| 1 |
285 |
jeremybenn |
/* Deal with interfaces.
|
| 2 |
|
|
Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009,
|
| 3 |
|
|
2010
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
Contributed by Andy Vaught
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 10 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 12 |
|
|
version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 17 |
|
|
for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 21 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 22 |
|
|
|
| 23 |
|
|
|
| 24 |
|
|
/* Deal with interfaces. An explicit interface is represented as a
|
| 25 |
|
|
singly linked list of formal argument structures attached to the
|
| 26 |
|
|
relevant symbols. For an implicit interface, the arguments don't
|
| 27 |
|
|
point to symbols. Explicit interfaces point to namespaces that
|
| 28 |
|
|
contain the symbols within that interface.
|
| 29 |
|
|
|
| 30 |
|
|
Implicit interfaces are linked together in a singly linked list
|
| 31 |
|
|
along the next_if member of symbol nodes. Since a particular
|
| 32 |
|
|
symbol can only have a single explicit interface, the symbol cannot
|
| 33 |
|
|
be part of multiple lists and a single next-member suffices.
|
| 34 |
|
|
|
| 35 |
|
|
This is not the case for general classes, though. An operator
|
| 36 |
|
|
definition is independent of just about all other uses and has it's
|
| 37 |
|
|
own head pointer.
|
| 38 |
|
|
|
| 39 |
|
|
Nameless interfaces:
|
| 40 |
|
|
Nameless interfaces create symbols with explicit interfaces within
|
| 41 |
|
|
the current namespace. They are otherwise unlinked.
|
| 42 |
|
|
|
| 43 |
|
|
Generic interfaces:
|
| 44 |
|
|
The generic name points to a linked list of symbols. Each symbol
|
| 45 |
|
|
has an explicit interface. Each explicit interface has its own
|
| 46 |
|
|
namespace containing the arguments. Module procedures are symbols in
|
| 47 |
|
|
which the interface is added later when the module procedure is parsed.
|
| 48 |
|
|
|
| 49 |
|
|
User operators:
|
| 50 |
|
|
User-defined operators are stored in a their own set of symtrees
|
| 51 |
|
|
separate from regular symbols. The symtrees point to gfc_user_op
|
| 52 |
|
|
structures which in turn head up a list of relevant interfaces.
|
| 53 |
|
|
|
| 54 |
|
|
Extended intrinsics and assignment:
|
| 55 |
|
|
The head of these interface lists are stored in the containing namespace.
|
| 56 |
|
|
|
| 57 |
|
|
Implicit interfaces:
|
| 58 |
|
|
An implicit interface is represented as a singly linked list of
|
| 59 |
|
|
formal argument list structures that don't point to any symbol
|
| 60 |
|
|
nodes -- they just contain types.
|
| 61 |
|
|
|
| 62 |
|
|
|
| 63 |
|
|
When a subprogram is defined, the program unit's name points to an
|
| 64 |
|
|
interface as usual, but the link to the namespace is NULL and the
|
| 65 |
|
|
formal argument list points to symbols within the same namespace as
|
| 66 |
|
|
the program unit name. */
|
| 67 |
|
|
|
| 68 |
|
|
#include "config.h"
|
| 69 |
|
|
#include "system.h"
|
| 70 |
|
|
#include "gfortran.h"
|
| 71 |
|
|
#include "match.h"
|
| 72 |
|
|
|
| 73 |
|
|
/* The current_interface structure holds information about the
|
| 74 |
|
|
interface currently being parsed. This structure is saved and
|
| 75 |
|
|
restored during recursive interfaces. */
|
| 76 |
|
|
|
| 77 |
|
|
gfc_interface_info current_interface;
|
| 78 |
|
|
|
| 79 |
|
|
|
| 80 |
|
|
/* Free a singly linked list of gfc_interface structures. */
|
| 81 |
|
|
|
| 82 |
|
|
void
|
| 83 |
|
|
gfc_free_interface (gfc_interface *intr)
|
| 84 |
|
|
{
|
| 85 |
|
|
gfc_interface *next;
|
| 86 |
|
|
|
| 87 |
|
|
for (; intr; intr = next)
|
| 88 |
|
|
{
|
| 89 |
|
|
next = intr->next;
|
| 90 |
|
|
gfc_free (intr);
|
| 91 |
|
|
}
|
| 92 |
|
|
}
|
| 93 |
|
|
|
| 94 |
|
|
|
| 95 |
|
|
/* Change the operators unary plus and minus into binary plus and
|
| 96 |
|
|
minus respectively, leaving the rest unchanged. */
|
| 97 |
|
|
|
| 98 |
|
|
static gfc_intrinsic_op
|
| 99 |
|
|
fold_unary_intrinsic (gfc_intrinsic_op op)
|
| 100 |
|
|
{
|
| 101 |
|
|
switch (op)
|
| 102 |
|
|
{
|
| 103 |
|
|
case INTRINSIC_UPLUS:
|
| 104 |
|
|
op = INTRINSIC_PLUS;
|
| 105 |
|
|
break;
|
| 106 |
|
|
case INTRINSIC_UMINUS:
|
| 107 |
|
|
op = INTRINSIC_MINUS;
|
| 108 |
|
|
break;
|
| 109 |
|
|
default:
|
| 110 |
|
|
break;
|
| 111 |
|
|
}
|
| 112 |
|
|
|
| 113 |
|
|
return op;
|
| 114 |
|
|
}
|
| 115 |
|
|
|
| 116 |
|
|
|
| 117 |
|
|
/* Match a generic specification. Depending on which type of
|
| 118 |
|
|
interface is found, the 'name' or 'op' pointers may be set.
|
| 119 |
|
|
This subroutine doesn't return MATCH_NO. */
|
| 120 |
|
|
|
| 121 |
|
|
match
|
| 122 |
|
|
gfc_match_generic_spec (interface_type *type,
|
| 123 |
|
|
char *name,
|
| 124 |
|
|
gfc_intrinsic_op *op)
|
| 125 |
|
|
{
|
| 126 |
|
|
char buffer[GFC_MAX_SYMBOL_LEN + 1];
|
| 127 |
|
|
match m;
|
| 128 |
|
|
gfc_intrinsic_op i;
|
| 129 |
|
|
|
| 130 |
|
|
if (gfc_match (" assignment ( = )") == MATCH_YES)
|
| 131 |
|
|
{
|
| 132 |
|
|
*type = INTERFACE_INTRINSIC_OP;
|
| 133 |
|
|
*op = INTRINSIC_ASSIGN;
|
| 134 |
|
|
return MATCH_YES;
|
| 135 |
|
|
}
|
| 136 |
|
|
|
| 137 |
|
|
if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
|
| 138 |
|
|
{ /* Operator i/f */
|
| 139 |
|
|
*type = INTERFACE_INTRINSIC_OP;
|
| 140 |
|
|
*op = fold_unary_intrinsic (i);
|
| 141 |
|
|
return MATCH_YES;
|
| 142 |
|
|
}
|
| 143 |
|
|
|
| 144 |
|
|
*op = INTRINSIC_NONE;
|
| 145 |
|
|
if (gfc_match (" operator ( ") == MATCH_YES)
|
| 146 |
|
|
{
|
| 147 |
|
|
m = gfc_match_defined_op_name (buffer, 1);
|
| 148 |
|
|
if (m == MATCH_NO)
|
| 149 |
|
|
goto syntax;
|
| 150 |
|
|
if (m != MATCH_YES)
|
| 151 |
|
|
return MATCH_ERROR;
|
| 152 |
|
|
|
| 153 |
|
|
m = gfc_match_char (')');
|
| 154 |
|
|
if (m == MATCH_NO)
|
| 155 |
|
|
goto syntax;
|
| 156 |
|
|
if (m != MATCH_YES)
|
| 157 |
|
|
return MATCH_ERROR;
|
| 158 |
|
|
|
| 159 |
|
|
strcpy (name, buffer);
|
| 160 |
|
|
*type = INTERFACE_USER_OP;
|
| 161 |
|
|
return MATCH_YES;
|
| 162 |
|
|
}
|
| 163 |
|
|
|
| 164 |
|
|
if (gfc_match_name (buffer) == MATCH_YES)
|
| 165 |
|
|
{
|
| 166 |
|
|
strcpy (name, buffer);
|
| 167 |
|
|
*type = INTERFACE_GENERIC;
|
| 168 |
|
|
return MATCH_YES;
|
| 169 |
|
|
}
|
| 170 |
|
|
|
| 171 |
|
|
*type = INTERFACE_NAMELESS;
|
| 172 |
|
|
return MATCH_YES;
|
| 173 |
|
|
|
| 174 |
|
|
syntax:
|
| 175 |
|
|
gfc_error ("Syntax error in generic specification at %C");
|
| 176 |
|
|
return MATCH_ERROR;
|
| 177 |
|
|
}
|
| 178 |
|
|
|
| 179 |
|
|
|
| 180 |
|
|
/* Match one of the five F95 forms of an interface statement. The
|
| 181 |
|
|
matcher for the abstract interface follows. */
|
| 182 |
|
|
|
| 183 |
|
|
match
|
| 184 |
|
|
gfc_match_interface (void)
|
| 185 |
|
|
{
|
| 186 |
|
|
char name[GFC_MAX_SYMBOL_LEN + 1];
|
| 187 |
|
|
interface_type type;
|
| 188 |
|
|
gfc_symbol *sym;
|
| 189 |
|
|
gfc_intrinsic_op op;
|
| 190 |
|
|
match m;
|
| 191 |
|
|
|
| 192 |
|
|
m = gfc_match_space ();
|
| 193 |
|
|
|
| 194 |
|
|
if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
|
| 195 |
|
|
return MATCH_ERROR;
|
| 196 |
|
|
|
| 197 |
|
|
/* If we're not looking at the end of the statement now, or if this
|
| 198 |
|
|
is not a nameless interface but we did not see a space, punt. */
|
| 199 |
|
|
if (gfc_match_eos () != MATCH_YES
|
| 200 |
|
|
|| (type != INTERFACE_NAMELESS && m != MATCH_YES))
|
| 201 |
|
|
{
|
| 202 |
|
|
gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
|
| 203 |
|
|
"at %C");
|
| 204 |
|
|
return MATCH_ERROR;
|
| 205 |
|
|
}
|
| 206 |
|
|
|
| 207 |
|
|
current_interface.type = type;
|
| 208 |
|
|
|
| 209 |
|
|
switch (type)
|
| 210 |
|
|
{
|
| 211 |
|
|
case INTERFACE_GENERIC:
|
| 212 |
|
|
if (gfc_get_symbol (name, NULL, &sym))
|
| 213 |
|
|
return MATCH_ERROR;
|
| 214 |
|
|
|
| 215 |
|
|
if (!sym->attr.generic
|
| 216 |
|
|
&& gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
|
| 217 |
|
|
return MATCH_ERROR;
|
| 218 |
|
|
|
| 219 |
|
|
if (sym->attr.dummy)
|
| 220 |
|
|
{
|
| 221 |
|
|
gfc_error ("Dummy procedure '%s' at %C cannot have a "
|
| 222 |
|
|
"generic interface", sym->name);
|
| 223 |
|
|
return MATCH_ERROR;
|
| 224 |
|
|
}
|
| 225 |
|
|
|
| 226 |
|
|
current_interface.sym = gfc_new_block = sym;
|
| 227 |
|
|
break;
|
| 228 |
|
|
|
| 229 |
|
|
case INTERFACE_USER_OP:
|
| 230 |
|
|
current_interface.uop = gfc_get_uop (name);
|
| 231 |
|
|
break;
|
| 232 |
|
|
|
| 233 |
|
|
case INTERFACE_INTRINSIC_OP:
|
| 234 |
|
|
current_interface.op = op;
|
| 235 |
|
|
break;
|
| 236 |
|
|
|
| 237 |
|
|
case INTERFACE_NAMELESS:
|
| 238 |
|
|
case INTERFACE_ABSTRACT:
|
| 239 |
|
|
break;
|
| 240 |
|
|
}
|
| 241 |
|
|
|
| 242 |
|
|
return MATCH_YES;
|
| 243 |
|
|
}
|
| 244 |
|
|
|
| 245 |
|
|
|
| 246 |
|
|
|
| 247 |
|
|
/* Match a F2003 abstract interface. */
|
| 248 |
|
|
|
| 249 |
|
|
match
|
| 250 |
|
|
gfc_match_abstract_interface (void)
|
| 251 |
|
|
{
|
| 252 |
|
|
match m;
|
| 253 |
|
|
|
| 254 |
|
|
if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ABSTRACT INTERFACE at %C")
|
| 255 |
|
|
== FAILURE)
|
| 256 |
|
|
return MATCH_ERROR;
|
| 257 |
|
|
|
| 258 |
|
|
m = gfc_match_eos ();
|
| 259 |
|
|
|
| 260 |
|
|
if (m != MATCH_YES)
|
| 261 |
|
|
{
|
| 262 |
|
|
gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
|
| 263 |
|
|
return MATCH_ERROR;
|
| 264 |
|
|
}
|
| 265 |
|
|
|
| 266 |
|
|
current_interface.type = INTERFACE_ABSTRACT;
|
| 267 |
|
|
|
| 268 |
|
|
return m;
|
| 269 |
|
|
}
|
| 270 |
|
|
|
| 271 |
|
|
|
| 272 |
|
|
/* Match the different sort of generic-specs that can be present after
|
| 273 |
|
|
the END INTERFACE itself. */
|
| 274 |
|
|
|
| 275 |
|
|
match
|
| 276 |
|
|
gfc_match_end_interface (void)
|
| 277 |
|
|
{
|
| 278 |
|
|
char name[GFC_MAX_SYMBOL_LEN + 1];
|
| 279 |
|
|
interface_type type;
|
| 280 |
|
|
gfc_intrinsic_op op;
|
| 281 |
|
|
match m;
|
| 282 |
|
|
|
| 283 |
|
|
m = gfc_match_space ();
|
| 284 |
|
|
|
| 285 |
|
|
if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
|
| 286 |
|
|
return MATCH_ERROR;
|
| 287 |
|
|
|
| 288 |
|
|
/* If we're not looking at the end of the statement now, or if this
|
| 289 |
|
|
is not a nameless interface but we did not see a space, punt. */
|
| 290 |
|
|
if (gfc_match_eos () != MATCH_YES
|
| 291 |
|
|
|| (type != INTERFACE_NAMELESS && m != MATCH_YES))
|
| 292 |
|
|
{
|
| 293 |
|
|
gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
|
| 294 |
|
|
"statement at %C");
|
| 295 |
|
|
return MATCH_ERROR;
|
| 296 |
|
|
}
|
| 297 |
|
|
|
| 298 |
|
|
m = MATCH_YES;
|
| 299 |
|
|
|
| 300 |
|
|
switch (current_interface.type)
|
| 301 |
|
|
{
|
| 302 |
|
|
case INTERFACE_NAMELESS:
|
| 303 |
|
|
case INTERFACE_ABSTRACT:
|
| 304 |
|
|
if (type != INTERFACE_NAMELESS)
|
| 305 |
|
|
{
|
| 306 |
|
|
gfc_error ("Expected a nameless interface at %C");
|
| 307 |
|
|
m = MATCH_ERROR;
|
| 308 |
|
|
}
|
| 309 |
|
|
|
| 310 |
|
|
break;
|
| 311 |
|
|
|
| 312 |
|
|
case INTERFACE_INTRINSIC_OP:
|
| 313 |
|
|
if (type != current_interface.type || op != current_interface.op)
|
| 314 |
|
|
{
|
| 315 |
|
|
|
| 316 |
|
|
if (current_interface.op == INTRINSIC_ASSIGN)
|
| 317 |
|
|
gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
|
| 318 |
|
|
else
|
| 319 |
|
|
gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C",
|
| 320 |
|
|
gfc_op2string (current_interface.op));
|
| 321 |
|
|
|
| 322 |
|
|
m = MATCH_ERROR;
|
| 323 |
|
|
}
|
| 324 |
|
|
|
| 325 |
|
|
break;
|
| 326 |
|
|
|
| 327 |
|
|
case INTERFACE_USER_OP:
|
| 328 |
|
|
/* Comparing the symbol node names is OK because only use-associated
|
| 329 |
|
|
symbols can be renamed. */
|
| 330 |
|
|
if (type != current_interface.type
|
| 331 |
|
|
|| strcmp (current_interface.uop->name, name) != 0)
|
| 332 |
|
|
{
|
| 333 |
|
|
gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
|
| 334 |
|
|
current_interface.uop->name);
|
| 335 |
|
|
m = MATCH_ERROR;
|
| 336 |
|
|
}
|
| 337 |
|
|
|
| 338 |
|
|
break;
|
| 339 |
|
|
|
| 340 |
|
|
case INTERFACE_GENERIC:
|
| 341 |
|
|
if (type != current_interface.type
|
| 342 |
|
|
|| strcmp (current_interface.sym->name, name) != 0)
|
| 343 |
|
|
{
|
| 344 |
|
|
gfc_error ("Expecting 'END INTERFACE %s' at %C",
|
| 345 |
|
|
current_interface.sym->name);
|
| 346 |
|
|
m = MATCH_ERROR;
|
| 347 |
|
|
}
|
| 348 |
|
|
|
| 349 |
|
|
break;
|
| 350 |
|
|
}
|
| 351 |
|
|
|
| 352 |
|
|
return m;
|
| 353 |
|
|
}
|
| 354 |
|
|
|
| 355 |
|
|
|
| 356 |
|
|
/* Compare two derived types using the criteria in 4.4.2 of the standard,
|
| 357 |
|
|
recursing through gfc_compare_types for the components. */
|
| 358 |
|
|
|
| 359 |
|
|
int
|
| 360 |
|
|
gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
|
| 361 |
|
|
{
|
| 362 |
|
|
gfc_component *dt1, *dt2;
|
| 363 |
|
|
|
| 364 |
|
|
if (derived1 == derived2)
|
| 365 |
|
|
return 1;
|
| 366 |
|
|
|
| 367 |
|
|
/* Special case for comparing derived types across namespaces. If the
|
| 368 |
|
|
true names and module names are the same and the module name is
|
| 369 |
|
|
nonnull, then they are equal. */
|
| 370 |
|
|
if (derived1 != NULL && derived2 != NULL
|
| 371 |
|
|
&& strcmp (derived1->name, derived2->name) == 0
|
| 372 |
|
|
&& derived1->module != NULL && derived2->module != NULL
|
| 373 |
|
|
&& strcmp (derived1->module, derived2->module) == 0)
|
| 374 |
|
|
return 1;
|
| 375 |
|
|
|
| 376 |
|
|
/* Compare type via the rules of the standard. Both types must have
|
| 377 |
|
|
the SEQUENCE attribute to be equal. */
|
| 378 |
|
|
|
| 379 |
|
|
if (strcmp (derived1->name, derived2->name))
|
| 380 |
|
|
return 0;
|
| 381 |
|
|
|
| 382 |
|
|
if (derived1->component_access == ACCESS_PRIVATE
|
| 383 |
|
|
|| derived2->component_access == ACCESS_PRIVATE)
|
| 384 |
|
|
return 0;
|
| 385 |
|
|
|
| 386 |
|
|
if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0)
|
| 387 |
|
|
return 0;
|
| 388 |
|
|
|
| 389 |
|
|
dt1 = derived1->components;
|
| 390 |
|
|
dt2 = derived2->components;
|
| 391 |
|
|
|
| 392 |
|
|
/* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
|
| 393 |
|
|
simple test can speed things up. Otherwise, lots of things have to
|
| 394 |
|
|
match. */
|
| 395 |
|
|
for (;;)
|
| 396 |
|
|
{
|
| 397 |
|
|
if (strcmp (dt1->name, dt2->name) != 0)
|
| 398 |
|
|
return 0;
|
| 399 |
|
|
|
| 400 |
|
|
if (dt1->attr.access != dt2->attr.access)
|
| 401 |
|
|
return 0;
|
| 402 |
|
|
|
| 403 |
|
|
if (dt1->attr.pointer != dt2->attr.pointer)
|
| 404 |
|
|
return 0;
|
| 405 |
|
|
|
| 406 |
|
|
if (dt1->attr.dimension != dt2->attr.dimension)
|
| 407 |
|
|
return 0;
|
| 408 |
|
|
|
| 409 |
|
|
if (dt1->attr.allocatable != dt2->attr.allocatable)
|
| 410 |
|
|
return 0;
|
| 411 |
|
|
|
| 412 |
|
|
if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
|
| 413 |
|
|
return 0;
|
| 414 |
|
|
|
| 415 |
|
|
/* Make sure that link lists do not put this function into an
|
| 416 |
|
|
endless recursive loop! */
|
| 417 |
|
|
if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
|
| 418 |
|
|
&& !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
|
| 419 |
|
|
&& gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
|
| 420 |
|
|
return 0;
|
| 421 |
|
|
|
| 422 |
|
|
else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
|
| 423 |
|
|
&& !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
|
| 424 |
|
|
return 0;
|
| 425 |
|
|
|
| 426 |
|
|
else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
|
| 427 |
|
|
&& (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
|
| 428 |
|
|
return 0;
|
| 429 |
|
|
|
| 430 |
|
|
dt1 = dt1->next;
|
| 431 |
|
|
dt2 = dt2->next;
|
| 432 |
|
|
|
| 433 |
|
|
if (dt1 == NULL && dt2 == NULL)
|
| 434 |
|
|
break;
|
| 435 |
|
|
if (dt1 == NULL || dt2 == NULL)
|
| 436 |
|
|
return 0;
|
| 437 |
|
|
}
|
| 438 |
|
|
|
| 439 |
|
|
return 1;
|
| 440 |
|
|
}
|
| 441 |
|
|
|
| 442 |
|
|
|
| 443 |
|
|
/* Compare two typespecs, recursively if necessary. */
|
| 444 |
|
|
|
| 445 |
|
|
int
|
| 446 |
|
|
gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
|
| 447 |
|
|
{
|
| 448 |
|
|
/* See if one of the typespecs is a BT_VOID, which is what is being used
|
| 449 |
|
|
to allow the funcs like c_f_pointer to accept any pointer type.
|
| 450 |
|
|
TODO: Possibly should narrow this to just the one typespec coming in
|
| 451 |
|
|
that is for the formal arg, but oh well. */
|
| 452 |
|
|
if (ts1->type == BT_VOID || ts2->type == BT_VOID)
|
| 453 |
|
|
return 1;
|
| 454 |
|
|
|
| 455 |
|
|
if (ts1->type != ts2->type
|
| 456 |
|
|
&& ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
|
| 457 |
|
|
|| (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
|
| 458 |
|
|
return 0;
|
| 459 |
|
|
if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
|
| 460 |
|
|
return (ts1->kind == ts2->kind);
|
| 461 |
|
|
|
| 462 |
|
|
/* Compare derived types. */
|
| 463 |
|
|
if (gfc_type_compatible (ts1, ts2))
|
| 464 |
|
|
return 1;
|
| 465 |
|
|
|
| 466 |
|
|
return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
|
| 467 |
|
|
}
|
| 468 |
|
|
|
| 469 |
|
|
|
| 470 |
|
|
/* Given two symbols that are formal arguments, compare their ranks
|
| 471 |
|
|
and types. Returns nonzero if they have the same rank and type,
|
| 472 |
|
|
zero otherwise. */
|
| 473 |
|
|
|
| 474 |
|
|
static int
|
| 475 |
|
|
compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
|
| 476 |
|
|
{
|
| 477 |
|
|
int r1, r2;
|
| 478 |
|
|
|
| 479 |
|
|
r1 = (s1->as != NULL) ? s1->as->rank : 0;
|
| 480 |
|
|
r2 = (s2->as != NULL) ? s2->as->rank : 0;
|
| 481 |
|
|
|
| 482 |
|
|
if (r1 != r2)
|
| 483 |
|
|
return 0; /* Ranks differ. */
|
| 484 |
|
|
|
| 485 |
|
|
return gfc_compare_types (&s1->ts, &s2->ts);
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
|
| 489 |
|
|
/* Given two symbols that are formal arguments, compare their types
|
| 490 |
|
|
and rank and their formal interfaces if they are both dummy
|
| 491 |
|
|
procedures. Returns nonzero if the same, zero if different. */
|
| 492 |
|
|
|
| 493 |
|
|
static int
|
| 494 |
|
|
compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
|
| 495 |
|
|
{
|
| 496 |
|
|
if (s1 == NULL || s2 == NULL)
|
| 497 |
|
|
return s1 == s2 ? 1 : 0;
|
| 498 |
|
|
|
| 499 |
|
|
if (s1 == s2)
|
| 500 |
|
|
return 1;
|
| 501 |
|
|
|
| 502 |
|
|
if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
|
| 503 |
|
|
return compare_type_rank (s1, s2);
|
| 504 |
|
|
|
| 505 |
|
|
if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
|
| 506 |
|
|
return 0;
|
| 507 |
|
|
|
| 508 |
|
|
/* At this point, both symbols are procedures. It can happen that
|
| 509 |
|
|
external procedures are compared, where one is identified by usage
|
| 510 |
|
|
to be a function or subroutine but the other is not. Check TKR
|
| 511 |
|
|
nonetheless for these cases. */
|
| 512 |
|
|
if (s1->attr.function == 0 && s1->attr.subroutine == 0)
|
| 513 |
|
|
return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
|
| 514 |
|
|
|
| 515 |
|
|
if (s2->attr.function == 0 && s2->attr.subroutine == 0)
|
| 516 |
|
|
return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
|
| 517 |
|
|
|
| 518 |
|
|
/* Now the type of procedure has been identified. */
|
| 519 |
|
|
if (s1->attr.function != s2->attr.function
|
| 520 |
|
|
|| s1->attr.subroutine != s2->attr.subroutine)
|
| 521 |
|
|
return 0;
|
| 522 |
|
|
|
| 523 |
|
|
if (s1->attr.function && compare_type_rank (s1, s2) == 0)
|
| 524 |
|
|
return 0;
|
| 525 |
|
|
|
| 526 |
|
|
/* Originally, gfortran recursed here to check the interfaces of passed
|
| 527 |
|
|
procedures. This is explicitly not required by the standard. */
|
| 528 |
|
|
return 1;
|
| 529 |
|
|
}
|
| 530 |
|
|
|
| 531 |
|
|
|
| 532 |
|
|
/* Given a formal argument list and a keyword name, search the list
|
| 533 |
|
|
for that keyword. Returns the correct symbol node if found, NULL
|
| 534 |
|
|
if not found. */
|
| 535 |
|
|
|
| 536 |
|
|
static gfc_symbol *
|
| 537 |
|
|
find_keyword_arg (const char *name, gfc_formal_arglist *f)
|
| 538 |
|
|
{
|
| 539 |
|
|
for (; f; f = f->next)
|
| 540 |
|
|
if (strcmp (f->sym->name, name) == 0)
|
| 541 |
|
|
return f->sym;
|
| 542 |
|
|
|
| 543 |
|
|
return NULL;
|
| 544 |
|
|
}
|
| 545 |
|
|
|
| 546 |
|
|
|
| 547 |
|
|
/******** Interface checking subroutines **********/
|
| 548 |
|
|
|
| 549 |
|
|
|
| 550 |
|
|
/* Given an operator interface and the operator, make sure that all
|
| 551 |
|
|
interfaces for that operator are legal. */
|
| 552 |
|
|
|
| 553 |
|
|
bool
|
| 554 |
|
|
gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
|
| 555 |
|
|
locus opwhere)
|
| 556 |
|
|
{
|
| 557 |
|
|
gfc_formal_arglist *formal;
|
| 558 |
|
|
sym_intent i1, i2;
|
| 559 |
|
|
bt t1, t2;
|
| 560 |
|
|
int args, r1, r2, k1, k2;
|
| 561 |
|
|
|
| 562 |
|
|
gcc_assert (sym);
|
| 563 |
|
|
|
| 564 |
|
|
args = 0;
|
| 565 |
|
|
t1 = t2 = BT_UNKNOWN;
|
| 566 |
|
|
i1 = i2 = INTENT_UNKNOWN;
|
| 567 |
|
|
r1 = r2 = -1;
|
| 568 |
|
|
k1 = k2 = -1;
|
| 569 |
|
|
|
| 570 |
|
|
for (formal = sym->formal; formal; formal = formal->next)
|
| 571 |
|
|
{
|
| 572 |
|
|
gfc_symbol *fsym = formal->sym;
|
| 573 |
|
|
if (fsym == NULL)
|
| 574 |
|
|
{
|
| 575 |
|
|
gfc_error ("Alternate return cannot appear in operator "
|
| 576 |
|
|
"interface at %L", &sym->declared_at);
|
| 577 |
|
|
return false;
|
| 578 |
|
|
}
|
| 579 |
|
|
if (args == 0)
|
| 580 |
|
|
{
|
| 581 |
|
|
t1 = fsym->ts.type;
|
| 582 |
|
|
i1 = fsym->attr.intent;
|
| 583 |
|
|
r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
|
| 584 |
|
|
k1 = fsym->ts.kind;
|
| 585 |
|
|
}
|
| 586 |
|
|
if (args == 1)
|
| 587 |
|
|
{
|
| 588 |
|
|
t2 = fsym->ts.type;
|
| 589 |
|
|
i2 = fsym->attr.intent;
|
| 590 |
|
|
r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
|
| 591 |
|
|
k2 = fsym->ts.kind;
|
| 592 |
|
|
}
|
| 593 |
|
|
args++;
|
| 594 |
|
|
}
|
| 595 |
|
|
|
| 596 |
|
|
/* Only +, - and .not. can be unary operators.
|
| 597 |
|
|
.not. cannot be a binary operator. */
|
| 598 |
|
|
if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
|
| 599 |
|
|
&& op != INTRINSIC_MINUS
|
| 600 |
|
|
&& op != INTRINSIC_NOT)
|
| 601 |
|
|
|| (args == 2 && op == INTRINSIC_NOT))
|
| 602 |
|
|
{
|
| 603 |
|
|
gfc_error ("Operator interface at %L has the wrong number of arguments",
|
| 604 |
|
|
&sym->declared_at);
|
| 605 |
|
|
return false;
|
| 606 |
|
|
}
|
| 607 |
|
|
|
| 608 |
|
|
/* Check that intrinsics are mapped to functions, except
|
| 609 |
|
|
INTRINSIC_ASSIGN which should map to a subroutine. */
|
| 610 |
|
|
if (op == INTRINSIC_ASSIGN)
|
| 611 |
|
|
{
|
| 612 |
|
|
if (!sym->attr.subroutine)
|
| 613 |
|
|
{
|
| 614 |
|
|
gfc_error ("Assignment operator interface at %L must be "
|
| 615 |
|
|
"a SUBROUTINE", &sym->declared_at);
|
| 616 |
|
|
return false;
|
| 617 |
|
|
}
|
| 618 |
|
|
if (args != 2)
|
| 619 |
|
|
{
|
| 620 |
|
|
gfc_error ("Assignment operator interface at %L must have "
|
| 621 |
|
|
"two arguments", &sym->declared_at);
|
| 622 |
|
|
return false;
|
| 623 |
|
|
}
|
| 624 |
|
|
|
| 625 |
|
|
/* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
|
| 626 |
|
|
- First argument an array with different rank than second,
|
| 627 |
|
|
- Types and kinds do not conform, and
|
| 628 |
|
|
- First argument is of derived type. */
|
| 629 |
|
|
if (sym->formal->sym->ts.type != BT_DERIVED
|
| 630 |
|
|
&& sym->formal->sym->ts.type != BT_CLASS
|
| 631 |
|
|
&& (r1 == 0 || r1 == r2)
|
| 632 |
|
|
&& (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type
|
| 633 |
|
|
|| (gfc_numeric_ts (&sym->formal->sym->ts)
|
| 634 |
|
|
&& gfc_numeric_ts (&sym->formal->next->sym->ts))))
|
| 635 |
|
|
{
|
| 636 |
|
|
gfc_error ("Assignment operator interface at %L must not redefine "
|
| 637 |
|
|
"an INTRINSIC type assignment", &sym->declared_at);
|
| 638 |
|
|
return false;
|
| 639 |
|
|
}
|
| 640 |
|
|
}
|
| 641 |
|
|
else
|
| 642 |
|
|
{
|
| 643 |
|
|
if (!sym->attr.function)
|
| 644 |
|
|
{
|
| 645 |
|
|
gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
|
| 646 |
|
|
&sym->declared_at);
|
| 647 |
|
|
return false;
|
| 648 |
|
|
}
|
| 649 |
|
|
}
|
| 650 |
|
|
|
| 651 |
|
|
/* Check intents on operator interfaces. */
|
| 652 |
|
|
if (op == INTRINSIC_ASSIGN)
|
| 653 |
|
|
{
|
| 654 |
|
|
if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
|
| 655 |
|
|
{
|
| 656 |
|
|
gfc_error ("First argument of defined assignment at %L must be "
|
| 657 |
|
|
"INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
|
| 658 |
|
|
return false;
|
| 659 |
|
|
}
|
| 660 |
|
|
|
| 661 |
|
|
if (i2 != INTENT_IN)
|
| 662 |
|
|
{
|
| 663 |
|
|
gfc_error ("Second argument of defined assignment at %L must be "
|
| 664 |
|
|
"INTENT(IN)", &sym->declared_at);
|
| 665 |
|
|
return false;
|
| 666 |
|
|
}
|
| 667 |
|
|
}
|
| 668 |
|
|
else
|
| 669 |
|
|
{
|
| 670 |
|
|
if (i1 != INTENT_IN)
|
| 671 |
|
|
{
|
| 672 |
|
|
gfc_error ("First argument of operator interface at %L must be "
|
| 673 |
|
|
"INTENT(IN)", &sym->declared_at);
|
| 674 |
|
|
return false;
|
| 675 |
|
|
}
|
| 676 |
|
|
|
| 677 |
|
|
if (args == 2 && i2 != INTENT_IN)
|
| 678 |
|
|
{
|
| 679 |
|
|
gfc_error ("Second argument of operator interface at %L must be "
|
| 680 |
|
|
"INTENT(IN)", &sym->declared_at);
|
| 681 |
|
|
return false;
|
| 682 |
|
|
}
|
| 683 |
|
|
}
|
| 684 |
|
|
|
| 685 |
|
|
/* From now on, all we have to do is check that the operator definition
|
| 686 |
|
|
doesn't conflict with an intrinsic operator. The rules for this
|
| 687 |
|
|
game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
|
| 688 |
|
|
as well as 12.3.2.1.1 of Fortran 2003:
|
| 689 |
|
|
|
| 690 |
|
|
"If the operator is an intrinsic-operator (R310), the number of
|
| 691 |
|
|
function arguments shall be consistent with the intrinsic uses of
|
| 692 |
|
|
that operator, and the types, kind type parameters, or ranks of the
|
| 693 |
|
|
dummy arguments shall differ from those required for the intrinsic
|
| 694 |
|
|
operation (7.1.2)." */
|
| 695 |
|
|
|
| 696 |
|
|
#define IS_NUMERIC_TYPE(t) \
|
| 697 |
|
|
((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
|
| 698 |
|
|
|
| 699 |
|
|
/* Unary ops are easy, do them first. */
|
| 700 |
|
|
if (op == INTRINSIC_NOT)
|
| 701 |
|
|
{
|
| 702 |
|
|
if (t1 == BT_LOGICAL)
|
| 703 |
|
|
goto bad_repl;
|
| 704 |
|
|
else
|
| 705 |
|
|
return true;
|
| 706 |
|
|
}
|
| 707 |
|
|
|
| 708 |
|
|
if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
|
| 709 |
|
|
{
|
| 710 |
|
|
if (IS_NUMERIC_TYPE (t1))
|
| 711 |
|
|
goto bad_repl;
|
| 712 |
|
|
else
|
| 713 |
|
|
return true;
|
| 714 |
|
|
}
|
| 715 |
|
|
|
| 716 |
|
|
/* Character intrinsic operators have same character kind, thus
|
| 717 |
|
|
operator definitions with operands of different character kinds
|
| 718 |
|
|
are always safe. */
|
| 719 |
|
|
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
|
| 720 |
|
|
return true;
|
| 721 |
|
|
|
| 722 |
|
|
/* Intrinsic operators always perform on arguments of same rank,
|
| 723 |
|
|
so different ranks is also always safe. (rank == 0) is an exception
|
| 724 |
|
|
to that, because all intrinsic operators are elemental. */
|
| 725 |
|
|
if (r1 != r2 && r1 != 0 && r2 != 0)
|
| 726 |
|
|
return true;
|
| 727 |
|
|
|
| 728 |
|
|
switch (op)
|
| 729 |
|
|
{
|
| 730 |
|
|
case INTRINSIC_EQ:
|
| 731 |
|
|
case INTRINSIC_EQ_OS:
|
| 732 |
|
|
case INTRINSIC_NE:
|
| 733 |
|
|
case INTRINSIC_NE_OS:
|
| 734 |
|
|
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
|
| 735 |
|
|
goto bad_repl;
|
| 736 |
|
|
/* Fall through. */
|
| 737 |
|
|
|
| 738 |
|
|
case INTRINSIC_PLUS:
|
| 739 |
|
|
case INTRINSIC_MINUS:
|
| 740 |
|
|
case INTRINSIC_TIMES:
|
| 741 |
|
|
case INTRINSIC_DIVIDE:
|
| 742 |
|
|
case INTRINSIC_POWER:
|
| 743 |
|
|
if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
|
| 744 |
|
|
goto bad_repl;
|
| 745 |
|
|
break;
|
| 746 |
|
|
|
| 747 |
|
|
case INTRINSIC_GT:
|
| 748 |
|
|
case INTRINSIC_GT_OS:
|
| 749 |
|
|
case INTRINSIC_GE:
|
| 750 |
|
|
case INTRINSIC_GE_OS:
|
| 751 |
|
|
case INTRINSIC_LT:
|
| 752 |
|
|
case INTRINSIC_LT_OS:
|
| 753 |
|
|
case INTRINSIC_LE:
|
| 754 |
|
|
case INTRINSIC_LE_OS:
|
| 755 |
|
|
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
|
| 756 |
|
|
goto bad_repl;
|
| 757 |
|
|
if ((t1 == BT_INTEGER || t1 == BT_REAL)
|
| 758 |
|
|
&& (t2 == BT_INTEGER || t2 == BT_REAL))
|
| 759 |
|
|
goto bad_repl;
|
| 760 |
|
|
break;
|
| 761 |
|
|
|
| 762 |
|
|
case INTRINSIC_CONCAT:
|
| 763 |
|
|
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
|
| 764 |
|
|
goto bad_repl;
|
| 765 |
|
|
break;
|
| 766 |
|
|
|
| 767 |
|
|
case INTRINSIC_AND:
|
| 768 |
|
|
case INTRINSIC_OR:
|
| 769 |
|
|
case INTRINSIC_EQV:
|
| 770 |
|
|
case INTRINSIC_NEQV:
|
| 771 |
|
|
if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
|
| 772 |
|
|
goto bad_repl;
|
| 773 |
|
|
break;
|
| 774 |
|
|
|
| 775 |
|
|
default:
|
| 776 |
|
|
break;
|
| 777 |
|
|
}
|
| 778 |
|
|
|
| 779 |
|
|
return true;
|
| 780 |
|
|
|
| 781 |
|
|
#undef IS_NUMERIC_TYPE
|
| 782 |
|
|
|
| 783 |
|
|
bad_repl:
|
| 784 |
|
|
gfc_error ("Operator interface at %L conflicts with intrinsic interface",
|
| 785 |
|
|
&opwhere);
|
| 786 |
|
|
return false;
|
| 787 |
|
|
}
|
| 788 |
|
|
|
| 789 |
|
|
|
| 790 |
|
|
/* Given a pair of formal argument lists, we see if the two lists can
|
| 791 |
|
|
be distinguished by counting the number of nonoptional arguments of
|
| 792 |
|
|
a given type/rank in f1 and seeing if there are less then that
|
| 793 |
|
|
number of those arguments in f2 (including optional arguments).
|
| 794 |
|
|
Since this test is asymmetric, it has to be called twice to make it
|
| 795 |
|
|
symmetric. Returns nonzero if the argument lists are incompatible
|
| 796 |
|
|
by this test. This subroutine implements rule 1 of section
|
| 797 |
|
|
14.1.2.3 in the Fortran 95 standard. */
|
| 798 |
|
|
|
| 799 |
|
|
static int
|
| 800 |
|
|
count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
|
| 801 |
|
|
{
|
| 802 |
|
|
int rc, ac1, ac2, i, j, k, n1;
|
| 803 |
|
|
gfc_formal_arglist *f;
|
| 804 |
|
|
|
| 805 |
|
|
typedef struct
|
| 806 |
|
|
{
|
| 807 |
|
|
int flag;
|
| 808 |
|
|
gfc_symbol *sym;
|
| 809 |
|
|
}
|
| 810 |
|
|
arginfo;
|
| 811 |
|
|
|
| 812 |
|
|
arginfo *arg;
|
| 813 |
|
|
|
| 814 |
|
|
n1 = 0;
|
| 815 |
|
|
|
| 816 |
|
|
for (f = f1; f; f = f->next)
|
| 817 |
|
|
n1++;
|
| 818 |
|
|
|
| 819 |
|
|
/* Build an array of integers that gives the same integer to
|
| 820 |
|
|
arguments of the same type/rank. */
|
| 821 |
|
|
arg = XCNEWVEC (arginfo, n1);
|
| 822 |
|
|
|
| 823 |
|
|
f = f1;
|
| 824 |
|
|
for (i = 0; i < n1; i++, f = f->next)
|
| 825 |
|
|
{
|
| 826 |
|
|
arg[i].flag = -1;
|
| 827 |
|
|
arg[i].sym = f->sym;
|
| 828 |
|
|
}
|
| 829 |
|
|
|
| 830 |
|
|
k = 0;
|
| 831 |
|
|
|
| 832 |
|
|
for (i = 0; i < n1; i++)
|
| 833 |
|
|
{
|
| 834 |
|
|
if (arg[i].flag != -1)
|
| 835 |
|
|
continue;
|
| 836 |
|
|
|
| 837 |
|
|
if (arg[i].sym && arg[i].sym->attr.optional)
|
| 838 |
|
|
continue; /* Skip optional arguments. */
|
| 839 |
|
|
|
| 840 |
|
|
arg[i].flag = k;
|
| 841 |
|
|
|
| 842 |
|
|
/* Find other nonoptional arguments of the same type/rank. */
|
| 843 |
|
|
for (j = i + 1; j < n1; j++)
|
| 844 |
|
|
if ((arg[j].sym == NULL || !arg[j].sym->attr.optional)
|
| 845 |
|
|
&& compare_type_rank_if (arg[i].sym, arg[j].sym))
|
| 846 |
|
|
arg[j].flag = k;
|
| 847 |
|
|
|
| 848 |
|
|
k++;
|
| 849 |
|
|
}
|
| 850 |
|
|
|
| 851 |
|
|
/* Now loop over each distinct type found in f1. */
|
| 852 |
|
|
k = 0;
|
| 853 |
|
|
rc = 0;
|
| 854 |
|
|
|
| 855 |
|
|
for (i = 0; i < n1; i++)
|
| 856 |
|
|
{
|
| 857 |
|
|
if (arg[i].flag != k)
|
| 858 |
|
|
continue;
|
| 859 |
|
|
|
| 860 |
|
|
ac1 = 1;
|
| 861 |
|
|
for (j = i + 1; j < n1; j++)
|
| 862 |
|
|
if (arg[j].flag == k)
|
| 863 |
|
|
ac1++;
|
| 864 |
|
|
|
| 865 |
|
|
/* Count the number of arguments in f2 with that type, including
|
| 866 |
|
|
those that are optional. */
|
| 867 |
|
|
ac2 = 0;
|
| 868 |
|
|
|
| 869 |
|
|
for (f = f2; f; f = f->next)
|
| 870 |
|
|
if (compare_type_rank_if (arg[i].sym, f->sym))
|
| 871 |
|
|
ac2++;
|
| 872 |
|
|
|
| 873 |
|
|
if (ac1 > ac2)
|
| 874 |
|
|
{
|
| 875 |
|
|
rc = 1;
|
| 876 |
|
|
break;
|
| 877 |
|
|
}
|
| 878 |
|
|
|
| 879 |
|
|
k++;
|
| 880 |
|
|
}
|
| 881 |
|
|
|
| 882 |
|
|
gfc_free (arg);
|
| 883 |
|
|
|
| 884 |
|
|
return rc;
|
| 885 |
|
|
}
|
| 886 |
|
|
|
| 887 |
|
|
|
| 888 |
|
|
/* Perform the correspondence test in rule 2 of section 14.1.2.3.
|
| 889 |
|
|
Returns zero if no argument is found that satisfies rule 2, nonzero
|
| 890 |
|
|
otherwise.
|
| 891 |
|
|
|
| 892 |
|
|
This test is also not symmetric in f1 and f2 and must be called
|
| 893 |
|
|
twice. This test finds problems caused by sorting the actual
|
| 894 |
|
|
argument list with keywords. For example:
|
| 895 |
|
|
|
| 896 |
|
|
INTERFACE FOO
|
| 897 |
|
|
SUBROUTINE F1(A, B)
|
| 898 |
|
|
INTEGER :: A ; REAL :: B
|
| 899 |
|
|
END SUBROUTINE F1
|
| 900 |
|
|
|
| 901 |
|
|
SUBROUTINE F2(B, A)
|
| 902 |
|
|
INTEGER :: A ; REAL :: B
|
| 903 |
|
|
END SUBROUTINE F1
|
| 904 |
|
|
END INTERFACE FOO
|
| 905 |
|
|
|
| 906 |
|
|
At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
|
| 907 |
|
|
|
| 908 |
|
|
static int
|
| 909 |
|
|
generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
|
| 910 |
|
|
{
|
| 911 |
|
|
gfc_formal_arglist *f2_save, *g;
|
| 912 |
|
|
gfc_symbol *sym;
|
| 913 |
|
|
|
| 914 |
|
|
f2_save = f2;
|
| 915 |
|
|
|
| 916 |
|
|
while (f1)
|
| 917 |
|
|
{
|
| 918 |
|
|
if (f1->sym->attr.optional)
|
| 919 |
|
|
goto next;
|
| 920 |
|
|
|
| 921 |
|
|
if (f2 != NULL && compare_type_rank (f1->sym, f2->sym))
|
| 922 |
|
|
goto next;
|
| 923 |
|
|
|
| 924 |
|
|
/* Now search for a disambiguating keyword argument starting at
|
| 925 |
|
|
the current non-match. */
|
| 926 |
|
|
for (g = f1; g; g = g->next)
|
| 927 |
|
|
{
|
| 928 |
|
|
if (g->sym->attr.optional)
|
| 929 |
|
|
continue;
|
| 930 |
|
|
|
| 931 |
|
|
sym = find_keyword_arg (g->sym->name, f2_save);
|
| 932 |
|
|
if (sym == NULL || !compare_type_rank (g->sym, sym))
|
| 933 |
|
|
return 1;
|
| 934 |
|
|
}
|
| 935 |
|
|
|
| 936 |
|
|
next:
|
| 937 |
|
|
f1 = f1->next;
|
| 938 |
|
|
if (f2 != NULL)
|
| 939 |
|
|
f2 = f2->next;
|
| 940 |
|
|
}
|
| 941 |
|
|
|
| 942 |
|
|
return 0;
|
| 943 |
|
|
}
|
| 944 |
|
|
|
| 945 |
|
|
|
| 946 |
|
|
/* 'Compare' two formal interfaces associated with a pair of symbols.
|
| 947 |
|
|
We return nonzero if there exists an actual argument list that
|
| 948 |
|
|
would be ambiguous between the two interfaces, zero otherwise.
|
| 949 |
|
|
'intent_flag' specifies whether INTENT and OPTIONAL of the arguments are
|
| 950 |
|
|
required to match, which is not the case for ambiguity checks.*/
|
| 951 |
|
|
|
| 952 |
|
|
int
|
| 953 |
|
|
gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
|
| 954 |
|
|
int generic_flag, int intent_flag,
|
| 955 |
|
|
char *errmsg, int err_len)
|
| 956 |
|
|
{
|
| 957 |
|
|
gfc_formal_arglist *f1, *f2;
|
| 958 |
|
|
|
| 959 |
|
|
gcc_assert (name2 != NULL);
|
| 960 |
|
|
|
| 961 |
|
|
if (s1->attr.function && (s2->attr.subroutine
|
| 962 |
|
|
|| (!s2->attr.function && s2->ts.type == BT_UNKNOWN
|
| 963 |
|
|
&& gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
|
| 964 |
|
|
{
|
| 965 |
|
|
if (errmsg != NULL)
|
| 966 |
|
|
snprintf (errmsg, err_len, "'%s' is not a function", name2);
|
| 967 |
|
|
return 0;
|
| 968 |
|
|
}
|
| 969 |
|
|
|
| 970 |
|
|
if (s1->attr.subroutine && s2->attr.function)
|
| 971 |
|
|
{
|
| 972 |
|
|
if (errmsg != NULL)
|
| 973 |
|
|
snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
|
| 974 |
|
|
return 0;
|
| 975 |
|
|
}
|
| 976 |
|
|
|
| 977 |
|
|
/* If the arguments are functions, check type and kind
|
| 978 |
|
|
(only for dummy procedures and procedure pointer assignments). */
|
| 979 |
|
|
if (!generic_flag && intent_flag && s1->attr.function && s2->attr.function)
|
| 980 |
|
|
{
|
| 981 |
|
|
if (s1->ts.type == BT_UNKNOWN)
|
| 982 |
|
|
return 1;
|
| 983 |
|
|
if ((s1->ts.type != s2->ts.type) || (s1->ts.kind != s2->ts.kind))
|
| 984 |
|
|
{
|
| 985 |
|
|
if (errmsg != NULL)
|
| 986 |
|
|
snprintf (errmsg, err_len, "Type/kind mismatch in return value "
|
| 987 |
|
|
"of '%s'", name2);
|
| 988 |
|
|
return 0;
|
| 989 |
|
|
}
|
| 990 |
|
|
}
|
| 991 |
|
|
|
| 992 |
|
|
if (s1->attr.if_source == IFSRC_UNKNOWN
|
| 993 |
|
|
|| s2->attr.if_source == IFSRC_UNKNOWN)
|
| 994 |
|
|
return 1;
|
| 995 |
|
|
|
| 996 |
|
|
f1 = s1->formal;
|
| 997 |
|
|
f2 = s2->formal;
|
| 998 |
|
|
|
| 999 |
|
|
if (f1 == NULL && f2 == NULL)
|
| 1000 |
|
|
return 1; /* Special case: No arguments. */
|
| 1001 |
|
|
|
| 1002 |
|
|
if (generic_flag)
|
| 1003 |
|
|
{
|
| 1004 |
|
|
if (count_types_test (f1, f2) || count_types_test (f2, f1))
|
| 1005 |
|
|
return 0;
|
| 1006 |
|
|
if (generic_correspondence (f1, f2) || generic_correspondence (f2, f1))
|
| 1007 |
|
|
return 0;
|
| 1008 |
|
|
}
|
| 1009 |
|
|
else
|
| 1010 |
|
|
/* Perform the abbreviated correspondence test for operators (the
|
| 1011 |
|
|
arguments cannot be optional and are always ordered correctly).
|
| 1012 |
|
|
This is also done when comparing interfaces for dummy procedures and in
|
| 1013 |
|
|
procedure pointer assignments. */
|
| 1014 |
|
|
|
| 1015 |
|
|
for (;;)
|
| 1016 |
|
|
{
|
| 1017 |
|
|
/* Check existence. */
|
| 1018 |
|
|
if (f1 == NULL && f2 == NULL)
|
| 1019 |
|
|
break;
|
| 1020 |
|
|
if (f1 == NULL || f2 == NULL)
|
| 1021 |
|
|
{
|
| 1022 |
|
|
if (errmsg != NULL)
|
| 1023 |
|
|
snprintf (errmsg, err_len, "'%s' has the wrong number of "
|
| 1024 |
|
|
"arguments", name2);
|
| 1025 |
|
|
return 0;
|
| 1026 |
|
|
}
|
| 1027 |
|
|
|
| 1028 |
|
|
/* Check type and rank. */
|
| 1029 |
|
|
if (!compare_type_rank (f1->sym, f2->sym))
|
| 1030 |
|
|
{
|
| 1031 |
|
|
if (errmsg != NULL)
|
| 1032 |
|
|
snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
|
| 1033 |
|
|
f1->sym->name);
|
| 1034 |
|
|
return 0;
|
| 1035 |
|
|
}
|
| 1036 |
|
|
|
| 1037 |
|
|
/* Check INTENT. */
|
| 1038 |
|
|
if (intent_flag && (f1->sym->attr.intent != f2->sym->attr.intent))
|
| 1039 |
|
|
{
|
| 1040 |
|
|
snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
|
| 1041 |
|
|
f1->sym->name);
|
| 1042 |
|
|
return 0;
|
| 1043 |
|
|
}
|
| 1044 |
|
|
|
| 1045 |
|
|
/* Check OPTIONAL. */
|
| 1046 |
|
|
if (intent_flag && (f1->sym->attr.optional != f2->sym->attr.optional))
|
| 1047 |
|
|
{
|
| 1048 |
|
|
snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
|
| 1049 |
|
|
f1->sym->name);
|
| 1050 |
|
|
return 0;
|
| 1051 |
|
|
}
|
| 1052 |
|
|
|
| 1053 |
|
|
f1 = f1->next;
|
| 1054 |
|
|
f2 = f2->next;
|
| 1055 |
|
|
}
|
| 1056 |
|
|
|
| 1057 |
|
|
return 1;
|
| 1058 |
|
|
}
|
| 1059 |
|
|
|
| 1060 |
|
|
|
| 1061 |
|
|
/* Given a pointer to an interface pointer, remove duplicate
|
| 1062 |
|
|
interfaces and make sure that all symbols are either functions or
|
| 1063 |
|
|
subroutines. Returns nonzero if something goes wrong. */
|
| 1064 |
|
|
|
| 1065 |
|
|
static int
|
| 1066 |
|
|
check_interface0 (gfc_interface *p, const char *interface_name)
|
| 1067 |
|
|
{
|
| 1068 |
|
|
gfc_interface *psave, *q, *qlast;
|
| 1069 |
|
|
|
| 1070 |
|
|
psave = p;
|
| 1071 |
|
|
/* Make sure all symbols in the interface have been defined as
|
| 1072 |
|
|
functions or subroutines. */
|
| 1073 |
|
|
for (; p; p = p->next)
|
| 1074 |
|
|
if ((!p->sym->attr.function && !p->sym->attr.subroutine)
|
| 1075 |
|
|
|| !p->sym->attr.if_source)
|
| 1076 |
|
|
{
|
| 1077 |
|
|
if (p->sym->attr.external)
|
| 1078 |
|
|
gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
|
| 1079 |
|
|
p->sym->name, interface_name, &p->sym->declared_at);
|
| 1080 |
|
|
else
|
| 1081 |
|
|
gfc_error ("Procedure '%s' in %s at %L is neither function nor "
|
| 1082 |
|
|
"subroutine", p->sym->name, interface_name,
|
| 1083 |
|
|
&p->sym->declared_at);
|
| 1084 |
|
|
return 1;
|
| 1085 |
|
|
}
|
| 1086 |
|
|
p = psave;
|
| 1087 |
|
|
|
| 1088 |
|
|
/* Remove duplicate interfaces in this interface list. */
|
| 1089 |
|
|
for (; p; p = p->next)
|
| 1090 |
|
|
{
|
| 1091 |
|
|
qlast = p;
|
| 1092 |
|
|
|
| 1093 |
|
|
for (q = p->next; q;)
|
| 1094 |
|
|
{
|
| 1095 |
|
|
if (p->sym != q->sym)
|
| 1096 |
|
|
{
|
| 1097 |
|
|
qlast = q;
|
| 1098 |
|
|
q = q->next;
|
| 1099 |
|
|
}
|
| 1100 |
|
|
else
|
| 1101 |
|
|
{
|
| 1102 |
|
|
/* Duplicate interface. */
|
| 1103 |
|
|
qlast->next = q->next;
|
| 1104 |
|
|
gfc_free (q);
|
| 1105 |
|
|
q = qlast->next;
|
| 1106 |
|
|
}
|
| 1107 |
|
|
}
|
| 1108 |
|
|
}
|
| 1109 |
|
|
|
| 1110 |
|
|
return 0;
|
| 1111 |
|
|
}
|
| 1112 |
|
|
|
| 1113 |
|
|
|
| 1114 |
|
|
/* Check lists of interfaces to make sure that no two interfaces are
|
| 1115 |
|
|
ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
|
| 1116 |
|
|
|
| 1117 |
|
|
static int
|
| 1118 |
|
|
check_interface1 (gfc_interface *p, gfc_interface *q0,
|
| 1119 |
|
|
int generic_flag, const char *interface_name,
|
| 1120 |
|
|
bool referenced)
|
| 1121 |
|
|
{
|
| 1122 |
|
|
gfc_interface *q;
|
| 1123 |
|
|
for (; p; p = p->next)
|
| 1124 |
|
|
for (q = q0; q; q = q->next)
|
| 1125 |
|
|
{
|
| 1126 |
|
|
if (p->sym == q->sym)
|
| 1127 |
|
|
continue; /* Duplicates OK here. */
|
| 1128 |
|
|
|
| 1129 |
|
|
if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
|
| 1130 |
|
|
continue;
|
| 1131 |
|
|
|
| 1132 |
|
|
if (gfc_compare_interfaces (p->sym, q->sym, q->sym->name, generic_flag, 0,
|
| 1133 |
|
|
NULL, 0))
|
| 1134 |
|
|
{
|
| 1135 |
|
|
if (referenced)
|
| 1136 |
|
|
gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
|
| 1137 |
|
|
p->sym->name, q->sym->name, interface_name,
|
| 1138 |
|
|
&p->where);
|
| 1139 |
|
|
else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
|
| 1140 |
|
|
gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
|
| 1141 |
|
|
p->sym->name, q->sym->name, interface_name,
|
| 1142 |
|
|
&p->where);
|
| 1143 |
|
|
else
|
| 1144 |
|
|
gfc_warning ("Although not referenced, '%s' has ambiguous "
|
| 1145 |
|
|
"interfaces at %L", interface_name, &p->where);
|
| 1146 |
|
|
return 1;
|
| 1147 |
|
|
}
|
| 1148 |
|
|
}
|
| 1149 |
|
|
return 0;
|
| 1150 |
|
|
}
|
| 1151 |
|
|
|
| 1152 |
|
|
|
| 1153 |
|
|
/* Check the generic and operator interfaces of symbols to make sure
|
| 1154 |
|
|
that none of the interfaces conflict. The check has to be done
|
| 1155 |
|
|
after all of the symbols are actually loaded. */
|
| 1156 |
|
|
|
| 1157 |
|
|
static void
|
| 1158 |
|
|
check_sym_interfaces (gfc_symbol *sym)
|
| 1159 |
|
|
{
|
| 1160 |
|
|
char interface_name[100];
|
| 1161 |
|
|
gfc_interface *p;
|
| 1162 |
|
|
|
| 1163 |
|
|
if (sym->ns != gfc_current_ns)
|
| 1164 |
|
|
return;
|
| 1165 |
|
|
|
| 1166 |
|
|
if (sym->generic != NULL)
|
| 1167 |
|
|
{
|
| 1168 |
|
|
sprintf (interface_name, "generic interface '%s'", sym->name);
|
| 1169 |
|
|
if (check_interface0 (sym->generic, interface_name))
|
| 1170 |
|
|
return;
|
| 1171 |
|
|
|
| 1172 |
|
|
for (p = sym->generic; p; p = p->next)
|
| 1173 |
|
|
{
|
| 1174 |
|
|
if (p->sym->attr.mod_proc
|
| 1175 |
|
|
&& (p->sym->attr.if_source != IFSRC_DECL
|
| 1176 |
|
|
|| p->sym->attr.procedure))
|
| 1177 |
|
|
{
|
| 1178 |
|
|
gfc_error ("'%s' at %L is not a module procedure",
|
| 1179 |
|
|
p->sym->name, &p->where);
|
| 1180 |
|
|
return;
|
| 1181 |
|
|
}
|
| 1182 |
|
|
}
|
| 1183 |
|
|
|
| 1184 |
|
|
/* Originally, this test was applied to host interfaces too;
|
| 1185 |
|
|
this is incorrect since host associated symbols, from any
|
| 1186 |
|
|
source, cannot be ambiguous with local symbols. */
|
| 1187 |
|
|
check_interface1 (sym->generic, sym->generic, 1, interface_name,
|
| 1188 |
|
|
sym->attr.referenced || !sym->attr.use_assoc);
|
| 1189 |
|
|
}
|
| 1190 |
|
|
}
|
| 1191 |
|
|
|
| 1192 |
|
|
|
| 1193 |
|
|
static void
|
| 1194 |
|
|
check_uop_interfaces (gfc_user_op *uop)
|
| 1195 |
|
|
{
|
| 1196 |
|
|
char interface_name[100];
|
| 1197 |
|
|
gfc_user_op *uop2;
|
| 1198 |
|
|
gfc_namespace *ns;
|
| 1199 |
|
|
|
| 1200 |
|
|
sprintf (interface_name, "operator interface '%s'", uop->name);
|
| 1201 |
|
|
if (check_interface0 (uop->op, interface_name))
|
| 1202 |
|
|
return;
|
| 1203 |
|
|
|
| 1204 |
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
| 1205 |
|
|
{
|
| 1206 |
|
|
uop2 = gfc_find_uop (uop->name, ns);
|
| 1207 |
|
|
if (uop2 == NULL)
|
| 1208 |
|
|
continue;
|
| 1209 |
|
|
|
| 1210 |
|
|
check_interface1 (uop->op, uop2->op, 0,
|
| 1211 |
|
|
interface_name, true);
|
| 1212 |
|
|
}
|
| 1213 |
|
|
}
|
| 1214 |
|
|
|
| 1215 |
|
|
|
| 1216 |
|
|
/* For the namespace, check generic, user operator and intrinsic
|
| 1217 |
|
|
operator interfaces for consistency and to remove duplicate
|
| 1218 |
|
|
interfaces. We traverse the whole namespace, counting on the fact
|
| 1219 |
|
|
that most symbols will not have generic or operator interfaces. */
|
| 1220 |
|
|
|
| 1221 |
|
|
void
|
| 1222 |
|
|
gfc_check_interfaces (gfc_namespace *ns)
|
| 1223 |
|
|
{
|
| 1224 |
|
|
gfc_namespace *old_ns, *ns2;
|
| 1225 |
|
|
char interface_name[100];
|
| 1226 |
|
|
int i;
|
| 1227 |
|
|
|
| 1228 |
|
|
old_ns = gfc_current_ns;
|
| 1229 |
|
|
gfc_current_ns = ns;
|
| 1230 |
|
|
|
| 1231 |
|
|
gfc_traverse_ns (ns, check_sym_interfaces);
|
| 1232 |
|
|
|
| 1233 |
|
|
gfc_traverse_user_op (ns, check_uop_interfaces);
|
| 1234 |
|
|
|
| 1235 |
|
|
for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
|
| 1236 |
|
|
{
|
| 1237 |
|
|
if (i == INTRINSIC_USER)
|
| 1238 |
|
|
continue;
|
| 1239 |
|
|
|
| 1240 |
|
|
if (i == INTRINSIC_ASSIGN)
|
| 1241 |
|
|
strcpy (interface_name, "intrinsic assignment operator");
|
| 1242 |
|
|
else
|
| 1243 |
|
|
sprintf (interface_name, "intrinsic '%s' operator",
|
| 1244 |
|
|
gfc_op2string ((gfc_intrinsic_op) i));
|
| 1245 |
|
|
|
| 1246 |
|
|
if (check_interface0 (ns->op[i], interface_name))
|
| 1247 |
|
|
continue;
|
| 1248 |
|
|
|
| 1249 |
|
|
if (ns->op[i])
|
| 1250 |
|
|
gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
|
| 1251 |
|
|
ns->op[i]->where);
|
| 1252 |
|
|
|
| 1253 |
|
|
for (ns2 = ns; ns2; ns2 = ns2->parent)
|
| 1254 |
|
|
{
|
| 1255 |
|
|
if (check_interface1 (ns->op[i], ns2->op[i], 0,
|
| 1256 |
|
|
interface_name, true))
|
| 1257 |
|
|
goto done;
|
| 1258 |
|
|
|
| 1259 |
|
|
switch (i)
|
| 1260 |
|
|
{
|
| 1261 |
|
|
case INTRINSIC_EQ:
|
| 1262 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ_OS],
|
| 1263 |
|
|
0, interface_name, true)) goto done;
|
| 1264 |
|
|
break;
|
| 1265 |
|
|
|
| 1266 |
|
|
case INTRINSIC_EQ_OS:
|
| 1267 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ],
|
| 1268 |
|
|
0, interface_name, true)) goto done;
|
| 1269 |
|
|
break;
|
| 1270 |
|
|
|
| 1271 |
|
|
case INTRINSIC_NE:
|
| 1272 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE_OS],
|
| 1273 |
|
|
0, interface_name, true)) goto done;
|
| 1274 |
|
|
break;
|
| 1275 |
|
|
|
| 1276 |
|
|
case INTRINSIC_NE_OS:
|
| 1277 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE],
|
| 1278 |
|
|
0, interface_name, true)) goto done;
|
| 1279 |
|
|
break;
|
| 1280 |
|
|
|
| 1281 |
|
|
case INTRINSIC_GT:
|
| 1282 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT_OS],
|
| 1283 |
|
|
0, interface_name, true)) goto done;
|
| 1284 |
|
|
break;
|
| 1285 |
|
|
|
| 1286 |
|
|
case INTRINSIC_GT_OS:
|
| 1287 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT],
|
| 1288 |
|
|
0, interface_name, true)) goto done;
|
| 1289 |
|
|
break;
|
| 1290 |
|
|
|
| 1291 |
|
|
case INTRINSIC_GE:
|
| 1292 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE_OS],
|
| 1293 |
|
|
0, interface_name, true)) goto done;
|
| 1294 |
|
|
break;
|
| 1295 |
|
|
|
| 1296 |
|
|
case INTRINSIC_GE_OS:
|
| 1297 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE],
|
| 1298 |
|
|
0, interface_name, true)) goto done;
|
| 1299 |
|
|
break;
|
| 1300 |
|
|
|
| 1301 |
|
|
case INTRINSIC_LT:
|
| 1302 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT_OS],
|
| 1303 |
|
|
0, interface_name, true)) goto done;
|
| 1304 |
|
|
break;
|
| 1305 |
|
|
|
| 1306 |
|
|
case INTRINSIC_LT_OS:
|
| 1307 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT],
|
| 1308 |
|
|
0, interface_name, true)) goto done;
|
| 1309 |
|
|
break;
|
| 1310 |
|
|
|
| 1311 |
|
|
case INTRINSIC_LE:
|
| 1312 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE_OS],
|
| 1313 |
|
|
0, interface_name, true)) goto done;
|
| 1314 |
|
|
break;
|
| 1315 |
|
|
|
| 1316 |
|
|
case INTRINSIC_LE_OS:
|
| 1317 |
|
|
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE],
|
| 1318 |
|
|
0, interface_name, true)) goto done;
|
| 1319 |
|
|
break;
|
| 1320 |
|
|
|
| 1321 |
|
|
default:
|
| 1322 |
|
|
break;
|
| 1323 |
|
|
}
|
| 1324 |
|
|
}
|
| 1325 |
|
|
}
|
| 1326 |
|
|
|
| 1327 |
|
|
done:
|
| 1328 |
|
|
gfc_current_ns = old_ns;
|
| 1329 |
|
|
}
|
| 1330 |
|
|
|
| 1331 |
|
|
|
| 1332 |
|
|
static int
|
| 1333 |
|
|
symbol_rank (gfc_symbol *sym)
|
| 1334 |
|
|
{
|
| 1335 |
|
|
return (sym->as == NULL) ? 0 : sym->as->rank;
|
| 1336 |
|
|
}
|
| 1337 |
|
|
|
| 1338 |
|
|
|
| 1339 |
|
|
/* Given a symbol of a formal argument list and an expression, if the
|
| 1340 |
|
|
formal argument is allocatable, check that the actual argument is
|
| 1341 |
|
|
allocatable. Returns nonzero if compatible, zero if not compatible. */
|
| 1342 |
|
|
|
| 1343 |
|
|
static int
|
| 1344 |
|
|
compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
|
| 1345 |
|
|
{
|
| 1346 |
|
|
symbol_attribute attr;
|
| 1347 |
|
|
|
| 1348 |
|
|
if (formal->attr.allocatable)
|
| 1349 |
|
|
{
|
| 1350 |
|
|
attr = gfc_expr_attr (actual);
|
| 1351 |
|
|
if (!attr.allocatable)
|
| 1352 |
|
|
return 0;
|
| 1353 |
|
|
}
|
| 1354 |
|
|
|
| 1355 |
|
|
return 1;
|
| 1356 |
|
|
}
|
| 1357 |
|
|
|
| 1358 |
|
|
|
| 1359 |
|
|
/* Given a symbol of a formal argument list and an expression, if the
|
| 1360 |
|
|
formal argument is a pointer, see if the actual argument is a
|
| 1361 |
|
|
pointer. Returns nonzero if compatible, zero if not compatible. */
|
| 1362 |
|
|
|
| 1363 |
|
|
static int
|
| 1364 |
|
|
compare_pointer (gfc_symbol *formal, gfc_expr *actual)
|
| 1365 |
|
|
{
|
| 1366 |
|
|
symbol_attribute attr;
|
| 1367 |
|
|
|
| 1368 |
|
|
if (formal->attr.pointer)
|
| 1369 |
|
|
{
|
| 1370 |
|
|
attr = gfc_expr_attr (actual);
|
| 1371 |
|
|
if (!attr.pointer)
|
| 1372 |
|
|
return 0;
|
| 1373 |
|
|
}
|
| 1374 |
|
|
|
| 1375 |
|
|
return 1;
|
| 1376 |
|
|
}
|
| 1377 |
|
|
|
| 1378 |
|
|
|
| 1379 |
|
|
/* Given a symbol of a formal argument list and an expression, see if
|
| 1380 |
|
|
the two are compatible as arguments. Returns nonzero if
|
| 1381 |
|
|
compatible, zero if not compatible. */
|
| 1382 |
|
|
|
| 1383 |
|
|
static int
|
| 1384 |
|
|
compare_parameter (gfc_symbol *formal, gfc_expr *actual,
|
| 1385 |
|
|
int ranks_must_agree, int is_elemental, locus *where)
|
| 1386 |
|
|
{
|
| 1387 |
|
|
gfc_ref *ref;
|
| 1388 |
|
|
bool rank_check;
|
| 1389 |
|
|
|
| 1390 |
|
|
/* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
|
| 1391 |
|
|
procs c_f_pointer or c_f_procpointer, and we need to accept most
|
| 1392 |
|
|
pointers the user could give us. This should allow that. */
|
| 1393 |
|
|
if (formal->ts.type == BT_VOID)
|
| 1394 |
|
|
return 1;
|
| 1395 |
|
|
|
| 1396 |
|
|
if (formal->ts.type == BT_DERIVED
|
| 1397 |
|
|
&& formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
|
| 1398 |
|
|
&& actual->ts.type == BT_DERIVED
|
| 1399 |
|
|
&& actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
|
| 1400 |
|
|
return 1;
|
| 1401 |
|
|
|
| 1402 |
|
|
if (actual->ts.type == BT_PROCEDURE)
|
| 1403 |
|
|
{
|
| 1404 |
|
|
char err[200];
|
| 1405 |
|
|
gfc_symbol *act_sym = actual->symtree->n.sym;
|
| 1406 |
|
|
|
| 1407 |
|
|
if (formal->attr.flavor != FL_PROCEDURE)
|
| 1408 |
|
|
{
|
| 1409 |
|
|
if (where)
|
| 1410 |
|
|
gfc_error ("Invalid procedure argument at %L", &actual->where);
|
| 1411 |
|
|
return 0;
|
| 1412 |
|
|
}
|
| 1413 |
|
|
|
| 1414 |
|
|
if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
|
| 1415 |
|
|
sizeof(err)))
|
| 1416 |
|
|
{
|
| 1417 |
|
|
if (where)
|
| 1418 |
|
|
gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s",
|
| 1419 |
|
|
formal->name, &actual->where, err);
|
| 1420 |
|
|
return 0;
|
| 1421 |
|
|
}
|
| 1422 |
|
|
|
| 1423 |
|
|
if (formal->attr.function && !act_sym->attr.function)
|
| 1424 |
|
|
{
|
| 1425 |
|
|
gfc_add_function (&act_sym->attr, act_sym->name,
|
| 1426 |
|
|
&act_sym->declared_at);
|
| 1427 |
|
|
if (act_sym->ts.type == BT_UNKNOWN
|
| 1428 |
|
|
&& gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE)
|
| 1429 |
|
|
return 0;
|
| 1430 |
|
|
}
|
| 1431 |
|
|
else if (formal->attr.subroutine && !act_sym->attr.subroutine)
|
| 1432 |
|
|
gfc_add_subroutine (&act_sym->attr, act_sym->name,
|
| 1433 |
|
|
&act_sym->declared_at);
|
| 1434 |
|
|
|
| 1435 |
|
|
return 1;
|
| 1436 |
|
|
}
|
| 1437 |
|
|
|
| 1438 |
|
|
if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
|
| 1439 |
|
|
&& !gfc_compare_types (&formal->ts, &actual->ts))
|
| 1440 |
|
|
{
|
| 1441 |
|
|
if (where)
|
| 1442 |
|
|
gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
|
| 1443 |
|
|
formal->name, &actual->where, gfc_typename (&actual->ts),
|
| 1444 |
|
|
gfc_typename (&formal->ts));
|
| 1445 |
|
|
return 0;
|
| 1446 |
|
|
}
|
| 1447 |
|
|
|
| 1448 |
|
|
if (symbol_rank (formal) == actual->rank)
|
| 1449 |
|
|
return 1;
|
| 1450 |
|
|
|
| 1451 |
|
|
rank_check = where != NULL && !is_elemental && formal->as
|
| 1452 |
|
|
&& (formal->as->type == AS_ASSUMED_SHAPE
|
| 1453 |
|
|
|| formal->as->type == AS_DEFERRED)
|
| 1454 |
|
|
&& actual->expr_type != EXPR_NULL;
|
| 1455 |
|
|
|
| 1456 |
|
|
if (rank_check || ranks_must_agree
|
| 1457 |
|
|
|| (formal->attr.pointer && actual->expr_type != EXPR_NULL)
|
| 1458 |
|
|
|| (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
|
| 1459 |
|
|
|| (actual->rank == 0 && formal->as->type == AS_ASSUMED_SHAPE))
|
| 1460 |
|
|
{
|
| 1461 |
|
|
if (where)
|
| 1462 |
|
|
gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
|
| 1463 |
|
|
formal->name, &actual->where, symbol_rank (formal),
|
| 1464 |
|
|
actual->rank);
|
| 1465 |
|
|
return 0;
|
| 1466 |
|
|
}
|
| 1467 |
|
|
else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
|
| 1468 |
|
|
return 1;
|
| 1469 |
|
|
|
| 1470 |
|
|
/* At this point, we are considering a scalar passed to an array. This
|
| 1471 |
|
|
is valid (cf. F95 12.4.1.1; F2003 12.4.1.2),
|
| 1472 |
|
|
- if the actual argument is (a substring of) an element of a
|
| 1473 |
|
|
non-assumed-shape/non-pointer array;
|
| 1474 |
|
|
- (F2003) if the actual argument is of type character. */
|
| 1475 |
|
|
|
| 1476 |
|
|
for (ref = actual->ref; ref; ref = ref->next)
|
| 1477 |
|
|
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT)
|
| 1478 |
|
|
break;
|
| 1479 |
|
|
|
| 1480 |
|
|
/* Not an array element. */
|
| 1481 |
|
|
if (formal->ts.type == BT_CHARACTER
|
| 1482 |
|
|
&& (ref == NULL
|
| 1483 |
|
|
|| (actual->expr_type == EXPR_VARIABLE
|
| 1484 |
|
|
&& (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
|
| 1485 |
|
|
|| actual->symtree->n.sym->attr.pointer))))
|
| 1486 |
|
|
{
|
| 1487 |
|
|
if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
|
| 1488 |
|
|
{
|
| 1489 |
|
|
gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
|
| 1490 |
|
|
"array dummy argument '%s' at %L",
|
| 1491 |
|
|
formal->name, &actual->where);
|
| 1492 |
|
|
return 0;
|
| 1493 |
|
|
}
|
| 1494 |
|
|
else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
|
| 1495 |
|
|
return 0;
|
| 1496 |
|
|
else
|
| 1497 |
|
|
return 1;
|
| 1498 |
|
|
}
|
| 1499 |
|
|
else if (ref == NULL && actual->expr_type != EXPR_NULL)
|
| 1500 |
|
|
{
|
| 1501 |
|
|
if (where)
|
| 1502 |
|
|
gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
|
| 1503 |
|
|
formal->name, &actual->where, symbol_rank (formal),
|
| 1504 |
|
|
actual->rank);
|
| 1505 |
|
|
return 0;
|
| 1506 |
|
|
}
|
| 1507 |
|
|
|
| 1508 |
|
|
if (actual->expr_type == EXPR_VARIABLE
|
| 1509 |
|
|
&& actual->symtree->n.sym->as
|
| 1510 |
|
|
&& (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
|
| 1511 |
|
|
|| actual->symtree->n.sym->attr.pointer))
|
| 1512 |
|
|
{
|
| 1513 |
|
|
if (where)
|
| 1514 |
|
|
gfc_error ("Element of assumed-shaped array passed to dummy "
|
| 1515 |
|
|
"argument '%s' at %L", formal->name, &actual->where);
|
| 1516 |
|
|
return 0;
|
| 1517 |
|
|
}
|
| 1518 |
|
|
|
| 1519 |
|
|
return 1;
|
| 1520 |
|
|
}
|
| 1521 |
|
|
|
| 1522 |
|
|
|
| 1523 |
|
|
/* Given a symbol of a formal argument list and an expression, see if
|
| 1524 |
|
|
the two are compatible as arguments. Returns nonzero if
|
| 1525 |
|
|
compatible, zero if not compatible. */
|
| 1526 |
|
|
|
| 1527 |
|
|
static int
|
| 1528 |
|
|
compare_parameter_protected (gfc_symbol *formal, gfc_expr *actual)
|
| 1529 |
|
|
{
|
| 1530 |
|
|
if (actual->expr_type != EXPR_VARIABLE)
|
| 1531 |
|
|
return 1;
|
| 1532 |
|
|
|
| 1533 |
|
|
if (!actual->symtree->n.sym->attr.is_protected)
|
| 1534 |
|
|
return 1;
|
| 1535 |
|
|
|
| 1536 |
|
|
if (!actual->symtree->n.sym->attr.use_assoc)
|
| 1537 |
|
|
return 1;
|
| 1538 |
|
|
|
| 1539 |
|
|
if (formal->attr.intent == INTENT_IN
|
| 1540 |
|
|
|| formal->attr.intent == INTENT_UNKNOWN)
|
| 1541 |
|
|
return 1;
|
| 1542 |
|
|
|
| 1543 |
|
|
if (!actual->symtree->n.sym->attr.pointer)
|
| 1544 |
|
|
return 0;
|
| 1545 |
|
|
|
| 1546 |
|
|
if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer)
|
| 1547 |
|
|
return 0;
|
| 1548 |
|
|
|
| 1549 |
|
|
return 1;
|
| 1550 |
|
|
}
|
| 1551 |
|
|
|
| 1552 |
|
|
|
| 1553 |
|
|
/* Returns the storage size of a symbol (formal argument) or
|
| 1554 |
|
|
zero if it cannot be determined. */
|
| 1555 |
|
|
|
| 1556 |
|
|
static unsigned long
|
| 1557 |
|
|
get_sym_storage_size (gfc_symbol *sym)
|
| 1558 |
|
|
{
|
| 1559 |
|
|
int i;
|
| 1560 |
|
|
unsigned long strlen, elements;
|
| 1561 |
|
|
|
| 1562 |
|
|
if (sym->ts.type == BT_CHARACTER)
|
| 1563 |
|
|
{
|
| 1564 |
|
|
if (sym->ts.u.cl && sym->ts.u.cl->length
|
| 1565 |
|
|
&& sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
|
| 1566 |
|
|
strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
|
| 1567 |
|
|
else
|
| 1568 |
|
|
return 0;
|
| 1569 |
|
|
}
|
| 1570 |
|
|
else
|
| 1571 |
|
|
strlen = 1;
|
| 1572 |
|
|
|
| 1573 |
|
|
if (symbol_rank (sym) == 0)
|
| 1574 |
|
|
return strlen;
|
| 1575 |
|
|
|
| 1576 |
|
|
elements = 1;
|
| 1577 |
|
|
if (sym->as->type != AS_EXPLICIT)
|
| 1578 |
|
|
return 0;
|
| 1579 |
|
|
for (i = 0; i < sym->as->rank; i++)
|
| 1580 |
|
|
{
|
| 1581 |
|
|
if (!sym->as || sym->as->upper[i]->expr_type != EXPR_CONSTANT
|
| 1582 |
|
|
|| sym->as->lower[i]->expr_type != EXPR_CONSTANT)
|
| 1583 |
|
|
return 0;
|
| 1584 |
|
|
|
| 1585 |
|
|
elements *= mpz_get_si (sym->as->upper[i]->value.integer)
|
| 1586 |
|
|
- mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
|
| 1587 |
|
|
}
|
| 1588 |
|
|
|
| 1589 |
|
|
return strlen*elements;
|
| 1590 |
|
|
}
|
| 1591 |
|
|
|
| 1592 |
|
|
|
| 1593 |
|
|
/* Returns the storage size of an expression (actual argument) or
|
| 1594 |
|
|
zero if it cannot be determined. For an array element, it returns
|
| 1595 |
|
|
the remaining size as the element sequence consists of all storage
|
| 1596 |
|
|
units of the actual argument up to the end of the array. */
|
| 1597 |
|
|
|
| 1598 |
|
|
static unsigned long
|
| 1599 |
|
|
get_expr_storage_size (gfc_expr *e)
|
| 1600 |
|
|
{
|
| 1601 |
|
|
int i;
|
| 1602 |
|
|
long int strlen, elements;
|
| 1603 |
|
|
long int substrlen = 0;
|
| 1604 |
|
|
bool is_str_storage = false;
|
| 1605 |
|
|
gfc_ref *ref;
|
| 1606 |
|
|
|
| 1607 |
|
|
if (e == NULL)
|
| 1608 |
|
|
return 0;
|
| 1609 |
|
|
|
| 1610 |
|
|
if (e->ts.type == BT_CHARACTER)
|
| 1611 |
|
|
{
|
| 1612 |
|
|
if (e->ts.u.cl && e->ts.u.cl->length
|
| 1613 |
|
|
&& e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
|
| 1614 |
|
|
strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
|
| 1615 |
|
|
else if (e->expr_type == EXPR_CONSTANT
|
| 1616 |
|
|
&& (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
|
| 1617 |
|
|
strlen = e->value.character.length;
|
| 1618 |
|
|
else
|
| 1619 |
|
|
return 0;
|
| 1620 |
|
|
}
|
| 1621 |
|
|
else
|
| 1622 |
|
|
strlen = 1; /* Length per element. */
|
| 1623 |
|
|
|
| 1624 |
|
|
if (e->rank == 0 && !e->ref)
|
| 1625 |
|
|
return strlen;
|
| 1626 |
|
|
|
| 1627 |
|
|
elements = 1;
|
| 1628 |
|
|
if (!e->ref)
|
| 1629 |
|
|
{
|
| 1630 |
|
|
if (!e->shape)
|
| 1631 |
|
|
return 0;
|
| 1632 |
|
|
for (i = 0; i < e->rank; i++)
|
| 1633 |
|
|
elements *= mpz_get_si (e->shape[i]);
|
| 1634 |
|
|
return elements*strlen;
|
| 1635 |
|
|
}
|
| 1636 |
|
|
|
| 1637 |
|
|
for (ref = e->ref; ref; ref = ref->next)
|
| 1638 |
|
|
{
|
| 1639 |
|
|
if (ref->type == REF_SUBSTRING && ref->u.ss.start
|
| 1640 |
|
|
&& ref->u.ss.start->expr_type == EXPR_CONSTANT)
|
| 1641 |
|
|
{
|
| 1642 |
|
|
if (is_str_storage)
|
| 1643 |
|
|
{
|
| 1644 |
|
|
/* The string length is the substring length.
|
| 1645 |
|
|
Set now to full string length. */
|
| 1646 |
|
|
if (ref->u.ss.length == NULL
|
| 1647 |
|
|
|| ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
|
| 1648 |
|
|
return 0;
|
| 1649 |
|
|
|
| 1650 |
|
|
strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
|
| 1651 |
|
|
}
|
| 1652 |
|
|
substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
|
| 1653 |
|
|
continue;
|
| 1654 |
|
|
}
|
| 1655 |
|
|
|
| 1656 |
|
|
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION
|
| 1657 |
|
|
&& ref->u.ar.start && ref->u.ar.end && ref->u.ar.stride
|
| 1658 |
|
|
&& ref->u.ar.as->upper)
|
| 1659 |
|
|
for (i = 0; i < ref->u.ar.dimen; i++)
|
| 1660 |
|
|
{
|
| 1661 |
|
|
long int start, end, stride;
|
| 1662 |
|
|
stride = 1;
|
| 1663 |
|
|
|
| 1664 |
|
|
if (ref->u.ar.stride[i])
|
| 1665 |
|
|
{
|
| 1666 |
|
|
if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
|
| 1667 |
|
|
stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
|
| 1668 |
|
|
else
|
| 1669 |
|
|
return 0;
|
| 1670 |
|
|
}
|
| 1671 |
|
|
|
| 1672 |
|
|
if (ref->u.ar.start[i])
|
| 1673 |
|
|
{
|
| 1674 |
|
|
if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
|
| 1675 |
|
|
start = mpz_get_si (ref->u.ar.start[i]->value.integer);
|
| 1676 |
|
|
else
|
| 1677 |
|
|
return 0;
|
| 1678 |
|
|
}
|
| 1679 |
|
|
else if (ref->u.ar.as->lower[i]
|
| 1680 |
|
|
&& ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
|
| 1681 |
|
|
start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
|
| 1682 |
|
|
else
|
| 1683 |
|
|
return 0;
|
| 1684 |
|
|
|
| 1685 |
|
|
if (ref->u.ar.end[i])
|
| 1686 |
|
|
{
|
| 1687 |
|
|
if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
|
| 1688 |
|
|
end = mpz_get_si (ref->u.ar.end[i]->value.integer);
|
| 1689 |
|
|
else
|
| 1690 |
|
|
return 0;
|
| 1691 |
|
|
}
|
| 1692 |
|
|
else if (ref->u.ar.as->upper[i]
|
| 1693 |
|
|
&& ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
|
| 1694 |
|
|
end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
|
| 1695 |
|
|
else
|
| 1696 |
|
|
return 0;
|
| 1697 |
|
|
|
| 1698 |
|
|
elements *= (end - start)/stride + 1L;
|
| 1699 |
|
|
}
|
| 1700 |
|
|
else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL
|
| 1701 |
|
|
&& ref->u.ar.as->lower && ref->u.ar.as->upper)
|
| 1702 |
|
|
for (i = 0; i < ref->u.ar.as->rank; i++)
|
| 1703 |
|
|
{
|
| 1704 |
|
|
if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
|
| 1705 |
|
|
&& ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
|
| 1706 |
|
|
&& ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
|
| 1707 |
|
|
elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
|
| 1708 |
|
|
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
|
| 1709 |
|
|
+ 1L;
|
| 1710 |
|
|
else
|
| 1711 |
|
|
return 0;
|
| 1712 |
|
|
}
|
| 1713 |
|
|
else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
|
| 1714 |
|
|
&& e->expr_type == EXPR_VARIABLE)
|
| 1715 |
|
|
{
|
| 1716 |
|
|
if (e->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
|
| 1717 |
|
|
|| e->symtree->n.sym->attr.pointer)
|
| 1718 |
|
|
{
|
| 1719 |
|
|
elements = 1;
|
| 1720 |
|
|
continue;
|
| 1721 |
|
|
}
|
| 1722 |
|
|
|
| 1723 |
|
|
/* Determine the number of remaining elements in the element
|
| 1724 |
|
|
sequence for array element designators. */
|
| 1725 |
|
|
is_str_storage = true;
|
| 1726 |
|
|
for (i = ref->u.ar.dimen - 1; i >= 0; i--)
|
| 1727 |
|
|
{
|
| 1728 |
|
|
if (ref->u.ar.start[i] == NULL
|
| 1729 |
|
|
|| ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
|
| 1730 |
|
|
|| ref->u.ar.as->upper[i] == NULL
|
| 1731 |
|
|
|| ref->u.ar.as->lower[i] == NULL
|
| 1732 |
|
|
|| ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
|
| 1733 |
|
|
|| ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
|
| 1734 |
|
|
return 0;
|
| 1735 |
|
|
|
| 1736 |
|
|
elements
|
| 1737 |
|
|
= elements
|
| 1738 |
|
|
* (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
|
| 1739 |
|
|
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
|
| 1740 |
|
|
+ 1L)
|
| 1741 |
|
|
- (mpz_get_si (ref->u.ar.start[i]->value.integer)
|
| 1742 |
|
|
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
|
| 1743 |
|
|
}
|
| 1744 |
|
|
}
|
| 1745 |
|
|
else
|
| 1746 |
|
|
return 0;
|
| 1747 |
|
|
}
|
| 1748 |
|
|
|
| 1749 |
|
|
if (substrlen)
|
| 1750 |
|
|
return (is_str_storage) ? substrlen + (elements-1)*strlen
|
| 1751 |
|
|
: elements*strlen;
|
| 1752 |
|
|
else
|
| 1753 |
|
|
return elements*strlen;
|
| 1754 |
|
|
}
|
| 1755 |
|
|
|
| 1756 |
|
|
|
| 1757 |
|
|
/* Given an expression, check whether it is an array section
|
| 1758 |
|
|
which has a vector subscript. If it has, one is returned,
|
| 1759 |
|
|
otherwise zero. */
|
| 1760 |
|
|
|
| 1761 |
|
|
static int
|
| 1762 |
|
|
has_vector_subscript (gfc_expr *e)
|
| 1763 |
|
|
{
|
| 1764 |
|
|
int i;
|
| 1765 |
|
|
gfc_ref *ref;
|
| 1766 |
|
|
|
| 1767 |
|
|
if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
|
| 1768 |
|
|
return 0;
|
| 1769 |
|
|
|
| 1770 |
|
|
for (ref = e->ref; ref; ref = ref->next)
|
| 1771 |
|
|
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
|
| 1772 |
|
|
for (i = 0; i < ref->u.ar.dimen; i++)
|
| 1773 |
|
|
if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
|
| 1774 |
|
|
return 1;
|
| 1775 |
|
|
|
| 1776 |
|
|
return 0;
|
| 1777 |
|
|
}
|
| 1778 |
|
|
|
| 1779 |
|
|
|
| 1780 |
|
|
/* Given formal and actual argument lists, see if they are compatible.
|
| 1781 |
|
|
If they are compatible, the actual argument list is sorted to
|
| 1782 |
|
|
correspond with the formal list, and elements for missing optional
|
| 1783 |
|
|
arguments are inserted. If WHERE pointer is nonnull, then we issue
|
| 1784 |
|
|
errors when things don't match instead of just returning the status
|
| 1785 |
|
|
code. */
|
| 1786 |
|
|
|
| 1787 |
|
|
static int
|
| 1788 |
|
|
compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
|
| 1789 |
|
|
int ranks_must_agree, int is_elemental, locus *where)
|
| 1790 |
|
|
{
|
| 1791 |
|
|
gfc_actual_arglist **new_arg, *a, *actual, temp;
|
| 1792 |
|
|
gfc_formal_arglist *f;
|
| 1793 |
|
|
int i, n, na;
|
| 1794 |
|
|
unsigned long actual_size, formal_size;
|
| 1795 |
|
|
|
| 1796 |
|
|
actual = *ap;
|
| 1797 |
|
|
|
| 1798 |
|
|
if (actual == NULL && formal == NULL)
|
| 1799 |
|
|
return 1;
|
| 1800 |
|
|
|
| 1801 |
|
|
n = 0;
|
| 1802 |
|
|
for (f = formal; f; f = f->next)
|
| 1803 |
|
|
n++;
|
| 1804 |
|
|
|
| 1805 |
|
|
new_arg = (gfc_actual_arglist **) alloca (n * sizeof (gfc_actual_arglist *));
|
| 1806 |
|
|
|
| 1807 |
|
|
for (i = 0; i < n; i++)
|
| 1808 |
|
|
new_arg[i] = NULL;
|
| 1809 |
|
|
|
| 1810 |
|
|
na = 0;
|
| 1811 |
|
|
f = formal;
|
| 1812 |
|
|
i = 0;
|
| 1813 |
|
|
|
| 1814 |
|
|
for (a = actual; a; a = a->next, f = f->next)
|
| 1815 |
|
|
{
|
| 1816 |
|
|
/* Look for keywords but ignore g77 extensions like %VAL. */
|
| 1817 |
|
|
if (a->name != NULL && a->name[0] != '%')
|
| 1818 |
|
|
{
|
| 1819 |
|
|
i = 0;
|
| 1820 |
|
|
for (f = formal; f; f = f->next, i++)
|
| 1821 |
|
|
{
|
| 1822 |
|
|
if (f->sym == NULL)
|
| 1823 |
|
|
continue;
|
| 1824 |
|
|
if (strcmp (f->sym->name, a->name) == 0)
|
| 1825 |
|
|
break;
|
| 1826 |
|
|
}
|
| 1827 |
|
|
|
| 1828 |
|
|
if (f == NULL)
|
| 1829 |
|
|
{
|
| 1830 |
|
|
if (where)
|
| 1831 |
|
|
gfc_error ("Keyword argument '%s' at %L is not in "
|
| 1832 |
|
|
"the procedure", a->name, &a->expr->where);
|
| 1833 |
|
|
return 0;
|
| 1834 |
|
|
}
|
| 1835 |
|
|
|
| 1836 |
|
|
if (new_arg[i] != NULL)
|
| 1837 |
|
|
{
|
| 1838 |
|
|
if (where)
|
| 1839 |
|
|
gfc_error ("Keyword argument '%s' at %L is already associated "
|
| 1840 |
|
|
"with another actual argument", a->name,
|
| 1841 |
|
|
&a->expr->where);
|
| 1842 |
|
|
return 0;
|
| 1843 |
|
|
}
|
| 1844 |
|
|
}
|
| 1845 |
|
|
|
| 1846 |
|
|
if (f == NULL)
|
| 1847 |
|
|
{
|
| 1848 |
|
|
if (where)
|
| 1849 |
|
|
gfc_error ("More actual than formal arguments in procedure "
|
| 1850 |
|
|
"call at %L", where);
|
| 1851 |
|
|
|
| 1852 |
|
|
return 0;
|
| 1853 |
|
|
}
|
| 1854 |
|
|
|
| 1855 |
|
|
if (f->sym == NULL && a->expr == NULL)
|
| 1856 |
|
|
goto match;
|
| 1857 |
|
|
|
| 1858 |
|
|
if (f->sym == NULL)
|
| 1859 |
|
|
{
|
| 1860 |
|
|
if (where)
|
| 1861 |
|
|
gfc_error ("Missing alternate return spec in subroutine call "
|
| 1862 |
|
|
"at %L", where);
|
| 1863 |
|
|
return 0;
|
| 1864 |
|
|
}
|
| 1865 |
|
|
|
| 1866 |
|
|
if (a->expr == NULL)
|
| 1867 |
|
|
{
|
| 1868 |
|
|
if (where)
|
| 1869 |
|
|
gfc_error ("Unexpected alternate return spec in subroutine "
|
| 1870 |
|
|
"call at %L", where);
|
| 1871 |
|
|
return 0;
|
| 1872 |
|
|
}
|
| 1873 |
|
|
|
| 1874 |
|
|
if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
|
| 1875 |
|
|
is_elemental, where))
|
| 1876 |
|
|
return 0;
|
| 1877 |
|
|
|
| 1878 |
|
|
/* Special case for character arguments. For allocatable, pointer
|
| 1879 |
|
|
and assumed-shape dummies, the string length needs to match
|
| 1880 |
|
|
exactly. */
|
| 1881 |
|
|
if (a->expr->ts.type == BT_CHARACTER
|
| 1882 |
|
|
&& a->expr->ts.u.cl && a->expr->ts.u.cl->length
|
| 1883 |
|
|
&& a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
|
| 1884 |
|
|
&& f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
|
| 1885 |
|
|
&& f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
|
| 1886 |
|
|
&& (f->sym->attr.pointer || f->sym->attr.allocatable
|
| 1887 |
|
|
|| (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
|
| 1888 |
|
|
&& (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
|
| 1889 |
|
|
f->sym->ts.u.cl->length->value.integer) != 0))
|
| 1890 |
|
|
{
|
| 1891 |
|
|
if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
|
| 1892 |
|
|
gfc_warning ("Character length mismatch (%ld/%ld) between actual "
|
| 1893 |
|
|
"argument and pointer or allocatable dummy argument "
|
| 1894 |
|
|
"'%s' at %L",
|
| 1895 |
|
|
mpz_get_si (a->expr->ts.u.cl->length->value.integer),
|
| 1896 |
|
|
mpz_get_si (f->sym->ts.u.cl->length->value.integer),
|
| 1897 |
|
|
f->sym->name, &a->expr->where);
|
| 1898 |
|
|
else if (where)
|
| 1899 |
|
|
gfc_warning ("Character length mismatch (%ld/%ld) between actual "
|
| 1900 |
|
|
"argument and assumed-shape dummy argument '%s' "
|
| 1901 |
|
|
"at %L",
|
| 1902 |
|
|
mpz_get_si (a->expr->ts.u.cl->length->value.integer),
|
| 1903 |
|
|
mpz_get_si (f->sym->ts.u.cl->length->value.integer),
|
| 1904 |
|
|
f->sym->name, &a->expr->where);
|
| 1905 |
|
|
return 0;
|
| 1906 |
|
|
}
|
| 1907 |
|
|
|
| 1908 |
|
|
actual_size = get_expr_storage_size (a->expr);
|
| 1909 |
|
|
formal_size = get_sym_storage_size (f->sym);
|
| 1910 |
|
|
if (actual_size != 0
|
| 1911 |
|
|
&& actual_size < formal_size
|
| 1912 |
|
|
&& a->expr->ts.type != BT_PROCEDURE)
|
| 1913 |
|
|
{
|
| 1914 |
|
|
if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
|
| 1915 |
|
|
gfc_warning ("Character length of actual argument shorter "
|
| 1916 |
|
|
"than of dummy argument '%s' (%lu/%lu) at %L",
|
| 1917 |
|
|
f->sym->name, actual_size, formal_size,
|
| 1918 |
|
|
&a->expr->where);
|
| 1919 |
|
|
else if (where)
|
| 1920 |
|
|
gfc_warning ("Actual argument contains too few "
|
| 1921 |
|
|
"elements for dummy argument '%s' (%lu/%lu) at %L",
|
| 1922 |
|
|
f->sym->name, actual_size, formal_size,
|
| 1923 |
|
|
&a->expr->where);
|
| 1924 |
|
|
return 0;
|
| 1925 |
|
|
}
|
| 1926 |
|
|
|
| 1927 |
|
|
/* Satisfy 12.4.1.3 by ensuring that a procedure pointer actual argument
|
| 1928 |
|
|
is provided for a procedure pointer formal argument. */
|
| 1929 |
|
|
if (f->sym->attr.proc_pointer
|
| 1930 |
|
|
&& !((a->expr->expr_type == EXPR_VARIABLE
|
| 1931 |
|
|
&& a->expr->symtree->n.sym->attr.proc_pointer)
|
| 1932 |
|
|
|| (a->expr->expr_type == EXPR_FUNCTION
|
| 1933 |
|
|
&& a->expr->symtree->n.sym->result->attr.proc_pointer)
|
| 1934 |
|
|
|| gfc_is_proc_ptr_comp (a->expr, NULL)))
|
| 1935 |
|
|
{
|
| 1936 |
|
|
if (where)
|
| 1937 |
|
|
gfc_error ("Expected a procedure pointer for argument '%s' at %L",
|
| 1938 |
|
|
f->sym->name, &a->expr->where);
|
| 1939 |
|
|
return 0;
|
| 1940 |
|
|
}
|
| 1941 |
|
|
|
| 1942 |
|
|
/* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is
|
| 1943 |
|
|
provided for a procedure formal argument. */
|
| 1944 |
|
|
if (a->expr->ts.type != BT_PROCEDURE && !gfc_is_proc_ptr_comp (a->expr, NULL)
|
| 1945 |
|
|
&& a->expr->expr_type == EXPR_VARIABLE
|
| 1946 |
|
|
&& f->sym->attr.flavor == FL_PROCEDURE)
|
| 1947 |
|
|
{
|
| 1948 |
|
|
if (where)
|
| 1949 |
|
|
gfc_error ("Expected a procedure for argument '%s' at %L",
|
| 1950 |
|
|
f->sym->name, &a->expr->where);
|
| 1951 |
|
|
return 0;
|
| 1952 |
|
|
}
|
| 1953 |
|
|
|
| 1954 |
|
|
if (f->sym->attr.flavor == FL_PROCEDURE && f->sym->attr.pure
|
| 1955 |
|
|
&& a->expr->ts.type == BT_PROCEDURE
|
| 1956 |
|
|
&& !a->expr->symtree->n.sym->attr.pure)
|
| 1957 |
|
|
{
|
| 1958 |
|
|
if (where)
|
| 1959 |
|
|
gfc_error ("Expected a PURE procedure for argument '%s' at %L",
|
| 1960 |
|
|
f->sym->name, &a->expr->where);
|
| 1961 |
|
|
return 0;
|
| 1962 |
|
|
}
|
| 1963 |
|
|
|
| 1964 |
|
|
if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
|
| 1965 |
|
|
&& a->expr->expr_type == EXPR_VARIABLE
|
| 1966 |
|
|
&& a->expr->symtree->n.sym->as
|
| 1967 |
|
|
&& a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
|
| 1968 |
|
|
&& (a->expr->ref == NULL
|
| 1969 |
|
|
|| (a->expr->ref->type == REF_ARRAY
|
| 1970 |
|
|
&& a->expr->ref->u.ar.type == AR_FULL)))
|
| 1971 |
|
|
{
|
| 1972 |
|
|
if (where)
|
| 1973 |
|
|
gfc_error ("Actual argument for '%s' cannot be an assumed-size"
|
| 1974 |
|
|
" array at %L", f->sym->name, where);
|
| 1975 |
|
|
return 0;
|
| 1976 |
|
|
}
|
| 1977 |
|
|
|
| 1978 |
|
|
if (a->expr->expr_type != EXPR_NULL
|
| 1979 |
|
|
&& compare_pointer (f->sym, a->expr) == 0)
|
| 1980 |
|
|
{
|
| 1981 |
|
|
if (where)
|
| 1982 |
|
|
gfc_error ("Actual argument for '%s' must be a pointer at %L",
|
| 1983 |
|
|
f->sym->name, &a->expr->where);
|
| 1984 |
|
|
return 0;
|
| 1985 |
|
|
}
|
| 1986 |
|
|
|
| 1987 |
|
|
if (a->expr->expr_type != EXPR_NULL
|
| 1988 |
|
|
&& compare_allocatable (f->sym, a->expr) == 0)
|
| 1989 |
|
|
{
|
| 1990 |
|
|
if (where)
|
| 1991 |
|
|
gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
|
| 1992 |
|
|
f->sym->name, &a->expr->where);
|
| 1993 |
|
|
return 0;
|
| 1994 |
|
|
}
|
| 1995 |
|
|
|
| 1996 |
|
|
/* Check intent = OUT/INOUT for definable actual argument. */
|
| 1997 |
|
|
if ((a->expr->expr_type != EXPR_VARIABLE
|
| 1998 |
|
|
|| (a->expr->symtree->n.sym->attr.flavor != FL_VARIABLE
|
| 1999 |
|
|
&& a->expr->symtree->n.sym->attr.flavor != FL_PROCEDURE))
|
| 2000 |
|
|
&& (f->sym->attr.intent == INTENT_OUT
|
| 2001 |
|
|
|| f->sym->attr.intent == INTENT_INOUT))
|
| 2002 |
|
|
{
|
| 2003 |
|
|
if (where)
|
| 2004 |
|
|
gfc_error ("Actual argument at %L must be definable as "
|
| 2005 |
|
|
"the dummy argument '%s' is INTENT = OUT/INOUT",
|
| 2006 |
|
|
&a->expr->where, f->sym->name);
|
| 2007 |
|
|
return 0;
|
| 2008 |
|
|
}
|
| 2009 |
|
|
|
| 2010 |
|
|
if (!compare_parameter_protected(f->sym, a->expr))
|
| 2011 |
|
|
{
|
| 2012 |
|
|
if (where)
|
| 2013 |
|
|
gfc_error ("Actual argument at %L is use-associated with "
|
| 2014 |
|
|
"PROTECTED attribute and dummy argument '%s' is "
|
| 2015 |
|
|
"INTENT = OUT/INOUT",
|
| 2016 |
|
|
&a->expr->where,f->sym->name);
|
| 2017 |
|
|
return 0;
|
| 2018 |
|
|
}
|
| 2019 |
|
|
|
| 2020 |
|
|
if ((f->sym->attr.intent == INTENT_OUT
|
| 2021 |
|
|
|| f->sym->attr.intent == INTENT_INOUT
|
| 2022 |
|
|
|| f->sym->attr.volatile_)
|
| 2023 |
|
|
&& has_vector_subscript (a->expr))
|
| 2024 |
|
|
{
|
| 2025 |
|
|
if (where)
|
| 2026 |
|
|
gfc_error ("Array-section actual argument with vector subscripts "
|
| 2027 |
|
|
"at %L is incompatible with INTENT(OUT), INTENT(INOUT) "
|
| 2028 |
|
|
"or VOLATILE attribute of the dummy argument '%s'",
|
| 2029 |
|
|
&a->expr->where, f->sym->name);
|
| 2030 |
|
|
return 0;
|
| 2031 |
|
|
}
|
| 2032 |
|
|
|
| 2033 |
|
|
/* C1232 (R1221) For an actual argument which is an array section or
|
| 2034 |
|
|
an assumed-shape array, the dummy argument shall be an assumed-
|
| 2035 |
|
|
shape array, if the dummy argument has the VOLATILE attribute. */
|
| 2036 |
|
|
|
| 2037 |
|
|
if (f->sym->attr.volatile_
|
| 2038 |
|
|
&& a->expr->symtree->n.sym->as
|
| 2039 |
|
|
&& a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
|
| 2040 |
|
|
&& !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
|
| 2041 |
|
|
{
|
| 2042 |
|
|
if (where)
|
| 2043 |
|
|
gfc_error ("Assumed-shape actual argument at %L is "
|
| 2044 |
|
|
"incompatible with the non-assumed-shape "
|
| 2045 |
|
|
"dummy argument '%s' due to VOLATILE attribute",
|
| 2046 |
|
|
&a->expr->where,f->sym->name);
|
| 2047 |
|
|
return 0;
|
| 2048 |
|
|
}
|
| 2049 |
|
|
|
| 2050 |
|
|
if (f->sym->attr.volatile_
|
| 2051 |
|
|
&& a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
|
| 2052 |
|
|
&& !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
|
| 2053 |
|
|
{
|
| 2054 |
|
|
if (where)
|
| 2055 |
|
|
gfc_error ("Array-section actual argument at %L is "
|
| 2056 |
|
|
"incompatible with the non-assumed-shape "
|
| 2057 |
|
|
"dummy argument '%s' due to VOLATILE attribute",
|
| 2058 |
|
|
&a->expr->where,f->sym->name);
|
| 2059 |
|
|
return 0;
|
| 2060 |
|
|
}
|
| 2061 |
|
|
|
| 2062 |
|
|
/* C1233 (R1221) For an actual argument which is a pointer array, the
|
| 2063 |
|
|
dummy argument shall be an assumed-shape or pointer array, if the
|
| 2064 |
|
|
dummy argument has the VOLATILE attribute. */
|
| 2065 |
|
|
|
| 2066 |
|
|
if (f->sym->attr.volatile_
|
| 2067 |
|
|
&& a->expr->symtree->n.sym->attr.pointer
|
| 2068 |
|
|
&& a->expr->symtree->n.sym->as
|
| 2069 |
|
|
&& !(f->sym->as
|
| 2070 |
|
|
&& (f->sym->as->type == AS_ASSUMED_SHAPE
|
| 2071 |
|
|
|| f->sym->attr.pointer)))
|
| 2072 |
|
|
{
|
| 2073 |
|
|
if (where)
|
| 2074 |
|
|
gfc_error ("Pointer-array actual argument at %L requires "
|
| 2075 |
|
|
"an assumed-shape or pointer-array dummy "
|
| 2076 |
|
|
"argument '%s' due to VOLATILE attribute",
|
| 2077 |
|
|
&a->expr->where,f->sym->name);
|
| 2078 |
|
|
return 0;
|
| 2079 |
|
|
}
|
| 2080 |
|
|
|
| 2081 |
|
|
match:
|
| 2082 |
|
|
if (a == actual)
|
| 2083 |
|
|
na = i;
|
| 2084 |
|
|
|
| 2085 |
|
|
new_arg[i++] = a;
|
| 2086 |
|
|
}
|
| 2087 |
|
|
|
| 2088 |
|
|
/* Make sure missing actual arguments are optional. */
|
| 2089 |
|
|
i = 0;
|
| 2090 |
|
|
for (f = formal; f; f = f->next, i++)
|
| 2091 |
|
|
{
|
| 2092 |
|
|
if (new_arg[i] != NULL)
|
| 2093 |
|
|
continue;
|
| 2094 |
|
|
if (f->sym == NULL)
|
| 2095 |
|
|
{
|
| 2096 |
|
|
if (where)
|
| 2097 |
|
|
gfc_error ("Missing alternate return spec in subroutine call "
|
| 2098 |
|
|
"at %L", where);
|
| 2099 |
|
|
return 0;
|
| 2100 |
|
|
}
|
| 2101 |
|
|
if (!f->sym->attr.optional)
|
| 2102 |
|
|
{
|
| 2103 |
|
|
if (where)
|
| 2104 |
|
|
gfc_error ("Missing actual argument for argument '%s' at %L",
|
| 2105 |
|
|
f->sym->name, where);
|
| 2106 |
|
|
return 0;
|
| 2107 |
|
|
}
|
| 2108 |
|
|
}
|
| 2109 |
|
|
|
| 2110 |
|
|
/* The argument lists are compatible. We now relink a new actual
|
| 2111 |
|
|
argument list with null arguments in the right places. The head
|
| 2112 |
|
|
of the list remains the head. */
|
| 2113 |
|
|
for (i = 0; i < n; i++)
|
| 2114 |
|
|
if (new_arg[i] == NULL)
|
| 2115 |
|
|
new_arg[i] = gfc_get_actual_arglist ();
|
| 2116 |
|
|
|
| 2117 |
|
|
if (na != 0)
|
| 2118 |
|
|
{
|
| 2119 |
|
|
temp = *new_arg[0];
|
| 2120 |
|
|
*new_arg[0] = *actual;
|
| 2121 |
|
|
*actual = temp;
|
| 2122 |
|
|
|
| 2123 |
|
|
a = new_arg[0];
|
| 2124 |
|
|
new_arg[0] = new_arg[na];
|
| 2125 |
|
|
new_arg[na] = a;
|
| 2126 |
|
|
}
|
| 2127 |
|
|
|
| 2128 |
|
|
for (i = 0; i < n - 1; i++)
|
| 2129 |
|
|
new_arg[i]->next = new_arg[i + 1];
|
| 2130 |
|
|
|
| 2131 |
|
|
new_arg[i]->next = NULL;
|
| 2132 |
|
|
|
| 2133 |
|
|
if (*ap == NULL && n > 0)
|
| 2134 |
|
|
*ap = new_arg[0];
|
| 2135 |
|
|
|
| 2136 |
|
|
/* Note the types of omitted optional arguments. */
|
| 2137 |
|
|
for (a = *ap, f = formal; a; a = a->next, f = f->next)
|
| 2138 |
|
|
if (a->expr == NULL && a->label == NULL)
|
| 2139 |
|
|
a->missing_arg_type = f->sym->ts.type;
|
| 2140 |
|
|
|
| 2141 |
|
|
return 1;
|
| 2142 |
|
|
}
|
| 2143 |
|
|
|
| 2144 |
|
|
|
| 2145 |
|
|
typedef struct
|
| 2146 |
|
|
{
|
| 2147 |
|
|
gfc_formal_arglist *f;
|
| 2148 |
|
|
gfc_actual_arglist *a;
|
| 2149 |
|
|
}
|
| 2150 |
|
|
argpair;
|
| 2151 |
|
|
|
| 2152 |
|
|
/* qsort comparison function for argument pairs, with the following
|
| 2153 |
|
|
order:
|
| 2154 |
|
|
- p->a->expr == NULL
|
| 2155 |
|
|
- p->a->expr->expr_type != EXPR_VARIABLE
|
| 2156 |
|
|
- growing p->a->expr->symbol. */
|
| 2157 |
|
|
|
| 2158 |
|
|
static int
|
| 2159 |
|
|
pair_cmp (const void *p1, const void *p2)
|
| 2160 |
|
|
{
|
| 2161 |
|
|
const gfc_actual_arglist *a1, *a2;
|
| 2162 |
|
|
|
| 2163 |
|
|
/* *p1 and *p2 are elements of the to-be-sorted array. */
|
| 2164 |
|
|
a1 = ((const argpair *) p1)->a;
|
| 2165 |
|
|
a2 = ((const argpair *) p2)->a;
|
| 2166 |
|
|
if (!a1->expr)
|
| 2167 |
|
|
{
|
| 2168 |
|
|
if (!a2->expr)
|
| 2169 |
|
|
return 0;
|
| 2170 |
|
|
return -1;
|
| 2171 |
|
|
}
|
| 2172 |
|
|
if (!a2->expr)
|
| 2173 |
|
|
return 1;
|
| 2174 |
|
|
if (a1->expr->expr_type != EXPR_VARIABLE)
|
| 2175 |
|
|
{
|
| 2176 |
|
|
if (a2->expr->expr_type != EXPR_VARIABLE)
|
| 2177 |
|
|
return 0;
|
| 2178 |
|
|
return -1;
|
| 2179 |
|
|
}
|
| 2180 |
|
|
if (a2->expr->expr_type != EXPR_VARIABLE)
|
| 2181 |
|
|
return 1;
|
| 2182 |
|
|
return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
|
| 2183 |
|
|
}
|
| 2184 |
|
|
|
| 2185 |
|
|
|
| 2186 |
|
|
/* Given two expressions from some actual arguments, test whether they
|
| 2187 |
|
|
refer to the same expression. The analysis is conservative.
|
| 2188 |
|
|
Returning FAILURE will produce no warning. */
|
| 2189 |
|
|
|
| 2190 |
|
|
static gfc_try
|
| 2191 |
|
|
compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
|
| 2192 |
|
|
{
|
| 2193 |
|
|
const gfc_ref *r1, *r2;
|
| 2194 |
|
|
|
| 2195 |
|
|
if (!e1 || !e2
|
| 2196 |
|
|
|| e1->expr_type != EXPR_VARIABLE
|
| 2197 |
|
|
|| e2->expr_type != EXPR_VARIABLE
|
| 2198 |
|
|
|| e1->symtree->n.sym != e2->symtree->n.sym)
|
| 2199 |
|
|
return FAILURE;
|
| 2200 |
|
|
|
| 2201 |
|
|
/* TODO: improve comparison, see expr.c:show_ref(). */
|
| 2202 |
|
|
for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
|
| 2203 |
|
|
{
|
| 2204 |
|
|
if (r1->type != r2->type)
|
| 2205 |
|
|
return FAILURE;
|
| 2206 |
|
|
switch (r1->type)
|
| 2207 |
|
|
{
|
| 2208 |
|
|
case REF_ARRAY:
|
| 2209 |
|
|
if (r1->u.ar.type != r2->u.ar.type)
|
| 2210 |
|
|
return FAILURE;
|
| 2211 |
|
|
/* TODO: At the moment, consider only full arrays;
|
| 2212 |
|
|
we could do better. */
|
| 2213 |
|
|
if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
|
| 2214 |
|
|
return FAILURE;
|
| 2215 |
|
|
break;
|
| 2216 |
|
|
|
| 2217 |
|
|
case REF_COMPONENT:
|
| 2218 |
|
|
if (r1->u.c.component != r2->u.c.component)
|
| 2219 |
|
|
return FAILURE;
|
| 2220 |
|
|
break;
|
| 2221 |
|
|
|
| 2222 |
|
|
case REF_SUBSTRING:
|
| 2223 |
|
|
return FAILURE;
|
| 2224 |
|
|
|
| 2225 |
|
|
default:
|
| 2226 |
|
|
gfc_internal_error ("compare_actual_expr(): Bad component code");
|
| 2227 |
|
|
}
|
| 2228 |
|
|
}
|
| 2229 |
|
|
if (!r1 && !r2)
|
| 2230 |
|
|
return SUCCESS;
|
| 2231 |
|
|
return FAILURE;
|
| 2232 |
|
|
}
|
| 2233 |
|
|
|
| 2234 |
|
|
|
| 2235 |
|
|
/* Given formal and actual argument lists that correspond to one
|
| 2236 |
|
|
another, check that identical actual arguments aren't not
|
| 2237 |
|
|
associated with some incompatible INTENTs. */
|
| 2238 |
|
|
|
| 2239 |
|
|
static gfc_try
|
| 2240 |
|
|
check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
|
| 2241 |
|
|
{
|
| 2242 |
|
|
sym_intent f1_intent, f2_intent;
|
| 2243 |
|
|
gfc_formal_arglist *f1;
|
| 2244 |
|
|
gfc_actual_arglist *a1;
|
| 2245 |
|
|
size_t n, i, j;
|
| 2246 |
|
|
argpair *p;
|
| 2247 |
|
|
gfc_try t = SUCCESS;
|
| 2248 |
|
|
|
| 2249 |
|
|
n = 0;
|
| 2250 |
|
|
for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
|
| 2251 |
|
|
{
|
| 2252 |
|
|
if (f1 == NULL && a1 == NULL)
|
| 2253 |
|
|
break;
|
| 2254 |
|
|
if (f1 == NULL || a1 == NULL)
|
| 2255 |
|
|
gfc_internal_error ("check_some_aliasing(): List mismatch");
|
| 2256 |
|
|
n++;
|
| 2257 |
|
|
}
|
| 2258 |
|
|
if (n == 0)
|
| 2259 |
|
|
return t;
|
| 2260 |
|
|
p = (argpair *) alloca (n * sizeof (argpair));
|
| 2261 |
|
|
|
| 2262 |
|
|
for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
|
| 2263 |
|
|
{
|
| 2264 |
|
|
p[i].f = f1;
|
| 2265 |
|
|
p[i].a = a1;
|
| 2266 |
|
|
}
|
| 2267 |
|
|
|
| 2268 |
|
|
qsort (p, n, sizeof (argpair), pair_cmp);
|
| 2269 |
|
|
|
| 2270 |
|
|
for (i = 0; i < n; i++)
|
| 2271 |
|
|
{
|
| 2272 |
|
|
if (!p[i].a->expr
|
| 2273 |
|
|
|| p[i].a->expr->expr_type != EXPR_VARIABLE
|
| 2274 |
|
|
|| p[i].a->expr->ts.type == BT_PROCEDURE)
|
| 2275 |
|
|
continue;
|
| 2276 |
|
|
f1_intent = p[i].f->sym->attr.intent;
|
| 2277 |
|
|
for (j = i + 1; j < n; j++)
|
| 2278 |
|
|
{
|
| 2279 |
|
|
/* Expected order after the sort. */
|
| 2280 |
|
|
if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
|
| 2281 |
|
|
gfc_internal_error ("check_some_aliasing(): corrupted data");
|
| 2282 |
|
|
|
| 2283 |
|
|
/* Are the expression the same? */
|
| 2284 |
|
|
if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
|
| 2285 |
|
|
break;
|
| 2286 |
|
|
f2_intent = p[j].f->sym->attr.intent;
|
| 2287 |
|
|
if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
|
| 2288 |
|
|
|| (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
|
| 2289 |
|
|
{
|
| 2290 |
|
|
gfc_warning ("Same actual argument associated with INTENT(%s) "
|
| 2291 |
|
|
"argument '%s' and INTENT(%s) argument '%s' at %L",
|
| 2292 |
|
|
gfc_intent_string (f1_intent), p[i].f->sym->name,
|
| 2293 |
|
|
gfc_intent_string (f2_intent), p[j].f->sym->name,
|
| 2294 |
|
|
&p[i].a->expr->where);
|
| 2295 |
|
|
t = FAILURE;
|
| 2296 |
|
|
}
|
| 2297 |
|
|
}
|
| 2298 |
|
|
}
|
| 2299 |
|
|
|
| 2300 |
|
|
return t;
|
| 2301 |
|
|
}
|
| 2302 |
|
|
|
| 2303 |
|
|
|
| 2304 |
|
|
/* Given a symbol of a formal argument list and an expression,
|
| 2305 |
|
|
return nonzero if their intents are compatible, zero otherwise. */
|
| 2306 |
|
|
|
| 2307 |
|
|
static int
|
| 2308 |
|
|
compare_parameter_intent (gfc_symbol *formal, gfc_expr *actual)
|
| 2309 |
|
|
{
|
| 2310 |
|
|
if (actual->symtree->n.sym->attr.pointer && !formal->attr.pointer)
|
| 2311 |
|
|
return 1;
|
| 2312 |
|
|
|
| 2313 |
|
|
if (actual->symtree->n.sym->attr.intent != INTENT_IN)
|
| 2314 |
|
|
return 1;
|
| 2315 |
|
|
|
| 2316 |
|
|
if (formal->attr.intent == INTENT_INOUT || formal->attr.intent == INTENT_OUT)
|
| 2317 |
|
|
return 0;
|
| 2318 |
|
|
|
| 2319 |
|
|
return 1;
|
| 2320 |
|
|
}
|
| 2321 |
|
|
|
| 2322 |
|
|
|
| 2323 |
|
|
/* Given formal and actual argument lists that correspond to one
|
| 2324 |
|
|
another, check that they are compatible in the sense that intents
|
| 2325 |
|
|
are not mismatched. */
|
| 2326 |
|
|
|
| 2327 |
|
|
static gfc_try
|
| 2328 |
|
|
check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
|
| 2329 |
|
|
{
|
| 2330 |
|
|
sym_intent f_intent;
|
| 2331 |
|
|
|
| 2332 |
|
|
for (;; f = f->next, a = a->next)
|
| 2333 |
|
|
{
|
| 2334 |
|
|
if (f == NULL && a == NULL)
|
| 2335 |
|
|
break;
|
| 2336 |
|
|
if (f == NULL || a == NULL)
|
| 2337 |
|
|
gfc_internal_error ("check_intents(): List mismatch");
|
| 2338 |
|
|
|
| 2339 |
|
|
if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
|
| 2340 |
|
|
continue;
|
| 2341 |
|
|
|
| 2342 |
|
|
f_intent = f->sym->attr.intent;
|
| 2343 |
|
|
|
| 2344 |
|
|
if (!compare_parameter_intent(f->sym, a->expr))
|
| 2345 |
|
|
{
|
| 2346 |
|
|
gfc_error ("Procedure argument at %L is INTENT(IN) while interface "
|
| 2347 |
|
|
"specifies INTENT(%s)", &a->expr->where,
|
| 2348 |
|
|
gfc_intent_string (f_intent));
|
| 2349 |
|
|
return FAILURE;
|
| 2350 |
|
|
}
|
| 2351 |
|
|
|
| 2352 |
|
|
if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
|
| 2353 |
|
|
{
|
| 2354 |
|
|
if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
|
| 2355 |
|
|
{
|
| 2356 |
|
|
gfc_error ("Procedure argument at %L is local to a PURE "
|
| 2357 |
|
|
"procedure and is passed to an INTENT(%s) argument",
|
| 2358 |
|
|
&a->expr->where, gfc_intent_string (f_intent));
|
| 2359 |
|
|
return FAILURE;
|
| 2360 |
|
|
}
|
| 2361 |
|
|
|
| 2362 |
|
|
if (f->sym->attr.pointer)
|
| 2363 |
|
|
{
|
| 2364 |
|
|
gfc_error ("Procedure argument at %L is local to a PURE "
|
| 2365 |
|
|
"procedure and has the POINTER attribute",
|
| 2366 |
|
|
&a->expr->where);
|
| 2367 |
|
|
return FAILURE;
|
| 2368 |
|
|
}
|
| 2369 |
|
|
}
|
| 2370 |
|
|
}
|
| 2371 |
|
|
|
| 2372 |
|
|
return SUCCESS;
|
| 2373 |
|
|
}
|
| 2374 |
|
|
|
| 2375 |
|
|
|
| 2376 |
|
|
/* Check how a procedure is used against its interface. If all goes
|
| 2377 |
|
|
well, the actual argument list will also end up being properly
|
| 2378 |
|
|
sorted. */
|
| 2379 |
|
|
|
| 2380 |
|
|
void
|
| 2381 |
|
|
gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
|
| 2382 |
|
|
{
|
| 2383 |
|
|
|
| 2384 |
|
|
/* Warn about calls with an implicit interface. Special case
|
| 2385 |
|
|
for calling a ISO_C_BINDING becase c_loc and c_funloc
|
| 2386 |
|
|
are pseudo-unknown. Additionally, warn about procedures not
|
| 2387 |
|
|
explicitly declared at all if requested. */
|
| 2388 |
|
|
if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c)
|
| 2389 |
|
|
{
|
| 2390 |
|
|
if (gfc_option.warn_implicit_interface)
|
| 2391 |
|
|
gfc_warning ("Procedure '%s' called with an implicit interface at %L",
|
| 2392 |
|
|
sym->name, where);
|
| 2393 |
|
|
else if (gfc_option.warn_implicit_procedure
|
| 2394 |
|
|
&& sym->attr.proc == PROC_UNKNOWN)
|
| 2395 |
|
|
gfc_warning ("Procedure '%s' called at %L is not explicitly declared",
|
| 2396 |
|
|
sym->name, where);
|
| 2397 |
|
|
}
|
| 2398 |
|
|
|
| 2399 |
|
|
if (sym->attr.if_source == IFSRC_UNKNOWN)
|
| 2400 |
|
|
{
|
| 2401 |
|
|
gfc_actual_arglist *a;
|
| 2402 |
|
|
for (a = *ap; a; a = a->next)
|
| 2403 |
|
|
{
|
| 2404 |
|
|
/* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
|
| 2405 |
|
|
if (a->name != NULL && a->name[0] != '%')
|
| 2406 |
|
|
{
|
| 2407 |
|
|
gfc_error("Keyword argument requires explicit interface "
|
| 2408 |
|
|
"for procedure '%s' at %L", sym->name, &a->expr->where);
|
| 2409 |
|
|
break;
|
| 2410 |
|
|
}
|
| 2411 |
|
|
}
|
| 2412 |
|
|
|
| 2413 |
|
|
return;
|
| 2414 |
|
|
}
|
| 2415 |
|
|
|
| 2416 |
|
|
if (!compare_actual_formal (ap, sym->formal, 0, sym->attr.elemental, where))
|
| 2417 |
|
|
return;
|
| 2418 |
|
|
|
| 2419 |
|
|
check_intents (sym->formal, *ap);
|
| 2420 |
|
|
if (gfc_option.warn_aliasing)
|
| 2421 |
|
|
check_some_aliasing (sym->formal, *ap);
|
| 2422 |
|
|
}
|
| 2423 |
|
|
|
| 2424 |
|
|
|
| 2425 |
|
|
/* Check how a procedure pointer component is used against its interface.
|
| 2426 |
|
|
If all goes well, the actual argument list will also end up being properly
|
| 2427 |
|
|
sorted. Completely analogous to gfc_procedure_use. */
|
| 2428 |
|
|
|
| 2429 |
|
|
void
|
| 2430 |
|
|
gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
|
| 2431 |
|
|
{
|
| 2432 |
|
|
|
| 2433 |
|
|
/* Warn about calls with an implicit interface. Special case
|
| 2434 |
|
|
for calling a ISO_C_BINDING becase c_loc and c_funloc
|
| 2435 |
|
|
are pseudo-unknown. */
|
| 2436 |
|
|
if (gfc_option.warn_implicit_interface
|
| 2437 |
|
|
&& comp->attr.if_source == IFSRC_UNKNOWN
|
| 2438 |
|
|
&& !comp->attr.is_iso_c)
|
| 2439 |
|
|
gfc_warning ("Procedure pointer component '%s' called with an implicit "
|
| 2440 |
|
|
"interface at %L", comp->name, where);
|
| 2441 |
|
|
|
| 2442 |
|
|
if (comp->attr.if_source == IFSRC_UNKNOWN)
|
| 2443 |
|
|
{
|
| 2444 |
|
|
gfc_actual_arglist *a;
|
| 2445 |
|
|
for (a = *ap; a; a = a->next)
|
| 2446 |
|
|
{
|
| 2447 |
|
|
/* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
|
| 2448 |
|
|
if (a->name != NULL && a->name[0] != '%')
|
| 2449 |
|
|
{
|
| 2450 |
|
|
gfc_error("Keyword argument requires explicit interface "
|
| 2451 |
|
|
"for procedure pointer component '%s' at %L",
|
| 2452 |
|
|
comp->name, &a->expr->where);
|
| 2453 |
|
|
break;
|
| 2454 |
|
|
}
|
| 2455 |
|
|
}
|
| 2456 |
|
|
|
| 2457 |
|
|
return;
|
| 2458 |
|
|
}
|
| 2459 |
|
|
|
| 2460 |
|
|
if (!compare_actual_formal (ap, comp->formal, 0, comp->attr.elemental, where))
|
| 2461 |
|
|
return;
|
| 2462 |
|
|
|
| 2463 |
|
|
check_intents (comp->formal, *ap);
|
| 2464 |
|
|
if (gfc_option.warn_aliasing)
|
| 2465 |
|
|
check_some_aliasing (comp->formal, *ap);
|
| 2466 |
|
|
}
|
| 2467 |
|
|
|
| 2468 |
|
|
|
| 2469 |
|
|
/* Try if an actual argument list matches the formal list of a symbol,
|
| 2470 |
|
|
respecting the symbol's attributes like ELEMENTAL. This is used for
|
| 2471 |
|
|
GENERIC resolution. */
|
| 2472 |
|
|
|
| 2473 |
|
|
bool
|
| 2474 |
|
|
gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
|
| 2475 |
|
|
{
|
| 2476 |
|
|
bool r;
|
| 2477 |
|
|
|
| 2478 |
|
|
gcc_assert (sym->attr.flavor == FL_PROCEDURE);
|
| 2479 |
|
|
|
| 2480 |
|
|
r = !sym->attr.elemental;
|
| 2481 |
|
|
if (compare_actual_formal (args, sym->formal, r, !r, NULL))
|
| 2482 |
|
|
{
|
| 2483 |
|
|
check_intents (sym->formal, *args);
|
| 2484 |
|
|
if (gfc_option.warn_aliasing)
|
| 2485 |
|
|
check_some_aliasing (sym->formal, *args);
|
| 2486 |
|
|
return true;
|
| 2487 |
|
|
}
|
| 2488 |
|
|
|
| 2489 |
|
|
return false;
|
| 2490 |
|
|
}
|
| 2491 |
|
|
|
| 2492 |
|
|
|
| 2493 |
|
|
/* Given an interface pointer and an actual argument list, search for
|
| 2494 |
|
|
a formal argument list that matches the actual. If found, returns
|
| 2495 |
|
|
a pointer to the symbol of the correct interface. Returns NULL if
|
| 2496 |
|
|
not found. */
|
| 2497 |
|
|
|
| 2498 |
|
|
gfc_symbol *
|
| 2499 |
|
|
gfc_search_interface (gfc_interface *intr, int sub_flag,
|
| 2500 |
|
|
gfc_actual_arglist **ap)
|
| 2501 |
|
|
{
|
| 2502 |
|
|
gfc_symbol *elem_sym = NULL;
|
| 2503 |
|
|
for (; intr; intr = intr->next)
|
| 2504 |
|
|
{
|
| 2505 |
|
|
if (sub_flag && intr->sym->attr.function)
|
| 2506 |
|
|
continue;
|
| 2507 |
|
|
if (!sub_flag && intr->sym->attr.subroutine)
|
| 2508 |
|
|
continue;
|
| 2509 |
|
|
|
| 2510 |
|
|
if (gfc_arglist_matches_symbol (ap, intr->sym))
|
| 2511 |
|
|
{
|
| 2512 |
|
|
/* Satisfy 12.4.4.1 such that an elemental match has lower
|
| 2513 |
|
|
weight than a non-elemental match. */
|
| 2514 |
|
|
if (intr->sym->attr.elemental)
|
| 2515 |
|
|
{
|
| 2516 |
|
|
elem_sym = intr->sym;
|
| 2517 |
|
|
continue;
|
| 2518 |
|
|
}
|
| 2519 |
|
|
return intr->sym;
|
| 2520 |
|
|
}
|
| 2521 |
|
|
}
|
| 2522 |
|
|
|
| 2523 |
|
|
return elem_sym ? elem_sym : NULL;
|
| 2524 |
|
|
}
|
| 2525 |
|
|
|
| 2526 |
|
|
|
| 2527 |
|
|
/* Do a brute force recursive search for a symbol. */
|
| 2528 |
|
|
|
| 2529 |
|
|
static gfc_symtree *
|
| 2530 |
|
|
find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
|
| 2531 |
|
|
{
|
| 2532 |
|
|
gfc_symtree * st;
|
| 2533 |
|
|
|
| 2534 |
|
|
if (root->n.sym == sym)
|
| 2535 |
|
|
return root;
|
| 2536 |
|
|
|
| 2537 |
|
|
st = NULL;
|
| 2538 |
|
|
if (root->left)
|
| 2539 |
|
|
st = find_symtree0 (root->left, sym);
|
| 2540 |
|
|
if (root->right && ! st)
|
| 2541 |
|
|
st = find_symtree0 (root->right, sym);
|
| 2542 |
|
|
return st;
|
| 2543 |
|
|
}
|
| 2544 |
|
|
|
| 2545 |
|
|
|
| 2546 |
|
|
/* Find a symtree for a symbol. */
|
| 2547 |
|
|
|
| 2548 |
|
|
gfc_symtree *
|
| 2549 |
|
|
gfc_find_sym_in_symtree (gfc_symbol *sym)
|
| 2550 |
|
|
{
|
| 2551 |
|
|
gfc_symtree *st;
|
| 2552 |
|
|
gfc_namespace *ns;
|
| 2553 |
|
|
|
| 2554 |
|
|
/* First try to find it by name. */
|
| 2555 |
|
|
gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
|
| 2556 |
|
|
if (st && st->n.sym == sym)
|
| 2557 |
|
|
return st;
|
| 2558 |
|
|
|
| 2559 |
|
|
/* If it's been renamed, resort to a brute-force search. */
|
| 2560 |
|
|
/* TODO: avoid having to do this search. If the symbol doesn't exist
|
| 2561 |
|
|
in the symtree for the current namespace, it should probably be added. */
|
| 2562 |
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
| 2563 |
|
|
{
|
| 2564 |
|
|
st = find_symtree0 (ns->sym_root, sym);
|
| 2565 |
|
|
if (st)
|
| 2566 |
|
|
return st;
|
| 2567 |
|
|
}
|
| 2568 |
|
|
gfc_internal_error ("Unable to find symbol %s", sym->name);
|
| 2569 |
|
|
/* Not reached. */
|
| 2570 |
|
|
}
|
| 2571 |
|
|
|
| 2572 |
|
|
|
| 2573 |
|
|
/* See if the arglist to an operator-call contains a derived-type argument
|
| 2574 |
|
|
with a matching type-bound operator. If so, return the matching specific
|
| 2575 |
|
|
procedure defined as operator-target as well as the base-object to use
|
| 2576 |
|
|
(which is the found derived-type argument with operator). */
|
| 2577 |
|
|
|
| 2578 |
|
|
static gfc_typebound_proc*
|
| 2579 |
|
|
matching_typebound_op (gfc_expr** tb_base,
|
| 2580 |
|
|
gfc_actual_arglist* args,
|
| 2581 |
|
|
gfc_intrinsic_op op, const char* uop)
|
| 2582 |
|
|
{
|
| 2583 |
|
|
gfc_actual_arglist* base;
|
| 2584 |
|
|
|
| 2585 |
|
|
for (base = args; base; base = base->next)
|
| 2586 |
|
|
if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
|
| 2587 |
|
|
{
|
| 2588 |
|
|
gfc_typebound_proc* tb;
|
| 2589 |
|
|
gfc_symbol* derived;
|
| 2590 |
|
|
gfc_try result;
|
| 2591 |
|
|
|
| 2592 |
|
|
if (base->expr->ts.type == BT_CLASS)
|
| 2593 |
|
|
derived = base->expr->ts.u.derived->components->ts.u.derived;
|
| 2594 |
|
|
else
|
| 2595 |
|
|
derived = base->expr->ts.u.derived;
|
| 2596 |
|
|
|
| 2597 |
|
|
if (op == INTRINSIC_USER)
|
| 2598 |
|
|
{
|
| 2599 |
|
|
gfc_symtree* tb_uop;
|
| 2600 |
|
|
|
| 2601 |
|
|
gcc_assert (uop);
|
| 2602 |
|
|
tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
|
| 2603 |
|
|
false, NULL);
|
| 2604 |
|
|
|
| 2605 |
|
|
if (tb_uop)
|
| 2606 |
|
|
tb = tb_uop->n.tb;
|
| 2607 |
|
|
else
|
| 2608 |
|
|
tb = NULL;
|
| 2609 |
|
|
}
|
| 2610 |
|
|
else
|
| 2611 |
|
|
tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
|
| 2612 |
|
|
false, NULL);
|
| 2613 |
|
|
|
| 2614 |
|
|
/* This means we hit a PRIVATE operator which is use-associated and
|
| 2615 |
|
|
should thus not be seen. */
|
| 2616 |
|
|
if (result == FAILURE)
|
| 2617 |
|
|
tb = NULL;
|
| 2618 |
|
|
|
| 2619 |
|
|
/* Look through the super-type hierarchy for a matching specific
|
| 2620 |
|
|
binding. */
|
| 2621 |
|
|
for (; tb; tb = tb->overridden)
|
| 2622 |
|
|
{
|
| 2623 |
|
|
gfc_tbp_generic* g;
|
| 2624 |
|
|
|
| 2625 |
|
|
gcc_assert (tb->is_generic);
|
| 2626 |
|
|
for (g = tb->u.generic; g; g = g->next)
|
| 2627 |
|
|
{
|
| 2628 |
|
|
gfc_symbol* target;
|
| 2629 |
|
|
gfc_actual_arglist* argcopy;
|
| 2630 |
|
|
bool matches;
|
| 2631 |
|
|
|
| 2632 |
|
|
gcc_assert (g->specific);
|
| 2633 |
|
|
if (g->specific->error)
|
| 2634 |
|
|
continue;
|
| 2635 |
|
|
|
| 2636 |
|
|
target = g->specific->u.specific->n.sym;
|
| 2637 |
|
|
|
| 2638 |
|
|
/* Check if this arglist matches the formal. */
|
| 2639 |
|
|
argcopy = gfc_copy_actual_arglist (args);
|
| 2640 |
|
|
matches = gfc_arglist_matches_symbol (&argcopy, target);
|
| 2641 |
|
|
gfc_free_actual_arglist (argcopy);
|
| 2642 |
|
|
|
| 2643 |
|
|
/* Return if we found a match. */
|
| 2644 |
|
|
if (matches)
|
| 2645 |
|
|
{
|
| 2646 |
|
|
*tb_base = base->expr;
|
| 2647 |
|
|
return g->specific;
|
| 2648 |
|
|
}
|
| 2649 |
|
|
}
|
| 2650 |
|
|
}
|
| 2651 |
|
|
}
|
| 2652 |
|
|
|
| 2653 |
|
|
return NULL;
|
| 2654 |
|
|
}
|
| 2655 |
|
|
|
| 2656 |
|
|
|
| 2657 |
|
|
/* For the 'actual arglist' of an operator call and a specific typebound
|
| 2658 |
|
|
procedure that has been found the target of a type-bound operator, build the
|
| 2659 |
|
|
appropriate EXPR_COMPCALL and resolve it. We take this indirection over
|
| 2660 |
|
|
type-bound procedures rather than resolving type-bound operators 'directly'
|
| 2661 |
|
|
so that we can reuse the existing logic. */
|
| 2662 |
|
|
|
| 2663 |
|
|
static void
|
| 2664 |
|
|
build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
|
| 2665 |
|
|
gfc_expr* base, gfc_typebound_proc* target)
|
| 2666 |
|
|
{
|
| 2667 |
|
|
e->expr_type = EXPR_COMPCALL;
|
| 2668 |
|
|
e->value.compcall.tbp = target;
|
| 2669 |
|
|
e->value.compcall.name = "operator"; /* Should not matter. */
|
| 2670 |
|
|
e->value.compcall.actual = actual;
|
| 2671 |
|
|
e->value.compcall.base_object = base;
|
| 2672 |
|
|
e->value.compcall.ignore_pass = 1;
|
| 2673 |
|
|
e->value.compcall.assign = 0;
|
| 2674 |
|
|
}
|
| 2675 |
|
|
|
| 2676 |
|
|
|
| 2677 |
|
|
/* This subroutine is called when an expression is being resolved.
|
| 2678 |
|
|
The expression node in question is either a user defined operator
|
| 2679 |
|
|
or an intrinsic operator with arguments that aren't compatible
|
| 2680 |
|
|
with the operator. This subroutine builds an actual argument list
|
| 2681 |
|
|
corresponding to the operands, then searches for a compatible
|
| 2682 |
|
|
interface. If one is found, the expression node is replaced with
|
| 2683 |
|
|
the appropriate function call.
|
| 2684 |
|
|
real_error is an additional output argument that specifies if FAILURE
|
| 2685 |
|
|
is because of some real error and not because no match was found. */
|
| 2686 |
|
|
|
| 2687 |
|
|
gfc_try
|
| 2688 |
|
|
gfc_extend_expr (gfc_expr *e, bool *real_error)
|
| 2689 |
|
|
{
|
| 2690 |
|
|
gfc_actual_arglist *actual;
|
| 2691 |
|
|
gfc_symbol *sym;
|
| 2692 |
|
|
gfc_namespace *ns;
|
| 2693 |
|
|
gfc_user_op *uop;
|
| 2694 |
|
|
gfc_intrinsic_op i;
|
| 2695 |
|
|
|
| 2696 |
|
|
sym = NULL;
|
| 2697 |
|
|
|
| 2698 |
|
|
actual = gfc_get_actual_arglist ();
|
| 2699 |
|
|
actual->expr = e->value.op.op1;
|
| 2700 |
|
|
|
| 2701 |
|
|
*real_error = false;
|
| 2702 |
|
|
|
| 2703 |
|
|
if (e->value.op.op2 != NULL)
|
| 2704 |
|
|
{
|
| 2705 |
|
|
actual->next = gfc_get_actual_arglist ();
|
| 2706 |
|
|
actual->next->expr = e->value.op.op2;
|
| 2707 |
|
|
}
|
| 2708 |
|
|
|
| 2709 |
|
|
i = fold_unary_intrinsic (e->value.op.op);
|
| 2710 |
|
|
|
| 2711 |
|
|
if (i == INTRINSIC_USER)
|
| 2712 |
|
|
{
|
| 2713 |
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
| 2714 |
|
|
{
|
| 2715 |
|
|
uop = gfc_find_uop (e->value.op.uop->name, ns);
|
| 2716 |
|
|
if (uop == NULL)
|
| 2717 |
|
|
continue;
|
| 2718 |
|
|
|
| 2719 |
|
|
sym = gfc_search_interface (uop->op, 0, &actual);
|
| 2720 |
|
|
if (sym != NULL)
|
| 2721 |
|
|
break;
|
| 2722 |
|
|
}
|
| 2723 |
|
|
}
|
| 2724 |
|
|
else
|
| 2725 |
|
|
{
|
| 2726 |
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
| 2727 |
|
|
{
|
| 2728 |
|
|
/* Due to the distinction between '==' and '.eq.' and friends, one has
|
| 2729 |
|
|
to check if either is defined. */
|
| 2730 |
|
|
switch (i)
|
| 2731 |
|
|
{
|
| 2732 |
|
|
#define CHECK_OS_COMPARISON(comp) \
|
| 2733 |
|
|
case INTRINSIC_##comp: \
|
| 2734 |
|
|
case INTRINSIC_##comp##_OS: \
|
| 2735 |
|
|
sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
|
| 2736 |
|
|
if (!sym) \
|
| 2737 |
|
|
sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
|
| 2738 |
|
|
break;
|
| 2739 |
|
|
CHECK_OS_COMPARISON(EQ)
|
| 2740 |
|
|
CHECK_OS_COMPARISON(NE)
|
| 2741 |
|
|
CHECK_OS_COMPARISON(GT)
|
| 2742 |
|
|
CHECK_OS_COMPARISON(GE)
|
| 2743 |
|
|
CHECK_OS_COMPARISON(LT)
|
| 2744 |
|
|
CHECK_OS_COMPARISON(LE)
|
| 2745 |
|
|
#undef CHECK_OS_COMPARISON
|
| 2746 |
|
|
|
| 2747 |
|
|
default:
|
| 2748 |
|
|
sym = gfc_search_interface (ns->op[i], 0, &actual);
|
| 2749 |
|
|
}
|
| 2750 |
|
|
|
| 2751 |
|
|
if (sym != NULL)
|
| 2752 |
|
|
break;
|
| 2753 |
|
|
}
|
| 2754 |
|
|
}
|
| 2755 |
|
|
|
| 2756 |
|
|
/* TODO: Do an ambiguity-check and error if multiple matching interfaces are
|
| 2757 |
|
|
found rather than just taking the first one and not checking further. */
|
| 2758 |
|
|
|
| 2759 |
|
|
if (sym == NULL)
|
| 2760 |
|
|
{
|
| 2761 |
|
|
gfc_typebound_proc* tbo;
|
| 2762 |
|
|
gfc_expr* tb_base;
|
| 2763 |
|
|
|
| 2764 |
|
|
/* See if we find a matching type-bound operator. */
|
| 2765 |
|
|
if (i == INTRINSIC_USER)
|
| 2766 |
|
|
tbo = matching_typebound_op (&tb_base, actual,
|
| 2767 |
|
|
i, e->value.op.uop->name);
|
| 2768 |
|
|
else
|
| 2769 |
|
|
switch (i)
|
| 2770 |
|
|
{
|
| 2771 |
|
|
#define CHECK_OS_COMPARISON(comp) \
|
| 2772 |
|
|
case INTRINSIC_##comp: \
|
| 2773 |
|
|
case INTRINSIC_##comp##_OS: \
|
| 2774 |
|
|
tbo = matching_typebound_op (&tb_base, actual, \
|
| 2775 |
|
|
INTRINSIC_##comp, NULL); \
|
| 2776 |
|
|
if (!tbo) \
|
| 2777 |
|
|
tbo = matching_typebound_op (&tb_base, actual, \
|
| 2778 |
|
|
INTRINSIC_##comp##_OS, NULL); \
|
| 2779 |
|
|
break;
|
| 2780 |
|
|
CHECK_OS_COMPARISON(EQ)
|
| 2781 |
|
|
CHECK_OS_COMPARISON(NE)
|
| 2782 |
|
|
CHECK_OS_COMPARISON(GT)
|
| 2783 |
|
|
CHECK_OS_COMPARISON(GE)
|
| 2784 |
|
|
CHECK_OS_COMPARISON(LT)
|
| 2785 |
|
|
CHECK_OS_COMPARISON(LE)
|
| 2786 |
|
|
#undef CHECK_OS_COMPARISON
|
| 2787 |
|
|
|
| 2788 |
|
|
default:
|
| 2789 |
|
|
tbo = matching_typebound_op (&tb_base, actual, i, NULL);
|
| 2790 |
|
|
break;
|
| 2791 |
|
|
}
|
| 2792 |
|
|
|
| 2793 |
|
|
/* If there is a matching typebound-operator, replace the expression with
|
| 2794 |
|
|
a call to it and succeed. */
|
| 2795 |
|
|
if (tbo)
|
| 2796 |
|
|
{
|
| 2797 |
|
|
gfc_try result;
|
| 2798 |
|
|
|
| 2799 |
|
|
gcc_assert (tb_base);
|
| 2800 |
|
|
build_compcall_for_operator (e, actual, tb_base, tbo);
|
| 2801 |
|
|
|
| 2802 |
|
|
result = gfc_resolve_expr (e);
|
| 2803 |
|
|
if (result == FAILURE)
|
| 2804 |
|
|
*real_error = true;
|
| 2805 |
|
|
|
| 2806 |
|
|
return result;
|
| 2807 |
|
|
}
|
| 2808 |
|
|
|
| 2809 |
|
|
/* Don't use gfc_free_actual_arglist(). */
|
| 2810 |
|
|
if (actual->next != NULL)
|
| 2811 |
|
|
gfc_free (actual->next);
|
| 2812 |
|
|
gfc_free (actual);
|
| 2813 |
|
|
|
| 2814 |
|
|
return FAILURE;
|
| 2815 |
|
|
}
|
| 2816 |
|
|
|
| 2817 |
|
|
/* Change the expression node to a function call. */
|
| 2818 |
|
|
e->expr_type = EXPR_FUNCTION;
|
| 2819 |
|
|
e->symtree = gfc_find_sym_in_symtree (sym);
|
| 2820 |
|
|
e->value.function.actual = actual;
|
| 2821 |
|
|
e->value.function.esym = NULL;
|
| 2822 |
|
|
e->value.function.isym = NULL;
|
| 2823 |
|
|
e->value.function.name = NULL;
|
| 2824 |
|
|
e->user_operator = 1;
|
| 2825 |
|
|
|
| 2826 |
|
|
if (gfc_resolve_expr (e) == FAILURE)
|
| 2827 |
|
|
{
|
| 2828 |
|
|
*real_error = true;
|
| 2829 |
|
|
return FAILURE;
|
| 2830 |
|
|
}
|
| 2831 |
|
|
|
| 2832 |
|
|
return SUCCESS;
|
| 2833 |
|
|
}
|
| 2834 |
|
|
|
| 2835 |
|
|
|
| 2836 |
|
|
/* Tries to replace an assignment code node with a subroutine call to
|
| 2837 |
|
|
the subroutine associated with the assignment operator. Return
|
| 2838 |
|
|
SUCCESS if the node was replaced. On FAILURE, no error is
|
| 2839 |
|
|
generated. */
|
| 2840 |
|
|
|
| 2841 |
|
|
gfc_try
|
| 2842 |
|
|
gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
|
| 2843 |
|
|
{
|
| 2844 |
|
|
gfc_actual_arglist *actual;
|
| 2845 |
|
|
gfc_expr *lhs, *rhs;
|
| 2846 |
|
|
gfc_symbol *sym;
|
| 2847 |
|
|
|
| 2848 |
|
|
lhs = c->expr1;
|
| 2849 |
|
|
rhs = c->expr2;
|
| 2850 |
|
|
|
| 2851 |
|
|
/* Don't allow an intrinsic assignment to be replaced. */
|
| 2852 |
|
|
if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
|
| 2853 |
|
|
&& (rhs->rank == 0 || rhs->rank == lhs->rank)
|
| 2854 |
|
|
&& (lhs->ts.type == rhs->ts.type
|
| 2855 |
|
|
|| (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
|
| 2856 |
|
|
return FAILURE;
|
| 2857 |
|
|
|
| 2858 |
|
|
actual = gfc_get_actual_arglist ();
|
| 2859 |
|
|
actual->expr = lhs;
|
| 2860 |
|
|
|
| 2861 |
|
|
actual->next = gfc_get_actual_arglist ();
|
| 2862 |
|
|
actual->next->expr = rhs;
|
| 2863 |
|
|
|
| 2864 |
|
|
sym = NULL;
|
| 2865 |
|
|
|
| 2866 |
|
|
for (; ns; ns = ns->parent)
|
| 2867 |
|
|
{
|
| 2868 |
|
|
sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
|
| 2869 |
|
|
if (sym != NULL)
|
| 2870 |
|
|
break;
|
| 2871 |
|
|
}
|
| 2872 |
|
|
|
| 2873 |
|
|
/* TODO: Ambiguity-check, see above for gfc_extend_expr. */
|
| 2874 |
|
|
|
| 2875 |
|
|
if (sym == NULL)
|
| 2876 |
|
|
{
|
| 2877 |
|
|
gfc_typebound_proc* tbo;
|
| 2878 |
|
|
gfc_expr* tb_base;
|
| 2879 |
|
|
|
| 2880 |
|
|
/* See if we find a matching type-bound assignment. */
|
| 2881 |
|
|
tbo = matching_typebound_op (&tb_base, actual,
|
| 2882 |
|
|
INTRINSIC_ASSIGN, NULL);
|
| 2883 |
|
|
|
| 2884 |
|
|
/* If there is one, replace the expression with a call to it and
|
| 2885 |
|
|
succeed. */
|
| 2886 |
|
|
if (tbo)
|
| 2887 |
|
|
{
|
| 2888 |
|
|
gcc_assert (tb_base);
|
| 2889 |
|
|
c->expr1 = gfc_get_expr ();
|
| 2890 |
|
|
build_compcall_for_operator (c->expr1, actual, tb_base, tbo);
|
| 2891 |
|
|
c->expr1->value.compcall.assign = 1;
|
| 2892 |
|
|
c->expr2 = NULL;
|
| 2893 |
|
|
c->op = EXEC_COMPCALL;
|
| 2894 |
|
|
|
| 2895 |
|
|
/* c is resolved from the caller, so no need to do it here. */
|
| 2896 |
|
|
|
| 2897 |
|
|
return SUCCESS;
|
| 2898 |
|
|
}
|
| 2899 |
|
|
|
| 2900 |
|
|
gfc_free (actual->next);
|
| 2901 |
|
|
gfc_free (actual);
|
| 2902 |
|
|
return FAILURE;
|
| 2903 |
|
|
}
|
| 2904 |
|
|
|
| 2905 |
|
|
/* Replace the assignment with the call. */
|
| 2906 |
|
|
c->op = EXEC_ASSIGN_CALL;
|
| 2907 |
|
|
c->symtree = gfc_find_sym_in_symtree (sym);
|
| 2908 |
|
|
c->expr1 = NULL;
|
| 2909 |
|
|
c->expr2 = NULL;
|
| 2910 |
|
|
c->ext.actual = actual;
|
| 2911 |
|
|
|
| 2912 |
|
|
return SUCCESS;
|
| 2913 |
|
|
}
|
| 2914 |
|
|
|
| 2915 |
|
|
|
| 2916 |
|
|
/* Make sure that the interface just parsed is not already present in
|
| 2917 |
|
|
the given interface list. Ambiguity isn't checked yet since module
|
| 2918 |
|
|
procedures can be present without interfaces. */
|
| 2919 |
|
|
|
| 2920 |
|
|
static gfc_try
|
| 2921 |
|
|
check_new_interface (gfc_interface *base, gfc_symbol *new_sym)
|
| 2922 |
|
|
{
|
| 2923 |
|
|
gfc_interface *ip;
|
| 2924 |
|
|
|
| 2925 |
|
|
for (ip = base; ip; ip = ip->next)
|
| 2926 |
|
|
{
|
| 2927 |
|
|
if (ip->sym == new_sym)
|
| 2928 |
|
|
{
|
| 2929 |
|
|
gfc_error ("Entity '%s' at %C is already present in the interface",
|
| 2930 |
|
|
new_sym->name);
|
| 2931 |
|
|
return FAILURE;
|
| 2932 |
|
|
}
|
| 2933 |
|
|
}
|
| 2934 |
|
|
|
| 2935 |
|
|
return SUCCESS;
|
| 2936 |
|
|
}
|
| 2937 |
|
|
|
| 2938 |
|
|
|
| 2939 |
|
|
/* Add a symbol to the current interface. */
|
| 2940 |
|
|
|
| 2941 |
|
|
gfc_try
|
| 2942 |
|
|
gfc_add_interface (gfc_symbol *new_sym)
|
| 2943 |
|
|
{
|
| 2944 |
|
|
gfc_interface **head, *intr;
|
| 2945 |
|
|
gfc_namespace *ns;
|
| 2946 |
|
|
gfc_symbol *sym;
|
| 2947 |
|
|
|
| 2948 |
|
|
switch (current_interface.type)
|
| 2949 |
|
|
{
|
| 2950 |
|
|
case INTERFACE_NAMELESS:
|
| 2951 |
|
|
case INTERFACE_ABSTRACT:
|
| 2952 |
|
|
return SUCCESS;
|
| 2953 |
|
|
|
| 2954 |
|
|
case INTERFACE_INTRINSIC_OP:
|
| 2955 |
|
|
for (ns = current_interface.ns; ns; ns = ns->parent)
|
| 2956 |
|
|
switch (current_interface.op)
|
| 2957 |
|
|
{
|
| 2958 |
|
|
case INTRINSIC_EQ:
|
| 2959 |
|
|
case INTRINSIC_EQ_OS:
|
| 2960 |
|
|
if (check_new_interface (ns->op[INTRINSIC_EQ], new_sym) == FAILURE ||
|
| 2961 |
|
|
check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym) == FAILURE)
|
| 2962 |
|
|
return FAILURE;
|
| 2963 |
|
|
break;
|
| 2964 |
|
|
|
| 2965 |
|
|
case INTRINSIC_NE:
|
| 2966 |
|
|
case INTRINSIC_NE_OS:
|
| 2967 |
|
|
if (check_new_interface (ns->op[INTRINSIC_NE], new_sym) == FAILURE ||
|
| 2968 |
|
|
check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym) == FAILURE)
|
| 2969 |
|
|
return FAILURE;
|
| 2970 |
|
|
break;
|
| 2971 |
|
|
|
| 2972 |
|
|
case INTRINSIC_GT:
|
| 2973 |
|
|
case INTRINSIC_GT_OS:
|
| 2974 |
|
|
if (check_new_interface (ns->op[INTRINSIC_GT], new_sym) == FAILURE ||
|
| 2975 |
|
|
check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym) == FAILURE)
|
| 2976 |
|
|
return FAILURE;
|
| 2977 |
|
|
break;
|
| 2978 |
|
|
|
| 2979 |
|
|
case INTRINSIC_GE:
|
| 2980 |
|
|
case INTRINSIC_GE_OS:
|
| 2981 |
|
|
if (check_new_interface (ns->op[INTRINSIC_GE], new_sym) == FAILURE ||
|
| 2982 |
|
|
check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym) == FAILURE)
|
| 2983 |
|
|
return FAILURE;
|
| 2984 |
|
|
break;
|
| 2985 |
|
|
|
| 2986 |
|
|
case INTRINSIC_LT:
|
| 2987 |
|
|
case INTRINSIC_LT_OS:
|
| 2988 |
|
|
if (check_new_interface (ns->op[INTRINSIC_LT], new_sym) == FAILURE ||
|
| 2989 |
|
|
check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym) == FAILURE)
|
| 2990 |
|
|
return FAILURE;
|
| 2991 |
|
|
break;
|
| 2992 |
|
|
|
| 2993 |
|
|
case INTRINSIC_LE:
|
| 2994 |
|
|
case INTRINSIC_LE_OS:
|
| 2995 |
|
|
if (check_new_interface (ns->op[INTRINSIC_LE], new_sym) == FAILURE ||
|
| 2996 |
|
|
check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym) == FAILURE)
|
| 2997 |
|
|
return FAILURE;
|
| 2998 |
|
|
break;
|
| 2999 |
|
|
|
| 3000 |
|
|
default:
|
| 3001 |
|
|
if (check_new_interface (ns->op[current_interface.op], new_sym) == FAILURE)
|
| 3002 |
|
|
return FAILURE;
|
| 3003 |
|
|
}
|
| 3004 |
|
|
|
| 3005 |
|
|
head = ¤t_interface.ns->op[current_interface.op];
|
| 3006 |
|
|
break;
|
| 3007 |
|
|
|
| 3008 |
|
|
case INTERFACE_GENERIC:
|
| 3009 |
|
|
for (ns = current_interface.ns; ns; ns = ns->parent)
|
| 3010 |
|
|
{
|
| 3011 |
|
|
gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
|
| 3012 |
|
|
if (sym == NULL)
|
| 3013 |
|
|
continue;
|
| 3014 |
|
|
|
| 3015 |
|
|
if (check_new_interface (sym->generic, new_sym) == FAILURE)
|
| 3016 |
|
|
return FAILURE;
|
| 3017 |
|
|
}
|
| 3018 |
|
|
|
| 3019 |
|
|
head = ¤t_interface.sym->generic;
|
| 3020 |
|
|
break;
|
| 3021 |
|
|
|
| 3022 |
|
|
case INTERFACE_USER_OP:
|
| 3023 |
|
|
if (check_new_interface (current_interface.uop->op, new_sym)
|
| 3024 |
|
|
== FAILURE)
|
| 3025 |
|
|
return FAILURE;
|
| 3026 |
|
|
|
| 3027 |
|
|
head = ¤t_interface.uop->op;
|
| 3028 |
|
|
break;
|
| 3029 |
|
|
|
| 3030 |
|
|
default:
|
| 3031 |
|
|
gfc_internal_error ("gfc_add_interface(): Bad interface type");
|
| 3032 |
|
|
}
|
| 3033 |
|
|
|
| 3034 |
|
|
intr = gfc_get_interface ();
|
| 3035 |
|
|
intr->sym = new_sym;
|
| 3036 |
|
|
intr->where = gfc_current_locus;
|
| 3037 |
|
|
|
| 3038 |
|
|
intr->next = *head;
|
| 3039 |
|
|
*head = intr;
|
| 3040 |
|
|
|
| 3041 |
|
|
return SUCCESS;
|
| 3042 |
|
|
}
|
| 3043 |
|
|
|
| 3044 |
|
|
|
| 3045 |
|
|
gfc_interface *
|
| 3046 |
|
|
gfc_current_interface_head (void)
|
| 3047 |
|
|
{
|
| 3048 |
|
|
switch (current_interface.type)
|
| 3049 |
|
|
{
|
| 3050 |
|
|
case INTERFACE_INTRINSIC_OP:
|
| 3051 |
|
|
return current_interface.ns->op[current_interface.op];
|
| 3052 |
|
|
break;
|
| 3053 |
|
|
|
| 3054 |
|
|
case INTERFACE_GENERIC:
|
| 3055 |
|
|
return current_interface.sym->generic;
|
| 3056 |
|
|
break;
|
| 3057 |
|
|
|
| 3058 |
|
|
case INTERFACE_USER_OP:
|
| 3059 |
|
|
return current_interface.uop->op;
|
| 3060 |
|
|
break;
|
| 3061 |
|
|
|
| 3062 |
|
|
default:
|
| 3063 |
|
|
gcc_unreachable ();
|
| 3064 |
|
|
}
|
| 3065 |
|
|
}
|
| 3066 |
|
|
|
| 3067 |
|
|
|
| 3068 |
|
|
void
|
| 3069 |
|
|
gfc_set_current_interface_head (gfc_interface *i)
|
| 3070 |
|
|
{
|
| 3071 |
|
|
switch (current_interface.type)
|
| 3072 |
|
|
{
|
| 3073 |
|
|
case INTERFACE_INTRINSIC_OP:
|
| 3074 |
|
|
current_interface.ns->op[current_interface.op] = i;
|
| 3075 |
|
|
break;
|
| 3076 |
|
|
|
| 3077 |
|
|
case INTERFACE_GENERIC:
|
| 3078 |
|
|
current_interface.sym->generic = i;
|
| 3079 |
|
|
break;
|
| 3080 |
|
|
|
| 3081 |
|
|
case INTERFACE_USER_OP:
|
| 3082 |
|
|
current_interface.uop->op = i;
|
| 3083 |
|
|
break;
|
| 3084 |
|
|
|
| 3085 |
|
|
default:
|
| 3086 |
|
|
gcc_unreachable ();
|
| 3087 |
|
|
}
|
| 3088 |
|
|
}
|
| 3089 |
|
|
|
| 3090 |
|
|
|
| 3091 |
|
|
/* Gets rid of a formal argument list. We do not free symbols.
|
| 3092 |
|
|
Symbols are freed when a namespace is freed. */
|
| 3093 |
|
|
|
| 3094 |
|
|
void
|
| 3095 |
|
|
gfc_free_formal_arglist (gfc_formal_arglist *p)
|
| 3096 |
|
|
{
|
| 3097 |
|
|
gfc_formal_arglist *q;
|
| 3098 |
|
|
|
| 3099 |
|
|
for (; p; p = q)
|
| 3100 |
|
|
{
|
| 3101 |
|
|
q = p->next;
|
| 3102 |
|
|
gfc_free (p);
|
| 3103 |
|
|
}
|
| 3104 |
|
|
}
|