OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [emit-rtl.c] - Blame information for rev 328

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Emit RTL for the GCC expander.
2
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4
   Free Software Foundation, Inc.
5
 
6
This file is part of GCC.
7
 
8
GCC is free software; you can redistribute it and/or modify it under
9
the terms of the GNU General Public License as published by the Free
10
Software Foundation; either version 3, or (at your option) any later
11
version.
12
 
13
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
for more details.
17
 
18
You should have received a copy of the GNU General Public License
19
along with GCC; see the file COPYING3.  If not see
20
<http://www.gnu.org/licenses/>.  */
21
 
22
 
23
/* Middle-to-low level generation of rtx code and insns.
24
 
25
   This file contains support functions for creating rtl expressions
26
   and manipulating them in the doubly-linked chain of insns.
27
 
28
   The patterns of the insns are created by machine-dependent
29
   routines in insn-emit.c, which is generated automatically from
30
   the machine description.  These routines make the individual rtx's
31
   of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32
   which are automatically generated from rtl.def; what is machine
33
   dependent is the kind of rtx's they make and what arguments they
34
   use.  */
35
 
36
#include "config.h"
37
#include "system.h"
38
#include "coretypes.h"
39
#include "tm.h"
40
#include "toplev.h"
41
#include "rtl.h"
42
#include "tree.h"
43
#include "tm_p.h"
44
#include "flags.h"
45
#include "function.h"
46
#include "expr.h"
47
#include "regs.h"
48
#include "hard-reg-set.h"
49
#include "hashtab.h"
50
#include "insn-config.h"
51
#include "recog.h"
52
#include "real.h"
53
#include "fixed-value.h"
54
#include "bitmap.h"
55
#include "basic-block.h"
56
#include "ggc.h"
57
#include "debug.h"
58
#include "langhooks.h"
59
#include "tree-pass.h"
60
#include "df.h"
61
#include "params.h"
62
#include "target.h"
63
 
64
/* Commonly used modes.  */
65
 
66
enum machine_mode byte_mode;    /* Mode whose width is BITS_PER_UNIT.  */
67
enum machine_mode word_mode;    /* Mode whose width is BITS_PER_WORD.  */
68
enum machine_mode double_mode;  /* Mode whose width is DOUBLE_TYPE_SIZE.  */
69
enum machine_mode ptr_mode;     /* Mode whose width is POINTER_SIZE.  */
70
 
71
/* Datastructures maintained for currently processed function in RTL form.  */
72
 
73
struct rtl_data x_rtl;
74
 
75
/* Indexed by pseudo register number, gives the rtx for that pseudo.
76
   Allocated in parallel with regno_pointer_align.
77
   FIXME: We could put it into emit_status struct, but gengtype is not able to deal
78
   with length attribute nested in top level structures.  */
79
 
80
rtx * regno_reg_rtx;
81
 
82
/* This is *not* reset after each function.  It gives each CODE_LABEL
83
   in the entire compilation a unique label number.  */
84
 
85
static GTY(()) int label_num = 1;
86
 
87
/* Commonly used rtx's, so that we only need space for one copy.
88
   These are initialized once for the entire compilation.
89
   All of these are unique; no other rtx-object will be equal to any
90
   of these.  */
91
 
92
rtx global_rtl[GR_MAX];
93
 
94
/* Commonly used RTL for hard registers.  These objects are not necessarily
95
   unique, so we allocate them separately from global_rtl.  They are
96
   initialized once per compilation unit, then copied into regno_reg_rtx
97
   at the beginning of each function.  */
98
static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
99
 
100
/* We record floating-point CONST_DOUBLEs in each floating-point mode for
101
   the values of 0, 1, and 2.  For the integer entries and VOIDmode, we
102
   record a copy of const[012]_rtx.  */
103
 
104
rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
105
 
106
rtx const_true_rtx;
107
 
108
REAL_VALUE_TYPE dconst0;
109
REAL_VALUE_TYPE dconst1;
110
REAL_VALUE_TYPE dconst2;
111
REAL_VALUE_TYPE dconstm1;
112
REAL_VALUE_TYPE dconsthalf;
113
 
114
/* Record fixed-point constant 0 and 1.  */
115
FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
116
FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
117
 
118
/* All references to the following fixed hard registers go through
119
   these unique rtl objects.  On machines where the frame-pointer and
120
   arg-pointer are the same register, they use the same unique object.
121
 
122
   After register allocation, other rtl objects which used to be pseudo-regs
123
   may be clobbered to refer to the frame-pointer register.
124
   But references that were originally to the frame-pointer can be
125
   distinguished from the others because they contain frame_pointer_rtx.
126
 
127
   When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
128
   tricky: until register elimination has taken place hard_frame_pointer_rtx
129
   should be used if it is being set, and frame_pointer_rtx otherwise.  After
130
   register elimination hard_frame_pointer_rtx should always be used.
131
   On machines where the two registers are same (most) then these are the
132
   same.
133
 
134
   In an inline procedure, the stack and frame pointer rtxs may not be
135
   used for anything else.  */
136
rtx pic_offset_table_rtx;       /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137
 
138
/* This is used to implement __builtin_return_address for some machines.
139
   See for instance the MIPS port.  */
140
rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141
 
142
/* We make one copy of (const_int C) where C is in
143
   [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144
   to save space during the compilation and simplify comparisons of
145
   integers.  */
146
 
147
rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
148
 
149
/* A hash table storing CONST_INTs whose absolute value is greater
150
   than MAX_SAVED_CONST_INT.  */
151
 
152
static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153
     htab_t const_int_htab;
154
 
155
/* A hash table storing memory attribute structures.  */
156
static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157
     htab_t mem_attrs_htab;
158
 
159
/* A hash table storing register attribute structures.  */
160
static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161
     htab_t reg_attrs_htab;
162
 
163
/* A hash table storing all CONST_DOUBLEs.  */
164
static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165
     htab_t const_double_htab;
166
 
167
/* A hash table storing all CONST_FIXEDs.  */
168
static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169
     htab_t const_fixed_htab;
170
 
171
#define first_insn (crtl->emit.x_first_insn)
172
#define last_insn (crtl->emit.x_last_insn)
173
#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
174
#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
175
#define last_location (crtl->emit.x_last_location)
176
#define first_label_num (crtl->emit.x_first_label_num)
177
 
178
static rtx make_call_insn_raw (rtx);
179
static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
180
static void set_used_decls (tree);
181
static void mark_label_nuses (rtx);
182
static hashval_t const_int_htab_hash (const void *);
183
static int const_int_htab_eq (const void *, const void *);
184
static hashval_t const_double_htab_hash (const void *);
185
static int const_double_htab_eq (const void *, const void *);
186
static rtx lookup_const_double (rtx);
187
static hashval_t const_fixed_htab_hash (const void *);
188
static int const_fixed_htab_eq (const void *, const void *);
189
static rtx lookup_const_fixed (rtx);
190
static hashval_t mem_attrs_htab_hash (const void *);
191
static int mem_attrs_htab_eq (const void *, const void *);
192
static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
193
                                 addr_space_t, enum machine_mode);
194
static hashval_t reg_attrs_htab_hash (const void *);
195
static int reg_attrs_htab_eq (const void *, const void *);
196
static reg_attrs *get_reg_attrs (tree, int);
197
static rtx gen_const_vector (enum machine_mode, int);
198
static void copy_rtx_if_shared_1 (rtx *orig);
199
 
200
/* Probability of the conditional branch currently proceeded by try_split.
201
   Set to -1 otherwise.  */
202
int split_branch_probability = -1;
203
 
204
/* Returns a hash code for X (which is a really a CONST_INT).  */
205
 
206
static hashval_t
207
const_int_htab_hash (const void *x)
208
{
209
  return (hashval_t) INTVAL ((const_rtx) x);
210
}
211
 
212
/* Returns nonzero if the value represented by X (which is really a
213
   CONST_INT) is the same as that given by Y (which is really a
214
   HOST_WIDE_INT *).  */
215
 
216
static int
217
const_int_htab_eq (const void *x, const void *y)
218
{
219
  return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
220
}
221
 
222
/* Returns a hash code for X (which is really a CONST_DOUBLE).  */
223
static hashval_t
224
const_double_htab_hash (const void *x)
225
{
226
  const_rtx const value = (const_rtx) x;
227
  hashval_t h;
228
 
229
  if (GET_MODE (value) == VOIDmode)
230
    h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231
  else
232
    {
233
      h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
234
      /* MODE is used in the comparison, so it should be in the hash.  */
235
      h ^= GET_MODE (value);
236
    }
237
  return h;
238
}
239
 
240
/* Returns nonzero if the value represented by X (really a ...)
241
   is the same as that represented by Y (really a ...) */
242
static int
243
const_double_htab_eq (const void *x, const void *y)
244
{
245
  const_rtx const a = (const_rtx)x, b = (const_rtx)y;
246
 
247
  if (GET_MODE (a) != GET_MODE (b))
248
    return 0;
249
  if (GET_MODE (a) == VOIDmode)
250
    return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251
            && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252
  else
253
    return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254
                           CONST_DOUBLE_REAL_VALUE (b));
255
}
256
 
257
/* Returns a hash code for X (which is really a CONST_FIXED).  */
258
 
259
static hashval_t
260
const_fixed_htab_hash (const void *x)
261
{
262
  const_rtx const value = (const_rtx) x;
263
  hashval_t h;
264
 
265
  h = fixed_hash (CONST_FIXED_VALUE (value));
266
  /* MODE is used in the comparison, so it should be in the hash.  */
267
  h ^= GET_MODE (value);
268
  return h;
269
}
270
 
271
/* Returns nonzero if the value represented by X (really a ...)
272
   is the same as that represented by Y (really a ...).  */
273
 
274
static int
275
const_fixed_htab_eq (const void *x, const void *y)
276
{
277
  const_rtx const a = (const_rtx) x, b = (const_rtx) y;
278
 
279
  if (GET_MODE (a) != GET_MODE (b))
280
    return 0;
281
  return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
282
}
283
 
284
/* Returns a hash code for X (which is a really a mem_attrs *).  */
285
 
286
static hashval_t
287
mem_attrs_htab_hash (const void *x)
288
{
289
  const mem_attrs *const p = (const mem_attrs *) x;
290
 
291
  return (p->alias ^ (p->align * 1000)
292
          ^ (p->addrspace * 4000)
293
          ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
294
          ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
295
          ^ (size_t) iterative_hash_expr (p->expr, 0));
296
}
297
 
298
/* Returns nonzero if the value represented by X (which is really a
299
   mem_attrs *) is the same as that given by Y (which is also really a
300
   mem_attrs *).  */
301
 
302
static int
303
mem_attrs_htab_eq (const void *x, const void *y)
304
{
305
  const mem_attrs *const p = (const mem_attrs *) x;
306
  const mem_attrs *const q = (const mem_attrs *) y;
307
 
308
  return (p->alias == q->alias && p->offset == q->offset
309
          && p->size == q->size && p->align == q->align
310
          && p->addrspace == q->addrspace
311
          && (p->expr == q->expr
312
              || (p->expr != NULL_TREE && q->expr != NULL_TREE
313
                  && operand_equal_p (p->expr, q->expr, 0))));
314
}
315
 
316
/* Allocate a new mem_attrs structure and insert it into the hash table if
317
   one identical to it is not already in the table.  We are doing this for
318
   MEM of mode MODE.  */
319
 
320
static mem_attrs *
321
get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
322
               unsigned int align, addr_space_t addrspace, enum machine_mode mode)
323
{
324
  mem_attrs attrs;
325
  void **slot;
326
 
327
  /* If everything is the default, we can just return zero.
328
     This must match what the corresponding MEM_* macros return when the
329
     field is not present.  */
330
  if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
331
      && (size == 0
332
          || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
333
      && (STRICT_ALIGNMENT && mode != BLKmode
334
          ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
335
    return 0;
336
 
337
  attrs.alias = alias;
338
  attrs.expr = expr;
339
  attrs.offset = offset;
340
  attrs.size = size;
341
  attrs.align = align;
342
  attrs.addrspace = addrspace;
343
 
344
  slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
345
  if (*slot == 0)
346
    {
347
      *slot = ggc_alloc (sizeof (mem_attrs));
348
      memcpy (*slot, &attrs, sizeof (mem_attrs));
349
    }
350
 
351
  return (mem_attrs *) *slot;
352
}
353
 
354
/* Returns a hash code for X (which is a really a reg_attrs *).  */
355
 
356
static hashval_t
357
reg_attrs_htab_hash (const void *x)
358
{
359
  const reg_attrs *const p = (const reg_attrs *) x;
360
 
361
  return ((p->offset * 1000) ^ (long) p->decl);
362
}
363
 
364
/* Returns nonzero if the value represented by X (which is really a
365
   reg_attrs *) is the same as that given by Y (which is also really a
366
   reg_attrs *).  */
367
 
368
static int
369
reg_attrs_htab_eq (const void *x, const void *y)
370
{
371
  const reg_attrs *const p = (const reg_attrs *) x;
372
  const reg_attrs *const q = (const reg_attrs *) y;
373
 
374
  return (p->decl == q->decl && p->offset == q->offset);
375
}
376
/* Allocate a new reg_attrs structure and insert it into the hash table if
377
   one identical to it is not already in the table.  We are doing this for
378
   MEM of mode MODE.  */
379
 
380
static reg_attrs *
381
get_reg_attrs (tree decl, int offset)
382
{
383
  reg_attrs attrs;
384
  void **slot;
385
 
386
  /* If everything is the default, we can just return zero.  */
387
  if (decl == 0 && offset == 0)
388
    return 0;
389
 
390
  attrs.decl = decl;
391
  attrs.offset = offset;
392
 
393
  slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
394
  if (*slot == 0)
395
    {
396
      *slot = ggc_alloc (sizeof (reg_attrs));
397
      memcpy (*slot, &attrs, sizeof (reg_attrs));
398
    }
399
 
400
  return (reg_attrs *) *slot;
401
}
402
 
403
 
404
#if !HAVE_blockage
405
/* Generate an empty ASM_INPUT, which is used to block attempts to schedule
406
   across this insn. */
407
 
408
rtx
409
gen_blockage (void)
410
{
411
  rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
412
  MEM_VOLATILE_P (x) = true;
413
  return x;
414
}
415
#endif
416
 
417
 
418
/* Generate a new REG rtx.  Make sure ORIGINAL_REGNO is set properly, and
419
   don't attempt to share with the various global pieces of rtl (such as
420
   frame_pointer_rtx).  */
421
 
422
rtx
423
gen_raw_REG (enum machine_mode mode, int regno)
424
{
425
  rtx x = gen_rtx_raw_REG (mode, regno);
426
  ORIGINAL_REGNO (x) = regno;
427
  return x;
428
}
429
 
430
/* There are some RTL codes that require special attention; the generation
431
   functions do the raw handling.  If you add to this list, modify
432
   special_rtx in gengenrtl.c as well.  */
433
 
434
rtx
435
gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
436
{
437
  void **slot;
438
 
439
  if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
440
    return const_int_rtx[arg + MAX_SAVED_CONST_INT];
441
 
442
#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
443
  if (const_true_rtx && arg == STORE_FLAG_VALUE)
444
    return const_true_rtx;
445
#endif
446
 
447
  /* Look up the CONST_INT in the hash table.  */
448
  slot = htab_find_slot_with_hash (const_int_htab, &arg,
449
                                   (hashval_t) arg, INSERT);
450
  if (*slot == 0)
451
    *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
452
 
453
  return (rtx) *slot;
454
}
455
 
456
rtx
457
gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
458
{
459
  return GEN_INT (trunc_int_for_mode (c, mode));
460
}
461
 
462
/* CONST_DOUBLEs might be created from pairs of integers, or from
463
   REAL_VALUE_TYPEs.  Also, their length is known only at run time,
464
   so we cannot use gen_rtx_raw_CONST_DOUBLE.  */
465
 
466
/* Determine whether REAL, a CONST_DOUBLE, already exists in the
467
   hash table.  If so, return its counterpart; otherwise add it
468
   to the hash table and return it.  */
469
static rtx
470
lookup_const_double (rtx real)
471
{
472
  void **slot = htab_find_slot (const_double_htab, real, INSERT);
473
  if (*slot == 0)
474
    *slot = real;
475
 
476
  return (rtx) *slot;
477
}
478
 
479
/* Return a CONST_DOUBLE rtx for a floating-point value specified by
480
   VALUE in mode MODE.  */
481
rtx
482
const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
483
{
484
  rtx real = rtx_alloc (CONST_DOUBLE);
485
  PUT_MODE (real, mode);
486
 
487
  real->u.rv = value;
488
 
489
  return lookup_const_double (real);
490
}
491
 
492
/* Determine whether FIXED, a CONST_FIXED, already exists in the
493
   hash table.  If so, return its counterpart; otherwise add it
494
   to the hash table and return it.  */
495
 
496
static rtx
497
lookup_const_fixed (rtx fixed)
498
{
499
  void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
500
  if (*slot == 0)
501
    *slot = fixed;
502
 
503
  return (rtx) *slot;
504
}
505
 
506
/* Return a CONST_FIXED rtx for a fixed-point value specified by
507
   VALUE in mode MODE.  */
508
 
509
rtx
510
const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
511
{
512
  rtx fixed = rtx_alloc (CONST_FIXED);
513
  PUT_MODE (fixed, mode);
514
 
515
  fixed->u.fv = value;
516
 
517
  return lookup_const_fixed (fixed);
518
}
519
 
520
/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
521
   of ints: I0 is the low-order word and I1 is the high-order word.
522
   Do not use this routine for non-integer modes; convert to
523
   REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE.  */
524
 
525
rtx
526
immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
527
{
528
  rtx value;
529
  unsigned int i;
530
 
531
  /* There are the following cases (note that there are no modes with
532
     HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
533
 
534
     1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
535
        gen_int_mode.
536
     2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
537
        the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
538
        from copies of the sign bit, and sign of i0 and i1 are the same),  then
539
        we return a CONST_INT for i0.
540
     3) Otherwise, we create a CONST_DOUBLE for i0 and i1.  */
541
  if (mode != VOIDmode)
542
    {
543
      gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
544
                  || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
545
                  /* We can get a 0 for an error mark.  */
546
                  || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
547
                  || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
548
 
549
      if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
550
        return gen_int_mode (i0, mode);
551
 
552
      gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
553
    }
554
 
555
  /* If this integer fits in one word, return a CONST_INT.  */
556
  if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
557
    return GEN_INT (i0);
558
 
559
  /* We use VOIDmode for integers.  */
560
  value = rtx_alloc (CONST_DOUBLE);
561
  PUT_MODE (value, VOIDmode);
562
 
563
  CONST_DOUBLE_LOW (value) = i0;
564
  CONST_DOUBLE_HIGH (value) = i1;
565
 
566
  for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
567
    XWINT (value, i) = 0;
568
 
569
  return lookup_const_double (value);
570
}
571
 
572
rtx
573
gen_rtx_REG (enum machine_mode mode, unsigned int regno)
574
{
575
  /* In case the MD file explicitly references the frame pointer, have
576
     all such references point to the same frame pointer.  This is
577
     used during frame pointer elimination to distinguish the explicit
578
     references to these registers from pseudos that happened to be
579
     assigned to them.
580
 
581
     If we have eliminated the frame pointer or arg pointer, we will
582
     be using it as a normal register, for example as a spill
583
     register.  In such cases, we might be accessing it in a mode that
584
     is not Pmode and therefore cannot use the pre-allocated rtx.
585
 
586
     Also don't do this when we are making new REGs in reload, since
587
     we don't want to get confused with the real pointers.  */
588
 
589
  if (mode == Pmode && !reload_in_progress)
590
    {
591
      if (regno == FRAME_POINTER_REGNUM
592
          && (!reload_completed || frame_pointer_needed))
593
        return frame_pointer_rtx;
594
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
595
      if (regno == HARD_FRAME_POINTER_REGNUM
596
          && (!reload_completed || frame_pointer_needed))
597
        return hard_frame_pointer_rtx;
598
#endif
599
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600
      if (regno == ARG_POINTER_REGNUM)
601
        return arg_pointer_rtx;
602
#endif
603
#ifdef RETURN_ADDRESS_POINTER_REGNUM
604
      if (regno == RETURN_ADDRESS_POINTER_REGNUM)
605
        return return_address_pointer_rtx;
606
#endif
607
      if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
608
          && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
609
        return pic_offset_table_rtx;
610
      if (regno == STACK_POINTER_REGNUM)
611
        return stack_pointer_rtx;
612
    }
613
 
614
#if 0
615
  /* If the per-function register table has been set up, try to re-use
616
     an existing entry in that table to avoid useless generation of RTL.
617
 
618
     This code is disabled for now until we can fix the various backends
619
     which depend on having non-shared hard registers in some cases.   Long
620
     term we want to re-enable this code as it can significantly cut down
621
     on the amount of useless RTL that gets generated.
622
 
623
     We'll also need to fix some code that runs after reload that wants to
624
     set ORIGINAL_REGNO.  */
625
 
626
  if (cfun
627
      && cfun->emit
628
      && regno_reg_rtx
629
      && regno < FIRST_PSEUDO_REGISTER
630
      && reg_raw_mode[regno] == mode)
631
    return regno_reg_rtx[regno];
632
#endif
633
 
634
  return gen_raw_REG (mode, regno);
635
}
636
 
637
rtx
638
gen_rtx_MEM (enum machine_mode mode, rtx addr)
639
{
640
  rtx rt = gen_rtx_raw_MEM (mode, addr);
641
 
642
  /* This field is not cleared by the mere allocation of the rtx, so
643
     we clear it here.  */
644
  MEM_ATTRS (rt) = 0;
645
 
646
  return rt;
647
}
648
 
649
/* Generate a memory referring to non-trapping constant memory.  */
650
 
651
rtx
652
gen_const_mem (enum machine_mode mode, rtx addr)
653
{
654
  rtx mem = gen_rtx_MEM (mode, addr);
655
  MEM_READONLY_P (mem) = 1;
656
  MEM_NOTRAP_P (mem) = 1;
657
  return mem;
658
}
659
 
660
/* Generate a MEM referring to fixed portions of the frame, e.g., register
661
   save areas.  */
662
 
663
rtx
664
gen_frame_mem (enum machine_mode mode, rtx addr)
665
{
666
  rtx mem = gen_rtx_MEM (mode, addr);
667
  MEM_NOTRAP_P (mem) = 1;
668
  set_mem_alias_set (mem, get_frame_alias_set ());
669
  return mem;
670
}
671
 
672
/* Generate a MEM referring to a temporary use of the stack, not part
673
    of the fixed stack frame.  For example, something which is pushed
674
    by a target splitter.  */
675
rtx
676
gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
677
{
678
  rtx mem = gen_rtx_MEM (mode, addr);
679
  MEM_NOTRAP_P (mem) = 1;
680
  if (!cfun->calls_alloca)
681
    set_mem_alias_set (mem, get_frame_alias_set ());
682
  return mem;
683
}
684
 
685
/* We want to create (subreg:OMODE (obj:IMODE) OFFSET).  Return true if
686
   this construct would be valid, and false otherwise.  */
687
 
688
bool
689
validate_subreg (enum machine_mode omode, enum machine_mode imode,
690
                 const_rtx reg, unsigned int offset)
691
{
692
  unsigned int isize = GET_MODE_SIZE (imode);
693
  unsigned int osize = GET_MODE_SIZE (omode);
694
 
695
  /* All subregs must be aligned.  */
696
  if (offset % osize != 0)
697
    return false;
698
 
699
  /* The subreg offset cannot be outside the inner object.  */
700
  if (offset >= isize)
701
    return false;
702
 
703
  /* ??? This should not be here.  Temporarily continue to allow word_mode
704
     subregs of anything.  The most common offender is (subreg:SI (reg:DF)).
705
     Generally, backends are doing something sketchy but it'll take time to
706
     fix them all.  */
707
  if (omode == word_mode)
708
    ;
709
  /* ??? Similarly, e.g. with (subreg:DF (reg:TI)).  Though store_bit_field
710
     is the culprit here, and not the backends.  */
711
  else if (osize >= UNITS_PER_WORD && isize >= osize)
712
    ;
713
  /* Allow component subregs of complex and vector.  Though given the below
714
     extraction rules, it's not always clear what that means.  */
715
  else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
716
           && GET_MODE_INNER (imode) == omode)
717
    ;
718
  /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
719
     i.e. (subreg:V4SF (reg:SF) 0).  This surely isn't the cleanest way to
720
     represent this.  It's questionable if this ought to be represented at
721
     all -- why can't this all be hidden in post-reload splitters that make
722
     arbitrarily mode changes to the registers themselves.  */
723
  else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
724
    ;
725
  /* Subregs involving floating point modes are not allowed to
726
     change size.  Therefore (subreg:DI (reg:DF) 0) is fine, but
727
     (subreg:SI (reg:DF) 0) isn't.  */
728
  else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
729
    {
730
      if (isize != osize)
731
        return false;
732
    }
733
 
734
  /* Paradoxical subregs must have offset zero.  */
735
  if (osize > isize)
736
    return offset == 0;
737
 
738
  /* This is a normal subreg.  Verify that the offset is representable.  */
739
 
740
  /* For hard registers, we already have most of these rules collected in
741
     subreg_offset_representable_p.  */
742
  if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
743
    {
744
      unsigned int regno = REGNO (reg);
745
 
746
#ifdef CANNOT_CHANGE_MODE_CLASS
747
      if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
748
          && GET_MODE_INNER (imode) == omode)
749
        ;
750
      else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
751
        return false;
752
#endif
753
 
754
      return subreg_offset_representable_p (regno, imode, offset, omode);
755
    }
756
 
757
  /* For pseudo registers, we want most of the same checks.  Namely:
758
     If the register no larger than a word, the subreg must be lowpart.
759
     If the register is larger than a word, the subreg must be the lowpart
760
     of a subword.  A subreg does *not* perform arbitrary bit extraction.
761
     Given that we've already checked mode/offset alignment, we only have
762
     to check subword subregs here.  */
763
  if (osize < UNITS_PER_WORD)
764
    {
765
      enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766
      unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767
      if (offset % UNITS_PER_WORD != low_off)
768
        return false;
769
    }
770
  return true;
771
}
772
 
773
rtx
774
gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775
{
776
  gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
777
  return gen_rtx_raw_SUBREG (mode, reg, offset);
778
}
779
 
780
/* Generate a SUBREG representing the least-significant part of REG if MODE
781
   is smaller than mode of REG, otherwise paradoxical SUBREG.  */
782
 
783
rtx
784
gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
785
{
786
  enum machine_mode inmode;
787
 
788
  inmode = GET_MODE (reg);
789
  if (inmode == VOIDmode)
790
    inmode = mode;
791
  return gen_rtx_SUBREG (mode, reg,
792
                         subreg_lowpart_offset (mode, inmode));
793
}
794
 
795
 
796
/* Create an rtvec and stores within it the RTXen passed in the arguments.  */
797
 
798
rtvec
799
gen_rtvec (int n, ...)
800
{
801
  int i;
802
  rtvec rt_val;
803
  va_list p;
804
 
805
  va_start (p, n);
806
 
807
  /* Don't allocate an empty rtvec...  */
808
  if (n == 0)
809
    return NULL_RTVEC;
810
 
811
  rt_val = rtvec_alloc (n);
812
 
813
  for (i = 0; i < n; i++)
814
    rt_val->elem[i] = va_arg (p, rtx);
815
 
816
  va_end (p);
817
  return rt_val;
818
}
819
 
820
rtvec
821
gen_rtvec_v (int n, rtx *argp)
822
{
823
  int i;
824
  rtvec rt_val;
825
 
826
  /* Don't allocate an empty rtvec...  */
827
  if (n == 0)
828
    return NULL_RTVEC;
829
 
830
  rt_val = rtvec_alloc (n);
831
 
832
  for (i = 0; i < n; i++)
833
    rt_val->elem[i] = *argp++;
834
 
835
  return rt_val;
836
}
837
 
838
/* Return the number of bytes between the start of an OUTER_MODE
839
   in-memory value and the start of an INNER_MODE in-memory value,
840
   given that the former is a lowpart of the latter.  It may be a
841
   paradoxical lowpart, in which case the offset will be negative
842
   on big-endian targets.  */
843
 
844
int
845
byte_lowpart_offset (enum machine_mode outer_mode,
846
                     enum machine_mode inner_mode)
847
{
848
  if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
849
    return subreg_lowpart_offset (outer_mode, inner_mode);
850
  else
851
    return -subreg_lowpart_offset (inner_mode, outer_mode);
852
}
853
 
854
/* Generate a REG rtx for a new pseudo register of mode MODE.
855
   This pseudo is assigned the next sequential register number.  */
856
 
857
rtx
858
gen_reg_rtx (enum machine_mode mode)
859
{
860
  rtx val;
861
  unsigned int align = GET_MODE_ALIGNMENT (mode);
862
 
863
  gcc_assert (can_create_pseudo_p ());
864
 
865
  /* If a virtual register with bigger mode alignment is generated,
866
     increase stack alignment estimation because it might be spilled
867
     to stack later.  */
868
  if (SUPPORTS_STACK_ALIGNMENT
869
      && crtl->stack_alignment_estimated < align
870
      && !crtl->stack_realign_processed)
871
    {
872
      unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
873
      if (crtl->stack_alignment_estimated < min_align)
874
        crtl->stack_alignment_estimated = min_align;
875
    }
876
 
877
  if (generating_concat_p
878
      && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
879
          || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880
    {
881
      /* For complex modes, don't make a single pseudo.
882
         Instead, make a CONCAT of two pseudos.
883
         This allows noncontiguous allocation of the real and imaginary parts,
884
         which makes much better code.  Besides, allocating DCmode
885
         pseudos overstrains reload on some machines like the 386.  */
886
      rtx realpart, imagpart;
887
      enum machine_mode partmode = GET_MODE_INNER (mode);
888
 
889
      realpart = gen_reg_rtx (partmode);
890
      imagpart = gen_reg_rtx (partmode);
891
      return gen_rtx_CONCAT (mode, realpart, imagpart);
892
    }
893
 
894
  /* Make sure regno_pointer_align, and regno_reg_rtx are large
895
     enough to have an element for this pseudo reg number.  */
896
 
897
  if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898
    {
899
      int old_size = crtl->emit.regno_pointer_align_length;
900
      char *tmp;
901
      rtx *new1;
902
 
903
      tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
904
      memset (tmp + old_size, 0, old_size);
905
      crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906
 
907
      new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
908
      memset (new1 + old_size, 0, old_size * sizeof (rtx));
909
      regno_reg_rtx = new1;
910
 
911
      crtl->emit.regno_pointer_align_length = old_size * 2;
912
    }
913
 
914
  val = gen_raw_REG (mode, reg_rtx_no);
915
  regno_reg_rtx[reg_rtx_no++] = val;
916
  return val;
917
}
918
 
919
/* Update NEW with the same attributes as REG, but with OFFSET added
920
   to the REG_OFFSET.  */
921
 
922
static void
923
update_reg_offset (rtx new_rtx, rtx reg, int offset)
924
{
925
  REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
926
                                   REG_OFFSET (reg) + offset);
927
}
928
 
929
/* Generate a register with same attributes as REG, but with OFFSET
930
   added to the REG_OFFSET.  */
931
 
932
rtx
933
gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
934
                    int offset)
935
{
936
  rtx new_rtx = gen_rtx_REG (mode, regno);
937
 
938
  update_reg_offset (new_rtx, reg, offset);
939
  return new_rtx;
940
}
941
 
942
/* Generate a new pseudo-register with the same attributes as REG, but
943
   with OFFSET added to the REG_OFFSET.  */
944
 
945
rtx
946
gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947
{
948
  rtx new_rtx = gen_reg_rtx (mode);
949
 
950
  update_reg_offset (new_rtx, reg, offset);
951
  return new_rtx;
952
}
953
 
954
/* Adjust REG in-place so that it has mode MODE.  It is assumed that the
955
   new register is a (possibly paradoxical) lowpart of the old one.  */
956
 
957
void
958
adjust_reg_mode (rtx reg, enum machine_mode mode)
959
{
960
  update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
961
  PUT_MODE (reg, mode);
962
}
963
 
964
/* Copy REG's attributes from X, if X has any attributes.  If REG and X
965
   have different modes, REG is a (possibly paradoxical) lowpart of X.  */
966
 
967
void
968
set_reg_attrs_from_value (rtx reg, rtx x)
969
{
970
  int offset;
971
 
972
  /* Hard registers can be reused for multiple purposes within the same
973
     function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
974
     on them is wrong.  */
975
  if (HARD_REGISTER_P (reg))
976
    return;
977
 
978
  offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
979
  if (MEM_P (x))
980
    {
981
      if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
982
        REG_ATTRS (reg)
983
          = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
984
      if (MEM_POINTER (x))
985
        mark_reg_pointer (reg, 0);
986
    }
987
  else if (REG_P (x))
988
    {
989
      if (REG_ATTRS (x))
990
        update_reg_offset (reg, x, offset);
991
      if (REG_POINTER (x))
992
        mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
993
    }
994
}
995
 
996
/* Generate a REG rtx for a new pseudo register, copying the mode
997
   and attributes from X.  */
998
 
999
rtx
1000
gen_reg_rtx_and_attrs (rtx x)
1001
{
1002
  rtx reg = gen_reg_rtx (GET_MODE (x));
1003
  set_reg_attrs_from_value (reg, x);
1004
  return reg;
1005
}
1006
 
1007
/* Set the register attributes for registers contained in PARM_RTX.
1008
   Use needed values from memory attributes of MEM.  */
1009
 
1010
void
1011
set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1012
{
1013
  if (REG_P (parm_rtx))
1014
    set_reg_attrs_from_value (parm_rtx, mem);
1015
  else if (GET_CODE (parm_rtx) == PARALLEL)
1016
    {
1017
      /* Check for a NULL entry in the first slot, used to indicate that the
1018
         parameter goes both on the stack and in registers.  */
1019
      int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1020
      for (; i < XVECLEN (parm_rtx, 0); i++)
1021
        {
1022
          rtx x = XVECEXP (parm_rtx, 0, i);
1023
          if (REG_P (XEXP (x, 0)))
1024
            REG_ATTRS (XEXP (x, 0))
1025
              = get_reg_attrs (MEM_EXPR (mem),
1026
                               INTVAL (XEXP (x, 1)));
1027
        }
1028
    }
1029
}
1030
 
1031
/* Set the REG_ATTRS for registers in value X, given that X represents
1032
   decl T.  */
1033
 
1034
void
1035
set_reg_attrs_for_decl_rtl (tree t, rtx x)
1036
{
1037
  if (GET_CODE (x) == SUBREG)
1038
    {
1039
      gcc_assert (subreg_lowpart_p (x));
1040
      x = SUBREG_REG (x);
1041
    }
1042
  if (REG_P (x))
1043
    REG_ATTRS (x)
1044
      = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1045
                                               DECL_MODE (t)));
1046
  if (GET_CODE (x) == CONCAT)
1047
    {
1048
      if (REG_P (XEXP (x, 0)))
1049
        REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1050
      if (REG_P (XEXP (x, 1)))
1051
        REG_ATTRS (XEXP (x, 1))
1052
          = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1053
    }
1054
  if (GET_CODE (x) == PARALLEL)
1055
    {
1056
      int i, start;
1057
 
1058
      /* Check for a NULL entry, used to indicate that the parameter goes
1059
         both on the stack and in registers.  */
1060
      if (XEXP (XVECEXP (x, 0, 0), 0))
1061
        start = 0;
1062
      else
1063
        start = 1;
1064
 
1065
      for (i = start; i < XVECLEN (x, 0); i++)
1066
        {
1067
          rtx y = XVECEXP (x, 0, i);
1068
          if (REG_P (XEXP (y, 0)))
1069
            REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1070
        }
1071
    }
1072
}
1073
 
1074
/* Assign the RTX X to declaration T.  */
1075
 
1076
void
1077
set_decl_rtl (tree t, rtx x)
1078
{
1079
  DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1080
  if (x)
1081
    set_reg_attrs_for_decl_rtl (t, x);
1082
}
1083
 
1084
/* Assign the RTX X to parameter declaration T.  BY_REFERENCE_P is true
1085
   if the ABI requires the parameter to be passed by reference.  */
1086
 
1087
void
1088
set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1089
{
1090
  DECL_INCOMING_RTL (t) = x;
1091
  if (x && !by_reference_p)
1092
    set_reg_attrs_for_decl_rtl (t, x);
1093
}
1094
 
1095
/* Identify REG (which may be a CONCAT) as a user register.  */
1096
 
1097
void
1098
mark_user_reg (rtx reg)
1099
{
1100
  if (GET_CODE (reg) == CONCAT)
1101
    {
1102
      REG_USERVAR_P (XEXP (reg, 0)) = 1;
1103
      REG_USERVAR_P (XEXP (reg, 1)) = 1;
1104
    }
1105
  else
1106
    {
1107
      gcc_assert (REG_P (reg));
1108
      REG_USERVAR_P (reg) = 1;
1109
    }
1110
}
1111
 
1112
/* Identify REG as a probable pointer register and show its alignment
1113
   as ALIGN, if nonzero.  */
1114
 
1115
void
1116
mark_reg_pointer (rtx reg, int align)
1117
{
1118
  if (! REG_POINTER (reg))
1119
    {
1120
      REG_POINTER (reg) = 1;
1121
 
1122
      if (align)
1123
        REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1124
    }
1125
  else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1126
    /* We can no-longer be sure just how aligned this pointer is.  */
1127
    REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1128
}
1129
 
1130
/* Return 1 plus largest pseudo reg number used in the current function.  */
1131
 
1132
int
1133
max_reg_num (void)
1134
{
1135
  return reg_rtx_no;
1136
}
1137
 
1138
/* Return 1 + the largest label number used so far in the current function.  */
1139
 
1140
int
1141
max_label_num (void)
1142
{
1143
  return label_num;
1144
}
1145
 
1146
/* Return first label number used in this function (if any were used).  */
1147
 
1148
int
1149
get_first_label_num (void)
1150
{
1151
  return first_label_num;
1152
}
1153
 
1154
/* If the rtx for label was created during the expansion of a nested
1155
   function, then first_label_num won't include this label number.
1156
   Fix this now so that array indices work later.  */
1157
 
1158
void
1159
maybe_set_first_label_num (rtx x)
1160
{
1161
  if (CODE_LABEL_NUMBER (x) < first_label_num)
1162
    first_label_num = CODE_LABEL_NUMBER (x);
1163
}
1164
 
1165
/* Return a value representing some low-order bits of X, where the number
1166
   of low-order bits is given by MODE.  Note that no conversion is done
1167
   between floating-point and fixed-point values, rather, the bit
1168
   representation is returned.
1169
 
1170
   This function handles the cases in common between gen_lowpart, below,
1171
   and two variants in cse.c and combine.c.  These are the cases that can
1172
   be safely handled at all points in the compilation.
1173
 
1174
   If this is not a case we can handle, return 0.  */
1175
 
1176
rtx
1177
gen_lowpart_common (enum machine_mode mode, rtx x)
1178
{
1179
  int msize = GET_MODE_SIZE (mode);
1180
  int xsize;
1181
  int offset = 0;
1182
  enum machine_mode innermode;
1183
 
1184
  /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1185
     so we have to make one up.  Yuk.  */
1186
  innermode = GET_MODE (x);
1187
  if (CONST_INT_P (x)
1188
      && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1189
    innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1190
  else if (innermode == VOIDmode)
1191
    innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1192
 
1193
  xsize = GET_MODE_SIZE (innermode);
1194
 
1195
  gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1196
 
1197
  if (innermode == mode)
1198
    return x;
1199
 
1200
  /* MODE must occupy no more words than the mode of X.  */
1201
  if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1202
      > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1203
    return 0;
1204
 
1205
  /* Don't allow generating paradoxical FLOAT_MODE subregs.  */
1206
  if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1207
    return 0;
1208
 
1209
  offset = subreg_lowpart_offset (mode, innermode);
1210
 
1211
  if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1212
      && (GET_MODE_CLASS (mode) == MODE_INT
1213
          || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1214
    {
1215
      /* If we are getting the low-order part of something that has been
1216
         sign- or zero-extended, we can either just use the object being
1217
         extended or make a narrower extension.  If we want an even smaller
1218
         piece than the size of the object being extended, call ourselves
1219
         recursively.
1220
 
1221
         This case is used mostly by combine and cse.  */
1222
 
1223
      if (GET_MODE (XEXP (x, 0)) == mode)
1224
        return XEXP (x, 0);
1225
      else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1226
        return gen_lowpart_common (mode, XEXP (x, 0));
1227
      else if (msize < xsize)
1228
        return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1229
    }
1230
  else if (GET_CODE (x) == SUBREG || REG_P (x)
1231
           || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1232
           || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1233
    return simplify_gen_subreg (mode, x, innermode, offset);
1234
 
1235
  /* Otherwise, we can't do this.  */
1236
  return 0;
1237
}
1238
 
1239
rtx
1240
gen_highpart (enum machine_mode mode, rtx x)
1241
{
1242
  unsigned int msize = GET_MODE_SIZE (mode);
1243
  rtx result;
1244
 
1245
  /* This case loses if X is a subreg.  To catch bugs early,
1246
     complain if an invalid MODE is used even in other cases.  */
1247
  gcc_assert (msize <= UNITS_PER_WORD
1248
              || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1249
 
1250
  result = simplify_gen_subreg (mode, x, GET_MODE (x),
1251
                                subreg_highpart_offset (mode, GET_MODE (x)));
1252
  gcc_assert (result);
1253
 
1254
  /* simplify_gen_subreg is not guaranteed to return a valid operand for
1255
     the target if we have a MEM.  gen_highpart must return a valid operand,
1256
     emitting code if necessary to do so.  */
1257
  if (MEM_P (result))
1258
    {
1259
      result = validize_mem (result);
1260
      gcc_assert (result);
1261
    }
1262
 
1263
  return result;
1264
}
1265
 
1266
/* Like gen_highpart, but accept mode of EXP operand in case EXP can
1267
   be VOIDmode constant.  */
1268
rtx
1269
gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1270
{
1271
  if (GET_MODE (exp) != VOIDmode)
1272
    {
1273
      gcc_assert (GET_MODE (exp) == innermode);
1274
      return gen_highpart (outermode, exp);
1275
    }
1276
  return simplify_gen_subreg (outermode, exp, innermode,
1277
                              subreg_highpart_offset (outermode, innermode));
1278
}
1279
 
1280
/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */
1281
 
1282
unsigned int
1283
subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1284
{
1285
  unsigned int offset = 0;
1286
  int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1287
 
1288
  if (difference > 0)
1289
    {
1290
      if (WORDS_BIG_ENDIAN)
1291
        offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1292
      if (BYTES_BIG_ENDIAN)
1293
        offset += difference % UNITS_PER_WORD;
1294
    }
1295
 
1296
  return offset;
1297
}
1298
 
1299
/* Return offset in bytes to get OUTERMODE high part
1300
   of the value in mode INNERMODE stored in memory in target format.  */
1301
unsigned int
1302
subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1303
{
1304
  unsigned int offset = 0;
1305
  int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1306
 
1307
  gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1308
 
1309
  if (difference > 0)
1310
    {
1311
      if (! WORDS_BIG_ENDIAN)
1312
        offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1313
      if (! BYTES_BIG_ENDIAN)
1314
        offset += difference % UNITS_PER_WORD;
1315
    }
1316
 
1317
  return offset;
1318
}
1319
 
1320
/* Return 1 iff X, assumed to be a SUBREG,
1321
   refers to the least significant part of its containing reg.
1322
   If X is not a SUBREG, always return 1 (it is its own low part!).  */
1323
 
1324
int
1325
subreg_lowpart_p (const_rtx x)
1326
{
1327
  if (GET_CODE (x) != SUBREG)
1328
    return 1;
1329
  else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1330
    return 0;
1331
 
1332
  return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1333
          == SUBREG_BYTE (x));
1334
}
1335
 
1336
/* Return subword OFFSET of operand OP.
1337
   The word number, OFFSET, is interpreted as the word number starting
1338
   at the low-order address.  OFFSET 0 is the low-order word if not
1339
   WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1340
 
1341
   If we cannot extract the required word, we return zero.  Otherwise,
1342
   an rtx corresponding to the requested word will be returned.
1343
 
1344
   VALIDATE_ADDRESS is nonzero if the address should be validated.  Before
1345
   reload has completed, a valid address will always be returned.  After
1346
   reload, if a valid address cannot be returned, we return zero.
1347
 
1348
   If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1349
   it is the responsibility of the caller.
1350
 
1351
   MODE is the mode of OP in case it is a CONST_INT.
1352
 
1353
   ??? This is still rather broken for some cases.  The problem for the
1354
   moment is that all callers of this thing provide no 'goal mode' to
1355
   tell us to work with.  This exists because all callers were written
1356
   in a word based SUBREG world.
1357
   Now use of this function can be deprecated by simplify_subreg in most
1358
   cases.
1359
 */
1360
 
1361
rtx
1362
operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1363
{
1364
  if (mode == VOIDmode)
1365
    mode = GET_MODE (op);
1366
 
1367
  gcc_assert (mode != VOIDmode);
1368
 
1369
  /* If OP is narrower than a word, fail.  */
1370
  if (mode != BLKmode
1371
      && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1372
    return 0;
1373
 
1374
  /* If we want a word outside OP, return zero.  */
1375
  if (mode != BLKmode
1376
      && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1377
    return const0_rtx;
1378
 
1379
  /* Form a new MEM at the requested address.  */
1380
  if (MEM_P (op))
1381
    {
1382
      rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1383
 
1384
      if (! validate_address)
1385
        return new_rtx;
1386
 
1387
      else if (reload_completed)
1388
        {
1389
          if (! strict_memory_address_addr_space_p (word_mode,
1390
                                                    XEXP (new_rtx, 0),
1391
                                                    MEM_ADDR_SPACE (op)))
1392
            return 0;
1393
        }
1394
      else
1395
        return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1396
    }
1397
 
1398
  /* Rest can be handled by simplify_subreg.  */
1399
  return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1400
}
1401
 
1402
/* Similar to `operand_subword', but never return 0.  If we can't
1403
   extract the required subword, put OP into a register and try again.
1404
   The second attempt must succeed.  We always validate the address in
1405
   this case.
1406
 
1407
   MODE is the mode of OP, in case it is CONST_INT.  */
1408
 
1409
rtx
1410
operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1411
{
1412
  rtx result = operand_subword (op, offset, 1, mode);
1413
 
1414
  if (result)
1415
    return result;
1416
 
1417
  if (mode != BLKmode && mode != VOIDmode)
1418
    {
1419
      /* If this is a register which can not be accessed by words, copy it
1420
         to a pseudo register.  */
1421
      if (REG_P (op))
1422
        op = copy_to_reg (op);
1423
      else
1424
        op = force_reg (mode, op);
1425
    }
1426
 
1427
  result = operand_subword (op, offset, 1, mode);
1428
  gcc_assert (result);
1429
 
1430
  return result;
1431
}
1432
 
1433
/* Returns 1 if both MEM_EXPR can be considered equal
1434
   and 0 otherwise.  */
1435
 
1436
int
1437
mem_expr_equal_p (const_tree expr1, const_tree expr2)
1438
{
1439
  if (expr1 == expr2)
1440
    return 1;
1441
 
1442
  if (! expr1 || ! expr2)
1443
    return 0;
1444
 
1445
  if (TREE_CODE (expr1) != TREE_CODE (expr2))
1446
    return 0;
1447
 
1448
  return operand_equal_p (expr1, expr2, 0);
1449
}
1450
 
1451
/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1452
   bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1453
   -1 if not known.  */
1454
 
1455
int
1456
get_mem_align_offset (rtx mem, unsigned int align)
1457
{
1458
  tree expr;
1459
  unsigned HOST_WIDE_INT offset;
1460
 
1461
  /* This function can't use
1462
     if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1463
         || !CONST_INT_P (MEM_OFFSET (mem))
1464
         || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1465
             < align))
1466
       return -1;
1467
     else
1468
       return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469
     for two reasons:
1470
     - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1471
       for <variable>.  get_inner_reference doesn't handle it and
1472
       even if it did, the alignment in that case needs to be determined
1473
       from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1474
     - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1475
       isn't sufficiently aligned, the object it is in might be.  */
1476
  gcc_assert (MEM_P (mem));
1477
  expr = MEM_EXPR (mem);
1478
  if (expr == NULL_TREE
1479
      || MEM_OFFSET (mem) == NULL_RTX
1480
      || !CONST_INT_P (MEM_OFFSET (mem)))
1481
    return -1;
1482
 
1483
  offset = INTVAL (MEM_OFFSET (mem));
1484
  if (DECL_P (expr))
1485
    {
1486
      if (DECL_ALIGN (expr) < align)
1487
        return -1;
1488
    }
1489
  else if (INDIRECT_REF_P (expr))
1490
    {
1491
      if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1492
        return -1;
1493
    }
1494
  else if (TREE_CODE (expr) == COMPONENT_REF)
1495
    {
1496
      while (1)
1497
        {
1498
          tree inner = TREE_OPERAND (expr, 0);
1499
          tree field = TREE_OPERAND (expr, 1);
1500
          tree byte_offset = component_ref_field_offset (expr);
1501
          tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1502
 
1503
          if (!byte_offset
1504
              || !host_integerp (byte_offset, 1)
1505
              || !host_integerp (bit_offset, 1))
1506
            return -1;
1507
 
1508
          offset += tree_low_cst (byte_offset, 1);
1509
          offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1510
 
1511
          if (inner == NULL_TREE)
1512
            {
1513
              if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1514
                  < (unsigned int) align)
1515
                return -1;
1516
              break;
1517
            }
1518
          else if (DECL_P (inner))
1519
            {
1520
              if (DECL_ALIGN (inner) < align)
1521
                return -1;
1522
              break;
1523
            }
1524
          else if (TREE_CODE (inner) != COMPONENT_REF)
1525
            return -1;
1526
          expr = inner;
1527
        }
1528
    }
1529
  else
1530
    return -1;
1531
 
1532
  return offset & ((align / BITS_PER_UNIT) - 1);
1533
}
1534
 
1535
/* Given REF (a MEM) and T, either the type of X or the expression
1536
   corresponding to REF, set the memory attributes.  OBJECTP is nonzero
1537
   if we are making a new object of this type.  BITPOS is nonzero if
1538
   there is an offset outstanding on T that will be applied later.  */
1539
 
1540
void
1541
set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1542
                                 HOST_WIDE_INT bitpos)
1543
{
1544
  alias_set_type alias = MEM_ALIAS_SET (ref);
1545
  tree expr = MEM_EXPR (ref);
1546
  rtx offset = MEM_OFFSET (ref);
1547
  rtx size = MEM_SIZE (ref);
1548
  unsigned int align = MEM_ALIGN (ref);
1549
  HOST_WIDE_INT apply_bitpos = 0;
1550
  tree type;
1551
 
1552
  /* It can happen that type_for_mode was given a mode for which there
1553
     is no language-level type.  In which case it returns NULL, which
1554
     we can see here.  */
1555
  if (t == NULL_TREE)
1556
    return;
1557
 
1558
  type = TYPE_P (t) ? t : TREE_TYPE (t);
1559
  if (type == error_mark_node)
1560
    return;
1561
 
1562
  /* If we have already set DECL_RTL = ref, get_alias_set will get the
1563
     wrong answer, as it assumes that DECL_RTL already has the right alias
1564
     info.  Callers should not set DECL_RTL until after the call to
1565
     set_mem_attributes.  */
1566
  gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1567
 
1568
  /* Get the alias set from the expression or type (perhaps using a
1569
     front-end routine) and use it.  */
1570
  alias = get_alias_set (t);
1571
 
1572
  MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1573
  MEM_IN_STRUCT_P (ref)
1574
    = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1575
  MEM_POINTER (ref) = POINTER_TYPE_P (type);
1576
 
1577
  /* If we are making an object of this type, or if this is a DECL, we know
1578
     that it is a scalar if the type is not an aggregate.  */
1579
  if ((objectp || DECL_P (t))
1580
      && ! AGGREGATE_TYPE_P (type)
1581
      && TREE_CODE (type) != COMPLEX_TYPE)
1582
    MEM_SCALAR_P (ref) = 1;
1583
 
1584
  /* We can set the alignment from the type if we are making an object,
1585
     this is an INDIRECT_REF, or if TYPE_ALIGN_OK.  */
1586
  if (objectp || TREE_CODE (t) == INDIRECT_REF
1587
      || TREE_CODE (t) == ALIGN_INDIRECT_REF
1588
      || TYPE_ALIGN_OK (type))
1589
    align = MAX (align, TYPE_ALIGN (type));
1590
  else
1591
    if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1592
      {
1593
        if (integer_zerop (TREE_OPERAND (t, 1)))
1594
          /* We don't know anything about the alignment.  */
1595
          align = BITS_PER_UNIT;
1596
        else
1597
          align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1598
      }
1599
 
1600
  /* If the size is known, we can set that.  */
1601
  if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1602
    size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1603
 
1604
  /* If T is not a type, we may be able to deduce some more information about
1605
     the expression.  */
1606
  if (! TYPE_P (t))
1607
    {
1608
      tree base;
1609
      bool align_computed = false;
1610
 
1611
      if (TREE_THIS_VOLATILE (t))
1612
        MEM_VOLATILE_P (ref) = 1;
1613
 
1614
      /* Now remove any conversions: they don't change what the underlying
1615
         object is.  Likewise for SAVE_EXPR.  */
1616
      while (CONVERT_EXPR_P (t)
1617
             || TREE_CODE (t) == VIEW_CONVERT_EXPR
1618
             || TREE_CODE (t) == SAVE_EXPR)
1619
        t = TREE_OPERAND (t, 0);
1620
 
1621
      /* We may look through structure-like accesses for the purposes of
1622
         examining TREE_THIS_NOTRAP, but not array-like accesses.  */
1623
      base = t;
1624
      while (TREE_CODE (base) == COMPONENT_REF
1625
             || TREE_CODE (base) == REALPART_EXPR
1626
             || TREE_CODE (base) == IMAGPART_EXPR
1627
             || TREE_CODE (base) == BIT_FIELD_REF)
1628
        base = TREE_OPERAND (base, 0);
1629
 
1630
      if (DECL_P (base))
1631
        {
1632
          if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1633
            MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1634
          else
1635
            MEM_NOTRAP_P (ref) = 1;
1636
        }
1637
      else
1638
        MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1639
 
1640
      base = get_base_address (base);
1641
      if (base && DECL_P (base)
1642
          && TREE_READONLY (base)
1643
          && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1644
        {
1645
          tree base_type = TREE_TYPE (base);
1646
          gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1647
                      || DECL_ARTIFICIAL (base));
1648
          MEM_READONLY_P (ref) = 1;
1649
        }
1650
 
1651
      /* If this expression uses it's parent's alias set, mark it such
1652
         that we won't change it.  */
1653
      if (component_uses_parent_alias_set (t))
1654
        MEM_KEEP_ALIAS_SET_P (ref) = 1;
1655
 
1656
      /* If this is a decl, set the attributes of the MEM from it.  */
1657
      if (DECL_P (t))
1658
        {
1659
          expr = t;
1660
          offset = const0_rtx;
1661
          apply_bitpos = bitpos;
1662
          size = (DECL_SIZE_UNIT (t)
1663
                  && host_integerp (DECL_SIZE_UNIT (t), 1)
1664
                  ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1665
          align = DECL_ALIGN (t);
1666
          align_computed = true;
1667
        }
1668
 
1669
      /* If this is a constant, we know the alignment.  */
1670
      else if (CONSTANT_CLASS_P (t))
1671
        {
1672
          align = TYPE_ALIGN (type);
1673
#ifdef CONSTANT_ALIGNMENT
1674
          align = CONSTANT_ALIGNMENT (t, align);
1675
#endif
1676
          align_computed = true;
1677
        }
1678
 
1679
      /* If this is a field reference and not a bit-field, record it.  */
1680
      /* ??? There is some information that can be gleaned from bit-fields,
1681
         such as the word offset in the structure that might be modified.
1682
         But skip it for now.  */
1683
      else if (TREE_CODE (t) == COMPONENT_REF
1684
               && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1685
        {
1686
          expr = t;
1687
          offset = const0_rtx;
1688
          apply_bitpos = bitpos;
1689
          /* ??? Any reason the field size would be different than
1690
             the size we got from the type?  */
1691
        }
1692
 
1693
      /* If this is an array reference, look for an outer field reference.  */
1694
      else if (TREE_CODE (t) == ARRAY_REF)
1695
        {
1696
          tree off_tree = size_zero_node;
1697
          /* We can't modify t, because we use it at the end of the
1698
             function.  */
1699
          tree t2 = t;
1700
 
1701
          do
1702
            {
1703
              tree index = TREE_OPERAND (t2, 1);
1704
              tree low_bound = array_ref_low_bound (t2);
1705
              tree unit_size = array_ref_element_size (t2);
1706
 
1707
              /* We assume all arrays have sizes that are a multiple of a byte.
1708
                 First subtract the lower bound, if any, in the type of the
1709
                 index, then convert to sizetype and multiply by the size of
1710
                 the array element.  */
1711
              if (! integer_zerop (low_bound))
1712
                index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1713
                                     index, low_bound);
1714
 
1715
              off_tree = size_binop (PLUS_EXPR,
1716
                                     size_binop (MULT_EXPR,
1717
                                                 fold_convert (sizetype,
1718
                                                               index),
1719
                                                 unit_size),
1720
                                     off_tree);
1721
              t2 = TREE_OPERAND (t2, 0);
1722
            }
1723
          while (TREE_CODE (t2) == ARRAY_REF);
1724
 
1725
          if (DECL_P (t2))
1726
            {
1727
              expr = t2;
1728
              offset = NULL;
1729
              if (host_integerp (off_tree, 1))
1730
                {
1731
                  HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1732
                  HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1733
                  align = DECL_ALIGN (t2);
1734
                  if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1735
                    align = aoff;
1736
                  align_computed = true;
1737
                  offset = GEN_INT (ioff);
1738
                  apply_bitpos = bitpos;
1739
                }
1740
            }
1741
          else if (TREE_CODE (t2) == COMPONENT_REF)
1742
            {
1743
              expr = t2;
1744
              offset = NULL;
1745
              if (host_integerp (off_tree, 1))
1746
                {
1747
                  offset = GEN_INT (tree_low_cst (off_tree, 1));
1748
                  apply_bitpos = bitpos;
1749
                }
1750
              /* ??? Any reason the field size would be different than
1751
                 the size we got from the type?  */
1752
            }
1753
          else if (flag_argument_noalias > 1
1754
                   && (INDIRECT_REF_P (t2))
1755
                   && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1756
            {
1757
              expr = t2;
1758
              offset = NULL;
1759
            }
1760
        }
1761
 
1762
      /* If this is a Fortran indirect argument reference, record the
1763
         parameter decl.  */
1764
      else if (flag_argument_noalias > 1
1765
               && (INDIRECT_REF_P (t))
1766
               && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1767
        {
1768
          expr = t;
1769
          offset = NULL;
1770
        }
1771
 
1772
      if (!align_computed && !INDIRECT_REF_P (t))
1773
        {
1774
          unsigned int obj_align
1775
            = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1776
          align = MAX (align, obj_align);
1777
        }
1778
    }
1779
 
1780
  /* If we modified OFFSET based on T, then subtract the outstanding
1781
     bit position offset.  Similarly, increase the size of the accessed
1782
     object to contain the negative offset.  */
1783
  if (apply_bitpos)
1784
    {
1785
      offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1786
      if (size)
1787
        size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1788
    }
1789
 
1790
  if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1791
    {
1792
      /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1793
         we're overlapping.  */
1794
      offset = NULL;
1795
      expr = NULL;
1796
    }
1797
 
1798
  /* Now set the attributes we computed above.  */
1799
  MEM_ATTRS (ref)
1800
    = get_mem_attrs (alias, expr, offset, size, align,
1801
                     TYPE_ADDR_SPACE (type), GET_MODE (ref));
1802
 
1803
  /* If this is already known to be a scalar or aggregate, we are done.  */
1804
  if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1805
    return;
1806
 
1807
  /* If it is a reference into an aggregate, this is part of an aggregate.
1808
     Otherwise we don't know.  */
1809
  else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1810
           || TREE_CODE (t) == ARRAY_RANGE_REF
1811
           || TREE_CODE (t) == BIT_FIELD_REF)
1812
    MEM_IN_STRUCT_P (ref) = 1;
1813
}
1814
 
1815
void
1816
set_mem_attributes (rtx ref, tree t, int objectp)
1817
{
1818
  set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1819
}
1820
 
1821
/* Set the alias set of MEM to SET.  */
1822
 
1823
void
1824
set_mem_alias_set (rtx mem, alias_set_type set)
1825
{
1826
#ifdef ENABLE_CHECKING
1827
  /* If the new and old alias sets don't conflict, something is wrong.  */
1828
  gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1829
#endif
1830
 
1831
  MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1832
                                   MEM_SIZE (mem), MEM_ALIGN (mem),
1833
                                   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1834
}
1835
 
1836
/* Set the address space of MEM to ADDRSPACE (target-defined).  */
1837
 
1838
void
1839
set_mem_addr_space (rtx mem, addr_space_t addrspace)
1840
{
1841
  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1842
                                   MEM_OFFSET (mem), MEM_SIZE (mem),
1843
                                   MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1844
}
1845
 
1846
/* Set the alignment of MEM to ALIGN bits.  */
1847
 
1848
void
1849
set_mem_align (rtx mem, unsigned int align)
1850
{
1851
  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1852
                                   MEM_OFFSET (mem), MEM_SIZE (mem), align,
1853
                                   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1854
}
1855
 
1856
/* Set the expr for MEM to EXPR.  */
1857
 
1858
void
1859
set_mem_expr (rtx mem, tree expr)
1860
{
1861
  MEM_ATTRS (mem)
1862
    = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1863
                     MEM_SIZE (mem), MEM_ALIGN (mem),
1864
                     MEM_ADDR_SPACE (mem), GET_MODE (mem));
1865
}
1866
 
1867
/* Set the offset of MEM to OFFSET.  */
1868
 
1869
void
1870
set_mem_offset (rtx mem, rtx offset)
1871
{
1872
  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1873
                                   offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1874
                                   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1875
}
1876
 
1877
/* Set the size of MEM to SIZE.  */
1878
 
1879
void
1880
set_mem_size (rtx mem, rtx size)
1881
{
1882
  MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1883
                                   MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1884
                                   MEM_ADDR_SPACE (mem), GET_MODE (mem));
1885
}
1886
 
1887
/* Return a memory reference like MEMREF, but with its mode changed to MODE
1888
   and its address changed to ADDR.  (VOIDmode means don't change the mode.
1889
   NULL for ADDR means don't change the address.)  VALIDATE is nonzero if the
1890
   returned memory location is required to be valid.  The memory
1891
   attributes are not changed.  */
1892
 
1893
static rtx
1894
change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1895
{
1896
  addr_space_t as;
1897
  rtx new_rtx;
1898
 
1899
  gcc_assert (MEM_P (memref));
1900
  as = MEM_ADDR_SPACE (memref);
1901
  if (mode == VOIDmode)
1902
    mode = GET_MODE (memref);
1903
  if (addr == 0)
1904
    addr = XEXP (memref, 0);
1905
  if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1906
      && (!validate || memory_address_addr_space_p (mode, addr, as)))
1907
    return memref;
1908
 
1909
  if (validate)
1910
    {
1911
      if (reload_in_progress || reload_completed)
1912
        gcc_assert (memory_address_addr_space_p (mode, addr, as));
1913
      else
1914
        addr = memory_address_addr_space (mode, addr, as);
1915
    }
1916
 
1917
  if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1918
    return memref;
1919
 
1920
  new_rtx = gen_rtx_MEM (mode, addr);
1921
  MEM_COPY_ATTRIBUTES (new_rtx, memref);
1922
  return new_rtx;
1923
}
1924
 
1925
/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1926
   way we are changing MEMREF, so we only preserve the alias set.  */
1927
 
1928
rtx
1929
change_address (rtx memref, enum machine_mode mode, rtx addr)
1930
{
1931
  rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1932
  enum machine_mode mmode = GET_MODE (new_rtx);
1933
  unsigned int align;
1934
 
1935
  size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1936
  align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1937
 
1938
  /* If there are no changes, just return the original memory reference.  */
1939
  if (new_rtx == memref)
1940
    {
1941
      if (MEM_ATTRS (memref) == 0
1942
          || (MEM_EXPR (memref) == NULL
1943
              && MEM_OFFSET (memref) == NULL
1944
              && MEM_SIZE (memref) == size
1945
              && MEM_ALIGN (memref) == align))
1946
        return new_rtx;
1947
 
1948
      new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1949
      MEM_COPY_ATTRIBUTES (new_rtx, memref);
1950
    }
1951
 
1952
  MEM_ATTRS (new_rtx)
1953
    = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1954
                     MEM_ADDR_SPACE (memref), mmode);
1955
 
1956
  return new_rtx;
1957
}
1958
 
1959
/* Return a memory reference like MEMREF, but with its mode changed
1960
   to MODE and its address offset by OFFSET bytes.  If VALIDATE is
1961
   nonzero, the memory address is forced to be valid.
1962
   If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1963
   and caller is responsible for adjusting MEMREF base register.  */
1964
 
1965
rtx
1966
adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1967
                  int validate, int adjust)
1968
{
1969
  rtx addr = XEXP (memref, 0);
1970
  rtx new_rtx;
1971
  rtx memoffset = MEM_OFFSET (memref);
1972
  rtx size = 0;
1973
  unsigned int memalign = MEM_ALIGN (memref);
1974
  addr_space_t as = MEM_ADDR_SPACE (memref);
1975
  enum machine_mode address_mode = targetm.addr_space.address_mode (as);
1976
  int pbits;
1977
 
1978
  /* If there are no changes, just return the original memory reference.  */
1979
  if (mode == GET_MODE (memref) && !offset
1980
      && (!validate || memory_address_addr_space_p (mode, addr, as)))
1981
    return memref;
1982
 
1983
  /* ??? Prefer to create garbage instead of creating shared rtl.
1984
     This may happen even if offset is nonzero -- consider
1985
     (plus (plus reg reg) const_int) -- so do this always.  */
1986
  addr = copy_rtx (addr);
1987
 
1988
  /* Convert a possibly large offset to a signed value within the
1989
     range of the target address space.  */
1990
  pbits = GET_MODE_BITSIZE (address_mode);
1991
  if (HOST_BITS_PER_WIDE_INT > pbits)
1992
    {
1993
      int shift = HOST_BITS_PER_WIDE_INT - pbits;
1994
      offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1995
                >> shift);
1996
    }
1997
 
1998
  if (adjust)
1999
    {
2000
      /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2001
         object, we can merge it into the LO_SUM.  */
2002
      if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2003
          && offset >= 0
2004
          && (unsigned HOST_WIDE_INT) offset
2005
              < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2006
        addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2007
                               plus_constant (XEXP (addr, 1), offset));
2008
      else
2009
        addr = plus_constant (addr, offset);
2010
    }
2011
 
2012
  new_rtx = change_address_1 (memref, mode, addr, validate);
2013
 
2014
  /* If the address is a REG, change_address_1 rightfully returns memref,
2015
     but this would destroy memref's MEM_ATTRS.  */
2016
  if (new_rtx == memref && offset != 0)
2017
    new_rtx = copy_rtx (new_rtx);
2018
 
2019
  /* Compute the new values of the memory attributes due to this adjustment.
2020
     We add the offsets and update the alignment.  */
2021
  if (memoffset)
2022
    memoffset = GEN_INT (offset + INTVAL (memoffset));
2023
 
2024
  /* Compute the new alignment by taking the MIN of the alignment and the
2025
     lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2026
     if zero.  */
2027
  if (offset != 0)
2028
    memalign
2029
      = MIN (memalign,
2030
             (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2031
 
2032
  /* We can compute the size in a number of ways.  */
2033
  if (GET_MODE (new_rtx) != BLKmode)
2034
    size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2035
  else if (MEM_SIZE (memref))
2036
    size = plus_constant (MEM_SIZE (memref), -offset);
2037
 
2038
  MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2039
                                       memoffset, size, memalign, as,
2040
                                       GET_MODE (new_rtx));
2041
 
2042
  /* At some point, we should validate that this offset is within the object,
2043
     if all the appropriate values are known.  */
2044
  return new_rtx;
2045
}
2046
 
2047
/* Return a memory reference like MEMREF, but with its mode changed
2048
   to MODE and its address changed to ADDR, which is assumed to be
2049
   MEMREF offset by OFFSET bytes.  If VALIDATE is
2050
   nonzero, the memory address is forced to be valid.  */
2051
 
2052
rtx
2053
adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2054
                             HOST_WIDE_INT offset, int validate)
2055
{
2056
  memref = change_address_1 (memref, VOIDmode, addr, validate);
2057
  return adjust_address_1 (memref, mode, offset, validate, 0);
2058
}
2059
 
2060
/* Return a memory reference like MEMREF, but whose address is changed by
2061
   adding OFFSET, an RTX, to it.  POW2 is the highest power of two factor
2062
   known to be in OFFSET (possibly 1).  */
2063
 
2064
rtx
2065
offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2066
{
2067
  rtx new_rtx, addr = XEXP (memref, 0);
2068
  addr_space_t as = MEM_ADDR_SPACE (memref);
2069
  enum machine_mode address_mode = targetm.addr_space.address_mode (as);
2070
 
2071
  new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2072
 
2073
  /* At this point we don't know _why_ the address is invalid.  It
2074
     could have secondary memory references, multiplies or anything.
2075
 
2076
     However, if we did go and rearrange things, we can wind up not
2077
     being able to recognize the magic around pic_offset_table_rtx.
2078
     This stuff is fragile, and is yet another example of why it is
2079
     bad to expose PIC machinery too early.  */
2080
  if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2081
      && GET_CODE (addr) == PLUS
2082
      && XEXP (addr, 0) == pic_offset_table_rtx)
2083
    {
2084
      addr = force_reg (GET_MODE (addr), addr);
2085
      new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2086
    }
2087
 
2088
  update_temp_slot_address (XEXP (memref, 0), new_rtx);
2089
  new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2090
 
2091
  /* If there are no changes, just return the original memory reference.  */
2092
  if (new_rtx == memref)
2093
    return new_rtx;
2094
 
2095
  /* Update the alignment to reflect the offset.  Reset the offset, which
2096
     we don't know.  */
2097
  MEM_ATTRS (new_rtx)
2098
    = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2099
                     MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2100
                     as, GET_MODE (new_rtx));
2101
  return new_rtx;
2102
}
2103
 
2104
/* Return a memory reference like MEMREF, but with its address changed to
2105
   ADDR.  The caller is asserting that the actual piece of memory pointed
2106
   to is the same, just the form of the address is being changed, such as
2107
   by putting something into a register.  */
2108
 
2109
rtx
2110
replace_equiv_address (rtx memref, rtx addr)
2111
{
2112
  /* change_address_1 copies the memory attribute structure without change
2113
     and that's exactly what we want here.  */
2114
  update_temp_slot_address (XEXP (memref, 0), addr);
2115
  return change_address_1 (memref, VOIDmode, addr, 1);
2116
}
2117
 
2118
/* Likewise, but the reference is not required to be valid.  */
2119
 
2120
rtx
2121
replace_equiv_address_nv (rtx memref, rtx addr)
2122
{
2123
  return change_address_1 (memref, VOIDmode, addr, 0);
2124
}
2125
 
2126
/* Return a memory reference like MEMREF, but with its mode widened to
2127
   MODE and offset by OFFSET.  This would be used by targets that e.g.
2128
   cannot issue QImode memory operations and have to use SImode memory
2129
   operations plus masking logic.  */
2130
 
2131
rtx
2132
widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2133
{
2134
  rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2135
  tree expr = MEM_EXPR (new_rtx);
2136
  rtx memoffset = MEM_OFFSET (new_rtx);
2137
  unsigned int size = GET_MODE_SIZE (mode);
2138
 
2139
  /* If there are no changes, just return the original memory reference.  */
2140
  if (new_rtx == memref)
2141
    return new_rtx;
2142
 
2143
  /* If we don't know what offset we were at within the expression, then
2144
     we can't know if we've overstepped the bounds.  */
2145
  if (! memoffset)
2146
    expr = NULL_TREE;
2147
 
2148
  while (expr)
2149
    {
2150
      if (TREE_CODE (expr) == COMPONENT_REF)
2151
        {
2152
          tree field = TREE_OPERAND (expr, 1);
2153
          tree offset = component_ref_field_offset (expr);
2154
 
2155
          if (! DECL_SIZE_UNIT (field))
2156
            {
2157
              expr = NULL_TREE;
2158
              break;
2159
            }
2160
 
2161
          /* Is the field at least as large as the access?  If so, ok,
2162
             otherwise strip back to the containing structure.  */
2163
          if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2164
              && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2165
              && INTVAL (memoffset) >= 0)
2166
            break;
2167
 
2168
          if (! host_integerp (offset, 1))
2169
            {
2170
              expr = NULL_TREE;
2171
              break;
2172
            }
2173
 
2174
          expr = TREE_OPERAND (expr, 0);
2175
          memoffset
2176
            = (GEN_INT (INTVAL (memoffset)
2177
                        + tree_low_cst (offset, 1)
2178
                        + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2179
                           / BITS_PER_UNIT)));
2180
        }
2181
      /* Similarly for the decl.  */
2182
      else if (DECL_P (expr)
2183
               && DECL_SIZE_UNIT (expr)
2184
               && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2185
               && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2186
               && (! memoffset || INTVAL (memoffset) >= 0))
2187
        break;
2188
      else
2189
        {
2190
          /* The widened memory access overflows the expression, which means
2191
             that it could alias another expression.  Zap it.  */
2192
          expr = NULL_TREE;
2193
          break;
2194
        }
2195
    }
2196
 
2197
  if (! expr)
2198
    memoffset = NULL_RTX;
2199
 
2200
  /* The widened memory may alias other stuff, so zap the alias set.  */
2201
  /* ??? Maybe use get_alias_set on any remaining expression.  */
2202
 
2203
  MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2204
                                       MEM_ALIGN (new_rtx),
2205
                                       MEM_ADDR_SPACE (new_rtx), mode);
2206
 
2207
  return new_rtx;
2208
}
2209
 
2210
/* A fake decl that is used as the MEM_EXPR of spill slots.  */
2211
static GTY(()) tree spill_slot_decl;
2212
 
2213
tree
2214
get_spill_slot_decl (bool force_build_p)
2215
{
2216
  tree d = spill_slot_decl;
2217
  rtx rd;
2218
 
2219
  if (d || !force_build_p)
2220
    return d;
2221
 
2222
  d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2223
                  VAR_DECL, get_identifier ("%sfp"), void_type_node);
2224
  DECL_ARTIFICIAL (d) = 1;
2225
  DECL_IGNORED_P (d) = 1;
2226
  TREE_USED (d) = 1;
2227
  TREE_THIS_NOTRAP (d) = 1;
2228
  spill_slot_decl = d;
2229
 
2230
  rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2231
  MEM_NOTRAP_P (rd) = 1;
2232
  MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2233
                                  NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2234
  SET_DECL_RTL (d, rd);
2235
 
2236
  return d;
2237
}
2238
 
2239
/* Given MEM, a result from assign_stack_local, fill in the memory
2240
   attributes as appropriate for a register allocator spill slot.
2241
   These slots are not aliasable by other memory.  We arrange for
2242
   them all to use a single MEM_EXPR, so that the aliasing code can
2243
   work properly in the case of shared spill slots.  */
2244
 
2245
void
2246
set_mem_attrs_for_spill (rtx mem)
2247
{
2248
  alias_set_type alias;
2249
  rtx addr, offset;
2250
  tree expr;
2251
 
2252
  expr = get_spill_slot_decl (true);
2253
  alias = MEM_ALIAS_SET (DECL_RTL (expr));
2254
 
2255
  /* We expect the incoming memory to be of the form:
2256
        (mem:MODE (plus (reg sfp) (const_int offset)))
2257
     with perhaps the plus missing for offset = 0.  */
2258
  addr = XEXP (mem, 0);
2259
  offset = const0_rtx;
2260
  if (GET_CODE (addr) == PLUS
2261
      && CONST_INT_P (XEXP (addr, 1)))
2262
    offset = XEXP (addr, 1);
2263
 
2264
  MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2265
                                   MEM_SIZE (mem), MEM_ALIGN (mem),
2266
                                   ADDR_SPACE_GENERIC, GET_MODE (mem));
2267
  MEM_NOTRAP_P (mem) = 1;
2268
}
2269
 
2270
/* Return a newly created CODE_LABEL rtx with a unique label number.  */
2271
 
2272
rtx
2273
gen_label_rtx (void)
2274
{
2275
  return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2276
                             NULL, label_num++, NULL);
2277
}
2278
 
2279
/* For procedure integration.  */
2280
 
2281
/* Install new pointers to the first and last insns in the chain.
2282
   Also, set cur_insn_uid to one higher than the last in use.
2283
   Used for an inline-procedure after copying the insn chain.  */
2284
 
2285
void
2286
set_new_first_and_last_insn (rtx first, rtx last)
2287
{
2288
  rtx insn;
2289
 
2290
  first_insn = first;
2291
  last_insn = last;
2292
  cur_insn_uid = 0;
2293
 
2294
  if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2295
    {
2296
      int debug_count = 0;
2297
 
2298
      cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2299
      cur_debug_insn_uid = 0;
2300
 
2301
      for (insn = first; insn; insn = NEXT_INSN (insn))
2302
        if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2303
          cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2304
        else
2305
          {
2306
            cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2307
            if (DEBUG_INSN_P (insn))
2308
              debug_count++;
2309
          }
2310
 
2311
      if (debug_count)
2312
        cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2313
      else
2314
        cur_debug_insn_uid++;
2315
    }
2316
  else
2317
    for (insn = first; insn; insn = NEXT_INSN (insn))
2318
      cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2319
 
2320
  cur_insn_uid++;
2321
}
2322
 
2323
/* Go through all the RTL insn bodies and copy any invalid shared
2324
   structure.  This routine should only be called once.  */
2325
 
2326
static void
2327
unshare_all_rtl_1 (rtx insn)
2328
{
2329
  /* Unshare just about everything else.  */
2330
  unshare_all_rtl_in_chain (insn);
2331
 
2332
  /* Make sure the addresses of stack slots found outside the insn chain
2333
     (such as, in DECL_RTL of a variable) are not shared
2334
     with the insn chain.
2335
 
2336
     This special care is necessary when the stack slot MEM does not
2337
     actually appear in the insn chain.  If it does appear, its address
2338
     is unshared from all else at that point.  */
2339
  stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2340
}
2341
 
2342
/* Go through all the RTL insn bodies and copy any invalid shared
2343
   structure, again.  This is a fairly expensive thing to do so it
2344
   should be done sparingly.  */
2345
 
2346
void
2347
unshare_all_rtl_again (rtx insn)
2348
{
2349
  rtx p;
2350
  tree decl;
2351
 
2352
  for (p = insn; p; p = NEXT_INSN (p))
2353
    if (INSN_P (p))
2354
      {
2355
        reset_used_flags (PATTERN (p));
2356
        reset_used_flags (REG_NOTES (p));
2357
      }
2358
 
2359
  /* Make sure that virtual stack slots are not shared.  */
2360
  set_used_decls (DECL_INITIAL (cfun->decl));
2361
 
2362
  /* Make sure that virtual parameters are not shared.  */
2363
  for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2364
    set_used_flags (DECL_RTL (decl));
2365
 
2366
  reset_used_flags (stack_slot_list);
2367
 
2368
  unshare_all_rtl_1 (insn);
2369
}
2370
 
2371
unsigned int
2372
unshare_all_rtl (void)
2373
{
2374
  unshare_all_rtl_1 (get_insns ());
2375
  return 0;
2376
}
2377
 
2378
struct rtl_opt_pass pass_unshare_all_rtl =
2379
{
2380
 {
2381
  RTL_PASS,
2382
  "unshare",                            /* name */
2383
  NULL,                                 /* gate */
2384
  unshare_all_rtl,                      /* execute */
2385
  NULL,                                 /* sub */
2386
  NULL,                                 /* next */
2387
  0,                                    /* static_pass_number */
2388
  TV_NONE,                              /* tv_id */
2389
  0,                                    /* properties_required */
2390
  0,                                    /* properties_provided */
2391
  0,                                    /* properties_destroyed */
2392
  0,                                    /* todo_flags_start */
2393
  TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2394
 }
2395
};
2396
 
2397
 
2398
/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2399
   Recursively does the same for subexpressions.  */
2400
 
2401
static void
2402
verify_rtx_sharing (rtx orig, rtx insn)
2403
{
2404
  rtx x = orig;
2405
  int i;
2406
  enum rtx_code code;
2407
  const char *format_ptr;
2408
 
2409
  if (x == 0)
2410
    return;
2411
 
2412
  code = GET_CODE (x);
2413
 
2414
  /* These types may be freely shared.  */
2415
 
2416
  switch (code)
2417
    {
2418
    case REG:
2419
    case DEBUG_EXPR:
2420
    case VALUE:
2421
    case CONST_INT:
2422
    case CONST_DOUBLE:
2423
    case CONST_FIXED:
2424
    case CONST_VECTOR:
2425
    case SYMBOL_REF:
2426
    case LABEL_REF:
2427
    case CODE_LABEL:
2428
    case PC:
2429
    case CC0:
2430
    case SCRATCH:
2431
      return;
2432
      /* SCRATCH must be shared because they represent distinct values.  */
2433
    case CLOBBER:
2434
      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2435
        return;
2436
      break;
2437
 
2438
    case CONST:
2439
      if (shared_const_p (orig))
2440
        return;
2441
      break;
2442
 
2443
    case MEM:
2444
      /* A MEM is allowed to be shared if its address is constant.  */
2445
      if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2446
          || reload_completed || reload_in_progress)
2447
        return;
2448
 
2449
      break;
2450
 
2451
    default:
2452
      break;
2453
    }
2454
 
2455
  /* This rtx may not be shared.  If it has already been seen,
2456
     replace it with a copy of itself.  */
2457
#ifdef ENABLE_CHECKING
2458
  if (RTX_FLAG (x, used))
2459
    {
2460
      error ("invalid rtl sharing found in the insn");
2461
      debug_rtx (insn);
2462
      error ("shared rtx");
2463
      debug_rtx (x);
2464
      internal_error ("internal consistency failure");
2465
    }
2466
#endif
2467
  gcc_assert (!RTX_FLAG (x, used));
2468
 
2469
  RTX_FLAG (x, used) = 1;
2470
 
2471
  /* Now scan the subexpressions recursively.  */
2472
 
2473
  format_ptr = GET_RTX_FORMAT (code);
2474
 
2475
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
2476
    {
2477
      switch (*format_ptr++)
2478
        {
2479
        case 'e':
2480
          verify_rtx_sharing (XEXP (x, i), insn);
2481
          break;
2482
 
2483
        case 'E':
2484
          if (XVEC (x, i) != NULL)
2485
            {
2486
              int j;
2487
              int len = XVECLEN (x, i);
2488
 
2489
              for (j = 0; j < len; j++)
2490
                {
2491
                  /* We allow sharing of ASM_OPERANDS inside single
2492
                     instruction.  */
2493
                  if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2494
                      && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2495
                          == ASM_OPERANDS))
2496
                    verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2497
                  else
2498
                    verify_rtx_sharing (XVECEXP (x, i, j), insn);
2499
                }
2500
            }
2501
          break;
2502
        }
2503
    }
2504
  return;
2505
}
2506
 
2507
/* Go through all the RTL insn bodies and check that there is no unexpected
2508
   sharing in between the subexpressions.  */
2509
 
2510
void
2511
verify_rtl_sharing (void)
2512
{
2513
  rtx p;
2514
 
2515
  for (p = get_insns (); p; p = NEXT_INSN (p))
2516
    if (INSN_P (p))
2517
      {
2518
        reset_used_flags (PATTERN (p));
2519
        reset_used_flags (REG_NOTES (p));
2520
        if (GET_CODE (PATTERN (p)) == SEQUENCE)
2521
          {
2522
            int i;
2523
            rtx q, sequence = PATTERN (p);
2524
 
2525
            for (i = 0; i < XVECLEN (sequence, 0); i++)
2526
              {
2527
                q = XVECEXP (sequence, 0, i);
2528
                gcc_assert (INSN_P (q));
2529
                reset_used_flags (PATTERN (q));
2530
                reset_used_flags (REG_NOTES (q));
2531
              }
2532
          }
2533
      }
2534
 
2535
  for (p = get_insns (); p; p = NEXT_INSN (p))
2536
    if (INSN_P (p))
2537
      {
2538
        verify_rtx_sharing (PATTERN (p), p);
2539
        verify_rtx_sharing (REG_NOTES (p), p);
2540
      }
2541
}
2542
 
2543
/* Go through all the RTL insn bodies and copy any invalid shared structure.
2544
   Assumes the mark bits are cleared at entry.  */
2545
 
2546
void
2547
unshare_all_rtl_in_chain (rtx insn)
2548
{
2549
  for (; insn; insn = NEXT_INSN (insn))
2550
    if (INSN_P (insn))
2551
      {
2552
        PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2553
        REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2554
      }
2555
}
2556
 
2557
/* Go through all virtual stack slots of a function and mark them as
2558
   shared.  We never replace the DECL_RTLs themselves with a copy,
2559
   but expressions mentioned into a DECL_RTL cannot be shared with
2560
   expressions in the instruction stream.
2561
 
2562
   Note that reload may convert pseudo registers into memories in-place.
2563
   Pseudo registers are always shared, but MEMs never are.  Thus if we
2564
   reset the used flags on MEMs in the instruction stream, we must set
2565
   them again on MEMs that appear in DECL_RTLs.  */
2566
 
2567
static void
2568
set_used_decls (tree blk)
2569
{
2570
  tree t;
2571
 
2572
  /* Mark decls.  */
2573
  for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2574
    if (DECL_RTL_SET_P (t))
2575
      set_used_flags (DECL_RTL (t));
2576
 
2577
  /* Now process sub-blocks.  */
2578
  for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2579
    set_used_decls (t);
2580
}
2581
 
2582
/* Mark ORIG as in use, and return a copy of it if it was already in use.
2583
   Recursively does the same for subexpressions.  Uses
2584
   copy_rtx_if_shared_1 to reduce stack space.  */
2585
 
2586
rtx
2587
copy_rtx_if_shared (rtx orig)
2588
{
2589
  copy_rtx_if_shared_1 (&orig);
2590
  return orig;
2591
}
2592
 
2593
/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2594
   use.  Recursively does the same for subexpressions.  */
2595
 
2596
static void
2597
copy_rtx_if_shared_1 (rtx *orig1)
2598
{
2599
  rtx x;
2600
  int i;
2601
  enum rtx_code code;
2602
  rtx *last_ptr;
2603
  const char *format_ptr;
2604
  int copied = 0;
2605
  int length;
2606
 
2607
  /* Repeat is used to turn tail-recursion into iteration.  */
2608
repeat:
2609
  x = *orig1;
2610
 
2611
  if (x == 0)
2612
    return;
2613
 
2614
  code = GET_CODE (x);
2615
 
2616
  /* These types may be freely shared.  */
2617
 
2618
  switch (code)
2619
    {
2620
    case REG:
2621
    case DEBUG_EXPR:
2622
    case VALUE:
2623
    case CONST_INT:
2624
    case CONST_DOUBLE:
2625
    case CONST_FIXED:
2626
    case CONST_VECTOR:
2627
    case SYMBOL_REF:
2628
    case LABEL_REF:
2629
    case CODE_LABEL:
2630
    case PC:
2631
    case CC0:
2632
    case SCRATCH:
2633
      /* SCRATCH must be shared because they represent distinct values.  */
2634
      return;
2635
    case CLOBBER:
2636
      if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2637
        return;
2638
      break;
2639
 
2640
    case CONST:
2641
      if (shared_const_p (x))
2642
        return;
2643
      break;
2644
 
2645
    case DEBUG_INSN:
2646
    case INSN:
2647
    case JUMP_INSN:
2648
    case CALL_INSN:
2649
    case NOTE:
2650
    case BARRIER:
2651
      /* The chain of insns is not being copied.  */
2652
      return;
2653
 
2654
    default:
2655
      break;
2656
    }
2657
 
2658
  /* This rtx may not be shared.  If it has already been seen,
2659
     replace it with a copy of itself.  */
2660
 
2661
  if (RTX_FLAG (x, used))
2662
    {
2663
      x = shallow_copy_rtx (x);
2664
      copied = 1;
2665
    }
2666
  RTX_FLAG (x, used) = 1;
2667
 
2668
  /* Now scan the subexpressions recursively.
2669
     We can store any replaced subexpressions directly into X
2670
     since we know X is not shared!  Any vectors in X
2671
     must be copied if X was copied.  */
2672
 
2673
  format_ptr = GET_RTX_FORMAT (code);
2674
  length = GET_RTX_LENGTH (code);
2675
  last_ptr = NULL;
2676
 
2677
  for (i = 0; i < length; i++)
2678
    {
2679
      switch (*format_ptr++)
2680
        {
2681
        case 'e':
2682
          if (last_ptr)
2683
            copy_rtx_if_shared_1 (last_ptr);
2684
          last_ptr = &XEXP (x, i);
2685
          break;
2686
 
2687
        case 'E':
2688
          if (XVEC (x, i) != NULL)
2689
            {
2690
              int j;
2691
              int len = XVECLEN (x, i);
2692
 
2693
              /* Copy the vector iff I copied the rtx and the length
2694
                 is nonzero.  */
2695
              if (copied && len > 0)
2696
                XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2697
 
2698
              /* Call recursively on all inside the vector.  */
2699
              for (j = 0; j < len; j++)
2700
                {
2701
                  if (last_ptr)
2702
                    copy_rtx_if_shared_1 (last_ptr);
2703
                  last_ptr = &XVECEXP (x, i, j);
2704
                }
2705
            }
2706
          break;
2707
        }
2708
    }
2709
  *orig1 = x;
2710
  if (last_ptr)
2711
    {
2712
      orig1 = last_ptr;
2713
      goto repeat;
2714
    }
2715
  return;
2716
}
2717
 
2718
/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2719
   to look for shared sub-parts.  */
2720
 
2721
void
2722
reset_used_flags (rtx x)
2723
{
2724
  int i, j;
2725
  enum rtx_code code;
2726
  const char *format_ptr;
2727
  int length;
2728
 
2729
  /* Repeat is used to turn tail-recursion into iteration.  */
2730
repeat:
2731
  if (x == 0)
2732
    return;
2733
 
2734
  code = GET_CODE (x);
2735
 
2736
  /* These types may be freely shared so we needn't do any resetting
2737
     for them.  */
2738
 
2739
  switch (code)
2740
    {
2741
    case REG:
2742
    case DEBUG_EXPR:
2743
    case VALUE:
2744
    case CONST_INT:
2745
    case CONST_DOUBLE:
2746
    case CONST_FIXED:
2747
    case CONST_VECTOR:
2748
    case SYMBOL_REF:
2749
    case CODE_LABEL:
2750
    case PC:
2751
    case CC0:
2752
      return;
2753
 
2754
    case DEBUG_INSN:
2755
    case INSN:
2756
    case JUMP_INSN:
2757
    case CALL_INSN:
2758
    case NOTE:
2759
    case LABEL_REF:
2760
    case BARRIER:
2761
      /* The chain of insns is not being copied.  */
2762
      return;
2763
 
2764
    default:
2765
      break;
2766
    }
2767
 
2768
  RTX_FLAG (x, used) = 0;
2769
 
2770
  format_ptr = GET_RTX_FORMAT (code);
2771
  length = GET_RTX_LENGTH (code);
2772
 
2773
  for (i = 0; i < length; i++)
2774
    {
2775
      switch (*format_ptr++)
2776
        {
2777
        case 'e':
2778
          if (i == length-1)
2779
            {
2780
              x = XEXP (x, i);
2781
              goto repeat;
2782
            }
2783
          reset_used_flags (XEXP (x, i));
2784
          break;
2785
 
2786
        case 'E':
2787
          for (j = 0; j < XVECLEN (x, i); j++)
2788
            reset_used_flags (XVECEXP (x, i, j));
2789
          break;
2790
        }
2791
    }
2792
}
2793
 
2794
/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2795
   to look for shared sub-parts.  */
2796
 
2797
void
2798
set_used_flags (rtx x)
2799
{
2800
  int i, j;
2801
  enum rtx_code code;
2802
  const char *format_ptr;
2803
 
2804
  if (x == 0)
2805
    return;
2806
 
2807
  code = GET_CODE (x);
2808
 
2809
  /* These types may be freely shared so we needn't do any resetting
2810
     for them.  */
2811
 
2812
  switch (code)
2813
    {
2814
    case REG:
2815
    case DEBUG_EXPR:
2816
    case VALUE:
2817
    case CONST_INT:
2818
    case CONST_DOUBLE:
2819
    case CONST_FIXED:
2820
    case CONST_VECTOR:
2821
    case SYMBOL_REF:
2822
    case CODE_LABEL:
2823
    case PC:
2824
    case CC0:
2825
      return;
2826
 
2827
    case DEBUG_INSN:
2828
    case INSN:
2829
    case JUMP_INSN:
2830
    case CALL_INSN:
2831
    case NOTE:
2832
    case LABEL_REF:
2833
    case BARRIER:
2834
      /* The chain of insns is not being copied.  */
2835
      return;
2836
 
2837
    default:
2838
      break;
2839
    }
2840
 
2841
  RTX_FLAG (x, used) = 1;
2842
 
2843
  format_ptr = GET_RTX_FORMAT (code);
2844
  for (i = 0; i < GET_RTX_LENGTH (code); i++)
2845
    {
2846
      switch (*format_ptr++)
2847
        {
2848
        case 'e':
2849
          set_used_flags (XEXP (x, i));
2850
          break;
2851
 
2852
        case 'E':
2853
          for (j = 0; j < XVECLEN (x, i); j++)
2854
            set_used_flags (XVECEXP (x, i, j));
2855
          break;
2856
        }
2857
    }
2858
}
2859
 
2860
/* Copy X if necessary so that it won't be altered by changes in OTHER.
2861
   Return X or the rtx for the pseudo reg the value of X was copied into.
2862
   OTHER must be valid as a SET_DEST.  */
2863
 
2864
rtx
2865
make_safe_from (rtx x, rtx other)
2866
{
2867
  while (1)
2868
    switch (GET_CODE (other))
2869
      {
2870
      case SUBREG:
2871
        other = SUBREG_REG (other);
2872
        break;
2873
      case STRICT_LOW_PART:
2874
      case SIGN_EXTEND:
2875
      case ZERO_EXTEND:
2876
        other = XEXP (other, 0);
2877
        break;
2878
      default:
2879
        goto done;
2880
      }
2881
 done:
2882
  if ((MEM_P (other)
2883
       && ! CONSTANT_P (x)
2884
       && !REG_P (x)
2885
       && GET_CODE (x) != SUBREG)
2886
      || (REG_P (other)
2887
          && (REGNO (other) < FIRST_PSEUDO_REGISTER
2888
              || reg_mentioned_p (other, x))))
2889
    {
2890
      rtx temp = gen_reg_rtx (GET_MODE (x));
2891
      emit_move_insn (temp, x);
2892
      return temp;
2893
    }
2894
  return x;
2895
}
2896
 
2897
/* Emission of insns (adding them to the doubly-linked list).  */
2898
 
2899
/* Return the first insn of the current sequence or current function.  */
2900
 
2901
rtx
2902
get_insns (void)
2903
{
2904
  return first_insn;
2905
}
2906
 
2907
/* Specify a new insn as the first in the chain.  */
2908
 
2909
void
2910
set_first_insn (rtx insn)
2911
{
2912
  gcc_assert (!PREV_INSN (insn));
2913
  first_insn = insn;
2914
}
2915
 
2916
/* Return the last insn emitted in current sequence or current function.  */
2917
 
2918
rtx
2919
get_last_insn (void)
2920
{
2921
  return last_insn;
2922
}
2923
 
2924
/* Specify a new insn as the last in the chain.  */
2925
 
2926
void
2927
set_last_insn (rtx insn)
2928
{
2929
  gcc_assert (!NEXT_INSN (insn));
2930
  last_insn = insn;
2931
}
2932
 
2933
/* Return the last insn emitted, even if it is in a sequence now pushed.  */
2934
 
2935
rtx
2936
get_last_insn_anywhere (void)
2937
{
2938
  struct sequence_stack *stack;
2939
  if (last_insn)
2940
    return last_insn;
2941
  for (stack = seq_stack; stack; stack = stack->next)
2942
    if (stack->last != 0)
2943
      return stack->last;
2944
  return 0;
2945
}
2946
 
2947
/* Return the first nonnote insn emitted in current sequence or current
2948
   function.  This routine looks inside SEQUENCEs.  */
2949
 
2950
rtx
2951
get_first_nonnote_insn (void)
2952
{
2953
  rtx insn = first_insn;
2954
 
2955
  if (insn)
2956
    {
2957
      if (NOTE_P (insn))
2958
        for (insn = next_insn (insn);
2959
             insn && NOTE_P (insn);
2960
             insn = next_insn (insn))
2961
          continue;
2962
      else
2963
        {
2964
          if (NONJUMP_INSN_P (insn)
2965
              && GET_CODE (PATTERN (insn)) == SEQUENCE)
2966
            insn = XVECEXP (PATTERN (insn), 0, 0);
2967
        }
2968
    }
2969
 
2970
  return insn;
2971
}
2972
 
2973
/* Return the last nonnote insn emitted in current sequence or current
2974
   function.  This routine looks inside SEQUENCEs.  */
2975
 
2976
rtx
2977
get_last_nonnote_insn (void)
2978
{
2979
  rtx insn = last_insn;
2980
 
2981
  if (insn)
2982
    {
2983
      if (NOTE_P (insn))
2984
        for (insn = previous_insn (insn);
2985
             insn && NOTE_P (insn);
2986
             insn = previous_insn (insn))
2987
          continue;
2988
      else
2989
        {
2990
          if (NONJUMP_INSN_P (insn)
2991
              && GET_CODE (PATTERN (insn)) == SEQUENCE)
2992
            insn = XVECEXP (PATTERN (insn), 0,
2993
                            XVECLEN (PATTERN (insn), 0) - 1);
2994
        }
2995
    }
2996
 
2997
  return insn;
2998
}
2999
 
3000
/* Return a number larger than any instruction's uid in this function.  */
3001
 
3002
int
3003
get_max_uid (void)
3004
{
3005
  return cur_insn_uid;
3006
}
3007
 
3008
/* Return the number of actual (non-debug) insns emitted in this
3009
   function.  */
3010
 
3011
int
3012
get_max_insn_count (void)
3013
{
3014
  int n = cur_insn_uid;
3015
 
3016
  /* The table size must be stable across -g, to avoid codegen
3017
     differences due to debug insns, and not be affected by
3018
     -fmin-insn-uid, to avoid excessive table size and to simplify
3019
     debugging of -fcompare-debug failures.  */
3020
  if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3021
    n -= cur_debug_insn_uid;
3022
  else
3023
    n -= MIN_NONDEBUG_INSN_UID;
3024
 
3025
  return n;
3026
}
3027
 
3028
 
3029
/* Return the next insn.  If it is a SEQUENCE, return the first insn
3030
   of the sequence.  */
3031
 
3032
rtx
3033
next_insn (rtx insn)
3034
{
3035
  if (insn)
3036
    {
3037
      insn = NEXT_INSN (insn);
3038
      if (insn && NONJUMP_INSN_P (insn)
3039
          && GET_CODE (PATTERN (insn)) == SEQUENCE)
3040
        insn = XVECEXP (PATTERN (insn), 0, 0);
3041
    }
3042
 
3043
  return insn;
3044
}
3045
 
3046
/* Return the previous insn.  If it is a SEQUENCE, return the last insn
3047
   of the sequence.  */
3048
 
3049
rtx
3050
previous_insn (rtx insn)
3051
{
3052
  if (insn)
3053
    {
3054
      insn = PREV_INSN (insn);
3055
      if (insn && NONJUMP_INSN_P (insn)
3056
          && GET_CODE (PATTERN (insn)) == SEQUENCE)
3057
        insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3058
    }
3059
 
3060
  return insn;
3061
}
3062
 
3063
/* Return the next insn after INSN that is not a NOTE.  This routine does not
3064
   look inside SEQUENCEs.  */
3065
 
3066
rtx
3067
next_nonnote_insn (rtx insn)
3068
{
3069
  while (insn)
3070
    {
3071
      insn = NEXT_INSN (insn);
3072
      if (insn == 0 || !NOTE_P (insn))
3073
        break;
3074
    }
3075
 
3076
  return insn;
3077
}
3078
 
3079
/* Return the next insn after INSN that is not a NOTE, but stop the
3080
   search before we enter another basic block.  This routine does not
3081
   look inside SEQUENCEs.  */
3082
 
3083
rtx
3084
next_nonnote_insn_bb (rtx insn)
3085
{
3086
  while (insn)
3087
    {
3088
      insn = NEXT_INSN (insn);
3089
      if (insn == 0 || !NOTE_P (insn))
3090
        break;
3091
      if (NOTE_INSN_BASIC_BLOCK_P (insn))
3092
        return NULL_RTX;
3093
    }
3094
 
3095
  return insn;
3096
}
3097
 
3098
/* Return the previous insn before INSN that is not a NOTE.  This routine does
3099
   not look inside SEQUENCEs.  */
3100
 
3101
rtx
3102
prev_nonnote_insn (rtx insn)
3103
{
3104
  while (insn)
3105
    {
3106
      insn = PREV_INSN (insn);
3107
      if (insn == 0 || !NOTE_P (insn))
3108
        break;
3109
    }
3110
 
3111
  return insn;
3112
}
3113
 
3114
/* Return the previous insn before INSN that is not a NOTE, but stop
3115
   the search before we enter another basic block.  This routine does
3116
   not look inside SEQUENCEs.  */
3117
 
3118
rtx
3119
prev_nonnote_insn_bb (rtx insn)
3120
{
3121
  while (insn)
3122
    {
3123
      insn = PREV_INSN (insn);
3124
      if (insn == 0 || !NOTE_P (insn))
3125
        break;
3126
      if (NOTE_INSN_BASIC_BLOCK_P (insn))
3127
        return NULL_RTX;
3128
    }
3129
 
3130
  return insn;
3131
}
3132
 
3133
/* Return the next insn after INSN that is not a DEBUG_INSN.  This
3134
   routine does not look inside SEQUENCEs.  */
3135
 
3136
rtx
3137
next_nondebug_insn (rtx insn)
3138
{
3139
  while (insn)
3140
    {
3141
      insn = NEXT_INSN (insn);
3142
      if (insn == 0 || !DEBUG_INSN_P (insn))
3143
        break;
3144
    }
3145
 
3146
  return insn;
3147
}
3148
 
3149
/* Return the previous insn before INSN that is not a DEBUG_INSN.
3150
   This routine does not look inside SEQUENCEs.  */
3151
 
3152
rtx
3153
prev_nondebug_insn (rtx insn)
3154
{
3155
  while (insn)
3156
    {
3157
      insn = PREV_INSN (insn);
3158
      if (insn == 0 || !DEBUG_INSN_P (insn))
3159
        break;
3160
    }
3161
 
3162
  return insn;
3163
}
3164
 
3165
/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3166
   or 0, if there is none.  This routine does not look inside
3167
   SEQUENCEs.  */
3168
 
3169
rtx
3170
next_real_insn (rtx insn)
3171
{
3172
  while (insn)
3173
    {
3174
      insn = NEXT_INSN (insn);
3175
      if (insn == 0 || INSN_P (insn))
3176
        break;
3177
    }
3178
 
3179
  return insn;
3180
}
3181
 
3182
/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3183
   or 0, if there is none.  This routine does not look inside
3184
   SEQUENCEs.  */
3185
 
3186
rtx
3187
prev_real_insn (rtx insn)
3188
{
3189
  while (insn)
3190
    {
3191
      insn = PREV_INSN (insn);
3192
      if (insn == 0 || INSN_P (insn))
3193
        break;
3194
    }
3195
 
3196
  return insn;
3197
}
3198
 
3199
/* Return the last CALL_INSN in the current list, or 0 if there is none.
3200
   This routine does not look inside SEQUENCEs.  */
3201
 
3202
rtx
3203
last_call_insn (void)
3204
{
3205
  rtx insn;
3206
 
3207
  for (insn = get_last_insn ();
3208
       insn && !CALL_P (insn);
3209
       insn = PREV_INSN (insn))
3210
    ;
3211
 
3212
  return insn;
3213
}
3214
 
3215
/* Find the next insn after INSN that really does something.  This routine
3216
   does not look inside SEQUENCEs.  After reload this also skips over
3217
   standalone USE and CLOBBER insn.  */
3218
 
3219
int
3220
active_insn_p (const_rtx insn)
3221
{
3222
  return (CALL_P (insn) || JUMP_P (insn)
3223
          || (NONJUMP_INSN_P (insn)
3224
              && (! reload_completed
3225
                  || (GET_CODE (PATTERN (insn)) != USE
3226
                      && GET_CODE (PATTERN (insn)) != CLOBBER))));
3227
}
3228
 
3229
rtx
3230
next_active_insn (rtx insn)
3231
{
3232
  while (insn)
3233
    {
3234
      insn = NEXT_INSN (insn);
3235
      if (insn == 0 || active_insn_p (insn))
3236
        break;
3237
    }
3238
 
3239
  return insn;
3240
}
3241
 
3242
/* Find the last insn before INSN that really does something.  This routine
3243
   does not look inside SEQUENCEs.  After reload this also skips over
3244
   standalone USE and CLOBBER insn.  */
3245
 
3246
rtx
3247
prev_active_insn (rtx insn)
3248
{
3249
  while (insn)
3250
    {
3251
      insn = PREV_INSN (insn);
3252
      if (insn == 0 || active_insn_p (insn))
3253
        break;
3254
    }
3255
 
3256
  return insn;
3257
}
3258
 
3259
/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none.  */
3260
 
3261
rtx
3262
next_label (rtx insn)
3263
{
3264
  while (insn)
3265
    {
3266
      insn = NEXT_INSN (insn);
3267
      if (insn == 0 || LABEL_P (insn))
3268
        break;
3269
    }
3270
 
3271
  return insn;
3272
}
3273
 
3274
/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none.  */
3275
 
3276
rtx
3277
prev_label (rtx insn)
3278
{
3279
  while (insn)
3280
    {
3281
      insn = PREV_INSN (insn);
3282
      if (insn == 0 || LABEL_P (insn))
3283
        break;
3284
    }
3285
 
3286
  return insn;
3287
}
3288
 
3289
/* Return the last label to mark the same position as LABEL.  Return null
3290
   if LABEL itself is null.  */
3291
 
3292
rtx
3293
skip_consecutive_labels (rtx label)
3294
{
3295
  rtx insn;
3296
 
3297
  for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3298
    if (LABEL_P (insn))
3299
      label = insn;
3300
 
3301
  return label;
3302
}
3303
 
3304
#ifdef HAVE_cc0
3305
/* INSN uses CC0 and is being moved into a delay slot.  Set up REG_CC_SETTER
3306
   and REG_CC_USER notes so we can find it.  */
3307
 
3308
void
3309
link_cc0_insns (rtx insn)
3310
{
3311
  rtx user = next_nonnote_insn (insn);
3312
 
3313
  if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3314
    user = XVECEXP (PATTERN (user), 0, 0);
3315
 
3316
  add_reg_note (user, REG_CC_SETTER, insn);
3317
  add_reg_note (insn, REG_CC_USER, user);
3318
}
3319
 
3320
/* Return the next insn that uses CC0 after INSN, which is assumed to
3321
   set it.  This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3322
   applied to the result of this function should yield INSN).
3323
 
3324
   Normally, this is simply the next insn.  However, if a REG_CC_USER note
3325
   is present, it contains the insn that uses CC0.
3326
 
3327
   Return 0 if we can't find the insn.  */
3328
 
3329
rtx
3330
next_cc0_user (rtx insn)
3331
{
3332
  rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3333
 
3334
  if (note)
3335
    return XEXP (note, 0);
3336
 
3337
  insn = next_nonnote_insn (insn);
3338
  if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3339
    insn = XVECEXP (PATTERN (insn), 0, 0);
3340
 
3341
  if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3342
    return insn;
3343
 
3344
  return 0;
3345
}
3346
 
3347
/* Find the insn that set CC0 for INSN.  Unless INSN has a REG_CC_SETTER
3348
   note, it is the previous insn.  */
3349
 
3350
rtx
3351
prev_cc0_setter (rtx insn)
3352
{
3353
  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3354
 
3355
  if (note)
3356
    return XEXP (note, 0);
3357
 
3358
  insn = prev_nonnote_insn (insn);
3359
  gcc_assert (sets_cc0_p (PATTERN (insn)));
3360
 
3361
  return insn;
3362
}
3363
#endif
3364
 
3365
#ifdef AUTO_INC_DEC
3366
/* Find a RTX_AUTOINC class rtx which matches DATA.  */
3367
 
3368
static int
3369
find_auto_inc (rtx *xp, void *data)
3370
{
3371
  rtx x = *xp;
3372
  rtx reg = (rtx) data;
3373
 
3374
  if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3375
    return 0;
3376
 
3377
  switch (GET_CODE (x))
3378
    {
3379
      case PRE_DEC:
3380
      case PRE_INC:
3381
      case POST_DEC:
3382
      case POST_INC:
3383
      case PRE_MODIFY:
3384
      case POST_MODIFY:
3385
        if (rtx_equal_p (reg, XEXP (x, 0)))
3386
          return 1;
3387
        break;
3388
 
3389
      default:
3390
        gcc_unreachable ();
3391
    }
3392
  return -1;
3393
}
3394
#endif
3395
 
3396
/* Increment the label uses for all labels present in rtx.  */
3397
 
3398
static void
3399
mark_label_nuses (rtx x)
3400
{
3401
  enum rtx_code code;
3402
  int i, j;
3403
  const char *fmt;
3404
 
3405
  code = GET_CODE (x);
3406
  if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3407
    LABEL_NUSES (XEXP (x, 0))++;
3408
 
3409
  fmt = GET_RTX_FORMAT (code);
3410
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3411
    {
3412
      if (fmt[i] == 'e')
3413
        mark_label_nuses (XEXP (x, i));
3414
      else if (fmt[i] == 'E')
3415
        for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3416
          mark_label_nuses (XVECEXP (x, i, j));
3417
    }
3418
}
3419
 
3420
 
3421
/* Try splitting insns that can be split for better scheduling.
3422
   PAT is the pattern which might split.
3423
   TRIAL is the insn providing PAT.
3424
   LAST is nonzero if we should return the last insn of the sequence produced.
3425
 
3426
   If this routine succeeds in splitting, it returns the first or last
3427
   replacement insn depending on the value of LAST.  Otherwise, it
3428
   returns TRIAL.  If the insn to be returned can be split, it will be.  */
3429
 
3430
rtx
3431
try_split (rtx pat, rtx trial, int last)
3432
{
3433
  rtx before = PREV_INSN (trial);
3434
  rtx after = NEXT_INSN (trial);
3435
  int has_barrier = 0;
3436
  rtx note, seq, tem;
3437
  int probability;
3438
  rtx insn_last, insn;
3439
  int njumps = 0;
3440
 
3441
  /* We're not good at redistributing frame information.  */
3442
  if (RTX_FRAME_RELATED_P (trial))
3443
    return trial;
3444
 
3445
  if (any_condjump_p (trial)
3446
      && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3447
    split_branch_probability = INTVAL (XEXP (note, 0));
3448
  probability = split_branch_probability;
3449
 
3450
  seq = split_insns (pat, trial);
3451
 
3452
  split_branch_probability = -1;
3453
 
3454
  /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3455
     We may need to handle this specially.  */
3456
  if (after && BARRIER_P (after))
3457
    {
3458
      has_barrier = 1;
3459
      after = NEXT_INSN (after);
3460
    }
3461
 
3462
  if (!seq)
3463
    return trial;
3464
 
3465
  /* Avoid infinite loop if any insn of the result matches
3466
     the original pattern.  */
3467
  insn_last = seq;
3468
  while (1)
3469
    {
3470
      if (INSN_P (insn_last)
3471
          && rtx_equal_p (PATTERN (insn_last), pat))
3472
        return trial;
3473
      if (!NEXT_INSN (insn_last))
3474
        break;
3475
      insn_last = NEXT_INSN (insn_last);
3476
    }
3477
 
3478
  /* We will be adding the new sequence to the function.  The splitters
3479
     may have introduced invalid RTL sharing, so unshare the sequence now.  */
3480
  unshare_all_rtl_in_chain (seq);
3481
 
3482
  /* Mark labels.  */
3483
  for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3484
    {
3485
      if (JUMP_P (insn))
3486
        {
3487
          mark_jump_label (PATTERN (insn), insn, 0);
3488
          njumps++;
3489
          if (probability != -1
3490
              && any_condjump_p (insn)
3491
              && !find_reg_note (insn, REG_BR_PROB, 0))
3492
            {
3493
              /* We can preserve the REG_BR_PROB notes only if exactly
3494
                 one jump is created, otherwise the machine description
3495
                 is responsible for this step using
3496
                 split_branch_probability variable.  */
3497
              gcc_assert (njumps == 1);
3498
              add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3499
            }
3500
        }
3501
    }
3502
 
3503
  /* If we are splitting a CALL_INSN, look for the CALL_INSN
3504
     in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it.  */
3505
  if (CALL_P (trial))
3506
    {
3507
      for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3508
        if (CALL_P (insn))
3509
          {
3510
            rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3511
            while (*p)
3512
              p = &XEXP (*p, 1);
3513
            *p = CALL_INSN_FUNCTION_USAGE (trial);
3514
            SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3515
 
3516
            /* Update the debug information for the CALL_INSN.  */
3517
            if (flag_enable_icf_debug)
3518
              (*debug_hooks->copy_call_info) (trial, insn);
3519
          }
3520
    }
3521
 
3522
  /* Copy notes, particularly those related to the CFG.  */
3523
  for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3524
    {
3525
      switch (REG_NOTE_KIND (note))
3526
        {
3527
        case REG_EH_REGION:
3528
          copy_reg_eh_region_note_backward (note, insn_last, NULL);
3529
          break;
3530
 
3531
        case REG_NORETURN:
3532
        case REG_SETJMP:
3533
          for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3534
            {
3535
              if (CALL_P (insn))
3536
                add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3537
            }
3538
          break;
3539
 
3540
        case REG_NON_LOCAL_GOTO:
3541
          for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3542
            {
3543
              if (JUMP_P (insn))
3544
                add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3545
            }
3546
          break;
3547
 
3548
#ifdef AUTO_INC_DEC
3549
        case REG_INC:
3550
          for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3551
            {
3552
              rtx reg = XEXP (note, 0);
3553
              if (!FIND_REG_INC_NOTE (insn, reg)
3554
                  && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3555
                add_reg_note (insn, REG_INC, reg);
3556
            }
3557
          break;
3558
#endif
3559
 
3560
        default:
3561
          break;
3562
        }
3563
    }
3564
 
3565
  /* If there are LABELS inside the split insns increment the
3566
     usage count so we don't delete the label.  */
3567
  if (INSN_P (trial))
3568
    {
3569
      insn = insn_last;
3570
      while (insn != NULL_RTX)
3571
        {
3572
          /* JUMP_P insns have already been "marked" above.  */
3573
          if (NONJUMP_INSN_P (insn))
3574
            mark_label_nuses (PATTERN (insn));
3575
 
3576
          insn = PREV_INSN (insn);
3577
        }
3578
    }
3579
 
3580
  tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3581
 
3582
  delete_insn (trial);
3583
  if (has_barrier)
3584
    emit_barrier_after (tem);
3585
 
3586
  /* Recursively call try_split for each new insn created; by the
3587
     time control returns here that insn will be fully split, so
3588
     set LAST and continue from the insn after the one returned.
3589
     We can't use next_active_insn here since AFTER may be a note.
3590
     Ignore deleted insns, which can be occur if not optimizing.  */
3591
  for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3592
    if (! INSN_DELETED_P (tem) && INSN_P (tem))
3593
      tem = try_split (PATTERN (tem), tem, 1);
3594
 
3595
  /* Return either the first or the last insn, depending on which was
3596
     requested.  */
3597
  return last
3598
    ? (after ? PREV_INSN (after) : last_insn)
3599
    : NEXT_INSN (before);
3600
}
3601
 
3602
/* Make and return an INSN rtx, initializing all its slots.
3603
   Store PATTERN in the pattern slots.  */
3604
 
3605
rtx
3606
make_insn_raw (rtx pattern)
3607
{
3608
  rtx insn;
3609
 
3610
  insn = rtx_alloc (INSN);
3611
 
3612
  INSN_UID (insn) = cur_insn_uid++;
3613
  PATTERN (insn) = pattern;
3614
  INSN_CODE (insn) = -1;
3615
  REG_NOTES (insn) = NULL;
3616
  INSN_LOCATOR (insn) = curr_insn_locator ();
3617
  BLOCK_FOR_INSN (insn) = NULL;
3618
 
3619
#ifdef ENABLE_RTL_CHECKING
3620
  if (insn
3621
      && INSN_P (insn)
3622
      && (returnjump_p (insn)
3623
          || (GET_CODE (insn) == SET
3624
              && SET_DEST (insn) == pc_rtx)))
3625
    {
3626
      warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3627
      debug_rtx (insn);
3628
    }
3629
#endif
3630
 
3631
  return insn;
3632
}
3633
 
3634
/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn.  */
3635
 
3636
rtx
3637
make_debug_insn_raw (rtx pattern)
3638
{
3639
  rtx insn;
3640
 
3641
  insn = rtx_alloc (DEBUG_INSN);
3642
  INSN_UID (insn) = cur_debug_insn_uid++;
3643
  if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3644
    INSN_UID (insn) = cur_insn_uid++;
3645
 
3646
  PATTERN (insn) = pattern;
3647
  INSN_CODE (insn) = -1;
3648
  REG_NOTES (insn) = NULL;
3649
  INSN_LOCATOR (insn) = curr_insn_locator ();
3650
  BLOCK_FOR_INSN (insn) = NULL;
3651
 
3652
  return insn;
3653
}
3654
 
3655
/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn.  */
3656
 
3657
rtx
3658
make_jump_insn_raw (rtx pattern)
3659
{
3660
  rtx insn;
3661
 
3662
  insn = rtx_alloc (JUMP_INSN);
3663
  INSN_UID (insn) = cur_insn_uid++;
3664
 
3665
  PATTERN (insn) = pattern;
3666
  INSN_CODE (insn) = -1;
3667
  REG_NOTES (insn) = NULL;
3668
  JUMP_LABEL (insn) = NULL;
3669
  INSN_LOCATOR (insn) = curr_insn_locator ();
3670
  BLOCK_FOR_INSN (insn) = NULL;
3671
 
3672
  return insn;
3673
}
3674
 
3675
/* Like `make_insn_raw' but make a CALL_INSN instead of an insn.  */
3676
 
3677
static rtx
3678
make_call_insn_raw (rtx pattern)
3679
{
3680
  rtx insn;
3681
 
3682
  insn = rtx_alloc (CALL_INSN);
3683
  INSN_UID (insn) = cur_insn_uid++;
3684
 
3685
  PATTERN (insn) = pattern;
3686
  INSN_CODE (insn) = -1;
3687
  REG_NOTES (insn) = NULL;
3688
  CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3689
  INSN_LOCATOR (insn) = curr_insn_locator ();
3690
  BLOCK_FOR_INSN (insn) = NULL;
3691
 
3692
  return insn;
3693
}
3694
 
3695
/* Add INSN to the end of the doubly-linked list.
3696
   INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE.  */
3697
 
3698
void
3699
add_insn (rtx insn)
3700
{
3701
  PREV_INSN (insn) = last_insn;
3702
  NEXT_INSN (insn) = 0;
3703
 
3704
  if (NULL != last_insn)
3705
    NEXT_INSN (last_insn) = insn;
3706
 
3707
  if (NULL == first_insn)
3708
    first_insn = insn;
3709
 
3710
  last_insn = insn;
3711
}
3712
 
3713
/* Add INSN into the doubly-linked list after insn AFTER.  This and
3714
   the next should be the only functions called to insert an insn once
3715
   delay slots have been filled since only they know how to update a
3716
   SEQUENCE.  */
3717
 
3718
void
3719
add_insn_after (rtx insn, rtx after, basic_block bb)
3720
{
3721
  rtx next = NEXT_INSN (after);
3722
 
3723
  gcc_assert (!optimize || !INSN_DELETED_P (after));
3724
 
3725
  NEXT_INSN (insn) = next;
3726
  PREV_INSN (insn) = after;
3727
 
3728
  if (next)
3729
    {
3730
      PREV_INSN (next) = insn;
3731
      if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3732
        PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3733
    }
3734
  else if (last_insn == after)
3735
    last_insn = insn;
3736
  else
3737
    {
3738
      struct sequence_stack *stack = seq_stack;
3739
      /* Scan all pending sequences too.  */
3740
      for (; stack; stack = stack->next)
3741
        if (after == stack->last)
3742
          {
3743
            stack->last = insn;
3744
            break;
3745
          }
3746
 
3747
      gcc_assert (stack);
3748
    }
3749
 
3750
  if (!BARRIER_P (after)
3751
      && !BARRIER_P (insn)
3752
      && (bb = BLOCK_FOR_INSN (after)))
3753
    {
3754
      set_block_for_insn (insn, bb);
3755
      if (INSN_P (insn))
3756
        df_insn_rescan (insn);
3757
      /* Should not happen as first in the BB is always
3758
         either NOTE or LABEL.  */
3759
      if (BB_END (bb) == after
3760
          /* Avoid clobbering of structure when creating new BB.  */
3761
          && !BARRIER_P (insn)
3762
          && !NOTE_INSN_BASIC_BLOCK_P (insn))
3763
        BB_END (bb) = insn;
3764
    }
3765
 
3766
  NEXT_INSN (after) = insn;
3767
  if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3768
    {
3769
      rtx sequence = PATTERN (after);
3770
      NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3771
    }
3772
}
3773
 
3774
/* Add INSN into the doubly-linked list before insn BEFORE.  This and
3775
   the previous should be the only functions called to insert an insn
3776
   once delay slots have been filled since only they know how to
3777
   update a SEQUENCE.  If BB is NULL, an attempt is made to infer the
3778
   bb from before.  */
3779
 
3780
void
3781
add_insn_before (rtx insn, rtx before, basic_block bb)
3782
{
3783
  rtx prev = PREV_INSN (before);
3784
 
3785
  gcc_assert (!optimize || !INSN_DELETED_P (before));
3786
 
3787
  PREV_INSN (insn) = prev;
3788
  NEXT_INSN (insn) = before;
3789
 
3790
  if (prev)
3791
    {
3792
      NEXT_INSN (prev) = insn;
3793
      if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3794
        {
3795
          rtx sequence = PATTERN (prev);
3796
          NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3797
        }
3798
    }
3799
  else if (first_insn == before)
3800
    first_insn = insn;
3801
  else
3802
    {
3803
      struct sequence_stack *stack = seq_stack;
3804
      /* Scan all pending sequences too.  */
3805
      for (; stack; stack = stack->next)
3806
        if (before == stack->first)
3807
          {
3808
            stack->first = insn;
3809
            break;
3810
          }
3811
 
3812
      gcc_assert (stack);
3813
    }
3814
 
3815
  if (!bb
3816
      && !BARRIER_P (before)
3817
      && !BARRIER_P (insn))
3818
    bb = BLOCK_FOR_INSN (before);
3819
 
3820
  if (bb)
3821
    {
3822
      set_block_for_insn (insn, bb);
3823
      if (INSN_P (insn))
3824
        df_insn_rescan (insn);
3825
      /* Should not happen as first in the BB is always either NOTE or
3826
         LABEL.  */
3827
      gcc_assert (BB_HEAD (bb) != insn
3828
                  /* Avoid clobbering of structure when creating new BB.  */
3829
                  || BARRIER_P (insn)
3830
                  || NOTE_INSN_BASIC_BLOCK_P (insn));
3831
    }
3832
 
3833
  PREV_INSN (before) = insn;
3834
  if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3835
    PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3836
}
3837
 
3838
 
3839
/* Replace insn with an deleted instruction note.  */
3840
 
3841
void
3842
set_insn_deleted (rtx insn)
3843
{
3844
  df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3845
  PUT_CODE (insn, NOTE);
3846
  NOTE_KIND (insn) = NOTE_INSN_DELETED;
3847
}
3848
 
3849
 
3850
/* Remove an insn from its doubly-linked list.  This function knows how
3851
   to handle sequences.  */
3852
void
3853
remove_insn (rtx insn)
3854
{
3855
  rtx next = NEXT_INSN (insn);
3856
  rtx prev = PREV_INSN (insn);
3857
  basic_block bb;
3858
 
3859
  /* Later in the code, the block will be marked dirty.  */
3860
  df_insn_delete (NULL, INSN_UID (insn));
3861
 
3862
  if (prev)
3863
    {
3864
      NEXT_INSN (prev) = next;
3865
      if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3866
        {
3867
          rtx sequence = PATTERN (prev);
3868
          NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3869
        }
3870
    }
3871
  else if (first_insn == insn)
3872
    first_insn = next;
3873
  else
3874
    {
3875
      struct sequence_stack *stack = seq_stack;
3876
      /* Scan all pending sequences too.  */
3877
      for (; stack; stack = stack->next)
3878
        if (insn == stack->first)
3879
          {
3880
            stack->first = next;
3881
            break;
3882
          }
3883
 
3884
      gcc_assert (stack);
3885
    }
3886
 
3887
  if (next)
3888
    {
3889
      PREV_INSN (next) = prev;
3890
      if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3891
        PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3892
    }
3893
  else if (last_insn == insn)
3894
    last_insn = prev;
3895
  else
3896
    {
3897
      struct sequence_stack *stack = seq_stack;
3898
      /* Scan all pending sequences too.  */
3899
      for (; stack; stack = stack->next)
3900
        if (insn == stack->last)
3901
          {
3902
            stack->last = prev;
3903
            break;
3904
          }
3905
 
3906
      gcc_assert (stack);
3907
    }
3908
  if (!BARRIER_P (insn)
3909
      && (bb = BLOCK_FOR_INSN (insn)))
3910
    {
3911
      if (INSN_P (insn))
3912
        df_set_bb_dirty (bb);
3913
      if (BB_HEAD (bb) == insn)
3914
        {
3915
          /* Never ever delete the basic block note without deleting whole
3916
             basic block.  */
3917
          gcc_assert (!NOTE_P (insn));
3918
          BB_HEAD (bb) = next;
3919
        }
3920
      if (BB_END (bb) == insn)
3921
        BB_END (bb) = prev;
3922
    }
3923
}
3924
 
3925
/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN.  */
3926
 
3927
void
3928
add_function_usage_to (rtx call_insn, rtx call_fusage)
3929
{
3930
  gcc_assert (call_insn && CALL_P (call_insn));
3931
 
3932
  /* Put the register usage information on the CALL.  If there is already
3933
     some usage information, put ours at the end.  */
3934
  if (CALL_INSN_FUNCTION_USAGE (call_insn))
3935
    {
3936
      rtx link;
3937
 
3938
      for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3939
           link = XEXP (link, 1))
3940
        ;
3941
 
3942
      XEXP (link, 1) = call_fusage;
3943
    }
3944
  else
3945
    CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3946
}
3947
 
3948
/* Delete all insns made since FROM.
3949
   FROM becomes the new last instruction.  */
3950
 
3951
void
3952
delete_insns_since (rtx from)
3953
{
3954
  if (from == 0)
3955
    first_insn = 0;
3956
  else
3957
    NEXT_INSN (from) = 0;
3958
  last_insn = from;
3959
}
3960
 
3961
/* This function is deprecated, please use sequences instead.
3962
 
3963
   Move a consecutive bunch of insns to a different place in the chain.
3964
   The insns to be moved are those between FROM and TO.
3965
   They are moved to a new position after the insn AFTER.
3966
   AFTER must not be FROM or TO or any insn in between.
3967
 
3968
   This function does not know about SEQUENCEs and hence should not be
3969
   called after delay-slot filling has been done.  */
3970
 
3971
void
3972
reorder_insns_nobb (rtx from, rtx to, rtx after)
3973
{
3974
  /* Splice this bunch out of where it is now.  */
3975
  if (PREV_INSN (from))
3976
    NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3977
  if (NEXT_INSN (to))
3978
    PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3979
  if (last_insn == to)
3980
    last_insn = PREV_INSN (from);
3981
  if (first_insn == from)
3982
    first_insn = NEXT_INSN (to);
3983
 
3984
  /* Make the new neighbors point to it and it to them.  */
3985
  if (NEXT_INSN (after))
3986
    PREV_INSN (NEXT_INSN (after)) = to;
3987
 
3988
  NEXT_INSN (to) = NEXT_INSN (after);
3989
  PREV_INSN (from) = after;
3990
  NEXT_INSN (after) = from;
3991
  if (after == last_insn)
3992
    last_insn = to;
3993
}
3994
 
3995
/* Same as function above, but take care to update BB boundaries.  */
3996
void
3997
reorder_insns (rtx from, rtx to, rtx after)
3998
{
3999
  rtx prev = PREV_INSN (from);
4000
  basic_block bb, bb2;
4001
 
4002
  reorder_insns_nobb (from, to, after);
4003
 
4004
  if (!BARRIER_P (after)
4005
      && (bb = BLOCK_FOR_INSN (after)))
4006
    {
4007
      rtx x;
4008
      df_set_bb_dirty (bb);
4009
 
4010
      if (!BARRIER_P (from)
4011
          && (bb2 = BLOCK_FOR_INSN (from)))
4012
        {
4013
          if (BB_END (bb2) == to)
4014
            BB_END (bb2) = prev;
4015
          df_set_bb_dirty (bb2);
4016
        }
4017
 
4018
      if (BB_END (bb) == after)
4019
        BB_END (bb) = to;
4020
 
4021
      for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4022
        if (!BARRIER_P (x))
4023
          df_insn_change_bb (x, bb);
4024
    }
4025
}
4026
 
4027
 
4028
/* Emit insn(s) of given code and pattern
4029
   at a specified place within the doubly-linked list.
4030
 
4031
   All of the emit_foo global entry points accept an object
4032
   X which is either an insn list or a PATTERN of a single
4033
   instruction.
4034
 
4035
   There are thus a few canonical ways to generate code and
4036
   emit it at a specific place in the instruction stream.  For
4037
   example, consider the instruction named SPOT and the fact that
4038
   we would like to emit some instructions before SPOT.  We might
4039
   do it like this:
4040
 
4041
        start_sequence ();
4042
        ... emit the new instructions ...
4043
        insns_head = get_insns ();
4044
        end_sequence ();
4045
 
4046
        emit_insn_before (insns_head, SPOT);
4047
 
4048
   It used to be common to generate SEQUENCE rtl instead, but that
4049
   is a relic of the past which no longer occurs.  The reason is that
4050
   SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4051
   generated would almost certainly die right after it was created.  */
4052
 
4053
/* Make X be output before the instruction BEFORE.  */
4054
 
4055
rtx
4056
emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4057
{
4058
  rtx last = before;
4059
  rtx insn;
4060
 
4061
  gcc_assert (before);
4062
 
4063
  if (x == NULL_RTX)
4064
    return last;
4065
 
4066
  switch (GET_CODE (x))
4067
    {
4068
    case DEBUG_INSN:
4069
    case INSN:
4070
    case JUMP_INSN:
4071
    case CALL_INSN:
4072
    case CODE_LABEL:
4073
    case BARRIER:
4074
    case NOTE:
4075
      insn = x;
4076
      while (insn)
4077
        {
4078
          rtx next = NEXT_INSN (insn);
4079
          add_insn_before (insn, before, bb);
4080
          last = insn;
4081
          insn = next;
4082
        }
4083
      break;
4084
 
4085
#ifdef ENABLE_RTL_CHECKING
4086
    case SEQUENCE:
4087
      gcc_unreachable ();
4088
      break;
4089
#endif
4090
 
4091
    default:
4092
      last = make_insn_raw (x);
4093
      add_insn_before (last, before, bb);
4094
      break;
4095
    }
4096
 
4097
  return last;
4098
}
4099
 
4100
/* Make an instruction with body X and code JUMP_INSN
4101
   and output it before the instruction BEFORE.  */
4102
 
4103
rtx
4104
emit_jump_insn_before_noloc (rtx x, rtx before)
4105
{
4106
  rtx insn, last = NULL_RTX;
4107
 
4108
  gcc_assert (before);
4109
 
4110
  switch (GET_CODE (x))
4111
    {
4112
    case DEBUG_INSN:
4113
    case INSN:
4114
    case JUMP_INSN:
4115
    case CALL_INSN:
4116
    case CODE_LABEL:
4117
    case BARRIER:
4118
    case NOTE:
4119
      insn = x;
4120
      while (insn)
4121
        {
4122
          rtx next = NEXT_INSN (insn);
4123
          add_insn_before (insn, before, NULL);
4124
          last = insn;
4125
          insn = next;
4126
        }
4127
      break;
4128
 
4129
#ifdef ENABLE_RTL_CHECKING
4130
    case SEQUENCE:
4131
      gcc_unreachable ();
4132
      break;
4133
#endif
4134
 
4135
    default:
4136
      last = make_jump_insn_raw (x);
4137
      add_insn_before (last, before, NULL);
4138
      break;
4139
    }
4140
 
4141
  return last;
4142
}
4143
 
4144
/* Make an instruction with body X and code CALL_INSN
4145
   and output it before the instruction BEFORE.  */
4146
 
4147
rtx
4148
emit_call_insn_before_noloc (rtx x, rtx before)
4149
{
4150
  rtx last = NULL_RTX, insn;
4151
 
4152
  gcc_assert (before);
4153
 
4154
  switch (GET_CODE (x))
4155
    {
4156
    case DEBUG_INSN:
4157
    case INSN:
4158
    case JUMP_INSN:
4159
    case CALL_INSN:
4160
    case CODE_LABEL:
4161
    case BARRIER:
4162
    case NOTE:
4163
      insn = x;
4164
      while (insn)
4165
        {
4166
          rtx next = NEXT_INSN (insn);
4167
          add_insn_before (insn, before, NULL);
4168
          last = insn;
4169
          insn = next;
4170
        }
4171
      break;
4172
 
4173
#ifdef ENABLE_RTL_CHECKING
4174
    case SEQUENCE:
4175
      gcc_unreachable ();
4176
      break;
4177
#endif
4178
 
4179
    default:
4180
      last = make_call_insn_raw (x);
4181
      add_insn_before (last, before, NULL);
4182
      break;
4183
    }
4184
 
4185
  return last;
4186
}
4187
 
4188
/* Make an instruction with body X and code DEBUG_INSN
4189
   and output it before the instruction BEFORE.  */
4190
 
4191
rtx
4192
emit_debug_insn_before_noloc (rtx x, rtx before)
4193
{
4194
  rtx last = NULL_RTX, insn;
4195
 
4196
  gcc_assert (before);
4197
 
4198
  switch (GET_CODE (x))
4199
    {
4200
    case DEBUG_INSN:
4201
    case INSN:
4202
    case JUMP_INSN:
4203
    case CALL_INSN:
4204
    case CODE_LABEL:
4205
    case BARRIER:
4206
    case NOTE:
4207
      insn = x;
4208
      while (insn)
4209
        {
4210
          rtx next = NEXT_INSN (insn);
4211
          add_insn_before (insn, before, NULL);
4212
          last = insn;
4213
          insn = next;
4214
        }
4215
      break;
4216
 
4217
#ifdef ENABLE_RTL_CHECKING
4218
    case SEQUENCE:
4219
      gcc_unreachable ();
4220
      break;
4221
#endif
4222
 
4223
    default:
4224
      last = make_debug_insn_raw (x);
4225
      add_insn_before (last, before, NULL);
4226
      break;
4227
    }
4228
 
4229
  return last;
4230
}
4231
 
4232
/* Make an insn of code BARRIER
4233
   and output it before the insn BEFORE.  */
4234
 
4235
rtx
4236
emit_barrier_before (rtx before)
4237
{
4238
  rtx insn = rtx_alloc (BARRIER);
4239
 
4240
  INSN_UID (insn) = cur_insn_uid++;
4241
 
4242
  add_insn_before (insn, before, NULL);
4243
  return insn;
4244
}
4245
 
4246
/* Emit the label LABEL before the insn BEFORE.  */
4247
 
4248
rtx
4249
emit_label_before (rtx label, rtx before)
4250
{
4251
  /* This can be called twice for the same label as a result of the
4252
     confusion that follows a syntax error!  So make it harmless.  */
4253
  if (INSN_UID (label) == 0)
4254
    {
4255
      INSN_UID (label) = cur_insn_uid++;
4256
      add_insn_before (label, before, NULL);
4257
    }
4258
 
4259
  return label;
4260
}
4261
 
4262
/* Emit a note of subtype SUBTYPE before the insn BEFORE.  */
4263
 
4264
rtx
4265
emit_note_before (enum insn_note subtype, rtx before)
4266
{
4267
  rtx note = rtx_alloc (NOTE);
4268
  INSN_UID (note) = cur_insn_uid++;
4269
  NOTE_KIND (note) = subtype;
4270
  BLOCK_FOR_INSN (note) = NULL;
4271
  memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4272
 
4273
  add_insn_before (note, before, NULL);
4274
  return note;
4275
}
4276
 
4277
/* Helper for emit_insn_after, handles lists of instructions
4278
   efficiently.  */
4279
 
4280
static rtx
4281
emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4282
{
4283
  rtx last;
4284
  rtx after_after;
4285
  if (!bb && !BARRIER_P (after))
4286
    bb = BLOCK_FOR_INSN (after);
4287
 
4288
  if (bb)
4289
    {
4290
      df_set_bb_dirty (bb);
4291
      for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4292
        if (!BARRIER_P (last))
4293
          {
4294
            set_block_for_insn (last, bb);
4295
            df_insn_rescan (last);
4296
          }
4297
      if (!BARRIER_P (last))
4298
        {
4299
          set_block_for_insn (last, bb);
4300
          df_insn_rescan (last);
4301
        }
4302
      if (BB_END (bb) == after)
4303
        BB_END (bb) = last;
4304
    }
4305
  else
4306
    for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4307
      continue;
4308
 
4309
  after_after = NEXT_INSN (after);
4310
 
4311
  NEXT_INSN (after) = first;
4312
  PREV_INSN (first) = after;
4313
  NEXT_INSN (last) = after_after;
4314
  if (after_after)
4315
    PREV_INSN (after_after) = last;
4316
 
4317
  if (after == last_insn)
4318
    last_insn = last;
4319
 
4320
  return last;
4321
}
4322
 
4323
/* Make X be output after the insn AFTER and set the BB of insn.  If
4324
   BB is NULL, an attempt is made to infer the BB from AFTER.  */
4325
 
4326
rtx
4327
emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4328
{
4329
  rtx last = after;
4330
 
4331
  gcc_assert (after);
4332
 
4333
  if (x == NULL_RTX)
4334
    return last;
4335
 
4336
  switch (GET_CODE (x))
4337
    {
4338
    case DEBUG_INSN:
4339
    case INSN:
4340
    case JUMP_INSN:
4341
    case CALL_INSN:
4342
    case CODE_LABEL:
4343
    case BARRIER:
4344
    case NOTE:
4345
      last = emit_insn_after_1 (x, after, bb);
4346
      break;
4347
 
4348
#ifdef ENABLE_RTL_CHECKING
4349
    case SEQUENCE:
4350
      gcc_unreachable ();
4351
      break;
4352
#endif
4353
 
4354
    default:
4355
      last = make_insn_raw (x);
4356
      add_insn_after (last, after, bb);
4357
      break;
4358
    }
4359
 
4360
  return last;
4361
}
4362
 
4363
 
4364
/* Make an insn of code JUMP_INSN with body X
4365
   and output it after the insn AFTER.  */
4366
 
4367
rtx
4368
emit_jump_insn_after_noloc (rtx x, rtx after)
4369
{
4370
  rtx last;
4371
 
4372
  gcc_assert (after);
4373
 
4374
  switch (GET_CODE (x))
4375
    {
4376
    case DEBUG_INSN:
4377
    case INSN:
4378
    case JUMP_INSN:
4379
    case CALL_INSN:
4380
    case CODE_LABEL:
4381
    case BARRIER:
4382
    case NOTE:
4383
      last = emit_insn_after_1 (x, after, NULL);
4384
      break;
4385
 
4386
#ifdef ENABLE_RTL_CHECKING
4387
    case SEQUENCE:
4388
      gcc_unreachable ();
4389
      break;
4390
#endif
4391
 
4392
    default:
4393
      last = make_jump_insn_raw (x);
4394
      add_insn_after (last, after, NULL);
4395
      break;
4396
    }
4397
 
4398
  return last;
4399
}
4400
 
4401
/* Make an instruction with body X and code CALL_INSN
4402
   and output it after the instruction AFTER.  */
4403
 
4404
rtx
4405
emit_call_insn_after_noloc (rtx x, rtx after)
4406
{
4407
  rtx last;
4408
 
4409
  gcc_assert (after);
4410
 
4411
  switch (GET_CODE (x))
4412
    {
4413
    case DEBUG_INSN:
4414
    case INSN:
4415
    case JUMP_INSN:
4416
    case CALL_INSN:
4417
    case CODE_LABEL:
4418
    case BARRIER:
4419
    case NOTE:
4420
      last = emit_insn_after_1 (x, after, NULL);
4421
      break;
4422
 
4423
#ifdef ENABLE_RTL_CHECKING
4424
    case SEQUENCE:
4425
      gcc_unreachable ();
4426
      break;
4427
#endif
4428
 
4429
    default:
4430
      last = make_call_insn_raw (x);
4431
      add_insn_after (last, after, NULL);
4432
      break;
4433
    }
4434
 
4435
  return last;
4436
}
4437
 
4438
/* Make an instruction with body X and code CALL_INSN
4439
   and output it after the instruction AFTER.  */
4440
 
4441
rtx
4442
emit_debug_insn_after_noloc (rtx x, rtx after)
4443
{
4444
  rtx last;
4445
 
4446
  gcc_assert (after);
4447
 
4448
  switch (GET_CODE (x))
4449
    {
4450
    case DEBUG_INSN:
4451
    case INSN:
4452
    case JUMP_INSN:
4453
    case CALL_INSN:
4454
    case CODE_LABEL:
4455
    case BARRIER:
4456
    case NOTE:
4457
      last = emit_insn_after_1 (x, after, NULL);
4458
      break;
4459
 
4460
#ifdef ENABLE_RTL_CHECKING
4461
    case SEQUENCE:
4462
      gcc_unreachable ();
4463
      break;
4464
#endif
4465
 
4466
    default:
4467
      last = make_debug_insn_raw (x);
4468
      add_insn_after (last, after, NULL);
4469
      break;
4470
    }
4471
 
4472
  return last;
4473
}
4474
 
4475
/* Make an insn of code BARRIER
4476
   and output it after the insn AFTER.  */
4477
 
4478
rtx
4479
emit_barrier_after (rtx after)
4480
{
4481
  rtx insn = rtx_alloc (BARRIER);
4482
 
4483
  INSN_UID (insn) = cur_insn_uid++;
4484
 
4485
  add_insn_after (insn, after, NULL);
4486
  return insn;
4487
}
4488
 
4489
/* Emit the label LABEL after the insn AFTER.  */
4490
 
4491
rtx
4492
emit_label_after (rtx label, rtx after)
4493
{
4494
  /* This can be called twice for the same label
4495
     as a result of the confusion that follows a syntax error!
4496
     So make it harmless.  */
4497
  if (INSN_UID (label) == 0)
4498
    {
4499
      INSN_UID (label) = cur_insn_uid++;
4500
      add_insn_after (label, after, NULL);
4501
    }
4502
 
4503
  return label;
4504
}
4505
 
4506
/* Emit a note of subtype SUBTYPE after the insn AFTER.  */
4507
 
4508
rtx
4509
emit_note_after (enum insn_note subtype, rtx after)
4510
{
4511
  rtx note = rtx_alloc (NOTE);
4512
  INSN_UID (note) = cur_insn_uid++;
4513
  NOTE_KIND (note) = subtype;
4514
  BLOCK_FOR_INSN (note) = NULL;
4515
  memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4516
  add_insn_after (note, after, NULL);
4517
  return note;
4518
}
4519
 
4520
/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4521
rtx
4522
emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4523
{
4524
  rtx last = emit_insn_after_noloc (pattern, after, NULL);
4525
 
4526
  if (pattern == NULL_RTX || !loc)
4527
    return last;
4528
 
4529
  after = NEXT_INSN (after);
4530
  while (1)
4531
    {
4532
      if (active_insn_p (after) && !INSN_LOCATOR (after))
4533
        INSN_LOCATOR (after) = loc;
4534
      if (after == last)
4535
        break;
4536
      after = NEXT_INSN (after);
4537
    }
4538
  return last;
4539
}
4540
 
4541
/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4542
rtx
4543
emit_insn_after (rtx pattern, rtx after)
4544
{
4545
  rtx prev = after;
4546
 
4547
  while (DEBUG_INSN_P (prev))
4548
    prev = PREV_INSN (prev);
4549
 
4550
  if (INSN_P (prev))
4551
    return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4552
  else
4553
    return emit_insn_after_noloc (pattern, after, NULL);
4554
}
4555
 
4556
/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4557
rtx
4558
emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4559
{
4560
  rtx last = emit_jump_insn_after_noloc (pattern, after);
4561
 
4562
  if (pattern == NULL_RTX || !loc)
4563
    return last;
4564
 
4565
  after = NEXT_INSN (after);
4566
  while (1)
4567
    {
4568
      if (active_insn_p (after) && !INSN_LOCATOR (after))
4569
        INSN_LOCATOR (after) = loc;
4570
      if (after == last)
4571
        break;
4572
      after = NEXT_INSN (after);
4573
    }
4574
  return last;
4575
}
4576
 
4577
/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4578
rtx
4579
emit_jump_insn_after (rtx pattern, rtx after)
4580
{
4581
  rtx prev = after;
4582
 
4583
  while (DEBUG_INSN_P (prev))
4584
    prev = PREV_INSN (prev);
4585
 
4586
  if (INSN_P (prev))
4587
    return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4588
  else
4589
    return emit_jump_insn_after_noloc (pattern, after);
4590
}
4591
 
4592
/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4593
rtx
4594
emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4595
{
4596
  rtx last = emit_call_insn_after_noloc (pattern, after);
4597
 
4598
  if (pattern == NULL_RTX || !loc)
4599
    return last;
4600
 
4601
  after = NEXT_INSN (after);
4602
  while (1)
4603
    {
4604
      if (active_insn_p (after) && !INSN_LOCATOR (after))
4605
        INSN_LOCATOR (after) = loc;
4606
      if (after == last)
4607
        break;
4608
      after = NEXT_INSN (after);
4609
    }
4610
  return last;
4611
}
4612
 
4613
/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4614
rtx
4615
emit_call_insn_after (rtx pattern, rtx after)
4616
{
4617
  rtx prev = after;
4618
 
4619
  while (DEBUG_INSN_P (prev))
4620
    prev = PREV_INSN (prev);
4621
 
4622
  if (INSN_P (prev))
4623
    return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4624
  else
4625
    return emit_call_insn_after_noloc (pattern, after);
4626
}
4627
 
4628
/* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE.  */
4629
rtx
4630
emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4631
{
4632
  rtx last = emit_debug_insn_after_noloc (pattern, after);
4633
 
4634
  if (pattern == NULL_RTX || !loc)
4635
    return last;
4636
 
4637
  after = NEXT_INSN (after);
4638
  while (1)
4639
    {
4640
      if (active_insn_p (after) && !INSN_LOCATOR (after))
4641
        INSN_LOCATOR (after) = loc;
4642
      if (after == last)
4643
        break;
4644
      after = NEXT_INSN (after);
4645
    }
4646
  return last;
4647
}
4648
 
4649
/* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER.  */
4650
rtx
4651
emit_debug_insn_after (rtx pattern, rtx after)
4652
{
4653
  if (INSN_P (after))
4654
    return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4655
  else
4656
    return emit_debug_insn_after_noloc (pattern, after);
4657
}
4658
 
4659
/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE.  */
4660
rtx
4661
emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4662
{
4663
  rtx first = PREV_INSN (before);
4664
  rtx last = emit_insn_before_noloc (pattern, before, NULL);
4665
 
4666
  if (pattern == NULL_RTX || !loc)
4667
    return last;
4668
 
4669
  if (!first)
4670
    first = get_insns ();
4671
  else
4672
    first = NEXT_INSN (first);
4673
  while (1)
4674
    {
4675
      if (active_insn_p (first) && !INSN_LOCATOR (first))
4676
        INSN_LOCATOR (first) = loc;
4677
      if (first == last)
4678
        break;
4679
      first = NEXT_INSN (first);
4680
    }
4681
  return last;
4682
}
4683
 
4684
/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4685
rtx
4686
emit_insn_before (rtx pattern, rtx before)
4687
{
4688
  rtx next = before;
4689
 
4690
  while (DEBUG_INSN_P (next))
4691
    next = PREV_INSN (next);
4692
 
4693
  if (INSN_P (next))
4694
    return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4695
  else
4696
    return emit_insn_before_noloc (pattern, before, NULL);
4697
}
4698
 
4699
/* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4700
rtx
4701
emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4702
{
4703
  rtx first = PREV_INSN (before);
4704
  rtx last = emit_jump_insn_before_noloc (pattern, before);
4705
 
4706
  if (pattern == NULL_RTX)
4707
    return last;
4708
 
4709
  first = NEXT_INSN (first);
4710
  while (1)
4711
    {
4712
      if (active_insn_p (first) && !INSN_LOCATOR (first))
4713
        INSN_LOCATOR (first) = loc;
4714
      if (first == last)
4715
        break;
4716
      first = NEXT_INSN (first);
4717
    }
4718
  return last;
4719
}
4720
 
4721
/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE.  */
4722
rtx
4723
emit_jump_insn_before (rtx pattern, rtx before)
4724
{
4725
  rtx next = before;
4726
 
4727
  while (DEBUG_INSN_P (next))
4728
    next = PREV_INSN (next);
4729
 
4730
  if (INSN_P (next))
4731
    return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4732
  else
4733
    return emit_jump_insn_before_noloc (pattern, before);
4734
}
4735
 
4736
/* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4737
rtx
4738
emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4739
{
4740
  rtx first = PREV_INSN (before);
4741
  rtx last = emit_call_insn_before_noloc (pattern, before);
4742
 
4743
  if (pattern == NULL_RTX)
4744
    return last;
4745
 
4746
  first = NEXT_INSN (first);
4747
  while (1)
4748
    {
4749
      if (active_insn_p (first) && !INSN_LOCATOR (first))
4750
        INSN_LOCATOR (first) = loc;
4751
      if (first == last)
4752
        break;
4753
      first = NEXT_INSN (first);
4754
    }
4755
  return last;
4756
}
4757
 
4758
/* like emit_call_insn_before_noloc,
4759
   but set insn_locator according to before.  */
4760
rtx
4761
emit_call_insn_before (rtx pattern, rtx before)
4762
{
4763
  rtx next = before;
4764
 
4765
  while (DEBUG_INSN_P (next))
4766
    next = PREV_INSN (next);
4767
 
4768
  if (INSN_P (next))
4769
    return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4770
  else
4771
    return emit_call_insn_before_noloc (pattern, before);
4772
}
4773
 
4774
/* like emit_insn_before_noloc, but set insn_locator according to scope.  */
4775
rtx
4776
emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4777
{
4778
  rtx first = PREV_INSN (before);
4779
  rtx last = emit_debug_insn_before_noloc (pattern, before);
4780
 
4781
  if (pattern == NULL_RTX)
4782
    return last;
4783
 
4784
  first = NEXT_INSN (first);
4785
  while (1)
4786
    {
4787
      if (active_insn_p (first) && !INSN_LOCATOR (first))
4788
        INSN_LOCATOR (first) = loc;
4789
      if (first == last)
4790
        break;
4791
      first = NEXT_INSN (first);
4792
    }
4793
  return last;
4794
}
4795
 
4796
/* like emit_debug_insn_before_noloc,
4797
   but set insn_locator according to before.  */
4798
rtx
4799
emit_debug_insn_before (rtx pattern, rtx before)
4800
{
4801
  if (INSN_P (before))
4802
    return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4803
  else
4804
    return emit_debug_insn_before_noloc (pattern, before);
4805
}
4806
 
4807
/* Take X and emit it at the end of the doubly-linked
4808
   INSN list.
4809
 
4810
   Returns the last insn emitted.  */
4811
 
4812
rtx
4813
emit_insn (rtx x)
4814
{
4815
  rtx last = last_insn;
4816
  rtx insn;
4817
 
4818
  if (x == NULL_RTX)
4819
    return last;
4820
 
4821
  switch (GET_CODE (x))
4822
    {
4823
    case DEBUG_INSN:
4824
    case INSN:
4825
    case JUMP_INSN:
4826
    case CALL_INSN:
4827
    case CODE_LABEL:
4828
    case BARRIER:
4829
    case NOTE:
4830
      insn = x;
4831
      while (insn)
4832
        {
4833
          rtx next = NEXT_INSN (insn);
4834
          add_insn (insn);
4835
          last = insn;
4836
          insn = next;
4837
        }
4838
      break;
4839
 
4840
#ifdef ENABLE_RTL_CHECKING
4841
    case SEQUENCE:
4842
      gcc_unreachable ();
4843
      break;
4844
#endif
4845
 
4846
    default:
4847
      last = make_insn_raw (x);
4848
      add_insn (last);
4849
      break;
4850
    }
4851
 
4852
  return last;
4853
}
4854
 
4855
/* Make an insn of code DEBUG_INSN with pattern X
4856
   and add it to the end of the doubly-linked list.  */
4857
 
4858
rtx
4859
emit_debug_insn (rtx x)
4860
{
4861
  rtx last = last_insn;
4862
  rtx insn;
4863
 
4864
  if (x == NULL_RTX)
4865
    return last;
4866
 
4867
  switch (GET_CODE (x))
4868
    {
4869
    case DEBUG_INSN:
4870
    case INSN:
4871
    case JUMP_INSN:
4872
    case CALL_INSN:
4873
    case CODE_LABEL:
4874
    case BARRIER:
4875
    case NOTE:
4876
      insn = x;
4877
      while (insn)
4878
        {
4879
          rtx next = NEXT_INSN (insn);
4880
          add_insn (insn);
4881
          last = insn;
4882
          insn = next;
4883
        }
4884
      break;
4885
 
4886
#ifdef ENABLE_RTL_CHECKING
4887
    case SEQUENCE:
4888
      gcc_unreachable ();
4889
      break;
4890
#endif
4891
 
4892
    default:
4893
      last = make_debug_insn_raw (x);
4894
      add_insn (last);
4895
      break;
4896
    }
4897
 
4898
  return last;
4899
}
4900
 
4901
/* Make an insn of code JUMP_INSN with pattern X
4902
   and add it to the end of the doubly-linked list.  */
4903
 
4904
rtx
4905
emit_jump_insn (rtx x)
4906
{
4907
  rtx last = NULL_RTX, insn;
4908
 
4909
  switch (GET_CODE (x))
4910
    {
4911
    case DEBUG_INSN:
4912
    case INSN:
4913
    case JUMP_INSN:
4914
    case CALL_INSN:
4915
    case CODE_LABEL:
4916
    case BARRIER:
4917
    case NOTE:
4918
      insn = x;
4919
      while (insn)
4920
        {
4921
          rtx next = NEXT_INSN (insn);
4922
          add_insn (insn);
4923
          last = insn;
4924
          insn = next;
4925
        }
4926
      break;
4927
 
4928
#ifdef ENABLE_RTL_CHECKING
4929
    case SEQUENCE:
4930
      gcc_unreachable ();
4931
      break;
4932
#endif
4933
 
4934
    default:
4935
      last = make_jump_insn_raw (x);
4936
      add_insn (last);
4937
      break;
4938
    }
4939
 
4940
  return last;
4941
}
4942
 
4943
/* Make an insn of code CALL_INSN with pattern X
4944
   and add it to the end of the doubly-linked list.  */
4945
 
4946
rtx
4947
emit_call_insn (rtx x)
4948
{
4949
  rtx insn;
4950
 
4951
  switch (GET_CODE (x))
4952
    {
4953
    case DEBUG_INSN:
4954
    case INSN:
4955
    case JUMP_INSN:
4956
    case CALL_INSN:
4957
    case CODE_LABEL:
4958
    case BARRIER:
4959
    case NOTE:
4960
      insn = emit_insn (x);
4961
      break;
4962
 
4963
#ifdef ENABLE_RTL_CHECKING
4964
    case SEQUENCE:
4965
      gcc_unreachable ();
4966
      break;
4967
#endif
4968
 
4969
    default:
4970
      insn = make_call_insn_raw (x);
4971
      add_insn (insn);
4972
      break;
4973
    }
4974
 
4975
  return insn;
4976
}
4977
 
4978
/* Add the label LABEL to the end of the doubly-linked list.  */
4979
 
4980
rtx
4981
emit_label (rtx label)
4982
{
4983
  /* This can be called twice for the same label
4984
     as a result of the confusion that follows a syntax error!
4985
     So make it harmless.  */
4986
  if (INSN_UID (label) == 0)
4987
    {
4988
      INSN_UID (label) = cur_insn_uid++;
4989
      add_insn (label);
4990
    }
4991
  return label;
4992
}
4993
 
4994
/* Make an insn of code BARRIER
4995
   and add it to the end of the doubly-linked list.  */
4996
 
4997
rtx
4998
emit_barrier (void)
4999
{
5000
  rtx barrier = rtx_alloc (BARRIER);
5001
  INSN_UID (barrier) = cur_insn_uid++;
5002
  add_insn (barrier);
5003
  return barrier;
5004
}
5005
 
5006
/* Emit a copy of note ORIG.  */
5007
 
5008
rtx
5009
emit_note_copy (rtx orig)
5010
{
5011
  rtx note;
5012
 
5013
  note = rtx_alloc (NOTE);
5014
 
5015
  INSN_UID (note) = cur_insn_uid++;
5016
  NOTE_DATA (note) = NOTE_DATA (orig);
5017
  NOTE_KIND (note) = NOTE_KIND (orig);
5018
  BLOCK_FOR_INSN (note) = NULL;
5019
  add_insn (note);
5020
 
5021
  return note;
5022
}
5023
 
5024
/* Make an insn of code NOTE or type NOTE_NO
5025
   and add it to the end of the doubly-linked list.  */
5026
 
5027
rtx
5028
emit_note (enum insn_note kind)
5029
{
5030
  rtx note;
5031
 
5032
  note = rtx_alloc (NOTE);
5033
  INSN_UID (note) = cur_insn_uid++;
5034
  NOTE_KIND (note) = kind;
5035
  memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5036
  BLOCK_FOR_INSN (note) = NULL;
5037
  add_insn (note);
5038
  return note;
5039
}
5040
 
5041
/* Emit a clobber of lvalue X.  */
5042
 
5043
rtx
5044
emit_clobber (rtx x)
5045
{
5046
  /* CONCATs should not appear in the insn stream.  */
5047
  if (GET_CODE (x) == CONCAT)
5048
    {
5049
      emit_clobber (XEXP (x, 0));
5050
      return emit_clobber (XEXP (x, 1));
5051
    }
5052
  return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5053
}
5054
 
5055
/* Return a sequence of insns to clobber lvalue X.  */
5056
 
5057
rtx
5058
gen_clobber (rtx x)
5059
{
5060
  rtx seq;
5061
 
5062
  start_sequence ();
5063
  emit_clobber (x);
5064
  seq = get_insns ();
5065
  end_sequence ();
5066
  return seq;
5067
}
5068
 
5069
/* Emit a use of rvalue X.  */
5070
 
5071
rtx
5072
emit_use (rtx x)
5073
{
5074
  /* CONCATs should not appear in the insn stream.  */
5075
  if (GET_CODE (x) == CONCAT)
5076
    {
5077
      emit_use (XEXP (x, 0));
5078
      return emit_use (XEXP (x, 1));
5079
    }
5080
  return emit_insn (gen_rtx_USE (VOIDmode, x));
5081
}
5082
 
5083
/* Return a sequence of insns to use rvalue X.  */
5084
 
5085
rtx
5086
gen_use (rtx x)
5087
{
5088
  rtx seq;
5089
 
5090
  start_sequence ();
5091
  emit_use (x);
5092
  seq = get_insns ();
5093
  end_sequence ();
5094
  return seq;
5095
}
5096
 
5097
/* Cause next statement to emit a line note even if the line number
5098
   has not changed.  */
5099
 
5100
void
5101
force_next_line_note (void)
5102
{
5103
  last_location = -1;
5104
}
5105
 
5106
/* Place a note of KIND on insn INSN with DATUM as the datum. If a
5107
   note of this type already exists, remove it first.  */
5108
 
5109
rtx
5110
set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5111
{
5112
  rtx note = find_reg_note (insn, kind, NULL_RTX);
5113
 
5114
  switch (kind)
5115
    {
5116
    case REG_EQUAL:
5117
    case REG_EQUIV:
5118
      /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5119
         has multiple sets (some callers assume single_set
5120
         means the insn only has one set, when in fact it
5121
         means the insn only has one * useful * set).  */
5122
      if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5123
        {
5124
          gcc_assert (!note);
5125
          return NULL_RTX;
5126
        }
5127
 
5128
      /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5129
         It serves no useful purpose and breaks eliminate_regs.  */
5130
      if (GET_CODE (datum) == ASM_OPERANDS)
5131
        return NULL_RTX;
5132
 
5133
      if (note)
5134
        {
5135
          XEXP (note, 0) = datum;
5136
          df_notes_rescan (insn);
5137
          return note;
5138
        }
5139
      break;
5140
 
5141
    default:
5142
      if (note)
5143
        {
5144
          XEXP (note, 0) = datum;
5145
          return note;
5146
        }
5147
      break;
5148
    }
5149
 
5150
  add_reg_note (insn, kind, datum);
5151
 
5152
  switch (kind)
5153
    {
5154
    case REG_EQUAL:
5155
    case REG_EQUIV:
5156
      df_notes_rescan (insn);
5157
      break;
5158
    default:
5159
      break;
5160
    }
5161
 
5162
  return REG_NOTES (insn);
5163
}
5164
 
5165
/* Return an indication of which type of insn should have X as a body.
5166
   The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN.  */
5167
 
5168
static enum rtx_code
5169
classify_insn (rtx x)
5170
{
5171
  if (LABEL_P (x))
5172
    return CODE_LABEL;
5173
  if (GET_CODE (x) == CALL)
5174
    return CALL_INSN;
5175
  if (GET_CODE (x) == RETURN)
5176
    return JUMP_INSN;
5177
  if (GET_CODE (x) == SET)
5178
    {
5179
      if (SET_DEST (x) == pc_rtx)
5180
        return JUMP_INSN;
5181
      else if (GET_CODE (SET_SRC (x)) == CALL)
5182
        return CALL_INSN;
5183
      else
5184
        return INSN;
5185
    }
5186
  if (GET_CODE (x) == PARALLEL)
5187
    {
5188
      int j;
5189
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5190
        if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5191
          return CALL_INSN;
5192
        else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5193
                 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5194
          return JUMP_INSN;
5195
        else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5196
                 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5197
          return CALL_INSN;
5198
    }
5199
  return INSN;
5200
}
5201
 
5202
/* Emit the rtl pattern X as an appropriate kind of insn.
5203
   If X is a label, it is simply added into the insn chain.  */
5204
 
5205
rtx
5206
emit (rtx x)
5207
{
5208
  enum rtx_code code = classify_insn (x);
5209
 
5210
  switch (code)
5211
    {
5212
    case CODE_LABEL:
5213
      return emit_label (x);
5214
    case INSN:
5215
      return emit_insn (x);
5216
    case  JUMP_INSN:
5217
      {
5218
        rtx insn = emit_jump_insn (x);
5219
        if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5220
          return emit_barrier ();
5221
        return insn;
5222
      }
5223
    case CALL_INSN:
5224
      return emit_call_insn (x);
5225
    case DEBUG_INSN:
5226
      return emit_debug_insn (x);
5227
    default:
5228
      gcc_unreachable ();
5229
    }
5230
}
5231
 
5232
/* Space for free sequence stack entries.  */
5233
static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5234
 
5235
/* Begin emitting insns to a sequence.  If this sequence will contain
5236
   something that might cause the compiler to pop arguments to function
5237
   calls (because those pops have previously been deferred; see
5238
   INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5239
   before calling this function.  That will ensure that the deferred
5240
   pops are not accidentally emitted in the middle of this sequence.  */
5241
 
5242
void
5243
start_sequence (void)
5244
{
5245
  struct sequence_stack *tem;
5246
 
5247
  if (free_sequence_stack != NULL)
5248
    {
5249
      tem = free_sequence_stack;
5250
      free_sequence_stack = tem->next;
5251
    }
5252
  else
5253
    tem = GGC_NEW (struct sequence_stack);
5254
 
5255
  tem->next = seq_stack;
5256
  tem->first = first_insn;
5257
  tem->last = last_insn;
5258
 
5259
  seq_stack = tem;
5260
 
5261
  first_insn = 0;
5262
  last_insn = 0;
5263
}
5264
 
5265
/* Set up the insn chain starting with FIRST as the current sequence,
5266
   saving the previously current one.  See the documentation for
5267
   start_sequence for more information about how to use this function.  */
5268
 
5269
void
5270
push_to_sequence (rtx first)
5271
{
5272
  rtx last;
5273
 
5274
  start_sequence ();
5275
 
5276
  for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5277
 
5278
  first_insn = first;
5279
  last_insn = last;
5280
}
5281
 
5282
/* Like push_to_sequence, but take the last insn as an argument to avoid
5283
   looping through the list.  */
5284
 
5285
void
5286
push_to_sequence2 (rtx first, rtx last)
5287
{
5288
  start_sequence ();
5289
 
5290
  first_insn = first;
5291
  last_insn = last;
5292
}
5293
 
5294
/* Set up the outer-level insn chain
5295
   as the current sequence, saving the previously current one.  */
5296
 
5297
void
5298
push_topmost_sequence (void)
5299
{
5300
  struct sequence_stack *stack, *top = NULL;
5301
 
5302
  start_sequence ();
5303
 
5304
  for (stack = seq_stack; stack; stack = stack->next)
5305
    top = stack;
5306
 
5307
  first_insn = top->first;
5308
  last_insn = top->last;
5309
}
5310
 
5311
/* After emitting to the outer-level insn chain, update the outer-level
5312
   insn chain, and restore the previous saved state.  */
5313
 
5314
void
5315
pop_topmost_sequence (void)
5316
{
5317
  struct sequence_stack *stack, *top = NULL;
5318
 
5319
  for (stack = seq_stack; stack; stack = stack->next)
5320
    top = stack;
5321
 
5322
  top->first = first_insn;
5323
  top->last = last_insn;
5324
 
5325
  end_sequence ();
5326
}
5327
 
5328
/* After emitting to a sequence, restore previous saved state.
5329
 
5330
   To get the contents of the sequence just made, you must call
5331
   `get_insns' *before* calling here.
5332
 
5333
   If the compiler might have deferred popping arguments while
5334
   generating this sequence, and this sequence will not be immediately
5335
   inserted into the instruction stream, use do_pending_stack_adjust
5336
   before calling get_insns.  That will ensure that the deferred
5337
   pops are inserted into this sequence, and not into some random
5338
   location in the instruction stream.  See INHIBIT_DEFER_POP for more
5339
   information about deferred popping of arguments.  */
5340
 
5341
void
5342
end_sequence (void)
5343
{
5344
  struct sequence_stack *tem = seq_stack;
5345
 
5346
  first_insn = tem->first;
5347
  last_insn = tem->last;
5348
  seq_stack = tem->next;
5349
 
5350
  memset (tem, 0, sizeof (*tem));
5351
  tem->next = free_sequence_stack;
5352
  free_sequence_stack = tem;
5353
}
5354
 
5355
/* Return 1 if currently emitting into a sequence.  */
5356
 
5357
int
5358
in_sequence_p (void)
5359
{
5360
  return seq_stack != 0;
5361
}
5362
 
5363
/* Put the various virtual registers into REGNO_REG_RTX.  */
5364
 
5365
static void
5366
init_virtual_regs (void)
5367
{
5368
  regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5369
  regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5370
  regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5371
  regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5372
  regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5373
}
5374
 
5375
 
5376
/* Used by copy_insn_1 to avoid copying SCRATCHes more than once.  */
5377
static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5378
static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5379
static int copy_insn_n_scratches;
5380
 
5381
/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5382
   copied an ASM_OPERANDS.
5383
   In that case, it is the original input-operand vector.  */
5384
static rtvec orig_asm_operands_vector;
5385
 
5386
/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5387
   copied an ASM_OPERANDS.
5388
   In that case, it is the copied input-operand vector.  */
5389
static rtvec copy_asm_operands_vector;
5390
 
5391
/* Likewise for the constraints vector.  */
5392
static rtvec orig_asm_constraints_vector;
5393
static rtvec copy_asm_constraints_vector;
5394
 
5395
/* Recursively create a new copy of an rtx for copy_insn.
5396
   This function differs from copy_rtx in that it handles SCRATCHes and
5397
   ASM_OPERANDs properly.
5398
   Normally, this function is not used directly; use copy_insn as front end.
5399
   However, you could first copy an insn pattern with copy_insn and then use
5400
   this function afterwards to properly copy any REG_NOTEs containing
5401
   SCRATCHes.  */
5402
 
5403
rtx
5404
copy_insn_1 (rtx orig)
5405
{
5406
  rtx copy;
5407
  int i, j;
5408
  RTX_CODE code;
5409
  const char *format_ptr;
5410
 
5411
  if (orig == NULL)
5412
    return NULL;
5413
 
5414
  code = GET_CODE (orig);
5415
 
5416
  switch (code)
5417
    {
5418
    case REG:
5419
    case CONST_INT:
5420
    case CONST_DOUBLE:
5421
    case CONST_FIXED:
5422
    case CONST_VECTOR:
5423
    case SYMBOL_REF:
5424
    case CODE_LABEL:
5425
    case PC:
5426
    case CC0:
5427
      return orig;
5428
    case CLOBBER:
5429
      if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5430
        return orig;
5431
      break;
5432
 
5433
    case SCRATCH:
5434
      for (i = 0; i < copy_insn_n_scratches; i++)
5435
        if (copy_insn_scratch_in[i] == orig)
5436
          return copy_insn_scratch_out[i];
5437
      break;
5438
 
5439
    case CONST:
5440
      if (shared_const_p (orig))
5441
        return orig;
5442
      break;
5443
 
5444
      /* A MEM with a constant address is not sharable.  The problem is that
5445
         the constant address may need to be reloaded.  If the mem is shared,
5446
         then reloading one copy of this mem will cause all copies to appear
5447
         to have been reloaded.  */
5448
 
5449
    default:
5450
      break;
5451
    }
5452
 
5453
  /* Copy the various flags, fields, and other information.  We assume
5454
     that all fields need copying, and then clear the fields that should
5455
     not be copied.  That is the sensible default behavior, and forces
5456
     us to explicitly document why we are *not* copying a flag.  */
5457
  copy = shallow_copy_rtx (orig);
5458
 
5459
  /* We do not copy the USED flag, which is used as a mark bit during
5460
     walks over the RTL.  */
5461
  RTX_FLAG (copy, used) = 0;
5462
 
5463
  /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs.  */
5464
  if (INSN_P (orig))
5465
    {
5466
      RTX_FLAG (copy, jump) = 0;
5467
      RTX_FLAG (copy, call) = 0;
5468
      RTX_FLAG (copy, frame_related) = 0;
5469
    }
5470
 
5471
  format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5472
 
5473
  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5474
    switch (*format_ptr++)
5475
      {
5476
      case 'e':
5477
        if (XEXP (orig, i) != NULL)
5478
          XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5479
        break;
5480
 
5481
      case 'E':
5482
      case 'V':
5483
        if (XVEC (orig, i) == orig_asm_constraints_vector)
5484
          XVEC (copy, i) = copy_asm_constraints_vector;
5485
        else if (XVEC (orig, i) == orig_asm_operands_vector)
5486
          XVEC (copy, i) = copy_asm_operands_vector;
5487
        else if (XVEC (orig, i) != NULL)
5488
          {
5489
            XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5490
            for (j = 0; j < XVECLEN (copy, i); j++)
5491
              XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5492
          }
5493
        break;
5494
 
5495
      case 't':
5496
      case 'w':
5497
      case 'i':
5498
      case 's':
5499
      case 'S':
5500
      case 'u':
5501
      case '0':
5502
        /* These are left unchanged.  */
5503
        break;
5504
 
5505
      default:
5506
        gcc_unreachable ();
5507
      }
5508
 
5509
  if (code == SCRATCH)
5510
    {
5511
      i = copy_insn_n_scratches++;
5512
      gcc_assert (i < MAX_RECOG_OPERANDS);
5513
      copy_insn_scratch_in[i] = orig;
5514
      copy_insn_scratch_out[i] = copy;
5515
    }
5516
  else if (code == ASM_OPERANDS)
5517
    {
5518
      orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5519
      copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5520
      orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5521
      copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5522
    }
5523
 
5524
  return copy;
5525
}
5526
 
5527
/* Create a new copy of an rtx.
5528
   This function differs from copy_rtx in that it handles SCRATCHes and
5529
   ASM_OPERANDs properly.
5530
   INSN doesn't really have to be a full INSN; it could be just the
5531
   pattern.  */
5532
rtx
5533
copy_insn (rtx insn)
5534
{
5535
  copy_insn_n_scratches = 0;
5536
  orig_asm_operands_vector = 0;
5537
  orig_asm_constraints_vector = 0;
5538
  copy_asm_operands_vector = 0;
5539
  copy_asm_constraints_vector = 0;
5540
  return copy_insn_1 (insn);
5541
}
5542
 
5543
/* Initialize data structures and variables in this file
5544
   before generating rtl for each function.  */
5545
 
5546
void
5547
init_emit (void)
5548
{
5549
  first_insn = NULL;
5550
  last_insn = NULL;
5551
  if (MIN_NONDEBUG_INSN_UID)
5552
    cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5553
  else
5554
    cur_insn_uid = 1;
5555
  cur_debug_insn_uid = 1;
5556
  reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5557
  last_location = UNKNOWN_LOCATION;
5558
  first_label_num = label_num;
5559
  seq_stack = NULL;
5560
 
5561
  /* Init the tables that describe all the pseudo regs.  */
5562
 
5563
  crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5564
 
5565
  crtl->emit.regno_pointer_align
5566
    = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5567
 
5568
  regno_reg_rtx
5569
    = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5570
 
5571
  /* Put copies of all the hard registers into regno_reg_rtx.  */
5572
  memcpy (regno_reg_rtx,
5573
          static_regno_reg_rtx,
5574
          FIRST_PSEUDO_REGISTER * sizeof (rtx));
5575
 
5576
  /* Put copies of all the virtual register rtx into regno_reg_rtx.  */
5577
  init_virtual_regs ();
5578
 
5579
  /* Indicate that the virtual registers and stack locations are
5580
     all pointers.  */
5581
  REG_POINTER (stack_pointer_rtx) = 1;
5582
  REG_POINTER (frame_pointer_rtx) = 1;
5583
  REG_POINTER (hard_frame_pointer_rtx) = 1;
5584
  REG_POINTER (arg_pointer_rtx) = 1;
5585
 
5586
  REG_POINTER (virtual_incoming_args_rtx) = 1;
5587
  REG_POINTER (virtual_stack_vars_rtx) = 1;
5588
  REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5589
  REG_POINTER (virtual_outgoing_args_rtx) = 1;
5590
  REG_POINTER (virtual_cfa_rtx) = 1;
5591
 
5592
#ifdef STACK_BOUNDARY
5593
  REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5594
  REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5595
  REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5596
  REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5597
 
5598
  REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5599
  REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5600
  REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5601
  REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5602
  REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5603
#endif
5604
 
5605
#ifdef INIT_EXPANDERS
5606
  INIT_EXPANDERS;
5607
#endif
5608
}
5609
 
5610
/* Generate a vector constant for mode MODE and constant value CONSTANT.  */
5611
 
5612
static rtx
5613
gen_const_vector (enum machine_mode mode, int constant)
5614
{
5615
  rtx tem;
5616
  rtvec v;
5617
  int units, i;
5618
  enum machine_mode inner;
5619
 
5620
  units = GET_MODE_NUNITS (mode);
5621
  inner = GET_MODE_INNER (mode);
5622
 
5623
  gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5624
 
5625
  v = rtvec_alloc (units);
5626
 
5627
  /* We need to call this function after we set the scalar const_tiny_rtx
5628
     entries.  */
5629
  gcc_assert (const_tiny_rtx[constant][(int) inner]);
5630
 
5631
  for (i = 0; i < units; ++i)
5632
    RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5633
 
5634
  tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5635
  return tem;
5636
}
5637
 
5638
/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5639
   all elements are zero, and the one vector when all elements are one.  */
5640
rtx
5641
gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5642
{
5643
  enum machine_mode inner = GET_MODE_INNER (mode);
5644
  int nunits = GET_MODE_NUNITS (mode);
5645
  rtx x;
5646
  int i;
5647
 
5648
  /* Check to see if all of the elements have the same value.  */
5649
  x = RTVEC_ELT (v, nunits - 1);
5650
  for (i = nunits - 2; i >= 0; i--)
5651
    if (RTVEC_ELT (v, i) != x)
5652
      break;
5653
 
5654
  /* If the values are all the same, check to see if we can use one of the
5655
     standard constant vectors.  */
5656
  if (i == -1)
5657
    {
5658
      if (x == CONST0_RTX (inner))
5659
        return CONST0_RTX (mode);
5660
      else if (x == CONST1_RTX (inner))
5661
        return CONST1_RTX (mode);
5662
    }
5663
 
5664
  return gen_rtx_raw_CONST_VECTOR (mode, v);
5665
}
5666
 
5667
/* Initialise global register information required by all functions.  */
5668
 
5669
void
5670
init_emit_regs (void)
5671
{
5672
  int i;
5673
 
5674
  /* Reset register attributes */
5675
  htab_empty (reg_attrs_htab);
5676
 
5677
  /* We need reg_raw_mode, so initialize the modes now.  */
5678
  init_reg_modes_target ();
5679
 
5680
  /* Assign register numbers to the globally defined register rtx.  */
5681
  pc_rtx = gen_rtx_PC (VOIDmode);
5682
  cc0_rtx = gen_rtx_CC0 (VOIDmode);
5683
  stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5684
  frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5685
  hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5686
  arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5687
  virtual_incoming_args_rtx =
5688
    gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5689
  virtual_stack_vars_rtx =
5690
    gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5691
  virtual_stack_dynamic_rtx =
5692
    gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5693
  virtual_outgoing_args_rtx =
5694
    gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5695
  virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5696
 
5697
  /* Initialize RTL for commonly used hard registers.  These are
5698
     copied into regno_reg_rtx as we begin to compile each function.  */
5699
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5700
    static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5701
 
5702
#ifdef RETURN_ADDRESS_POINTER_REGNUM
5703
  return_address_pointer_rtx
5704
    = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5705
#endif
5706
 
5707
  if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5708
    pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5709
  else
5710
    pic_offset_table_rtx = NULL_RTX;
5711
}
5712
 
5713
/* Create some permanent unique rtl objects shared between all functions.  */
5714
 
5715
void
5716
init_emit_once (void)
5717
{
5718
  int i;
5719
  enum machine_mode mode;
5720
  enum machine_mode double_mode;
5721
 
5722
  /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5723
     hash tables.  */
5724
  const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5725
                                    const_int_htab_eq, NULL);
5726
 
5727
  const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5728
                                       const_double_htab_eq, NULL);
5729
 
5730
  const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5731
                                      const_fixed_htab_eq, NULL);
5732
 
5733
  mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5734
                                    mem_attrs_htab_eq, NULL);
5735
  reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5736
                                    reg_attrs_htab_eq, NULL);
5737
 
5738
  /* Compute the word and byte modes.  */
5739
 
5740
  byte_mode = VOIDmode;
5741
  word_mode = VOIDmode;
5742
  double_mode = VOIDmode;
5743
 
5744
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5745
       mode != VOIDmode;
5746
       mode = GET_MODE_WIDER_MODE (mode))
5747
    {
5748
      if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5749
          && byte_mode == VOIDmode)
5750
        byte_mode = mode;
5751
 
5752
      if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5753
          && word_mode == VOIDmode)
5754
        word_mode = mode;
5755
    }
5756
 
5757
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5758
       mode != VOIDmode;
5759
       mode = GET_MODE_WIDER_MODE (mode))
5760
    {
5761
      if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5762
          && double_mode == VOIDmode)
5763
        double_mode = mode;
5764
    }
5765
 
5766
  ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5767
 
5768
#ifdef INIT_EXPANDERS
5769
  /* This is to initialize {init|mark|free}_machine_status before the first
5770
     call to push_function_context_to.  This is needed by the Chill front
5771
     end which calls push_function_context_to before the first call to
5772
     init_function_start.  */
5773
  INIT_EXPANDERS;
5774
#endif
5775
 
5776
  /* Create the unique rtx's for certain rtx codes and operand values.  */
5777
 
5778
  /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5779
     tries to use these variables.  */
5780
  for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5781
    const_int_rtx[i + MAX_SAVED_CONST_INT] =
5782
      gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5783
 
5784
  if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5785
      && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5786
    const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5787
  else
5788
    const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5789
 
5790
  REAL_VALUE_FROM_INT (dconst0,   0,  0, double_mode);
5791
  REAL_VALUE_FROM_INT (dconst1,   1,  0, double_mode);
5792
  REAL_VALUE_FROM_INT (dconst2,   2,  0, double_mode);
5793
 
5794
  dconstm1 = dconst1;
5795
  dconstm1.sign = 1;
5796
 
5797
  dconsthalf = dconst1;
5798
  SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5799
 
5800
  for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5801
    {
5802
      const REAL_VALUE_TYPE *const r =
5803
        (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5804
 
5805
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5806
           mode != VOIDmode;
5807
           mode = GET_MODE_WIDER_MODE (mode))
5808
        const_tiny_rtx[i][(int) mode] =
5809
          CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5810
 
5811
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5812
           mode != VOIDmode;
5813
           mode = GET_MODE_WIDER_MODE (mode))
5814
        const_tiny_rtx[i][(int) mode] =
5815
          CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5816
 
5817
      const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5818
 
5819
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5820
           mode != VOIDmode;
5821
           mode = GET_MODE_WIDER_MODE (mode))
5822
        const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5823
 
5824
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5825
           mode != VOIDmode;
5826
           mode = GET_MODE_WIDER_MODE (mode))
5827
        const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5828
    }
5829
 
5830
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5831
       mode != VOIDmode;
5832
       mode = GET_MODE_WIDER_MODE (mode))
5833
    {
5834
      rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5835
      const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5836
    }
5837
 
5838
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5839
       mode != VOIDmode;
5840
       mode = GET_MODE_WIDER_MODE (mode))
5841
    {
5842
      rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5843
      const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5844
    }
5845
 
5846
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5847
       mode != VOIDmode;
5848
       mode = GET_MODE_WIDER_MODE (mode))
5849
    {
5850
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5851
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5852
    }
5853
 
5854
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5855
       mode != VOIDmode;
5856
       mode = GET_MODE_WIDER_MODE (mode))
5857
    {
5858
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5859
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5860
    }
5861
 
5862
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5863
       mode != VOIDmode;
5864
       mode = GET_MODE_WIDER_MODE (mode))
5865
    {
5866
      FCONST0(mode).data.high = 0;
5867
      FCONST0(mode).data.low = 0;
5868
      FCONST0(mode).mode = mode;
5869
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5870
                                      FCONST0 (mode), mode);
5871
    }
5872
 
5873
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5874
       mode != VOIDmode;
5875
       mode = GET_MODE_WIDER_MODE (mode))
5876
    {
5877
      FCONST0(mode).data.high = 0;
5878
      FCONST0(mode).data.low = 0;
5879
      FCONST0(mode).mode = mode;
5880
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5881
                                      FCONST0 (mode), mode);
5882
    }
5883
 
5884
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5885
       mode != VOIDmode;
5886
       mode = GET_MODE_WIDER_MODE (mode))
5887
    {
5888
      FCONST0(mode).data.high = 0;
5889
      FCONST0(mode).data.low = 0;
5890
      FCONST0(mode).mode = mode;
5891
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5892
                                      FCONST0 (mode), mode);
5893
 
5894
      /* We store the value 1.  */
5895
      FCONST1(mode).data.high = 0;
5896
      FCONST1(mode).data.low = 0;
5897
      FCONST1(mode).mode = mode;
5898
      lshift_double (1, 0, GET_MODE_FBIT (mode),
5899
                     2 * HOST_BITS_PER_WIDE_INT,
5900
                     &FCONST1(mode).data.low,
5901
                     &FCONST1(mode).data.high,
5902
                     SIGNED_FIXED_POINT_MODE_P (mode));
5903
      const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5904
                                      FCONST1 (mode), mode);
5905
    }
5906
 
5907
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5908
       mode != VOIDmode;
5909
       mode = GET_MODE_WIDER_MODE (mode))
5910
    {
5911
      FCONST0(mode).data.high = 0;
5912
      FCONST0(mode).data.low = 0;
5913
      FCONST0(mode).mode = mode;
5914
      const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5915
                                      FCONST0 (mode), mode);
5916
 
5917
      /* We store the value 1.  */
5918
      FCONST1(mode).data.high = 0;
5919
      FCONST1(mode).data.low = 0;
5920
      FCONST1(mode).mode = mode;
5921
      lshift_double (1, 0, GET_MODE_FBIT (mode),
5922
                     2 * HOST_BITS_PER_WIDE_INT,
5923
                     &FCONST1(mode).data.low,
5924
                     &FCONST1(mode).data.high,
5925
                     SIGNED_FIXED_POINT_MODE_P (mode));
5926
      const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5927
                                      FCONST1 (mode), mode);
5928
    }
5929
 
5930
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5931
       mode != VOIDmode;
5932
       mode = GET_MODE_WIDER_MODE (mode))
5933
    {
5934
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5935
    }
5936
 
5937
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5938
       mode != VOIDmode;
5939
       mode = GET_MODE_WIDER_MODE (mode))
5940
    {
5941
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5942
    }
5943
 
5944
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5945
       mode != VOIDmode;
5946
       mode = GET_MODE_WIDER_MODE (mode))
5947
    {
5948
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5949
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5950
    }
5951
 
5952
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5953
       mode != VOIDmode;
5954
       mode = GET_MODE_WIDER_MODE (mode))
5955
    {
5956
      const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5957
      const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5958
    }
5959
 
5960
  for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5961
    if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5962
      const_tiny_rtx[0][i] = const0_rtx;
5963
 
5964
  const_tiny_rtx[0][(int) BImode] = const0_rtx;
5965
  if (STORE_FLAG_VALUE == 1)
5966
    const_tiny_rtx[1][(int) BImode] = const1_rtx;
5967
}
5968
 
5969
/* Produce exact duplicate of insn INSN after AFTER.
5970
   Care updating of libcall regions if present.  */
5971
 
5972
rtx
5973
emit_copy_of_insn_after (rtx insn, rtx after)
5974
{
5975
  rtx new_rtx, link;
5976
 
5977
  switch (GET_CODE (insn))
5978
    {
5979
    case INSN:
5980
      new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5981
      break;
5982
 
5983
    case JUMP_INSN:
5984
      new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5985
      break;
5986
 
5987
    case DEBUG_INSN:
5988
      new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5989
      break;
5990
 
5991
    case CALL_INSN:
5992
      new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5993
      if (CALL_INSN_FUNCTION_USAGE (insn))
5994
        CALL_INSN_FUNCTION_USAGE (new_rtx)
5995
          = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5996
      SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5997
      RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5998
      RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5999
      RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6000
        = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6001
      break;
6002
 
6003
    default:
6004
      gcc_unreachable ();
6005
    }
6006
 
6007
  /* Update LABEL_NUSES.  */
6008
  mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6009
 
6010
  INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6011
 
6012
  /* If the old insn is frame related, then so is the new one.  This is
6013
     primarily needed for IA-64 unwind info which marks epilogue insns,
6014
     which may be duplicated by the basic block reordering code.  */
6015
  RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6016
 
6017
  /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6018
     will make them.  REG_LABEL_TARGETs are created there too, but are
6019
     supposed to be sticky, so we copy them.  */
6020
  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6021
    if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6022
      {
6023
        if (GET_CODE (link) == EXPR_LIST)
6024
          add_reg_note (new_rtx, REG_NOTE_KIND (link),
6025
                        copy_insn_1 (XEXP (link, 0)));
6026
        else
6027
          add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6028
      }
6029
 
6030
  INSN_CODE (new_rtx) = INSN_CODE (insn);
6031
  return new_rtx;
6032
}
6033
 
6034
static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6035
rtx
6036
gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6037
{
6038
  if (hard_reg_clobbers[mode][regno])
6039
    return hard_reg_clobbers[mode][regno];
6040
  else
6041
    return (hard_reg_clobbers[mode][regno] =
6042
            gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6043
}
6044
 
6045
#include "gt-emit-rtl.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.