| 1 |
280 |
jeremybenn |
/* "Bag-of-pages" garbage collector for the GNU compiler.
|
| 2 |
|
|
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "rtl.h"
|
| 27 |
|
|
#include "tm_p.h"
|
| 28 |
|
|
#include "toplev.h"
|
| 29 |
|
|
#include "flags.h"
|
| 30 |
|
|
#include "ggc.h"
|
| 31 |
|
|
#include "timevar.h"
|
| 32 |
|
|
#include "params.h"
|
| 33 |
|
|
#include "tree-flow.h"
|
| 34 |
|
|
#include "cfgloop.h"
|
| 35 |
|
|
#include "plugin.h"
|
| 36 |
|
|
|
| 37 |
|
|
/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
|
| 38 |
|
|
file open. Prefer either to valloc. */
|
| 39 |
|
|
#ifdef HAVE_MMAP_ANON
|
| 40 |
|
|
# undef HAVE_MMAP_DEV_ZERO
|
| 41 |
|
|
|
| 42 |
|
|
# include <sys/mman.h>
|
| 43 |
|
|
# ifndef MAP_FAILED
|
| 44 |
|
|
# define MAP_FAILED -1
|
| 45 |
|
|
# endif
|
| 46 |
|
|
# if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
|
| 47 |
|
|
# define MAP_ANONYMOUS MAP_ANON
|
| 48 |
|
|
# endif
|
| 49 |
|
|
# define USING_MMAP
|
| 50 |
|
|
|
| 51 |
|
|
#endif
|
| 52 |
|
|
|
| 53 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
| 54 |
|
|
|
| 55 |
|
|
# include <sys/mman.h>
|
| 56 |
|
|
# ifndef MAP_FAILED
|
| 57 |
|
|
# define MAP_FAILED -1
|
| 58 |
|
|
# endif
|
| 59 |
|
|
# define USING_MMAP
|
| 60 |
|
|
|
| 61 |
|
|
#endif
|
| 62 |
|
|
|
| 63 |
|
|
#ifndef USING_MMAP
|
| 64 |
|
|
#define USING_MALLOC_PAGE_GROUPS
|
| 65 |
|
|
#endif
|
| 66 |
|
|
|
| 67 |
|
|
/* Strategy:
|
| 68 |
|
|
|
| 69 |
|
|
This garbage-collecting allocator allocates objects on one of a set
|
| 70 |
|
|
of pages. Each page can allocate objects of a single size only;
|
| 71 |
|
|
available sizes are powers of two starting at four bytes. The size
|
| 72 |
|
|
of an allocation request is rounded up to the next power of two
|
| 73 |
|
|
(`order'), and satisfied from the appropriate page.
|
| 74 |
|
|
|
| 75 |
|
|
Each page is recorded in a page-entry, which also maintains an
|
| 76 |
|
|
in-use bitmap of object positions on the page. This allows the
|
| 77 |
|
|
allocation state of a particular object to be flipped without
|
| 78 |
|
|
touching the page itself.
|
| 79 |
|
|
|
| 80 |
|
|
Each page-entry also has a context depth, which is used to track
|
| 81 |
|
|
pushing and popping of allocation contexts. Only objects allocated
|
| 82 |
|
|
in the current (highest-numbered) context may be collected.
|
| 83 |
|
|
|
| 84 |
|
|
Page entries are arranged in an array of singly-linked lists. The
|
| 85 |
|
|
array is indexed by the allocation size, in bits, of the pages on
|
| 86 |
|
|
it; i.e. all pages on a list allocate objects of the same size.
|
| 87 |
|
|
Pages are ordered on the list such that all non-full pages precede
|
| 88 |
|
|
all full pages, with non-full pages arranged in order of decreasing
|
| 89 |
|
|
context depth.
|
| 90 |
|
|
|
| 91 |
|
|
Empty pages (of all orders) are kept on a single page cache list,
|
| 92 |
|
|
and are considered first when new pages are required; they are
|
| 93 |
|
|
deallocated at the start of the next collection if they haven't
|
| 94 |
|
|
been recycled by then. */
|
| 95 |
|
|
|
| 96 |
|
|
/* Define GGC_DEBUG_LEVEL to print debugging information.
|
| 97 |
|
|
0: No debugging output.
|
| 98 |
|
|
1: GC statistics only.
|
| 99 |
|
|
2: Page-entry allocations/deallocations as well.
|
| 100 |
|
|
3: Object allocations as well.
|
| 101 |
|
|
4: Object marks as well. */
|
| 102 |
|
|
#define GGC_DEBUG_LEVEL (0)
|
| 103 |
|
|
|
| 104 |
|
|
#ifndef HOST_BITS_PER_PTR
|
| 105 |
|
|
#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
|
| 106 |
|
|
#endif
|
| 107 |
|
|
|
| 108 |
|
|
|
| 109 |
|
|
/* A two-level tree is used to look up the page-entry for a given
|
| 110 |
|
|
pointer. Two chunks of the pointer's bits are extracted to index
|
| 111 |
|
|
the first and second levels of the tree, as follows:
|
| 112 |
|
|
|
| 113 |
|
|
HOST_PAGE_SIZE_BITS
|
| 114 |
|
|
32 | |
|
| 115 |
|
|
msb +----------------+----+------+------+ lsb
|
| 116 |
|
|
| | |
|
| 117 |
|
|
PAGE_L1_BITS |
|
| 118 |
|
|
| |
|
| 119 |
|
|
PAGE_L2_BITS
|
| 120 |
|
|
|
| 121 |
|
|
The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
|
| 122 |
|
|
pages are aligned on system page boundaries. The next most
|
| 123 |
|
|
significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
|
| 124 |
|
|
index values in the lookup table, respectively.
|
| 125 |
|
|
|
| 126 |
|
|
For 32-bit architectures and the settings below, there are no
|
| 127 |
|
|
leftover bits. For architectures with wider pointers, the lookup
|
| 128 |
|
|
tree points to a list of pages, which must be scanned to find the
|
| 129 |
|
|
correct one. */
|
| 130 |
|
|
|
| 131 |
|
|
#define PAGE_L1_BITS (8)
|
| 132 |
|
|
#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
|
| 133 |
|
|
#define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
|
| 134 |
|
|
#define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
|
| 135 |
|
|
|
| 136 |
|
|
#define LOOKUP_L1(p) \
|
| 137 |
|
|
(((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
|
| 138 |
|
|
|
| 139 |
|
|
#define LOOKUP_L2(p) \
|
| 140 |
|
|
(((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
|
| 141 |
|
|
|
| 142 |
|
|
/* The number of objects per allocation page, for objects on a page of
|
| 143 |
|
|
the indicated ORDER. */
|
| 144 |
|
|
#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
|
| 145 |
|
|
|
| 146 |
|
|
/* The number of objects in P. */
|
| 147 |
|
|
#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
|
| 148 |
|
|
|
| 149 |
|
|
/* The size of an object on a page of the indicated ORDER. */
|
| 150 |
|
|
#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
|
| 151 |
|
|
|
| 152 |
|
|
/* For speed, we avoid doing a general integer divide to locate the
|
| 153 |
|
|
offset in the allocation bitmap, by precalculating numbers M, S
|
| 154 |
|
|
such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
|
| 155 |
|
|
within the page which is evenly divisible by the object size Z. */
|
| 156 |
|
|
#define DIV_MULT(ORDER) inverse_table[ORDER].mult
|
| 157 |
|
|
#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
|
| 158 |
|
|
#define OFFSET_TO_BIT(OFFSET, ORDER) \
|
| 159 |
|
|
(((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
|
| 160 |
|
|
|
| 161 |
|
|
/* We use this structure to determine the alignment required for
|
| 162 |
|
|
allocations. For power-of-two sized allocations, that's not a
|
| 163 |
|
|
problem, but it does matter for odd-sized allocations.
|
| 164 |
|
|
We do not care about alignment for floating-point types. */
|
| 165 |
|
|
|
| 166 |
|
|
struct max_alignment {
|
| 167 |
|
|
char c;
|
| 168 |
|
|
union {
|
| 169 |
|
|
HOST_WIDEST_INT i;
|
| 170 |
|
|
void *p;
|
| 171 |
|
|
} u;
|
| 172 |
|
|
};
|
| 173 |
|
|
|
| 174 |
|
|
/* The biggest alignment required. */
|
| 175 |
|
|
|
| 176 |
|
|
#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
|
| 177 |
|
|
|
| 178 |
|
|
|
| 179 |
|
|
/* The number of extra orders, not corresponding to power-of-two sized
|
| 180 |
|
|
objects. */
|
| 181 |
|
|
|
| 182 |
|
|
#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
|
| 183 |
|
|
|
| 184 |
|
|
#define RTL_SIZE(NSLOTS) \
|
| 185 |
|
|
(RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
|
| 186 |
|
|
|
| 187 |
|
|
#define TREE_EXP_SIZE(OPS) \
|
| 188 |
|
|
(sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
|
| 189 |
|
|
|
| 190 |
|
|
/* The Ith entry is the maximum size of an object to be stored in the
|
| 191 |
|
|
Ith extra order. Adding a new entry to this array is the *only*
|
| 192 |
|
|
thing you need to do to add a new special allocation size. */
|
| 193 |
|
|
|
| 194 |
|
|
static const size_t extra_order_size_table[] = {
|
| 195 |
|
|
/* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
|
| 196 |
|
|
There are a lot of structures with these sizes and explicitly
|
| 197 |
|
|
listing them risks orders being dropped because they changed size. */
|
| 198 |
|
|
MAX_ALIGNMENT * 3,
|
| 199 |
|
|
MAX_ALIGNMENT * 5,
|
| 200 |
|
|
MAX_ALIGNMENT * 6,
|
| 201 |
|
|
MAX_ALIGNMENT * 7,
|
| 202 |
|
|
MAX_ALIGNMENT * 9,
|
| 203 |
|
|
MAX_ALIGNMENT * 10,
|
| 204 |
|
|
MAX_ALIGNMENT * 11,
|
| 205 |
|
|
MAX_ALIGNMENT * 12,
|
| 206 |
|
|
MAX_ALIGNMENT * 13,
|
| 207 |
|
|
MAX_ALIGNMENT * 14,
|
| 208 |
|
|
MAX_ALIGNMENT * 15,
|
| 209 |
|
|
sizeof (struct tree_decl_non_common),
|
| 210 |
|
|
sizeof (struct tree_field_decl),
|
| 211 |
|
|
sizeof (struct tree_parm_decl),
|
| 212 |
|
|
sizeof (struct tree_var_decl),
|
| 213 |
|
|
sizeof (struct tree_type),
|
| 214 |
|
|
sizeof (struct function),
|
| 215 |
|
|
sizeof (struct basic_block_def),
|
| 216 |
|
|
sizeof (struct cgraph_node),
|
| 217 |
|
|
sizeof (struct loop),
|
| 218 |
|
|
};
|
| 219 |
|
|
|
| 220 |
|
|
/* The total number of orders. */
|
| 221 |
|
|
|
| 222 |
|
|
#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
|
| 223 |
|
|
|
| 224 |
|
|
/* Compute the smallest nonnegative number which when added to X gives
|
| 225 |
|
|
a multiple of F. */
|
| 226 |
|
|
|
| 227 |
|
|
#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
|
| 228 |
|
|
|
| 229 |
|
|
/* Compute the smallest multiple of F that is >= X. */
|
| 230 |
|
|
|
| 231 |
|
|
#define ROUND_UP(x, f) (CEIL (x, f) * (f))
|
| 232 |
|
|
|
| 233 |
|
|
/* The Ith entry is the number of objects on a page or order I. */
|
| 234 |
|
|
|
| 235 |
|
|
static unsigned objects_per_page_table[NUM_ORDERS];
|
| 236 |
|
|
|
| 237 |
|
|
/* The Ith entry is the size of an object on a page of order I. */
|
| 238 |
|
|
|
| 239 |
|
|
static size_t object_size_table[NUM_ORDERS];
|
| 240 |
|
|
|
| 241 |
|
|
/* The Ith entry is a pair of numbers (mult, shift) such that
|
| 242 |
|
|
((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
|
| 243 |
|
|
for all k evenly divisible by OBJECT_SIZE(I). */
|
| 244 |
|
|
|
| 245 |
|
|
static struct
|
| 246 |
|
|
{
|
| 247 |
|
|
size_t mult;
|
| 248 |
|
|
unsigned int shift;
|
| 249 |
|
|
}
|
| 250 |
|
|
inverse_table[NUM_ORDERS];
|
| 251 |
|
|
|
| 252 |
|
|
/* A page_entry records the status of an allocation page. This
|
| 253 |
|
|
structure is dynamically sized to fit the bitmap in_use_p. */
|
| 254 |
|
|
typedef struct page_entry
|
| 255 |
|
|
{
|
| 256 |
|
|
/* The next page-entry with objects of the same size, or NULL if
|
| 257 |
|
|
this is the last page-entry. */
|
| 258 |
|
|
struct page_entry *next;
|
| 259 |
|
|
|
| 260 |
|
|
/* The previous page-entry with objects of the same size, or NULL if
|
| 261 |
|
|
this is the first page-entry. The PREV pointer exists solely to
|
| 262 |
|
|
keep the cost of ggc_free manageable. */
|
| 263 |
|
|
struct page_entry *prev;
|
| 264 |
|
|
|
| 265 |
|
|
/* The number of bytes allocated. (This will always be a multiple
|
| 266 |
|
|
of the host system page size.) */
|
| 267 |
|
|
size_t bytes;
|
| 268 |
|
|
|
| 269 |
|
|
/* The address at which the memory is allocated. */
|
| 270 |
|
|
char *page;
|
| 271 |
|
|
|
| 272 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 273 |
|
|
/* Back pointer to the page group this page came from. */
|
| 274 |
|
|
struct page_group *group;
|
| 275 |
|
|
#endif
|
| 276 |
|
|
|
| 277 |
|
|
/* This is the index in the by_depth varray where this page table
|
| 278 |
|
|
can be found. */
|
| 279 |
|
|
unsigned long index_by_depth;
|
| 280 |
|
|
|
| 281 |
|
|
/* Context depth of this page. */
|
| 282 |
|
|
unsigned short context_depth;
|
| 283 |
|
|
|
| 284 |
|
|
/* The number of free objects remaining on this page. */
|
| 285 |
|
|
unsigned short num_free_objects;
|
| 286 |
|
|
|
| 287 |
|
|
/* A likely candidate for the bit position of a free object for the
|
| 288 |
|
|
next allocation from this page. */
|
| 289 |
|
|
unsigned short next_bit_hint;
|
| 290 |
|
|
|
| 291 |
|
|
/* The lg of size of objects allocated from this page. */
|
| 292 |
|
|
unsigned char order;
|
| 293 |
|
|
|
| 294 |
|
|
/* A bit vector indicating whether or not objects are in use. The
|
| 295 |
|
|
Nth bit is one if the Nth object on this page is allocated. This
|
| 296 |
|
|
array is dynamically sized. */
|
| 297 |
|
|
unsigned long in_use_p[1];
|
| 298 |
|
|
} page_entry;
|
| 299 |
|
|
|
| 300 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 301 |
|
|
/* A page_group describes a large allocation from malloc, from which
|
| 302 |
|
|
we parcel out aligned pages. */
|
| 303 |
|
|
typedef struct page_group
|
| 304 |
|
|
{
|
| 305 |
|
|
/* A linked list of all extant page groups. */
|
| 306 |
|
|
struct page_group *next;
|
| 307 |
|
|
|
| 308 |
|
|
/* The address we received from malloc. */
|
| 309 |
|
|
char *allocation;
|
| 310 |
|
|
|
| 311 |
|
|
/* The size of the block. */
|
| 312 |
|
|
size_t alloc_size;
|
| 313 |
|
|
|
| 314 |
|
|
/* A bitmask of pages in use. */
|
| 315 |
|
|
unsigned int in_use;
|
| 316 |
|
|
} page_group;
|
| 317 |
|
|
#endif
|
| 318 |
|
|
|
| 319 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 320 |
|
|
|
| 321 |
|
|
/* On 32-bit hosts, we use a two level page table, as pictured above. */
|
| 322 |
|
|
typedef page_entry **page_table[PAGE_L1_SIZE];
|
| 323 |
|
|
|
| 324 |
|
|
#else
|
| 325 |
|
|
|
| 326 |
|
|
/* On 64-bit hosts, we use the same two level page tables plus a linked
|
| 327 |
|
|
list that disambiguates the top 32-bits. There will almost always be
|
| 328 |
|
|
exactly one entry in the list. */
|
| 329 |
|
|
typedef struct page_table_chain
|
| 330 |
|
|
{
|
| 331 |
|
|
struct page_table_chain *next;
|
| 332 |
|
|
size_t high_bits;
|
| 333 |
|
|
page_entry **table[PAGE_L1_SIZE];
|
| 334 |
|
|
} *page_table;
|
| 335 |
|
|
|
| 336 |
|
|
#endif
|
| 337 |
|
|
|
| 338 |
|
|
#ifdef ENABLE_GC_ALWAYS_COLLECT
|
| 339 |
|
|
/* List of free objects to be verified as actually free on the
|
| 340 |
|
|
next collection. */
|
| 341 |
|
|
struct free_object
|
| 342 |
|
|
{
|
| 343 |
|
|
void *object;
|
| 344 |
|
|
struct free_object *next;
|
| 345 |
|
|
};
|
| 346 |
|
|
#endif
|
| 347 |
|
|
|
| 348 |
|
|
/* The rest of the global variables. */
|
| 349 |
|
|
static struct globals
|
| 350 |
|
|
{
|
| 351 |
|
|
/* The Nth element in this array is a page with objects of size 2^N.
|
| 352 |
|
|
If there are any pages with free objects, they will be at the
|
| 353 |
|
|
head of the list. NULL if there are no page-entries for this
|
| 354 |
|
|
object size. */
|
| 355 |
|
|
page_entry *pages[NUM_ORDERS];
|
| 356 |
|
|
|
| 357 |
|
|
/* The Nth element in this array is the last page with objects of
|
| 358 |
|
|
size 2^N. NULL if there are no page-entries for this object
|
| 359 |
|
|
size. */
|
| 360 |
|
|
page_entry *page_tails[NUM_ORDERS];
|
| 361 |
|
|
|
| 362 |
|
|
/* Lookup table for associating allocation pages with object addresses. */
|
| 363 |
|
|
page_table lookup;
|
| 364 |
|
|
|
| 365 |
|
|
/* The system's page size. */
|
| 366 |
|
|
size_t pagesize;
|
| 367 |
|
|
size_t lg_pagesize;
|
| 368 |
|
|
|
| 369 |
|
|
/* Bytes currently allocated. */
|
| 370 |
|
|
size_t allocated;
|
| 371 |
|
|
|
| 372 |
|
|
/* Bytes currently allocated at the end of the last collection. */
|
| 373 |
|
|
size_t allocated_last_gc;
|
| 374 |
|
|
|
| 375 |
|
|
/* Total amount of memory mapped. */
|
| 376 |
|
|
size_t bytes_mapped;
|
| 377 |
|
|
|
| 378 |
|
|
/* Bit N set if any allocations have been done at context depth N. */
|
| 379 |
|
|
unsigned long context_depth_allocations;
|
| 380 |
|
|
|
| 381 |
|
|
/* Bit N set if any collections have been done at context depth N. */
|
| 382 |
|
|
unsigned long context_depth_collections;
|
| 383 |
|
|
|
| 384 |
|
|
/* The current depth in the context stack. */
|
| 385 |
|
|
unsigned short context_depth;
|
| 386 |
|
|
|
| 387 |
|
|
/* A file descriptor open to /dev/zero for reading. */
|
| 388 |
|
|
#if defined (HAVE_MMAP_DEV_ZERO)
|
| 389 |
|
|
int dev_zero_fd;
|
| 390 |
|
|
#endif
|
| 391 |
|
|
|
| 392 |
|
|
/* A cache of free system pages. */
|
| 393 |
|
|
page_entry *free_pages;
|
| 394 |
|
|
|
| 395 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 396 |
|
|
page_group *page_groups;
|
| 397 |
|
|
#endif
|
| 398 |
|
|
|
| 399 |
|
|
/* The file descriptor for debugging output. */
|
| 400 |
|
|
FILE *debug_file;
|
| 401 |
|
|
|
| 402 |
|
|
/* Current number of elements in use in depth below. */
|
| 403 |
|
|
unsigned int depth_in_use;
|
| 404 |
|
|
|
| 405 |
|
|
/* Maximum number of elements that can be used before resizing. */
|
| 406 |
|
|
unsigned int depth_max;
|
| 407 |
|
|
|
| 408 |
|
|
/* Each element of this array is an index in by_depth where the given
|
| 409 |
|
|
depth starts. This structure is indexed by that given depth we
|
| 410 |
|
|
are interested in. */
|
| 411 |
|
|
unsigned int *depth;
|
| 412 |
|
|
|
| 413 |
|
|
/* Current number of elements in use in by_depth below. */
|
| 414 |
|
|
unsigned int by_depth_in_use;
|
| 415 |
|
|
|
| 416 |
|
|
/* Maximum number of elements that can be used before resizing. */
|
| 417 |
|
|
unsigned int by_depth_max;
|
| 418 |
|
|
|
| 419 |
|
|
/* Each element of this array is a pointer to a page_entry, all
|
| 420 |
|
|
page_entries can be found in here by increasing depth.
|
| 421 |
|
|
index_by_depth in the page_entry is the index into this data
|
| 422 |
|
|
structure where that page_entry can be found. This is used to
|
| 423 |
|
|
speed up finding all page_entries at a particular depth. */
|
| 424 |
|
|
page_entry **by_depth;
|
| 425 |
|
|
|
| 426 |
|
|
/* Each element is a pointer to the saved in_use_p bits, if any,
|
| 427 |
|
|
zero otherwise. We allocate them all together, to enable a
|
| 428 |
|
|
better runtime data access pattern. */
|
| 429 |
|
|
unsigned long **save_in_use;
|
| 430 |
|
|
|
| 431 |
|
|
#ifdef ENABLE_GC_ALWAYS_COLLECT
|
| 432 |
|
|
/* List of free objects to be verified as actually free on the
|
| 433 |
|
|
next collection. */
|
| 434 |
|
|
struct free_object *free_object_list;
|
| 435 |
|
|
#endif
|
| 436 |
|
|
|
| 437 |
|
|
#ifdef GATHER_STATISTICS
|
| 438 |
|
|
struct
|
| 439 |
|
|
{
|
| 440 |
|
|
/* Total memory allocated with ggc_alloc. */
|
| 441 |
|
|
unsigned long long total_allocated;
|
| 442 |
|
|
/* Total overhead for memory to be allocated with ggc_alloc. */
|
| 443 |
|
|
unsigned long long total_overhead;
|
| 444 |
|
|
|
| 445 |
|
|
/* Total allocations and overhead for sizes less than 32, 64 and 128.
|
| 446 |
|
|
These sizes are interesting because they are typical cache line
|
| 447 |
|
|
sizes. */
|
| 448 |
|
|
|
| 449 |
|
|
unsigned long long total_allocated_under32;
|
| 450 |
|
|
unsigned long long total_overhead_under32;
|
| 451 |
|
|
|
| 452 |
|
|
unsigned long long total_allocated_under64;
|
| 453 |
|
|
unsigned long long total_overhead_under64;
|
| 454 |
|
|
|
| 455 |
|
|
unsigned long long total_allocated_under128;
|
| 456 |
|
|
unsigned long long total_overhead_under128;
|
| 457 |
|
|
|
| 458 |
|
|
/* The allocations for each of the allocation orders. */
|
| 459 |
|
|
unsigned long long total_allocated_per_order[NUM_ORDERS];
|
| 460 |
|
|
|
| 461 |
|
|
/* The overhead for each of the allocation orders. */
|
| 462 |
|
|
unsigned long long total_overhead_per_order[NUM_ORDERS];
|
| 463 |
|
|
} stats;
|
| 464 |
|
|
#endif
|
| 465 |
|
|
} G;
|
| 466 |
|
|
|
| 467 |
|
|
/* The size in bytes required to maintain a bitmap for the objects
|
| 468 |
|
|
on a page-entry. */
|
| 469 |
|
|
#define BITMAP_SIZE(Num_objects) \
|
| 470 |
|
|
(CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
|
| 471 |
|
|
|
| 472 |
|
|
/* Allocate pages in chunks of this size, to throttle calls to memory
|
| 473 |
|
|
allocation routines. The first page is used, the rest go onto the
|
| 474 |
|
|
free list. This cannot be larger than HOST_BITS_PER_INT for the
|
| 475 |
|
|
in_use bitmask for page_group. Hosts that need a different value
|
| 476 |
|
|
can override this by defining GGC_QUIRE_SIZE explicitly. */
|
| 477 |
|
|
#ifndef GGC_QUIRE_SIZE
|
| 478 |
|
|
# ifdef USING_MMAP
|
| 479 |
|
|
# define GGC_QUIRE_SIZE 256
|
| 480 |
|
|
# else
|
| 481 |
|
|
# define GGC_QUIRE_SIZE 16
|
| 482 |
|
|
# endif
|
| 483 |
|
|
#endif
|
| 484 |
|
|
|
| 485 |
|
|
/* Initial guess as to how many page table entries we might need. */
|
| 486 |
|
|
#define INITIAL_PTE_COUNT 128
|
| 487 |
|
|
|
| 488 |
|
|
static int ggc_allocated_p (const void *);
|
| 489 |
|
|
static page_entry *lookup_page_table_entry (const void *);
|
| 490 |
|
|
static void set_page_table_entry (void *, page_entry *);
|
| 491 |
|
|
#ifdef USING_MMAP
|
| 492 |
|
|
static char *alloc_anon (char *, size_t);
|
| 493 |
|
|
#endif
|
| 494 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 495 |
|
|
static size_t page_group_index (char *, char *);
|
| 496 |
|
|
static void set_page_group_in_use (page_group *, char *);
|
| 497 |
|
|
static void clear_page_group_in_use (page_group *, char *);
|
| 498 |
|
|
#endif
|
| 499 |
|
|
static struct page_entry * alloc_page (unsigned);
|
| 500 |
|
|
static void free_page (struct page_entry *);
|
| 501 |
|
|
static void release_pages (void);
|
| 502 |
|
|
static void clear_marks (void);
|
| 503 |
|
|
static void sweep_pages (void);
|
| 504 |
|
|
static void ggc_recalculate_in_use_p (page_entry *);
|
| 505 |
|
|
static void compute_inverse (unsigned);
|
| 506 |
|
|
static inline void adjust_depth (void);
|
| 507 |
|
|
static void move_ptes_to_front (int, int);
|
| 508 |
|
|
|
| 509 |
|
|
void debug_print_page_list (int);
|
| 510 |
|
|
static void push_depth (unsigned int);
|
| 511 |
|
|
static void push_by_depth (page_entry *, unsigned long *);
|
| 512 |
|
|
|
| 513 |
|
|
/* Push an entry onto G.depth. */
|
| 514 |
|
|
|
| 515 |
|
|
inline static void
|
| 516 |
|
|
push_depth (unsigned int i)
|
| 517 |
|
|
{
|
| 518 |
|
|
if (G.depth_in_use >= G.depth_max)
|
| 519 |
|
|
{
|
| 520 |
|
|
G.depth_max *= 2;
|
| 521 |
|
|
G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
|
| 522 |
|
|
}
|
| 523 |
|
|
G.depth[G.depth_in_use++] = i;
|
| 524 |
|
|
}
|
| 525 |
|
|
|
| 526 |
|
|
/* Push an entry onto G.by_depth and G.save_in_use. */
|
| 527 |
|
|
|
| 528 |
|
|
inline static void
|
| 529 |
|
|
push_by_depth (page_entry *p, unsigned long *s)
|
| 530 |
|
|
{
|
| 531 |
|
|
if (G.by_depth_in_use >= G.by_depth_max)
|
| 532 |
|
|
{
|
| 533 |
|
|
G.by_depth_max *= 2;
|
| 534 |
|
|
G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
|
| 535 |
|
|
G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
|
| 536 |
|
|
G.by_depth_max);
|
| 537 |
|
|
}
|
| 538 |
|
|
G.by_depth[G.by_depth_in_use] = p;
|
| 539 |
|
|
G.save_in_use[G.by_depth_in_use++] = s;
|
| 540 |
|
|
}
|
| 541 |
|
|
|
| 542 |
|
|
#if (GCC_VERSION < 3001)
|
| 543 |
|
|
#define prefetch(X) ((void) X)
|
| 544 |
|
|
#else
|
| 545 |
|
|
#define prefetch(X) __builtin_prefetch (X)
|
| 546 |
|
|
#endif
|
| 547 |
|
|
|
| 548 |
|
|
#define save_in_use_p_i(__i) \
|
| 549 |
|
|
(G.save_in_use[__i])
|
| 550 |
|
|
#define save_in_use_p(__p) \
|
| 551 |
|
|
(save_in_use_p_i (__p->index_by_depth))
|
| 552 |
|
|
|
| 553 |
|
|
/* Returns nonzero if P was allocated in GC'able memory. */
|
| 554 |
|
|
|
| 555 |
|
|
static inline int
|
| 556 |
|
|
ggc_allocated_p (const void *p)
|
| 557 |
|
|
{
|
| 558 |
|
|
page_entry ***base;
|
| 559 |
|
|
size_t L1, L2;
|
| 560 |
|
|
|
| 561 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 562 |
|
|
base = &G.lookup[0];
|
| 563 |
|
|
#else
|
| 564 |
|
|
page_table table = G.lookup;
|
| 565 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
| 566 |
|
|
while (1)
|
| 567 |
|
|
{
|
| 568 |
|
|
if (table == NULL)
|
| 569 |
|
|
return 0;
|
| 570 |
|
|
if (table->high_bits == high_bits)
|
| 571 |
|
|
break;
|
| 572 |
|
|
table = table->next;
|
| 573 |
|
|
}
|
| 574 |
|
|
base = &table->table[0];
|
| 575 |
|
|
#endif
|
| 576 |
|
|
|
| 577 |
|
|
/* Extract the level 1 and 2 indices. */
|
| 578 |
|
|
L1 = LOOKUP_L1 (p);
|
| 579 |
|
|
L2 = LOOKUP_L2 (p);
|
| 580 |
|
|
|
| 581 |
|
|
return base[L1] && base[L1][L2];
|
| 582 |
|
|
}
|
| 583 |
|
|
|
| 584 |
|
|
/* Traverse the page table and find the entry for a page.
|
| 585 |
|
|
Die (probably) if the object wasn't allocated via GC. */
|
| 586 |
|
|
|
| 587 |
|
|
static inline page_entry *
|
| 588 |
|
|
lookup_page_table_entry (const void *p)
|
| 589 |
|
|
{
|
| 590 |
|
|
page_entry ***base;
|
| 591 |
|
|
size_t L1, L2;
|
| 592 |
|
|
|
| 593 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 594 |
|
|
base = &G.lookup[0];
|
| 595 |
|
|
#else
|
| 596 |
|
|
page_table table = G.lookup;
|
| 597 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
| 598 |
|
|
while (table->high_bits != high_bits)
|
| 599 |
|
|
table = table->next;
|
| 600 |
|
|
base = &table->table[0];
|
| 601 |
|
|
#endif
|
| 602 |
|
|
|
| 603 |
|
|
/* Extract the level 1 and 2 indices. */
|
| 604 |
|
|
L1 = LOOKUP_L1 (p);
|
| 605 |
|
|
L2 = LOOKUP_L2 (p);
|
| 606 |
|
|
|
| 607 |
|
|
return base[L1][L2];
|
| 608 |
|
|
}
|
| 609 |
|
|
|
| 610 |
|
|
/* Set the page table entry for a page. */
|
| 611 |
|
|
|
| 612 |
|
|
static void
|
| 613 |
|
|
set_page_table_entry (void *p, page_entry *entry)
|
| 614 |
|
|
{
|
| 615 |
|
|
page_entry ***base;
|
| 616 |
|
|
size_t L1, L2;
|
| 617 |
|
|
|
| 618 |
|
|
#if HOST_BITS_PER_PTR <= 32
|
| 619 |
|
|
base = &G.lookup[0];
|
| 620 |
|
|
#else
|
| 621 |
|
|
page_table table;
|
| 622 |
|
|
size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
|
| 623 |
|
|
for (table = G.lookup; table; table = table->next)
|
| 624 |
|
|
if (table->high_bits == high_bits)
|
| 625 |
|
|
goto found;
|
| 626 |
|
|
|
| 627 |
|
|
/* Not found -- allocate a new table. */
|
| 628 |
|
|
table = XCNEW (struct page_table_chain);
|
| 629 |
|
|
table->next = G.lookup;
|
| 630 |
|
|
table->high_bits = high_bits;
|
| 631 |
|
|
G.lookup = table;
|
| 632 |
|
|
found:
|
| 633 |
|
|
base = &table->table[0];
|
| 634 |
|
|
#endif
|
| 635 |
|
|
|
| 636 |
|
|
/* Extract the level 1 and 2 indices. */
|
| 637 |
|
|
L1 = LOOKUP_L1 (p);
|
| 638 |
|
|
L2 = LOOKUP_L2 (p);
|
| 639 |
|
|
|
| 640 |
|
|
if (base[L1] == NULL)
|
| 641 |
|
|
base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
|
| 642 |
|
|
|
| 643 |
|
|
base[L1][L2] = entry;
|
| 644 |
|
|
}
|
| 645 |
|
|
|
| 646 |
|
|
/* Prints the page-entry for object size ORDER, for debugging. */
|
| 647 |
|
|
|
| 648 |
|
|
void
|
| 649 |
|
|
debug_print_page_list (int order)
|
| 650 |
|
|
{
|
| 651 |
|
|
page_entry *p;
|
| 652 |
|
|
printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
|
| 653 |
|
|
(void *) G.page_tails[order]);
|
| 654 |
|
|
p = G.pages[order];
|
| 655 |
|
|
while (p != NULL)
|
| 656 |
|
|
{
|
| 657 |
|
|
printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
|
| 658 |
|
|
p->num_free_objects);
|
| 659 |
|
|
p = p->next;
|
| 660 |
|
|
}
|
| 661 |
|
|
printf ("NULL\n");
|
| 662 |
|
|
fflush (stdout);
|
| 663 |
|
|
}
|
| 664 |
|
|
|
| 665 |
|
|
#ifdef USING_MMAP
|
| 666 |
|
|
/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
|
| 667 |
|
|
(if non-null). The ifdef structure here is intended to cause a
|
| 668 |
|
|
compile error unless exactly one of the HAVE_* is defined. */
|
| 669 |
|
|
|
| 670 |
|
|
static inline char *
|
| 671 |
|
|
alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
|
| 672 |
|
|
{
|
| 673 |
|
|
#ifdef HAVE_MMAP_ANON
|
| 674 |
|
|
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
|
| 675 |
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
| 676 |
|
|
#endif
|
| 677 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
| 678 |
|
|
char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
|
| 679 |
|
|
MAP_PRIVATE, G.dev_zero_fd, 0);
|
| 680 |
|
|
#endif
|
| 681 |
|
|
|
| 682 |
|
|
if (page == (char *) MAP_FAILED)
|
| 683 |
|
|
{
|
| 684 |
|
|
perror ("virtual memory exhausted");
|
| 685 |
|
|
exit (FATAL_EXIT_CODE);
|
| 686 |
|
|
}
|
| 687 |
|
|
|
| 688 |
|
|
/* Remember that we allocated this memory. */
|
| 689 |
|
|
G.bytes_mapped += size;
|
| 690 |
|
|
|
| 691 |
|
|
/* Pretend we don't have access to the allocated pages. We'll enable
|
| 692 |
|
|
access to smaller pieces of the area in ggc_alloc. Discard the
|
| 693 |
|
|
handle to avoid handle leak. */
|
| 694 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
|
| 695 |
|
|
|
| 696 |
|
|
return page;
|
| 697 |
|
|
}
|
| 698 |
|
|
#endif
|
| 699 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 700 |
|
|
/* Compute the index for this page into the page group. */
|
| 701 |
|
|
|
| 702 |
|
|
static inline size_t
|
| 703 |
|
|
page_group_index (char *allocation, char *page)
|
| 704 |
|
|
{
|
| 705 |
|
|
return (size_t) (page - allocation) >> G.lg_pagesize;
|
| 706 |
|
|
}
|
| 707 |
|
|
|
| 708 |
|
|
/* Set and clear the in_use bit for this page in the page group. */
|
| 709 |
|
|
|
| 710 |
|
|
static inline void
|
| 711 |
|
|
set_page_group_in_use (page_group *group, char *page)
|
| 712 |
|
|
{
|
| 713 |
|
|
group->in_use |= 1 << page_group_index (group->allocation, page);
|
| 714 |
|
|
}
|
| 715 |
|
|
|
| 716 |
|
|
static inline void
|
| 717 |
|
|
clear_page_group_in_use (page_group *group, char *page)
|
| 718 |
|
|
{
|
| 719 |
|
|
group->in_use &= ~(1 << page_group_index (group->allocation, page));
|
| 720 |
|
|
}
|
| 721 |
|
|
#endif
|
| 722 |
|
|
|
| 723 |
|
|
/* Allocate a new page for allocating objects of size 2^ORDER,
|
| 724 |
|
|
and return an entry for it. The entry is not added to the
|
| 725 |
|
|
appropriate page_table list. */
|
| 726 |
|
|
|
| 727 |
|
|
static inline struct page_entry *
|
| 728 |
|
|
alloc_page (unsigned order)
|
| 729 |
|
|
{
|
| 730 |
|
|
struct page_entry *entry, *p, **pp;
|
| 731 |
|
|
char *page;
|
| 732 |
|
|
size_t num_objects;
|
| 733 |
|
|
size_t bitmap_size;
|
| 734 |
|
|
size_t page_entry_size;
|
| 735 |
|
|
size_t entry_size;
|
| 736 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 737 |
|
|
page_group *group;
|
| 738 |
|
|
#endif
|
| 739 |
|
|
|
| 740 |
|
|
num_objects = OBJECTS_PER_PAGE (order);
|
| 741 |
|
|
bitmap_size = BITMAP_SIZE (num_objects + 1);
|
| 742 |
|
|
page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
|
| 743 |
|
|
entry_size = num_objects * OBJECT_SIZE (order);
|
| 744 |
|
|
if (entry_size < G.pagesize)
|
| 745 |
|
|
entry_size = G.pagesize;
|
| 746 |
|
|
|
| 747 |
|
|
entry = NULL;
|
| 748 |
|
|
page = NULL;
|
| 749 |
|
|
|
| 750 |
|
|
/* Check the list of free pages for one we can use. */
|
| 751 |
|
|
for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
|
| 752 |
|
|
if (p->bytes == entry_size)
|
| 753 |
|
|
break;
|
| 754 |
|
|
|
| 755 |
|
|
if (p != NULL)
|
| 756 |
|
|
{
|
| 757 |
|
|
/* Recycle the allocated memory from this page ... */
|
| 758 |
|
|
*pp = p->next;
|
| 759 |
|
|
page = p->page;
|
| 760 |
|
|
|
| 761 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 762 |
|
|
group = p->group;
|
| 763 |
|
|
#endif
|
| 764 |
|
|
|
| 765 |
|
|
/* ... and, if possible, the page entry itself. */
|
| 766 |
|
|
if (p->order == order)
|
| 767 |
|
|
{
|
| 768 |
|
|
entry = p;
|
| 769 |
|
|
memset (entry, 0, page_entry_size);
|
| 770 |
|
|
}
|
| 771 |
|
|
else
|
| 772 |
|
|
free (p);
|
| 773 |
|
|
}
|
| 774 |
|
|
#ifdef USING_MMAP
|
| 775 |
|
|
else if (entry_size == G.pagesize)
|
| 776 |
|
|
{
|
| 777 |
|
|
/* We want just one page. Allocate a bunch of them and put the
|
| 778 |
|
|
extras on the freelist. (Can only do this optimization with
|
| 779 |
|
|
mmap for backing store.) */
|
| 780 |
|
|
struct page_entry *e, *f = G.free_pages;
|
| 781 |
|
|
int i;
|
| 782 |
|
|
|
| 783 |
|
|
page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
|
| 784 |
|
|
|
| 785 |
|
|
/* This loop counts down so that the chain will be in ascending
|
| 786 |
|
|
memory order. */
|
| 787 |
|
|
for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
|
| 788 |
|
|
{
|
| 789 |
|
|
e = XCNEWVAR (struct page_entry, page_entry_size);
|
| 790 |
|
|
e->order = order;
|
| 791 |
|
|
e->bytes = G.pagesize;
|
| 792 |
|
|
e->page = page + (i << G.lg_pagesize);
|
| 793 |
|
|
e->next = f;
|
| 794 |
|
|
f = e;
|
| 795 |
|
|
}
|
| 796 |
|
|
|
| 797 |
|
|
G.free_pages = f;
|
| 798 |
|
|
}
|
| 799 |
|
|
else
|
| 800 |
|
|
page = alloc_anon (NULL, entry_size);
|
| 801 |
|
|
#endif
|
| 802 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 803 |
|
|
else
|
| 804 |
|
|
{
|
| 805 |
|
|
/* Allocate a large block of memory and serve out the aligned
|
| 806 |
|
|
pages therein. This results in much less memory wastage
|
| 807 |
|
|
than the traditional implementation of valloc. */
|
| 808 |
|
|
|
| 809 |
|
|
char *allocation, *a, *enda;
|
| 810 |
|
|
size_t alloc_size, head_slop, tail_slop;
|
| 811 |
|
|
int multiple_pages = (entry_size == G.pagesize);
|
| 812 |
|
|
|
| 813 |
|
|
if (multiple_pages)
|
| 814 |
|
|
alloc_size = GGC_QUIRE_SIZE * G.pagesize;
|
| 815 |
|
|
else
|
| 816 |
|
|
alloc_size = entry_size + G.pagesize - 1;
|
| 817 |
|
|
allocation = XNEWVEC (char, alloc_size);
|
| 818 |
|
|
|
| 819 |
|
|
page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
|
| 820 |
|
|
head_slop = page - allocation;
|
| 821 |
|
|
if (multiple_pages)
|
| 822 |
|
|
tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
|
| 823 |
|
|
else
|
| 824 |
|
|
tail_slop = alloc_size - entry_size - head_slop;
|
| 825 |
|
|
enda = allocation + alloc_size - tail_slop;
|
| 826 |
|
|
|
| 827 |
|
|
/* We allocated N pages, which are likely not aligned, leaving
|
| 828 |
|
|
us with N-1 usable pages. We plan to place the page_group
|
| 829 |
|
|
structure somewhere in the slop. */
|
| 830 |
|
|
if (head_slop >= sizeof (page_group))
|
| 831 |
|
|
group = (page_group *)page - 1;
|
| 832 |
|
|
else
|
| 833 |
|
|
{
|
| 834 |
|
|
/* We magically got an aligned allocation. Too bad, we have
|
| 835 |
|
|
to waste a page anyway. */
|
| 836 |
|
|
if (tail_slop == 0)
|
| 837 |
|
|
{
|
| 838 |
|
|
enda -= G.pagesize;
|
| 839 |
|
|
tail_slop += G.pagesize;
|
| 840 |
|
|
}
|
| 841 |
|
|
gcc_assert (tail_slop >= sizeof (page_group));
|
| 842 |
|
|
group = (page_group *)enda;
|
| 843 |
|
|
tail_slop -= sizeof (page_group);
|
| 844 |
|
|
}
|
| 845 |
|
|
|
| 846 |
|
|
/* Remember that we allocated this memory. */
|
| 847 |
|
|
group->next = G.page_groups;
|
| 848 |
|
|
group->allocation = allocation;
|
| 849 |
|
|
group->alloc_size = alloc_size;
|
| 850 |
|
|
group->in_use = 0;
|
| 851 |
|
|
G.page_groups = group;
|
| 852 |
|
|
G.bytes_mapped += alloc_size;
|
| 853 |
|
|
|
| 854 |
|
|
/* If we allocated multiple pages, put the rest on the free list. */
|
| 855 |
|
|
if (multiple_pages)
|
| 856 |
|
|
{
|
| 857 |
|
|
struct page_entry *e, *f = G.free_pages;
|
| 858 |
|
|
for (a = enda - G.pagesize; a != page; a -= G.pagesize)
|
| 859 |
|
|
{
|
| 860 |
|
|
e = XCNEWVAR (struct page_entry, page_entry_size);
|
| 861 |
|
|
e->order = order;
|
| 862 |
|
|
e->bytes = G.pagesize;
|
| 863 |
|
|
e->page = a;
|
| 864 |
|
|
e->group = group;
|
| 865 |
|
|
e->next = f;
|
| 866 |
|
|
f = e;
|
| 867 |
|
|
}
|
| 868 |
|
|
G.free_pages = f;
|
| 869 |
|
|
}
|
| 870 |
|
|
}
|
| 871 |
|
|
#endif
|
| 872 |
|
|
|
| 873 |
|
|
if (entry == NULL)
|
| 874 |
|
|
entry = XCNEWVAR (struct page_entry, page_entry_size);
|
| 875 |
|
|
|
| 876 |
|
|
entry->bytes = entry_size;
|
| 877 |
|
|
entry->page = page;
|
| 878 |
|
|
entry->context_depth = G.context_depth;
|
| 879 |
|
|
entry->order = order;
|
| 880 |
|
|
entry->num_free_objects = num_objects;
|
| 881 |
|
|
entry->next_bit_hint = 1;
|
| 882 |
|
|
|
| 883 |
|
|
G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
|
| 884 |
|
|
|
| 885 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 886 |
|
|
entry->group = group;
|
| 887 |
|
|
set_page_group_in_use (group, page);
|
| 888 |
|
|
#endif
|
| 889 |
|
|
|
| 890 |
|
|
/* Set the one-past-the-end in-use bit. This acts as a sentry as we
|
| 891 |
|
|
increment the hint. */
|
| 892 |
|
|
entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
|
| 893 |
|
|
= (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
|
| 894 |
|
|
|
| 895 |
|
|
set_page_table_entry (page, entry);
|
| 896 |
|
|
|
| 897 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 898 |
|
|
fprintf (G.debug_file,
|
| 899 |
|
|
"Allocating page at %p, object size=%lu, data %p-%p\n",
|
| 900 |
|
|
(void *) entry, (unsigned long) OBJECT_SIZE (order), page,
|
| 901 |
|
|
page + entry_size - 1);
|
| 902 |
|
|
|
| 903 |
|
|
return entry;
|
| 904 |
|
|
}
|
| 905 |
|
|
|
| 906 |
|
|
/* Adjust the size of G.depth so that no index greater than the one
|
| 907 |
|
|
used by the top of the G.by_depth is used. */
|
| 908 |
|
|
|
| 909 |
|
|
static inline void
|
| 910 |
|
|
adjust_depth (void)
|
| 911 |
|
|
{
|
| 912 |
|
|
page_entry *top;
|
| 913 |
|
|
|
| 914 |
|
|
if (G.by_depth_in_use)
|
| 915 |
|
|
{
|
| 916 |
|
|
top = G.by_depth[G.by_depth_in_use-1];
|
| 917 |
|
|
|
| 918 |
|
|
/* Peel back indices in depth that index into by_depth, so that
|
| 919 |
|
|
as new elements are added to by_depth, we note the indices
|
| 920 |
|
|
of those elements, if they are for new context depths. */
|
| 921 |
|
|
while (G.depth_in_use > (size_t)top->context_depth+1)
|
| 922 |
|
|
--G.depth_in_use;
|
| 923 |
|
|
}
|
| 924 |
|
|
}
|
| 925 |
|
|
|
| 926 |
|
|
/* For a page that is no longer needed, put it on the free page list. */
|
| 927 |
|
|
|
| 928 |
|
|
static void
|
| 929 |
|
|
free_page (page_entry *entry)
|
| 930 |
|
|
{
|
| 931 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 932 |
|
|
fprintf (G.debug_file,
|
| 933 |
|
|
"Deallocating page at %p, data %p-%p\n", (void *) entry,
|
| 934 |
|
|
entry->page, entry->page + entry->bytes - 1);
|
| 935 |
|
|
|
| 936 |
|
|
/* Mark the page as inaccessible. Discard the handle to avoid handle
|
| 937 |
|
|
leak. */
|
| 938 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
|
| 939 |
|
|
|
| 940 |
|
|
set_page_table_entry (entry->page, NULL);
|
| 941 |
|
|
|
| 942 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 943 |
|
|
clear_page_group_in_use (entry->group, entry->page);
|
| 944 |
|
|
#endif
|
| 945 |
|
|
|
| 946 |
|
|
if (G.by_depth_in_use > 1)
|
| 947 |
|
|
{
|
| 948 |
|
|
page_entry *top = G.by_depth[G.by_depth_in_use-1];
|
| 949 |
|
|
int i = entry->index_by_depth;
|
| 950 |
|
|
|
| 951 |
|
|
/* We cannot free a page from a context deeper than the current
|
| 952 |
|
|
one. */
|
| 953 |
|
|
gcc_assert (entry->context_depth == top->context_depth);
|
| 954 |
|
|
|
| 955 |
|
|
/* Put top element into freed slot. */
|
| 956 |
|
|
G.by_depth[i] = top;
|
| 957 |
|
|
G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
|
| 958 |
|
|
top->index_by_depth = i;
|
| 959 |
|
|
}
|
| 960 |
|
|
--G.by_depth_in_use;
|
| 961 |
|
|
|
| 962 |
|
|
adjust_depth ();
|
| 963 |
|
|
|
| 964 |
|
|
entry->next = G.free_pages;
|
| 965 |
|
|
G.free_pages = entry;
|
| 966 |
|
|
}
|
| 967 |
|
|
|
| 968 |
|
|
/* Release the free page cache to the system. */
|
| 969 |
|
|
|
| 970 |
|
|
static void
|
| 971 |
|
|
release_pages (void)
|
| 972 |
|
|
{
|
| 973 |
|
|
#ifdef USING_MMAP
|
| 974 |
|
|
page_entry *p, *next;
|
| 975 |
|
|
char *start;
|
| 976 |
|
|
size_t len;
|
| 977 |
|
|
|
| 978 |
|
|
/* Gather up adjacent pages so they are unmapped together. */
|
| 979 |
|
|
p = G.free_pages;
|
| 980 |
|
|
|
| 981 |
|
|
while (p)
|
| 982 |
|
|
{
|
| 983 |
|
|
start = p->page;
|
| 984 |
|
|
next = p->next;
|
| 985 |
|
|
len = p->bytes;
|
| 986 |
|
|
free (p);
|
| 987 |
|
|
p = next;
|
| 988 |
|
|
|
| 989 |
|
|
while (p && p->page == start + len)
|
| 990 |
|
|
{
|
| 991 |
|
|
next = p->next;
|
| 992 |
|
|
len += p->bytes;
|
| 993 |
|
|
free (p);
|
| 994 |
|
|
p = next;
|
| 995 |
|
|
}
|
| 996 |
|
|
|
| 997 |
|
|
munmap (start, len);
|
| 998 |
|
|
G.bytes_mapped -= len;
|
| 999 |
|
|
}
|
| 1000 |
|
|
|
| 1001 |
|
|
G.free_pages = NULL;
|
| 1002 |
|
|
#endif
|
| 1003 |
|
|
#ifdef USING_MALLOC_PAGE_GROUPS
|
| 1004 |
|
|
page_entry **pp, *p;
|
| 1005 |
|
|
page_group **gp, *g;
|
| 1006 |
|
|
|
| 1007 |
|
|
/* Remove all pages from free page groups from the list. */
|
| 1008 |
|
|
pp = &G.free_pages;
|
| 1009 |
|
|
while ((p = *pp) != NULL)
|
| 1010 |
|
|
if (p->group->in_use == 0)
|
| 1011 |
|
|
{
|
| 1012 |
|
|
*pp = p->next;
|
| 1013 |
|
|
free (p);
|
| 1014 |
|
|
}
|
| 1015 |
|
|
else
|
| 1016 |
|
|
pp = &p->next;
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Remove all free page groups, and release the storage. */
|
| 1019 |
|
|
gp = &G.page_groups;
|
| 1020 |
|
|
while ((g = *gp) != NULL)
|
| 1021 |
|
|
if (g->in_use == 0)
|
| 1022 |
|
|
{
|
| 1023 |
|
|
*gp = g->next;
|
| 1024 |
|
|
G.bytes_mapped -= g->alloc_size;
|
| 1025 |
|
|
free (g->allocation);
|
| 1026 |
|
|
}
|
| 1027 |
|
|
else
|
| 1028 |
|
|
gp = &g->next;
|
| 1029 |
|
|
#endif
|
| 1030 |
|
|
}
|
| 1031 |
|
|
|
| 1032 |
|
|
/* This table provides a fast way to determine ceil(log_2(size)) for
|
| 1033 |
|
|
allocation requests. The minimum allocation size is eight bytes. */
|
| 1034 |
|
|
#define NUM_SIZE_LOOKUP 512
|
| 1035 |
|
|
static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
|
| 1036 |
|
|
{
|
| 1037 |
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
|
| 1038 |
|
|
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
| 1039 |
|
|
5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
| 1040 |
|
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
|
| 1041 |
|
|
6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
| 1042 |
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
| 1043 |
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
| 1044 |
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
| 1045 |
|
|
7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| 1046 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| 1047 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| 1048 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| 1049 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| 1050 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| 1051 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| 1052 |
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
| 1053 |
|
|
8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1054 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1055 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1056 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1057 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1058 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1059 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1060 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1061 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1062 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1063 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1064 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1065 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1066 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1067 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
| 1068 |
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
|
| 1069 |
|
|
};
|
| 1070 |
|
|
|
| 1071 |
|
|
/* Typed allocation function. Does nothing special in this collector. */
|
| 1072 |
|
|
|
| 1073 |
|
|
void *
|
| 1074 |
|
|
ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
|
| 1075 |
|
|
MEM_STAT_DECL)
|
| 1076 |
|
|
{
|
| 1077 |
|
|
return ggc_alloc_stat (size PASS_MEM_STAT);
|
| 1078 |
|
|
}
|
| 1079 |
|
|
|
| 1080 |
|
|
/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
|
| 1081 |
|
|
|
| 1082 |
|
|
void *
|
| 1083 |
|
|
ggc_alloc_stat (size_t size MEM_STAT_DECL)
|
| 1084 |
|
|
{
|
| 1085 |
|
|
size_t order, word, bit, object_offset, object_size;
|
| 1086 |
|
|
struct page_entry *entry;
|
| 1087 |
|
|
void *result;
|
| 1088 |
|
|
|
| 1089 |
|
|
if (size < NUM_SIZE_LOOKUP)
|
| 1090 |
|
|
{
|
| 1091 |
|
|
order = size_lookup[size];
|
| 1092 |
|
|
object_size = OBJECT_SIZE (order);
|
| 1093 |
|
|
}
|
| 1094 |
|
|
else
|
| 1095 |
|
|
{
|
| 1096 |
|
|
order = 10;
|
| 1097 |
|
|
while (size > (object_size = OBJECT_SIZE (order)))
|
| 1098 |
|
|
order++;
|
| 1099 |
|
|
}
|
| 1100 |
|
|
|
| 1101 |
|
|
/* If there are non-full pages for this size allocation, they are at
|
| 1102 |
|
|
the head of the list. */
|
| 1103 |
|
|
entry = G.pages[order];
|
| 1104 |
|
|
|
| 1105 |
|
|
/* If there is no page for this object size, or all pages in this
|
| 1106 |
|
|
context are full, allocate a new page. */
|
| 1107 |
|
|
if (entry == NULL || entry->num_free_objects == 0)
|
| 1108 |
|
|
{
|
| 1109 |
|
|
struct page_entry *new_entry;
|
| 1110 |
|
|
new_entry = alloc_page (order);
|
| 1111 |
|
|
|
| 1112 |
|
|
new_entry->index_by_depth = G.by_depth_in_use;
|
| 1113 |
|
|
push_by_depth (new_entry, 0);
|
| 1114 |
|
|
|
| 1115 |
|
|
/* We can skip context depths, if we do, make sure we go all the
|
| 1116 |
|
|
way to the new depth. */
|
| 1117 |
|
|
while (new_entry->context_depth >= G.depth_in_use)
|
| 1118 |
|
|
push_depth (G.by_depth_in_use-1);
|
| 1119 |
|
|
|
| 1120 |
|
|
/* If this is the only entry, it's also the tail. If it is not
|
| 1121 |
|
|
the only entry, then we must update the PREV pointer of the
|
| 1122 |
|
|
ENTRY (G.pages[order]) to point to our new page entry. */
|
| 1123 |
|
|
if (entry == NULL)
|
| 1124 |
|
|
G.page_tails[order] = new_entry;
|
| 1125 |
|
|
else
|
| 1126 |
|
|
entry->prev = new_entry;
|
| 1127 |
|
|
|
| 1128 |
|
|
/* Put new pages at the head of the page list. By definition the
|
| 1129 |
|
|
entry at the head of the list always has a NULL pointer. */
|
| 1130 |
|
|
new_entry->next = entry;
|
| 1131 |
|
|
new_entry->prev = NULL;
|
| 1132 |
|
|
entry = new_entry;
|
| 1133 |
|
|
G.pages[order] = new_entry;
|
| 1134 |
|
|
|
| 1135 |
|
|
/* For a new page, we know the word and bit positions (in the
|
| 1136 |
|
|
in_use bitmap) of the first available object -- they're zero. */
|
| 1137 |
|
|
new_entry->next_bit_hint = 1;
|
| 1138 |
|
|
word = 0;
|
| 1139 |
|
|
bit = 0;
|
| 1140 |
|
|
object_offset = 0;
|
| 1141 |
|
|
}
|
| 1142 |
|
|
else
|
| 1143 |
|
|
{
|
| 1144 |
|
|
/* First try to use the hint left from the previous allocation
|
| 1145 |
|
|
to locate a clear bit in the in-use bitmap. We've made sure
|
| 1146 |
|
|
that the one-past-the-end bit is always set, so if the hint
|
| 1147 |
|
|
has run over, this test will fail. */
|
| 1148 |
|
|
unsigned hint = entry->next_bit_hint;
|
| 1149 |
|
|
word = hint / HOST_BITS_PER_LONG;
|
| 1150 |
|
|
bit = hint % HOST_BITS_PER_LONG;
|
| 1151 |
|
|
|
| 1152 |
|
|
/* If the hint didn't work, scan the bitmap from the beginning. */
|
| 1153 |
|
|
if ((entry->in_use_p[word] >> bit) & 1)
|
| 1154 |
|
|
{
|
| 1155 |
|
|
word = bit = 0;
|
| 1156 |
|
|
while (~entry->in_use_p[word] == 0)
|
| 1157 |
|
|
++word;
|
| 1158 |
|
|
|
| 1159 |
|
|
#if GCC_VERSION >= 3004
|
| 1160 |
|
|
bit = __builtin_ctzl (~entry->in_use_p[word]);
|
| 1161 |
|
|
#else
|
| 1162 |
|
|
while ((entry->in_use_p[word] >> bit) & 1)
|
| 1163 |
|
|
++bit;
|
| 1164 |
|
|
#endif
|
| 1165 |
|
|
|
| 1166 |
|
|
hint = word * HOST_BITS_PER_LONG + bit;
|
| 1167 |
|
|
}
|
| 1168 |
|
|
|
| 1169 |
|
|
/* Next time, try the next bit. */
|
| 1170 |
|
|
entry->next_bit_hint = hint + 1;
|
| 1171 |
|
|
|
| 1172 |
|
|
object_offset = hint * object_size;
|
| 1173 |
|
|
}
|
| 1174 |
|
|
|
| 1175 |
|
|
/* Set the in-use bit. */
|
| 1176 |
|
|
entry->in_use_p[word] |= ((unsigned long) 1 << bit);
|
| 1177 |
|
|
|
| 1178 |
|
|
/* Keep a running total of the number of free objects. If this page
|
| 1179 |
|
|
fills up, we may have to move it to the end of the list if the
|
| 1180 |
|
|
next page isn't full. If the next page is full, all subsequent
|
| 1181 |
|
|
pages are full, so there's no need to move it. */
|
| 1182 |
|
|
if (--entry->num_free_objects == 0
|
| 1183 |
|
|
&& entry->next != NULL
|
| 1184 |
|
|
&& entry->next->num_free_objects > 0)
|
| 1185 |
|
|
{
|
| 1186 |
|
|
/* We have a new head for the list. */
|
| 1187 |
|
|
G.pages[order] = entry->next;
|
| 1188 |
|
|
|
| 1189 |
|
|
/* We are moving ENTRY to the end of the page table list.
|
| 1190 |
|
|
The new page at the head of the list will have NULL in
|
| 1191 |
|
|
its PREV field and ENTRY will have NULL in its NEXT field. */
|
| 1192 |
|
|
entry->next->prev = NULL;
|
| 1193 |
|
|
entry->next = NULL;
|
| 1194 |
|
|
|
| 1195 |
|
|
/* Append ENTRY to the tail of the list. */
|
| 1196 |
|
|
entry->prev = G.page_tails[order];
|
| 1197 |
|
|
G.page_tails[order]->next = entry;
|
| 1198 |
|
|
G.page_tails[order] = entry;
|
| 1199 |
|
|
}
|
| 1200 |
|
|
|
| 1201 |
|
|
/* Calculate the object's address. */
|
| 1202 |
|
|
result = entry->page + object_offset;
|
| 1203 |
|
|
#ifdef GATHER_STATISTICS
|
| 1204 |
|
|
ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
|
| 1205 |
|
|
result PASS_MEM_STAT);
|
| 1206 |
|
|
#endif
|
| 1207 |
|
|
|
| 1208 |
|
|
#ifdef ENABLE_GC_CHECKING
|
| 1209 |
|
|
/* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
|
| 1210 |
|
|
exact same semantics in presence of memory bugs, regardless of
|
| 1211 |
|
|
ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
|
| 1212 |
|
|
handle to avoid handle leak. */
|
| 1213 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
|
| 1214 |
|
|
|
| 1215 |
|
|
/* `Poison' the entire allocated object, including any padding at
|
| 1216 |
|
|
the end. */
|
| 1217 |
|
|
memset (result, 0xaf, object_size);
|
| 1218 |
|
|
|
| 1219 |
|
|
/* Make the bytes after the end of the object unaccessible. Discard the
|
| 1220 |
|
|
handle to avoid handle leak. */
|
| 1221 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
|
| 1222 |
|
|
object_size - size));
|
| 1223 |
|
|
#endif
|
| 1224 |
|
|
|
| 1225 |
|
|
/* Tell Valgrind that the memory is there, but its content isn't
|
| 1226 |
|
|
defined. The bytes at the end of the object are still marked
|
| 1227 |
|
|
unaccessible. */
|
| 1228 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
|
| 1229 |
|
|
|
| 1230 |
|
|
/* Keep track of how many bytes are being allocated. This
|
| 1231 |
|
|
information is used in deciding when to collect. */
|
| 1232 |
|
|
G.allocated += object_size;
|
| 1233 |
|
|
|
| 1234 |
|
|
/* For timevar statistics. */
|
| 1235 |
|
|
timevar_ggc_mem_total += object_size;
|
| 1236 |
|
|
|
| 1237 |
|
|
#ifdef GATHER_STATISTICS
|
| 1238 |
|
|
{
|
| 1239 |
|
|
size_t overhead = object_size - size;
|
| 1240 |
|
|
|
| 1241 |
|
|
G.stats.total_overhead += overhead;
|
| 1242 |
|
|
G.stats.total_allocated += object_size;
|
| 1243 |
|
|
G.stats.total_overhead_per_order[order] += overhead;
|
| 1244 |
|
|
G.stats.total_allocated_per_order[order] += object_size;
|
| 1245 |
|
|
|
| 1246 |
|
|
if (size <= 32)
|
| 1247 |
|
|
{
|
| 1248 |
|
|
G.stats.total_overhead_under32 += overhead;
|
| 1249 |
|
|
G.stats.total_allocated_under32 += object_size;
|
| 1250 |
|
|
}
|
| 1251 |
|
|
if (size <= 64)
|
| 1252 |
|
|
{
|
| 1253 |
|
|
G.stats.total_overhead_under64 += overhead;
|
| 1254 |
|
|
G.stats.total_allocated_under64 += object_size;
|
| 1255 |
|
|
}
|
| 1256 |
|
|
if (size <= 128)
|
| 1257 |
|
|
{
|
| 1258 |
|
|
G.stats.total_overhead_under128 += overhead;
|
| 1259 |
|
|
G.stats.total_allocated_under128 += object_size;
|
| 1260 |
|
|
}
|
| 1261 |
|
|
}
|
| 1262 |
|
|
#endif
|
| 1263 |
|
|
|
| 1264 |
|
|
if (GGC_DEBUG_LEVEL >= 3)
|
| 1265 |
|
|
fprintf (G.debug_file,
|
| 1266 |
|
|
"Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
|
| 1267 |
|
|
(unsigned long) size, (unsigned long) object_size, result,
|
| 1268 |
|
|
(void *) entry);
|
| 1269 |
|
|
|
| 1270 |
|
|
return result;
|
| 1271 |
|
|
}
|
| 1272 |
|
|
|
| 1273 |
|
|
/* Mark function for strings. */
|
| 1274 |
|
|
|
| 1275 |
|
|
void
|
| 1276 |
|
|
gt_ggc_m_S (const void *p)
|
| 1277 |
|
|
{
|
| 1278 |
|
|
page_entry *entry;
|
| 1279 |
|
|
unsigned bit, word;
|
| 1280 |
|
|
unsigned long mask;
|
| 1281 |
|
|
unsigned long offset;
|
| 1282 |
|
|
|
| 1283 |
|
|
if (!p || !ggc_allocated_p (p))
|
| 1284 |
|
|
return;
|
| 1285 |
|
|
|
| 1286 |
|
|
/* Look up the page on which the object is alloced. . */
|
| 1287 |
|
|
entry = lookup_page_table_entry (p);
|
| 1288 |
|
|
gcc_assert (entry);
|
| 1289 |
|
|
|
| 1290 |
|
|
/* Calculate the index of the object on the page; this is its bit
|
| 1291 |
|
|
position in the in_use_p bitmap. Note that because a char* might
|
| 1292 |
|
|
point to the middle of an object, we need special code here to
|
| 1293 |
|
|
make sure P points to the start of an object. */
|
| 1294 |
|
|
offset = ((const char *) p - entry->page) % object_size_table[entry->order];
|
| 1295 |
|
|
if (offset)
|
| 1296 |
|
|
{
|
| 1297 |
|
|
/* Here we've seen a char* which does not point to the beginning
|
| 1298 |
|
|
of an allocated object. We assume it points to the middle of
|
| 1299 |
|
|
a STRING_CST. */
|
| 1300 |
|
|
gcc_assert (offset == offsetof (struct tree_string, str));
|
| 1301 |
|
|
p = ((const char *) p) - offset;
|
| 1302 |
|
|
gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
|
| 1303 |
|
|
return;
|
| 1304 |
|
|
}
|
| 1305 |
|
|
|
| 1306 |
|
|
bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
|
| 1307 |
|
|
word = bit / HOST_BITS_PER_LONG;
|
| 1308 |
|
|
mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
|
| 1309 |
|
|
|
| 1310 |
|
|
/* If the bit was previously set, skip it. */
|
| 1311 |
|
|
if (entry->in_use_p[word] & mask)
|
| 1312 |
|
|
return;
|
| 1313 |
|
|
|
| 1314 |
|
|
/* Otherwise set it, and decrement the free object count. */
|
| 1315 |
|
|
entry->in_use_p[word] |= mask;
|
| 1316 |
|
|
entry->num_free_objects -= 1;
|
| 1317 |
|
|
|
| 1318 |
|
|
if (GGC_DEBUG_LEVEL >= 4)
|
| 1319 |
|
|
fprintf (G.debug_file, "Marking %p\n", p);
|
| 1320 |
|
|
|
| 1321 |
|
|
return;
|
| 1322 |
|
|
}
|
| 1323 |
|
|
|
| 1324 |
|
|
/* If P is not marked, marks it and return false. Otherwise return true.
|
| 1325 |
|
|
P must have been allocated by the GC allocator; it mustn't point to
|
| 1326 |
|
|
static objects, stack variables, or memory allocated with malloc. */
|
| 1327 |
|
|
|
| 1328 |
|
|
int
|
| 1329 |
|
|
ggc_set_mark (const void *p)
|
| 1330 |
|
|
{
|
| 1331 |
|
|
page_entry *entry;
|
| 1332 |
|
|
unsigned bit, word;
|
| 1333 |
|
|
unsigned long mask;
|
| 1334 |
|
|
|
| 1335 |
|
|
/* Look up the page on which the object is alloced. If the object
|
| 1336 |
|
|
wasn't allocated by the collector, we'll probably die. */
|
| 1337 |
|
|
entry = lookup_page_table_entry (p);
|
| 1338 |
|
|
gcc_assert (entry);
|
| 1339 |
|
|
|
| 1340 |
|
|
/* Calculate the index of the object on the page; this is its bit
|
| 1341 |
|
|
position in the in_use_p bitmap. */
|
| 1342 |
|
|
bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
|
| 1343 |
|
|
word = bit / HOST_BITS_PER_LONG;
|
| 1344 |
|
|
mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
|
| 1345 |
|
|
|
| 1346 |
|
|
/* If the bit was previously set, skip it. */
|
| 1347 |
|
|
if (entry->in_use_p[word] & mask)
|
| 1348 |
|
|
return 1;
|
| 1349 |
|
|
|
| 1350 |
|
|
/* Otherwise set it, and decrement the free object count. */
|
| 1351 |
|
|
entry->in_use_p[word] |= mask;
|
| 1352 |
|
|
entry->num_free_objects -= 1;
|
| 1353 |
|
|
|
| 1354 |
|
|
if (GGC_DEBUG_LEVEL >= 4)
|
| 1355 |
|
|
fprintf (G.debug_file, "Marking %p\n", p);
|
| 1356 |
|
|
|
| 1357 |
|
|
return 0;
|
| 1358 |
|
|
}
|
| 1359 |
|
|
|
| 1360 |
|
|
/* Return 1 if P has been marked, zero otherwise.
|
| 1361 |
|
|
P must have been allocated by the GC allocator; it mustn't point to
|
| 1362 |
|
|
static objects, stack variables, or memory allocated with malloc. */
|
| 1363 |
|
|
|
| 1364 |
|
|
int
|
| 1365 |
|
|
ggc_marked_p (const void *p)
|
| 1366 |
|
|
{
|
| 1367 |
|
|
page_entry *entry;
|
| 1368 |
|
|
unsigned bit, word;
|
| 1369 |
|
|
unsigned long mask;
|
| 1370 |
|
|
|
| 1371 |
|
|
/* Look up the page on which the object is alloced. If the object
|
| 1372 |
|
|
wasn't allocated by the collector, we'll probably die. */
|
| 1373 |
|
|
entry = lookup_page_table_entry (p);
|
| 1374 |
|
|
gcc_assert (entry);
|
| 1375 |
|
|
|
| 1376 |
|
|
/* Calculate the index of the object on the page; this is its bit
|
| 1377 |
|
|
position in the in_use_p bitmap. */
|
| 1378 |
|
|
bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
|
| 1379 |
|
|
word = bit / HOST_BITS_PER_LONG;
|
| 1380 |
|
|
mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
|
| 1381 |
|
|
|
| 1382 |
|
|
return (entry->in_use_p[word] & mask) != 0;
|
| 1383 |
|
|
}
|
| 1384 |
|
|
|
| 1385 |
|
|
/* Return the size of the gc-able object P. */
|
| 1386 |
|
|
|
| 1387 |
|
|
size_t
|
| 1388 |
|
|
ggc_get_size (const void *p)
|
| 1389 |
|
|
{
|
| 1390 |
|
|
page_entry *pe = lookup_page_table_entry (p);
|
| 1391 |
|
|
return OBJECT_SIZE (pe->order);
|
| 1392 |
|
|
}
|
| 1393 |
|
|
|
| 1394 |
|
|
/* Release the memory for object P. */
|
| 1395 |
|
|
|
| 1396 |
|
|
void
|
| 1397 |
|
|
ggc_free (void *p)
|
| 1398 |
|
|
{
|
| 1399 |
|
|
page_entry *pe = lookup_page_table_entry (p);
|
| 1400 |
|
|
size_t order = pe->order;
|
| 1401 |
|
|
size_t size = OBJECT_SIZE (order);
|
| 1402 |
|
|
|
| 1403 |
|
|
#ifdef GATHER_STATISTICS
|
| 1404 |
|
|
ggc_free_overhead (p);
|
| 1405 |
|
|
#endif
|
| 1406 |
|
|
|
| 1407 |
|
|
if (GGC_DEBUG_LEVEL >= 3)
|
| 1408 |
|
|
fprintf (G.debug_file,
|
| 1409 |
|
|
"Freeing object, actual size=%lu, at %p on %p\n",
|
| 1410 |
|
|
(unsigned long) size, p, (void *) pe);
|
| 1411 |
|
|
|
| 1412 |
|
|
#ifdef ENABLE_GC_CHECKING
|
| 1413 |
|
|
/* Poison the data, to indicate the data is garbage. */
|
| 1414 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
|
| 1415 |
|
|
memset (p, 0xa5, size);
|
| 1416 |
|
|
#endif
|
| 1417 |
|
|
/* Let valgrind know the object is free. */
|
| 1418 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
|
| 1419 |
|
|
|
| 1420 |
|
|
#ifdef ENABLE_GC_ALWAYS_COLLECT
|
| 1421 |
|
|
/* In the completely-anal-checking mode, we do *not* immediately free
|
| 1422 |
|
|
the data, but instead verify that the data is *actually* not
|
| 1423 |
|
|
reachable the next time we collect. */
|
| 1424 |
|
|
{
|
| 1425 |
|
|
struct free_object *fo = XNEW (struct free_object);
|
| 1426 |
|
|
fo->object = p;
|
| 1427 |
|
|
fo->next = G.free_object_list;
|
| 1428 |
|
|
G.free_object_list = fo;
|
| 1429 |
|
|
}
|
| 1430 |
|
|
#else
|
| 1431 |
|
|
{
|
| 1432 |
|
|
unsigned int bit_offset, word, bit;
|
| 1433 |
|
|
|
| 1434 |
|
|
G.allocated -= size;
|
| 1435 |
|
|
|
| 1436 |
|
|
/* Mark the object not-in-use. */
|
| 1437 |
|
|
bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
|
| 1438 |
|
|
word = bit_offset / HOST_BITS_PER_LONG;
|
| 1439 |
|
|
bit = bit_offset % HOST_BITS_PER_LONG;
|
| 1440 |
|
|
pe->in_use_p[word] &= ~(1UL << bit);
|
| 1441 |
|
|
|
| 1442 |
|
|
if (pe->num_free_objects++ == 0)
|
| 1443 |
|
|
{
|
| 1444 |
|
|
page_entry *p, *q;
|
| 1445 |
|
|
|
| 1446 |
|
|
/* If the page is completely full, then it's supposed to
|
| 1447 |
|
|
be after all pages that aren't. Since we've freed one
|
| 1448 |
|
|
object from a page that was full, we need to move the
|
| 1449 |
|
|
page to the head of the list.
|
| 1450 |
|
|
|
| 1451 |
|
|
PE is the node we want to move. Q is the previous node
|
| 1452 |
|
|
and P is the next node in the list. */
|
| 1453 |
|
|
q = pe->prev;
|
| 1454 |
|
|
if (q && q->num_free_objects == 0)
|
| 1455 |
|
|
{
|
| 1456 |
|
|
p = pe->next;
|
| 1457 |
|
|
|
| 1458 |
|
|
q->next = p;
|
| 1459 |
|
|
|
| 1460 |
|
|
/* If PE was at the end of the list, then Q becomes the
|
| 1461 |
|
|
new end of the list. If PE was not the end of the
|
| 1462 |
|
|
list, then we need to update the PREV field for P. */
|
| 1463 |
|
|
if (!p)
|
| 1464 |
|
|
G.page_tails[order] = q;
|
| 1465 |
|
|
else
|
| 1466 |
|
|
p->prev = q;
|
| 1467 |
|
|
|
| 1468 |
|
|
/* Move PE to the head of the list. */
|
| 1469 |
|
|
pe->next = G.pages[order];
|
| 1470 |
|
|
pe->prev = NULL;
|
| 1471 |
|
|
G.pages[order]->prev = pe;
|
| 1472 |
|
|
G.pages[order] = pe;
|
| 1473 |
|
|
}
|
| 1474 |
|
|
|
| 1475 |
|
|
/* Reset the hint bit to point to the only free object. */
|
| 1476 |
|
|
pe->next_bit_hint = bit_offset;
|
| 1477 |
|
|
}
|
| 1478 |
|
|
}
|
| 1479 |
|
|
#endif
|
| 1480 |
|
|
}
|
| 1481 |
|
|
|
| 1482 |
|
|
/* Subroutine of init_ggc which computes the pair of numbers used to
|
| 1483 |
|
|
perform division by OBJECT_SIZE (order) and fills in inverse_table[].
|
| 1484 |
|
|
|
| 1485 |
|
|
This algorithm is taken from Granlund and Montgomery's paper
|
| 1486 |
|
|
"Division by Invariant Integers using Multiplication"
|
| 1487 |
|
|
(Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
|
| 1488 |
|
|
constants). */
|
| 1489 |
|
|
|
| 1490 |
|
|
static void
|
| 1491 |
|
|
compute_inverse (unsigned order)
|
| 1492 |
|
|
{
|
| 1493 |
|
|
size_t size, inv;
|
| 1494 |
|
|
unsigned int e;
|
| 1495 |
|
|
|
| 1496 |
|
|
size = OBJECT_SIZE (order);
|
| 1497 |
|
|
e = 0;
|
| 1498 |
|
|
while (size % 2 == 0)
|
| 1499 |
|
|
{
|
| 1500 |
|
|
e++;
|
| 1501 |
|
|
size >>= 1;
|
| 1502 |
|
|
}
|
| 1503 |
|
|
|
| 1504 |
|
|
inv = size;
|
| 1505 |
|
|
while (inv * size != 1)
|
| 1506 |
|
|
inv = inv * (2 - inv*size);
|
| 1507 |
|
|
|
| 1508 |
|
|
DIV_MULT (order) = inv;
|
| 1509 |
|
|
DIV_SHIFT (order) = e;
|
| 1510 |
|
|
}
|
| 1511 |
|
|
|
| 1512 |
|
|
/* Initialize the ggc-mmap allocator. */
|
| 1513 |
|
|
void
|
| 1514 |
|
|
init_ggc (void)
|
| 1515 |
|
|
{
|
| 1516 |
|
|
unsigned order;
|
| 1517 |
|
|
|
| 1518 |
|
|
G.pagesize = getpagesize();
|
| 1519 |
|
|
G.lg_pagesize = exact_log2 (G.pagesize);
|
| 1520 |
|
|
|
| 1521 |
|
|
#ifdef HAVE_MMAP_DEV_ZERO
|
| 1522 |
|
|
G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
|
| 1523 |
|
|
if (G.dev_zero_fd == -1)
|
| 1524 |
|
|
internal_error ("open /dev/zero: %m");
|
| 1525 |
|
|
#endif
|
| 1526 |
|
|
|
| 1527 |
|
|
#if 0
|
| 1528 |
|
|
G.debug_file = fopen ("ggc-mmap.debug", "w");
|
| 1529 |
|
|
#else
|
| 1530 |
|
|
G.debug_file = stdout;
|
| 1531 |
|
|
#endif
|
| 1532 |
|
|
|
| 1533 |
|
|
#ifdef USING_MMAP
|
| 1534 |
|
|
/* StunOS has an amazing off-by-one error for the first mmap allocation
|
| 1535 |
|
|
after fiddling with RLIMIT_STACK. The result, as hard as it is to
|
| 1536 |
|
|
believe, is an unaligned page allocation, which would cause us to
|
| 1537 |
|
|
hork badly if we tried to use it. */
|
| 1538 |
|
|
{
|
| 1539 |
|
|
char *p = alloc_anon (NULL, G.pagesize);
|
| 1540 |
|
|
struct page_entry *e;
|
| 1541 |
|
|
if ((size_t)p & (G.pagesize - 1))
|
| 1542 |
|
|
{
|
| 1543 |
|
|
/* How losing. Discard this one and try another. If we still
|
| 1544 |
|
|
can't get something useful, give up. */
|
| 1545 |
|
|
|
| 1546 |
|
|
p = alloc_anon (NULL, G.pagesize);
|
| 1547 |
|
|
gcc_assert (!((size_t)p & (G.pagesize - 1)));
|
| 1548 |
|
|
}
|
| 1549 |
|
|
|
| 1550 |
|
|
/* We have a good page, might as well hold onto it... */
|
| 1551 |
|
|
e = XCNEW (struct page_entry);
|
| 1552 |
|
|
e->bytes = G.pagesize;
|
| 1553 |
|
|
e->page = p;
|
| 1554 |
|
|
e->next = G.free_pages;
|
| 1555 |
|
|
G.free_pages = e;
|
| 1556 |
|
|
}
|
| 1557 |
|
|
#endif
|
| 1558 |
|
|
|
| 1559 |
|
|
/* Initialize the object size table. */
|
| 1560 |
|
|
for (order = 0; order < HOST_BITS_PER_PTR; ++order)
|
| 1561 |
|
|
object_size_table[order] = (size_t) 1 << order;
|
| 1562 |
|
|
for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
|
| 1563 |
|
|
{
|
| 1564 |
|
|
size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
|
| 1565 |
|
|
|
| 1566 |
|
|
/* If S is not a multiple of the MAX_ALIGNMENT, then round it up
|
| 1567 |
|
|
so that we're sure of getting aligned memory. */
|
| 1568 |
|
|
s = ROUND_UP (s, MAX_ALIGNMENT);
|
| 1569 |
|
|
object_size_table[order] = s;
|
| 1570 |
|
|
}
|
| 1571 |
|
|
|
| 1572 |
|
|
/* Initialize the objects-per-page and inverse tables. */
|
| 1573 |
|
|
for (order = 0; order < NUM_ORDERS; ++order)
|
| 1574 |
|
|
{
|
| 1575 |
|
|
objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
|
| 1576 |
|
|
if (objects_per_page_table[order] == 0)
|
| 1577 |
|
|
objects_per_page_table[order] = 1;
|
| 1578 |
|
|
compute_inverse (order);
|
| 1579 |
|
|
}
|
| 1580 |
|
|
|
| 1581 |
|
|
/* Reset the size_lookup array to put appropriately sized objects in
|
| 1582 |
|
|
the special orders. All objects bigger than the previous power
|
| 1583 |
|
|
of two, but no greater than the special size, should go in the
|
| 1584 |
|
|
new order. */
|
| 1585 |
|
|
for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
|
| 1586 |
|
|
{
|
| 1587 |
|
|
int o;
|
| 1588 |
|
|
int i;
|
| 1589 |
|
|
|
| 1590 |
|
|
i = OBJECT_SIZE (order);
|
| 1591 |
|
|
if (i >= NUM_SIZE_LOOKUP)
|
| 1592 |
|
|
continue;
|
| 1593 |
|
|
|
| 1594 |
|
|
for (o = size_lookup[i]; o == size_lookup [i]; --i)
|
| 1595 |
|
|
size_lookup[i] = order;
|
| 1596 |
|
|
}
|
| 1597 |
|
|
|
| 1598 |
|
|
G.depth_in_use = 0;
|
| 1599 |
|
|
G.depth_max = 10;
|
| 1600 |
|
|
G.depth = XNEWVEC (unsigned int, G.depth_max);
|
| 1601 |
|
|
|
| 1602 |
|
|
G.by_depth_in_use = 0;
|
| 1603 |
|
|
G.by_depth_max = INITIAL_PTE_COUNT;
|
| 1604 |
|
|
G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
|
| 1605 |
|
|
G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
|
| 1606 |
|
|
}
|
| 1607 |
|
|
|
| 1608 |
|
|
/* Start a new GGC zone. */
|
| 1609 |
|
|
|
| 1610 |
|
|
struct alloc_zone *
|
| 1611 |
|
|
new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
|
| 1612 |
|
|
{
|
| 1613 |
|
|
return NULL;
|
| 1614 |
|
|
}
|
| 1615 |
|
|
|
| 1616 |
|
|
/* Destroy a GGC zone. */
|
| 1617 |
|
|
void
|
| 1618 |
|
|
destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
|
| 1619 |
|
|
{
|
| 1620 |
|
|
}
|
| 1621 |
|
|
|
| 1622 |
|
|
/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
|
| 1623 |
|
|
reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
|
| 1624 |
|
|
|
| 1625 |
|
|
static void
|
| 1626 |
|
|
ggc_recalculate_in_use_p (page_entry *p)
|
| 1627 |
|
|
{
|
| 1628 |
|
|
unsigned int i;
|
| 1629 |
|
|
size_t num_objects;
|
| 1630 |
|
|
|
| 1631 |
|
|
/* Because the past-the-end bit in in_use_p is always set, we
|
| 1632 |
|
|
pretend there is one additional object. */
|
| 1633 |
|
|
num_objects = OBJECTS_IN_PAGE (p) + 1;
|
| 1634 |
|
|
|
| 1635 |
|
|
/* Reset the free object count. */
|
| 1636 |
|
|
p->num_free_objects = num_objects;
|
| 1637 |
|
|
|
| 1638 |
|
|
/* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
|
| 1639 |
|
|
for (i = 0;
|
| 1640 |
|
|
i < CEIL (BITMAP_SIZE (num_objects),
|
| 1641 |
|
|
sizeof (*p->in_use_p));
|
| 1642 |
|
|
++i)
|
| 1643 |
|
|
{
|
| 1644 |
|
|
unsigned long j;
|
| 1645 |
|
|
|
| 1646 |
|
|
/* Something is in use if it is marked, or if it was in use in a
|
| 1647 |
|
|
context further down the context stack. */
|
| 1648 |
|
|
p->in_use_p[i] |= save_in_use_p (p)[i];
|
| 1649 |
|
|
|
| 1650 |
|
|
/* Decrement the free object count for every object allocated. */
|
| 1651 |
|
|
for (j = p->in_use_p[i]; j; j >>= 1)
|
| 1652 |
|
|
p->num_free_objects -= (j & 1);
|
| 1653 |
|
|
}
|
| 1654 |
|
|
|
| 1655 |
|
|
gcc_assert (p->num_free_objects < num_objects);
|
| 1656 |
|
|
}
|
| 1657 |
|
|
|
| 1658 |
|
|
/* Unmark all objects. */
|
| 1659 |
|
|
|
| 1660 |
|
|
static void
|
| 1661 |
|
|
clear_marks (void)
|
| 1662 |
|
|
{
|
| 1663 |
|
|
unsigned order;
|
| 1664 |
|
|
|
| 1665 |
|
|
for (order = 2; order < NUM_ORDERS; order++)
|
| 1666 |
|
|
{
|
| 1667 |
|
|
page_entry *p;
|
| 1668 |
|
|
|
| 1669 |
|
|
for (p = G.pages[order]; p != NULL; p = p->next)
|
| 1670 |
|
|
{
|
| 1671 |
|
|
size_t num_objects = OBJECTS_IN_PAGE (p);
|
| 1672 |
|
|
size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
|
| 1673 |
|
|
|
| 1674 |
|
|
/* The data should be page-aligned. */
|
| 1675 |
|
|
gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
|
| 1676 |
|
|
|
| 1677 |
|
|
/* Pages that aren't in the topmost context are not collected;
|
| 1678 |
|
|
nevertheless, we need their in-use bit vectors to store GC
|
| 1679 |
|
|
marks. So, back them up first. */
|
| 1680 |
|
|
if (p->context_depth < G.context_depth)
|
| 1681 |
|
|
{
|
| 1682 |
|
|
if (! save_in_use_p (p))
|
| 1683 |
|
|
save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
|
| 1684 |
|
|
memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
|
| 1685 |
|
|
}
|
| 1686 |
|
|
|
| 1687 |
|
|
/* Reset reset the number of free objects and clear the
|
| 1688 |
|
|
in-use bits. These will be adjusted by mark_obj. */
|
| 1689 |
|
|
p->num_free_objects = num_objects;
|
| 1690 |
|
|
memset (p->in_use_p, 0, bitmap_size);
|
| 1691 |
|
|
|
| 1692 |
|
|
/* Make sure the one-past-the-end bit is always set. */
|
| 1693 |
|
|
p->in_use_p[num_objects / HOST_BITS_PER_LONG]
|
| 1694 |
|
|
= ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
|
| 1695 |
|
|
}
|
| 1696 |
|
|
}
|
| 1697 |
|
|
}
|
| 1698 |
|
|
|
| 1699 |
|
|
/* Free all empty pages. Partially empty pages need no attention
|
| 1700 |
|
|
because the `mark' bit doubles as an `unused' bit. */
|
| 1701 |
|
|
|
| 1702 |
|
|
static void
|
| 1703 |
|
|
sweep_pages (void)
|
| 1704 |
|
|
{
|
| 1705 |
|
|
unsigned order;
|
| 1706 |
|
|
|
| 1707 |
|
|
for (order = 2; order < NUM_ORDERS; order++)
|
| 1708 |
|
|
{
|
| 1709 |
|
|
/* The last page-entry to consider, regardless of entries
|
| 1710 |
|
|
placed at the end of the list. */
|
| 1711 |
|
|
page_entry * const last = G.page_tails[order];
|
| 1712 |
|
|
|
| 1713 |
|
|
size_t num_objects;
|
| 1714 |
|
|
size_t live_objects;
|
| 1715 |
|
|
page_entry *p, *previous;
|
| 1716 |
|
|
int done;
|
| 1717 |
|
|
|
| 1718 |
|
|
p = G.pages[order];
|
| 1719 |
|
|
if (p == NULL)
|
| 1720 |
|
|
continue;
|
| 1721 |
|
|
|
| 1722 |
|
|
previous = NULL;
|
| 1723 |
|
|
do
|
| 1724 |
|
|
{
|
| 1725 |
|
|
page_entry *next = p->next;
|
| 1726 |
|
|
|
| 1727 |
|
|
/* Loop until all entries have been examined. */
|
| 1728 |
|
|
done = (p == last);
|
| 1729 |
|
|
|
| 1730 |
|
|
num_objects = OBJECTS_IN_PAGE (p);
|
| 1731 |
|
|
|
| 1732 |
|
|
/* Add all live objects on this page to the count of
|
| 1733 |
|
|
allocated memory. */
|
| 1734 |
|
|
live_objects = num_objects - p->num_free_objects;
|
| 1735 |
|
|
|
| 1736 |
|
|
G.allocated += OBJECT_SIZE (order) * live_objects;
|
| 1737 |
|
|
|
| 1738 |
|
|
/* Only objects on pages in the topmost context should get
|
| 1739 |
|
|
collected. */
|
| 1740 |
|
|
if (p->context_depth < G.context_depth)
|
| 1741 |
|
|
;
|
| 1742 |
|
|
|
| 1743 |
|
|
/* Remove the page if it's empty. */
|
| 1744 |
|
|
else if (live_objects == 0)
|
| 1745 |
|
|
{
|
| 1746 |
|
|
/* If P was the first page in the list, then NEXT
|
| 1747 |
|
|
becomes the new first page in the list, otherwise
|
| 1748 |
|
|
splice P out of the forward pointers. */
|
| 1749 |
|
|
if (! previous)
|
| 1750 |
|
|
G.pages[order] = next;
|
| 1751 |
|
|
else
|
| 1752 |
|
|
previous->next = next;
|
| 1753 |
|
|
|
| 1754 |
|
|
/* Splice P out of the back pointers too. */
|
| 1755 |
|
|
if (next)
|
| 1756 |
|
|
next->prev = previous;
|
| 1757 |
|
|
|
| 1758 |
|
|
/* Are we removing the last element? */
|
| 1759 |
|
|
if (p == G.page_tails[order])
|
| 1760 |
|
|
G.page_tails[order] = previous;
|
| 1761 |
|
|
free_page (p);
|
| 1762 |
|
|
p = previous;
|
| 1763 |
|
|
}
|
| 1764 |
|
|
|
| 1765 |
|
|
/* If the page is full, move it to the end. */
|
| 1766 |
|
|
else if (p->num_free_objects == 0)
|
| 1767 |
|
|
{
|
| 1768 |
|
|
/* Don't move it if it's already at the end. */
|
| 1769 |
|
|
if (p != G.page_tails[order])
|
| 1770 |
|
|
{
|
| 1771 |
|
|
/* Move p to the end of the list. */
|
| 1772 |
|
|
p->next = NULL;
|
| 1773 |
|
|
p->prev = G.page_tails[order];
|
| 1774 |
|
|
G.page_tails[order]->next = p;
|
| 1775 |
|
|
|
| 1776 |
|
|
/* Update the tail pointer... */
|
| 1777 |
|
|
G.page_tails[order] = p;
|
| 1778 |
|
|
|
| 1779 |
|
|
/* ... and the head pointer, if necessary. */
|
| 1780 |
|
|
if (! previous)
|
| 1781 |
|
|
G.pages[order] = next;
|
| 1782 |
|
|
else
|
| 1783 |
|
|
previous->next = next;
|
| 1784 |
|
|
|
| 1785 |
|
|
/* And update the backpointer in NEXT if necessary. */
|
| 1786 |
|
|
if (next)
|
| 1787 |
|
|
next->prev = previous;
|
| 1788 |
|
|
|
| 1789 |
|
|
p = previous;
|
| 1790 |
|
|
}
|
| 1791 |
|
|
}
|
| 1792 |
|
|
|
| 1793 |
|
|
/* If we've fallen through to here, it's a page in the
|
| 1794 |
|
|
topmost context that is neither full nor empty. Such a
|
| 1795 |
|
|
page must precede pages at lesser context depth in the
|
| 1796 |
|
|
list, so move it to the head. */
|
| 1797 |
|
|
else if (p != G.pages[order])
|
| 1798 |
|
|
{
|
| 1799 |
|
|
previous->next = p->next;
|
| 1800 |
|
|
|
| 1801 |
|
|
/* Update the backchain in the next node if it exists. */
|
| 1802 |
|
|
if (p->next)
|
| 1803 |
|
|
p->next->prev = previous;
|
| 1804 |
|
|
|
| 1805 |
|
|
/* Move P to the head of the list. */
|
| 1806 |
|
|
p->next = G.pages[order];
|
| 1807 |
|
|
p->prev = NULL;
|
| 1808 |
|
|
G.pages[order]->prev = p;
|
| 1809 |
|
|
|
| 1810 |
|
|
/* Update the head pointer. */
|
| 1811 |
|
|
G.pages[order] = p;
|
| 1812 |
|
|
|
| 1813 |
|
|
/* Are we moving the last element? */
|
| 1814 |
|
|
if (G.page_tails[order] == p)
|
| 1815 |
|
|
G.page_tails[order] = previous;
|
| 1816 |
|
|
p = previous;
|
| 1817 |
|
|
}
|
| 1818 |
|
|
|
| 1819 |
|
|
previous = p;
|
| 1820 |
|
|
p = next;
|
| 1821 |
|
|
}
|
| 1822 |
|
|
while (! done);
|
| 1823 |
|
|
|
| 1824 |
|
|
/* Now, restore the in_use_p vectors for any pages from contexts
|
| 1825 |
|
|
other than the current one. */
|
| 1826 |
|
|
for (p = G.pages[order]; p; p = p->next)
|
| 1827 |
|
|
if (p->context_depth != G.context_depth)
|
| 1828 |
|
|
ggc_recalculate_in_use_p (p);
|
| 1829 |
|
|
}
|
| 1830 |
|
|
}
|
| 1831 |
|
|
|
| 1832 |
|
|
#ifdef ENABLE_GC_CHECKING
|
| 1833 |
|
|
/* Clobber all free objects. */
|
| 1834 |
|
|
|
| 1835 |
|
|
static void
|
| 1836 |
|
|
poison_pages (void)
|
| 1837 |
|
|
{
|
| 1838 |
|
|
unsigned order;
|
| 1839 |
|
|
|
| 1840 |
|
|
for (order = 2; order < NUM_ORDERS; order++)
|
| 1841 |
|
|
{
|
| 1842 |
|
|
size_t size = OBJECT_SIZE (order);
|
| 1843 |
|
|
page_entry *p;
|
| 1844 |
|
|
|
| 1845 |
|
|
for (p = G.pages[order]; p != NULL; p = p->next)
|
| 1846 |
|
|
{
|
| 1847 |
|
|
size_t num_objects;
|
| 1848 |
|
|
size_t i;
|
| 1849 |
|
|
|
| 1850 |
|
|
if (p->context_depth != G.context_depth)
|
| 1851 |
|
|
/* Since we don't do any collection for pages in pushed
|
| 1852 |
|
|
contexts, there's no need to do any poisoning. And
|
| 1853 |
|
|
besides, the IN_USE_P array isn't valid until we pop
|
| 1854 |
|
|
contexts. */
|
| 1855 |
|
|
continue;
|
| 1856 |
|
|
|
| 1857 |
|
|
num_objects = OBJECTS_IN_PAGE (p);
|
| 1858 |
|
|
for (i = 0; i < num_objects; i++)
|
| 1859 |
|
|
{
|
| 1860 |
|
|
size_t word, bit;
|
| 1861 |
|
|
word = i / HOST_BITS_PER_LONG;
|
| 1862 |
|
|
bit = i % HOST_BITS_PER_LONG;
|
| 1863 |
|
|
if (((p->in_use_p[word] >> bit) & 1) == 0)
|
| 1864 |
|
|
{
|
| 1865 |
|
|
char *object = p->page + i * size;
|
| 1866 |
|
|
|
| 1867 |
|
|
/* Keep poison-by-write when we expect to use Valgrind,
|
| 1868 |
|
|
so the exact same memory semantics is kept, in case
|
| 1869 |
|
|
there are memory errors. We override this request
|
| 1870 |
|
|
below. */
|
| 1871 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
|
| 1872 |
|
|
size));
|
| 1873 |
|
|
memset (object, 0xa5, size);
|
| 1874 |
|
|
|
| 1875 |
|
|
/* Drop the handle to avoid handle leak. */
|
| 1876 |
|
|
VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
|
| 1877 |
|
|
}
|
| 1878 |
|
|
}
|
| 1879 |
|
|
}
|
| 1880 |
|
|
}
|
| 1881 |
|
|
}
|
| 1882 |
|
|
#else
|
| 1883 |
|
|
#define poison_pages()
|
| 1884 |
|
|
#endif
|
| 1885 |
|
|
|
| 1886 |
|
|
#ifdef ENABLE_GC_ALWAYS_COLLECT
|
| 1887 |
|
|
/* Validate that the reportedly free objects actually are. */
|
| 1888 |
|
|
|
| 1889 |
|
|
static void
|
| 1890 |
|
|
validate_free_objects (void)
|
| 1891 |
|
|
{
|
| 1892 |
|
|
struct free_object *f, *next, *still_free = NULL;
|
| 1893 |
|
|
|
| 1894 |
|
|
for (f = G.free_object_list; f ; f = next)
|
| 1895 |
|
|
{
|
| 1896 |
|
|
page_entry *pe = lookup_page_table_entry (f->object);
|
| 1897 |
|
|
size_t bit, word;
|
| 1898 |
|
|
|
| 1899 |
|
|
bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
|
| 1900 |
|
|
word = bit / HOST_BITS_PER_LONG;
|
| 1901 |
|
|
bit = bit % HOST_BITS_PER_LONG;
|
| 1902 |
|
|
next = f->next;
|
| 1903 |
|
|
|
| 1904 |
|
|
/* Make certain it isn't visible from any root. Notice that we
|
| 1905 |
|
|
do this check before sweep_pages merges save_in_use_p. */
|
| 1906 |
|
|
gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
|
| 1907 |
|
|
|
| 1908 |
|
|
/* If the object comes from an outer context, then retain the
|
| 1909 |
|
|
free_object entry, so that we can verify that the address
|
| 1910 |
|
|
isn't live on the stack in some outer context. */
|
| 1911 |
|
|
if (pe->context_depth != G.context_depth)
|
| 1912 |
|
|
{
|
| 1913 |
|
|
f->next = still_free;
|
| 1914 |
|
|
still_free = f;
|
| 1915 |
|
|
}
|
| 1916 |
|
|
else
|
| 1917 |
|
|
free (f);
|
| 1918 |
|
|
}
|
| 1919 |
|
|
|
| 1920 |
|
|
G.free_object_list = still_free;
|
| 1921 |
|
|
}
|
| 1922 |
|
|
#else
|
| 1923 |
|
|
#define validate_free_objects()
|
| 1924 |
|
|
#endif
|
| 1925 |
|
|
|
| 1926 |
|
|
/* Top level mark-and-sweep routine. */
|
| 1927 |
|
|
|
| 1928 |
|
|
void
|
| 1929 |
|
|
ggc_collect (void)
|
| 1930 |
|
|
{
|
| 1931 |
|
|
/* Avoid frequent unnecessary work by skipping collection if the
|
| 1932 |
|
|
total allocations haven't expanded much since the last
|
| 1933 |
|
|
collection. */
|
| 1934 |
|
|
float allocated_last_gc =
|
| 1935 |
|
|
MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
|
| 1936 |
|
|
|
| 1937 |
|
|
float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
|
| 1938 |
|
|
|
| 1939 |
|
|
if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
|
| 1940 |
|
|
return;
|
| 1941 |
|
|
|
| 1942 |
|
|
timevar_push (TV_GC);
|
| 1943 |
|
|
if (!quiet_flag)
|
| 1944 |
|
|
fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
|
| 1945 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 1946 |
|
|
fprintf (G.debug_file, "BEGIN COLLECTING\n");
|
| 1947 |
|
|
|
| 1948 |
|
|
/* Zero the total allocated bytes. This will be recalculated in the
|
| 1949 |
|
|
sweep phase. */
|
| 1950 |
|
|
G.allocated = 0;
|
| 1951 |
|
|
|
| 1952 |
|
|
/* Release the pages we freed the last time we collected, but didn't
|
| 1953 |
|
|
reuse in the interim. */
|
| 1954 |
|
|
release_pages ();
|
| 1955 |
|
|
|
| 1956 |
|
|
/* Indicate that we've seen collections at this context depth. */
|
| 1957 |
|
|
G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
|
| 1958 |
|
|
|
| 1959 |
|
|
invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
|
| 1960 |
|
|
|
| 1961 |
|
|
clear_marks ();
|
| 1962 |
|
|
ggc_mark_roots ();
|
| 1963 |
|
|
#ifdef GATHER_STATISTICS
|
| 1964 |
|
|
ggc_prune_overhead_list ();
|
| 1965 |
|
|
#endif
|
| 1966 |
|
|
poison_pages ();
|
| 1967 |
|
|
validate_free_objects ();
|
| 1968 |
|
|
sweep_pages ();
|
| 1969 |
|
|
|
| 1970 |
|
|
G.allocated_last_gc = G.allocated;
|
| 1971 |
|
|
|
| 1972 |
|
|
invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
|
| 1973 |
|
|
|
| 1974 |
|
|
timevar_pop (TV_GC);
|
| 1975 |
|
|
|
| 1976 |
|
|
if (!quiet_flag)
|
| 1977 |
|
|
fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
|
| 1978 |
|
|
if (GGC_DEBUG_LEVEL >= 2)
|
| 1979 |
|
|
fprintf (G.debug_file, "END COLLECTING\n");
|
| 1980 |
|
|
}
|
| 1981 |
|
|
|
| 1982 |
|
|
/* Print allocation statistics. */
|
| 1983 |
|
|
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
|
| 1984 |
|
|
? (x) \
|
| 1985 |
|
|
: ((x) < 1024*1024*10 \
|
| 1986 |
|
|
? (x) / 1024 \
|
| 1987 |
|
|
: (x) / (1024*1024))))
|
| 1988 |
|
|
#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
|
| 1989 |
|
|
|
| 1990 |
|
|
void
|
| 1991 |
|
|
ggc_print_statistics (void)
|
| 1992 |
|
|
{
|
| 1993 |
|
|
struct ggc_statistics stats;
|
| 1994 |
|
|
unsigned int i;
|
| 1995 |
|
|
size_t total_overhead = 0;
|
| 1996 |
|
|
|
| 1997 |
|
|
/* Clear the statistics. */
|
| 1998 |
|
|
memset (&stats, 0, sizeof (stats));
|
| 1999 |
|
|
|
| 2000 |
|
|
/* Make sure collection will really occur. */
|
| 2001 |
|
|
G.allocated_last_gc = 0;
|
| 2002 |
|
|
|
| 2003 |
|
|
/* Collect and print the statistics common across collectors. */
|
| 2004 |
|
|
ggc_print_common_statistics (stderr, &stats);
|
| 2005 |
|
|
|
| 2006 |
|
|
/* Release free pages so that we will not count the bytes allocated
|
| 2007 |
|
|
there as part of the total allocated memory. */
|
| 2008 |
|
|
release_pages ();
|
| 2009 |
|
|
|
| 2010 |
|
|
/* Collect some information about the various sizes of
|
| 2011 |
|
|
allocation. */
|
| 2012 |
|
|
fprintf (stderr,
|
| 2013 |
|
|
"Memory still allocated at the end of the compilation process\n");
|
| 2014 |
|
|
fprintf (stderr, "%-5s %10s %10s %10s\n",
|
| 2015 |
|
|
"Size", "Allocated", "Used", "Overhead");
|
| 2016 |
|
|
for (i = 0; i < NUM_ORDERS; ++i)
|
| 2017 |
|
|
{
|
| 2018 |
|
|
page_entry *p;
|
| 2019 |
|
|
size_t allocated;
|
| 2020 |
|
|
size_t in_use;
|
| 2021 |
|
|
size_t overhead;
|
| 2022 |
|
|
|
| 2023 |
|
|
/* Skip empty entries. */
|
| 2024 |
|
|
if (!G.pages[i])
|
| 2025 |
|
|
continue;
|
| 2026 |
|
|
|
| 2027 |
|
|
overhead = allocated = in_use = 0;
|
| 2028 |
|
|
|
| 2029 |
|
|
/* Figure out the total number of bytes allocated for objects of
|
| 2030 |
|
|
this size, and how many of them are actually in use. Also figure
|
| 2031 |
|
|
out how much memory the page table is using. */
|
| 2032 |
|
|
for (p = G.pages[i]; p; p = p->next)
|
| 2033 |
|
|
{
|
| 2034 |
|
|
allocated += p->bytes;
|
| 2035 |
|
|
in_use +=
|
| 2036 |
|
|
(OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
|
| 2037 |
|
|
|
| 2038 |
|
|
overhead += (sizeof (page_entry) - sizeof (long)
|
| 2039 |
|
|
+ BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
|
| 2040 |
|
|
}
|
| 2041 |
|
|
fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
|
| 2042 |
|
|
(unsigned long) OBJECT_SIZE (i),
|
| 2043 |
|
|
SCALE (allocated), STAT_LABEL (allocated),
|
| 2044 |
|
|
SCALE (in_use), STAT_LABEL (in_use),
|
| 2045 |
|
|
SCALE (overhead), STAT_LABEL (overhead));
|
| 2046 |
|
|
total_overhead += overhead;
|
| 2047 |
|
|
}
|
| 2048 |
|
|
fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
|
| 2049 |
|
|
SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
|
| 2050 |
|
|
SCALE (G.allocated), STAT_LABEL(G.allocated),
|
| 2051 |
|
|
SCALE (total_overhead), STAT_LABEL (total_overhead));
|
| 2052 |
|
|
|
| 2053 |
|
|
#ifdef GATHER_STATISTICS
|
| 2054 |
|
|
{
|
| 2055 |
|
|
fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
|
| 2056 |
|
|
|
| 2057 |
|
|
fprintf (stderr, "Total Overhead: %10lld\n",
|
| 2058 |
|
|
G.stats.total_overhead);
|
| 2059 |
|
|
fprintf (stderr, "Total Allocated: %10lld\n",
|
| 2060 |
|
|
G.stats.total_allocated);
|
| 2061 |
|
|
|
| 2062 |
|
|
fprintf (stderr, "Total Overhead under 32B: %10lld\n",
|
| 2063 |
|
|
G.stats.total_overhead_under32);
|
| 2064 |
|
|
fprintf (stderr, "Total Allocated under 32B: %10lld\n",
|
| 2065 |
|
|
G.stats.total_allocated_under32);
|
| 2066 |
|
|
fprintf (stderr, "Total Overhead under 64B: %10lld\n",
|
| 2067 |
|
|
G.stats.total_overhead_under64);
|
| 2068 |
|
|
fprintf (stderr, "Total Allocated under 64B: %10lld\n",
|
| 2069 |
|
|
G.stats.total_allocated_under64);
|
| 2070 |
|
|
fprintf (stderr, "Total Overhead under 128B: %10lld\n",
|
| 2071 |
|
|
G.stats.total_overhead_under128);
|
| 2072 |
|
|
fprintf (stderr, "Total Allocated under 128B: %10lld\n",
|
| 2073 |
|
|
G.stats.total_allocated_under128);
|
| 2074 |
|
|
|
| 2075 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
| 2076 |
|
|
if (G.stats.total_allocated_per_order[i])
|
| 2077 |
|
|
{
|
| 2078 |
|
|
fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
|
| 2079 |
|
|
(unsigned long) OBJECT_SIZE (i),
|
| 2080 |
|
|
G.stats.total_overhead_per_order[i]);
|
| 2081 |
|
|
fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
|
| 2082 |
|
|
(unsigned long) OBJECT_SIZE (i),
|
| 2083 |
|
|
G.stats.total_allocated_per_order[i]);
|
| 2084 |
|
|
}
|
| 2085 |
|
|
}
|
| 2086 |
|
|
#endif
|
| 2087 |
|
|
}
|
| 2088 |
|
|
|
| 2089 |
|
|
struct ggc_pch_ondisk
|
| 2090 |
|
|
{
|
| 2091 |
|
|
unsigned totals[NUM_ORDERS];
|
| 2092 |
|
|
};
|
| 2093 |
|
|
|
| 2094 |
|
|
struct ggc_pch_data
|
| 2095 |
|
|
{
|
| 2096 |
|
|
struct ggc_pch_ondisk d;
|
| 2097 |
|
|
size_t base[NUM_ORDERS];
|
| 2098 |
|
|
size_t written[NUM_ORDERS];
|
| 2099 |
|
|
};
|
| 2100 |
|
|
|
| 2101 |
|
|
struct ggc_pch_data *
|
| 2102 |
|
|
init_ggc_pch (void)
|
| 2103 |
|
|
{
|
| 2104 |
|
|
return XCNEW (struct ggc_pch_data);
|
| 2105 |
|
|
}
|
| 2106 |
|
|
|
| 2107 |
|
|
void
|
| 2108 |
|
|
ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
|
| 2109 |
|
|
size_t size, bool is_string ATTRIBUTE_UNUSED,
|
| 2110 |
|
|
enum gt_types_enum type ATTRIBUTE_UNUSED)
|
| 2111 |
|
|
{
|
| 2112 |
|
|
unsigned order;
|
| 2113 |
|
|
|
| 2114 |
|
|
if (size < NUM_SIZE_LOOKUP)
|
| 2115 |
|
|
order = size_lookup[size];
|
| 2116 |
|
|
else
|
| 2117 |
|
|
{
|
| 2118 |
|
|
order = 10;
|
| 2119 |
|
|
while (size > OBJECT_SIZE (order))
|
| 2120 |
|
|
order++;
|
| 2121 |
|
|
}
|
| 2122 |
|
|
|
| 2123 |
|
|
d->d.totals[order]++;
|
| 2124 |
|
|
}
|
| 2125 |
|
|
|
| 2126 |
|
|
size_t
|
| 2127 |
|
|
ggc_pch_total_size (struct ggc_pch_data *d)
|
| 2128 |
|
|
{
|
| 2129 |
|
|
size_t a = 0;
|
| 2130 |
|
|
unsigned i;
|
| 2131 |
|
|
|
| 2132 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
| 2133 |
|
|
a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
|
| 2134 |
|
|
return a;
|
| 2135 |
|
|
}
|
| 2136 |
|
|
|
| 2137 |
|
|
void
|
| 2138 |
|
|
ggc_pch_this_base (struct ggc_pch_data *d, void *base)
|
| 2139 |
|
|
{
|
| 2140 |
|
|
size_t a = (size_t) base;
|
| 2141 |
|
|
unsigned i;
|
| 2142 |
|
|
|
| 2143 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
| 2144 |
|
|
{
|
| 2145 |
|
|
d->base[i] = a;
|
| 2146 |
|
|
a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
|
| 2147 |
|
|
}
|
| 2148 |
|
|
}
|
| 2149 |
|
|
|
| 2150 |
|
|
|
| 2151 |
|
|
char *
|
| 2152 |
|
|
ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
|
| 2153 |
|
|
size_t size, bool is_string ATTRIBUTE_UNUSED,
|
| 2154 |
|
|
enum gt_types_enum type ATTRIBUTE_UNUSED)
|
| 2155 |
|
|
{
|
| 2156 |
|
|
unsigned order;
|
| 2157 |
|
|
char *result;
|
| 2158 |
|
|
|
| 2159 |
|
|
if (size < NUM_SIZE_LOOKUP)
|
| 2160 |
|
|
order = size_lookup[size];
|
| 2161 |
|
|
else
|
| 2162 |
|
|
{
|
| 2163 |
|
|
order = 10;
|
| 2164 |
|
|
while (size > OBJECT_SIZE (order))
|
| 2165 |
|
|
order++;
|
| 2166 |
|
|
}
|
| 2167 |
|
|
|
| 2168 |
|
|
result = (char *) d->base[order];
|
| 2169 |
|
|
d->base[order] += OBJECT_SIZE (order);
|
| 2170 |
|
|
return result;
|
| 2171 |
|
|
}
|
| 2172 |
|
|
|
| 2173 |
|
|
void
|
| 2174 |
|
|
ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
|
| 2175 |
|
|
FILE *f ATTRIBUTE_UNUSED)
|
| 2176 |
|
|
{
|
| 2177 |
|
|
/* Nothing to do. */
|
| 2178 |
|
|
}
|
| 2179 |
|
|
|
| 2180 |
|
|
void
|
| 2181 |
|
|
ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
|
| 2182 |
|
|
FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
|
| 2183 |
|
|
size_t size, bool is_string ATTRIBUTE_UNUSED)
|
| 2184 |
|
|
{
|
| 2185 |
|
|
unsigned order;
|
| 2186 |
|
|
static const char emptyBytes[256] = { 0 };
|
| 2187 |
|
|
|
| 2188 |
|
|
if (size < NUM_SIZE_LOOKUP)
|
| 2189 |
|
|
order = size_lookup[size];
|
| 2190 |
|
|
else
|
| 2191 |
|
|
{
|
| 2192 |
|
|
order = 10;
|
| 2193 |
|
|
while (size > OBJECT_SIZE (order))
|
| 2194 |
|
|
order++;
|
| 2195 |
|
|
}
|
| 2196 |
|
|
|
| 2197 |
|
|
if (fwrite (x, size, 1, f) != 1)
|
| 2198 |
|
|
fatal_error ("can't write PCH file: %m");
|
| 2199 |
|
|
|
| 2200 |
|
|
/* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
|
| 2201 |
|
|
object out to OBJECT_SIZE(order). This happens for strings. */
|
| 2202 |
|
|
|
| 2203 |
|
|
if (size != OBJECT_SIZE (order))
|
| 2204 |
|
|
{
|
| 2205 |
|
|
unsigned padding = OBJECT_SIZE(order) - size;
|
| 2206 |
|
|
|
| 2207 |
|
|
/* To speed small writes, we use a nulled-out array that's larger
|
| 2208 |
|
|
than most padding requests as the source for our null bytes. This
|
| 2209 |
|
|
permits us to do the padding with fwrite() rather than fseek(), and
|
| 2210 |
|
|
limits the chance the OS may try to flush any outstanding writes. */
|
| 2211 |
|
|
if (padding <= sizeof(emptyBytes))
|
| 2212 |
|
|
{
|
| 2213 |
|
|
if (fwrite (emptyBytes, 1, padding, f) != padding)
|
| 2214 |
|
|
fatal_error ("can't write PCH file");
|
| 2215 |
|
|
}
|
| 2216 |
|
|
else
|
| 2217 |
|
|
{
|
| 2218 |
|
|
/* Larger than our buffer? Just default to fseek. */
|
| 2219 |
|
|
if (fseek (f, padding, SEEK_CUR) != 0)
|
| 2220 |
|
|
fatal_error ("can't write PCH file");
|
| 2221 |
|
|
}
|
| 2222 |
|
|
}
|
| 2223 |
|
|
|
| 2224 |
|
|
d->written[order]++;
|
| 2225 |
|
|
if (d->written[order] == d->d.totals[order]
|
| 2226 |
|
|
&& fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
|
| 2227 |
|
|
G.pagesize),
|
| 2228 |
|
|
SEEK_CUR) != 0)
|
| 2229 |
|
|
fatal_error ("can't write PCH file: %m");
|
| 2230 |
|
|
}
|
| 2231 |
|
|
|
| 2232 |
|
|
void
|
| 2233 |
|
|
ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
|
| 2234 |
|
|
{
|
| 2235 |
|
|
if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
|
| 2236 |
|
|
fatal_error ("can't write PCH file: %m");
|
| 2237 |
|
|
free (d);
|
| 2238 |
|
|
}
|
| 2239 |
|
|
|
| 2240 |
|
|
/* Move the PCH PTE entries just added to the end of by_depth, to the
|
| 2241 |
|
|
front. */
|
| 2242 |
|
|
|
| 2243 |
|
|
static void
|
| 2244 |
|
|
move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
|
| 2245 |
|
|
{
|
| 2246 |
|
|
unsigned i;
|
| 2247 |
|
|
|
| 2248 |
|
|
/* First, we swap the new entries to the front of the varrays. */
|
| 2249 |
|
|
page_entry **new_by_depth;
|
| 2250 |
|
|
unsigned long **new_save_in_use;
|
| 2251 |
|
|
|
| 2252 |
|
|
new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
|
| 2253 |
|
|
new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
|
| 2254 |
|
|
|
| 2255 |
|
|
memcpy (&new_by_depth[0],
|
| 2256 |
|
|
&G.by_depth[count_old_page_tables],
|
| 2257 |
|
|
count_new_page_tables * sizeof (void *));
|
| 2258 |
|
|
memcpy (&new_by_depth[count_new_page_tables],
|
| 2259 |
|
|
&G.by_depth[0],
|
| 2260 |
|
|
count_old_page_tables * sizeof (void *));
|
| 2261 |
|
|
memcpy (&new_save_in_use[0],
|
| 2262 |
|
|
&G.save_in_use[count_old_page_tables],
|
| 2263 |
|
|
count_new_page_tables * sizeof (void *));
|
| 2264 |
|
|
memcpy (&new_save_in_use[count_new_page_tables],
|
| 2265 |
|
|
&G.save_in_use[0],
|
| 2266 |
|
|
count_old_page_tables * sizeof (void *));
|
| 2267 |
|
|
|
| 2268 |
|
|
free (G.by_depth);
|
| 2269 |
|
|
free (G.save_in_use);
|
| 2270 |
|
|
|
| 2271 |
|
|
G.by_depth = new_by_depth;
|
| 2272 |
|
|
G.save_in_use = new_save_in_use;
|
| 2273 |
|
|
|
| 2274 |
|
|
/* Now update all the index_by_depth fields. */
|
| 2275 |
|
|
for (i = G.by_depth_in_use; i > 0; --i)
|
| 2276 |
|
|
{
|
| 2277 |
|
|
page_entry *p = G.by_depth[i-1];
|
| 2278 |
|
|
p->index_by_depth = i-1;
|
| 2279 |
|
|
}
|
| 2280 |
|
|
|
| 2281 |
|
|
/* And last, we update the depth pointers in G.depth. The first
|
| 2282 |
|
|
entry is already 0, and context 0 entries always start at index
|
| 2283 |
|
|
0, so there is nothing to update in the first slot. We need a
|
| 2284 |
|
|
second slot, only if we have old ptes, and if we do, they start
|
| 2285 |
|
|
at index count_new_page_tables. */
|
| 2286 |
|
|
if (count_old_page_tables)
|
| 2287 |
|
|
push_depth (count_new_page_tables);
|
| 2288 |
|
|
}
|
| 2289 |
|
|
|
| 2290 |
|
|
void
|
| 2291 |
|
|
ggc_pch_read (FILE *f, void *addr)
|
| 2292 |
|
|
{
|
| 2293 |
|
|
struct ggc_pch_ondisk d;
|
| 2294 |
|
|
unsigned i;
|
| 2295 |
|
|
char *offs = (char *) addr;
|
| 2296 |
|
|
unsigned long count_old_page_tables;
|
| 2297 |
|
|
unsigned long count_new_page_tables;
|
| 2298 |
|
|
|
| 2299 |
|
|
count_old_page_tables = G.by_depth_in_use;
|
| 2300 |
|
|
|
| 2301 |
|
|
/* We've just read in a PCH file. So, every object that used to be
|
| 2302 |
|
|
allocated is now free. */
|
| 2303 |
|
|
clear_marks ();
|
| 2304 |
|
|
#ifdef ENABLE_GC_CHECKING
|
| 2305 |
|
|
poison_pages ();
|
| 2306 |
|
|
#endif
|
| 2307 |
|
|
/* Since we free all the allocated objects, the free list becomes
|
| 2308 |
|
|
useless. Validate it now, which will also clear it. */
|
| 2309 |
|
|
validate_free_objects();
|
| 2310 |
|
|
|
| 2311 |
|
|
/* No object read from a PCH file should ever be freed. So, set the
|
| 2312 |
|
|
context depth to 1, and set the depth of all the currently-allocated
|
| 2313 |
|
|
pages to be 1 too. PCH pages will have depth 0. */
|
| 2314 |
|
|
gcc_assert (!G.context_depth);
|
| 2315 |
|
|
G.context_depth = 1;
|
| 2316 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
| 2317 |
|
|
{
|
| 2318 |
|
|
page_entry *p;
|
| 2319 |
|
|
for (p = G.pages[i]; p != NULL; p = p->next)
|
| 2320 |
|
|
p->context_depth = G.context_depth;
|
| 2321 |
|
|
}
|
| 2322 |
|
|
|
| 2323 |
|
|
/* Allocate the appropriate page-table entries for the pages read from
|
| 2324 |
|
|
the PCH file. */
|
| 2325 |
|
|
if (fread (&d, sizeof (d), 1, f) != 1)
|
| 2326 |
|
|
fatal_error ("can't read PCH file: %m");
|
| 2327 |
|
|
|
| 2328 |
|
|
for (i = 0; i < NUM_ORDERS; i++)
|
| 2329 |
|
|
{
|
| 2330 |
|
|
struct page_entry *entry;
|
| 2331 |
|
|
char *pte;
|
| 2332 |
|
|
size_t bytes;
|
| 2333 |
|
|
size_t num_objs;
|
| 2334 |
|
|
size_t j;
|
| 2335 |
|
|
|
| 2336 |
|
|
if (d.totals[i] == 0)
|
| 2337 |
|
|
continue;
|
| 2338 |
|
|
|
| 2339 |
|
|
bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
|
| 2340 |
|
|
num_objs = bytes / OBJECT_SIZE (i);
|
| 2341 |
|
|
entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
|
| 2342 |
|
|
- sizeof (long)
|
| 2343 |
|
|
+ BITMAP_SIZE (num_objs + 1)));
|
| 2344 |
|
|
entry->bytes = bytes;
|
| 2345 |
|
|
entry->page = offs;
|
| 2346 |
|
|
entry->context_depth = 0;
|
| 2347 |
|
|
offs += bytes;
|
| 2348 |
|
|
entry->num_free_objects = 0;
|
| 2349 |
|
|
entry->order = i;
|
| 2350 |
|
|
|
| 2351 |
|
|
for (j = 0;
|
| 2352 |
|
|
j + HOST_BITS_PER_LONG <= num_objs + 1;
|
| 2353 |
|
|
j += HOST_BITS_PER_LONG)
|
| 2354 |
|
|
entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
|
| 2355 |
|
|
for (; j < num_objs + 1; j++)
|
| 2356 |
|
|
entry->in_use_p[j / HOST_BITS_PER_LONG]
|
| 2357 |
|
|
|= 1L << (j % HOST_BITS_PER_LONG);
|
| 2358 |
|
|
|
| 2359 |
|
|
for (pte = entry->page;
|
| 2360 |
|
|
pte < entry->page + entry->bytes;
|
| 2361 |
|
|
pte += G.pagesize)
|
| 2362 |
|
|
set_page_table_entry (pte, entry);
|
| 2363 |
|
|
|
| 2364 |
|
|
if (G.page_tails[i] != NULL)
|
| 2365 |
|
|
G.page_tails[i]->next = entry;
|
| 2366 |
|
|
else
|
| 2367 |
|
|
G.pages[i] = entry;
|
| 2368 |
|
|
G.page_tails[i] = entry;
|
| 2369 |
|
|
|
| 2370 |
|
|
/* We start off by just adding all the new information to the
|
| 2371 |
|
|
end of the varrays, later, we will move the new information
|
| 2372 |
|
|
to the front of the varrays, as the PCH page tables are at
|
| 2373 |
|
|
context 0. */
|
| 2374 |
|
|
push_by_depth (entry, 0);
|
| 2375 |
|
|
}
|
| 2376 |
|
|
|
| 2377 |
|
|
/* Now, we update the various data structures that speed page table
|
| 2378 |
|
|
handling. */
|
| 2379 |
|
|
count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
|
| 2380 |
|
|
|
| 2381 |
|
|
move_ptes_to_front (count_old_page_tables, count_new_page_tables);
|
| 2382 |
|
|
|
| 2383 |
|
|
/* Update the statistics. */
|
| 2384 |
|
|
G.allocated = G.allocated_last_gc = offs - (char *)addr;
|
| 2385 |
|
|
}
|