1 |
285 |
jeremybenn |
/* Statement translation -- generate GCC trees from gfc_code.
|
2 |
|
|
Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Paul Brook <paul@nowt.org>
|
5 |
|
|
and Steven Bosscher <s.bosscher@student.tudelft.nl>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
#include "config.h"
|
25 |
|
|
#include "system.h"
|
26 |
|
|
#include "coretypes.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "gimple.h"
|
29 |
|
|
#include "ggc.h"
|
30 |
|
|
#include "toplev.h"
|
31 |
|
|
#include "real.h"
|
32 |
|
|
#include "gfortran.h"
|
33 |
|
|
#include "flags.h"
|
34 |
|
|
#include "trans.h"
|
35 |
|
|
#include "trans-stmt.h"
|
36 |
|
|
#include "trans-types.h"
|
37 |
|
|
#include "trans-array.h"
|
38 |
|
|
#include "trans-const.h"
|
39 |
|
|
#include "arith.h"
|
40 |
|
|
#include "dependency.h"
|
41 |
|
|
|
42 |
|
|
typedef struct iter_info
|
43 |
|
|
{
|
44 |
|
|
tree var;
|
45 |
|
|
tree start;
|
46 |
|
|
tree end;
|
47 |
|
|
tree step;
|
48 |
|
|
struct iter_info *next;
|
49 |
|
|
}
|
50 |
|
|
iter_info;
|
51 |
|
|
|
52 |
|
|
typedef struct forall_info
|
53 |
|
|
{
|
54 |
|
|
iter_info *this_loop;
|
55 |
|
|
tree mask;
|
56 |
|
|
tree maskindex;
|
57 |
|
|
int nvar;
|
58 |
|
|
tree size;
|
59 |
|
|
struct forall_info *prev_nest;
|
60 |
|
|
}
|
61 |
|
|
forall_info;
|
62 |
|
|
|
63 |
|
|
static void gfc_trans_where_2 (gfc_code *, tree, bool,
|
64 |
|
|
forall_info *, stmtblock_t *);
|
65 |
|
|
|
66 |
|
|
/* Translate a F95 label number to a LABEL_EXPR. */
|
67 |
|
|
|
68 |
|
|
tree
|
69 |
|
|
gfc_trans_label_here (gfc_code * code)
|
70 |
|
|
{
|
71 |
|
|
return build1_v (LABEL_EXPR, gfc_get_label_decl (code->here));
|
72 |
|
|
}
|
73 |
|
|
|
74 |
|
|
|
75 |
|
|
/* Given a variable expression which has been ASSIGNed to, find the decl
|
76 |
|
|
containing the auxiliary variables. For variables in common blocks this
|
77 |
|
|
is a field_decl. */
|
78 |
|
|
|
79 |
|
|
void
|
80 |
|
|
gfc_conv_label_variable (gfc_se * se, gfc_expr * expr)
|
81 |
|
|
{
|
82 |
|
|
gcc_assert (expr->symtree->n.sym->attr.assign == 1);
|
83 |
|
|
gfc_conv_expr (se, expr);
|
84 |
|
|
/* Deals with variable in common block. Get the field declaration. */
|
85 |
|
|
if (TREE_CODE (se->expr) == COMPONENT_REF)
|
86 |
|
|
se->expr = TREE_OPERAND (se->expr, 1);
|
87 |
|
|
/* Deals with dummy argument. Get the parameter declaration. */
|
88 |
|
|
else if (TREE_CODE (se->expr) == INDIRECT_REF)
|
89 |
|
|
se->expr = TREE_OPERAND (se->expr, 0);
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
/* Translate a label assignment statement. */
|
93 |
|
|
|
94 |
|
|
tree
|
95 |
|
|
gfc_trans_label_assign (gfc_code * code)
|
96 |
|
|
{
|
97 |
|
|
tree label_tree;
|
98 |
|
|
gfc_se se;
|
99 |
|
|
tree len;
|
100 |
|
|
tree addr;
|
101 |
|
|
tree len_tree;
|
102 |
|
|
int label_len;
|
103 |
|
|
|
104 |
|
|
/* Start a new block. */
|
105 |
|
|
gfc_init_se (&se, NULL);
|
106 |
|
|
gfc_start_block (&se.pre);
|
107 |
|
|
gfc_conv_label_variable (&se, code->expr1);
|
108 |
|
|
|
109 |
|
|
len = GFC_DECL_STRING_LEN (se.expr);
|
110 |
|
|
addr = GFC_DECL_ASSIGN_ADDR (se.expr);
|
111 |
|
|
|
112 |
|
|
label_tree = gfc_get_label_decl (code->label1);
|
113 |
|
|
|
114 |
|
|
if (code->label1->defined == ST_LABEL_TARGET)
|
115 |
|
|
{
|
116 |
|
|
label_tree = gfc_build_addr_expr (pvoid_type_node, label_tree);
|
117 |
|
|
len_tree = integer_minus_one_node;
|
118 |
|
|
}
|
119 |
|
|
else
|
120 |
|
|
{
|
121 |
|
|
gfc_expr *format = code->label1->format;
|
122 |
|
|
|
123 |
|
|
label_len = format->value.character.length;
|
124 |
|
|
len_tree = build_int_cst (NULL_TREE, label_len);
|
125 |
|
|
label_tree = gfc_build_wide_string_const (format->ts.kind, label_len + 1,
|
126 |
|
|
format->value.character.string);
|
127 |
|
|
label_tree = gfc_build_addr_expr (pvoid_type_node, label_tree);
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
gfc_add_modify (&se.pre, len, len_tree);
|
131 |
|
|
gfc_add_modify (&se.pre, addr, label_tree);
|
132 |
|
|
|
133 |
|
|
return gfc_finish_block (&se.pre);
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
/* Translate a GOTO statement. */
|
137 |
|
|
|
138 |
|
|
tree
|
139 |
|
|
gfc_trans_goto (gfc_code * code)
|
140 |
|
|
{
|
141 |
|
|
locus loc = code->loc;
|
142 |
|
|
tree assigned_goto;
|
143 |
|
|
tree target;
|
144 |
|
|
tree tmp;
|
145 |
|
|
gfc_se se;
|
146 |
|
|
|
147 |
|
|
if (code->label1 != NULL)
|
148 |
|
|
return build1_v (GOTO_EXPR, gfc_get_label_decl (code->label1));
|
149 |
|
|
|
150 |
|
|
/* ASSIGNED GOTO. */
|
151 |
|
|
gfc_init_se (&se, NULL);
|
152 |
|
|
gfc_start_block (&se.pre);
|
153 |
|
|
gfc_conv_label_variable (&se, code->expr1);
|
154 |
|
|
tmp = GFC_DECL_STRING_LEN (se.expr);
|
155 |
|
|
tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp,
|
156 |
|
|
build_int_cst (TREE_TYPE (tmp), -1));
|
157 |
|
|
gfc_trans_runtime_check (true, false, tmp, &se.pre, &loc,
|
158 |
|
|
"Assigned label is not a target label");
|
159 |
|
|
|
160 |
|
|
assigned_goto = GFC_DECL_ASSIGN_ADDR (se.expr);
|
161 |
|
|
|
162 |
|
|
/* We're going to ignore a label list. It does not really change the
|
163 |
|
|
statement's semantics (because it is just a further restriction on
|
164 |
|
|
what's legal code); before, we were comparing label addresses here, but
|
165 |
|
|
that's a very fragile business and may break with optimization. So
|
166 |
|
|
just ignore it. */
|
167 |
|
|
|
168 |
|
|
target = fold_build1 (GOTO_EXPR, void_type_node, assigned_goto);
|
169 |
|
|
gfc_add_expr_to_block (&se.pre, target);
|
170 |
|
|
return gfc_finish_block (&se.pre);
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
/* Translate an ENTRY statement. Just adds a label for this entry point. */
|
175 |
|
|
tree
|
176 |
|
|
gfc_trans_entry (gfc_code * code)
|
177 |
|
|
{
|
178 |
|
|
return build1_v (LABEL_EXPR, code->ext.entry->label);
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
|
182 |
|
|
/* Check for dependencies between INTENT(IN) and INTENT(OUT) arguments of
|
183 |
|
|
elemental subroutines. Make temporaries for output arguments if any such
|
184 |
|
|
dependencies are found. Output arguments are chosen because internal_unpack
|
185 |
|
|
can be used, as is, to copy the result back to the variable. */
|
186 |
|
|
static void
|
187 |
|
|
gfc_conv_elemental_dependencies (gfc_se * se, gfc_se * loopse,
|
188 |
|
|
gfc_symbol * sym, gfc_actual_arglist * arg,
|
189 |
|
|
gfc_dep_check check_variable)
|
190 |
|
|
{
|
191 |
|
|
gfc_actual_arglist *arg0;
|
192 |
|
|
gfc_expr *e;
|
193 |
|
|
gfc_formal_arglist *formal;
|
194 |
|
|
gfc_loopinfo tmp_loop;
|
195 |
|
|
gfc_se parmse;
|
196 |
|
|
gfc_ss *ss;
|
197 |
|
|
gfc_ss_info *info;
|
198 |
|
|
gfc_symbol *fsym;
|
199 |
|
|
gfc_ref *ref;
|
200 |
|
|
int n;
|
201 |
|
|
tree data;
|
202 |
|
|
tree offset;
|
203 |
|
|
tree size;
|
204 |
|
|
tree tmp;
|
205 |
|
|
|
206 |
|
|
if (loopse->ss == NULL)
|
207 |
|
|
return;
|
208 |
|
|
|
209 |
|
|
ss = loopse->ss;
|
210 |
|
|
arg0 = arg;
|
211 |
|
|
formal = sym->formal;
|
212 |
|
|
|
213 |
|
|
/* Loop over all the arguments testing for dependencies. */
|
214 |
|
|
for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL)
|
215 |
|
|
{
|
216 |
|
|
e = arg->expr;
|
217 |
|
|
if (e == NULL)
|
218 |
|
|
continue;
|
219 |
|
|
|
220 |
|
|
/* Obtain the info structure for the current argument. */
|
221 |
|
|
info = NULL;
|
222 |
|
|
for (ss = loopse->ss; ss && ss != gfc_ss_terminator; ss = ss->next)
|
223 |
|
|
{
|
224 |
|
|
if (ss->expr != e)
|
225 |
|
|
continue;
|
226 |
|
|
info = &ss->data.info;
|
227 |
|
|
break;
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/* If there is a dependency, create a temporary and use it
|
231 |
|
|
instead of the variable. */
|
232 |
|
|
fsym = formal ? formal->sym : NULL;
|
233 |
|
|
if (e->expr_type == EXPR_VARIABLE
|
234 |
|
|
&& e->rank && fsym
|
235 |
|
|
&& fsym->attr.intent != INTENT_IN
|
236 |
|
|
&& gfc_check_fncall_dependency (e, fsym->attr.intent,
|
237 |
|
|
sym, arg0, check_variable))
|
238 |
|
|
{
|
239 |
|
|
tree initial, temptype;
|
240 |
|
|
stmtblock_t temp_post;
|
241 |
|
|
|
242 |
|
|
/* Make a local loopinfo for the temporary creation, so that
|
243 |
|
|
none of the other ss->info's have to be renormalized. */
|
244 |
|
|
gfc_init_loopinfo (&tmp_loop);
|
245 |
|
|
for (n = 0; n < info->dimen; n++)
|
246 |
|
|
{
|
247 |
|
|
tmp_loop.to[n] = loopse->loop->to[n];
|
248 |
|
|
tmp_loop.from[n] = loopse->loop->from[n];
|
249 |
|
|
tmp_loop.order[n] = loopse->loop->order[n];
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
/* Obtain the argument descriptor for unpacking. */
|
253 |
|
|
gfc_init_se (&parmse, NULL);
|
254 |
|
|
parmse.want_pointer = 1;
|
255 |
|
|
|
256 |
|
|
/* The scalarizer introduces some specific peculiarities when
|
257 |
|
|
handling elemental subroutines; the stride can be needed up to
|
258 |
|
|
the dim_array - 1, rather than dim_loop - 1 to calculate
|
259 |
|
|
offsets outside the loop. For this reason, we make sure that
|
260 |
|
|
the descriptor has the dimensionality of the array by converting
|
261 |
|
|
trailing elements into ranges with end = start. */
|
262 |
|
|
for (ref = e->ref; ref; ref = ref->next)
|
263 |
|
|
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
|
264 |
|
|
break;
|
265 |
|
|
|
266 |
|
|
if (ref)
|
267 |
|
|
{
|
268 |
|
|
bool seen_range = false;
|
269 |
|
|
for (n = 0; n < ref->u.ar.dimen; n++)
|
270 |
|
|
{
|
271 |
|
|
if (ref->u.ar.dimen_type[n] == DIMEN_RANGE)
|
272 |
|
|
seen_range = true;
|
273 |
|
|
|
274 |
|
|
if (!seen_range
|
275 |
|
|
|| ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
|
276 |
|
|
continue;
|
277 |
|
|
|
278 |
|
|
ref->u.ar.end[n] = gfc_copy_expr (ref->u.ar.start[n]);
|
279 |
|
|
ref->u.ar.dimen_type[n] = DIMEN_RANGE;
|
280 |
|
|
}
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
gfc_conv_expr_descriptor (&parmse, e, gfc_walk_expr (e));
|
284 |
|
|
gfc_add_block_to_block (&se->pre, &parmse.pre);
|
285 |
|
|
|
286 |
|
|
/* If we've got INTENT(INOUT) or a derived type with INTENT(OUT),
|
287 |
|
|
initialize the array temporary with a copy of the values. */
|
288 |
|
|
if (fsym->attr.intent == INTENT_INOUT
|
289 |
|
|
|| (fsym->ts.type ==BT_DERIVED
|
290 |
|
|
&& fsym->attr.intent == INTENT_OUT))
|
291 |
|
|
initial = parmse.expr;
|
292 |
|
|
else
|
293 |
|
|
initial = NULL_TREE;
|
294 |
|
|
|
295 |
|
|
/* Find the type of the temporary to create; we don't use the type
|
296 |
|
|
of e itself as this breaks for subcomponent-references in e (where
|
297 |
|
|
the type of e is that of the final reference, but parmse.expr's
|
298 |
|
|
type corresponds to the full derived-type). */
|
299 |
|
|
/* TODO: Fix this somehow so we don't need a temporary of the whole
|
300 |
|
|
array but instead only the components referenced. */
|
301 |
|
|
temptype = TREE_TYPE (parmse.expr); /* Pointer to descriptor. */
|
302 |
|
|
gcc_assert (TREE_CODE (temptype) == POINTER_TYPE);
|
303 |
|
|
temptype = TREE_TYPE (temptype);
|
304 |
|
|
temptype = gfc_get_element_type (temptype);
|
305 |
|
|
|
306 |
|
|
/* Generate the temporary. Cleaning up the temporary should be the
|
307 |
|
|
very last thing done, so we add the code to a new block and add it
|
308 |
|
|
to se->post as last instructions. */
|
309 |
|
|
size = gfc_create_var (gfc_array_index_type, NULL);
|
310 |
|
|
data = gfc_create_var (pvoid_type_node, NULL);
|
311 |
|
|
gfc_init_block (&temp_post);
|
312 |
|
|
tmp = gfc_trans_create_temp_array (&se->pre, &temp_post,
|
313 |
|
|
&tmp_loop, info, temptype,
|
314 |
|
|
initial,
|
315 |
|
|
false, true, false,
|
316 |
|
|
&arg->expr->where);
|
317 |
|
|
gfc_add_modify (&se->pre, size, tmp);
|
318 |
|
|
tmp = fold_convert (pvoid_type_node, info->data);
|
319 |
|
|
gfc_add_modify (&se->pre, data, tmp);
|
320 |
|
|
|
321 |
|
|
/* Calculate the offset for the temporary. */
|
322 |
|
|
offset = gfc_index_zero_node;
|
323 |
|
|
for (n = 0; n < info->dimen; n++)
|
324 |
|
|
{
|
325 |
|
|
tmp = gfc_conv_descriptor_stride_get (info->descriptor,
|
326 |
|
|
gfc_rank_cst[n]);
|
327 |
|
|
tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
|
328 |
|
|
loopse->loop->from[n], tmp);
|
329 |
|
|
offset = fold_build2 (MINUS_EXPR, gfc_array_index_type,
|
330 |
|
|
offset, tmp);
|
331 |
|
|
}
|
332 |
|
|
info->offset = gfc_create_var (gfc_array_index_type, NULL);
|
333 |
|
|
gfc_add_modify (&se->pre, info->offset, offset);
|
334 |
|
|
|
335 |
|
|
/* Copy the result back using unpack. */
|
336 |
|
|
tmp = build_call_expr_loc (input_location,
|
337 |
|
|
gfor_fndecl_in_unpack, 2, parmse.expr, data);
|
338 |
|
|
gfc_add_expr_to_block (&se->post, tmp);
|
339 |
|
|
|
340 |
|
|
/* parmse.pre is already added above. */
|
341 |
|
|
gfc_add_block_to_block (&se->post, &parmse.post);
|
342 |
|
|
gfc_add_block_to_block (&se->post, &temp_post);
|
343 |
|
|
}
|
344 |
|
|
}
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
|
348 |
|
|
/* Translate the CALL statement. Builds a call to an F95 subroutine. */
|
349 |
|
|
|
350 |
|
|
tree
|
351 |
|
|
gfc_trans_call (gfc_code * code, bool dependency_check,
|
352 |
|
|
tree mask, tree count1, bool invert)
|
353 |
|
|
{
|
354 |
|
|
gfc_se se;
|
355 |
|
|
gfc_ss * ss;
|
356 |
|
|
int has_alternate_specifier;
|
357 |
|
|
gfc_dep_check check_variable;
|
358 |
|
|
tree index = NULL_TREE;
|
359 |
|
|
tree maskexpr = NULL_TREE;
|
360 |
|
|
tree tmp;
|
361 |
|
|
|
362 |
|
|
/* A CALL starts a new block because the actual arguments may have to
|
363 |
|
|
be evaluated first. */
|
364 |
|
|
gfc_init_se (&se, NULL);
|
365 |
|
|
gfc_start_block (&se.pre);
|
366 |
|
|
|
367 |
|
|
gcc_assert (code->resolved_sym);
|
368 |
|
|
|
369 |
|
|
ss = gfc_ss_terminator;
|
370 |
|
|
if (code->resolved_sym->attr.elemental)
|
371 |
|
|
ss = gfc_walk_elemental_function_args (ss, code->ext.actual, GFC_SS_REFERENCE);
|
372 |
|
|
|
373 |
|
|
/* Is not an elemental subroutine call with array valued arguments. */
|
374 |
|
|
if (ss == gfc_ss_terminator)
|
375 |
|
|
{
|
376 |
|
|
|
377 |
|
|
/* Translate the call. */
|
378 |
|
|
has_alternate_specifier
|
379 |
|
|
= gfc_conv_procedure_call (&se, code->resolved_sym, code->ext.actual,
|
380 |
|
|
code->expr1, NULL_TREE);
|
381 |
|
|
|
382 |
|
|
/* A subroutine without side-effect, by definition, does nothing! */
|
383 |
|
|
TREE_SIDE_EFFECTS (se.expr) = 1;
|
384 |
|
|
|
385 |
|
|
/* Chain the pieces together and return the block. */
|
386 |
|
|
if (has_alternate_specifier)
|
387 |
|
|
{
|
388 |
|
|
gfc_code *select_code;
|
389 |
|
|
gfc_symbol *sym;
|
390 |
|
|
select_code = code->next;
|
391 |
|
|
gcc_assert(select_code->op == EXEC_SELECT);
|
392 |
|
|
sym = select_code->expr1->symtree->n.sym;
|
393 |
|
|
se.expr = convert (gfc_typenode_for_spec (&sym->ts), se.expr);
|
394 |
|
|
if (sym->backend_decl == NULL)
|
395 |
|
|
sym->backend_decl = gfc_get_symbol_decl (sym);
|
396 |
|
|
gfc_add_modify (&se.pre, sym->backend_decl, se.expr);
|
397 |
|
|
}
|
398 |
|
|
else
|
399 |
|
|
gfc_add_expr_to_block (&se.pre, se.expr);
|
400 |
|
|
|
401 |
|
|
gfc_add_block_to_block (&se.pre, &se.post);
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
else
|
405 |
|
|
{
|
406 |
|
|
/* An elemental subroutine call with array valued arguments has
|
407 |
|
|
to be scalarized. */
|
408 |
|
|
gfc_loopinfo loop;
|
409 |
|
|
stmtblock_t body;
|
410 |
|
|
stmtblock_t block;
|
411 |
|
|
gfc_se loopse;
|
412 |
|
|
gfc_se depse;
|
413 |
|
|
|
414 |
|
|
/* gfc_walk_elemental_function_args renders the ss chain in the
|
415 |
|
|
reverse order to the actual argument order. */
|
416 |
|
|
ss = gfc_reverse_ss (ss);
|
417 |
|
|
|
418 |
|
|
/* Initialize the loop. */
|
419 |
|
|
gfc_init_se (&loopse, NULL);
|
420 |
|
|
gfc_init_loopinfo (&loop);
|
421 |
|
|
gfc_add_ss_to_loop (&loop, ss);
|
422 |
|
|
|
423 |
|
|
gfc_conv_ss_startstride (&loop);
|
424 |
|
|
/* TODO: gfc_conv_loop_setup generates a temporary for vector
|
425 |
|
|
subscripts. This could be prevented in the elemental case
|
426 |
|
|
as temporaries are handled separatedly
|
427 |
|
|
(below in gfc_conv_elemental_dependencies). */
|
428 |
|
|
gfc_conv_loop_setup (&loop, &code->expr1->where);
|
429 |
|
|
gfc_mark_ss_chain_used (ss, 1);
|
430 |
|
|
|
431 |
|
|
/* Convert the arguments, checking for dependencies. */
|
432 |
|
|
gfc_copy_loopinfo_to_se (&loopse, &loop);
|
433 |
|
|
loopse.ss = ss;
|
434 |
|
|
|
435 |
|
|
/* For operator assignment, do dependency checking. */
|
436 |
|
|
if (dependency_check)
|
437 |
|
|
check_variable = ELEM_CHECK_VARIABLE;
|
438 |
|
|
else
|
439 |
|
|
check_variable = ELEM_DONT_CHECK_VARIABLE;
|
440 |
|
|
|
441 |
|
|
gfc_init_se (&depse, NULL);
|
442 |
|
|
gfc_conv_elemental_dependencies (&depse, &loopse, code->resolved_sym,
|
443 |
|
|
code->ext.actual, check_variable);
|
444 |
|
|
|
445 |
|
|
gfc_add_block_to_block (&loop.pre, &depse.pre);
|
446 |
|
|
gfc_add_block_to_block (&loop.post, &depse.post);
|
447 |
|
|
|
448 |
|
|
/* Generate the loop body. */
|
449 |
|
|
gfc_start_scalarized_body (&loop, &body);
|
450 |
|
|
gfc_init_block (&block);
|
451 |
|
|
|
452 |
|
|
if (mask && count1)
|
453 |
|
|
{
|
454 |
|
|
/* Form the mask expression according to the mask. */
|
455 |
|
|
index = count1;
|
456 |
|
|
maskexpr = gfc_build_array_ref (mask, index, NULL);
|
457 |
|
|
if (invert)
|
458 |
|
|
maskexpr = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (maskexpr),
|
459 |
|
|
maskexpr);
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
/* Add the subroutine call to the block. */
|
463 |
|
|
gfc_conv_procedure_call (&loopse, code->resolved_sym,
|
464 |
|
|
code->ext.actual, code->expr1,
|
465 |
|
|
NULL_TREE);
|
466 |
|
|
|
467 |
|
|
if (mask && count1)
|
468 |
|
|
{
|
469 |
|
|
tmp = build3_v (COND_EXPR, maskexpr, loopse.expr,
|
470 |
|
|
build_empty_stmt (input_location));
|
471 |
|
|
gfc_add_expr_to_block (&loopse.pre, tmp);
|
472 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
473 |
|
|
count1, gfc_index_one_node);
|
474 |
|
|
gfc_add_modify (&loopse.pre, count1, tmp);
|
475 |
|
|
}
|
476 |
|
|
else
|
477 |
|
|
gfc_add_expr_to_block (&loopse.pre, loopse.expr);
|
478 |
|
|
|
479 |
|
|
gfc_add_block_to_block (&block, &loopse.pre);
|
480 |
|
|
gfc_add_block_to_block (&block, &loopse.post);
|
481 |
|
|
|
482 |
|
|
/* Finish up the loop block and the loop. */
|
483 |
|
|
gfc_add_expr_to_block (&body, gfc_finish_block (&block));
|
484 |
|
|
gfc_trans_scalarizing_loops (&loop, &body);
|
485 |
|
|
gfc_add_block_to_block (&se.pre, &loop.pre);
|
486 |
|
|
gfc_add_block_to_block (&se.pre, &loop.post);
|
487 |
|
|
gfc_add_block_to_block (&se.pre, &se.post);
|
488 |
|
|
gfc_cleanup_loop (&loop);
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
return gfc_finish_block (&se.pre);
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
|
495 |
|
|
/* Translate the RETURN statement. */
|
496 |
|
|
|
497 |
|
|
tree
|
498 |
|
|
gfc_trans_return (gfc_code * code ATTRIBUTE_UNUSED)
|
499 |
|
|
{
|
500 |
|
|
if (code->expr1)
|
501 |
|
|
{
|
502 |
|
|
gfc_se se;
|
503 |
|
|
tree tmp;
|
504 |
|
|
tree result;
|
505 |
|
|
|
506 |
|
|
/* If code->expr is not NULL, this return statement must appear
|
507 |
|
|
in a subroutine and current_fake_result_decl has already
|
508 |
|
|
been generated. */
|
509 |
|
|
|
510 |
|
|
result = gfc_get_fake_result_decl (NULL, 0);
|
511 |
|
|
if (!result)
|
512 |
|
|
{
|
513 |
|
|
gfc_warning ("An alternate return at %L without a * dummy argument",
|
514 |
|
|
&code->expr1->where);
|
515 |
|
|
return build1_v (GOTO_EXPR, gfc_get_return_label ());
|
516 |
|
|
}
|
517 |
|
|
|
518 |
|
|
/* Start a new block for this statement. */
|
519 |
|
|
gfc_init_se (&se, NULL);
|
520 |
|
|
gfc_start_block (&se.pre);
|
521 |
|
|
|
522 |
|
|
gfc_conv_expr (&se, code->expr1);
|
523 |
|
|
|
524 |
|
|
tmp = fold_build2 (MODIFY_EXPR, TREE_TYPE (result), result,
|
525 |
|
|
fold_convert (TREE_TYPE (result), se.expr));
|
526 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
527 |
|
|
|
528 |
|
|
tmp = build1_v (GOTO_EXPR, gfc_get_return_label ());
|
529 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
530 |
|
|
gfc_add_block_to_block (&se.pre, &se.post);
|
531 |
|
|
return gfc_finish_block (&se.pre);
|
532 |
|
|
}
|
533 |
|
|
else
|
534 |
|
|
return build1_v (GOTO_EXPR, gfc_get_return_label ());
|
535 |
|
|
}
|
536 |
|
|
|
537 |
|
|
|
538 |
|
|
/* Translate the PAUSE statement. We have to translate this statement
|
539 |
|
|
to a runtime library call. */
|
540 |
|
|
|
541 |
|
|
tree
|
542 |
|
|
gfc_trans_pause (gfc_code * code)
|
543 |
|
|
{
|
544 |
|
|
tree gfc_int4_type_node = gfc_get_int_type (4);
|
545 |
|
|
gfc_se se;
|
546 |
|
|
tree tmp;
|
547 |
|
|
|
548 |
|
|
/* Start a new block for this statement. */
|
549 |
|
|
gfc_init_se (&se, NULL);
|
550 |
|
|
gfc_start_block (&se.pre);
|
551 |
|
|
|
552 |
|
|
|
553 |
|
|
if (code->expr1 == NULL)
|
554 |
|
|
{
|
555 |
|
|
tmp = build_int_cst (gfc_int4_type_node, code->ext.stop_code);
|
556 |
|
|
tmp = build_call_expr_loc (input_location,
|
557 |
|
|
gfor_fndecl_pause_numeric, 1, tmp);
|
558 |
|
|
}
|
559 |
|
|
else
|
560 |
|
|
{
|
561 |
|
|
gfc_conv_expr_reference (&se, code->expr1);
|
562 |
|
|
tmp = build_call_expr_loc (input_location,
|
563 |
|
|
gfor_fndecl_pause_string, 2,
|
564 |
|
|
se.expr, se.string_length);
|
565 |
|
|
}
|
566 |
|
|
|
567 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
568 |
|
|
|
569 |
|
|
gfc_add_block_to_block (&se.pre, &se.post);
|
570 |
|
|
|
571 |
|
|
return gfc_finish_block (&se.pre);
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
|
575 |
|
|
/* Translate the STOP statement. We have to translate this statement
|
576 |
|
|
to a runtime library call. */
|
577 |
|
|
|
578 |
|
|
tree
|
579 |
|
|
gfc_trans_stop (gfc_code * code)
|
580 |
|
|
{
|
581 |
|
|
tree gfc_int4_type_node = gfc_get_int_type (4);
|
582 |
|
|
gfc_se se;
|
583 |
|
|
tree tmp;
|
584 |
|
|
|
585 |
|
|
/* Start a new block for this statement. */
|
586 |
|
|
gfc_init_se (&se, NULL);
|
587 |
|
|
gfc_start_block (&se.pre);
|
588 |
|
|
|
589 |
|
|
|
590 |
|
|
if (code->expr1 == NULL)
|
591 |
|
|
{
|
592 |
|
|
tmp = build_int_cst (gfc_int4_type_node, code->ext.stop_code);
|
593 |
|
|
tmp = build_call_expr_loc (input_location,
|
594 |
|
|
gfor_fndecl_stop_numeric, 1, tmp);
|
595 |
|
|
}
|
596 |
|
|
else
|
597 |
|
|
{
|
598 |
|
|
gfc_conv_expr_reference (&se, code->expr1);
|
599 |
|
|
tmp = build_call_expr_loc (input_location,
|
600 |
|
|
gfor_fndecl_stop_string, 2,
|
601 |
|
|
se.expr, se.string_length);
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
605 |
|
|
|
606 |
|
|
gfc_add_block_to_block (&se.pre, &se.post);
|
607 |
|
|
|
608 |
|
|
return gfc_finish_block (&se.pre);
|
609 |
|
|
}
|
610 |
|
|
|
611 |
|
|
|
612 |
|
|
/* Generate GENERIC for the IF construct. This function also deals with
|
613 |
|
|
the simple IF statement, because the front end translates the IF
|
614 |
|
|
statement into an IF construct.
|
615 |
|
|
|
616 |
|
|
We translate:
|
617 |
|
|
|
618 |
|
|
IF (cond) THEN
|
619 |
|
|
then_clause
|
620 |
|
|
ELSEIF (cond2)
|
621 |
|
|
elseif_clause
|
622 |
|
|
ELSE
|
623 |
|
|
else_clause
|
624 |
|
|
ENDIF
|
625 |
|
|
|
626 |
|
|
into:
|
627 |
|
|
|
628 |
|
|
pre_cond_s;
|
629 |
|
|
if (cond_s)
|
630 |
|
|
{
|
631 |
|
|
then_clause;
|
632 |
|
|
}
|
633 |
|
|
else
|
634 |
|
|
{
|
635 |
|
|
pre_cond_s
|
636 |
|
|
if (cond_s)
|
637 |
|
|
{
|
638 |
|
|
elseif_clause
|
639 |
|
|
}
|
640 |
|
|
else
|
641 |
|
|
{
|
642 |
|
|
else_clause;
|
643 |
|
|
}
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
where COND_S is the simplified version of the predicate. PRE_COND_S
|
647 |
|
|
are the pre side-effects produced by the translation of the
|
648 |
|
|
conditional.
|
649 |
|
|
We need to build the chain recursively otherwise we run into
|
650 |
|
|
problems with folding incomplete statements. */
|
651 |
|
|
|
652 |
|
|
static tree
|
653 |
|
|
gfc_trans_if_1 (gfc_code * code)
|
654 |
|
|
{
|
655 |
|
|
gfc_se if_se;
|
656 |
|
|
tree stmt, elsestmt;
|
657 |
|
|
|
658 |
|
|
/* Check for an unconditional ELSE clause. */
|
659 |
|
|
if (!code->expr1)
|
660 |
|
|
return gfc_trans_code (code->next);
|
661 |
|
|
|
662 |
|
|
/* Initialize a statement builder for each block. Puts in NULL_TREEs. */
|
663 |
|
|
gfc_init_se (&if_se, NULL);
|
664 |
|
|
gfc_start_block (&if_se.pre);
|
665 |
|
|
|
666 |
|
|
/* Calculate the IF condition expression. */
|
667 |
|
|
gfc_conv_expr_val (&if_se, code->expr1);
|
668 |
|
|
|
669 |
|
|
/* Translate the THEN clause. */
|
670 |
|
|
stmt = gfc_trans_code (code->next);
|
671 |
|
|
|
672 |
|
|
/* Translate the ELSE clause. */
|
673 |
|
|
if (code->block)
|
674 |
|
|
elsestmt = gfc_trans_if_1 (code->block);
|
675 |
|
|
else
|
676 |
|
|
elsestmt = build_empty_stmt (input_location);
|
677 |
|
|
|
678 |
|
|
/* Build the condition expression and add it to the condition block. */
|
679 |
|
|
stmt = fold_build3 (COND_EXPR, void_type_node, if_se.expr, stmt, elsestmt);
|
680 |
|
|
|
681 |
|
|
gfc_add_expr_to_block (&if_se.pre, stmt);
|
682 |
|
|
|
683 |
|
|
/* Finish off this statement. */
|
684 |
|
|
return gfc_finish_block (&if_se.pre);
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
tree
|
688 |
|
|
gfc_trans_if (gfc_code * code)
|
689 |
|
|
{
|
690 |
|
|
/* Ignore the top EXEC_IF, it only announces an IF construct. The
|
691 |
|
|
actual code we must translate is in code->block. */
|
692 |
|
|
|
693 |
|
|
return gfc_trans_if_1 (code->block);
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
|
697 |
|
|
/* Translate an arithmetic IF expression.
|
698 |
|
|
|
699 |
|
|
IF (cond) label1, label2, label3 translates to
|
700 |
|
|
|
701 |
|
|
if (cond <= 0)
|
702 |
|
|
{
|
703 |
|
|
if (cond < 0)
|
704 |
|
|
goto label1;
|
705 |
|
|
else // cond == 0
|
706 |
|
|
goto label2;
|
707 |
|
|
}
|
708 |
|
|
else // cond > 0
|
709 |
|
|
goto label3;
|
710 |
|
|
|
711 |
|
|
An optimized version can be generated in case of equal labels.
|
712 |
|
|
E.g., if label1 is equal to label2, we can translate it to
|
713 |
|
|
|
714 |
|
|
if (cond <= 0)
|
715 |
|
|
goto label1;
|
716 |
|
|
else
|
717 |
|
|
goto label3;
|
718 |
|
|
*/
|
719 |
|
|
|
720 |
|
|
tree
|
721 |
|
|
gfc_trans_arithmetic_if (gfc_code * code)
|
722 |
|
|
{
|
723 |
|
|
gfc_se se;
|
724 |
|
|
tree tmp;
|
725 |
|
|
tree branch1;
|
726 |
|
|
tree branch2;
|
727 |
|
|
tree zero;
|
728 |
|
|
|
729 |
|
|
/* Start a new block. */
|
730 |
|
|
gfc_init_se (&se, NULL);
|
731 |
|
|
gfc_start_block (&se.pre);
|
732 |
|
|
|
733 |
|
|
/* Pre-evaluate COND. */
|
734 |
|
|
gfc_conv_expr_val (&se, code->expr1);
|
735 |
|
|
se.expr = gfc_evaluate_now (se.expr, &se.pre);
|
736 |
|
|
|
737 |
|
|
/* Build something to compare with. */
|
738 |
|
|
zero = gfc_build_const (TREE_TYPE (se.expr), integer_zero_node);
|
739 |
|
|
|
740 |
|
|
if (code->label1->value != code->label2->value)
|
741 |
|
|
{
|
742 |
|
|
/* If (cond < 0) take branch1 else take branch2.
|
743 |
|
|
First build jumps to the COND .LT. 0 and the COND .EQ. 0 cases. */
|
744 |
|
|
branch1 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label1));
|
745 |
|
|
branch2 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label2));
|
746 |
|
|
|
747 |
|
|
if (code->label1->value != code->label3->value)
|
748 |
|
|
tmp = fold_build2 (LT_EXPR, boolean_type_node, se.expr, zero);
|
749 |
|
|
else
|
750 |
|
|
tmp = fold_build2 (NE_EXPR, boolean_type_node, se.expr, zero);
|
751 |
|
|
|
752 |
|
|
branch1 = fold_build3 (COND_EXPR, void_type_node, tmp, branch1, branch2);
|
753 |
|
|
}
|
754 |
|
|
else
|
755 |
|
|
branch1 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label1));
|
756 |
|
|
|
757 |
|
|
if (code->label1->value != code->label3->value
|
758 |
|
|
&& code->label2->value != code->label3->value)
|
759 |
|
|
{
|
760 |
|
|
/* if (cond <= 0) take branch1 else take branch2. */
|
761 |
|
|
branch2 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label3));
|
762 |
|
|
tmp = fold_build2 (LE_EXPR, boolean_type_node, se.expr, zero);
|
763 |
|
|
branch1 = fold_build3 (COND_EXPR, void_type_node, tmp, branch1, branch2);
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
/* Append the COND_EXPR to the evaluation of COND, and return. */
|
767 |
|
|
gfc_add_expr_to_block (&se.pre, branch1);
|
768 |
|
|
return gfc_finish_block (&se.pre);
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
|
772 |
|
|
/* Translate a BLOCK construct. This is basically what we would do for a
|
773 |
|
|
procedure body. */
|
774 |
|
|
|
775 |
|
|
tree
|
776 |
|
|
gfc_trans_block_construct (gfc_code* code)
|
777 |
|
|
{
|
778 |
|
|
gfc_namespace* ns;
|
779 |
|
|
gfc_symbol* sym;
|
780 |
|
|
stmtblock_t body;
|
781 |
|
|
tree tmp;
|
782 |
|
|
|
783 |
|
|
ns = code->ext.ns;
|
784 |
|
|
gcc_assert (ns);
|
785 |
|
|
sym = ns->proc_name;
|
786 |
|
|
gcc_assert (sym);
|
787 |
|
|
|
788 |
|
|
gcc_assert (!sym->tlink);
|
789 |
|
|
sym->tlink = sym;
|
790 |
|
|
|
791 |
|
|
gfc_start_block (&body);
|
792 |
|
|
gfc_process_block_locals (ns);
|
793 |
|
|
|
794 |
|
|
tmp = gfc_trans_code (ns->code);
|
795 |
|
|
tmp = gfc_trans_deferred_vars (sym, tmp);
|
796 |
|
|
|
797 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
798 |
|
|
return gfc_finish_block (&body);
|
799 |
|
|
}
|
800 |
|
|
|
801 |
|
|
|
802 |
|
|
/* Translate the simple DO construct. This is where the loop variable has
|
803 |
|
|
integer type and step +-1. We can't use this in the general case
|
804 |
|
|
because integer overflow and floating point errors could give incorrect
|
805 |
|
|
results.
|
806 |
|
|
We translate a do loop from:
|
807 |
|
|
|
808 |
|
|
DO dovar = from, to, step
|
809 |
|
|
body
|
810 |
|
|
END DO
|
811 |
|
|
|
812 |
|
|
to:
|
813 |
|
|
|
814 |
|
|
[Evaluate loop bounds and step]
|
815 |
|
|
dovar = from;
|
816 |
|
|
if ((step > 0) ? (dovar <= to) : (dovar => to))
|
817 |
|
|
{
|
818 |
|
|
for (;;)
|
819 |
|
|
{
|
820 |
|
|
body;
|
821 |
|
|
cycle_label:
|
822 |
|
|
cond = (dovar == to);
|
823 |
|
|
dovar += step;
|
824 |
|
|
if (cond) goto end_label;
|
825 |
|
|
}
|
826 |
|
|
}
|
827 |
|
|
end_label:
|
828 |
|
|
|
829 |
|
|
This helps the optimizers by avoiding the extra induction variable
|
830 |
|
|
used in the general case. */
|
831 |
|
|
|
832 |
|
|
static tree
|
833 |
|
|
gfc_trans_simple_do (gfc_code * code, stmtblock_t *pblock, tree dovar,
|
834 |
|
|
tree from, tree to, tree step, tree exit_cond)
|
835 |
|
|
{
|
836 |
|
|
stmtblock_t body;
|
837 |
|
|
tree type;
|
838 |
|
|
tree cond;
|
839 |
|
|
tree tmp;
|
840 |
|
|
tree saved_dovar = NULL;
|
841 |
|
|
tree cycle_label;
|
842 |
|
|
tree exit_label;
|
843 |
|
|
|
844 |
|
|
type = TREE_TYPE (dovar);
|
845 |
|
|
|
846 |
|
|
/* Initialize the DO variable: dovar = from. */
|
847 |
|
|
gfc_add_modify (pblock, dovar, from);
|
848 |
|
|
|
849 |
|
|
/* Save value for do-tinkering checking. */
|
850 |
|
|
if (gfc_option.rtcheck & GFC_RTCHECK_DO)
|
851 |
|
|
{
|
852 |
|
|
saved_dovar = gfc_create_var (type, ".saved_dovar");
|
853 |
|
|
gfc_add_modify (pblock, saved_dovar, dovar);
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
/* Cycle and exit statements are implemented with gotos. */
|
857 |
|
|
cycle_label = gfc_build_label_decl (NULL_TREE);
|
858 |
|
|
exit_label = gfc_build_label_decl (NULL_TREE);
|
859 |
|
|
|
860 |
|
|
/* Put the labels where they can be found later. See gfc_trans_do(). */
|
861 |
|
|
code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL);
|
862 |
|
|
|
863 |
|
|
/* Loop body. */
|
864 |
|
|
gfc_start_block (&body);
|
865 |
|
|
|
866 |
|
|
/* Main loop body. */
|
867 |
|
|
tmp = gfc_trans_code_cond (code->block->next, exit_cond);
|
868 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
869 |
|
|
|
870 |
|
|
/* Label for cycle statements (if needed). */
|
871 |
|
|
if (TREE_USED (cycle_label))
|
872 |
|
|
{
|
873 |
|
|
tmp = build1_v (LABEL_EXPR, cycle_label);
|
874 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
/* Check whether someone has modified the loop variable. */
|
878 |
|
|
if (gfc_option.rtcheck & GFC_RTCHECK_DO)
|
879 |
|
|
{
|
880 |
|
|
tmp = fold_build2 (NE_EXPR, boolean_type_node, dovar, saved_dovar);
|
881 |
|
|
gfc_trans_runtime_check (true, false, tmp, &body, &code->loc,
|
882 |
|
|
"Loop variable has been modified");
|
883 |
|
|
}
|
884 |
|
|
|
885 |
|
|
/* Exit the loop if there is an I/O result condition or error. */
|
886 |
|
|
if (exit_cond)
|
887 |
|
|
{
|
888 |
|
|
tmp = build1_v (GOTO_EXPR, exit_label);
|
889 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node, exit_cond, tmp,
|
890 |
|
|
build_empty_stmt (input_location));
|
891 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
/* Evaluate the loop condition. */
|
895 |
|
|
cond = fold_build2 (EQ_EXPR, boolean_type_node, dovar, to);
|
896 |
|
|
cond = gfc_evaluate_now (cond, &body);
|
897 |
|
|
|
898 |
|
|
/* Increment the loop variable. */
|
899 |
|
|
tmp = fold_build2 (PLUS_EXPR, type, dovar, step);
|
900 |
|
|
gfc_add_modify (&body, dovar, tmp);
|
901 |
|
|
|
902 |
|
|
if (gfc_option.rtcheck & GFC_RTCHECK_DO)
|
903 |
|
|
gfc_add_modify (&body, saved_dovar, dovar);
|
904 |
|
|
|
905 |
|
|
/* The loop exit. */
|
906 |
|
|
tmp = build1_v (GOTO_EXPR, exit_label);
|
907 |
|
|
TREE_USED (exit_label) = 1;
|
908 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node,
|
909 |
|
|
cond, tmp, build_empty_stmt (input_location));
|
910 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
911 |
|
|
|
912 |
|
|
/* Finish the loop body. */
|
913 |
|
|
tmp = gfc_finish_block (&body);
|
914 |
|
|
tmp = build1_v (LOOP_EXPR, tmp);
|
915 |
|
|
|
916 |
|
|
/* Only execute the loop if the number of iterations is positive. */
|
917 |
|
|
if (tree_int_cst_sgn (step) > 0)
|
918 |
|
|
cond = fold_build2 (LE_EXPR, boolean_type_node, dovar, to);
|
919 |
|
|
else
|
920 |
|
|
cond = fold_build2 (GE_EXPR, boolean_type_node, dovar, to);
|
921 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node,
|
922 |
|
|
cond, tmp, build_empty_stmt (input_location));
|
923 |
|
|
gfc_add_expr_to_block (pblock, tmp);
|
924 |
|
|
|
925 |
|
|
/* Add the exit label. */
|
926 |
|
|
tmp = build1_v (LABEL_EXPR, exit_label);
|
927 |
|
|
gfc_add_expr_to_block (pblock, tmp);
|
928 |
|
|
|
929 |
|
|
return gfc_finish_block (pblock);
|
930 |
|
|
}
|
931 |
|
|
|
932 |
|
|
/* Translate the DO construct. This obviously is one of the most
|
933 |
|
|
important ones to get right with any compiler, but especially
|
934 |
|
|
so for Fortran.
|
935 |
|
|
|
936 |
|
|
We special case some loop forms as described in gfc_trans_simple_do.
|
937 |
|
|
For other cases we implement them with a separate loop count,
|
938 |
|
|
as described in the standard.
|
939 |
|
|
|
940 |
|
|
We translate a do loop from:
|
941 |
|
|
|
942 |
|
|
DO dovar = from, to, step
|
943 |
|
|
body
|
944 |
|
|
END DO
|
945 |
|
|
|
946 |
|
|
to:
|
947 |
|
|
|
948 |
|
|
[evaluate loop bounds and step]
|
949 |
|
|
empty = (step > 0 ? to < from : to > from);
|
950 |
|
|
countm1 = (to - from) / step;
|
951 |
|
|
dovar = from;
|
952 |
|
|
if (empty) goto exit_label;
|
953 |
|
|
for (;;)
|
954 |
|
|
{
|
955 |
|
|
body;
|
956 |
|
|
cycle_label:
|
957 |
|
|
dovar += step
|
958 |
|
|
if (countm1 ==0) goto exit_label;
|
959 |
|
|
countm1--;
|
960 |
|
|
}
|
961 |
|
|
exit_label:
|
962 |
|
|
|
963 |
|
|
countm1 is an unsigned integer. It is equal to the loop count minus one,
|
964 |
|
|
because the loop count itself can overflow. */
|
965 |
|
|
|
966 |
|
|
tree
|
967 |
|
|
gfc_trans_do (gfc_code * code, tree exit_cond)
|
968 |
|
|
{
|
969 |
|
|
gfc_se se;
|
970 |
|
|
tree dovar;
|
971 |
|
|
tree saved_dovar = NULL;
|
972 |
|
|
tree from;
|
973 |
|
|
tree to;
|
974 |
|
|
tree step;
|
975 |
|
|
tree countm1;
|
976 |
|
|
tree type;
|
977 |
|
|
tree utype;
|
978 |
|
|
tree cond;
|
979 |
|
|
tree cycle_label;
|
980 |
|
|
tree exit_label;
|
981 |
|
|
tree tmp;
|
982 |
|
|
tree pos_step;
|
983 |
|
|
stmtblock_t block;
|
984 |
|
|
stmtblock_t body;
|
985 |
|
|
|
986 |
|
|
gfc_start_block (&block);
|
987 |
|
|
|
988 |
|
|
/* Evaluate all the expressions in the iterator. */
|
989 |
|
|
gfc_init_se (&se, NULL);
|
990 |
|
|
gfc_conv_expr_lhs (&se, code->ext.iterator->var);
|
991 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
992 |
|
|
dovar = se.expr;
|
993 |
|
|
type = TREE_TYPE (dovar);
|
994 |
|
|
|
995 |
|
|
gfc_init_se (&se, NULL);
|
996 |
|
|
gfc_conv_expr_val (&se, code->ext.iterator->start);
|
997 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
998 |
|
|
from = gfc_evaluate_now (se.expr, &block);
|
999 |
|
|
|
1000 |
|
|
gfc_init_se (&se, NULL);
|
1001 |
|
|
gfc_conv_expr_val (&se, code->ext.iterator->end);
|
1002 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
1003 |
|
|
to = gfc_evaluate_now (se.expr, &block);
|
1004 |
|
|
|
1005 |
|
|
gfc_init_se (&se, NULL);
|
1006 |
|
|
gfc_conv_expr_val (&se, code->ext.iterator->step);
|
1007 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
1008 |
|
|
step = gfc_evaluate_now (se.expr, &block);
|
1009 |
|
|
|
1010 |
|
|
if (gfc_option.rtcheck & GFC_RTCHECK_DO)
|
1011 |
|
|
{
|
1012 |
|
|
tmp = fold_build2 (EQ_EXPR, boolean_type_node, step,
|
1013 |
|
|
fold_convert (type, integer_zero_node));
|
1014 |
|
|
gfc_trans_runtime_check (true, false, tmp, &block, &code->loc,
|
1015 |
|
|
"DO step value is zero");
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
/* Special case simple loops. */
|
1019 |
|
|
if (TREE_CODE (type) == INTEGER_TYPE
|
1020 |
|
|
&& (integer_onep (step)
|
1021 |
|
|
|| tree_int_cst_equal (step, integer_minus_one_node)))
|
1022 |
|
|
return gfc_trans_simple_do (code, &block, dovar, from, to, step, exit_cond);
|
1023 |
|
|
|
1024 |
|
|
pos_step = fold_build2 (GT_EXPR, boolean_type_node, step,
|
1025 |
|
|
fold_convert (type, integer_zero_node));
|
1026 |
|
|
|
1027 |
|
|
if (TREE_CODE (type) == INTEGER_TYPE)
|
1028 |
|
|
utype = unsigned_type_for (type);
|
1029 |
|
|
else
|
1030 |
|
|
utype = unsigned_type_for (gfc_array_index_type);
|
1031 |
|
|
countm1 = gfc_create_var (utype, "countm1");
|
1032 |
|
|
|
1033 |
|
|
/* Cycle and exit statements are implemented with gotos. */
|
1034 |
|
|
cycle_label = gfc_build_label_decl (NULL_TREE);
|
1035 |
|
|
exit_label = gfc_build_label_decl (NULL_TREE);
|
1036 |
|
|
TREE_USED (exit_label) = 1;
|
1037 |
|
|
|
1038 |
|
|
/* Initialize the DO variable: dovar = from. */
|
1039 |
|
|
gfc_add_modify (&block, dovar, from);
|
1040 |
|
|
|
1041 |
|
|
/* Save value for do-tinkering checking. */
|
1042 |
|
|
if (gfc_option.rtcheck & GFC_RTCHECK_DO)
|
1043 |
|
|
{
|
1044 |
|
|
saved_dovar = gfc_create_var (type, ".saved_dovar");
|
1045 |
|
|
gfc_add_modify (&block, saved_dovar, dovar);
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
/* Initialize loop count and jump to exit label if the loop is empty.
|
1049 |
|
|
This code is executed before we enter the loop body. We generate:
|
1050 |
|
|
step_sign = sign(1,step);
|
1051 |
|
|
if (step > 0)
|
1052 |
|
|
{
|
1053 |
|
|
if (to < from)
|
1054 |
|
|
goto exit_label;
|
1055 |
|
|
}
|
1056 |
|
|
else
|
1057 |
|
|
{
|
1058 |
|
|
if (to > from)
|
1059 |
|
|
goto exit_label;
|
1060 |
|
|
}
|
1061 |
|
|
countm1 = (to*step_sign - from*step_sign) / (step*step_sign);
|
1062 |
|
|
|
1063 |
|
|
*/
|
1064 |
|
|
|
1065 |
|
|
if (TREE_CODE (type) == INTEGER_TYPE)
|
1066 |
|
|
{
|
1067 |
|
|
tree pos, neg, step_sign, to2, from2, step2;
|
1068 |
|
|
|
1069 |
|
|
/* Calculate SIGN (1,step), as (step < 0 ? -1 : 1) */
|
1070 |
|
|
|
1071 |
|
|
tmp = fold_build2 (LT_EXPR, boolean_type_node, step,
|
1072 |
|
|
build_int_cst (TREE_TYPE (step), 0));
|
1073 |
|
|
step_sign = fold_build3 (COND_EXPR, type, tmp,
|
1074 |
|
|
build_int_cst (type, -1),
|
1075 |
|
|
build_int_cst (type, 1));
|
1076 |
|
|
|
1077 |
|
|
tmp = fold_build2 (LT_EXPR, boolean_type_node, to, from);
|
1078 |
|
|
pos = fold_build3 (COND_EXPR, void_type_node, tmp,
|
1079 |
|
|
build1_v (GOTO_EXPR, exit_label),
|
1080 |
|
|
build_empty_stmt (input_location));
|
1081 |
|
|
|
1082 |
|
|
tmp = fold_build2 (GT_EXPR, boolean_type_node, to, from);
|
1083 |
|
|
neg = fold_build3 (COND_EXPR, void_type_node, tmp,
|
1084 |
|
|
build1_v (GOTO_EXPR, exit_label),
|
1085 |
|
|
build_empty_stmt (input_location));
|
1086 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node, pos_step, pos, neg);
|
1087 |
|
|
|
1088 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1089 |
|
|
|
1090 |
|
|
/* Calculate the loop count. to-from can overflow, so
|
1091 |
|
|
we cast to unsigned. */
|
1092 |
|
|
|
1093 |
|
|
to2 = fold_build2 (MULT_EXPR, type, step_sign, to);
|
1094 |
|
|
from2 = fold_build2 (MULT_EXPR, type, step_sign, from);
|
1095 |
|
|
step2 = fold_build2 (MULT_EXPR, type, step_sign, step);
|
1096 |
|
|
step2 = fold_convert (utype, step2);
|
1097 |
|
|
tmp = fold_build2 (MINUS_EXPR, type, to2, from2);
|
1098 |
|
|
tmp = fold_convert (utype, tmp);
|
1099 |
|
|
tmp = fold_build2 (TRUNC_DIV_EXPR, utype, tmp, step2);
|
1100 |
|
|
tmp = fold_build2 (MODIFY_EXPR, void_type_node, countm1, tmp);
|
1101 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1102 |
|
|
}
|
1103 |
|
|
else
|
1104 |
|
|
{
|
1105 |
|
|
/* TODO: We could use the same width as the real type.
|
1106 |
|
|
This would probably cause more problems that it solves
|
1107 |
|
|
when we implement "long double" types. */
|
1108 |
|
|
|
1109 |
|
|
tmp = fold_build2 (MINUS_EXPR, type, to, from);
|
1110 |
|
|
tmp = fold_build2 (RDIV_EXPR, type, tmp, step);
|
1111 |
|
|
tmp = fold_build1 (FIX_TRUNC_EXPR, utype, tmp);
|
1112 |
|
|
gfc_add_modify (&block, countm1, tmp);
|
1113 |
|
|
|
1114 |
|
|
/* We need a special check for empty loops:
|
1115 |
|
|
empty = (step > 0 ? to < from : to > from); */
|
1116 |
|
|
tmp = fold_build3 (COND_EXPR, boolean_type_node, pos_step,
|
1117 |
|
|
fold_build2 (LT_EXPR, boolean_type_node, to, from),
|
1118 |
|
|
fold_build2 (GT_EXPR, boolean_type_node, to, from));
|
1119 |
|
|
/* If the loop is empty, go directly to the exit label. */
|
1120 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node, tmp,
|
1121 |
|
|
build1_v (GOTO_EXPR, exit_label),
|
1122 |
|
|
build_empty_stmt (input_location));
|
1123 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
/* Loop body. */
|
1127 |
|
|
gfc_start_block (&body);
|
1128 |
|
|
|
1129 |
|
|
/* Put these labels where they can be found later. We put the
|
1130 |
|
|
labels in a TREE_LIST node (because TREE_CHAIN is already
|
1131 |
|
|
used). cycle_label goes in TREE_PURPOSE (backend_decl), exit
|
1132 |
|
|
label in TREE_VALUE (backend_decl). */
|
1133 |
|
|
|
1134 |
|
|
code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL);
|
1135 |
|
|
|
1136 |
|
|
/* Main loop body. */
|
1137 |
|
|
tmp = gfc_trans_code_cond (code->block->next, exit_cond);
|
1138 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1139 |
|
|
|
1140 |
|
|
/* Label for cycle statements (if needed). */
|
1141 |
|
|
if (TREE_USED (cycle_label))
|
1142 |
|
|
{
|
1143 |
|
|
tmp = build1_v (LABEL_EXPR, cycle_label);
|
1144 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1145 |
|
|
}
|
1146 |
|
|
|
1147 |
|
|
/* Check whether someone has modified the loop variable. */
|
1148 |
|
|
if (gfc_option.rtcheck & GFC_RTCHECK_DO)
|
1149 |
|
|
{
|
1150 |
|
|
tmp = fold_build2 (NE_EXPR, boolean_type_node, dovar, saved_dovar);
|
1151 |
|
|
gfc_trans_runtime_check (true, false, tmp, &body, &code->loc,
|
1152 |
|
|
"Loop variable has been modified");
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
/* Exit the loop if there is an I/O result condition or error. */
|
1156 |
|
|
if (exit_cond)
|
1157 |
|
|
{
|
1158 |
|
|
tmp = build1_v (GOTO_EXPR, exit_label);
|
1159 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node, exit_cond, tmp,
|
1160 |
|
|
build_empty_stmt (input_location));
|
1161 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1162 |
|
|
}
|
1163 |
|
|
|
1164 |
|
|
/* Increment the loop variable. */
|
1165 |
|
|
tmp = fold_build2 (PLUS_EXPR, type, dovar, step);
|
1166 |
|
|
gfc_add_modify (&body, dovar, tmp);
|
1167 |
|
|
|
1168 |
|
|
if (gfc_option.rtcheck & GFC_RTCHECK_DO)
|
1169 |
|
|
gfc_add_modify (&body, saved_dovar, dovar);
|
1170 |
|
|
|
1171 |
|
|
/* End with the loop condition. Loop until countm1 == 0. */
|
1172 |
|
|
cond = fold_build2 (EQ_EXPR, boolean_type_node, countm1,
|
1173 |
|
|
build_int_cst (utype, 0));
|
1174 |
|
|
tmp = build1_v (GOTO_EXPR, exit_label);
|
1175 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node,
|
1176 |
|
|
cond, tmp, build_empty_stmt (input_location));
|
1177 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1178 |
|
|
|
1179 |
|
|
/* Decrement the loop count. */
|
1180 |
|
|
tmp = fold_build2 (MINUS_EXPR, utype, countm1, build_int_cst (utype, 1));
|
1181 |
|
|
gfc_add_modify (&body, countm1, tmp);
|
1182 |
|
|
|
1183 |
|
|
/* End of loop body. */
|
1184 |
|
|
tmp = gfc_finish_block (&body);
|
1185 |
|
|
|
1186 |
|
|
/* The for loop itself. */
|
1187 |
|
|
tmp = build1_v (LOOP_EXPR, tmp);
|
1188 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1189 |
|
|
|
1190 |
|
|
/* Add the exit label. */
|
1191 |
|
|
tmp = build1_v (LABEL_EXPR, exit_label);
|
1192 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1193 |
|
|
|
1194 |
|
|
return gfc_finish_block (&block);
|
1195 |
|
|
}
|
1196 |
|
|
|
1197 |
|
|
|
1198 |
|
|
/* Translate the DO WHILE construct.
|
1199 |
|
|
|
1200 |
|
|
We translate
|
1201 |
|
|
|
1202 |
|
|
DO WHILE (cond)
|
1203 |
|
|
body
|
1204 |
|
|
END DO
|
1205 |
|
|
|
1206 |
|
|
to:
|
1207 |
|
|
|
1208 |
|
|
for ( ; ; )
|
1209 |
|
|
{
|
1210 |
|
|
pre_cond;
|
1211 |
|
|
if (! cond) goto exit_label;
|
1212 |
|
|
body;
|
1213 |
|
|
cycle_label:
|
1214 |
|
|
}
|
1215 |
|
|
exit_label:
|
1216 |
|
|
|
1217 |
|
|
Because the evaluation of the exit condition `cond' may have side
|
1218 |
|
|
effects, we can't do much for empty loop bodies. The backend optimizers
|
1219 |
|
|
should be smart enough to eliminate any dead loops. */
|
1220 |
|
|
|
1221 |
|
|
tree
|
1222 |
|
|
gfc_trans_do_while (gfc_code * code)
|
1223 |
|
|
{
|
1224 |
|
|
gfc_se cond;
|
1225 |
|
|
tree tmp;
|
1226 |
|
|
tree cycle_label;
|
1227 |
|
|
tree exit_label;
|
1228 |
|
|
stmtblock_t block;
|
1229 |
|
|
|
1230 |
|
|
/* Everything we build here is part of the loop body. */
|
1231 |
|
|
gfc_start_block (&block);
|
1232 |
|
|
|
1233 |
|
|
/* Cycle and exit statements are implemented with gotos. */
|
1234 |
|
|
cycle_label = gfc_build_label_decl (NULL_TREE);
|
1235 |
|
|
exit_label = gfc_build_label_decl (NULL_TREE);
|
1236 |
|
|
|
1237 |
|
|
/* Put the labels where they can be found later. See gfc_trans_do(). */
|
1238 |
|
|
code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL);
|
1239 |
|
|
|
1240 |
|
|
/* Create a GIMPLE version of the exit condition. */
|
1241 |
|
|
gfc_init_se (&cond, NULL);
|
1242 |
|
|
gfc_conv_expr_val (&cond, code->expr1);
|
1243 |
|
|
gfc_add_block_to_block (&block, &cond.pre);
|
1244 |
|
|
cond.expr = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond.expr);
|
1245 |
|
|
|
1246 |
|
|
/* Build "IF (! cond) GOTO exit_label". */
|
1247 |
|
|
tmp = build1_v (GOTO_EXPR, exit_label);
|
1248 |
|
|
TREE_USED (exit_label) = 1;
|
1249 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node,
|
1250 |
|
|
cond.expr, tmp, build_empty_stmt (input_location));
|
1251 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1252 |
|
|
|
1253 |
|
|
/* The main body of the loop. */
|
1254 |
|
|
tmp = gfc_trans_code (code->block->next);
|
1255 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1256 |
|
|
|
1257 |
|
|
/* Label for cycle statements (if needed). */
|
1258 |
|
|
if (TREE_USED (cycle_label))
|
1259 |
|
|
{
|
1260 |
|
|
tmp = build1_v (LABEL_EXPR, cycle_label);
|
1261 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1262 |
|
|
}
|
1263 |
|
|
|
1264 |
|
|
/* End of loop body. */
|
1265 |
|
|
tmp = gfc_finish_block (&block);
|
1266 |
|
|
|
1267 |
|
|
gfc_init_block (&block);
|
1268 |
|
|
/* Build the loop. */
|
1269 |
|
|
tmp = build1_v (LOOP_EXPR, tmp);
|
1270 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1271 |
|
|
|
1272 |
|
|
/* Add the exit label. */
|
1273 |
|
|
tmp = build1_v (LABEL_EXPR, exit_label);
|
1274 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1275 |
|
|
|
1276 |
|
|
return gfc_finish_block (&block);
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
|
1280 |
|
|
/* Translate the SELECT CASE construct for INTEGER case expressions,
|
1281 |
|
|
without killing all potential optimizations. The problem is that
|
1282 |
|
|
Fortran allows unbounded cases, but the back-end does not, so we
|
1283 |
|
|
need to intercept those before we enter the equivalent SWITCH_EXPR
|
1284 |
|
|
we can build.
|
1285 |
|
|
|
1286 |
|
|
For example, we translate this,
|
1287 |
|
|
|
1288 |
|
|
SELECT CASE (expr)
|
1289 |
|
|
CASE (:100,101,105:115)
|
1290 |
|
|
block_1
|
1291 |
|
|
CASE (190:199,200:)
|
1292 |
|
|
block_2
|
1293 |
|
|
CASE (300)
|
1294 |
|
|
block_3
|
1295 |
|
|
CASE DEFAULT
|
1296 |
|
|
block_4
|
1297 |
|
|
END SELECT
|
1298 |
|
|
|
1299 |
|
|
to the GENERIC equivalent,
|
1300 |
|
|
|
1301 |
|
|
switch (expr)
|
1302 |
|
|
{
|
1303 |
|
|
case (minimum value for typeof(expr) ... 100:
|
1304 |
|
|
case 101:
|
1305 |
|
|
case 105 ... 114:
|
1306 |
|
|
block1:
|
1307 |
|
|
goto end_label;
|
1308 |
|
|
|
1309 |
|
|
case 200 ... (maximum value for typeof(expr):
|
1310 |
|
|
case 190 ... 199:
|
1311 |
|
|
block2;
|
1312 |
|
|
goto end_label;
|
1313 |
|
|
|
1314 |
|
|
case 300:
|
1315 |
|
|
block_3;
|
1316 |
|
|
goto end_label;
|
1317 |
|
|
|
1318 |
|
|
default:
|
1319 |
|
|
block_4;
|
1320 |
|
|
goto end_label;
|
1321 |
|
|
}
|
1322 |
|
|
|
1323 |
|
|
end_label: */
|
1324 |
|
|
|
1325 |
|
|
static tree
|
1326 |
|
|
gfc_trans_integer_select (gfc_code * code)
|
1327 |
|
|
{
|
1328 |
|
|
gfc_code *c;
|
1329 |
|
|
gfc_case *cp;
|
1330 |
|
|
tree end_label;
|
1331 |
|
|
tree tmp;
|
1332 |
|
|
gfc_se se;
|
1333 |
|
|
stmtblock_t block;
|
1334 |
|
|
stmtblock_t body;
|
1335 |
|
|
|
1336 |
|
|
gfc_start_block (&block);
|
1337 |
|
|
|
1338 |
|
|
/* Calculate the switch expression. */
|
1339 |
|
|
gfc_init_se (&se, NULL);
|
1340 |
|
|
gfc_conv_expr_val (&se, code->expr1);
|
1341 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
1342 |
|
|
|
1343 |
|
|
end_label = gfc_build_label_decl (NULL_TREE);
|
1344 |
|
|
|
1345 |
|
|
gfc_init_block (&body);
|
1346 |
|
|
|
1347 |
|
|
for (c = code->block; c; c = c->block)
|
1348 |
|
|
{
|
1349 |
|
|
for (cp = c->ext.case_list; cp; cp = cp->next)
|
1350 |
|
|
{
|
1351 |
|
|
tree low, high;
|
1352 |
|
|
tree label;
|
1353 |
|
|
|
1354 |
|
|
/* Assume it's the default case. */
|
1355 |
|
|
low = high = NULL_TREE;
|
1356 |
|
|
|
1357 |
|
|
if (cp->low)
|
1358 |
|
|
{
|
1359 |
|
|
low = gfc_conv_mpz_to_tree (cp->low->value.integer,
|
1360 |
|
|
cp->low->ts.kind);
|
1361 |
|
|
|
1362 |
|
|
/* If there's only a lower bound, set the high bound to the
|
1363 |
|
|
maximum value of the case expression. */
|
1364 |
|
|
if (!cp->high)
|
1365 |
|
|
high = TYPE_MAX_VALUE (TREE_TYPE (se.expr));
|
1366 |
|
|
}
|
1367 |
|
|
|
1368 |
|
|
if (cp->high)
|
1369 |
|
|
{
|
1370 |
|
|
/* Three cases are possible here:
|
1371 |
|
|
|
1372 |
|
|
1) There is no lower bound, e.g. CASE (:N).
|
1373 |
|
|
2) There is a lower bound .NE. high bound, that is
|
1374 |
|
|
a case range, e.g. CASE (N:M) where M>N (we make
|
1375 |
|
|
sure that M>N during type resolution).
|
1376 |
|
|
3) There is a lower bound, and it has the same value
|
1377 |
|
|
as the high bound, e.g. CASE (N:N). This is our
|
1378 |
|
|
internal representation of CASE(N).
|
1379 |
|
|
|
1380 |
|
|
In the first and second case, we need to set a value for
|
1381 |
|
|
high. In the third case, we don't because the GCC middle
|
1382 |
|
|
end represents a single case value by just letting high be
|
1383 |
|
|
a NULL_TREE. We can't do that because we need to be able
|
1384 |
|
|
to represent unbounded cases. */
|
1385 |
|
|
|
1386 |
|
|
if (!cp->low
|
1387 |
|
|
|| (cp->low
|
1388 |
|
|
&& mpz_cmp (cp->low->value.integer,
|
1389 |
|
|
cp->high->value.integer) != 0))
|
1390 |
|
|
high = gfc_conv_mpz_to_tree (cp->high->value.integer,
|
1391 |
|
|
cp->high->ts.kind);
|
1392 |
|
|
|
1393 |
|
|
/* Unbounded case. */
|
1394 |
|
|
if (!cp->low)
|
1395 |
|
|
low = TYPE_MIN_VALUE (TREE_TYPE (se.expr));
|
1396 |
|
|
}
|
1397 |
|
|
|
1398 |
|
|
/* Build a label. */
|
1399 |
|
|
label = gfc_build_label_decl (NULL_TREE);
|
1400 |
|
|
|
1401 |
|
|
/* Add this case label.
|
1402 |
|
|
Add parameter 'label', make it match GCC backend. */
|
1403 |
|
|
tmp = fold_build3 (CASE_LABEL_EXPR, void_type_node,
|
1404 |
|
|
low, high, label);
|
1405 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1406 |
|
|
}
|
1407 |
|
|
|
1408 |
|
|
/* Add the statements for this case. */
|
1409 |
|
|
tmp = gfc_trans_code (c->next);
|
1410 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1411 |
|
|
|
1412 |
|
|
/* Break to the end of the construct. */
|
1413 |
|
|
tmp = build1_v (GOTO_EXPR, end_label);
|
1414 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1415 |
|
|
}
|
1416 |
|
|
|
1417 |
|
|
tmp = gfc_finish_block (&body);
|
1418 |
|
|
tmp = build3_v (SWITCH_EXPR, se.expr, tmp, NULL_TREE);
|
1419 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1420 |
|
|
|
1421 |
|
|
tmp = build1_v (LABEL_EXPR, end_label);
|
1422 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1423 |
|
|
|
1424 |
|
|
return gfc_finish_block (&block);
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
|
1428 |
|
|
/* Translate the SELECT CASE construct for LOGICAL case expressions.
|
1429 |
|
|
|
1430 |
|
|
There are only two cases possible here, even though the standard
|
1431 |
|
|
does allow three cases in a LOGICAL SELECT CASE construct: .TRUE.,
|
1432 |
|
|
.FALSE., and DEFAULT.
|
1433 |
|
|
|
1434 |
|
|
We never generate more than two blocks here. Instead, we always
|
1435 |
|
|
try to eliminate the DEFAULT case. This way, we can translate this
|
1436 |
|
|
kind of SELECT construct to a simple
|
1437 |
|
|
|
1438 |
|
|
if {} else {};
|
1439 |
|
|
|
1440 |
|
|
expression in GENERIC. */
|
1441 |
|
|
|
1442 |
|
|
static tree
|
1443 |
|
|
gfc_trans_logical_select (gfc_code * code)
|
1444 |
|
|
{
|
1445 |
|
|
gfc_code *c;
|
1446 |
|
|
gfc_code *t, *f, *d;
|
1447 |
|
|
gfc_case *cp;
|
1448 |
|
|
gfc_se se;
|
1449 |
|
|
stmtblock_t block;
|
1450 |
|
|
|
1451 |
|
|
/* Assume we don't have any cases at all. */
|
1452 |
|
|
t = f = d = NULL;
|
1453 |
|
|
|
1454 |
|
|
/* Now see which ones we actually do have. We can have at most two
|
1455 |
|
|
cases in a single case list: one for .TRUE. and one for .FALSE.
|
1456 |
|
|
The default case is always separate. If the cases for .TRUE. and
|
1457 |
|
|
.FALSE. are in the same case list, the block for that case list
|
1458 |
|
|
always executed, and we don't generate code a COND_EXPR. */
|
1459 |
|
|
for (c = code->block; c; c = c->block)
|
1460 |
|
|
{
|
1461 |
|
|
for (cp = c->ext.case_list; cp; cp = cp->next)
|
1462 |
|
|
{
|
1463 |
|
|
if (cp->low)
|
1464 |
|
|
{
|
1465 |
|
|
if (cp->low->value.logical == 0) /* .FALSE. */
|
1466 |
|
|
f = c;
|
1467 |
|
|
else /* if (cp->value.logical != 0), thus .TRUE. */
|
1468 |
|
|
t = c;
|
1469 |
|
|
}
|
1470 |
|
|
else
|
1471 |
|
|
d = c;
|
1472 |
|
|
}
|
1473 |
|
|
}
|
1474 |
|
|
|
1475 |
|
|
/* Start a new block. */
|
1476 |
|
|
gfc_start_block (&block);
|
1477 |
|
|
|
1478 |
|
|
/* Calculate the switch expression. We always need to do this
|
1479 |
|
|
because it may have side effects. */
|
1480 |
|
|
gfc_init_se (&se, NULL);
|
1481 |
|
|
gfc_conv_expr_val (&se, code->expr1);
|
1482 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
1483 |
|
|
|
1484 |
|
|
if (t == f && t != NULL)
|
1485 |
|
|
{
|
1486 |
|
|
/* Cases for .TRUE. and .FALSE. are in the same block. Just
|
1487 |
|
|
translate the code for these cases, append it to the current
|
1488 |
|
|
block. */
|
1489 |
|
|
gfc_add_expr_to_block (&block, gfc_trans_code (t->next));
|
1490 |
|
|
}
|
1491 |
|
|
else
|
1492 |
|
|
{
|
1493 |
|
|
tree true_tree, false_tree, stmt;
|
1494 |
|
|
|
1495 |
|
|
true_tree = build_empty_stmt (input_location);
|
1496 |
|
|
false_tree = build_empty_stmt (input_location);
|
1497 |
|
|
|
1498 |
|
|
/* If we have a case for .TRUE. and for .FALSE., discard the default case.
|
1499 |
|
|
Otherwise, if .TRUE. or .FALSE. is missing and there is a default case,
|
1500 |
|
|
make the missing case the default case. */
|
1501 |
|
|
if (t != NULL && f != NULL)
|
1502 |
|
|
d = NULL;
|
1503 |
|
|
else if (d != NULL)
|
1504 |
|
|
{
|
1505 |
|
|
if (t == NULL)
|
1506 |
|
|
t = d;
|
1507 |
|
|
else
|
1508 |
|
|
f = d;
|
1509 |
|
|
}
|
1510 |
|
|
|
1511 |
|
|
/* Translate the code for each of these blocks, and append it to
|
1512 |
|
|
the current block. */
|
1513 |
|
|
if (t != NULL)
|
1514 |
|
|
true_tree = gfc_trans_code (t->next);
|
1515 |
|
|
|
1516 |
|
|
if (f != NULL)
|
1517 |
|
|
false_tree = gfc_trans_code (f->next);
|
1518 |
|
|
|
1519 |
|
|
stmt = fold_build3 (COND_EXPR, void_type_node, se.expr,
|
1520 |
|
|
true_tree, false_tree);
|
1521 |
|
|
gfc_add_expr_to_block (&block, stmt);
|
1522 |
|
|
}
|
1523 |
|
|
|
1524 |
|
|
return gfc_finish_block (&block);
|
1525 |
|
|
}
|
1526 |
|
|
|
1527 |
|
|
|
1528 |
|
|
/* Translate the SELECT CASE construct for CHARACTER case expressions.
|
1529 |
|
|
Instead of generating compares and jumps, it is far simpler to
|
1530 |
|
|
generate a data structure describing the cases in order and call a
|
1531 |
|
|
library subroutine that locates the right case.
|
1532 |
|
|
This is particularly true because this is the only case where we
|
1533 |
|
|
might have to dispose of a temporary.
|
1534 |
|
|
The library subroutine returns a pointer to jump to or NULL if no
|
1535 |
|
|
branches are to be taken. */
|
1536 |
|
|
|
1537 |
|
|
static tree
|
1538 |
|
|
gfc_trans_character_select (gfc_code *code)
|
1539 |
|
|
{
|
1540 |
|
|
tree init, node, end_label, tmp, type, case_num, label, fndecl;
|
1541 |
|
|
stmtblock_t block, body;
|
1542 |
|
|
gfc_case *cp, *d;
|
1543 |
|
|
gfc_code *c;
|
1544 |
|
|
gfc_se se;
|
1545 |
|
|
int n, k;
|
1546 |
|
|
|
1547 |
|
|
/* The jump table types are stored in static variables to avoid
|
1548 |
|
|
constructing them from scratch every single time. */
|
1549 |
|
|
static tree select_struct[2];
|
1550 |
|
|
static tree ss_string1[2], ss_string1_len[2];
|
1551 |
|
|
static tree ss_string2[2], ss_string2_len[2];
|
1552 |
|
|
static tree ss_target[2];
|
1553 |
|
|
|
1554 |
|
|
tree pchartype = gfc_get_pchar_type (code->expr1->ts.kind);
|
1555 |
|
|
|
1556 |
|
|
if (code->expr1->ts.kind == 1)
|
1557 |
|
|
k = 0;
|
1558 |
|
|
else if (code->expr1->ts.kind == 4)
|
1559 |
|
|
k = 1;
|
1560 |
|
|
else
|
1561 |
|
|
gcc_unreachable ();
|
1562 |
|
|
|
1563 |
|
|
if (select_struct[k] == NULL)
|
1564 |
|
|
{
|
1565 |
|
|
select_struct[k] = make_node (RECORD_TYPE);
|
1566 |
|
|
|
1567 |
|
|
if (code->expr1->ts.kind == 1)
|
1568 |
|
|
TYPE_NAME (select_struct[k]) = get_identifier ("_jump_struct_char1");
|
1569 |
|
|
else if (code->expr1->ts.kind == 4)
|
1570 |
|
|
TYPE_NAME (select_struct[k]) = get_identifier ("_jump_struct_char4");
|
1571 |
|
|
else
|
1572 |
|
|
gcc_unreachable ();
|
1573 |
|
|
|
1574 |
|
|
#undef ADD_FIELD
|
1575 |
|
|
#define ADD_FIELD(NAME, TYPE) \
|
1576 |
|
|
ss_##NAME[k] = gfc_add_field_to_struct \
|
1577 |
|
|
(&(TYPE_FIELDS (select_struct[k])), select_struct[k], \
|
1578 |
|
|
get_identifier (stringize(NAME)), TYPE)
|
1579 |
|
|
|
1580 |
|
|
ADD_FIELD (string1, pchartype);
|
1581 |
|
|
ADD_FIELD (string1_len, gfc_charlen_type_node);
|
1582 |
|
|
|
1583 |
|
|
ADD_FIELD (string2, pchartype);
|
1584 |
|
|
ADD_FIELD (string2_len, gfc_charlen_type_node);
|
1585 |
|
|
|
1586 |
|
|
ADD_FIELD (target, integer_type_node);
|
1587 |
|
|
#undef ADD_FIELD
|
1588 |
|
|
|
1589 |
|
|
gfc_finish_type (select_struct[k]);
|
1590 |
|
|
}
|
1591 |
|
|
|
1592 |
|
|
cp = code->block->ext.case_list;
|
1593 |
|
|
while (cp->left != NULL)
|
1594 |
|
|
cp = cp->left;
|
1595 |
|
|
|
1596 |
|
|
n = 0;
|
1597 |
|
|
for (d = cp; d; d = d->right)
|
1598 |
|
|
d->n = n++;
|
1599 |
|
|
|
1600 |
|
|
end_label = gfc_build_label_decl (NULL_TREE);
|
1601 |
|
|
|
1602 |
|
|
/* Generate the body */
|
1603 |
|
|
gfc_start_block (&block);
|
1604 |
|
|
gfc_init_block (&body);
|
1605 |
|
|
|
1606 |
|
|
for (c = code->block; c; c = c->block)
|
1607 |
|
|
{
|
1608 |
|
|
for (d = c->ext.case_list; d; d = d->next)
|
1609 |
|
|
{
|
1610 |
|
|
label = gfc_build_label_decl (NULL_TREE);
|
1611 |
|
|
tmp = fold_build3 (CASE_LABEL_EXPR, void_type_node,
|
1612 |
|
|
build_int_cst (NULL_TREE, d->n),
|
1613 |
|
|
build_int_cst (NULL_TREE, d->n), label);
|
1614 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1615 |
|
|
}
|
1616 |
|
|
|
1617 |
|
|
tmp = gfc_trans_code (c->next);
|
1618 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1619 |
|
|
|
1620 |
|
|
tmp = build1_v (GOTO_EXPR, end_label);
|
1621 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
1622 |
|
|
}
|
1623 |
|
|
|
1624 |
|
|
/* Generate the structure describing the branches */
|
1625 |
|
|
init = NULL_TREE;
|
1626 |
|
|
|
1627 |
|
|
for(d = cp; d; d = d->right)
|
1628 |
|
|
{
|
1629 |
|
|
node = NULL_TREE;
|
1630 |
|
|
|
1631 |
|
|
gfc_init_se (&se, NULL);
|
1632 |
|
|
|
1633 |
|
|
if (d->low == NULL)
|
1634 |
|
|
{
|
1635 |
|
|
node = tree_cons (ss_string1[k], null_pointer_node, node);
|
1636 |
|
|
node = tree_cons (ss_string1_len[k], integer_zero_node, node);
|
1637 |
|
|
}
|
1638 |
|
|
else
|
1639 |
|
|
{
|
1640 |
|
|
gfc_conv_expr_reference (&se, d->low);
|
1641 |
|
|
|
1642 |
|
|
node = tree_cons (ss_string1[k], se.expr, node);
|
1643 |
|
|
node = tree_cons (ss_string1_len[k], se.string_length, node);
|
1644 |
|
|
}
|
1645 |
|
|
|
1646 |
|
|
if (d->high == NULL)
|
1647 |
|
|
{
|
1648 |
|
|
node = tree_cons (ss_string2[k], null_pointer_node, node);
|
1649 |
|
|
node = tree_cons (ss_string2_len[k], integer_zero_node, node);
|
1650 |
|
|
}
|
1651 |
|
|
else
|
1652 |
|
|
{
|
1653 |
|
|
gfc_init_se (&se, NULL);
|
1654 |
|
|
gfc_conv_expr_reference (&se, d->high);
|
1655 |
|
|
|
1656 |
|
|
node = tree_cons (ss_string2[k], se.expr, node);
|
1657 |
|
|
node = tree_cons (ss_string2_len[k], se.string_length, node);
|
1658 |
|
|
}
|
1659 |
|
|
|
1660 |
|
|
node = tree_cons (ss_target[k], build_int_cst (integer_type_node, d->n),
|
1661 |
|
|
node);
|
1662 |
|
|
|
1663 |
|
|
tmp = build_constructor_from_list (select_struct[k], nreverse (node));
|
1664 |
|
|
init = tree_cons (NULL_TREE, tmp, init);
|
1665 |
|
|
}
|
1666 |
|
|
|
1667 |
|
|
type = build_array_type (select_struct[k],
|
1668 |
|
|
build_index_type (build_int_cst (NULL_TREE, n-1)));
|
1669 |
|
|
|
1670 |
|
|
init = build_constructor_from_list (type, nreverse(init));
|
1671 |
|
|
TREE_CONSTANT (init) = 1;
|
1672 |
|
|
TREE_STATIC (init) = 1;
|
1673 |
|
|
/* Create a static variable to hold the jump table. */
|
1674 |
|
|
tmp = gfc_create_var (type, "jumptable");
|
1675 |
|
|
TREE_CONSTANT (tmp) = 1;
|
1676 |
|
|
TREE_STATIC (tmp) = 1;
|
1677 |
|
|
TREE_READONLY (tmp) = 1;
|
1678 |
|
|
DECL_INITIAL (tmp) = init;
|
1679 |
|
|
init = tmp;
|
1680 |
|
|
|
1681 |
|
|
/* Build the library call */
|
1682 |
|
|
init = gfc_build_addr_expr (pvoid_type_node, init);
|
1683 |
|
|
|
1684 |
|
|
gfc_init_se (&se, NULL);
|
1685 |
|
|
gfc_conv_expr_reference (&se, code->expr1);
|
1686 |
|
|
|
1687 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
1688 |
|
|
|
1689 |
|
|
if (code->expr1->ts.kind == 1)
|
1690 |
|
|
fndecl = gfor_fndecl_select_string;
|
1691 |
|
|
else if (code->expr1->ts.kind == 4)
|
1692 |
|
|
fndecl = gfor_fndecl_select_string_char4;
|
1693 |
|
|
else
|
1694 |
|
|
gcc_unreachable ();
|
1695 |
|
|
|
1696 |
|
|
tmp = build_call_expr_loc (input_location,
|
1697 |
|
|
fndecl, 4, init, build_int_cst (NULL_TREE, n),
|
1698 |
|
|
se.expr, se.string_length);
|
1699 |
|
|
case_num = gfc_create_var (integer_type_node, "case_num");
|
1700 |
|
|
gfc_add_modify (&block, case_num, tmp);
|
1701 |
|
|
|
1702 |
|
|
gfc_add_block_to_block (&block, &se.post);
|
1703 |
|
|
|
1704 |
|
|
tmp = gfc_finish_block (&body);
|
1705 |
|
|
tmp = build3_v (SWITCH_EXPR, case_num, tmp, NULL_TREE);
|
1706 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1707 |
|
|
|
1708 |
|
|
tmp = build1_v (LABEL_EXPR, end_label);
|
1709 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
1710 |
|
|
|
1711 |
|
|
return gfc_finish_block (&block);
|
1712 |
|
|
}
|
1713 |
|
|
|
1714 |
|
|
|
1715 |
|
|
/* Translate the three variants of the SELECT CASE construct.
|
1716 |
|
|
|
1717 |
|
|
SELECT CASEs with INTEGER case expressions can be translated to an
|
1718 |
|
|
equivalent GENERIC switch statement, and for LOGICAL case
|
1719 |
|
|
expressions we build one or two if-else compares.
|
1720 |
|
|
|
1721 |
|
|
SELECT CASEs with CHARACTER case expressions are a whole different
|
1722 |
|
|
story, because they don't exist in GENERIC. So we sort them and
|
1723 |
|
|
do a binary search at runtime.
|
1724 |
|
|
|
1725 |
|
|
Fortran has no BREAK statement, and it does not allow jumps from
|
1726 |
|
|
one case block to another. That makes things a lot easier for
|
1727 |
|
|
the optimizers. */
|
1728 |
|
|
|
1729 |
|
|
tree
|
1730 |
|
|
gfc_trans_select (gfc_code * code)
|
1731 |
|
|
{
|
1732 |
|
|
gcc_assert (code && code->expr1);
|
1733 |
|
|
|
1734 |
|
|
/* Empty SELECT constructs are legal. */
|
1735 |
|
|
if (code->block == NULL)
|
1736 |
|
|
return build_empty_stmt (input_location);
|
1737 |
|
|
|
1738 |
|
|
/* Select the correct translation function. */
|
1739 |
|
|
switch (code->expr1->ts.type)
|
1740 |
|
|
{
|
1741 |
|
|
case BT_LOGICAL: return gfc_trans_logical_select (code);
|
1742 |
|
|
case BT_INTEGER: return gfc_trans_integer_select (code);
|
1743 |
|
|
case BT_CHARACTER: return gfc_trans_character_select (code);
|
1744 |
|
|
default:
|
1745 |
|
|
gfc_internal_error ("gfc_trans_select(): Bad type for case expr.");
|
1746 |
|
|
/* Not reached */
|
1747 |
|
|
}
|
1748 |
|
|
}
|
1749 |
|
|
|
1750 |
|
|
|
1751 |
|
|
/* Traversal function to substitute a replacement symtree if the symbol
|
1752 |
|
|
in the expression is the same as that passed. f == 2 signals that
|
1753 |
|
|
that variable itself is not to be checked - only the references.
|
1754 |
|
|
This group of functions is used when the variable expression in a
|
1755 |
|
|
FORALL assignment has internal references. For example:
|
1756 |
|
|
FORALL (i = 1:4) p(p(i)) = i
|
1757 |
|
|
The only recourse here is to store a copy of 'p' for the index
|
1758 |
|
|
expression. */
|
1759 |
|
|
|
1760 |
|
|
static gfc_symtree *new_symtree;
|
1761 |
|
|
static gfc_symtree *old_symtree;
|
1762 |
|
|
|
1763 |
|
|
static bool
|
1764 |
|
|
forall_replace (gfc_expr *expr, gfc_symbol *sym, int *f)
|
1765 |
|
|
{
|
1766 |
|
|
if (expr->expr_type != EXPR_VARIABLE)
|
1767 |
|
|
return false;
|
1768 |
|
|
|
1769 |
|
|
if (*f == 2)
|
1770 |
|
|
*f = 1;
|
1771 |
|
|
else if (expr->symtree->n.sym == sym)
|
1772 |
|
|
expr->symtree = new_symtree;
|
1773 |
|
|
|
1774 |
|
|
return false;
|
1775 |
|
|
}
|
1776 |
|
|
|
1777 |
|
|
static void
|
1778 |
|
|
forall_replace_symtree (gfc_expr *e, gfc_symbol *sym, int f)
|
1779 |
|
|
{
|
1780 |
|
|
gfc_traverse_expr (e, sym, forall_replace, f);
|
1781 |
|
|
}
|
1782 |
|
|
|
1783 |
|
|
static bool
|
1784 |
|
|
forall_restore (gfc_expr *expr,
|
1785 |
|
|
gfc_symbol *sym ATTRIBUTE_UNUSED,
|
1786 |
|
|
int *f ATTRIBUTE_UNUSED)
|
1787 |
|
|
{
|
1788 |
|
|
if (expr->expr_type != EXPR_VARIABLE)
|
1789 |
|
|
return false;
|
1790 |
|
|
|
1791 |
|
|
if (expr->symtree == new_symtree)
|
1792 |
|
|
expr->symtree = old_symtree;
|
1793 |
|
|
|
1794 |
|
|
return false;
|
1795 |
|
|
}
|
1796 |
|
|
|
1797 |
|
|
static void
|
1798 |
|
|
forall_restore_symtree (gfc_expr *e)
|
1799 |
|
|
{
|
1800 |
|
|
gfc_traverse_expr (e, NULL, forall_restore, 0);
|
1801 |
|
|
}
|
1802 |
|
|
|
1803 |
|
|
static void
|
1804 |
|
|
forall_make_variable_temp (gfc_code *c, stmtblock_t *pre, stmtblock_t *post)
|
1805 |
|
|
{
|
1806 |
|
|
gfc_se tse;
|
1807 |
|
|
gfc_se rse;
|
1808 |
|
|
gfc_expr *e;
|
1809 |
|
|
gfc_symbol *new_sym;
|
1810 |
|
|
gfc_symbol *old_sym;
|
1811 |
|
|
gfc_symtree *root;
|
1812 |
|
|
tree tmp;
|
1813 |
|
|
|
1814 |
|
|
/* Build a copy of the lvalue. */
|
1815 |
|
|
old_symtree = c->expr1->symtree;
|
1816 |
|
|
old_sym = old_symtree->n.sym;
|
1817 |
|
|
e = gfc_lval_expr_from_sym (old_sym);
|
1818 |
|
|
if (old_sym->attr.dimension)
|
1819 |
|
|
{
|
1820 |
|
|
gfc_init_se (&tse, NULL);
|
1821 |
|
|
gfc_conv_subref_array_arg (&tse, e, 0, INTENT_IN, false);
|
1822 |
|
|
gfc_add_block_to_block (pre, &tse.pre);
|
1823 |
|
|
gfc_add_block_to_block (post, &tse.post);
|
1824 |
|
|
tse.expr = build_fold_indirect_ref_loc (input_location, tse.expr);
|
1825 |
|
|
|
1826 |
|
|
if (e->ts.type != BT_CHARACTER)
|
1827 |
|
|
{
|
1828 |
|
|
/* Use the variable offset for the temporary. */
|
1829 |
|
|
tmp = gfc_conv_array_offset (old_sym->backend_decl);
|
1830 |
|
|
gfc_conv_descriptor_offset_set (pre, tse.expr, tmp);
|
1831 |
|
|
}
|
1832 |
|
|
}
|
1833 |
|
|
else
|
1834 |
|
|
{
|
1835 |
|
|
gfc_init_se (&tse, NULL);
|
1836 |
|
|
gfc_init_se (&rse, NULL);
|
1837 |
|
|
gfc_conv_expr (&rse, e);
|
1838 |
|
|
if (e->ts.type == BT_CHARACTER)
|
1839 |
|
|
{
|
1840 |
|
|
tse.string_length = rse.string_length;
|
1841 |
|
|
tmp = gfc_get_character_type_len (gfc_default_character_kind,
|
1842 |
|
|
tse.string_length);
|
1843 |
|
|
tse.expr = gfc_conv_string_tmp (&tse, build_pointer_type (tmp),
|
1844 |
|
|
rse.string_length);
|
1845 |
|
|
gfc_add_block_to_block (pre, &tse.pre);
|
1846 |
|
|
gfc_add_block_to_block (post, &tse.post);
|
1847 |
|
|
}
|
1848 |
|
|
else
|
1849 |
|
|
{
|
1850 |
|
|
tmp = gfc_typenode_for_spec (&e->ts);
|
1851 |
|
|
tse.expr = gfc_create_var (tmp, "temp");
|
1852 |
|
|
}
|
1853 |
|
|
|
1854 |
|
|
tmp = gfc_trans_scalar_assign (&tse, &rse, e->ts, true,
|
1855 |
|
|
e->expr_type == EXPR_VARIABLE);
|
1856 |
|
|
gfc_add_expr_to_block (pre, tmp);
|
1857 |
|
|
}
|
1858 |
|
|
gfc_free_expr (e);
|
1859 |
|
|
|
1860 |
|
|
/* Create a new symbol to represent the lvalue. */
|
1861 |
|
|
new_sym = gfc_new_symbol (old_sym->name, NULL);
|
1862 |
|
|
new_sym->ts = old_sym->ts;
|
1863 |
|
|
new_sym->attr.referenced = 1;
|
1864 |
|
|
new_sym->attr.temporary = 1;
|
1865 |
|
|
new_sym->attr.dimension = old_sym->attr.dimension;
|
1866 |
|
|
new_sym->attr.flavor = old_sym->attr.flavor;
|
1867 |
|
|
|
1868 |
|
|
/* Use the temporary as the backend_decl. */
|
1869 |
|
|
new_sym->backend_decl = tse.expr;
|
1870 |
|
|
|
1871 |
|
|
/* Create a fake symtree for it. */
|
1872 |
|
|
root = NULL;
|
1873 |
|
|
new_symtree = gfc_new_symtree (&root, old_sym->name);
|
1874 |
|
|
new_symtree->n.sym = new_sym;
|
1875 |
|
|
gcc_assert (new_symtree == root);
|
1876 |
|
|
|
1877 |
|
|
/* Go through the expression reference replacing the old_symtree
|
1878 |
|
|
with the new. */
|
1879 |
|
|
forall_replace_symtree (c->expr1, old_sym, 2);
|
1880 |
|
|
|
1881 |
|
|
/* Now we have made this temporary, we might as well use it for
|
1882 |
|
|
the right hand side. */
|
1883 |
|
|
forall_replace_symtree (c->expr2, old_sym, 1);
|
1884 |
|
|
}
|
1885 |
|
|
|
1886 |
|
|
|
1887 |
|
|
/* Handles dependencies in forall assignments. */
|
1888 |
|
|
static int
|
1889 |
|
|
check_forall_dependencies (gfc_code *c, stmtblock_t *pre, stmtblock_t *post)
|
1890 |
|
|
{
|
1891 |
|
|
gfc_ref *lref;
|
1892 |
|
|
gfc_ref *rref;
|
1893 |
|
|
int need_temp;
|
1894 |
|
|
gfc_symbol *lsym;
|
1895 |
|
|
|
1896 |
|
|
lsym = c->expr1->symtree->n.sym;
|
1897 |
|
|
need_temp = gfc_check_dependency (c->expr1, c->expr2, 0);
|
1898 |
|
|
|
1899 |
|
|
/* Now check for dependencies within the 'variable'
|
1900 |
|
|
expression itself. These are treated by making a complete
|
1901 |
|
|
copy of variable and changing all the references to it
|
1902 |
|
|
point to the copy instead. Note that the shallow copy of
|
1903 |
|
|
the variable will not suffice for derived types with
|
1904 |
|
|
pointer components. We therefore leave these to their
|
1905 |
|
|
own devices. */
|
1906 |
|
|
if (lsym->ts.type == BT_DERIVED
|
1907 |
|
|
&& lsym->ts.u.derived->attr.pointer_comp)
|
1908 |
|
|
return need_temp;
|
1909 |
|
|
|
1910 |
|
|
new_symtree = NULL;
|
1911 |
|
|
if (find_forall_index (c->expr1, lsym, 2) == SUCCESS)
|
1912 |
|
|
{
|
1913 |
|
|
forall_make_variable_temp (c, pre, post);
|
1914 |
|
|
need_temp = 0;
|
1915 |
|
|
}
|
1916 |
|
|
|
1917 |
|
|
/* Substrings with dependencies are treated in the same
|
1918 |
|
|
way. */
|
1919 |
|
|
if (c->expr1->ts.type == BT_CHARACTER
|
1920 |
|
|
&& c->expr1->ref
|
1921 |
|
|
&& c->expr2->expr_type == EXPR_VARIABLE
|
1922 |
|
|
&& lsym == c->expr2->symtree->n.sym)
|
1923 |
|
|
{
|
1924 |
|
|
for (lref = c->expr1->ref; lref; lref = lref->next)
|
1925 |
|
|
if (lref->type == REF_SUBSTRING)
|
1926 |
|
|
break;
|
1927 |
|
|
for (rref = c->expr2->ref; rref; rref = rref->next)
|
1928 |
|
|
if (rref->type == REF_SUBSTRING)
|
1929 |
|
|
break;
|
1930 |
|
|
|
1931 |
|
|
if (rref && lref
|
1932 |
|
|
&& gfc_dep_compare_expr (rref->u.ss.start, lref->u.ss.start) < 0)
|
1933 |
|
|
{
|
1934 |
|
|
forall_make_variable_temp (c, pre, post);
|
1935 |
|
|
need_temp = 0;
|
1936 |
|
|
}
|
1937 |
|
|
}
|
1938 |
|
|
return need_temp;
|
1939 |
|
|
}
|
1940 |
|
|
|
1941 |
|
|
|
1942 |
|
|
static void
|
1943 |
|
|
cleanup_forall_symtrees (gfc_code *c)
|
1944 |
|
|
{
|
1945 |
|
|
forall_restore_symtree (c->expr1);
|
1946 |
|
|
forall_restore_symtree (c->expr2);
|
1947 |
|
|
gfc_free (new_symtree->n.sym);
|
1948 |
|
|
gfc_free (new_symtree);
|
1949 |
|
|
}
|
1950 |
|
|
|
1951 |
|
|
|
1952 |
|
|
/* Generate the loops for a FORALL block, specified by FORALL_TMP. BODY
|
1953 |
|
|
is the contents of the FORALL block/stmt to be iterated. MASK_FLAG
|
1954 |
|
|
indicates whether we should generate code to test the FORALLs mask
|
1955 |
|
|
array. OUTER is the loop header to be used for initializing mask
|
1956 |
|
|
indices.
|
1957 |
|
|
|
1958 |
|
|
The generated loop format is:
|
1959 |
|
|
count = (end - start + step) / step
|
1960 |
|
|
loopvar = start
|
1961 |
|
|
while (1)
|
1962 |
|
|
{
|
1963 |
|
|
if (count <=0 )
|
1964 |
|
|
goto end_of_loop
|
1965 |
|
|
<body>
|
1966 |
|
|
loopvar += step
|
1967 |
|
|
count --
|
1968 |
|
|
}
|
1969 |
|
|
end_of_loop: */
|
1970 |
|
|
|
1971 |
|
|
static tree
|
1972 |
|
|
gfc_trans_forall_loop (forall_info *forall_tmp, tree body,
|
1973 |
|
|
int mask_flag, stmtblock_t *outer)
|
1974 |
|
|
{
|
1975 |
|
|
int n, nvar;
|
1976 |
|
|
tree tmp;
|
1977 |
|
|
tree cond;
|
1978 |
|
|
stmtblock_t block;
|
1979 |
|
|
tree exit_label;
|
1980 |
|
|
tree count;
|
1981 |
|
|
tree var, start, end, step;
|
1982 |
|
|
iter_info *iter;
|
1983 |
|
|
|
1984 |
|
|
/* Initialize the mask index outside the FORALL nest. */
|
1985 |
|
|
if (mask_flag && forall_tmp->mask)
|
1986 |
|
|
gfc_add_modify (outer, forall_tmp->maskindex, gfc_index_zero_node);
|
1987 |
|
|
|
1988 |
|
|
iter = forall_tmp->this_loop;
|
1989 |
|
|
nvar = forall_tmp->nvar;
|
1990 |
|
|
for (n = 0; n < nvar; n++)
|
1991 |
|
|
{
|
1992 |
|
|
var = iter->var;
|
1993 |
|
|
start = iter->start;
|
1994 |
|
|
end = iter->end;
|
1995 |
|
|
step = iter->step;
|
1996 |
|
|
|
1997 |
|
|
exit_label = gfc_build_label_decl (NULL_TREE);
|
1998 |
|
|
TREE_USED (exit_label) = 1;
|
1999 |
|
|
|
2000 |
|
|
/* The loop counter. */
|
2001 |
|
|
count = gfc_create_var (TREE_TYPE (var), "count");
|
2002 |
|
|
|
2003 |
|
|
/* The body of the loop. */
|
2004 |
|
|
gfc_init_block (&block);
|
2005 |
|
|
|
2006 |
|
|
/* The exit condition. */
|
2007 |
|
|
cond = fold_build2 (LE_EXPR, boolean_type_node,
|
2008 |
|
|
count, build_int_cst (TREE_TYPE (count), 0));
|
2009 |
|
|
tmp = build1_v (GOTO_EXPR, exit_label);
|
2010 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node,
|
2011 |
|
|
cond, tmp, build_empty_stmt (input_location));
|
2012 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
2013 |
|
|
|
2014 |
|
|
/* The main loop body. */
|
2015 |
|
|
gfc_add_expr_to_block (&block, body);
|
2016 |
|
|
|
2017 |
|
|
/* Increment the loop variable. */
|
2018 |
|
|
tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (var), var, step);
|
2019 |
|
|
gfc_add_modify (&block, var, tmp);
|
2020 |
|
|
|
2021 |
|
|
/* Advance to the next mask element. Only do this for the
|
2022 |
|
|
innermost loop. */
|
2023 |
|
|
if (n == 0 && mask_flag && forall_tmp->mask)
|
2024 |
|
|
{
|
2025 |
|
|
tree maskindex = forall_tmp->maskindex;
|
2026 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2027 |
|
|
maskindex, gfc_index_one_node);
|
2028 |
|
|
gfc_add_modify (&block, maskindex, tmp);
|
2029 |
|
|
}
|
2030 |
|
|
|
2031 |
|
|
/* Decrement the loop counter. */
|
2032 |
|
|
tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (var), count,
|
2033 |
|
|
build_int_cst (TREE_TYPE (var), 1));
|
2034 |
|
|
gfc_add_modify (&block, count, tmp);
|
2035 |
|
|
|
2036 |
|
|
body = gfc_finish_block (&block);
|
2037 |
|
|
|
2038 |
|
|
/* Loop var initialization. */
|
2039 |
|
|
gfc_init_block (&block);
|
2040 |
|
|
gfc_add_modify (&block, var, start);
|
2041 |
|
|
|
2042 |
|
|
|
2043 |
|
|
/* Initialize the loop counter. */
|
2044 |
|
|
tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (var), step, start);
|
2045 |
|
|
tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (var), end, tmp);
|
2046 |
|
|
tmp = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (var), tmp, step);
|
2047 |
|
|
gfc_add_modify (&block, count, tmp);
|
2048 |
|
|
|
2049 |
|
|
/* The loop expression. */
|
2050 |
|
|
tmp = build1_v (LOOP_EXPR, body);
|
2051 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
2052 |
|
|
|
2053 |
|
|
/* The exit label. */
|
2054 |
|
|
tmp = build1_v (LABEL_EXPR, exit_label);
|
2055 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
2056 |
|
|
|
2057 |
|
|
body = gfc_finish_block (&block);
|
2058 |
|
|
iter = iter->next;
|
2059 |
|
|
}
|
2060 |
|
|
return body;
|
2061 |
|
|
}
|
2062 |
|
|
|
2063 |
|
|
|
2064 |
|
|
/* Generate the body and loops according to MASK_FLAG. If MASK_FLAG
|
2065 |
|
|
is nonzero, the body is controlled by all masks in the forall nest.
|
2066 |
|
|
Otherwise, the innermost loop is not controlled by it's mask. This
|
2067 |
|
|
is used for initializing that mask. */
|
2068 |
|
|
|
2069 |
|
|
static tree
|
2070 |
|
|
gfc_trans_nested_forall_loop (forall_info * nested_forall_info, tree body,
|
2071 |
|
|
int mask_flag)
|
2072 |
|
|
{
|
2073 |
|
|
tree tmp;
|
2074 |
|
|
stmtblock_t header;
|
2075 |
|
|
forall_info *forall_tmp;
|
2076 |
|
|
tree mask, maskindex;
|
2077 |
|
|
|
2078 |
|
|
gfc_start_block (&header);
|
2079 |
|
|
|
2080 |
|
|
forall_tmp = nested_forall_info;
|
2081 |
|
|
while (forall_tmp != NULL)
|
2082 |
|
|
{
|
2083 |
|
|
/* Generate body with masks' control. */
|
2084 |
|
|
if (mask_flag)
|
2085 |
|
|
{
|
2086 |
|
|
mask = forall_tmp->mask;
|
2087 |
|
|
maskindex = forall_tmp->maskindex;
|
2088 |
|
|
|
2089 |
|
|
/* If a mask was specified make the assignment conditional. */
|
2090 |
|
|
if (mask)
|
2091 |
|
|
{
|
2092 |
|
|
tmp = gfc_build_array_ref (mask, maskindex, NULL);
|
2093 |
|
|
body = build3_v (COND_EXPR, tmp, body,
|
2094 |
|
|
build_empty_stmt (input_location));
|
2095 |
|
|
}
|
2096 |
|
|
}
|
2097 |
|
|
body = gfc_trans_forall_loop (forall_tmp, body, mask_flag, &header);
|
2098 |
|
|
forall_tmp = forall_tmp->prev_nest;
|
2099 |
|
|
mask_flag = 1;
|
2100 |
|
|
}
|
2101 |
|
|
|
2102 |
|
|
gfc_add_expr_to_block (&header, body);
|
2103 |
|
|
return gfc_finish_block (&header);
|
2104 |
|
|
}
|
2105 |
|
|
|
2106 |
|
|
|
2107 |
|
|
/* Allocate data for holding a temporary array. Returns either a local
|
2108 |
|
|
temporary array or a pointer variable. */
|
2109 |
|
|
|
2110 |
|
|
static tree
|
2111 |
|
|
gfc_do_allocate (tree bytesize, tree size, tree * pdata, stmtblock_t * pblock,
|
2112 |
|
|
tree elem_type)
|
2113 |
|
|
{
|
2114 |
|
|
tree tmpvar;
|
2115 |
|
|
tree type;
|
2116 |
|
|
tree tmp;
|
2117 |
|
|
|
2118 |
|
|
if (INTEGER_CST_P (size))
|
2119 |
|
|
{
|
2120 |
|
|
tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, size,
|
2121 |
|
|
gfc_index_one_node);
|
2122 |
|
|
}
|
2123 |
|
|
else
|
2124 |
|
|
tmp = NULL_TREE;
|
2125 |
|
|
|
2126 |
|
|
type = build_range_type (gfc_array_index_type, gfc_index_zero_node, tmp);
|
2127 |
|
|
type = build_array_type (elem_type, type);
|
2128 |
|
|
if (gfc_can_put_var_on_stack (bytesize))
|
2129 |
|
|
{
|
2130 |
|
|
gcc_assert (INTEGER_CST_P (size));
|
2131 |
|
|
tmpvar = gfc_create_var (type, "temp");
|
2132 |
|
|
*pdata = NULL_TREE;
|
2133 |
|
|
}
|
2134 |
|
|
else
|
2135 |
|
|
{
|
2136 |
|
|
tmpvar = gfc_create_var (build_pointer_type (type), "temp");
|
2137 |
|
|
*pdata = convert (pvoid_type_node, tmpvar);
|
2138 |
|
|
|
2139 |
|
|
tmp = gfc_call_malloc (pblock, TREE_TYPE (tmpvar), bytesize);
|
2140 |
|
|
gfc_add_modify (pblock, tmpvar, tmp);
|
2141 |
|
|
}
|
2142 |
|
|
return tmpvar;
|
2143 |
|
|
}
|
2144 |
|
|
|
2145 |
|
|
|
2146 |
|
|
/* Generate codes to copy the temporary to the actual lhs. */
|
2147 |
|
|
|
2148 |
|
|
static tree
|
2149 |
|
|
generate_loop_for_temp_to_lhs (gfc_expr *expr, tree tmp1, tree count3,
|
2150 |
|
|
tree count1, tree wheremask, bool invert)
|
2151 |
|
|
{
|
2152 |
|
|
gfc_ss *lss;
|
2153 |
|
|
gfc_se lse, rse;
|
2154 |
|
|
stmtblock_t block, body;
|
2155 |
|
|
gfc_loopinfo loop1;
|
2156 |
|
|
tree tmp;
|
2157 |
|
|
tree wheremaskexpr;
|
2158 |
|
|
|
2159 |
|
|
/* Walk the lhs. */
|
2160 |
|
|
lss = gfc_walk_expr (expr);
|
2161 |
|
|
|
2162 |
|
|
if (lss == gfc_ss_terminator)
|
2163 |
|
|
{
|
2164 |
|
|
gfc_start_block (&block);
|
2165 |
|
|
|
2166 |
|
|
gfc_init_se (&lse, NULL);
|
2167 |
|
|
|
2168 |
|
|
/* Translate the expression. */
|
2169 |
|
|
gfc_conv_expr (&lse, expr);
|
2170 |
|
|
|
2171 |
|
|
/* Form the expression for the temporary. */
|
2172 |
|
|
tmp = gfc_build_array_ref (tmp1, count1, NULL);
|
2173 |
|
|
|
2174 |
|
|
/* Use the scalar assignment as is. */
|
2175 |
|
|
gfc_add_block_to_block (&block, &lse.pre);
|
2176 |
|
|
gfc_add_modify (&block, lse.expr, tmp);
|
2177 |
|
|
gfc_add_block_to_block (&block, &lse.post);
|
2178 |
|
|
|
2179 |
|
|
/* Increment the count1. */
|
2180 |
|
|
tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (count1), count1,
|
2181 |
|
|
gfc_index_one_node);
|
2182 |
|
|
gfc_add_modify (&block, count1, tmp);
|
2183 |
|
|
|
2184 |
|
|
tmp = gfc_finish_block (&block);
|
2185 |
|
|
}
|
2186 |
|
|
else
|
2187 |
|
|
{
|
2188 |
|
|
gfc_start_block (&block);
|
2189 |
|
|
|
2190 |
|
|
gfc_init_loopinfo (&loop1);
|
2191 |
|
|
gfc_init_se (&rse, NULL);
|
2192 |
|
|
gfc_init_se (&lse, NULL);
|
2193 |
|
|
|
2194 |
|
|
/* Associate the lss with the loop. */
|
2195 |
|
|
gfc_add_ss_to_loop (&loop1, lss);
|
2196 |
|
|
|
2197 |
|
|
/* Calculate the bounds of the scalarization. */
|
2198 |
|
|
gfc_conv_ss_startstride (&loop1);
|
2199 |
|
|
/* Setup the scalarizing loops. */
|
2200 |
|
|
gfc_conv_loop_setup (&loop1, &expr->where);
|
2201 |
|
|
|
2202 |
|
|
gfc_mark_ss_chain_used (lss, 1);
|
2203 |
|
|
|
2204 |
|
|
/* Start the scalarized loop body. */
|
2205 |
|
|
gfc_start_scalarized_body (&loop1, &body);
|
2206 |
|
|
|
2207 |
|
|
/* Setup the gfc_se structures. */
|
2208 |
|
|
gfc_copy_loopinfo_to_se (&lse, &loop1);
|
2209 |
|
|
lse.ss = lss;
|
2210 |
|
|
|
2211 |
|
|
/* Form the expression of the temporary. */
|
2212 |
|
|
if (lss != gfc_ss_terminator)
|
2213 |
|
|
rse.expr = gfc_build_array_ref (tmp1, count1, NULL);
|
2214 |
|
|
/* Translate expr. */
|
2215 |
|
|
gfc_conv_expr (&lse, expr);
|
2216 |
|
|
|
2217 |
|
|
/* Use the scalar assignment. */
|
2218 |
|
|
rse.string_length = lse.string_length;
|
2219 |
|
|
tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, false, false);
|
2220 |
|
|
|
2221 |
|
|
/* Form the mask expression according to the mask tree list. */
|
2222 |
|
|
if (wheremask)
|
2223 |
|
|
{
|
2224 |
|
|
wheremaskexpr = gfc_build_array_ref (wheremask, count3, NULL);
|
2225 |
|
|
if (invert)
|
2226 |
|
|
wheremaskexpr = fold_build1 (TRUTH_NOT_EXPR,
|
2227 |
|
|
TREE_TYPE (wheremaskexpr),
|
2228 |
|
|
wheremaskexpr);
|
2229 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node,
|
2230 |
|
|
wheremaskexpr, tmp,
|
2231 |
|
|
build_empty_stmt (input_location));
|
2232 |
|
|
}
|
2233 |
|
|
|
2234 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
2235 |
|
|
|
2236 |
|
|
/* Increment count1. */
|
2237 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2238 |
|
|
count1, gfc_index_one_node);
|
2239 |
|
|
gfc_add_modify (&body, count1, tmp);
|
2240 |
|
|
|
2241 |
|
|
/* Increment count3. */
|
2242 |
|
|
if (count3)
|
2243 |
|
|
{
|
2244 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2245 |
|
|
count3, gfc_index_one_node);
|
2246 |
|
|
gfc_add_modify (&body, count3, tmp);
|
2247 |
|
|
}
|
2248 |
|
|
|
2249 |
|
|
/* Generate the copying loops. */
|
2250 |
|
|
gfc_trans_scalarizing_loops (&loop1, &body);
|
2251 |
|
|
gfc_add_block_to_block (&block, &loop1.pre);
|
2252 |
|
|
gfc_add_block_to_block (&block, &loop1.post);
|
2253 |
|
|
gfc_cleanup_loop (&loop1);
|
2254 |
|
|
|
2255 |
|
|
tmp = gfc_finish_block (&block);
|
2256 |
|
|
}
|
2257 |
|
|
return tmp;
|
2258 |
|
|
}
|
2259 |
|
|
|
2260 |
|
|
|
2261 |
|
|
/* Generate codes to copy rhs to the temporary. TMP1 is the address of
|
2262 |
|
|
temporary, LSS and RSS are formed in function compute_inner_temp_size(),
|
2263 |
|
|
and should not be freed. WHEREMASK is the conditional execution mask
|
2264 |
|
|
whose sense may be inverted by INVERT. */
|
2265 |
|
|
|
2266 |
|
|
static tree
|
2267 |
|
|
generate_loop_for_rhs_to_temp (gfc_expr *expr2, tree tmp1, tree count3,
|
2268 |
|
|
tree count1, gfc_ss *lss, gfc_ss *rss,
|
2269 |
|
|
tree wheremask, bool invert)
|
2270 |
|
|
{
|
2271 |
|
|
stmtblock_t block, body1;
|
2272 |
|
|
gfc_loopinfo loop;
|
2273 |
|
|
gfc_se lse;
|
2274 |
|
|
gfc_se rse;
|
2275 |
|
|
tree tmp;
|
2276 |
|
|
tree wheremaskexpr;
|
2277 |
|
|
|
2278 |
|
|
gfc_start_block (&block);
|
2279 |
|
|
|
2280 |
|
|
gfc_init_se (&rse, NULL);
|
2281 |
|
|
gfc_init_se (&lse, NULL);
|
2282 |
|
|
|
2283 |
|
|
if (lss == gfc_ss_terminator)
|
2284 |
|
|
{
|
2285 |
|
|
gfc_init_block (&body1);
|
2286 |
|
|
gfc_conv_expr (&rse, expr2);
|
2287 |
|
|
lse.expr = gfc_build_array_ref (tmp1, count1, NULL);
|
2288 |
|
|
}
|
2289 |
|
|
else
|
2290 |
|
|
{
|
2291 |
|
|
/* Initialize the loop. */
|
2292 |
|
|
gfc_init_loopinfo (&loop);
|
2293 |
|
|
|
2294 |
|
|
/* We may need LSS to determine the shape of the expression. */
|
2295 |
|
|
gfc_add_ss_to_loop (&loop, lss);
|
2296 |
|
|
gfc_add_ss_to_loop (&loop, rss);
|
2297 |
|
|
|
2298 |
|
|
gfc_conv_ss_startstride (&loop);
|
2299 |
|
|
gfc_conv_loop_setup (&loop, &expr2->where);
|
2300 |
|
|
|
2301 |
|
|
gfc_mark_ss_chain_used (rss, 1);
|
2302 |
|
|
/* Start the loop body. */
|
2303 |
|
|
gfc_start_scalarized_body (&loop, &body1);
|
2304 |
|
|
|
2305 |
|
|
/* Translate the expression. */
|
2306 |
|
|
gfc_copy_loopinfo_to_se (&rse, &loop);
|
2307 |
|
|
rse.ss = rss;
|
2308 |
|
|
gfc_conv_expr (&rse, expr2);
|
2309 |
|
|
|
2310 |
|
|
/* Form the expression of the temporary. */
|
2311 |
|
|
lse.expr = gfc_build_array_ref (tmp1, count1, NULL);
|
2312 |
|
|
}
|
2313 |
|
|
|
2314 |
|
|
/* Use the scalar assignment. */
|
2315 |
|
|
lse.string_length = rse.string_length;
|
2316 |
|
|
tmp = gfc_trans_scalar_assign (&lse, &rse, expr2->ts, true,
|
2317 |
|
|
expr2->expr_type == EXPR_VARIABLE);
|
2318 |
|
|
|
2319 |
|
|
/* Form the mask expression according to the mask tree list. */
|
2320 |
|
|
if (wheremask)
|
2321 |
|
|
{
|
2322 |
|
|
wheremaskexpr = gfc_build_array_ref (wheremask, count3, NULL);
|
2323 |
|
|
if (invert)
|
2324 |
|
|
wheremaskexpr = fold_build1 (TRUTH_NOT_EXPR,
|
2325 |
|
|
TREE_TYPE (wheremaskexpr),
|
2326 |
|
|
wheremaskexpr);
|
2327 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node,
|
2328 |
|
|
wheremaskexpr, tmp, build_empty_stmt (input_location));
|
2329 |
|
|
}
|
2330 |
|
|
|
2331 |
|
|
gfc_add_expr_to_block (&body1, tmp);
|
2332 |
|
|
|
2333 |
|
|
if (lss == gfc_ss_terminator)
|
2334 |
|
|
{
|
2335 |
|
|
gfc_add_block_to_block (&block, &body1);
|
2336 |
|
|
|
2337 |
|
|
/* Increment count1. */
|
2338 |
|
|
tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (count1), count1,
|
2339 |
|
|
gfc_index_one_node);
|
2340 |
|
|
gfc_add_modify (&block, count1, tmp);
|
2341 |
|
|
}
|
2342 |
|
|
else
|
2343 |
|
|
{
|
2344 |
|
|
/* Increment count1. */
|
2345 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2346 |
|
|
count1, gfc_index_one_node);
|
2347 |
|
|
gfc_add_modify (&body1, count1, tmp);
|
2348 |
|
|
|
2349 |
|
|
/* Increment count3. */
|
2350 |
|
|
if (count3)
|
2351 |
|
|
{
|
2352 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2353 |
|
|
count3, gfc_index_one_node);
|
2354 |
|
|
gfc_add_modify (&body1, count3, tmp);
|
2355 |
|
|
}
|
2356 |
|
|
|
2357 |
|
|
/* Generate the copying loops. */
|
2358 |
|
|
gfc_trans_scalarizing_loops (&loop, &body1);
|
2359 |
|
|
|
2360 |
|
|
gfc_add_block_to_block (&block, &loop.pre);
|
2361 |
|
|
gfc_add_block_to_block (&block, &loop.post);
|
2362 |
|
|
|
2363 |
|
|
gfc_cleanup_loop (&loop);
|
2364 |
|
|
/* TODO: Reuse lss and rss when copying temp->lhs. Need to be careful
|
2365 |
|
|
as tree nodes in SS may not be valid in different scope. */
|
2366 |
|
|
}
|
2367 |
|
|
|
2368 |
|
|
tmp = gfc_finish_block (&block);
|
2369 |
|
|
return tmp;
|
2370 |
|
|
}
|
2371 |
|
|
|
2372 |
|
|
|
2373 |
|
|
/* Calculate the size of temporary needed in the assignment inside forall.
|
2374 |
|
|
LSS and RSS are filled in this function. */
|
2375 |
|
|
|
2376 |
|
|
static tree
|
2377 |
|
|
compute_inner_temp_size (gfc_expr *expr1, gfc_expr *expr2,
|
2378 |
|
|
stmtblock_t * pblock,
|
2379 |
|
|
gfc_ss **lss, gfc_ss **rss)
|
2380 |
|
|
{
|
2381 |
|
|
gfc_loopinfo loop;
|
2382 |
|
|
tree size;
|
2383 |
|
|
int i;
|
2384 |
|
|
int save_flag;
|
2385 |
|
|
tree tmp;
|
2386 |
|
|
|
2387 |
|
|
*lss = gfc_walk_expr (expr1);
|
2388 |
|
|
*rss = NULL;
|
2389 |
|
|
|
2390 |
|
|
size = gfc_index_one_node;
|
2391 |
|
|
if (*lss != gfc_ss_terminator)
|
2392 |
|
|
{
|
2393 |
|
|
gfc_init_loopinfo (&loop);
|
2394 |
|
|
|
2395 |
|
|
/* Walk the RHS of the expression. */
|
2396 |
|
|
*rss = gfc_walk_expr (expr2);
|
2397 |
|
|
if (*rss == gfc_ss_terminator)
|
2398 |
|
|
{
|
2399 |
|
|
/* The rhs is scalar. Add a ss for the expression. */
|
2400 |
|
|
*rss = gfc_get_ss ();
|
2401 |
|
|
(*rss)->next = gfc_ss_terminator;
|
2402 |
|
|
(*rss)->type = GFC_SS_SCALAR;
|
2403 |
|
|
(*rss)->expr = expr2;
|
2404 |
|
|
}
|
2405 |
|
|
|
2406 |
|
|
/* Associate the SS with the loop. */
|
2407 |
|
|
gfc_add_ss_to_loop (&loop, *lss);
|
2408 |
|
|
/* We don't actually need to add the rhs at this point, but it might
|
2409 |
|
|
make guessing the loop bounds a bit easier. */
|
2410 |
|
|
gfc_add_ss_to_loop (&loop, *rss);
|
2411 |
|
|
|
2412 |
|
|
/* We only want the shape of the expression, not rest of the junk
|
2413 |
|
|
generated by the scalarizer. */
|
2414 |
|
|
loop.array_parameter = 1;
|
2415 |
|
|
|
2416 |
|
|
/* Calculate the bounds of the scalarization. */
|
2417 |
|
|
save_flag = gfc_option.rtcheck;
|
2418 |
|
|
gfc_option.rtcheck &= !GFC_RTCHECK_BOUNDS;
|
2419 |
|
|
gfc_conv_ss_startstride (&loop);
|
2420 |
|
|
gfc_option.rtcheck = save_flag;
|
2421 |
|
|
gfc_conv_loop_setup (&loop, &expr2->where);
|
2422 |
|
|
|
2423 |
|
|
/* Figure out how many elements we need. */
|
2424 |
|
|
for (i = 0; i < loop.dimen; i++)
|
2425 |
|
|
{
|
2426 |
|
|
tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
|
2427 |
|
|
gfc_index_one_node, loop.from[i]);
|
2428 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2429 |
|
|
tmp, loop.to[i]);
|
2430 |
|
|
size = fold_build2 (MULT_EXPR, gfc_array_index_type, size, tmp);
|
2431 |
|
|
}
|
2432 |
|
|
gfc_add_block_to_block (pblock, &loop.pre);
|
2433 |
|
|
size = gfc_evaluate_now (size, pblock);
|
2434 |
|
|
gfc_add_block_to_block (pblock, &loop.post);
|
2435 |
|
|
|
2436 |
|
|
/* TODO: write a function that cleans up a loopinfo without freeing
|
2437 |
|
|
the SS chains. Currently a NOP. */
|
2438 |
|
|
}
|
2439 |
|
|
|
2440 |
|
|
return size;
|
2441 |
|
|
}
|
2442 |
|
|
|
2443 |
|
|
|
2444 |
|
|
/* Calculate the overall iterator number of the nested forall construct.
|
2445 |
|
|
This routine actually calculates the number of times the body of the
|
2446 |
|
|
nested forall specified by NESTED_FORALL_INFO is executed and multiplies
|
2447 |
|
|
that by the expression INNER_SIZE. The BLOCK argument specifies the
|
2448 |
|
|
block in which to calculate the result, and the optional INNER_SIZE_BODY
|
2449 |
|
|
argument contains any statements that need to executed (inside the loop)
|
2450 |
|
|
to initialize or calculate INNER_SIZE. */
|
2451 |
|
|
|
2452 |
|
|
static tree
|
2453 |
|
|
compute_overall_iter_number (forall_info *nested_forall_info, tree inner_size,
|
2454 |
|
|
stmtblock_t *inner_size_body, stmtblock_t *block)
|
2455 |
|
|
{
|
2456 |
|
|
forall_info *forall_tmp = nested_forall_info;
|
2457 |
|
|
tree tmp, number;
|
2458 |
|
|
stmtblock_t body;
|
2459 |
|
|
|
2460 |
|
|
/* We can eliminate the innermost unconditional loops with constant
|
2461 |
|
|
array bounds. */
|
2462 |
|
|
if (INTEGER_CST_P (inner_size))
|
2463 |
|
|
{
|
2464 |
|
|
while (forall_tmp
|
2465 |
|
|
&& !forall_tmp->mask
|
2466 |
|
|
&& INTEGER_CST_P (forall_tmp->size))
|
2467 |
|
|
{
|
2468 |
|
|
inner_size = fold_build2 (MULT_EXPR, gfc_array_index_type,
|
2469 |
|
|
inner_size, forall_tmp->size);
|
2470 |
|
|
forall_tmp = forall_tmp->prev_nest;
|
2471 |
|
|
}
|
2472 |
|
|
|
2473 |
|
|
/* If there are no loops left, we have our constant result. */
|
2474 |
|
|
if (!forall_tmp)
|
2475 |
|
|
return inner_size;
|
2476 |
|
|
}
|
2477 |
|
|
|
2478 |
|
|
/* Otherwise, create a temporary variable to compute the result. */
|
2479 |
|
|
number = gfc_create_var (gfc_array_index_type, "num");
|
2480 |
|
|
gfc_add_modify (block, number, gfc_index_zero_node);
|
2481 |
|
|
|
2482 |
|
|
gfc_start_block (&body);
|
2483 |
|
|
if (inner_size_body)
|
2484 |
|
|
gfc_add_block_to_block (&body, inner_size_body);
|
2485 |
|
|
if (forall_tmp)
|
2486 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2487 |
|
|
number, inner_size);
|
2488 |
|
|
else
|
2489 |
|
|
tmp = inner_size;
|
2490 |
|
|
gfc_add_modify (&body, number, tmp);
|
2491 |
|
|
tmp = gfc_finish_block (&body);
|
2492 |
|
|
|
2493 |
|
|
/* Generate loops. */
|
2494 |
|
|
if (forall_tmp != NULL)
|
2495 |
|
|
tmp = gfc_trans_nested_forall_loop (forall_tmp, tmp, 1);
|
2496 |
|
|
|
2497 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2498 |
|
|
|
2499 |
|
|
return number;
|
2500 |
|
|
}
|
2501 |
|
|
|
2502 |
|
|
|
2503 |
|
|
/* Allocate temporary for forall construct. SIZE is the size of temporary
|
2504 |
|
|
needed. PTEMP1 is returned for space free. */
|
2505 |
|
|
|
2506 |
|
|
static tree
|
2507 |
|
|
allocate_temp_for_forall_nest_1 (tree type, tree size, stmtblock_t * block,
|
2508 |
|
|
tree * ptemp1)
|
2509 |
|
|
{
|
2510 |
|
|
tree bytesize;
|
2511 |
|
|
tree unit;
|
2512 |
|
|
tree tmp;
|
2513 |
|
|
|
2514 |
|
|
unit = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (type));
|
2515 |
|
|
if (!integer_onep (unit))
|
2516 |
|
|
bytesize = fold_build2 (MULT_EXPR, gfc_array_index_type, size, unit);
|
2517 |
|
|
else
|
2518 |
|
|
bytesize = size;
|
2519 |
|
|
|
2520 |
|
|
*ptemp1 = NULL;
|
2521 |
|
|
tmp = gfc_do_allocate (bytesize, size, ptemp1, block, type);
|
2522 |
|
|
|
2523 |
|
|
if (*ptemp1)
|
2524 |
|
|
tmp = build_fold_indirect_ref_loc (input_location, tmp);
|
2525 |
|
|
return tmp;
|
2526 |
|
|
}
|
2527 |
|
|
|
2528 |
|
|
|
2529 |
|
|
/* Allocate temporary for forall construct according to the information in
|
2530 |
|
|
nested_forall_info. INNER_SIZE is the size of temporary needed in the
|
2531 |
|
|
assignment inside forall. PTEMP1 is returned for space free. */
|
2532 |
|
|
|
2533 |
|
|
static tree
|
2534 |
|
|
allocate_temp_for_forall_nest (forall_info * nested_forall_info, tree type,
|
2535 |
|
|
tree inner_size, stmtblock_t * inner_size_body,
|
2536 |
|
|
stmtblock_t * block, tree * ptemp1)
|
2537 |
|
|
{
|
2538 |
|
|
tree size;
|
2539 |
|
|
|
2540 |
|
|
/* Calculate the total size of temporary needed in forall construct. */
|
2541 |
|
|
size = compute_overall_iter_number (nested_forall_info, inner_size,
|
2542 |
|
|
inner_size_body, block);
|
2543 |
|
|
|
2544 |
|
|
return allocate_temp_for_forall_nest_1 (type, size, block, ptemp1);
|
2545 |
|
|
}
|
2546 |
|
|
|
2547 |
|
|
|
2548 |
|
|
/* Handle assignments inside forall which need temporary.
|
2549 |
|
|
|
2550 |
|
|
forall (i=start:end:stride; maskexpr)
|
2551 |
|
|
e<i> = f<i>
|
2552 |
|
|
end forall
|
2553 |
|
|
(where e,f<i> are arbitrary expressions possibly involving i
|
2554 |
|
|
and there is a dependency between e<i> and f<i>)
|
2555 |
|
|
Translates to:
|
2556 |
|
|
masktmp(:) = maskexpr(:)
|
2557 |
|
|
|
2558 |
|
|
maskindex = 0;
|
2559 |
|
|
count1 = 0;
|
2560 |
|
|
num = 0;
|
2561 |
|
|
for (i = start; i <= end; i += stride)
|
2562 |
|
|
num += SIZE (f<i>)
|
2563 |
|
|
count1 = 0;
|
2564 |
|
|
ALLOCATE (tmp(num))
|
2565 |
|
|
for (i = start; i <= end; i += stride)
|
2566 |
|
|
{
|
2567 |
|
|
if (masktmp[maskindex++])
|
2568 |
|
|
tmp[count1++] = f<i>
|
2569 |
|
|
}
|
2570 |
|
|
maskindex = 0;
|
2571 |
|
|
count1 = 0;
|
2572 |
|
|
for (i = start; i <= end; i += stride)
|
2573 |
|
|
{
|
2574 |
|
|
if (masktmp[maskindex++])
|
2575 |
|
|
e<i> = tmp[count1++]
|
2576 |
|
|
}
|
2577 |
|
|
DEALLOCATE (tmp)
|
2578 |
|
|
*/
|
2579 |
|
|
static void
|
2580 |
|
|
gfc_trans_assign_need_temp (gfc_expr * expr1, gfc_expr * expr2,
|
2581 |
|
|
tree wheremask, bool invert,
|
2582 |
|
|
forall_info * nested_forall_info,
|
2583 |
|
|
stmtblock_t * block)
|
2584 |
|
|
{
|
2585 |
|
|
tree type;
|
2586 |
|
|
tree inner_size;
|
2587 |
|
|
gfc_ss *lss, *rss;
|
2588 |
|
|
tree count, count1;
|
2589 |
|
|
tree tmp, tmp1;
|
2590 |
|
|
tree ptemp1;
|
2591 |
|
|
stmtblock_t inner_size_body;
|
2592 |
|
|
|
2593 |
|
|
/* Create vars. count1 is the current iterator number of the nested
|
2594 |
|
|
forall. */
|
2595 |
|
|
count1 = gfc_create_var (gfc_array_index_type, "count1");
|
2596 |
|
|
|
2597 |
|
|
/* Count is the wheremask index. */
|
2598 |
|
|
if (wheremask)
|
2599 |
|
|
{
|
2600 |
|
|
count = gfc_create_var (gfc_array_index_type, "count");
|
2601 |
|
|
gfc_add_modify (block, count, gfc_index_zero_node);
|
2602 |
|
|
}
|
2603 |
|
|
else
|
2604 |
|
|
count = NULL;
|
2605 |
|
|
|
2606 |
|
|
/* Initialize count1. */
|
2607 |
|
|
gfc_add_modify (block, count1, gfc_index_zero_node);
|
2608 |
|
|
|
2609 |
|
|
/* Calculate the size of temporary needed in the assignment. Return loop, lss
|
2610 |
|
|
and rss which are used in function generate_loop_for_rhs_to_temp(). */
|
2611 |
|
|
gfc_init_block (&inner_size_body);
|
2612 |
|
|
inner_size = compute_inner_temp_size (expr1, expr2, &inner_size_body,
|
2613 |
|
|
&lss, &rss);
|
2614 |
|
|
|
2615 |
|
|
/* The type of LHS. Used in function allocate_temp_for_forall_nest */
|
2616 |
|
|
if (expr1->ts.type == BT_CHARACTER && expr1->ts.u.cl->length)
|
2617 |
|
|
{
|
2618 |
|
|
if (!expr1->ts.u.cl->backend_decl)
|
2619 |
|
|
{
|
2620 |
|
|
gfc_se tse;
|
2621 |
|
|
gfc_init_se (&tse, NULL);
|
2622 |
|
|
gfc_conv_expr (&tse, expr1->ts.u.cl->length);
|
2623 |
|
|
expr1->ts.u.cl->backend_decl = tse.expr;
|
2624 |
|
|
}
|
2625 |
|
|
type = gfc_get_character_type_len (gfc_default_character_kind,
|
2626 |
|
|
expr1->ts.u.cl->backend_decl);
|
2627 |
|
|
}
|
2628 |
|
|
else
|
2629 |
|
|
type = gfc_typenode_for_spec (&expr1->ts);
|
2630 |
|
|
|
2631 |
|
|
/* Allocate temporary for nested forall construct according to the
|
2632 |
|
|
information in nested_forall_info and inner_size. */
|
2633 |
|
|
tmp1 = allocate_temp_for_forall_nest (nested_forall_info, type, inner_size,
|
2634 |
|
|
&inner_size_body, block, &ptemp1);
|
2635 |
|
|
|
2636 |
|
|
/* Generate codes to copy rhs to the temporary . */
|
2637 |
|
|
tmp = generate_loop_for_rhs_to_temp (expr2, tmp1, count, count1, lss, rss,
|
2638 |
|
|
wheremask, invert);
|
2639 |
|
|
|
2640 |
|
|
/* Generate body and loops according to the information in
|
2641 |
|
|
nested_forall_info. */
|
2642 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1);
|
2643 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2644 |
|
|
|
2645 |
|
|
/* Reset count1. */
|
2646 |
|
|
gfc_add_modify (block, count1, gfc_index_zero_node);
|
2647 |
|
|
|
2648 |
|
|
/* Reset count. */
|
2649 |
|
|
if (wheremask)
|
2650 |
|
|
gfc_add_modify (block, count, gfc_index_zero_node);
|
2651 |
|
|
|
2652 |
|
|
/* Generate codes to copy the temporary to lhs. */
|
2653 |
|
|
tmp = generate_loop_for_temp_to_lhs (expr1, tmp1, count, count1,
|
2654 |
|
|
wheremask, invert);
|
2655 |
|
|
|
2656 |
|
|
/* Generate body and loops according to the information in
|
2657 |
|
|
nested_forall_info. */
|
2658 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1);
|
2659 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2660 |
|
|
|
2661 |
|
|
if (ptemp1)
|
2662 |
|
|
{
|
2663 |
|
|
/* Free the temporary. */
|
2664 |
|
|
tmp = gfc_call_free (ptemp1);
|
2665 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2666 |
|
|
}
|
2667 |
|
|
}
|
2668 |
|
|
|
2669 |
|
|
|
2670 |
|
|
/* Translate pointer assignment inside FORALL which need temporary. */
|
2671 |
|
|
|
2672 |
|
|
static void
|
2673 |
|
|
gfc_trans_pointer_assign_need_temp (gfc_expr * expr1, gfc_expr * expr2,
|
2674 |
|
|
forall_info * nested_forall_info,
|
2675 |
|
|
stmtblock_t * block)
|
2676 |
|
|
{
|
2677 |
|
|
tree type;
|
2678 |
|
|
tree inner_size;
|
2679 |
|
|
gfc_ss *lss, *rss;
|
2680 |
|
|
gfc_se lse;
|
2681 |
|
|
gfc_se rse;
|
2682 |
|
|
gfc_ss_info *info;
|
2683 |
|
|
gfc_loopinfo loop;
|
2684 |
|
|
tree desc;
|
2685 |
|
|
tree parm;
|
2686 |
|
|
tree parmtype;
|
2687 |
|
|
stmtblock_t body;
|
2688 |
|
|
tree count;
|
2689 |
|
|
tree tmp, tmp1, ptemp1;
|
2690 |
|
|
|
2691 |
|
|
count = gfc_create_var (gfc_array_index_type, "count");
|
2692 |
|
|
gfc_add_modify (block, count, gfc_index_zero_node);
|
2693 |
|
|
|
2694 |
|
|
inner_size = integer_one_node;
|
2695 |
|
|
lss = gfc_walk_expr (expr1);
|
2696 |
|
|
rss = gfc_walk_expr (expr2);
|
2697 |
|
|
if (lss == gfc_ss_terminator)
|
2698 |
|
|
{
|
2699 |
|
|
type = gfc_typenode_for_spec (&expr1->ts);
|
2700 |
|
|
type = build_pointer_type (type);
|
2701 |
|
|
|
2702 |
|
|
/* Allocate temporary for nested forall construct according to the
|
2703 |
|
|
information in nested_forall_info and inner_size. */
|
2704 |
|
|
tmp1 = allocate_temp_for_forall_nest (nested_forall_info, type,
|
2705 |
|
|
inner_size, NULL, block, &ptemp1);
|
2706 |
|
|
gfc_start_block (&body);
|
2707 |
|
|
gfc_init_se (&lse, NULL);
|
2708 |
|
|
lse.expr = gfc_build_array_ref (tmp1, count, NULL);
|
2709 |
|
|
gfc_init_se (&rse, NULL);
|
2710 |
|
|
rse.want_pointer = 1;
|
2711 |
|
|
gfc_conv_expr (&rse, expr2);
|
2712 |
|
|
gfc_add_block_to_block (&body, &rse.pre);
|
2713 |
|
|
gfc_add_modify (&body, lse.expr,
|
2714 |
|
|
fold_convert (TREE_TYPE (lse.expr), rse.expr));
|
2715 |
|
|
gfc_add_block_to_block (&body, &rse.post);
|
2716 |
|
|
|
2717 |
|
|
/* Increment count. */
|
2718 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2719 |
|
|
count, gfc_index_one_node);
|
2720 |
|
|
gfc_add_modify (&body, count, tmp);
|
2721 |
|
|
|
2722 |
|
|
tmp = gfc_finish_block (&body);
|
2723 |
|
|
|
2724 |
|
|
/* Generate body and loops according to the information in
|
2725 |
|
|
nested_forall_info. */
|
2726 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1);
|
2727 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2728 |
|
|
|
2729 |
|
|
/* Reset count. */
|
2730 |
|
|
gfc_add_modify (block, count, gfc_index_zero_node);
|
2731 |
|
|
|
2732 |
|
|
gfc_start_block (&body);
|
2733 |
|
|
gfc_init_se (&lse, NULL);
|
2734 |
|
|
gfc_init_se (&rse, NULL);
|
2735 |
|
|
rse.expr = gfc_build_array_ref (tmp1, count, NULL);
|
2736 |
|
|
lse.want_pointer = 1;
|
2737 |
|
|
gfc_conv_expr (&lse, expr1);
|
2738 |
|
|
gfc_add_block_to_block (&body, &lse.pre);
|
2739 |
|
|
gfc_add_modify (&body, lse.expr, rse.expr);
|
2740 |
|
|
gfc_add_block_to_block (&body, &lse.post);
|
2741 |
|
|
/* Increment count. */
|
2742 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2743 |
|
|
count, gfc_index_one_node);
|
2744 |
|
|
gfc_add_modify (&body, count, tmp);
|
2745 |
|
|
tmp = gfc_finish_block (&body);
|
2746 |
|
|
|
2747 |
|
|
/* Generate body and loops according to the information in
|
2748 |
|
|
nested_forall_info. */
|
2749 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1);
|
2750 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2751 |
|
|
}
|
2752 |
|
|
else
|
2753 |
|
|
{
|
2754 |
|
|
gfc_init_loopinfo (&loop);
|
2755 |
|
|
|
2756 |
|
|
/* Associate the SS with the loop. */
|
2757 |
|
|
gfc_add_ss_to_loop (&loop, rss);
|
2758 |
|
|
|
2759 |
|
|
/* Setup the scalarizing loops and bounds. */
|
2760 |
|
|
gfc_conv_ss_startstride (&loop);
|
2761 |
|
|
|
2762 |
|
|
gfc_conv_loop_setup (&loop, &expr2->where);
|
2763 |
|
|
|
2764 |
|
|
info = &rss->data.info;
|
2765 |
|
|
desc = info->descriptor;
|
2766 |
|
|
|
2767 |
|
|
/* Make a new descriptor. */
|
2768 |
|
|
parmtype = gfc_get_element_type (TREE_TYPE (desc));
|
2769 |
|
|
parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen,
|
2770 |
|
|
loop.from, loop.to, 1,
|
2771 |
|
|
GFC_ARRAY_UNKNOWN, true);
|
2772 |
|
|
|
2773 |
|
|
/* Allocate temporary for nested forall construct. */
|
2774 |
|
|
tmp1 = allocate_temp_for_forall_nest (nested_forall_info, parmtype,
|
2775 |
|
|
inner_size, NULL, block, &ptemp1);
|
2776 |
|
|
gfc_start_block (&body);
|
2777 |
|
|
gfc_init_se (&lse, NULL);
|
2778 |
|
|
lse.expr = gfc_build_array_ref (tmp1, count, NULL);
|
2779 |
|
|
lse.direct_byref = 1;
|
2780 |
|
|
rss = gfc_walk_expr (expr2);
|
2781 |
|
|
gfc_conv_expr_descriptor (&lse, expr2, rss);
|
2782 |
|
|
|
2783 |
|
|
gfc_add_block_to_block (&body, &lse.pre);
|
2784 |
|
|
gfc_add_block_to_block (&body, &lse.post);
|
2785 |
|
|
|
2786 |
|
|
/* Increment count. */
|
2787 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2788 |
|
|
count, gfc_index_one_node);
|
2789 |
|
|
gfc_add_modify (&body, count, tmp);
|
2790 |
|
|
|
2791 |
|
|
tmp = gfc_finish_block (&body);
|
2792 |
|
|
|
2793 |
|
|
/* Generate body and loops according to the information in
|
2794 |
|
|
nested_forall_info. */
|
2795 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1);
|
2796 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2797 |
|
|
|
2798 |
|
|
/* Reset count. */
|
2799 |
|
|
gfc_add_modify (block, count, gfc_index_zero_node);
|
2800 |
|
|
|
2801 |
|
|
parm = gfc_build_array_ref (tmp1, count, NULL);
|
2802 |
|
|
lss = gfc_walk_expr (expr1);
|
2803 |
|
|
gfc_init_se (&lse, NULL);
|
2804 |
|
|
gfc_conv_expr_descriptor (&lse, expr1, lss);
|
2805 |
|
|
gfc_add_modify (&lse.pre, lse.expr, parm);
|
2806 |
|
|
gfc_start_block (&body);
|
2807 |
|
|
gfc_add_block_to_block (&body, &lse.pre);
|
2808 |
|
|
gfc_add_block_to_block (&body, &lse.post);
|
2809 |
|
|
|
2810 |
|
|
/* Increment count. */
|
2811 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
2812 |
|
|
count, gfc_index_one_node);
|
2813 |
|
|
gfc_add_modify (&body, count, tmp);
|
2814 |
|
|
|
2815 |
|
|
tmp = gfc_finish_block (&body);
|
2816 |
|
|
|
2817 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1);
|
2818 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2819 |
|
|
}
|
2820 |
|
|
/* Free the temporary. */
|
2821 |
|
|
if (ptemp1)
|
2822 |
|
|
{
|
2823 |
|
|
tmp = gfc_call_free (ptemp1);
|
2824 |
|
|
gfc_add_expr_to_block (block, tmp);
|
2825 |
|
|
}
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
|
2829 |
|
|
/* FORALL and WHERE statements are really nasty, especially when you nest
|
2830 |
|
|
them. All the rhs of a forall assignment must be evaluated before the
|
2831 |
|
|
actual assignments are performed. Presumably this also applies to all the
|
2832 |
|
|
assignments in an inner where statement. */
|
2833 |
|
|
|
2834 |
|
|
/* Generate code for a FORALL statement. Any temporaries are allocated as a
|
2835 |
|
|
linear array, relying on the fact that we process in the same order in all
|
2836 |
|
|
loops.
|
2837 |
|
|
|
2838 |
|
|
forall (i=start:end:stride; maskexpr)
|
2839 |
|
|
e<i> = f<i>
|
2840 |
|
|
g<i> = h<i>
|
2841 |
|
|
end forall
|
2842 |
|
|
(where e,f,g,h<i> are arbitrary expressions possibly involving i)
|
2843 |
|
|
Translates to:
|
2844 |
|
|
count = ((end + 1 - start) / stride)
|
2845 |
|
|
masktmp(:) = maskexpr(:)
|
2846 |
|
|
|
2847 |
|
|
maskindex = 0;
|
2848 |
|
|
for (i = start; i <= end; i += stride)
|
2849 |
|
|
{
|
2850 |
|
|
if (masktmp[maskindex++])
|
2851 |
|
|
e<i> = f<i>
|
2852 |
|
|
}
|
2853 |
|
|
maskindex = 0;
|
2854 |
|
|
for (i = start; i <= end; i += stride)
|
2855 |
|
|
{
|
2856 |
|
|
if (masktmp[maskindex++])
|
2857 |
|
|
g<i> = h<i>
|
2858 |
|
|
}
|
2859 |
|
|
|
2860 |
|
|
Note that this code only works when there are no dependencies.
|
2861 |
|
|
Forall loop with array assignments and data dependencies are a real pain,
|
2862 |
|
|
because the size of the temporary cannot always be determined before the
|
2863 |
|
|
loop is executed. This problem is compounded by the presence of nested
|
2864 |
|
|
FORALL constructs.
|
2865 |
|
|
*/
|
2866 |
|
|
|
2867 |
|
|
static tree
|
2868 |
|
|
gfc_trans_forall_1 (gfc_code * code, forall_info * nested_forall_info)
|
2869 |
|
|
{
|
2870 |
|
|
stmtblock_t pre;
|
2871 |
|
|
stmtblock_t post;
|
2872 |
|
|
stmtblock_t block;
|
2873 |
|
|
stmtblock_t body;
|
2874 |
|
|
tree *var;
|
2875 |
|
|
tree *start;
|
2876 |
|
|
tree *end;
|
2877 |
|
|
tree *step;
|
2878 |
|
|
gfc_expr **varexpr;
|
2879 |
|
|
tree tmp;
|
2880 |
|
|
tree assign;
|
2881 |
|
|
tree size;
|
2882 |
|
|
tree maskindex;
|
2883 |
|
|
tree mask;
|
2884 |
|
|
tree pmask;
|
2885 |
|
|
int n;
|
2886 |
|
|
int nvar;
|
2887 |
|
|
int need_temp;
|
2888 |
|
|
gfc_forall_iterator *fa;
|
2889 |
|
|
gfc_se se;
|
2890 |
|
|
gfc_code *c;
|
2891 |
|
|
gfc_saved_var *saved_vars;
|
2892 |
|
|
iter_info *this_forall;
|
2893 |
|
|
forall_info *info;
|
2894 |
|
|
bool need_mask;
|
2895 |
|
|
|
2896 |
|
|
/* Do nothing if the mask is false. */
|
2897 |
|
|
if (code->expr1
|
2898 |
|
|
&& code->expr1->expr_type == EXPR_CONSTANT
|
2899 |
|
|
&& !code->expr1->value.logical)
|
2900 |
|
|
return build_empty_stmt (input_location);
|
2901 |
|
|
|
2902 |
|
|
n = 0;
|
2903 |
|
|
/* Count the FORALL index number. */
|
2904 |
|
|
for (fa = code->ext.forall_iterator; fa; fa = fa->next)
|
2905 |
|
|
n++;
|
2906 |
|
|
nvar = n;
|
2907 |
|
|
|
2908 |
|
|
/* Allocate the space for var, start, end, step, varexpr. */
|
2909 |
|
|
var = (tree *) gfc_getmem (nvar * sizeof (tree));
|
2910 |
|
|
start = (tree *) gfc_getmem (nvar * sizeof (tree));
|
2911 |
|
|
end = (tree *) gfc_getmem (nvar * sizeof (tree));
|
2912 |
|
|
step = (tree *) gfc_getmem (nvar * sizeof (tree));
|
2913 |
|
|
varexpr = (gfc_expr **) gfc_getmem (nvar * sizeof (gfc_expr *));
|
2914 |
|
|
saved_vars = (gfc_saved_var *) gfc_getmem (nvar * sizeof (gfc_saved_var));
|
2915 |
|
|
|
2916 |
|
|
/* Allocate the space for info. */
|
2917 |
|
|
info = (forall_info *) gfc_getmem (sizeof (forall_info));
|
2918 |
|
|
|
2919 |
|
|
gfc_start_block (&pre);
|
2920 |
|
|
gfc_init_block (&post);
|
2921 |
|
|
gfc_init_block (&block);
|
2922 |
|
|
|
2923 |
|
|
n = 0;
|
2924 |
|
|
for (fa = code->ext.forall_iterator; fa; fa = fa->next)
|
2925 |
|
|
{
|
2926 |
|
|
gfc_symbol *sym = fa->var->symtree->n.sym;
|
2927 |
|
|
|
2928 |
|
|
/* Allocate space for this_forall. */
|
2929 |
|
|
this_forall = (iter_info *) gfc_getmem (sizeof (iter_info));
|
2930 |
|
|
|
2931 |
|
|
/* Create a temporary variable for the FORALL index. */
|
2932 |
|
|
tmp = gfc_typenode_for_spec (&sym->ts);
|
2933 |
|
|
var[n] = gfc_create_var (tmp, sym->name);
|
2934 |
|
|
gfc_shadow_sym (sym, var[n], &saved_vars[n]);
|
2935 |
|
|
|
2936 |
|
|
/* Record it in this_forall. */
|
2937 |
|
|
this_forall->var = var[n];
|
2938 |
|
|
|
2939 |
|
|
/* Replace the index symbol's backend_decl with the temporary decl. */
|
2940 |
|
|
sym->backend_decl = var[n];
|
2941 |
|
|
|
2942 |
|
|
/* Work out the start, end and stride for the loop. */
|
2943 |
|
|
gfc_init_se (&se, NULL);
|
2944 |
|
|
gfc_conv_expr_val (&se, fa->start);
|
2945 |
|
|
/* Record it in this_forall. */
|
2946 |
|
|
this_forall->start = se.expr;
|
2947 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
2948 |
|
|
start[n] = se.expr;
|
2949 |
|
|
|
2950 |
|
|
gfc_init_se (&se, NULL);
|
2951 |
|
|
gfc_conv_expr_val (&se, fa->end);
|
2952 |
|
|
/* Record it in this_forall. */
|
2953 |
|
|
this_forall->end = se.expr;
|
2954 |
|
|
gfc_make_safe_expr (&se);
|
2955 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
2956 |
|
|
end[n] = se.expr;
|
2957 |
|
|
|
2958 |
|
|
gfc_init_se (&se, NULL);
|
2959 |
|
|
gfc_conv_expr_val (&se, fa->stride);
|
2960 |
|
|
/* Record it in this_forall. */
|
2961 |
|
|
this_forall->step = se.expr;
|
2962 |
|
|
gfc_make_safe_expr (&se);
|
2963 |
|
|
gfc_add_block_to_block (&block, &se.pre);
|
2964 |
|
|
step[n] = se.expr;
|
2965 |
|
|
|
2966 |
|
|
/* Set the NEXT field of this_forall to NULL. */
|
2967 |
|
|
this_forall->next = NULL;
|
2968 |
|
|
/* Link this_forall to the info construct. */
|
2969 |
|
|
if (info->this_loop)
|
2970 |
|
|
{
|
2971 |
|
|
iter_info *iter_tmp = info->this_loop;
|
2972 |
|
|
while (iter_tmp->next != NULL)
|
2973 |
|
|
iter_tmp = iter_tmp->next;
|
2974 |
|
|
iter_tmp->next = this_forall;
|
2975 |
|
|
}
|
2976 |
|
|
else
|
2977 |
|
|
info->this_loop = this_forall;
|
2978 |
|
|
|
2979 |
|
|
n++;
|
2980 |
|
|
}
|
2981 |
|
|
nvar = n;
|
2982 |
|
|
|
2983 |
|
|
/* Calculate the size needed for the current forall level. */
|
2984 |
|
|
size = gfc_index_one_node;
|
2985 |
|
|
for (n = 0; n < nvar; n++)
|
2986 |
|
|
{
|
2987 |
|
|
/* size = (end + step - start) / step. */
|
2988 |
|
|
tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (start[n]),
|
2989 |
|
|
step[n], start[n]);
|
2990 |
|
|
tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (end[n]), end[n], tmp);
|
2991 |
|
|
|
2992 |
|
|
tmp = fold_build2 (FLOOR_DIV_EXPR, TREE_TYPE (tmp), tmp, step[n]);
|
2993 |
|
|
tmp = convert (gfc_array_index_type, tmp);
|
2994 |
|
|
|
2995 |
|
|
size = fold_build2 (MULT_EXPR, gfc_array_index_type, size, tmp);
|
2996 |
|
|
}
|
2997 |
|
|
|
2998 |
|
|
/* Record the nvar and size of current forall level. */
|
2999 |
|
|
info->nvar = nvar;
|
3000 |
|
|
info->size = size;
|
3001 |
|
|
|
3002 |
|
|
if (code->expr1)
|
3003 |
|
|
{
|
3004 |
|
|
/* If the mask is .true., consider the FORALL unconditional. */
|
3005 |
|
|
if (code->expr1->expr_type == EXPR_CONSTANT
|
3006 |
|
|
&& code->expr1->value.logical)
|
3007 |
|
|
need_mask = false;
|
3008 |
|
|
else
|
3009 |
|
|
need_mask = true;
|
3010 |
|
|
}
|
3011 |
|
|
else
|
3012 |
|
|
need_mask = false;
|
3013 |
|
|
|
3014 |
|
|
/* First we need to allocate the mask. */
|
3015 |
|
|
if (need_mask)
|
3016 |
|
|
{
|
3017 |
|
|
/* As the mask array can be very big, prefer compact boolean types. */
|
3018 |
|
|
tree mask_type = gfc_get_logical_type (gfc_logical_kinds[0].kind);
|
3019 |
|
|
mask = allocate_temp_for_forall_nest (nested_forall_info, mask_type,
|
3020 |
|
|
size, NULL, &block, &pmask);
|
3021 |
|
|
maskindex = gfc_create_var_np (gfc_array_index_type, "mi");
|
3022 |
|
|
|
3023 |
|
|
/* Record them in the info structure. */
|
3024 |
|
|
info->maskindex = maskindex;
|
3025 |
|
|
info->mask = mask;
|
3026 |
|
|
}
|
3027 |
|
|
else
|
3028 |
|
|
{
|
3029 |
|
|
/* No mask was specified. */
|
3030 |
|
|
maskindex = NULL_TREE;
|
3031 |
|
|
mask = pmask = NULL_TREE;
|
3032 |
|
|
}
|
3033 |
|
|
|
3034 |
|
|
/* Link the current forall level to nested_forall_info. */
|
3035 |
|
|
info->prev_nest = nested_forall_info;
|
3036 |
|
|
nested_forall_info = info;
|
3037 |
|
|
|
3038 |
|
|
/* Copy the mask into a temporary variable if required.
|
3039 |
|
|
For now we assume a mask temporary is needed. */
|
3040 |
|
|
if (need_mask)
|
3041 |
|
|
{
|
3042 |
|
|
/* As the mask array can be very big, prefer compact boolean types. */
|
3043 |
|
|
tree mask_type = gfc_get_logical_type (gfc_logical_kinds[0].kind);
|
3044 |
|
|
|
3045 |
|
|
gfc_add_modify (&block, maskindex, gfc_index_zero_node);
|
3046 |
|
|
|
3047 |
|
|
/* Start of mask assignment loop body. */
|
3048 |
|
|
gfc_start_block (&body);
|
3049 |
|
|
|
3050 |
|
|
/* Evaluate the mask expression. */
|
3051 |
|
|
gfc_init_se (&se, NULL);
|
3052 |
|
|
gfc_conv_expr_val (&se, code->expr1);
|
3053 |
|
|
gfc_add_block_to_block (&body, &se.pre);
|
3054 |
|
|
|
3055 |
|
|
/* Store the mask. */
|
3056 |
|
|
se.expr = convert (mask_type, se.expr);
|
3057 |
|
|
|
3058 |
|
|
tmp = gfc_build_array_ref (mask, maskindex, NULL);
|
3059 |
|
|
gfc_add_modify (&body, tmp, se.expr);
|
3060 |
|
|
|
3061 |
|
|
/* Advance to the next mask element. */
|
3062 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
3063 |
|
|
maskindex, gfc_index_one_node);
|
3064 |
|
|
gfc_add_modify (&body, maskindex, tmp);
|
3065 |
|
|
|
3066 |
|
|
/* Generate the loops. */
|
3067 |
|
|
tmp = gfc_finish_block (&body);
|
3068 |
|
|
tmp = gfc_trans_nested_forall_loop (info, tmp, 0);
|
3069 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
3070 |
|
|
}
|
3071 |
|
|
|
3072 |
|
|
c = code->block->next;
|
3073 |
|
|
|
3074 |
|
|
/* TODO: loop merging in FORALL statements. */
|
3075 |
|
|
/* Now that we've got a copy of the mask, generate the assignment loops. */
|
3076 |
|
|
while (c)
|
3077 |
|
|
{
|
3078 |
|
|
switch (c->op)
|
3079 |
|
|
{
|
3080 |
|
|
case EXEC_ASSIGN:
|
3081 |
|
|
/* A scalar or array assignment. DO the simple check for
|
3082 |
|
|
lhs to rhs dependencies. These make a temporary for the
|
3083 |
|
|
rhs and form a second forall block to copy to variable. */
|
3084 |
|
|
need_temp = check_forall_dependencies(c, &pre, &post);
|
3085 |
|
|
|
3086 |
|
|
/* Temporaries due to array assignment data dependencies introduce
|
3087 |
|
|
no end of problems. */
|
3088 |
|
|
if (need_temp)
|
3089 |
|
|
gfc_trans_assign_need_temp (c->expr1, c->expr2, NULL, false,
|
3090 |
|
|
nested_forall_info, &block);
|
3091 |
|
|
else
|
3092 |
|
|
{
|
3093 |
|
|
/* Use the normal assignment copying routines. */
|
3094 |
|
|
assign = gfc_trans_assignment (c->expr1, c->expr2, false);
|
3095 |
|
|
|
3096 |
|
|
/* Generate body and loops. */
|
3097 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info,
|
3098 |
|
|
assign, 1);
|
3099 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
3100 |
|
|
}
|
3101 |
|
|
|
3102 |
|
|
/* Cleanup any temporary symtrees that have been made to deal
|
3103 |
|
|
with dependencies. */
|
3104 |
|
|
if (new_symtree)
|
3105 |
|
|
cleanup_forall_symtrees (c);
|
3106 |
|
|
|
3107 |
|
|
break;
|
3108 |
|
|
|
3109 |
|
|
case EXEC_WHERE:
|
3110 |
|
|
/* Translate WHERE or WHERE construct nested in FORALL. */
|
3111 |
|
|
gfc_trans_where_2 (c, NULL, false, nested_forall_info, &block);
|
3112 |
|
|
break;
|
3113 |
|
|
|
3114 |
|
|
/* Pointer assignment inside FORALL. */
|
3115 |
|
|
case EXEC_POINTER_ASSIGN:
|
3116 |
|
|
need_temp = gfc_check_dependency (c->expr1, c->expr2, 0);
|
3117 |
|
|
if (need_temp)
|
3118 |
|
|
gfc_trans_pointer_assign_need_temp (c->expr1, c->expr2,
|
3119 |
|
|
nested_forall_info, &block);
|
3120 |
|
|
else
|
3121 |
|
|
{
|
3122 |
|
|
/* Use the normal assignment copying routines. */
|
3123 |
|
|
assign = gfc_trans_pointer_assignment (c->expr1, c->expr2);
|
3124 |
|
|
|
3125 |
|
|
/* Generate body and loops. */
|
3126 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info,
|
3127 |
|
|
assign, 1);
|
3128 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
3129 |
|
|
}
|
3130 |
|
|
break;
|
3131 |
|
|
|
3132 |
|
|
case EXEC_FORALL:
|
3133 |
|
|
tmp = gfc_trans_forall_1 (c, nested_forall_info);
|
3134 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
3135 |
|
|
break;
|
3136 |
|
|
|
3137 |
|
|
/* Explicit subroutine calls are prevented by the frontend but interface
|
3138 |
|
|
assignments can legitimately produce them. */
|
3139 |
|
|
case EXEC_ASSIGN_CALL:
|
3140 |
|
|
assign = gfc_trans_call (c, true, NULL_TREE, NULL_TREE, false);
|
3141 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info, assign, 1);
|
3142 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
3143 |
|
|
break;
|
3144 |
|
|
|
3145 |
|
|
default:
|
3146 |
|
|
gcc_unreachable ();
|
3147 |
|
|
}
|
3148 |
|
|
|
3149 |
|
|
c = c->next;
|
3150 |
|
|
}
|
3151 |
|
|
|
3152 |
|
|
/* Restore the original index variables. */
|
3153 |
|
|
for (fa = code->ext.forall_iterator, n = 0; fa; fa = fa->next, n++)
|
3154 |
|
|
gfc_restore_sym (fa->var->symtree->n.sym, &saved_vars[n]);
|
3155 |
|
|
|
3156 |
|
|
/* Free the space for var, start, end, step, varexpr. */
|
3157 |
|
|
gfc_free (var);
|
3158 |
|
|
gfc_free (start);
|
3159 |
|
|
gfc_free (end);
|
3160 |
|
|
gfc_free (step);
|
3161 |
|
|
gfc_free (varexpr);
|
3162 |
|
|
gfc_free (saved_vars);
|
3163 |
|
|
|
3164 |
|
|
/* Free the space for this forall_info. */
|
3165 |
|
|
gfc_free (info);
|
3166 |
|
|
|
3167 |
|
|
if (pmask)
|
3168 |
|
|
{
|
3169 |
|
|
/* Free the temporary for the mask. */
|
3170 |
|
|
tmp = gfc_call_free (pmask);
|
3171 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
3172 |
|
|
}
|
3173 |
|
|
if (maskindex)
|
3174 |
|
|
pushdecl (maskindex);
|
3175 |
|
|
|
3176 |
|
|
gfc_add_block_to_block (&pre, &block);
|
3177 |
|
|
gfc_add_block_to_block (&pre, &post);
|
3178 |
|
|
|
3179 |
|
|
return gfc_finish_block (&pre);
|
3180 |
|
|
}
|
3181 |
|
|
|
3182 |
|
|
|
3183 |
|
|
/* Translate the FORALL statement or construct. */
|
3184 |
|
|
|
3185 |
|
|
tree gfc_trans_forall (gfc_code * code)
|
3186 |
|
|
{
|
3187 |
|
|
return gfc_trans_forall_1 (code, NULL);
|
3188 |
|
|
}
|
3189 |
|
|
|
3190 |
|
|
|
3191 |
|
|
/* Evaluate the WHERE mask expression, copy its value to a temporary.
|
3192 |
|
|
If the WHERE construct is nested in FORALL, compute the overall temporary
|
3193 |
|
|
needed by the WHERE mask expression multiplied by the iterator number of
|
3194 |
|
|
the nested forall.
|
3195 |
|
|
ME is the WHERE mask expression.
|
3196 |
|
|
MASK is the current execution mask upon input, whose sense may or may
|
3197 |
|
|
not be inverted as specified by the INVERT argument.
|
3198 |
|
|
CMASK is the updated execution mask on output, or NULL if not required.
|
3199 |
|
|
PMASK is the pending execution mask on output, or NULL if not required.
|
3200 |
|
|
BLOCK is the block in which to place the condition evaluation loops. */
|
3201 |
|
|
|
3202 |
|
|
static void
|
3203 |
|
|
gfc_evaluate_where_mask (gfc_expr * me, forall_info * nested_forall_info,
|
3204 |
|
|
tree mask, bool invert, tree cmask, tree pmask,
|
3205 |
|
|
tree mask_type, stmtblock_t * block)
|
3206 |
|
|
{
|
3207 |
|
|
tree tmp, tmp1;
|
3208 |
|
|
gfc_ss *lss, *rss;
|
3209 |
|
|
gfc_loopinfo loop;
|
3210 |
|
|
stmtblock_t body, body1;
|
3211 |
|
|
tree count, cond, mtmp;
|
3212 |
|
|
gfc_se lse, rse;
|
3213 |
|
|
|
3214 |
|
|
gfc_init_loopinfo (&loop);
|
3215 |
|
|
|
3216 |
|
|
lss = gfc_walk_expr (me);
|
3217 |
|
|
rss = gfc_walk_expr (me);
|
3218 |
|
|
|
3219 |
|
|
/* Variable to index the temporary. */
|
3220 |
|
|
count = gfc_create_var (gfc_array_index_type, "count");
|
3221 |
|
|
/* Initialize count. */
|
3222 |
|
|
gfc_add_modify (block, count, gfc_index_zero_node);
|
3223 |
|
|
|
3224 |
|
|
gfc_start_block (&body);
|
3225 |
|
|
|
3226 |
|
|
gfc_init_se (&rse, NULL);
|
3227 |
|
|
gfc_init_se (&lse, NULL);
|
3228 |
|
|
|
3229 |
|
|
if (lss == gfc_ss_terminator)
|
3230 |
|
|
{
|
3231 |
|
|
gfc_init_block (&body1);
|
3232 |
|
|
}
|
3233 |
|
|
else
|
3234 |
|
|
{
|
3235 |
|
|
/* Initialize the loop. */
|
3236 |
|
|
gfc_init_loopinfo (&loop);
|
3237 |
|
|
|
3238 |
|
|
/* We may need LSS to determine the shape of the expression. */
|
3239 |
|
|
gfc_add_ss_to_loop (&loop, lss);
|
3240 |
|
|
gfc_add_ss_to_loop (&loop, rss);
|
3241 |
|
|
|
3242 |
|
|
gfc_conv_ss_startstride (&loop);
|
3243 |
|
|
gfc_conv_loop_setup (&loop, &me->where);
|
3244 |
|
|
|
3245 |
|
|
gfc_mark_ss_chain_used (rss, 1);
|
3246 |
|
|
/* Start the loop body. */
|
3247 |
|
|
gfc_start_scalarized_body (&loop, &body1);
|
3248 |
|
|
|
3249 |
|
|
/* Translate the expression. */
|
3250 |
|
|
gfc_copy_loopinfo_to_se (&rse, &loop);
|
3251 |
|
|
rse.ss = rss;
|
3252 |
|
|
gfc_conv_expr (&rse, me);
|
3253 |
|
|
}
|
3254 |
|
|
|
3255 |
|
|
/* Variable to evaluate mask condition. */
|
3256 |
|
|
cond = gfc_create_var (mask_type, "cond");
|
3257 |
|
|
if (mask && (cmask || pmask))
|
3258 |
|
|
mtmp = gfc_create_var (mask_type, "mask");
|
3259 |
|
|
else mtmp = NULL_TREE;
|
3260 |
|
|
|
3261 |
|
|
gfc_add_block_to_block (&body1, &lse.pre);
|
3262 |
|
|
gfc_add_block_to_block (&body1, &rse.pre);
|
3263 |
|
|
|
3264 |
|
|
gfc_add_modify (&body1, cond, fold_convert (mask_type, rse.expr));
|
3265 |
|
|
|
3266 |
|
|
if (mask && (cmask || pmask))
|
3267 |
|
|
{
|
3268 |
|
|
tmp = gfc_build_array_ref (mask, count, NULL);
|
3269 |
|
|
if (invert)
|
3270 |
|
|
tmp = fold_build1 (TRUTH_NOT_EXPR, mask_type, tmp);
|
3271 |
|
|
gfc_add_modify (&body1, mtmp, tmp);
|
3272 |
|
|
}
|
3273 |
|
|
|
3274 |
|
|
if (cmask)
|
3275 |
|
|
{
|
3276 |
|
|
tmp1 = gfc_build_array_ref (cmask, count, NULL);
|
3277 |
|
|
tmp = cond;
|
3278 |
|
|
if (mask)
|
3279 |
|
|
tmp = fold_build2 (TRUTH_AND_EXPR, mask_type, mtmp, tmp);
|
3280 |
|
|
gfc_add_modify (&body1, tmp1, tmp);
|
3281 |
|
|
}
|
3282 |
|
|
|
3283 |
|
|
if (pmask)
|
3284 |
|
|
{
|
3285 |
|
|
tmp1 = gfc_build_array_ref (pmask, count, NULL);
|
3286 |
|
|
tmp = fold_build1 (TRUTH_NOT_EXPR, mask_type, cond);
|
3287 |
|
|
if (mask)
|
3288 |
|
|
tmp = fold_build2 (TRUTH_AND_EXPR, mask_type, mtmp, tmp);
|
3289 |
|
|
gfc_add_modify (&body1, tmp1, tmp);
|
3290 |
|
|
}
|
3291 |
|
|
|
3292 |
|
|
gfc_add_block_to_block (&body1, &lse.post);
|
3293 |
|
|
gfc_add_block_to_block (&body1, &rse.post);
|
3294 |
|
|
|
3295 |
|
|
if (lss == gfc_ss_terminator)
|
3296 |
|
|
{
|
3297 |
|
|
gfc_add_block_to_block (&body, &body1);
|
3298 |
|
|
}
|
3299 |
|
|
else
|
3300 |
|
|
{
|
3301 |
|
|
/* Increment count. */
|
3302 |
|
|
tmp1 = fold_build2 (PLUS_EXPR, gfc_array_index_type, count,
|
3303 |
|
|
gfc_index_one_node);
|
3304 |
|
|
gfc_add_modify (&body1, count, tmp1);
|
3305 |
|
|
|
3306 |
|
|
/* Generate the copying loops. */
|
3307 |
|
|
gfc_trans_scalarizing_loops (&loop, &body1);
|
3308 |
|
|
|
3309 |
|
|
gfc_add_block_to_block (&body, &loop.pre);
|
3310 |
|
|
gfc_add_block_to_block (&body, &loop.post);
|
3311 |
|
|
|
3312 |
|
|
gfc_cleanup_loop (&loop);
|
3313 |
|
|
/* TODO: Reuse lss and rss when copying temp->lhs. Need to be careful
|
3314 |
|
|
as tree nodes in SS may not be valid in different scope. */
|
3315 |
|
|
}
|
3316 |
|
|
|
3317 |
|
|
tmp1 = gfc_finish_block (&body);
|
3318 |
|
|
/* If the WHERE construct is inside FORALL, fill the full temporary. */
|
3319 |
|
|
if (nested_forall_info != NULL)
|
3320 |
|
|
tmp1 = gfc_trans_nested_forall_loop (nested_forall_info, tmp1, 1);
|
3321 |
|
|
|
3322 |
|
|
gfc_add_expr_to_block (block, tmp1);
|
3323 |
|
|
}
|
3324 |
|
|
|
3325 |
|
|
|
3326 |
|
|
/* Translate an assignment statement in a WHERE statement or construct
|
3327 |
|
|
statement. The MASK expression is used to control which elements
|
3328 |
|
|
of EXPR1 shall be assigned. The sense of MASK is specified by
|
3329 |
|
|
INVERT. */
|
3330 |
|
|
|
3331 |
|
|
static tree
|
3332 |
|
|
gfc_trans_where_assign (gfc_expr *expr1, gfc_expr *expr2,
|
3333 |
|
|
tree mask, bool invert,
|
3334 |
|
|
tree count1, tree count2,
|
3335 |
|
|
gfc_code *cnext)
|
3336 |
|
|
{
|
3337 |
|
|
gfc_se lse;
|
3338 |
|
|
gfc_se rse;
|
3339 |
|
|
gfc_ss *lss;
|
3340 |
|
|
gfc_ss *lss_section;
|
3341 |
|
|
gfc_ss *rss;
|
3342 |
|
|
|
3343 |
|
|
gfc_loopinfo loop;
|
3344 |
|
|
tree tmp;
|
3345 |
|
|
stmtblock_t block;
|
3346 |
|
|
stmtblock_t body;
|
3347 |
|
|
tree index, maskexpr;
|
3348 |
|
|
|
3349 |
|
|
/* A defined assignment. */
|
3350 |
|
|
if (cnext && cnext->resolved_sym)
|
3351 |
|
|
return gfc_trans_call (cnext, true, mask, count1, invert);
|
3352 |
|
|
|
3353 |
|
|
#if 0
|
3354 |
|
|
/* TODO: handle this special case.
|
3355 |
|
|
Special case a single function returning an array. */
|
3356 |
|
|
if (expr2->expr_type == EXPR_FUNCTION && expr2->rank > 0)
|
3357 |
|
|
{
|
3358 |
|
|
tmp = gfc_trans_arrayfunc_assign (expr1, expr2);
|
3359 |
|
|
if (tmp)
|
3360 |
|
|
return tmp;
|
3361 |
|
|
}
|
3362 |
|
|
#endif
|
3363 |
|
|
|
3364 |
|
|
/* Assignment of the form lhs = rhs. */
|
3365 |
|
|
gfc_start_block (&block);
|
3366 |
|
|
|
3367 |
|
|
gfc_init_se (&lse, NULL);
|
3368 |
|
|
gfc_init_se (&rse, NULL);
|
3369 |
|
|
|
3370 |
|
|
/* Walk the lhs. */
|
3371 |
|
|
lss = gfc_walk_expr (expr1);
|
3372 |
|
|
rss = NULL;
|
3373 |
|
|
|
3374 |
|
|
/* In each where-assign-stmt, the mask-expr and the variable being
|
3375 |
|
|
defined shall be arrays of the same shape. */
|
3376 |
|
|
gcc_assert (lss != gfc_ss_terminator);
|
3377 |
|
|
|
3378 |
|
|
/* The assignment needs scalarization. */
|
3379 |
|
|
lss_section = lss;
|
3380 |
|
|
|
3381 |
|
|
/* Find a non-scalar SS from the lhs. */
|
3382 |
|
|
while (lss_section != gfc_ss_terminator
|
3383 |
|
|
&& lss_section->type != GFC_SS_SECTION)
|
3384 |
|
|
lss_section = lss_section->next;
|
3385 |
|
|
|
3386 |
|
|
gcc_assert (lss_section != gfc_ss_terminator);
|
3387 |
|
|
|
3388 |
|
|
/* Initialize the scalarizer. */
|
3389 |
|
|
gfc_init_loopinfo (&loop);
|
3390 |
|
|
|
3391 |
|
|
/* Walk the rhs. */
|
3392 |
|
|
rss = gfc_walk_expr (expr2);
|
3393 |
|
|
if (rss == gfc_ss_terminator)
|
3394 |
|
|
{
|
3395 |
|
|
/* The rhs is scalar. Add a ss for the expression. */
|
3396 |
|
|
rss = gfc_get_ss ();
|
3397 |
|
|
rss->where = 1;
|
3398 |
|
|
rss->next = gfc_ss_terminator;
|
3399 |
|
|
rss->type = GFC_SS_SCALAR;
|
3400 |
|
|
rss->expr = expr2;
|
3401 |
|
|
}
|
3402 |
|
|
|
3403 |
|
|
/* Associate the SS with the loop. */
|
3404 |
|
|
gfc_add_ss_to_loop (&loop, lss);
|
3405 |
|
|
gfc_add_ss_to_loop (&loop, rss);
|
3406 |
|
|
|
3407 |
|
|
/* Calculate the bounds of the scalarization. */
|
3408 |
|
|
gfc_conv_ss_startstride (&loop);
|
3409 |
|
|
|
3410 |
|
|
/* Resolve any data dependencies in the statement. */
|
3411 |
|
|
gfc_conv_resolve_dependencies (&loop, lss_section, rss);
|
3412 |
|
|
|
3413 |
|
|
/* Setup the scalarizing loops. */
|
3414 |
|
|
gfc_conv_loop_setup (&loop, &expr2->where);
|
3415 |
|
|
|
3416 |
|
|
/* Setup the gfc_se structures. */
|
3417 |
|
|
gfc_copy_loopinfo_to_se (&lse, &loop);
|
3418 |
|
|
gfc_copy_loopinfo_to_se (&rse, &loop);
|
3419 |
|
|
|
3420 |
|
|
rse.ss = rss;
|
3421 |
|
|
gfc_mark_ss_chain_used (rss, 1);
|
3422 |
|
|
if (loop.temp_ss == NULL)
|
3423 |
|
|
{
|
3424 |
|
|
lse.ss = lss;
|
3425 |
|
|
gfc_mark_ss_chain_used (lss, 1);
|
3426 |
|
|
}
|
3427 |
|
|
else
|
3428 |
|
|
{
|
3429 |
|
|
lse.ss = loop.temp_ss;
|
3430 |
|
|
gfc_mark_ss_chain_used (lss, 3);
|
3431 |
|
|
gfc_mark_ss_chain_used (loop.temp_ss, 3);
|
3432 |
|
|
}
|
3433 |
|
|
|
3434 |
|
|
/* Start the scalarized loop body. */
|
3435 |
|
|
gfc_start_scalarized_body (&loop, &body);
|
3436 |
|
|
|
3437 |
|
|
/* Translate the expression. */
|
3438 |
|
|
gfc_conv_expr (&rse, expr2);
|
3439 |
|
|
if (lss != gfc_ss_terminator && loop.temp_ss != NULL)
|
3440 |
|
|
{
|
3441 |
|
|
gfc_conv_tmp_array_ref (&lse);
|
3442 |
|
|
gfc_advance_se_ss_chain (&lse);
|
3443 |
|
|
}
|
3444 |
|
|
else
|
3445 |
|
|
gfc_conv_expr (&lse, expr1);
|
3446 |
|
|
|
3447 |
|
|
/* Form the mask expression according to the mask. */
|
3448 |
|
|
index = count1;
|
3449 |
|
|
maskexpr = gfc_build_array_ref (mask, index, NULL);
|
3450 |
|
|
if (invert)
|
3451 |
|
|
maskexpr = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (maskexpr), maskexpr);
|
3452 |
|
|
|
3453 |
|
|
/* Use the scalar assignment as is. */
|
3454 |
|
|
tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts,
|
3455 |
|
|
loop.temp_ss != NULL, false);
|
3456 |
|
|
|
3457 |
|
|
tmp = build3_v (COND_EXPR, maskexpr, tmp, build_empty_stmt (input_location));
|
3458 |
|
|
|
3459 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
3460 |
|
|
|
3461 |
|
|
if (lss == gfc_ss_terminator)
|
3462 |
|
|
{
|
3463 |
|
|
/* Increment count1. */
|
3464 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
3465 |
|
|
count1, gfc_index_one_node);
|
3466 |
|
|
gfc_add_modify (&body, count1, tmp);
|
3467 |
|
|
|
3468 |
|
|
/* Use the scalar assignment as is. */
|
3469 |
|
|
gfc_add_block_to_block (&block, &body);
|
3470 |
|
|
}
|
3471 |
|
|
else
|
3472 |
|
|
{
|
3473 |
|
|
gcc_assert (lse.ss == gfc_ss_terminator
|
3474 |
|
|
&& rse.ss == gfc_ss_terminator);
|
3475 |
|
|
|
3476 |
|
|
if (loop.temp_ss != NULL)
|
3477 |
|
|
{
|
3478 |
|
|
/* Increment count1 before finish the main body of a scalarized
|
3479 |
|
|
expression. */
|
3480 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
3481 |
|
|
count1, gfc_index_one_node);
|
3482 |
|
|
gfc_add_modify (&body, count1, tmp);
|
3483 |
|
|
gfc_trans_scalarized_loop_boundary (&loop, &body);
|
3484 |
|
|
|
3485 |
|
|
/* We need to copy the temporary to the actual lhs. */
|
3486 |
|
|
gfc_init_se (&lse, NULL);
|
3487 |
|
|
gfc_init_se (&rse, NULL);
|
3488 |
|
|
gfc_copy_loopinfo_to_se (&lse, &loop);
|
3489 |
|
|
gfc_copy_loopinfo_to_se (&rse, &loop);
|
3490 |
|
|
|
3491 |
|
|
rse.ss = loop.temp_ss;
|
3492 |
|
|
lse.ss = lss;
|
3493 |
|
|
|
3494 |
|
|
gfc_conv_tmp_array_ref (&rse);
|
3495 |
|
|
gfc_advance_se_ss_chain (&rse);
|
3496 |
|
|
gfc_conv_expr (&lse, expr1);
|
3497 |
|
|
|
3498 |
|
|
gcc_assert (lse.ss == gfc_ss_terminator
|
3499 |
|
|
&& rse.ss == gfc_ss_terminator);
|
3500 |
|
|
|
3501 |
|
|
/* Form the mask expression according to the mask tree list. */
|
3502 |
|
|
index = count2;
|
3503 |
|
|
maskexpr = gfc_build_array_ref (mask, index, NULL);
|
3504 |
|
|
if (invert)
|
3505 |
|
|
maskexpr = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (maskexpr),
|
3506 |
|
|
maskexpr);
|
3507 |
|
|
|
3508 |
|
|
/* Use the scalar assignment as is. */
|
3509 |
|
|
tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts, false, false);
|
3510 |
|
|
tmp = build3_v (COND_EXPR, maskexpr, tmp,
|
3511 |
|
|
build_empty_stmt (input_location));
|
3512 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
3513 |
|
|
|
3514 |
|
|
/* Increment count2. */
|
3515 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
3516 |
|
|
count2, gfc_index_one_node);
|
3517 |
|
|
gfc_add_modify (&body, count2, tmp);
|
3518 |
|
|
}
|
3519 |
|
|
else
|
3520 |
|
|
{
|
3521 |
|
|
/* Increment count1. */
|
3522 |
|
|
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
|
3523 |
|
|
count1, gfc_index_one_node);
|
3524 |
|
|
gfc_add_modify (&body, count1, tmp);
|
3525 |
|
|
}
|
3526 |
|
|
|
3527 |
|
|
/* Generate the copying loops. */
|
3528 |
|
|
gfc_trans_scalarizing_loops (&loop, &body);
|
3529 |
|
|
|
3530 |
|
|
/* Wrap the whole thing up. */
|
3531 |
|
|
gfc_add_block_to_block (&block, &loop.pre);
|
3532 |
|
|
gfc_add_block_to_block (&block, &loop.post);
|
3533 |
|
|
gfc_cleanup_loop (&loop);
|
3534 |
|
|
}
|
3535 |
|
|
|
3536 |
|
|
return gfc_finish_block (&block);
|
3537 |
|
|
}
|
3538 |
|
|
|
3539 |
|
|
|
3540 |
|
|
/* Translate the WHERE construct or statement.
|
3541 |
|
|
This function can be called iteratively to translate the nested WHERE
|
3542 |
|
|
construct or statement.
|
3543 |
|
|
MASK is the control mask. */
|
3544 |
|
|
|
3545 |
|
|
static void
|
3546 |
|
|
gfc_trans_where_2 (gfc_code * code, tree mask, bool invert,
|
3547 |
|
|
forall_info * nested_forall_info, stmtblock_t * block)
|
3548 |
|
|
{
|
3549 |
|
|
stmtblock_t inner_size_body;
|
3550 |
|
|
tree inner_size, size;
|
3551 |
|
|
gfc_ss *lss, *rss;
|
3552 |
|
|
tree mask_type;
|
3553 |
|
|
gfc_expr *expr1;
|
3554 |
|
|
gfc_expr *expr2;
|
3555 |
|
|
gfc_code *cblock;
|
3556 |
|
|
gfc_code *cnext;
|
3557 |
|
|
tree tmp;
|
3558 |
|
|
tree cond;
|
3559 |
|
|
tree count1, count2;
|
3560 |
|
|
bool need_cmask;
|
3561 |
|
|
bool need_pmask;
|
3562 |
|
|
int need_temp;
|
3563 |
|
|
tree pcmask = NULL_TREE;
|
3564 |
|
|
tree ppmask = NULL_TREE;
|
3565 |
|
|
tree cmask = NULL_TREE;
|
3566 |
|
|
tree pmask = NULL_TREE;
|
3567 |
|
|
gfc_actual_arglist *arg;
|
3568 |
|
|
|
3569 |
|
|
/* the WHERE statement or the WHERE construct statement. */
|
3570 |
|
|
cblock = code->block;
|
3571 |
|
|
|
3572 |
|
|
/* As the mask array can be very big, prefer compact boolean types. */
|
3573 |
|
|
mask_type = gfc_get_logical_type (gfc_logical_kinds[0].kind);
|
3574 |
|
|
|
3575 |
|
|
/* Determine which temporary masks are needed. */
|
3576 |
|
|
if (!cblock->block)
|
3577 |
|
|
{
|
3578 |
|
|
/* One clause: No ELSEWHEREs. */
|
3579 |
|
|
need_cmask = (cblock->next != 0);
|
3580 |
|
|
need_pmask = false;
|
3581 |
|
|
}
|
3582 |
|
|
else if (cblock->block->block)
|
3583 |
|
|
{
|
3584 |
|
|
/* Three or more clauses: Conditional ELSEWHEREs. */
|
3585 |
|
|
need_cmask = true;
|
3586 |
|
|
need_pmask = true;
|
3587 |
|
|
}
|
3588 |
|
|
else if (cblock->next)
|
3589 |
|
|
{
|
3590 |
|
|
/* Two clauses, the first non-empty. */
|
3591 |
|
|
need_cmask = true;
|
3592 |
|
|
need_pmask = (mask != NULL_TREE
|
3593 |
|
|
&& cblock->block->next != 0);
|
3594 |
|
|
}
|
3595 |
|
|
else if (!cblock->block->next)
|
3596 |
|
|
{
|
3597 |
|
|
/* Two clauses, both empty. */
|
3598 |
|
|
need_cmask = false;
|
3599 |
|
|
need_pmask = false;
|
3600 |
|
|
}
|
3601 |
|
|
/* Two clauses, the first empty, the second non-empty. */
|
3602 |
|
|
else if (mask)
|
3603 |
|
|
{
|
3604 |
|
|
need_cmask = (cblock->block->expr1 != 0);
|
3605 |
|
|
need_pmask = true;
|
3606 |
|
|
}
|
3607 |
|
|
else
|
3608 |
|
|
{
|
3609 |
|
|
need_cmask = true;
|
3610 |
|
|
need_pmask = false;
|
3611 |
|
|
}
|
3612 |
|
|
|
3613 |
|
|
if (need_cmask || need_pmask)
|
3614 |
|
|
{
|
3615 |
|
|
/* Calculate the size of temporary needed by the mask-expr. */
|
3616 |
|
|
gfc_init_block (&inner_size_body);
|
3617 |
|
|
inner_size = compute_inner_temp_size (cblock->expr1, cblock->expr1,
|
3618 |
|
|
&inner_size_body, &lss, &rss);
|
3619 |
|
|
|
3620 |
|
|
/* Calculate the total size of temporary needed. */
|
3621 |
|
|
size = compute_overall_iter_number (nested_forall_info, inner_size,
|
3622 |
|
|
&inner_size_body, block);
|
3623 |
|
|
|
3624 |
|
|
/* Check whether the size is negative. */
|
3625 |
|
|
cond = fold_build2 (LE_EXPR, boolean_type_node, size,
|
3626 |
|
|
gfc_index_zero_node);
|
3627 |
|
|
size = fold_build3 (COND_EXPR, gfc_array_index_type, cond,
|
3628 |
|
|
gfc_index_zero_node, size);
|
3629 |
|
|
size = gfc_evaluate_now (size, block);
|
3630 |
|
|
|
3631 |
|
|
/* Allocate temporary for WHERE mask if needed. */
|
3632 |
|
|
if (need_cmask)
|
3633 |
|
|
cmask = allocate_temp_for_forall_nest_1 (mask_type, size, block,
|
3634 |
|
|
&pcmask);
|
3635 |
|
|
|
3636 |
|
|
/* Allocate temporary for !mask if needed. */
|
3637 |
|
|
if (need_pmask)
|
3638 |
|
|
pmask = allocate_temp_for_forall_nest_1 (mask_type, size, block,
|
3639 |
|
|
&ppmask);
|
3640 |
|
|
}
|
3641 |
|
|
|
3642 |
|
|
while (cblock)
|
3643 |
|
|
{
|
3644 |
|
|
/* Each time around this loop, the where clause is conditional
|
3645 |
|
|
on the value of mask and invert, which are updated at the
|
3646 |
|
|
bottom of the loop. */
|
3647 |
|
|
|
3648 |
|
|
/* Has mask-expr. */
|
3649 |
|
|
if (cblock->expr1)
|
3650 |
|
|
{
|
3651 |
|
|
/* Ensure that the WHERE mask will be evaluated exactly once.
|
3652 |
|
|
If there are no statements in this WHERE/ELSEWHERE clause,
|
3653 |
|
|
then we don't need to update the control mask (cmask).
|
3654 |
|
|
If this is the last clause of the WHERE construct, then
|
3655 |
|
|
we don't need to update the pending control mask (pmask). */
|
3656 |
|
|
if (mask)
|
3657 |
|
|
gfc_evaluate_where_mask (cblock->expr1, nested_forall_info,
|
3658 |
|
|
mask, invert,
|
3659 |
|
|
cblock->next ? cmask : NULL_TREE,
|
3660 |
|
|
cblock->block ? pmask : NULL_TREE,
|
3661 |
|
|
mask_type, block);
|
3662 |
|
|
else
|
3663 |
|
|
gfc_evaluate_where_mask (cblock->expr1, nested_forall_info,
|
3664 |
|
|
NULL_TREE, false,
|
3665 |
|
|
(cblock->next || cblock->block)
|
3666 |
|
|
? cmask : NULL_TREE,
|
3667 |
|
|
NULL_TREE, mask_type, block);
|
3668 |
|
|
|
3669 |
|
|
invert = false;
|
3670 |
|
|
}
|
3671 |
|
|
/* It's a final elsewhere-stmt. No mask-expr is present. */
|
3672 |
|
|
else
|
3673 |
|
|
cmask = mask;
|
3674 |
|
|
|
3675 |
|
|
/* The body of this where clause are controlled by cmask with
|
3676 |
|
|
sense specified by invert. */
|
3677 |
|
|
|
3678 |
|
|
/* Get the assignment statement of a WHERE statement, or the first
|
3679 |
|
|
statement in where-body-construct of a WHERE construct. */
|
3680 |
|
|
cnext = cblock->next;
|
3681 |
|
|
while (cnext)
|
3682 |
|
|
{
|
3683 |
|
|
switch (cnext->op)
|
3684 |
|
|
{
|
3685 |
|
|
/* WHERE assignment statement. */
|
3686 |
|
|
case EXEC_ASSIGN_CALL:
|
3687 |
|
|
|
3688 |
|
|
arg = cnext->ext.actual;
|
3689 |
|
|
expr1 = expr2 = NULL;
|
3690 |
|
|
for (; arg; arg = arg->next)
|
3691 |
|
|
{
|
3692 |
|
|
if (!arg->expr)
|
3693 |
|
|
continue;
|
3694 |
|
|
if (expr1 == NULL)
|
3695 |
|
|
expr1 = arg->expr;
|
3696 |
|
|
else
|
3697 |
|
|
expr2 = arg->expr;
|
3698 |
|
|
}
|
3699 |
|
|
goto evaluate;
|
3700 |
|
|
|
3701 |
|
|
case EXEC_ASSIGN:
|
3702 |
|
|
expr1 = cnext->expr1;
|
3703 |
|
|
expr2 = cnext->expr2;
|
3704 |
|
|
evaluate:
|
3705 |
|
|
if (nested_forall_info != NULL)
|
3706 |
|
|
{
|
3707 |
|
|
need_temp = gfc_check_dependency (expr1, expr2, 0);
|
3708 |
|
|
if (need_temp && cnext->op != EXEC_ASSIGN_CALL)
|
3709 |
|
|
gfc_trans_assign_need_temp (expr1, expr2,
|
3710 |
|
|
cmask, invert,
|
3711 |
|
|
nested_forall_info, block);
|
3712 |
|
|
else
|
3713 |
|
|
{
|
3714 |
|
|
/* Variables to control maskexpr. */
|
3715 |
|
|
count1 = gfc_create_var (gfc_array_index_type, "count1");
|
3716 |
|
|
count2 = gfc_create_var (gfc_array_index_type, "count2");
|
3717 |
|
|
gfc_add_modify (block, count1, gfc_index_zero_node);
|
3718 |
|
|
gfc_add_modify (block, count2, gfc_index_zero_node);
|
3719 |
|
|
|
3720 |
|
|
tmp = gfc_trans_where_assign (expr1, expr2,
|
3721 |
|
|
cmask, invert,
|
3722 |
|
|
count1, count2,
|
3723 |
|
|
cnext);
|
3724 |
|
|
|
3725 |
|
|
tmp = gfc_trans_nested_forall_loop (nested_forall_info,
|
3726 |
|
|
tmp, 1);
|
3727 |
|
|
gfc_add_expr_to_block (block, tmp);
|
3728 |
|
|
}
|
3729 |
|
|
}
|
3730 |
|
|
else
|
3731 |
|
|
{
|
3732 |
|
|
/* Variables to control maskexpr. */
|
3733 |
|
|
count1 = gfc_create_var (gfc_array_index_type, "count1");
|
3734 |
|
|
count2 = gfc_create_var (gfc_array_index_type, "count2");
|
3735 |
|
|
gfc_add_modify (block, count1, gfc_index_zero_node);
|
3736 |
|
|
gfc_add_modify (block, count2, gfc_index_zero_node);
|
3737 |
|
|
|
3738 |
|
|
tmp = gfc_trans_where_assign (expr1, expr2,
|
3739 |
|
|
cmask, invert,
|
3740 |
|
|
count1, count2,
|
3741 |
|
|
cnext);
|
3742 |
|
|
gfc_add_expr_to_block (block, tmp);
|
3743 |
|
|
|
3744 |
|
|
}
|
3745 |
|
|
break;
|
3746 |
|
|
|
3747 |
|
|
/* WHERE or WHERE construct is part of a where-body-construct. */
|
3748 |
|
|
case EXEC_WHERE:
|
3749 |
|
|
gfc_trans_where_2 (cnext, cmask, invert,
|
3750 |
|
|
nested_forall_info, block);
|
3751 |
|
|
break;
|
3752 |
|
|
|
3753 |
|
|
default:
|
3754 |
|
|
gcc_unreachable ();
|
3755 |
|
|
}
|
3756 |
|
|
|
3757 |
|
|
/* The next statement within the same where-body-construct. */
|
3758 |
|
|
cnext = cnext->next;
|
3759 |
|
|
}
|
3760 |
|
|
/* The next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt. */
|
3761 |
|
|
cblock = cblock->block;
|
3762 |
|
|
if (mask == NULL_TREE)
|
3763 |
|
|
{
|
3764 |
|
|
/* If we're the initial WHERE, we can simply invert the sense
|
3765 |
|
|
of the current mask to obtain the "mask" for the remaining
|
3766 |
|
|
ELSEWHEREs. */
|
3767 |
|
|
invert = true;
|
3768 |
|
|
mask = cmask;
|
3769 |
|
|
}
|
3770 |
|
|
else
|
3771 |
|
|
{
|
3772 |
|
|
/* Otherwise, for nested WHERE's we need to use the pending mask. */
|
3773 |
|
|
invert = false;
|
3774 |
|
|
mask = pmask;
|
3775 |
|
|
}
|
3776 |
|
|
}
|
3777 |
|
|
|
3778 |
|
|
/* If we allocated a pending mask array, deallocate it now. */
|
3779 |
|
|
if (ppmask)
|
3780 |
|
|
{
|
3781 |
|
|
tmp = gfc_call_free (ppmask);
|
3782 |
|
|
gfc_add_expr_to_block (block, tmp);
|
3783 |
|
|
}
|
3784 |
|
|
|
3785 |
|
|
/* If we allocated a current mask array, deallocate it now. */
|
3786 |
|
|
if (pcmask)
|
3787 |
|
|
{
|
3788 |
|
|
tmp = gfc_call_free (pcmask);
|
3789 |
|
|
gfc_add_expr_to_block (block, tmp);
|
3790 |
|
|
}
|
3791 |
|
|
}
|
3792 |
|
|
|
3793 |
|
|
/* Translate a simple WHERE construct or statement without dependencies.
|
3794 |
|
|
CBLOCK is the "then" clause of the WHERE statement, where CBLOCK->EXPR
|
3795 |
|
|
is the mask condition, and EBLOCK if non-NULL is the "else" clause.
|
3796 |
|
|
Currently both CBLOCK and EBLOCK are restricted to single assignments. */
|
3797 |
|
|
|
3798 |
|
|
static tree
|
3799 |
|
|
gfc_trans_where_3 (gfc_code * cblock, gfc_code * eblock)
|
3800 |
|
|
{
|
3801 |
|
|
stmtblock_t block, body;
|
3802 |
|
|
gfc_expr *cond, *tdst, *tsrc, *edst, *esrc;
|
3803 |
|
|
tree tmp, cexpr, tstmt, estmt;
|
3804 |
|
|
gfc_ss *css, *tdss, *tsss;
|
3805 |
|
|
gfc_se cse, tdse, tsse, edse, esse;
|
3806 |
|
|
gfc_loopinfo loop;
|
3807 |
|
|
gfc_ss *edss = 0;
|
3808 |
|
|
gfc_ss *esss = 0;
|
3809 |
|
|
|
3810 |
|
|
/* Allow the scalarizer to workshare simple where loops. */
|
3811 |
|
|
if (ompws_flags & OMPWS_WORKSHARE_FLAG)
|
3812 |
|
|
ompws_flags |= OMPWS_SCALARIZER_WS;
|
3813 |
|
|
|
3814 |
|
|
cond = cblock->expr1;
|
3815 |
|
|
tdst = cblock->next->expr1;
|
3816 |
|
|
tsrc = cblock->next->expr2;
|
3817 |
|
|
edst = eblock ? eblock->next->expr1 : NULL;
|
3818 |
|
|
esrc = eblock ? eblock->next->expr2 : NULL;
|
3819 |
|
|
|
3820 |
|
|
gfc_start_block (&block);
|
3821 |
|
|
gfc_init_loopinfo (&loop);
|
3822 |
|
|
|
3823 |
|
|
/* Handle the condition. */
|
3824 |
|
|
gfc_init_se (&cse, NULL);
|
3825 |
|
|
css = gfc_walk_expr (cond);
|
3826 |
|
|
gfc_add_ss_to_loop (&loop, css);
|
3827 |
|
|
|
3828 |
|
|
/* Handle the then-clause. */
|
3829 |
|
|
gfc_init_se (&tdse, NULL);
|
3830 |
|
|
gfc_init_se (&tsse, NULL);
|
3831 |
|
|
tdss = gfc_walk_expr (tdst);
|
3832 |
|
|
tsss = gfc_walk_expr (tsrc);
|
3833 |
|
|
if (tsss == gfc_ss_terminator)
|
3834 |
|
|
{
|
3835 |
|
|
tsss = gfc_get_ss ();
|
3836 |
|
|
tsss->where = 1;
|
3837 |
|
|
tsss->next = gfc_ss_terminator;
|
3838 |
|
|
tsss->type = GFC_SS_SCALAR;
|
3839 |
|
|
tsss->expr = tsrc;
|
3840 |
|
|
}
|
3841 |
|
|
gfc_add_ss_to_loop (&loop, tdss);
|
3842 |
|
|
gfc_add_ss_to_loop (&loop, tsss);
|
3843 |
|
|
|
3844 |
|
|
if (eblock)
|
3845 |
|
|
{
|
3846 |
|
|
/* Handle the else clause. */
|
3847 |
|
|
gfc_init_se (&edse, NULL);
|
3848 |
|
|
gfc_init_se (&esse, NULL);
|
3849 |
|
|
edss = gfc_walk_expr (edst);
|
3850 |
|
|
esss = gfc_walk_expr (esrc);
|
3851 |
|
|
if (esss == gfc_ss_terminator)
|
3852 |
|
|
{
|
3853 |
|
|
esss = gfc_get_ss ();
|
3854 |
|
|
esss->where = 1;
|
3855 |
|
|
esss->next = gfc_ss_terminator;
|
3856 |
|
|
esss->type = GFC_SS_SCALAR;
|
3857 |
|
|
esss->expr = esrc;
|
3858 |
|
|
}
|
3859 |
|
|
gfc_add_ss_to_loop (&loop, edss);
|
3860 |
|
|
gfc_add_ss_to_loop (&loop, esss);
|
3861 |
|
|
}
|
3862 |
|
|
|
3863 |
|
|
gfc_conv_ss_startstride (&loop);
|
3864 |
|
|
gfc_conv_loop_setup (&loop, &tdst->where);
|
3865 |
|
|
|
3866 |
|
|
gfc_mark_ss_chain_used (css, 1);
|
3867 |
|
|
gfc_mark_ss_chain_used (tdss, 1);
|
3868 |
|
|
gfc_mark_ss_chain_used (tsss, 1);
|
3869 |
|
|
if (eblock)
|
3870 |
|
|
{
|
3871 |
|
|
gfc_mark_ss_chain_used (edss, 1);
|
3872 |
|
|
gfc_mark_ss_chain_used (esss, 1);
|
3873 |
|
|
}
|
3874 |
|
|
|
3875 |
|
|
gfc_start_scalarized_body (&loop, &body);
|
3876 |
|
|
|
3877 |
|
|
gfc_copy_loopinfo_to_se (&cse, &loop);
|
3878 |
|
|
gfc_copy_loopinfo_to_se (&tdse, &loop);
|
3879 |
|
|
gfc_copy_loopinfo_to_se (&tsse, &loop);
|
3880 |
|
|
cse.ss = css;
|
3881 |
|
|
tdse.ss = tdss;
|
3882 |
|
|
tsse.ss = tsss;
|
3883 |
|
|
if (eblock)
|
3884 |
|
|
{
|
3885 |
|
|
gfc_copy_loopinfo_to_se (&edse, &loop);
|
3886 |
|
|
gfc_copy_loopinfo_to_se (&esse, &loop);
|
3887 |
|
|
edse.ss = edss;
|
3888 |
|
|
esse.ss = esss;
|
3889 |
|
|
}
|
3890 |
|
|
|
3891 |
|
|
gfc_conv_expr (&cse, cond);
|
3892 |
|
|
gfc_add_block_to_block (&body, &cse.pre);
|
3893 |
|
|
cexpr = cse.expr;
|
3894 |
|
|
|
3895 |
|
|
gfc_conv_expr (&tsse, tsrc);
|
3896 |
|
|
if (tdss != gfc_ss_terminator && loop.temp_ss != NULL)
|
3897 |
|
|
{
|
3898 |
|
|
gfc_conv_tmp_array_ref (&tdse);
|
3899 |
|
|
gfc_advance_se_ss_chain (&tdse);
|
3900 |
|
|
}
|
3901 |
|
|
else
|
3902 |
|
|
gfc_conv_expr (&tdse, tdst);
|
3903 |
|
|
|
3904 |
|
|
if (eblock)
|
3905 |
|
|
{
|
3906 |
|
|
gfc_conv_expr (&esse, esrc);
|
3907 |
|
|
if (edss != gfc_ss_terminator && loop.temp_ss != NULL)
|
3908 |
|
|
{
|
3909 |
|
|
gfc_conv_tmp_array_ref (&edse);
|
3910 |
|
|
gfc_advance_se_ss_chain (&edse);
|
3911 |
|
|
}
|
3912 |
|
|
else
|
3913 |
|
|
gfc_conv_expr (&edse, edst);
|
3914 |
|
|
}
|
3915 |
|
|
|
3916 |
|
|
tstmt = gfc_trans_scalar_assign (&tdse, &tsse, tdst->ts, false, false);
|
3917 |
|
|
estmt = eblock ? gfc_trans_scalar_assign (&edse, &esse, edst->ts, false, false)
|
3918 |
|
|
: build_empty_stmt (input_location);
|
3919 |
|
|
tmp = build3_v (COND_EXPR, cexpr, tstmt, estmt);
|
3920 |
|
|
gfc_add_expr_to_block (&body, tmp);
|
3921 |
|
|
gfc_add_block_to_block (&body, &cse.post);
|
3922 |
|
|
|
3923 |
|
|
gfc_trans_scalarizing_loops (&loop, &body);
|
3924 |
|
|
gfc_add_block_to_block (&block, &loop.pre);
|
3925 |
|
|
gfc_add_block_to_block (&block, &loop.post);
|
3926 |
|
|
gfc_cleanup_loop (&loop);
|
3927 |
|
|
|
3928 |
|
|
return gfc_finish_block (&block);
|
3929 |
|
|
}
|
3930 |
|
|
|
3931 |
|
|
/* As the WHERE or WHERE construct statement can be nested, we call
|
3932 |
|
|
gfc_trans_where_2 to do the translation, and pass the initial
|
3933 |
|
|
NULL values for both the control mask and the pending control mask. */
|
3934 |
|
|
|
3935 |
|
|
tree
|
3936 |
|
|
gfc_trans_where (gfc_code * code)
|
3937 |
|
|
{
|
3938 |
|
|
stmtblock_t block;
|
3939 |
|
|
gfc_code *cblock;
|
3940 |
|
|
gfc_code *eblock;
|
3941 |
|
|
|
3942 |
|
|
cblock = code->block;
|
3943 |
|
|
if (cblock->next
|
3944 |
|
|
&& cblock->next->op == EXEC_ASSIGN
|
3945 |
|
|
&& !cblock->next->next)
|
3946 |
|
|
{
|
3947 |
|
|
eblock = cblock->block;
|
3948 |
|
|
if (!eblock)
|
3949 |
|
|
{
|
3950 |
|
|
/* A simple "WHERE (cond) x = y" statement or block is
|
3951 |
|
|
dependence free if cond is not dependent upon writing x,
|
3952 |
|
|
and the source y is unaffected by the destination x. */
|
3953 |
|
|
if (!gfc_check_dependency (cblock->next->expr1,
|
3954 |
|
|
cblock->expr1, 0)
|
3955 |
|
|
&& !gfc_check_dependency (cblock->next->expr1,
|
3956 |
|
|
cblock->next->expr2, 0))
|
3957 |
|
|
return gfc_trans_where_3 (cblock, NULL);
|
3958 |
|
|
}
|
3959 |
|
|
else if (!eblock->expr1
|
3960 |
|
|
&& !eblock->block
|
3961 |
|
|
&& eblock->next
|
3962 |
|
|
&& eblock->next->op == EXEC_ASSIGN
|
3963 |
|
|
&& !eblock->next->next)
|
3964 |
|
|
{
|
3965 |
|
|
/* A simple "WHERE (cond) x1 = y1 ELSEWHERE x2 = y2 ENDWHERE"
|
3966 |
|
|
block is dependence free if cond is not dependent on writes
|
3967 |
|
|
to x1 and x2, y1 is not dependent on writes to x2, and y2
|
3968 |
|
|
is not dependent on writes to x1, and both y's are not
|
3969 |
|
|
dependent upon their own x's. In addition to this, the
|
3970 |
|
|
final two dependency checks below exclude all but the same
|
3971 |
|
|
array reference if the where and elswhere destinations
|
3972 |
|
|
are the same. In short, this is VERY conservative and this
|
3973 |
|
|
is needed because the two loops, required by the standard
|
3974 |
|
|
are coalesced in gfc_trans_where_3. */
|
3975 |
|
|
if (!gfc_check_dependency(cblock->next->expr1,
|
3976 |
|
|
cblock->expr1, 0)
|
3977 |
|
|
&& !gfc_check_dependency(eblock->next->expr1,
|
3978 |
|
|
cblock->expr1, 0)
|
3979 |
|
|
&& !gfc_check_dependency(cblock->next->expr1,
|
3980 |
|
|
eblock->next->expr2, 1)
|
3981 |
|
|
&& !gfc_check_dependency(eblock->next->expr1,
|
3982 |
|
|
cblock->next->expr2, 1)
|
3983 |
|
|
&& !gfc_check_dependency(cblock->next->expr1,
|
3984 |
|
|
cblock->next->expr2, 1)
|
3985 |
|
|
&& !gfc_check_dependency(eblock->next->expr1,
|
3986 |
|
|
eblock->next->expr2, 1)
|
3987 |
|
|
&& !gfc_check_dependency(cblock->next->expr1,
|
3988 |
|
|
eblock->next->expr1, 0)
|
3989 |
|
|
&& !gfc_check_dependency(eblock->next->expr1,
|
3990 |
|
|
cblock->next->expr1, 0))
|
3991 |
|
|
return gfc_trans_where_3 (cblock, eblock);
|
3992 |
|
|
}
|
3993 |
|
|
}
|
3994 |
|
|
|
3995 |
|
|
gfc_start_block (&block);
|
3996 |
|
|
|
3997 |
|
|
gfc_trans_where_2 (code, NULL, false, NULL, &block);
|
3998 |
|
|
|
3999 |
|
|
return gfc_finish_block (&block);
|
4000 |
|
|
}
|
4001 |
|
|
|
4002 |
|
|
|
4003 |
|
|
/* CYCLE a DO loop. The label decl has already been created by
|
4004 |
|
|
gfc_trans_do(), it's in TREE_PURPOSE (backend_decl) of the gfc_code
|
4005 |
|
|
node at the head of the loop. We must mark the label as used. */
|
4006 |
|
|
|
4007 |
|
|
tree
|
4008 |
|
|
gfc_trans_cycle (gfc_code * code)
|
4009 |
|
|
{
|
4010 |
|
|
tree cycle_label;
|
4011 |
|
|
|
4012 |
|
|
cycle_label = TREE_PURPOSE (code->ext.whichloop->backend_decl);
|
4013 |
|
|
TREE_USED (cycle_label) = 1;
|
4014 |
|
|
return build1_v (GOTO_EXPR, cycle_label);
|
4015 |
|
|
}
|
4016 |
|
|
|
4017 |
|
|
|
4018 |
|
|
/* EXIT a DO loop. Similar to CYCLE, but now the label is in
|
4019 |
|
|
TREE_VALUE (backend_decl) of the gfc_code node at the head of the
|
4020 |
|
|
loop. */
|
4021 |
|
|
|
4022 |
|
|
tree
|
4023 |
|
|
gfc_trans_exit (gfc_code * code)
|
4024 |
|
|
{
|
4025 |
|
|
tree exit_label;
|
4026 |
|
|
|
4027 |
|
|
exit_label = TREE_VALUE (code->ext.whichloop->backend_decl);
|
4028 |
|
|
TREE_USED (exit_label) = 1;
|
4029 |
|
|
return build1_v (GOTO_EXPR, exit_label);
|
4030 |
|
|
}
|
4031 |
|
|
|
4032 |
|
|
|
4033 |
|
|
/* Translate the ALLOCATE statement. */
|
4034 |
|
|
|
4035 |
|
|
tree
|
4036 |
|
|
gfc_trans_allocate (gfc_code * code)
|
4037 |
|
|
{
|
4038 |
|
|
gfc_alloc *al;
|
4039 |
|
|
gfc_expr *expr;
|
4040 |
|
|
gfc_se se;
|
4041 |
|
|
tree tmp;
|
4042 |
|
|
tree parm;
|
4043 |
|
|
tree stat;
|
4044 |
|
|
tree pstat;
|
4045 |
|
|
tree error_label;
|
4046 |
|
|
tree memsz;
|
4047 |
|
|
stmtblock_t block;
|
4048 |
|
|
|
4049 |
|
|
if (!code->ext.alloc.list)
|
4050 |
|
|
return NULL_TREE;
|
4051 |
|
|
|
4052 |
|
|
pstat = stat = error_label = tmp = memsz = NULL_TREE;
|
4053 |
|
|
|
4054 |
|
|
gfc_start_block (&block);
|
4055 |
|
|
|
4056 |
|
|
/* Either STAT= and/or ERRMSG is present. */
|
4057 |
|
|
if (code->expr1 || code->expr2)
|
4058 |
|
|
{
|
4059 |
|
|
tree gfc_int4_type_node = gfc_get_int_type (4);
|
4060 |
|
|
|
4061 |
|
|
stat = gfc_create_var (gfc_int4_type_node, "stat");
|
4062 |
|
|
pstat = gfc_build_addr_expr (NULL_TREE, stat);
|
4063 |
|
|
|
4064 |
|
|
error_label = gfc_build_label_decl (NULL_TREE);
|
4065 |
|
|
TREE_USED (error_label) = 1;
|
4066 |
|
|
}
|
4067 |
|
|
|
4068 |
|
|
for (al = code->ext.alloc.list; al != NULL; al = al->next)
|
4069 |
|
|
{
|
4070 |
|
|
expr = gfc_copy_expr (al->expr);
|
4071 |
|
|
|
4072 |
|
|
if (expr->ts.type == BT_CLASS)
|
4073 |
|
|
gfc_add_component_ref (expr, "$data");
|
4074 |
|
|
|
4075 |
|
|
gfc_init_se (&se, NULL);
|
4076 |
|
|
gfc_start_block (&se.pre);
|
4077 |
|
|
|
4078 |
|
|
se.want_pointer = 1;
|
4079 |
|
|
se.descriptor_only = 1;
|
4080 |
|
|
gfc_conv_expr (&se, expr);
|
4081 |
|
|
|
4082 |
|
|
if (!gfc_array_allocate (&se, expr, pstat))
|
4083 |
|
|
{
|
4084 |
|
|
/* A scalar or derived type. */
|
4085 |
|
|
|
4086 |
|
|
/* Determine allocate size. */
|
4087 |
|
|
if (code->expr3 && code->expr3->ts.type == BT_CLASS)
|
4088 |
|
|
{
|
4089 |
|
|
gfc_expr *sz;
|
4090 |
|
|
gfc_se se_sz;
|
4091 |
|
|
sz = gfc_copy_expr (code->expr3);
|
4092 |
|
|
gfc_add_component_ref (sz, "$vptr");
|
4093 |
|
|
gfc_add_component_ref (sz, "$size");
|
4094 |
|
|
gfc_init_se (&se_sz, NULL);
|
4095 |
|
|
gfc_conv_expr (&se_sz, sz);
|
4096 |
|
|
gfc_free_expr (sz);
|
4097 |
|
|
memsz = se_sz.expr;
|
4098 |
|
|
}
|
4099 |
|
|
else if (code->expr3 && code->expr3->ts.type != BT_CLASS)
|
4100 |
|
|
memsz = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&code->expr3->ts));
|
4101 |
|
|
else if (code->ext.alloc.ts.type != BT_UNKNOWN)
|
4102 |
|
|
memsz = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&code->ext.alloc.ts));
|
4103 |
|
|
else
|
4104 |
|
|
memsz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (se.expr)));
|
4105 |
|
|
|
4106 |
|
|
if (expr->ts.type == BT_CHARACTER && memsz == NULL_TREE)
|
4107 |
|
|
memsz = se.string_length;
|
4108 |
|
|
|
4109 |
|
|
/* Allocate - for non-pointers with re-alloc checking. */
|
4110 |
|
|
{
|
4111 |
|
|
gfc_ref *ref;
|
4112 |
|
|
bool allocatable;
|
4113 |
|
|
|
4114 |
|
|
ref = expr->ref;
|
4115 |
|
|
|
4116 |
|
|
/* Find the last reference in the chain. */
|
4117 |
|
|
while (ref && ref->next != NULL)
|
4118 |
|
|
{
|
4119 |
|
|
gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT);
|
4120 |
|
|
ref = ref->next;
|
4121 |
|
|
}
|
4122 |
|
|
|
4123 |
|
|
if (!ref)
|
4124 |
|
|
allocatable = expr->symtree->n.sym->attr.allocatable;
|
4125 |
|
|
else
|
4126 |
|
|
allocatable = ref->u.c.component->attr.allocatable;
|
4127 |
|
|
|
4128 |
|
|
if (allocatable)
|
4129 |
|
|
tmp = gfc_allocate_array_with_status (&se.pre, se.expr, memsz,
|
4130 |
|
|
pstat, expr);
|
4131 |
|
|
else
|
4132 |
|
|
tmp = gfc_allocate_with_status (&se.pre, memsz, pstat);
|
4133 |
|
|
}
|
4134 |
|
|
|
4135 |
|
|
tmp = fold_build2 (MODIFY_EXPR, void_type_node, se.expr,
|
4136 |
|
|
fold_convert (TREE_TYPE (se.expr), tmp));
|
4137 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
4138 |
|
|
|
4139 |
|
|
if (code->expr1 || code->expr2)
|
4140 |
|
|
{
|
4141 |
|
|
tmp = build1_v (GOTO_EXPR, error_label);
|
4142 |
|
|
parm = fold_build2 (NE_EXPR, boolean_type_node,
|
4143 |
|
|
stat, build_int_cst (TREE_TYPE (stat), 0));
|
4144 |
|
|
tmp = fold_build3 (COND_EXPR, void_type_node,
|
4145 |
|
|
parm, tmp, build_empty_stmt (input_location));
|
4146 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
4147 |
|
|
}
|
4148 |
|
|
|
4149 |
|
|
if (expr->ts.type == BT_DERIVED && expr->ts.u.derived->attr.alloc_comp)
|
4150 |
|
|
{
|
4151 |
|
|
tmp = build_fold_indirect_ref_loc (input_location, se.expr);
|
4152 |
|
|
tmp = gfc_nullify_alloc_comp (expr->ts.u.derived, tmp, 0);
|
4153 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
4154 |
|
|
}
|
4155 |
|
|
|
4156 |
|
|
}
|
4157 |
|
|
|
4158 |
|
|
tmp = gfc_finish_block (&se.pre);
|
4159 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
4160 |
|
|
|
4161 |
|
|
/* Initialization via SOURCE block. */
|
4162 |
|
|
if (code->expr3)
|
4163 |
|
|
{
|
4164 |
|
|
gfc_expr *rhs = gfc_copy_expr (code->expr3);
|
4165 |
|
|
if (al->expr->ts.type == BT_CLASS)
|
4166 |
|
|
{
|
4167 |
|
|
gfc_se dst,src;
|
4168 |
|
|
if (rhs->ts.type == BT_CLASS)
|
4169 |
|
|
gfc_add_component_ref (rhs, "$data");
|
4170 |
|
|
gfc_init_se (&dst, NULL);
|
4171 |
|
|
gfc_init_se (&src, NULL);
|
4172 |
|
|
gfc_conv_expr (&dst, expr);
|
4173 |
|
|
gfc_conv_expr (&src, rhs);
|
4174 |
|
|
gfc_add_block_to_block (&block, &src.pre);
|
4175 |
|
|
tmp = gfc_build_memcpy_call (dst.expr, src.expr, memsz);
|
4176 |
|
|
}
|
4177 |
|
|
else
|
4178 |
|
|
tmp = gfc_trans_assignment (gfc_expr_to_initialize (expr),
|
4179 |
|
|
rhs, false);
|
4180 |
|
|
gfc_free_expr (rhs);
|
4181 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
4182 |
|
|
}
|
4183 |
|
|
|
4184 |
|
|
/* Allocation of CLASS entities. */
|
4185 |
|
|
gfc_free_expr (expr);
|
4186 |
|
|
expr = al->expr;
|
4187 |
|
|
if (expr->ts.type == BT_CLASS)
|
4188 |
|
|
{
|
4189 |
|
|
gfc_expr *lhs,*rhs;
|
4190 |
|
|
gfc_se lse;
|
4191 |
|
|
|
4192 |
|
|
/* Initialize VPTR for CLASS objects. */
|
4193 |
|
|
lhs = gfc_expr_to_initialize (expr);
|
4194 |
|
|
gfc_add_component_ref (lhs, "$vptr");
|
4195 |
|
|
rhs = NULL;
|
4196 |
|
|
if (code->expr3 && code->expr3->ts.type == BT_CLASS)
|
4197 |
|
|
{
|
4198 |
|
|
/* VPTR must be determined at run time. */
|
4199 |
|
|
rhs = gfc_copy_expr (code->expr3);
|
4200 |
|
|
gfc_add_component_ref (rhs, "$vptr");
|
4201 |
|
|
tmp = gfc_trans_pointer_assignment (lhs, rhs);
|
4202 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
4203 |
|
|
gfc_free_expr (rhs);
|
4204 |
|
|
}
|
4205 |
|
|
else
|
4206 |
|
|
{
|
4207 |
|
|
/* VPTR is fixed at compile time. */
|
4208 |
|
|
gfc_symbol *vtab;
|
4209 |
|
|
gfc_typespec *ts;
|
4210 |
|
|
if (code->expr3)
|
4211 |
|
|
ts = &code->expr3->ts;
|
4212 |
|
|
else if (expr->ts.type == BT_DERIVED)
|
4213 |
|
|
ts = &expr->ts;
|
4214 |
|
|
else if (code->ext.alloc.ts.type == BT_DERIVED)
|
4215 |
|
|
ts = &code->ext.alloc.ts;
|
4216 |
|
|
else if (expr->ts.type == BT_CLASS)
|
4217 |
|
|
ts = &expr->ts.u.derived->components->ts;
|
4218 |
|
|
else
|
4219 |
|
|
ts = &expr->ts;
|
4220 |
|
|
|
4221 |
|
|
if (ts->type == BT_DERIVED)
|
4222 |
|
|
{
|
4223 |
|
|
vtab = gfc_find_derived_vtab (ts->u.derived);
|
4224 |
|
|
gcc_assert (vtab);
|
4225 |
|
|
gfc_init_se (&lse, NULL);
|
4226 |
|
|
lse.want_pointer = 1;
|
4227 |
|
|
gfc_conv_expr (&lse, lhs);
|
4228 |
|
|
tmp = gfc_build_addr_expr (NULL_TREE,
|
4229 |
|
|
gfc_get_symbol_decl (vtab));
|
4230 |
|
|
gfc_add_modify (&block, lse.expr,
|
4231 |
|
|
fold_convert (TREE_TYPE (lse.expr), tmp));
|
4232 |
|
|
}
|
4233 |
|
|
}
|
4234 |
|
|
}
|
4235 |
|
|
|
4236 |
|
|
}
|
4237 |
|
|
|
4238 |
|
|
/* STAT block. */
|
4239 |
|
|
if (code->expr1)
|
4240 |
|
|
{
|
4241 |
|
|
tmp = build1_v (LABEL_EXPR, error_label);
|
4242 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
4243 |
|
|
|
4244 |
|
|
gfc_init_se (&se, NULL);
|
4245 |
|
|
gfc_conv_expr_lhs (&se, code->expr1);
|
4246 |
|
|
tmp = convert (TREE_TYPE (se.expr), stat);
|
4247 |
|
|
gfc_add_modify (&block, se.expr, tmp);
|
4248 |
|
|
}
|
4249 |
|
|
|
4250 |
|
|
/* ERRMSG block. */
|
4251 |
|
|
if (code->expr2)
|
4252 |
|
|
{
|
4253 |
|
|
/* A better error message may be possible, but not required. */
|
4254 |
|
|
const char *msg = "Attempt to allocate an allocated object";
|
4255 |
|
|
tree errmsg, slen, dlen;
|
4256 |
|
|
|
4257 |
|
|
gfc_init_se (&se, NULL);
|
4258 |
|
|
gfc_conv_expr_lhs (&se, code->expr2);
|
4259 |
|
|
|
4260 |
|
|
errmsg = gfc_create_var (pchar_type_node, "ERRMSG");
|
4261 |
|
|
|
4262 |
|
|
gfc_add_modify (&block, errmsg,
|
4263 |
|
|
gfc_build_addr_expr (pchar_type_node,
|
4264 |
|
|
gfc_build_localized_cstring_const (msg)));
|
4265 |
|
|
|
4266 |
|
|
slen = build_int_cst (gfc_charlen_type_node, ((int) strlen (msg)));
|
4267 |
|
|
dlen = gfc_get_expr_charlen (code->expr2);
|
4268 |
|
|
slen = fold_build2 (MIN_EXPR, TREE_TYPE (slen), dlen, slen);
|
4269 |
|
|
|
4270 |
|
|
dlen = build_call_expr_loc (input_location,
|
4271 |
|
|
built_in_decls[BUILT_IN_MEMCPY], 3,
|
4272 |
|
|
gfc_build_addr_expr (pvoid_type_node, se.expr), errmsg, slen);
|
4273 |
|
|
|
4274 |
|
|
tmp = fold_build2 (NE_EXPR, boolean_type_node, stat,
|
4275 |
|
|
build_int_cst (TREE_TYPE (stat), 0));
|
4276 |
|
|
|
4277 |
|
|
tmp = build3_v (COND_EXPR, tmp, dlen, build_empty_stmt (input_location));
|
4278 |
|
|
|
4279 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
4280 |
|
|
}
|
4281 |
|
|
|
4282 |
|
|
return gfc_finish_block (&block);
|
4283 |
|
|
}
|
4284 |
|
|
|
4285 |
|
|
|
4286 |
|
|
/* Translate a DEALLOCATE statement. */
|
4287 |
|
|
|
4288 |
|
|
tree
|
4289 |
|
|
gfc_trans_deallocate (gfc_code *code)
|
4290 |
|
|
{
|
4291 |
|
|
gfc_se se;
|
4292 |
|
|
gfc_alloc *al;
|
4293 |
|
|
gfc_expr *expr;
|
4294 |
|
|
tree apstat, astat, pstat, stat, tmp;
|
4295 |
|
|
stmtblock_t block;
|
4296 |
|
|
|
4297 |
|
|
pstat = apstat = stat = astat = tmp = NULL_TREE;
|
4298 |
|
|
|
4299 |
|
|
gfc_start_block (&block);
|
4300 |
|
|
|
4301 |
|
|
/* Count the number of failed deallocations. If deallocate() was
|
4302 |
|
|
called with STAT= , then set STAT to the count. If deallocate
|
4303 |
|
|
was called with ERRMSG, then set ERRMG to a string. */
|
4304 |
|
|
if (code->expr1 || code->expr2)
|
4305 |
|
|
{
|
4306 |
|
|
tree gfc_int4_type_node = gfc_get_int_type (4);
|
4307 |
|
|
|
4308 |
|
|
stat = gfc_create_var (gfc_int4_type_node, "stat");
|
4309 |
|
|
pstat = gfc_build_addr_expr (NULL_TREE, stat);
|
4310 |
|
|
|
4311 |
|
|
/* Running total of possible deallocation failures. */
|
4312 |
|
|
astat = gfc_create_var (gfc_int4_type_node, "astat");
|
4313 |
|
|
apstat = gfc_build_addr_expr (NULL_TREE, astat);
|
4314 |
|
|
|
4315 |
|
|
/* Initialize astat to 0. */
|
4316 |
|
|
gfc_add_modify (&block, astat, build_int_cst (TREE_TYPE (astat), 0));
|
4317 |
|
|
}
|
4318 |
|
|
|
4319 |
|
|
for (al = code->ext.alloc.list; al != NULL; al = al->next)
|
4320 |
|
|
{
|
4321 |
|
|
expr = al->expr;
|
4322 |
|
|
gcc_assert (expr->expr_type == EXPR_VARIABLE);
|
4323 |
|
|
|
4324 |
|
|
gfc_init_se (&se, NULL);
|
4325 |
|
|
gfc_start_block (&se.pre);
|
4326 |
|
|
|
4327 |
|
|
se.want_pointer = 1;
|
4328 |
|
|
se.descriptor_only = 1;
|
4329 |
|
|
gfc_conv_expr (&se, expr);
|
4330 |
|
|
|
4331 |
|
|
if (expr->ts.type == BT_DERIVED && expr->ts.u.derived->attr.alloc_comp)
|
4332 |
|
|
{
|
4333 |
|
|
gfc_ref *ref;
|
4334 |
|
|
gfc_ref *last = NULL;
|
4335 |
|
|
for (ref = expr->ref; ref; ref = ref->next)
|
4336 |
|
|
if (ref->type == REF_COMPONENT)
|
4337 |
|
|
last = ref;
|
4338 |
|
|
|
4339 |
|
|
/* Do not deallocate the components of a derived type
|
4340 |
|
|
ultimate pointer component. */
|
4341 |
|
|
if (!(last && last->u.c.component->attr.pointer)
|
4342 |
|
|
&& !(!last && expr->symtree->n.sym->attr.pointer))
|
4343 |
|
|
{
|
4344 |
|
|
tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, se.expr,
|
4345 |
|
|
expr->rank);
|
4346 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
4347 |
|
|
}
|
4348 |
|
|
}
|
4349 |
|
|
|
4350 |
|
|
if (expr->rank)
|
4351 |
|
|
tmp = gfc_array_deallocate (se.expr, pstat, expr);
|
4352 |
|
|
else
|
4353 |
|
|
{
|
4354 |
|
|
tmp = gfc_deallocate_with_status (se.expr, pstat, false, expr);
|
4355 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
4356 |
|
|
|
4357 |
|
|
tmp = fold_build2 (MODIFY_EXPR, void_type_node,
|
4358 |
|
|
se.expr, build_int_cst (TREE_TYPE (se.expr), 0));
|
4359 |
|
|
}
|
4360 |
|
|
|
4361 |
|
|
gfc_add_expr_to_block (&se.pre, tmp);
|
4362 |
|
|
|
4363 |
|
|
/* Keep track of the number of failed deallocations by adding stat
|
4364 |
|
|
of the last deallocation to the running total. */
|
4365 |
|
|
if (code->expr1 || code->expr2)
|
4366 |
|
|
{
|
4367 |
|
|
apstat = fold_build2 (PLUS_EXPR, TREE_TYPE (stat), astat, stat);
|
4368 |
|
|
gfc_add_modify (&se.pre, astat, apstat);
|
4369 |
|
|
}
|
4370 |
|
|
|
4371 |
|
|
tmp = gfc_finish_block (&se.pre);
|
4372 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
4373 |
|
|
|
4374 |
|
|
}
|
4375 |
|
|
|
4376 |
|
|
/* Set STAT. */
|
4377 |
|
|
if (code->expr1)
|
4378 |
|
|
{
|
4379 |
|
|
gfc_init_se (&se, NULL);
|
4380 |
|
|
gfc_conv_expr_lhs (&se, code->expr1);
|
4381 |
|
|
tmp = convert (TREE_TYPE (se.expr), astat);
|
4382 |
|
|
gfc_add_modify (&block, se.expr, tmp);
|
4383 |
|
|
}
|
4384 |
|
|
|
4385 |
|
|
/* Set ERRMSG. */
|
4386 |
|
|
if (code->expr2)
|
4387 |
|
|
{
|
4388 |
|
|
/* A better error message may be possible, but not required. */
|
4389 |
|
|
const char *msg = "Attempt to deallocate an unallocated object";
|
4390 |
|
|
tree errmsg, slen, dlen;
|
4391 |
|
|
|
4392 |
|
|
gfc_init_se (&se, NULL);
|
4393 |
|
|
gfc_conv_expr_lhs (&se, code->expr2);
|
4394 |
|
|
|
4395 |
|
|
errmsg = gfc_create_var (pchar_type_node, "ERRMSG");
|
4396 |
|
|
|
4397 |
|
|
gfc_add_modify (&block, errmsg,
|
4398 |
|
|
gfc_build_addr_expr (pchar_type_node,
|
4399 |
|
|
gfc_build_localized_cstring_const (msg)));
|
4400 |
|
|
|
4401 |
|
|
slen = build_int_cst (gfc_charlen_type_node, ((int) strlen (msg)));
|
4402 |
|
|
dlen = gfc_get_expr_charlen (code->expr2);
|
4403 |
|
|
slen = fold_build2 (MIN_EXPR, TREE_TYPE (slen), dlen, slen);
|
4404 |
|
|
|
4405 |
|
|
dlen = build_call_expr_loc (input_location,
|
4406 |
|
|
built_in_decls[BUILT_IN_MEMCPY], 3,
|
4407 |
|
|
gfc_build_addr_expr (pvoid_type_node, se.expr), errmsg, slen);
|
4408 |
|
|
|
4409 |
|
|
tmp = fold_build2 (NE_EXPR, boolean_type_node, astat,
|
4410 |
|
|
build_int_cst (TREE_TYPE (astat), 0));
|
4411 |
|
|
|
4412 |
|
|
tmp = build3_v (COND_EXPR, tmp, dlen, build_empty_stmt (input_location));
|
4413 |
|
|
|
4414 |
|
|
gfc_add_expr_to_block (&block, tmp);
|
4415 |
|
|
}
|
4416 |
|
|
|
4417 |
|
|
return gfc_finish_block (&block);
|
4418 |
|
|
}
|
4419 |
|
|
|