DOM_NO_FAST_QUERY;
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
void
|
1400 |
|
|
delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
|
1401 |
|
|
{
|
1402 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1403 |
|
|
|
1404 |
|
|
gcc_assert (dom_computed[dir_index]);
|
1405 |
|
|
|
1406 |
|
|
et_free_tree (bb->dom[dir_index]);
|
1407 |
|
|
bb->dom[dir_index] = NULL;
|
1408 |
|
|
n_bbs_in_dom_tree[dir_index]--;
|
1409 |
|
|
|
1410 |
|
|
if (dom_computed[dir_index] == DOM_OK)
|
1411 |
|
|
dom_computed[dir_index] = DOM_NO_FAST_QUERY;
|
1412 |
|
|
}
|
1413 |
|
|
|
1414 |
|
|
/* Returns the first son of BB in the dominator or postdominator tree
|
1415 |
|
|
as determined by DIR. */
|
1416 |
|
|
|
1417 |
|
|
basic_block
|
1418 |
|
|
first_dom_son (enum cdi_direction dir, basic_block bb)
|
1419 |
|
|
{
|
1420 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1421 |
|
|
struct et_node *son = bb->dom[dir_index]->son;
|
1422 |
|
|
|
1423 |
|
|
return (basic_block) (son ? son->data : NULL);
|
1424 |
|
|
}
|
1425 |
|
|
|
1426 |
|
|
/* Returns the next dominance son after BB in the dominator or postdominator
|
1427 |
|
|
tree as determined by DIR, or NULL if it was the last one. */
|
1428 |
|
|
|
1429 |
|
|
basic_block
|
1430 |
|
|
next_dom_son (enum cdi_direction dir, basic_block bb)
|
1431 |
|
|
{
|
1432 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1433 |
|
|
struct et_node *next = bb->dom[dir_index]->right;
|
1434 |
|
|
|
1435 |
|
|
return (basic_block) (next->father->son == next ? NULL : next->data);
|
1436 |
|
|
}
|
1437 |
|
|
|
1438 |
|
|
/* Return dominance availability for dominance info DIR. */
|
1439 |
|
|
|
1440 |
|
|
enum dom_state
|
1441 |
|
|
dom_info_state (enum cdi_direction dir)
|
1442 |
|
|
{
|
1443 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1444 |
|
|
|
1445 |
|
|
return dom_computed[dir_index];
|
1446 |
|
|
}
|
1447 |
|
|
|
1448 |
|
|
/* Set the dominance availability for dominance info DIR to NEW_STATE. */
|
1449 |
|
|
|
1450 |
|
|
void
|
1451 |
|
|
set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
|
1452 |
|
|
{
|
1453 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1454 |
|
|
|
1455 |
|
|
dom_computed[dir_index] = new_state;
|
1456 |
|
|
}
|
1457 |
|
|
|
1458 |
|
|
/* Returns true if dominance information for direction DIR is available. */
|
1459 |
|
|
|
1460 |
|
|
bool
|
1461 |
|
|
dom_info_available_p (enum cdi_direction dir)
|
1462 |
|
|
{
|
1463 |
|
|
unsigned int dir_index = dom_convert_dir_to_idx (dir);
|
1464 |
|
|
|
1465 |
|
|
return dom_computed[dir_index] != DOM_NONE;
|
1466 |
|
|
}
|
1467 |
|
|
|
1468 |
|
|
void
|
1469 |
|
|
debug_dominance_info (enum cdi_direction dir)
|
1470 |
|
|
{
|
1471 |
|
|
basic_block bb, bb2;
|
1472 |
|
|
FOR_EACH_BB (bb)
|
1473 |
|
|
if ((bb2 = get_immediate_dominator (dir, bb)))
|
1474 |
|
|
fprintf (stderr, "%i %i\n", bb->index, bb2->index);
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
/* Prints to stderr representation of the dominance tree (for direction DIR)
|
1478 |
|
|
rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
|
1479 |
|
|
the first line of the output is not indented. */
|
1480 |
|
|
|
1481 |
|
|
static void
|
1482 |
|
|
debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
|
1483 |
|
|
unsigned indent, bool indent_first)
|
1484 |
|
|
{
|
1485 |
|
|
basic_block son;
|
1486 |
|
|
unsigned i;
|
1487 |
|
|
bool first = true;
|
1488 |
|
|
|
1489 |
|
|
if (indent_first)
|
1490 |
|
|
for (i = 0; i < indent; i++)
|
1491 |
|
|
fprintf (stderr, "\t");
|
1492 |
|
|
fprintf (stderr, "%d\t", root->index);
|
1493 |
|
|
|
1494 |
|
|
for (son = first_dom_son (dir, root);
|
1495 |
|
|
son;
|
1496 |
|
|
son = next_dom_son (dir, son))
|
1497 |
|
|
{
|
1498 |
|
|
debug_dominance_tree_1 (dir, son, indent + 1, !first);
|
1499 |
|
|
first = false;
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
if (first)
|
1503 |
|
|
fprintf (stderr, "\n");
|
1504 |
|
|
}
|
1505 |
|
|
|
1506 |
|
|
/* Prints to stderr representation of the dominance tree (for direction DIR)
|
1507 |
|
|
rooted in ROOT. */
|
1508 |
|
|
|
1509 |
|
|
void
|
1510 |
|
|
debug_dominance_tree (enum cdi_direction dir, basic_block root)
|
1511 |
|
|
{
|
1512 |
|
|
debug_dominance_tree_1 (dir, root, 0, false);
|
1513 |
|
|
}
|