1 |
280 |
jeremybenn |
/* Translation of CLAST (CLooG AST) to Gimple.
|
2 |
|
|
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "ggc.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "basic-block.h"
|
29 |
|
|
#include "diagnostic.h"
|
30 |
|
|
#include "tree-flow.h"
|
31 |
|
|
#include "toplev.h"
|
32 |
|
|
#include "tree-dump.h"
|
33 |
|
|
#include "timevar.h"
|
34 |
|
|
#include "cfgloop.h"
|
35 |
|
|
#include "tree-chrec.h"
|
36 |
|
|
#include "tree-data-ref.h"
|
37 |
|
|
#include "tree-scalar-evolution.h"
|
38 |
|
|
#include "tree-pass.h"
|
39 |
|
|
#include "domwalk.h"
|
40 |
|
|
#include "value-prof.h"
|
41 |
|
|
#include "pointer-set.h"
|
42 |
|
|
#include "gimple.h"
|
43 |
|
|
#include "sese.h"
|
44 |
|
|
|
45 |
|
|
#ifdef HAVE_cloog
|
46 |
|
|
#include "cloog/cloog.h"
|
47 |
|
|
#include "ppl_c.h"
|
48 |
|
|
#include "graphite-ppl.h"
|
49 |
|
|
#include "graphite.h"
|
50 |
|
|
#include "graphite-poly.h"
|
51 |
|
|
#include "graphite-scop-detection.h"
|
52 |
|
|
#include "graphite-clast-to-gimple.h"
|
53 |
|
|
#include "graphite-dependences.h"
|
54 |
|
|
|
55 |
|
|
/* This flag is set when an error occurred during the translation of
|
56 |
|
|
CLAST to Gimple. */
|
57 |
|
|
static bool gloog_error;
|
58 |
|
|
|
59 |
|
|
/* Verifies properties that GRAPHITE should maintain during translation. */
|
60 |
|
|
|
61 |
|
|
static inline void
|
62 |
|
|
graphite_verify (void)
|
63 |
|
|
{
|
64 |
|
|
#ifdef ENABLE_CHECKING
|
65 |
|
|
verify_loop_structure ();
|
66 |
|
|
verify_dominators (CDI_DOMINATORS);
|
67 |
|
|
verify_dominators (CDI_POST_DOMINATORS);
|
68 |
|
|
verify_ssa (false);
|
69 |
|
|
verify_loop_closed_ssa ();
|
70 |
|
|
#endif
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
/* Stores the INDEX in a vector for a given clast NAME. */
|
74 |
|
|
|
75 |
|
|
typedef struct clast_name_index {
|
76 |
|
|
int index;
|
77 |
|
|
const char *name;
|
78 |
|
|
} *clast_name_index_p;
|
79 |
|
|
|
80 |
|
|
/* Returns a pointer to a new element of type clast_name_index_p built
|
81 |
|
|
from NAME and INDEX. */
|
82 |
|
|
|
83 |
|
|
static inline clast_name_index_p
|
84 |
|
|
new_clast_name_index (const char *name, int index)
|
85 |
|
|
{
|
86 |
|
|
clast_name_index_p res = XNEW (struct clast_name_index);
|
87 |
|
|
|
88 |
|
|
res->name = name;
|
89 |
|
|
res->index = index;
|
90 |
|
|
return res;
|
91 |
|
|
}
|
92 |
|
|
|
93 |
|
|
/* For a given clast NAME, returns -1 if it does not correspond to any
|
94 |
|
|
parameter, or otherwise, returns the index in the PARAMS or
|
95 |
|
|
SCATTERING_DIMENSIONS vector. */
|
96 |
|
|
|
97 |
|
|
static inline int
|
98 |
|
|
clast_name_to_index (const char *name, htab_t index_table)
|
99 |
|
|
{
|
100 |
|
|
struct clast_name_index tmp;
|
101 |
|
|
PTR *slot;
|
102 |
|
|
|
103 |
|
|
tmp.name = name;
|
104 |
|
|
slot = htab_find_slot (index_table, &tmp, NO_INSERT);
|
105 |
|
|
|
106 |
|
|
if (slot && *slot)
|
107 |
|
|
return ((struct clast_name_index *) *slot)->index;
|
108 |
|
|
|
109 |
|
|
return -1;
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
/* Records in INDEX_TABLE the INDEX for NAME. */
|
113 |
|
|
|
114 |
|
|
static inline void
|
115 |
|
|
save_clast_name_index (htab_t index_table, const char *name, int index)
|
116 |
|
|
{
|
117 |
|
|
struct clast_name_index tmp;
|
118 |
|
|
PTR *slot;
|
119 |
|
|
|
120 |
|
|
tmp.name = name;
|
121 |
|
|
slot = htab_find_slot (index_table, &tmp, INSERT);
|
122 |
|
|
|
123 |
|
|
if (slot)
|
124 |
|
|
{
|
125 |
|
|
if (*slot)
|
126 |
|
|
free (*slot);
|
127 |
|
|
|
128 |
|
|
*slot = new_clast_name_index (name, index);
|
129 |
|
|
}
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
/* Print to stderr the element ELT. */
|
133 |
|
|
|
134 |
|
|
static inline void
|
135 |
|
|
debug_clast_name_index (clast_name_index_p elt)
|
136 |
|
|
{
|
137 |
|
|
fprintf (stderr, "(index = %d, name = %s)\n", elt->index, elt->name);
|
138 |
|
|
}
|
139 |
|
|
|
140 |
|
|
/* Helper function for debug_rename_map. */
|
141 |
|
|
|
142 |
|
|
static inline int
|
143 |
|
|
debug_clast_name_indexes_1 (void **slot, void *s ATTRIBUTE_UNUSED)
|
144 |
|
|
{
|
145 |
|
|
struct clast_name_index *entry = (struct clast_name_index *) *slot;
|
146 |
|
|
debug_clast_name_index (entry);
|
147 |
|
|
return 1;
|
148 |
|
|
}
|
149 |
|
|
|
150 |
|
|
/* Print to stderr all the elements of MAP. */
|
151 |
|
|
|
152 |
|
|
void
|
153 |
|
|
debug_clast_name_indexes (htab_t map)
|
154 |
|
|
{
|
155 |
|
|
htab_traverse (map, debug_clast_name_indexes_1, NULL);
|
156 |
|
|
}
|
157 |
|
|
|
158 |
|
|
/* Computes a hash function for database element ELT. */
|
159 |
|
|
|
160 |
|
|
static inline hashval_t
|
161 |
|
|
clast_name_index_elt_info (const void *elt)
|
162 |
|
|
{
|
163 |
|
|
return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
/* Compares database elements E1 and E2. */
|
167 |
|
|
|
168 |
|
|
static inline int
|
169 |
|
|
eq_clast_name_indexes (const void *e1, const void *e2)
|
170 |
|
|
{
|
171 |
|
|
const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
|
172 |
|
|
const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
|
173 |
|
|
|
174 |
|
|
return (elt1->name == elt2->name);
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
|
178 |
|
|
/* For a given loop DEPTH in the loop nest of the original black box
|
179 |
|
|
PBB, return the old induction variable associated to that loop. */
|
180 |
|
|
|
181 |
|
|
static inline tree
|
182 |
|
|
pbb_to_depth_to_oldiv (poly_bb_p pbb, int depth)
|
183 |
|
|
{
|
184 |
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
185 |
|
|
sese region = SCOP_REGION (PBB_SCOP (pbb));
|
186 |
|
|
loop_p loop = gbb_loop_at_index (gbb, region, depth);
|
187 |
|
|
|
188 |
|
|
return loop->single_iv;
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
/* For a given scattering dimension, return the new induction variable
|
192 |
|
|
associated to it. */
|
193 |
|
|
|
194 |
|
|
static inline tree
|
195 |
|
|
newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
|
196 |
|
|
{
|
197 |
|
|
return VEC_index (tree, newivs, depth);
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
|
201 |
|
|
|
202 |
|
|
/* Returns the tree variable from the name NAME that was given in
|
203 |
|
|
Cloog representation. */
|
204 |
|
|
|
205 |
|
|
static tree
|
206 |
|
|
clast_name_to_gcc (const char *name, sese region, VEC (tree, heap) *newivs,
|
207 |
|
|
htab_t newivs_index, htab_t params_index)
|
208 |
|
|
{
|
209 |
|
|
int index;
|
210 |
|
|
VEC (tree, heap) *params = SESE_PARAMS (region);
|
211 |
|
|
|
212 |
|
|
if (params && params_index)
|
213 |
|
|
{
|
214 |
|
|
index = clast_name_to_index (name, params_index);
|
215 |
|
|
|
216 |
|
|
if (index >= 0)
|
217 |
|
|
return VEC_index (tree, params, index);
|
218 |
|
|
}
|
219 |
|
|
|
220 |
|
|
gcc_assert (newivs && newivs_index);
|
221 |
|
|
index = clast_name_to_index (name, newivs_index);
|
222 |
|
|
gcc_assert (index >= 0);
|
223 |
|
|
|
224 |
|
|
return newivs_to_depth_to_newiv (newivs, index);
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
/* Returns the maximal precision type for expressions E1 and E2. */
|
228 |
|
|
|
229 |
|
|
static inline tree
|
230 |
|
|
max_precision_type (tree e1, tree e2)
|
231 |
|
|
{
|
232 |
|
|
tree type1 = TREE_TYPE (e1);
|
233 |
|
|
tree type2 = TREE_TYPE (e2);
|
234 |
|
|
return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
static tree
|
238 |
|
|
clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
|
239 |
|
|
htab_t, htab_t);
|
240 |
|
|
|
241 |
|
|
/* Converts a Cloog reduction expression R with reduction operation OP
|
242 |
|
|
to a GCC expression tree of type TYPE. */
|
243 |
|
|
|
244 |
|
|
static tree
|
245 |
|
|
clast_to_gcc_expression_red (tree type, enum tree_code op,
|
246 |
|
|
struct clast_reduction *r,
|
247 |
|
|
sese region, VEC (tree, heap) *newivs,
|
248 |
|
|
htab_t newivs_index, htab_t params_index)
|
249 |
|
|
{
|
250 |
|
|
int i;
|
251 |
|
|
tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
|
252 |
|
|
newivs_index, params_index);
|
253 |
|
|
tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
|
254 |
|
|
|
255 |
|
|
for (i = 1; i < r->n; i++)
|
256 |
|
|
{
|
257 |
|
|
tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
|
258 |
|
|
newivs, newivs_index, params_index);
|
259 |
|
|
res = fold_build2 (op, type, res, t);
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
return res;
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/* Converts a Cloog AST expression E back to a GCC expression tree of
|
266 |
|
|
type TYPE. */
|
267 |
|
|
|
268 |
|
|
static tree
|
269 |
|
|
clast_to_gcc_expression (tree type, struct clast_expr *e,
|
270 |
|
|
sese region, VEC (tree, heap) *newivs,
|
271 |
|
|
htab_t newivs_index, htab_t params_index)
|
272 |
|
|
{
|
273 |
|
|
switch (e->type)
|
274 |
|
|
{
|
275 |
|
|
case expr_term:
|
276 |
|
|
{
|
277 |
|
|
struct clast_term *t = (struct clast_term *) e;
|
278 |
|
|
|
279 |
|
|
if (t->var)
|
280 |
|
|
{
|
281 |
|
|
if (value_one_p (t->val))
|
282 |
|
|
{
|
283 |
|
|
tree name = clast_name_to_gcc (t->var, region, newivs,
|
284 |
|
|
newivs_index, params_index);
|
285 |
|
|
|
286 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
|
287 |
|
|
name = fold_convert (sizetype, name);
|
288 |
|
|
|
289 |
|
|
name = fold_convert (type, name);
|
290 |
|
|
return name;
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
else if (value_mone_p (t->val))
|
294 |
|
|
{
|
295 |
|
|
tree name = clast_name_to_gcc (t->var, region, newivs,
|
296 |
|
|
newivs_index, params_index);
|
297 |
|
|
|
298 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
|
299 |
|
|
name = fold_convert (sizetype, name);
|
300 |
|
|
|
301 |
|
|
name = fold_convert (type, name);
|
302 |
|
|
|
303 |
|
|
return fold_build1 (NEGATE_EXPR, type, name);
|
304 |
|
|
}
|
305 |
|
|
else
|
306 |
|
|
{
|
307 |
|
|
tree name = clast_name_to_gcc (t->var, region, newivs,
|
308 |
|
|
newivs_index, params_index);
|
309 |
|
|
tree cst = gmp_cst_to_tree (type, t->val);
|
310 |
|
|
|
311 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
|
312 |
|
|
name = fold_convert (sizetype, name);
|
313 |
|
|
|
314 |
|
|
name = fold_convert (type, name);
|
315 |
|
|
|
316 |
|
|
if (!POINTER_TYPE_P (type))
|
317 |
|
|
return fold_build2 (MULT_EXPR, type, cst, name);
|
318 |
|
|
|
319 |
|
|
gloog_error = true;
|
320 |
|
|
return cst;
|
321 |
|
|
}
|
322 |
|
|
}
|
323 |
|
|
else
|
324 |
|
|
return gmp_cst_to_tree (type, t->val);
|
325 |
|
|
}
|
326 |
|
|
|
327 |
|
|
case expr_red:
|
328 |
|
|
{
|
329 |
|
|
struct clast_reduction *r = (struct clast_reduction *) e;
|
330 |
|
|
|
331 |
|
|
switch (r->type)
|
332 |
|
|
{
|
333 |
|
|
case clast_red_sum:
|
334 |
|
|
return clast_to_gcc_expression_red
|
335 |
|
|
(type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
|
336 |
|
|
r, region, newivs, newivs_index, params_index);
|
337 |
|
|
|
338 |
|
|
case clast_red_min:
|
339 |
|
|
return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
|
340 |
|
|
newivs, newivs_index,
|
341 |
|
|
params_index);
|
342 |
|
|
|
343 |
|
|
case clast_red_max:
|
344 |
|
|
return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
|
345 |
|
|
newivs, newivs_index,
|
346 |
|
|
params_index);
|
347 |
|
|
|
348 |
|
|
default:
|
349 |
|
|
gcc_unreachable ();
|
350 |
|
|
}
|
351 |
|
|
break;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
case expr_bin:
|
355 |
|
|
{
|
356 |
|
|
struct clast_binary *b = (struct clast_binary *) e;
|
357 |
|
|
struct clast_expr *lhs = (struct clast_expr *) b->LHS;
|
358 |
|
|
tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
|
359 |
|
|
newivs_index, params_index);
|
360 |
|
|
tree tr = gmp_cst_to_tree (type, b->RHS);
|
361 |
|
|
|
362 |
|
|
switch (b->type)
|
363 |
|
|
{
|
364 |
|
|
case clast_bin_fdiv:
|
365 |
|
|
return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
|
366 |
|
|
|
367 |
|
|
case clast_bin_cdiv:
|
368 |
|
|
return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
|
369 |
|
|
|
370 |
|
|
case clast_bin_div:
|
371 |
|
|
return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
|
372 |
|
|
|
373 |
|
|
case clast_bin_mod:
|
374 |
|
|
return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
|
375 |
|
|
|
376 |
|
|
default:
|
377 |
|
|
gcc_unreachable ();
|
378 |
|
|
}
|
379 |
|
|
}
|
380 |
|
|
|
381 |
|
|
default:
|
382 |
|
|
gcc_unreachable ();
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
return NULL_TREE;
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
/* Returns the type for the expression E. */
|
389 |
|
|
|
390 |
|
|
static tree
|
391 |
|
|
gcc_type_for_clast_expr (struct clast_expr *e,
|
392 |
|
|
sese region, VEC (tree, heap) *newivs,
|
393 |
|
|
htab_t newivs_index, htab_t params_index)
|
394 |
|
|
{
|
395 |
|
|
switch (e->type)
|
396 |
|
|
{
|
397 |
|
|
case expr_term:
|
398 |
|
|
{
|
399 |
|
|
struct clast_term *t = (struct clast_term *) e;
|
400 |
|
|
|
401 |
|
|
if (t->var)
|
402 |
|
|
return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
|
403 |
|
|
newivs_index, params_index));
|
404 |
|
|
else
|
405 |
|
|
return NULL_TREE;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
case expr_red:
|
409 |
|
|
{
|
410 |
|
|
struct clast_reduction *r = (struct clast_reduction *) e;
|
411 |
|
|
|
412 |
|
|
if (r->n == 1)
|
413 |
|
|
return gcc_type_for_clast_expr (r->elts[0], region, newivs,
|
414 |
|
|
newivs_index, params_index);
|
415 |
|
|
else
|
416 |
|
|
{
|
417 |
|
|
int i;
|
418 |
|
|
for (i = 0; i < r->n; i++)
|
419 |
|
|
{
|
420 |
|
|
tree type = gcc_type_for_clast_expr (r->elts[i], region,
|
421 |
|
|
newivs, newivs_index,
|
422 |
|
|
params_index);
|
423 |
|
|
if (type)
|
424 |
|
|
return type;
|
425 |
|
|
}
|
426 |
|
|
return NULL_TREE;
|
427 |
|
|
}
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
case expr_bin:
|
431 |
|
|
{
|
432 |
|
|
struct clast_binary *b = (struct clast_binary *) e;
|
433 |
|
|
struct clast_expr *lhs = (struct clast_expr *) b->LHS;
|
434 |
|
|
return gcc_type_for_clast_expr (lhs, region, newivs,
|
435 |
|
|
newivs_index, params_index);
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
default:
|
439 |
|
|
gcc_unreachable ();
|
440 |
|
|
}
|
441 |
|
|
|
442 |
|
|
return NULL_TREE;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/* Returns the type for the equation CLEQ. */
|
446 |
|
|
|
447 |
|
|
static tree
|
448 |
|
|
gcc_type_for_clast_eq (struct clast_equation *cleq,
|
449 |
|
|
sese region, VEC (tree, heap) *newivs,
|
450 |
|
|
htab_t newivs_index, htab_t params_index)
|
451 |
|
|
{
|
452 |
|
|
tree type = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
|
453 |
|
|
newivs_index, params_index);
|
454 |
|
|
if (type)
|
455 |
|
|
return type;
|
456 |
|
|
|
457 |
|
|
return gcc_type_for_clast_expr (cleq->RHS, region, newivs, newivs_index,
|
458 |
|
|
params_index);
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
/* Translates a clast equation CLEQ to a tree. */
|
462 |
|
|
|
463 |
|
|
static tree
|
464 |
|
|
graphite_translate_clast_equation (sese region,
|
465 |
|
|
struct clast_equation *cleq,
|
466 |
|
|
VEC (tree, heap) *newivs,
|
467 |
|
|
htab_t newivs_index, htab_t params_index)
|
468 |
|
|
{
|
469 |
|
|
enum tree_code comp;
|
470 |
|
|
tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
|
471 |
|
|
params_index);
|
472 |
|
|
tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
|
473 |
|
|
newivs_index, params_index);
|
474 |
|
|
tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
|
475 |
|
|
newivs_index, params_index);
|
476 |
|
|
|
477 |
|
|
if (cleq->sign == 0)
|
478 |
|
|
comp = EQ_EXPR;
|
479 |
|
|
|
480 |
|
|
else if (cleq->sign > 0)
|
481 |
|
|
comp = GE_EXPR;
|
482 |
|
|
|
483 |
|
|
else
|
484 |
|
|
comp = LE_EXPR;
|
485 |
|
|
|
486 |
|
|
return fold_build2 (comp, boolean_type_node, lhs, rhs);
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
/* Creates the test for the condition in STMT. */
|
490 |
|
|
|
491 |
|
|
static tree
|
492 |
|
|
graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
|
493 |
|
|
VEC (tree, heap) *newivs,
|
494 |
|
|
htab_t newivs_index, htab_t params_index)
|
495 |
|
|
{
|
496 |
|
|
tree cond = NULL;
|
497 |
|
|
int i;
|
498 |
|
|
|
499 |
|
|
for (i = 0; i < stmt->n; i++)
|
500 |
|
|
{
|
501 |
|
|
tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
|
502 |
|
|
newivs, newivs_index,
|
503 |
|
|
params_index);
|
504 |
|
|
|
505 |
|
|
if (cond)
|
506 |
|
|
cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
|
507 |
|
|
else
|
508 |
|
|
cond = eq;
|
509 |
|
|
}
|
510 |
|
|
|
511 |
|
|
return cond;
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
/* Creates a new if region corresponding to Cloog's guard. */
|
515 |
|
|
|
516 |
|
|
static edge
|
517 |
|
|
graphite_create_new_guard (sese region, edge entry_edge,
|
518 |
|
|
struct clast_guard *stmt,
|
519 |
|
|
VEC (tree, heap) *newivs,
|
520 |
|
|
htab_t newivs_index, htab_t params_index)
|
521 |
|
|
{
|
522 |
|
|
tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
|
523 |
|
|
newivs_index, params_index);
|
524 |
|
|
edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
|
525 |
|
|
return exit_edge;
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
/* Walks a CLAST and returns the first statement in the body of a
|
529 |
|
|
loop. */
|
530 |
|
|
|
531 |
|
|
static struct clast_user_stmt *
|
532 |
|
|
clast_get_body_of_loop (struct clast_stmt *stmt)
|
533 |
|
|
{
|
534 |
|
|
if (!stmt
|
535 |
|
|
|| CLAST_STMT_IS_A (stmt, stmt_user))
|
536 |
|
|
return (struct clast_user_stmt *) stmt;
|
537 |
|
|
|
538 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_for))
|
539 |
|
|
return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
|
540 |
|
|
|
541 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_guard))
|
542 |
|
|
return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
|
543 |
|
|
|
544 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_block))
|
545 |
|
|
return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
|
546 |
|
|
|
547 |
|
|
gcc_unreachable ();
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
/* Java does not initialize long_long_integer_type_node. */
|
551 |
|
|
#define my_long_long (long_long_integer_type_node ? long_long_integer_type_node : ssizetype)
|
552 |
|
|
|
553 |
|
|
/* Given a CLOOG_IV, return the type that CLOOG_IV should have in GCC
|
554 |
|
|
land. The selected type is big enough to include the original loop
|
555 |
|
|
iteration variable, but signed to work with the subtractions CLooG
|
556 |
|
|
may have introduced. If such a type is not available, we fail.
|
557 |
|
|
|
558 |
|
|
TODO: Do not always return long_long, but the smallest possible
|
559 |
|
|
type, that still holds the original type.
|
560 |
|
|
|
561 |
|
|
TODO: Get the types using CLooG instead. This enables further
|
562 |
|
|
optimizations, but needs CLooG support. */
|
563 |
|
|
|
564 |
|
|
static tree
|
565 |
|
|
gcc_type_for_cloog_iv (const char *cloog_iv, gimple_bb_p gbb)
|
566 |
|
|
{
|
567 |
|
|
struct ivtype_map_elt_s tmp;
|
568 |
|
|
PTR *slot;
|
569 |
|
|
|
570 |
|
|
tmp.cloog_iv = cloog_iv;
|
571 |
|
|
slot = htab_find_slot (GBB_CLOOG_IV_TYPES (gbb), &tmp, NO_INSERT);
|
572 |
|
|
|
573 |
|
|
if (slot && *slot)
|
574 |
|
|
{
|
575 |
|
|
tree type = ((ivtype_map_elt) *slot)->type;
|
576 |
|
|
int type_precision = TYPE_PRECISION (type);
|
577 |
|
|
|
578 |
|
|
/* Find the smallest signed type possible. */
|
579 |
|
|
if (!TYPE_UNSIGNED (type))
|
580 |
|
|
{
|
581 |
|
|
if (type_precision <= TYPE_PRECISION (integer_type_node))
|
582 |
|
|
return integer_type_node;
|
583 |
|
|
|
584 |
|
|
if (type_precision <= TYPE_PRECISION (long_integer_type_node))
|
585 |
|
|
return long_integer_type_node;
|
586 |
|
|
|
587 |
|
|
if (type_precision <= TYPE_PRECISION (my_long_long))
|
588 |
|
|
return my_long_long;
|
589 |
|
|
|
590 |
|
|
gcc_unreachable ();
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
if (type_precision < TYPE_PRECISION (integer_type_node))
|
594 |
|
|
return integer_type_node;
|
595 |
|
|
|
596 |
|
|
if (type_precision < TYPE_PRECISION (long_integer_type_node))
|
597 |
|
|
return long_integer_type_node;
|
598 |
|
|
|
599 |
|
|
if (type_precision < TYPE_PRECISION (my_long_long))
|
600 |
|
|
return my_long_long;
|
601 |
|
|
|
602 |
|
|
/* There is no signed type available, that is large enough to hold the
|
603 |
|
|
original value. */
|
604 |
|
|
gcc_unreachable ();
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
return my_long_long;
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
#undef my_long_long
|
611 |
|
|
|
612 |
|
|
/* Returns the induction variable for the loop that gets translated to
|
613 |
|
|
STMT. */
|
614 |
|
|
|
615 |
|
|
static tree
|
616 |
|
|
gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for)
|
617 |
|
|
{
|
618 |
|
|
struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
|
619 |
|
|
struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
|
620 |
|
|
const char *cloog_iv = stmt_for->iterator;
|
621 |
|
|
CloogStatement *cs = body->statement;
|
622 |
|
|
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
|
623 |
|
|
|
624 |
|
|
return gcc_type_for_cloog_iv (cloog_iv, PBB_BLACK_BOX (pbb));
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
|
628 |
|
|
induction variable for the new LOOP. New LOOP is attached to CFG
|
629 |
|
|
starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
|
630 |
|
|
becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
|
631 |
|
|
CLooG's scattering name to the induction variable created for the
|
632 |
|
|
loop of STMT. The new induction variable is inserted in the NEWIVS
|
633 |
|
|
vector. */
|
634 |
|
|
|
635 |
|
|
static struct loop *
|
636 |
|
|
graphite_create_new_loop (sese region, edge entry_edge,
|
637 |
|
|
struct clast_for *stmt,
|
638 |
|
|
loop_p outer, VEC (tree, heap) **newivs,
|
639 |
|
|
htab_t newivs_index, htab_t params_index)
|
640 |
|
|
{
|
641 |
|
|
tree type = gcc_type_for_iv_of_clast_loop (stmt);
|
642 |
|
|
tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
|
643 |
|
|
newivs_index, params_index);
|
644 |
|
|
tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
|
645 |
|
|
newivs_index, params_index);
|
646 |
|
|
tree stride = gmp_cst_to_tree (type, stmt->stride);
|
647 |
|
|
tree ivvar = create_tmp_var (type, "graphite_IV");
|
648 |
|
|
tree iv, iv_after_increment;
|
649 |
|
|
loop_p loop = create_empty_loop_on_edge
|
650 |
|
|
(entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
|
651 |
|
|
outer ? outer : entry_edge->src->loop_father);
|
652 |
|
|
|
653 |
|
|
add_referenced_var (ivvar);
|
654 |
|
|
|
655 |
|
|
save_clast_name_index (newivs_index, stmt->iterator,
|
656 |
|
|
VEC_length (tree, *newivs));
|
657 |
|
|
VEC_safe_push (tree, heap, *newivs, iv);
|
658 |
|
|
return loop;
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
/* Inserts in MAP a tuple (OLD_NAME, NEW_NAME) for the induction
|
662 |
|
|
variables of the loops around GBB in SESE. */
|
663 |
|
|
|
664 |
|
|
static void
|
665 |
|
|
build_iv_mapping (htab_t map, sese region,
|
666 |
|
|
VEC (tree, heap) *newivs, htab_t newivs_index,
|
667 |
|
|
struct clast_user_stmt *user_stmt,
|
668 |
|
|
htab_t params_index)
|
669 |
|
|
{
|
670 |
|
|
struct clast_stmt *t;
|
671 |
|
|
int index = 0;
|
672 |
|
|
CloogStatement *cs = user_stmt->statement;
|
673 |
|
|
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
|
674 |
|
|
|
675 |
|
|
for (t = user_stmt->substitutions; t; t = t->next, index++)
|
676 |
|
|
{
|
677 |
|
|
struct clast_expr *expr = (struct clast_expr *)
|
678 |
|
|
((struct clast_assignment *)t)->RHS;
|
679 |
|
|
tree type = gcc_type_for_clast_expr (expr, region, newivs,
|
680 |
|
|
newivs_index, params_index);
|
681 |
|
|
tree old_name = pbb_to_depth_to_oldiv (pbb, index);
|
682 |
|
|
tree e = clast_to_gcc_expression (type, expr, region, newivs,
|
683 |
|
|
newivs_index, params_index);
|
684 |
|
|
set_rename (map, old_name, e);
|
685 |
|
|
}
|
686 |
|
|
}
|
687 |
|
|
|
688 |
|
|
/* Helper function for htab_traverse. */
|
689 |
|
|
|
690 |
|
|
static int
|
691 |
|
|
copy_renames (void **slot, void *s)
|
692 |
|
|
{
|
693 |
|
|
struct rename_map_elt_s *entry = (struct rename_map_elt_s *) *slot;
|
694 |
|
|
htab_t res = (htab_t) s;
|
695 |
|
|
tree old_name = entry->old_name;
|
696 |
|
|
tree expr = entry->expr;
|
697 |
|
|
struct rename_map_elt_s tmp;
|
698 |
|
|
PTR *x;
|
699 |
|
|
|
700 |
|
|
tmp.old_name = old_name;
|
701 |
|
|
x = htab_find_slot (res, &tmp, INSERT);
|
702 |
|
|
|
703 |
|
|
if (x && !*x)
|
704 |
|
|
*x = new_rename_map_elt (old_name, expr);
|
705 |
|
|
|
706 |
|
|
return 1;
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
/* Construct bb_pbb_def with BB and PBB. */
|
710 |
|
|
|
711 |
|
|
static bb_pbb_def *
|
712 |
|
|
new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
|
713 |
|
|
{
|
714 |
|
|
bb_pbb_def *bb_pbb_p;
|
715 |
|
|
|
716 |
|
|
bb_pbb_p = XNEW (bb_pbb_def);
|
717 |
|
|
bb_pbb_p->bb = bb;
|
718 |
|
|
bb_pbb_p->pbb = pbb;
|
719 |
|
|
|
720 |
|
|
return bb_pbb_p;
|
721 |
|
|
}
|
722 |
|
|
|
723 |
|
|
/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
|
724 |
|
|
|
725 |
|
|
static void
|
726 |
|
|
mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
|
727 |
|
|
{
|
728 |
|
|
bb_pbb_def tmp;
|
729 |
|
|
PTR *x;
|
730 |
|
|
|
731 |
|
|
tmp.bb = bb;
|
732 |
|
|
x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
|
733 |
|
|
|
734 |
|
|
if (x && !*x)
|
735 |
|
|
*x = new_bb_pbb_def (bb, pbb);
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
|
739 |
|
|
|
740 |
|
|
static poly_bb_p
|
741 |
|
|
find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
|
742 |
|
|
{
|
743 |
|
|
bb_pbb_def tmp;
|
744 |
|
|
PTR *slot;
|
745 |
|
|
|
746 |
|
|
tmp.bb = bb;
|
747 |
|
|
slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
|
748 |
|
|
|
749 |
|
|
if (slot && *slot)
|
750 |
|
|
return ((bb_pbb_def *) *slot)->pbb;
|
751 |
|
|
|
752 |
|
|
return NULL;
|
753 |
|
|
}
|
754 |
|
|
|
755 |
|
|
/* Check data dependency in LOOP at scattering level LEVEL.
|
756 |
|
|
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
|
757 |
|
|
mapping. */
|
758 |
|
|
|
759 |
|
|
static bool
|
760 |
|
|
dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
|
761 |
|
|
{
|
762 |
|
|
unsigned i,j;
|
763 |
|
|
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
764 |
|
|
|
765 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
766 |
|
|
{
|
767 |
|
|
poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
|
768 |
|
|
|
769 |
|
|
if (pbb1 == NULL)
|
770 |
|
|
continue;
|
771 |
|
|
|
772 |
|
|
for (j = 0; j < loop->num_nodes; j++)
|
773 |
|
|
{
|
774 |
|
|
poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
|
775 |
|
|
|
776 |
|
|
if (pbb2 == NULL)
|
777 |
|
|
continue;
|
778 |
|
|
|
779 |
|
|
if (dependency_between_pbbs_p (pbb1, pbb2, level))
|
780 |
|
|
{
|
781 |
|
|
free (bbs);
|
782 |
|
|
return true;
|
783 |
|
|
}
|
784 |
|
|
}
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
free (bbs);
|
788 |
|
|
|
789 |
|
|
return false;
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
static edge
|
793 |
|
|
translate_clast (sese, loop_p, struct clast_stmt *, edge, htab_t,
|
794 |
|
|
VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
|
795 |
|
|
|
796 |
|
|
/* Translates a clast user statement STMT to gimple.
|
797 |
|
|
|
798 |
|
|
- REGION is the sese region we used to generate the scop.
|
799 |
|
|
- NEXT_E is the edge where new generated code should be attached.
|
800 |
|
|
- CONTEXT_LOOP is the loop in which the generated code will be placed
|
801 |
|
|
- RENAME_MAP contains a set of tuples of new names associated to
|
802 |
|
|
the original variables names.
|
803 |
|
|
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
|
804 |
|
|
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
|
805 |
|
|
the sese region. */
|
806 |
|
|
static edge
|
807 |
|
|
translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
|
808 |
|
|
htab_t rename_map, VEC (tree, heap) **newivs,
|
809 |
|
|
htab_t newivs_index, htab_t bb_pbb_mapping,
|
810 |
|
|
htab_t params_index)
|
811 |
|
|
{
|
812 |
|
|
gimple_bb_p gbb;
|
813 |
|
|
basic_block new_bb;
|
814 |
|
|
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
|
815 |
|
|
gbb = PBB_BLACK_BOX (pbb);
|
816 |
|
|
|
817 |
|
|
if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
|
818 |
|
|
return next_e;
|
819 |
|
|
|
820 |
|
|
build_iv_mapping (rename_map, region, *newivs, newivs_index, stmt,
|
821 |
|
|
params_index);
|
822 |
|
|
next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
|
823 |
|
|
next_e, rename_map);
|
824 |
|
|
new_bb = next_e->src;
|
825 |
|
|
mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
|
826 |
|
|
update_ssa (TODO_update_ssa);
|
827 |
|
|
|
828 |
|
|
return next_e;
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
/* Creates a new if region protecting the loop to be executed, if the execution
|
832 |
|
|
count is zero (lb > ub). */
|
833 |
|
|
static edge
|
834 |
|
|
graphite_create_new_loop_guard (sese region, edge entry_edge,
|
835 |
|
|
struct clast_for *stmt,
|
836 |
|
|
VEC (tree, heap) *newivs,
|
837 |
|
|
htab_t newivs_index, htab_t params_index)
|
838 |
|
|
{
|
839 |
|
|
tree cond_expr;
|
840 |
|
|
edge exit_edge;
|
841 |
|
|
tree type = gcc_type_for_iv_of_clast_loop (stmt);
|
842 |
|
|
tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
|
843 |
|
|
newivs_index, params_index);
|
844 |
|
|
tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
|
845 |
|
|
newivs_index, params_index);
|
846 |
|
|
|
847 |
|
|
/* XXX: Adding +1 and using LT_EXPR helps with loop latches that have a
|
848 |
|
|
loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
|
849 |
|
|
2^{32|64}, and the condition lb <= ub is true, even if we do not want this.
|
850 |
|
|
However lb < ub + 1 is false, as expected.
|
851 |
|
|
There might be a problem with cases where ub is 2^32. */
|
852 |
|
|
tree one;
|
853 |
|
|
Value gmp_one;
|
854 |
|
|
value_init (gmp_one);
|
855 |
|
|
value_set_si (gmp_one, 1);
|
856 |
|
|
one = gmp_cst_to_tree (type, gmp_one);
|
857 |
|
|
value_clear (gmp_one);
|
858 |
|
|
|
859 |
|
|
ub = fold_build2 (PLUS_EXPR, type, ub, one);
|
860 |
|
|
cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub);
|
861 |
|
|
|
862 |
|
|
exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
|
863 |
|
|
|
864 |
|
|
return exit_edge;
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
|
868 |
|
|
/* Create the loop for a clast for statement.
|
869 |
|
|
|
870 |
|
|
- REGION is the sese region we used to generate the scop.
|
871 |
|
|
- NEXT_E is the edge where new generated code should be attached.
|
872 |
|
|
- RENAME_MAP contains a set of tuples of new names associated to
|
873 |
|
|
the original variables names.
|
874 |
|
|
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
|
875 |
|
|
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
|
876 |
|
|
the sese region. */
|
877 |
|
|
static edge
|
878 |
|
|
translate_clast_for_loop (sese region, loop_p context_loop,
|
879 |
|
|
struct clast_for *stmt, edge next_e,
|
880 |
|
|
htab_t rename_map, VEC (tree, heap) **newivs,
|
881 |
|
|
htab_t newivs_index, htab_t bb_pbb_mapping,
|
882 |
|
|
int level, htab_t params_index)
|
883 |
|
|
{
|
884 |
|
|
struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
|
885 |
|
|
context_loop, newivs,
|
886 |
|
|
newivs_index, params_index);
|
887 |
|
|
edge last_e = single_exit (loop);
|
888 |
|
|
edge to_body = single_succ_edge (loop->header);
|
889 |
|
|
basic_block after = to_body->dest;
|
890 |
|
|
|
891 |
|
|
/* Create a basic block for loop close phi nodes. */
|
892 |
|
|
last_e = single_succ_edge (split_edge (last_e));
|
893 |
|
|
|
894 |
|
|
/* Translate the body of the loop. */
|
895 |
|
|
next_e = translate_clast (region, loop, stmt->body, to_body, rename_map,
|
896 |
|
|
newivs, newivs_index, bb_pbb_mapping, level + 1,
|
897 |
|
|
params_index);
|
898 |
|
|
redirect_edge_succ_nodup (next_e, after);
|
899 |
|
|
set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
|
900 |
|
|
|
901 |
|
|
/* Remove from rename_map all the tuples containing variables
|
902 |
|
|
defined in loop's body. */
|
903 |
|
|
insert_loop_close_phis (rename_map, loop);
|
904 |
|
|
|
905 |
|
|
if (flag_loop_parallelize_all
|
906 |
|
|
&& !dependency_in_loop_p (loop, bb_pbb_mapping,
|
907 |
|
|
get_scattering_level (level)))
|
908 |
|
|
loop->can_be_parallel = true;
|
909 |
|
|
|
910 |
|
|
return last_e;
|
911 |
|
|
}
|
912 |
|
|
|
913 |
|
|
/* Translates a clast for statement STMT to gimple. First a guard is created
|
914 |
|
|
protecting the loop, if it is executed zero times. In this guard we create
|
915 |
|
|
the real loop structure.
|
916 |
|
|
|
917 |
|
|
- REGION is the sese region we used to generate the scop.
|
918 |
|
|
- NEXT_E is the edge where new generated code should be attached.
|
919 |
|
|
- RENAME_MAP contains a set of tuples of new names associated to
|
920 |
|
|
the original variables names.
|
921 |
|
|
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
|
922 |
|
|
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
|
923 |
|
|
the sese region. */
|
924 |
|
|
static edge
|
925 |
|
|
translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
|
926 |
|
|
edge next_e, htab_t rename_map, VEC (tree, heap) **newivs,
|
927 |
|
|
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
|
928 |
|
|
htab_t params_index)
|
929 |
|
|
{
|
930 |
|
|
edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
|
931 |
|
|
newivs_index, params_index);
|
932 |
|
|
|
933 |
|
|
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
|
934 |
|
|
edge false_e = get_false_edge_from_guard_bb (next_e->dest);
|
935 |
|
|
edge exit_true_e = single_succ_edge (true_e->dest);
|
936 |
|
|
edge exit_false_e = single_succ_edge (false_e->dest);
|
937 |
|
|
|
938 |
|
|
htab_t before_guard = htab_create (10, rename_map_elt_info,
|
939 |
|
|
eq_rename_map_elts, free);
|
940 |
|
|
htab_traverse (rename_map, copy_renames, before_guard);
|
941 |
|
|
|
942 |
|
|
next_e = translate_clast_for_loop (region, context_loop, stmt, true_e,
|
943 |
|
|
rename_map, newivs,
|
944 |
|
|
newivs_index, bb_pbb_mapping, level,
|
945 |
|
|
params_index);
|
946 |
|
|
|
947 |
|
|
insert_guard_phis (last_e->src, exit_true_e, exit_false_e,
|
948 |
|
|
before_guard, rename_map);
|
949 |
|
|
|
950 |
|
|
htab_delete (before_guard);
|
951 |
|
|
|
952 |
|
|
return last_e;
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
/* Translates a clast guard statement STMT to gimple.
|
956 |
|
|
|
957 |
|
|
- REGION is the sese region we used to generate the scop.
|
958 |
|
|
- NEXT_E is the edge where new generated code should be attached.
|
959 |
|
|
- CONTEXT_LOOP is the loop in which the generated code will be placed
|
960 |
|
|
- RENAME_MAP contains a set of tuples of new names associated to
|
961 |
|
|
the original variables names.
|
962 |
|
|
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
|
963 |
|
|
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
|
964 |
|
|
the sese region. */
|
965 |
|
|
static edge
|
966 |
|
|
translate_clast_guard (sese region, loop_p context_loop,
|
967 |
|
|
struct clast_guard *stmt, edge next_e,
|
968 |
|
|
htab_t rename_map, VEC (tree, heap) **newivs,
|
969 |
|
|
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
|
970 |
|
|
htab_t params_index)
|
971 |
|
|
{
|
972 |
|
|
edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
|
973 |
|
|
newivs_index, params_index);
|
974 |
|
|
|
975 |
|
|
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
|
976 |
|
|
edge false_e = get_false_edge_from_guard_bb (next_e->dest);
|
977 |
|
|
edge exit_true_e = single_succ_edge (true_e->dest);
|
978 |
|
|
edge exit_false_e = single_succ_edge (false_e->dest);
|
979 |
|
|
|
980 |
|
|
htab_t before_guard = htab_create (10, rename_map_elt_info,
|
981 |
|
|
eq_rename_map_elts, free);
|
982 |
|
|
htab_traverse (rename_map, copy_renames, before_guard);
|
983 |
|
|
|
984 |
|
|
next_e = translate_clast (region, context_loop, stmt->then, true_e,
|
985 |
|
|
rename_map, newivs, newivs_index, bb_pbb_mapping,
|
986 |
|
|
level, params_index);
|
987 |
|
|
|
988 |
|
|
insert_guard_phis (last_e->src, exit_true_e, exit_false_e,
|
989 |
|
|
before_guard, rename_map);
|
990 |
|
|
|
991 |
|
|
htab_delete (before_guard);
|
992 |
|
|
|
993 |
|
|
return last_e;
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
/* Translates a CLAST statement STMT to GCC representation in the
|
997 |
|
|
context of a SESE.
|
998 |
|
|
|
999 |
|
|
- NEXT_E is the edge where new generated code should be attached.
|
1000 |
|
|
- CONTEXT_LOOP is the loop in which the generated code will be placed
|
1001 |
|
|
- RENAME_MAP contains a set of tuples of new names associated to
|
1002 |
|
|
the original variables names.
|
1003 |
|
|
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
|
1004 |
|
|
static edge
|
1005 |
|
|
translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
|
1006 |
|
|
edge next_e, htab_t rename_map, VEC (tree, heap) **newivs,
|
1007 |
|
|
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
|
1008 |
|
|
htab_t params_index)
|
1009 |
|
|
{
|
1010 |
|
|
if (!stmt)
|
1011 |
|
|
return next_e;
|
1012 |
|
|
|
1013 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_root))
|
1014 |
|
|
; /* Do nothing. */
|
1015 |
|
|
|
1016 |
|
|
else if (CLAST_STMT_IS_A (stmt, stmt_user))
|
1017 |
|
|
next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
|
1018 |
|
|
next_e, rename_map, newivs, newivs_index,
|
1019 |
|
|
bb_pbb_mapping, params_index);
|
1020 |
|
|
|
1021 |
|
|
else if (CLAST_STMT_IS_A (stmt, stmt_for))
|
1022 |
|
|
next_e = translate_clast_for (region, context_loop,
|
1023 |
|
|
(struct clast_for *) stmt, next_e,
|
1024 |
|
|
rename_map, newivs, newivs_index,
|
1025 |
|
|
bb_pbb_mapping, level, params_index);
|
1026 |
|
|
|
1027 |
|
|
else if (CLAST_STMT_IS_A (stmt, stmt_guard))
|
1028 |
|
|
next_e = translate_clast_guard (region, context_loop,
|
1029 |
|
|
(struct clast_guard *) stmt, next_e,
|
1030 |
|
|
rename_map, newivs, newivs_index,
|
1031 |
|
|
bb_pbb_mapping, level, params_index);
|
1032 |
|
|
|
1033 |
|
|
else if (CLAST_STMT_IS_A (stmt, stmt_block))
|
1034 |
|
|
next_e = translate_clast (region, context_loop,
|
1035 |
|
|
((struct clast_block *) stmt)->body,
|
1036 |
|
|
next_e, rename_map, newivs, newivs_index,
|
1037 |
|
|
bb_pbb_mapping, level, params_index);
|
1038 |
|
|
else
|
1039 |
|
|
gcc_unreachable();
|
1040 |
|
|
|
1041 |
|
|
recompute_all_dominators ();
|
1042 |
|
|
graphite_verify ();
|
1043 |
|
|
|
1044 |
|
|
return translate_clast (region, context_loop, stmt->next, next_e,
|
1045 |
|
|
rename_map, newivs, newivs_index,
|
1046 |
|
|
bb_pbb_mapping, level, params_index);
|
1047 |
|
|
}
|
1048 |
|
|
|
1049 |
|
|
/* Returns the first cloog name used in EXPR. */
|
1050 |
|
|
|
1051 |
|
|
static const char *
|
1052 |
|
|
find_cloog_iv_in_expr (struct clast_expr *expr)
|
1053 |
|
|
{
|
1054 |
|
|
struct clast_term *term = (struct clast_term *) expr;
|
1055 |
|
|
struct clast_reduction *red;
|
1056 |
|
|
int i;
|
1057 |
|
|
|
1058 |
|
|
if (expr->type == expr_term)
|
1059 |
|
|
return term->var;
|
1060 |
|
|
|
1061 |
|
|
if (expr->type != expr_red)
|
1062 |
|
|
return NULL;
|
1063 |
|
|
|
1064 |
|
|
red = (struct clast_reduction *) expr;
|
1065 |
|
|
for (i = 0; i < red->n; i++)
|
1066 |
|
|
{
|
1067 |
|
|
const char *res = find_cloog_iv_in_expr (red->elts[i]);
|
1068 |
|
|
|
1069 |
|
|
if (res)
|
1070 |
|
|
return res;
|
1071 |
|
|
}
|
1072 |
|
|
|
1073 |
|
|
return NULL;
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
/* Build for USER_STMT a map between the CLAST induction variables and
|
1077 |
|
|
the corresponding GCC old induction variables. This information is
|
1078 |
|
|
stored on each GRAPHITE_BB. */
|
1079 |
|
|
|
1080 |
|
|
static void
|
1081 |
|
|
compute_cloog_iv_types_1 (poly_bb_p pbb, struct clast_user_stmt *user_stmt)
|
1082 |
|
|
{
|
1083 |
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
1084 |
|
|
struct clast_stmt *t;
|
1085 |
|
|
int index = 0;
|
1086 |
|
|
|
1087 |
|
|
for (t = user_stmt->substitutions; t; t = t->next, index++)
|
1088 |
|
|
{
|
1089 |
|
|
PTR *slot;
|
1090 |
|
|
struct ivtype_map_elt_s tmp;
|
1091 |
|
|
struct clast_expr *expr = (struct clast_expr *)
|
1092 |
|
|
((struct clast_assignment *)t)->RHS;
|
1093 |
|
|
|
1094 |
|
|
/* Create an entry (clast_var, type). */
|
1095 |
|
|
tmp.cloog_iv = find_cloog_iv_in_expr (expr);
|
1096 |
|
|
if (!tmp.cloog_iv)
|
1097 |
|
|
continue;
|
1098 |
|
|
|
1099 |
|
|
slot = htab_find_slot (GBB_CLOOG_IV_TYPES (gbb), &tmp, INSERT);
|
1100 |
|
|
|
1101 |
|
|
if (slot && !*slot)
|
1102 |
|
|
{
|
1103 |
|
|
tree oldiv = pbb_to_depth_to_oldiv (pbb, index);
|
1104 |
|
|
tree type = TREE_TYPE (oldiv);
|
1105 |
|
|
*slot = new_ivtype_map_elt (tmp.cloog_iv, type);
|
1106 |
|
|
}
|
1107 |
|
|
}
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
/* Walk the CLAST tree starting from STMT and build for each
|
1111 |
|
|
clast_user_stmt a map between the CLAST induction variables and the
|
1112 |
|
|
corresponding GCC old induction variables. This information is
|
1113 |
|
|
stored on each GRAPHITE_BB. */
|
1114 |
|
|
|
1115 |
|
|
static void
|
1116 |
|
|
compute_cloog_iv_types (struct clast_stmt *stmt)
|
1117 |
|
|
{
|
1118 |
|
|
if (!stmt)
|
1119 |
|
|
return;
|
1120 |
|
|
|
1121 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_root))
|
1122 |
|
|
goto next;
|
1123 |
|
|
|
1124 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_user))
|
1125 |
|
|
{
|
1126 |
|
|
CloogStatement *cs = ((struct clast_user_stmt *) stmt)->statement;
|
1127 |
|
|
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
|
1128 |
|
|
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
|
1129 |
|
|
|
1130 |
|
|
if (!GBB_CLOOG_IV_TYPES (gbb))
|
1131 |
|
|
GBB_CLOOG_IV_TYPES (gbb) = htab_create (10, ivtype_map_elt_info,
|
1132 |
|
|
eq_ivtype_map_elts, free);
|
1133 |
|
|
|
1134 |
|
|
compute_cloog_iv_types_1 (pbb, (struct clast_user_stmt *) stmt);
|
1135 |
|
|
goto next;
|
1136 |
|
|
}
|
1137 |
|
|
|
1138 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_for))
|
1139 |
|
|
{
|
1140 |
|
|
struct clast_stmt *s = ((struct clast_for *) stmt)->body;
|
1141 |
|
|
compute_cloog_iv_types (s);
|
1142 |
|
|
goto next;
|
1143 |
|
|
}
|
1144 |
|
|
|
1145 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_guard))
|
1146 |
|
|
{
|
1147 |
|
|
struct clast_stmt *s = ((struct clast_guard *) stmt)->then;
|
1148 |
|
|
compute_cloog_iv_types (s);
|
1149 |
|
|
goto next;
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
if (CLAST_STMT_IS_A (stmt, stmt_block))
|
1153 |
|
|
{
|
1154 |
|
|
struct clast_stmt *s = ((struct clast_block *) stmt)->body;
|
1155 |
|
|
compute_cloog_iv_types (s);
|
1156 |
|
|
goto next;
|
1157 |
|
|
}
|
1158 |
|
|
|
1159 |
|
|
gcc_unreachable ();
|
1160 |
|
|
|
1161 |
|
|
next:
|
1162 |
|
|
compute_cloog_iv_types (stmt->next);
|
1163 |
|
|
}
|
1164 |
|
|
|
1165 |
|
|
/* Free the SCATTERING domain list. */
|
1166 |
|
|
|
1167 |
|
|
static void
|
1168 |
|
|
free_scattering (CloogDomainList *scattering)
|
1169 |
|
|
{
|
1170 |
|
|
while (scattering)
|
1171 |
|
|
{
|
1172 |
|
|
CloogDomain *dom = cloog_domain (scattering);
|
1173 |
|
|
CloogDomainList *next = cloog_next_domain (scattering);
|
1174 |
|
|
|
1175 |
|
|
cloog_domain_free (dom);
|
1176 |
|
|
free (scattering);
|
1177 |
|
|
scattering = next;
|
1178 |
|
|
}
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
/* Initialize Cloog's parameter names from the names used in GIMPLE.
|
1182 |
|
|
Initialize Cloog's iterator names, using 'graphite_iterator_%d'
|
1183 |
|
|
from 0 to scop_nb_loops (scop). */
|
1184 |
|
|
|
1185 |
|
|
static void
|
1186 |
|
|
initialize_cloog_names (scop_p scop, CloogProgram *prog)
|
1187 |
|
|
{
|
1188 |
|
|
sese region = SCOP_REGION (scop);
|
1189 |
|
|
int i;
|
1190 |
|
|
int nb_iterators = scop_max_loop_depth (scop);
|
1191 |
|
|
int nb_scattering = cloog_program_nb_scattdims (prog);
|
1192 |
|
|
int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
|
1193 |
|
|
char **iterators = XNEWVEC (char *, nb_iterators * 2);
|
1194 |
|
|
char **scattering = XNEWVEC (char *, nb_scattering);
|
1195 |
|
|
char **parameters= XNEWVEC (char *, nb_parameters);
|
1196 |
|
|
|
1197 |
|
|
cloog_program_set_names (prog, cloog_names_malloc ());
|
1198 |
|
|
|
1199 |
|
|
for (i = 0; i < nb_parameters; i++)
|
1200 |
|
|
{
|
1201 |
|
|
tree param = VEC_index (tree, SESE_PARAMS(region), i);
|
1202 |
|
|
const char *name = get_name (param);
|
1203 |
|
|
int len;
|
1204 |
|
|
|
1205 |
|
|
if (!name)
|
1206 |
|
|
name = "T";
|
1207 |
|
|
|
1208 |
|
|
len = strlen (name);
|
1209 |
|
|
len += 17;
|
1210 |
|
|
parameters[i] = XNEWVEC (char, len + 1);
|
1211 |
|
|
snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
|
1212 |
|
|
}
|
1213 |
|
|
|
1214 |
|
|
cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
|
1215 |
|
|
cloog_names_set_parameters (cloog_program_names (prog), parameters);
|
1216 |
|
|
|
1217 |
|
|
for (i = 0; i < nb_iterators; i++)
|
1218 |
|
|
{
|
1219 |
|
|
int len = 4 + 16;
|
1220 |
|
|
iterators[i] = XNEWVEC (char, len);
|
1221 |
|
|
snprintf (iterators[i], len, "git_%d", i);
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
cloog_names_set_nb_iterators (cloog_program_names (prog),
|
1225 |
|
|
nb_iterators);
|
1226 |
|
|
cloog_names_set_iterators (cloog_program_names (prog),
|
1227 |
|
|
iterators);
|
1228 |
|
|
|
1229 |
|
|
for (i = 0; i < nb_scattering; i++)
|
1230 |
|
|
{
|
1231 |
|
|
int len = 5 + 16;
|
1232 |
|
|
scattering[i] = XNEWVEC (char, len);
|
1233 |
|
|
snprintf (scattering[i], len, "scat_%d", i);
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
cloog_names_set_nb_scattering (cloog_program_names (prog),
|
1237 |
|
|
nb_scattering);
|
1238 |
|
|
cloog_names_set_scattering (cloog_program_names (prog),
|
1239 |
|
|
scattering);
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
/* Build cloog program for SCoP. */
|
1243 |
|
|
|
1244 |
|
|
static void
|
1245 |
|
|
build_cloog_prog (scop_p scop, CloogProgram *prog)
|
1246 |
|
|
{
|
1247 |
|
|
int i;
|
1248 |
|
|
int max_nb_loops = scop_max_loop_depth (scop);
|
1249 |
|
|
poly_bb_p pbb;
|
1250 |
|
|
CloogLoop *loop_list = NULL;
|
1251 |
|
|
CloogBlockList *block_list = NULL;
|
1252 |
|
|
CloogDomainList *scattering = NULL;
|
1253 |
|
|
int nbs = 2 * max_nb_loops + 1;
|
1254 |
|
|
int *scaldims;
|
1255 |
|
|
|
1256 |
|
|
cloog_program_set_context
|
1257 |
|
|
(prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop)));
|
1258 |
|
|
nbs = unify_scattering_dimensions (scop);
|
1259 |
|
|
scaldims = (int *) xmalloc (nbs * (sizeof (int)));
|
1260 |
|
|
cloog_program_set_nb_scattdims (prog, nbs);
|
1261 |
|
|
initialize_cloog_names (scop, prog);
|
1262 |
|
|
|
1263 |
|
|
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
|
1264 |
|
|
{
|
1265 |
|
|
CloogStatement *stmt;
|
1266 |
|
|
CloogBlock *block;
|
1267 |
|
|
|
1268 |
|
|
/* Dead code elimination: when the domain of a PBB is empty,
|
1269 |
|
|
don't generate code for the PBB. */
|
1270 |
|
|
if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
|
1271 |
|
|
continue;
|
1272 |
|
|
|
1273 |
|
|
/* Build the new statement and its block. */
|
1274 |
|
|
stmt = cloog_statement_alloc (pbb_index (pbb));
|
1275 |
|
|
block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
|
1276 |
|
|
cloog_statement_set_usr (stmt, pbb);
|
1277 |
|
|
|
1278 |
|
|
/* Build loop list. */
|
1279 |
|
|
{
|
1280 |
|
|
CloogLoop *new_loop_list = cloog_loop_malloc ();
|
1281 |
|
|
cloog_loop_set_next (new_loop_list, loop_list);
|
1282 |
|
|
cloog_loop_set_domain
|
1283 |
|
|
(new_loop_list,
|
1284 |
|
|
new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb)));
|
1285 |
|
|
cloog_loop_set_block (new_loop_list, block);
|
1286 |
|
|
loop_list = new_loop_list;
|
1287 |
|
|
}
|
1288 |
|
|
|
1289 |
|
|
/* Build block list. */
|
1290 |
|
|
{
|
1291 |
|
|
CloogBlockList *new_block_list = cloog_block_list_malloc ();
|
1292 |
|
|
|
1293 |
|
|
cloog_block_list_set_next (new_block_list, block_list);
|
1294 |
|
|
cloog_block_list_set_block (new_block_list, block);
|
1295 |
|
|
block_list = new_block_list;
|
1296 |
|
|
}
|
1297 |
|
|
|
1298 |
|
|
/* Build scattering list. */
|
1299 |
|
|
{
|
1300 |
|
|
/* XXX: Replace with cloog_domain_list_alloc(), when available. */
|
1301 |
|
|
CloogDomainList *new_scattering
|
1302 |
|
|
= (CloogDomainList *) xmalloc (sizeof (CloogDomainList));
|
1303 |
|
|
ppl_Polyhedron_t scat;
|
1304 |
|
|
CloogDomain *dom;
|
1305 |
|
|
|
1306 |
|
|
scat = PBB_TRANSFORMED_SCATTERING (pbb);
|
1307 |
|
|
dom = new_Cloog_Domain_from_ppl_Polyhedron (scat);
|
1308 |
|
|
|
1309 |
|
|
cloog_set_next_domain (new_scattering, scattering);
|
1310 |
|
|
cloog_set_domain (new_scattering, dom);
|
1311 |
|
|
scattering = new_scattering;
|
1312 |
|
|
}
|
1313 |
|
|
}
|
1314 |
|
|
|
1315 |
|
|
cloog_program_set_loop (prog, loop_list);
|
1316 |
|
|
cloog_program_set_blocklist (prog, block_list);
|
1317 |
|
|
|
1318 |
|
|
for (i = 0; i < nbs; i++)
|
1319 |
|
|
scaldims[i] = 0 ;
|
1320 |
|
|
|
1321 |
|
|
cloog_program_set_scaldims (prog, scaldims);
|
1322 |
|
|
|
1323 |
|
|
/* Extract scalar dimensions to simplify the code generation problem. */
|
1324 |
|
|
cloog_program_extract_scalars (prog, scattering);
|
1325 |
|
|
|
1326 |
|
|
/* Apply scattering. */
|
1327 |
|
|
cloog_program_scatter (prog, scattering);
|
1328 |
|
|
free_scattering (scattering);
|
1329 |
|
|
|
1330 |
|
|
/* Iterators corresponding to scalar dimensions have to be extracted. */
|
1331 |
|
|
cloog_names_scalarize (cloog_program_names (prog), nbs,
|
1332 |
|
|
cloog_program_scaldims (prog));
|
1333 |
|
|
|
1334 |
|
|
/* Free blocklist. */
|
1335 |
|
|
{
|
1336 |
|
|
CloogBlockList *next = cloog_program_blocklist (prog);
|
1337 |
|
|
|
1338 |
|
|
while (next)
|
1339 |
|
|
{
|
1340 |
|
|
CloogBlockList *toDelete = next;
|
1341 |
|
|
next = cloog_block_list_next (next);
|
1342 |
|
|
cloog_block_list_set_next (toDelete, NULL);
|
1343 |
|
|
cloog_block_list_set_block (toDelete, NULL);
|
1344 |
|
|
cloog_block_list_free (toDelete);
|
1345 |
|
|
}
|
1346 |
|
|
cloog_program_set_blocklist (prog, NULL);
|
1347 |
|
|
}
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
/* Return the options that will be used in GLOOG. */
|
1351 |
|
|
|
1352 |
|
|
static CloogOptions *
|
1353 |
|
|
set_cloog_options (void)
|
1354 |
|
|
{
|
1355 |
|
|
CloogOptions *options = cloog_options_malloc ();
|
1356 |
|
|
|
1357 |
|
|
/* Change cloog output language to C. If we do use FORTRAN instead, cloog
|
1358 |
|
|
will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
|
1359 |
|
|
we pass an incomplete program to cloog. */
|
1360 |
|
|
options->language = LANGUAGE_C;
|
1361 |
|
|
|
1362 |
|
|
/* Enable complex equality spreading: removes dummy statements
|
1363 |
|
|
(assignments) in the generated code which repeats the
|
1364 |
|
|
substitution equations for statements. This is useless for
|
1365 |
|
|
GLooG. */
|
1366 |
|
|
options->esp = 1;
|
1367 |
|
|
|
1368 |
|
|
/* Enable C pretty-printing mode: normalizes the substitution
|
1369 |
|
|
equations for statements. */
|
1370 |
|
|
options->cpp = 1;
|
1371 |
|
|
|
1372 |
|
|
/* Allow cloog to build strides with a stride width different to one.
|
1373 |
|
|
This example has stride = 4:
|
1374 |
|
|
|
1375 |
|
|
for (i = 0; i < 20; i += 4)
|
1376 |
|
|
A */
|
1377 |
|
|
options->strides = 1;
|
1378 |
|
|
|
1379 |
|
|
/* Disable optimizations and make cloog generate source code closer to the
|
1380 |
|
|
input. This is useful for debugging, but later we want the optimized
|
1381 |
|
|
code.
|
1382 |
|
|
|
1383 |
|
|
XXX: We can not disable optimizations, as loop blocking is not working
|
1384 |
|
|
without them. */
|
1385 |
|
|
if (0)
|
1386 |
|
|
{
|
1387 |
|
|
options->f = -1;
|
1388 |
|
|
options->l = INT_MAX;
|
1389 |
|
|
}
|
1390 |
|
|
|
1391 |
|
|
return options;
|
1392 |
|
|
}
|
1393 |
|
|
|
1394 |
|
|
/* Prints STMT to STDERR. */
|
1395 |
|
|
|
1396 |
|
|
void
|
1397 |
|
|
print_clast_stmt (FILE *file, struct clast_stmt *stmt)
|
1398 |
|
|
{
|
1399 |
|
|
CloogOptions *options = set_cloog_options ();
|
1400 |
|
|
|
1401 |
|
|
pprint (file, stmt, 0, options);
|
1402 |
|
|
cloog_options_free (options);
|
1403 |
|
|
}
|
1404 |
|
|
|
1405 |
|
|
/* Prints STMT to STDERR. */
|
1406 |
|
|
|
1407 |
|
|
void
|
1408 |
|
|
debug_clast_stmt (struct clast_stmt *stmt)
|
1409 |
|
|
{
|
1410 |
|
|
print_clast_stmt (stderr, stmt);
|
1411 |
|
|
}
|
1412 |
|
|
|
1413 |
|
|
/* Translate SCOP to a CLooG program and clast. These two
|
1414 |
|
|
representations should be freed together: a clast cannot be used
|
1415 |
|
|
without a program. */
|
1416 |
|
|
|
1417 |
|
|
cloog_prog_clast
|
1418 |
|
|
scop_to_clast (scop_p scop)
|
1419 |
|
|
{
|
1420 |
|
|
CloogOptions *options = set_cloog_options ();
|
1421 |
|
|
cloog_prog_clast pc;
|
1422 |
|
|
|
1423 |
|
|
/* Connect new cloog prog generation to graphite. */
|
1424 |
|
|
pc.prog = cloog_program_malloc ();
|
1425 |
|
|
build_cloog_prog (scop, pc.prog);
|
1426 |
|
|
pc.prog = cloog_program_generate (pc.prog, options);
|
1427 |
|
|
pc.stmt = cloog_clast_create (pc.prog, options);
|
1428 |
|
|
|
1429 |
|
|
cloog_options_free (options);
|
1430 |
|
|
return pc;
|
1431 |
|
|
}
|
1432 |
|
|
|
1433 |
|
|
/* Prints to FILE the code generated by CLooG for SCOP. */
|
1434 |
|
|
|
1435 |
|
|
void
|
1436 |
|
|
print_generated_program (FILE *file, scop_p scop)
|
1437 |
|
|
{
|
1438 |
|
|
CloogOptions *options = set_cloog_options ();
|
1439 |
|
|
cloog_prog_clast pc = scop_to_clast (scop);
|
1440 |
|
|
|
1441 |
|
|
fprintf (file, " (prog: \n");
|
1442 |
|
|
cloog_program_print (file, pc.prog);
|
1443 |
|
|
fprintf (file, " )\n");
|
1444 |
|
|
|
1445 |
|
|
fprintf (file, " (clast: \n");
|
1446 |
|
|
pprint (file, pc.stmt, 0, options);
|
1447 |
|
|
fprintf (file, " )\n");
|
1448 |
|
|
|
1449 |
|
|
cloog_options_free (options);
|
1450 |
|
|
cloog_clast_free (pc.stmt);
|
1451 |
|
|
cloog_program_free (pc.prog);
|
1452 |
|
|
}
|
1453 |
|
|
|
1454 |
|
|
/* Prints to STDERR the code generated by CLooG for SCOP. */
|
1455 |
|
|
|
1456 |
|
|
void
|
1457 |
|
|
debug_generated_program (scop_p scop)
|
1458 |
|
|
{
|
1459 |
|
|
print_generated_program (stderr, scop);
|
1460 |
|
|
}
|
1461 |
|
|
|
1462 |
|
|
/* Add CLooG names to parameter index. The index is used to translate
|
1463 |
|
|
back from CLooG names to GCC trees. */
|
1464 |
|
|
|
1465 |
|
|
static void
|
1466 |
|
|
create_params_index (htab_t index_table, CloogProgram *prog) {
|
1467 |
|
|
CloogNames* names = cloog_program_names (prog);
|
1468 |
|
|
int nb_parameters = cloog_names_nb_parameters (names);
|
1469 |
|
|
char **parameters = cloog_names_parameters (names);
|
1470 |
|
|
int i;
|
1471 |
|
|
|
1472 |
|
|
for (i = 0; i < nb_parameters; i++)
|
1473 |
|
|
save_clast_name_index (index_table, parameters[i], i);
|
1474 |
|
|
}
|
1475 |
|
|
|
1476 |
|
|
/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
|
1477 |
|
|
the given SCOP. Return true if code generation succeeded.
|
1478 |
|
|
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
|
1479 |
|
|
*/
|
1480 |
|
|
|
1481 |
|
|
bool
|
1482 |
|
|
gloog (scop_p scop, VEC (scop_p, heap) *scops, htab_t bb_pbb_mapping)
|
1483 |
|
|
{
|
1484 |
|
|
VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
|
1485 |
|
|
loop_p context_loop;
|
1486 |
|
|
sese region = SCOP_REGION (scop);
|
1487 |
|
|
ifsese if_region = NULL;
|
1488 |
|
|
htab_t rename_map, newivs_index, params_index;
|
1489 |
|
|
cloog_prog_clast pc;
|
1490 |
|
|
int i;
|
1491 |
|
|
|
1492 |
|
|
timevar_push (TV_GRAPHITE_CODE_GEN);
|
1493 |
|
|
gloog_error = false;
|
1494 |
|
|
|
1495 |
|
|
pc = scop_to_clast (scop);
|
1496 |
|
|
|
1497 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1498 |
|
|
{
|
1499 |
|
|
fprintf (dump_file, "\nCLAST generated by CLooG: \n");
|
1500 |
|
|
print_clast_stmt (dump_file, pc.stmt);
|
1501 |
|
|
fprintf (dump_file, "\n");
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
recompute_all_dominators ();
|
1505 |
|
|
graphite_verify ();
|
1506 |
|
|
|
1507 |
|
|
if_region = move_sese_in_condition (region);
|
1508 |
|
|
sese_insert_phis_for_liveouts (region,
|
1509 |
|
|
if_region->region->exit->src,
|
1510 |
|
|
if_region->false_region->exit,
|
1511 |
|
|
if_region->true_region->exit);
|
1512 |
|
|
recompute_all_dominators ();
|
1513 |
|
|
graphite_verify ();
|
1514 |
|
|
|
1515 |
|
|
context_loop = SESE_ENTRY (region)->src->loop_father;
|
1516 |
|
|
compute_cloog_iv_types (pc.stmt);
|
1517 |
|
|
rename_map = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free);
|
1518 |
|
|
newivs_index = htab_create (10, clast_name_index_elt_info,
|
1519 |
|
|
eq_clast_name_indexes, free);
|
1520 |
|
|
params_index = htab_create (10, clast_name_index_elt_info,
|
1521 |
|
|
eq_clast_name_indexes, free);
|
1522 |
|
|
|
1523 |
|
|
create_params_index (params_index, pc.prog);
|
1524 |
|
|
|
1525 |
|
|
translate_clast (region, context_loop, pc.stmt,
|
1526 |
|
|
if_region->true_region->entry,
|
1527 |
|
|
rename_map, &newivs, newivs_index,
|
1528 |
|
|
bb_pbb_mapping, 1, params_index);
|
1529 |
|
|
graphite_verify ();
|
1530 |
|
|
sese_adjust_liveout_phis (region, rename_map,
|
1531 |
|
|
if_region->region->exit->src,
|
1532 |
|
|
if_region->false_region->exit,
|
1533 |
|
|
if_region->true_region->exit);
|
1534 |
|
|
scev_reset_htab ();
|
1535 |
|
|
rename_nb_iterations (rename_map);
|
1536 |
|
|
|
1537 |
|
|
for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
|
1538 |
|
|
rename_sese_parameters (rename_map, SCOP_REGION (scop));
|
1539 |
|
|
|
1540 |
|
|
recompute_all_dominators ();
|
1541 |
|
|
graphite_verify ();
|
1542 |
|
|
|
1543 |
|
|
if (gloog_error)
|
1544 |
|
|
set_ifsese_condition (if_region, integer_zero_node);
|
1545 |
|
|
|
1546 |
|
|
free (if_region->true_region);
|
1547 |
|
|
free (if_region->region);
|
1548 |
|
|
free (if_region);
|
1549 |
|
|
|
1550 |
|
|
htab_delete (rename_map);
|
1551 |
|
|
htab_delete (newivs_index);
|
1552 |
|
|
htab_delete (params_index);
|
1553 |
|
|
VEC_free (tree, heap, newivs);
|
1554 |
|
|
cloog_clast_free (pc.stmt);
|
1555 |
|
|
cloog_program_free (pc.prog);
|
1556 |
|
|
timevar_pop (TV_GRAPHITE_CODE_GEN);
|
1557 |
|
|
|
1558 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1559 |
|
|
{
|
1560 |
|
|
loop_p loop;
|
1561 |
|
|
loop_iterator li;
|
1562 |
|
|
int num_no_dependency = 0;
|
1563 |
|
|
|
1564 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
1565 |
|
|
if (loop->can_be_parallel)
|
1566 |
|
|
num_no_dependency++;
|
1567 |
|
|
|
1568 |
|
|
fprintf (dump_file, "\n%d loops carried no dependency.\n",
|
1569 |
|
|
num_no_dependency);
|
1570 |
|
|
}
|
1571 |
|
|
|
1572 |
|
|
return !gloog_error;
|
1573 |
|
|
}
|
1574 |
|
|
|
1575 |
|
|
#endif
|