1 |
280 |
jeremybenn |
/* Data dependence analysis for Graphite.
|
2 |
|
|
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
|
4 |
|
|
Konrad Trifunovic <konrad.trifunovic@inria.fr>.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "ggc.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "rtl.h"
|
29 |
|
|
#include "basic-block.h"
|
30 |
|
|
#include "diagnostic.h"
|
31 |
|
|
#include "tree-flow.h"
|
32 |
|
|
#include "toplev.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "timevar.h"
|
35 |
|
|
#include "cfgloop.h"
|
36 |
|
|
#include "tree-chrec.h"
|
37 |
|
|
#include "tree-data-ref.h"
|
38 |
|
|
#include "tree-scalar-evolution.h"
|
39 |
|
|
#include "tree-pass.h"
|
40 |
|
|
#include "domwalk.h"
|
41 |
|
|
#include "pointer-set.h"
|
42 |
|
|
#include "gimple.h"
|
43 |
|
|
|
44 |
|
|
#ifdef HAVE_cloog
|
45 |
|
|
#include "cloog/cloog.h"
|
46 |
|
|
#include "ppl_c.h"
|
47 |
|
|
#include "sese.h"
|
48 |
|
|
#include "graphite-ppl.h"
|
49 |
|
|
#include "graphite.h"
|
50 |
|
|
#include "graphite-poly.h"
|
51 |
|
|
#include "graphite-dependences.h"
|
52 |
|
|
|
53 |
|
|
/* Returns a new polyhedral Data Dependence Relation (DDR). SOURCE is
|
54 |
|
|
the source data reference, SINK is the sink data reference. When
|
55 |
|
|
the Data Dependence Polyhedron DDP is not NULL or not empty, SOURCE
|
56 |
|
|
and SINK are in dependence as described by DDP. */
|
57 |
|
|
|
58 |
|
|
static poly_ddr_p
|
59 |
|
|
new_poly_ddr (poly_dr_p source, poly_dr_p sink,
|
60 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t ddp,
|
61 |
|
|
bool original_scattering_p)
|
62 |
|
|
{
|
63 |
|
|
poly_ddr_p pddr = XNEW (struct poly_ddr);
|
64 |
|
|
|
65 |
|
|
PDDR_SOURCE (pddr) = source;
|
66 |
|
|
PDDR_SINK (pddr) = sink;
|
67 |
|
|
PDDR_DDP (pddr) = ddp;
|
68 |
|
|
PDDR_ORIGINAL_SCATTERING_P (pddr) = original_scattering_p;
|
69 |
|
|
|
70 |
|
|
if (!ddp || ppl_Pointset_Powerset_C_Polyhedron_is_empty (ddp))
|
71 |
|
|
PDDR_KIND (pddr) = no_dependence;
|
72 |
|
|
else
|
73 |
|
|
PDDR_KIND (pddr) = has_dependence;
|
74 |
|
|
|
75 |
|
|
return pddr;
|
76 |
|
|
}
|
77 |
|
|
|
78 |
|
|
/* Free the poly_ddr_p P. */
|
79 |
|
|
|
80 |
|
|
void
|
81 |
|
|
free_poly_ddr (void *p)
|
82 |
|
|
{
|
83 |
|
|
poly_ddr_p pddr = (poly_ddr_p) p;
|
84 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (PDDR_DDP (pddr));
|
85 |
|
|
free (pddr);
|
86 |
|
|
}
|
87 |
|
|
|
88 |
|
|
/* Comparison function for poly_ddr hash table. */
|
89 |
|
|
|
90 |
|
|
int
|
91 |
|
|
eq_poly_ddr_p (const void *pddr1, const void *pddr2)
|
92 |
|
|
{
|
93 |
|
|
const struct poly_ddr *p1 = (const struct poly_ddr *) pddr1;
|
94 |
|
|
const struct poly_ddr *p2 = (const struct poly_ddr *) pddr2;
|
95 |
|
|
|
96 |
|
|
return (PDDR_SOURCE (p1) == PDDR_SOURCE (p2)
|
97 |
|
|
&& PDDR_SINK (p1) == PDDR_SINK (p2));
|
98 |
|
|
}
|
99 |
|
|
|
100 |
|
|
/* Hash function for poly_ddr hashtable. */
|
101 |
|
|
|
102 |
|
|
hashval_t
|
103 |
|
|
hash_poly_ddr_p (const void *pddr)
|
104 |
|
|
{
|
105 |
|
|
const struct poly_ddr *p = (const struct poly_ddr *) pddr;
|
106 |
|
|
|
107 |
|
|
return (hashval_t) ((long) PDDR_SOURCE (p) + (long) PDDR_SINK (p));
|
108 |
|
|
}
|
109 |
|
|
|
110 |
|
|
/* Returns true when PDDR has no dependence. */
|
111 |
|
|
|
112 |
|
|
static bool
|
113 |
|
|
pddr_is_empty (poly_ddr_p pddr)
|
114 |
|
|
{
|
115 |
|
|
if (!pddr)
|
116 |
|
|
return true;
|
117 |
|
|
|
118 |
|
|
gcc_assert (PDDR_KIND (pddr) != unknown_dependence);
|
119 |
|
|
|
120 |
|
|
return PDDR_KIND (pddr) == no_dependence ? true : false;
|
121 |
|
|
}
|
122 |
|
|
|
123 |
|
|
/* Prints to FILE the layout of the dependence polyhedron of PDDR:
|
124 |
|
|
|
125 |
|
|
T1|I1|T2|I2|S1|S2|G
|
126 |
|
|
|
127 |
|
|
with
|
128 |
|
|
| T1 and T2 the scattering dimensions for PDDR_SOURCE and PDDR_SINK
|
129 |
|
|
| I1 and I2 the iteration domains
|
130 |
|
|
| S1 and S2 the subscripts
|
131 |
|
|
| G the global parameters. */
|
132 |
|
|
|
133 |
|
|
static void
|
134 |
|
|
print_dependence_polyhedron_layout (FILE *file, poly_ddr_p pddr)
|
135 |
|
|
{
|
136 |
|
|
poly_dr_p pdr1 = PDDR_SOURCE (pddr);
|
137 |
|
|
poly_dr_p pdr2 = PDDR_SINK (pddr);
|
138 |
|
|
poly_bb_p pbb1 = PDR_PBB (pdr1);
|
139 |
|
|
poly_bb_p pbb2 = PDR_PBB (pdr2);
|
140 |
|
|
|
141 |
|
|
graphite_dim_t i;
|
142 |
|
|
graphite_dim_t tdim1 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
|
143 |
|
|
pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
|
144 |
|
|
graphite_dim_t tdim2 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
|
145 |
|
|
pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
|
146 |
|
|
graphite_dim_t idim1 = pbb_dim_iter_domain (pbb1);
|
147 |
|
|
graphite_dim_t idim2 = pbb_dim_iter_domain (pbb2);
|
148 |
|
|
graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
|
149 |
|
|
graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
|
150 |
|
|
graphite_dim_t gdim = scop_nb_params (PBB_SCOP (pbb1));
|
151 |
|
|
|
152 |
|
|
fprintf (file, "# eq");
|
153 |
|
|
|
154 |
|
|
for (i = 0; i < tdim1; i++)
|
155 |
|
|
fprintf (file, " t1_%d", (int) i);
|
156 |
|
|
for (i = 0; i < idim1; i++)
|
157 |
|
|
fprintf (file, " i1_%d", (int) i);
|
158 |
|
|
for (i = 0; i < tdim2; i++)
|
159 |
|
|
fprintf (file, " t2_%d", (int) i);
|
160 |
|
|
for (i = 0; i < idim2; i++)
|
161 |
|
|
fprintf (file, " i2_%d", (int) i);
|
162 |
|
|
for (i = 0; i < sdim1; i++)
|
163 |
|
|
fprintf (file, " s1_%d", (int) i);
|
164 |
|
|
for (i = 0; i < sdim2; i++)
|
165 |
|
|
fprintf (file, " s2_%d", (int) i);
|
166 |
|
|
for (i = 0; i < gdim; i++)
|
167 |
|
|
fprintf (file, " g_%d", (int) i);
|
168 |
|
|
|
169 |
|
|
fprintf (file, " cst\n");
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
/* Prints to FILE the poly_ddr_p PDDR. */
|
173 |
|
|
|
174 |
|
|
void
|
175 |
|
|
print_pddr (FILE *file, poly_ddr_p pddr)
|
176 |
|
|
{
|
177 |
|
|
fprintf (file, "pddr (kind: ");
|
178 |
|
|
|
179 |
|
|
if (PDDR_KIND (pddr) == unknown_dependence)
|
180 |
|
|
fprintf (file, "unknown_dependence");
|
181 |
|
|
else if (PDDR_KIND (pddr) == no_dependence)
|
182 |
|
|
fprintf (file, "no_dependence");
|
183 |
|
|
else if (PDDR_KIND (pddr) == has_dependence)
|
184 |
|
|
fprintf (file, "has_dependence");
|
185 |
|
|
|
186 |
|
|
fprintf (file, "\n source ");
|
187 |
|
|
print_pdr (file, PDDR_SOURCE (pddr), 2);
|
188 |
|
|
|
189 |
|
|
fprintf (file, "\n sink ");
|
190 |
|
|
print_pdr (file, PDDR_SINK (pddr), 2);
|
191 |
|
|
|
192 |
|
|
if (PDDR_KIND (pddr) == has_dependence)
|
193 |
|
|
{
|
194 |
|
|
fprintf (file, "\n dependence polyhedron (\n");
|
195 |
|
|
print_dependence_polyhedron_layout (file, pddr);
|
196 |
|
|
ppl_print_powerset_matrix (file, PDDR_DDP (pddr));
|
197 |
|
|
fprintf (file, ")\n");
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
fprintf (file, ")\n");
|
201 |
|
|
}
|
202 |
|
|
|
203 |
|
|
/* Prints to STDERR the poly_ddr_p PDDR. */
|
204 |
|
|
|
205 |
|
|
void
|
206 |
|
|
debug_pddr (poly_ddr_p pddr)
|
207 |
|
|
{
|
208 |
|
|
print_pddr (stderr, pddr);
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
|
212 |
|
|
/* Remove all the dimensions except alias information at dimension
|
213 |
|
|
ALIAS_DIM. */
|
214 |
|
|
|
215 |
|
|
static void
|
216 |
|
|
build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset,
|
217 |
|
|
ppl_dimension_type alias_dim)
|
218 |
|
|
{
|
219 |
|
|
ppl_dimension_type *ds;
|
220 |
|
|
ppl_dimension_type access_dim;
|
221 |
|
|
unsigned i, pos = 0;
|
222 |
|
|
|
223 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset,
|
224 |
|
|
&access_dim);
|
225 |
|
|
ds = XNEWVEC (ppl_dimension_type, access_dim-1);
|
226 |
|
|
for (i = 0; i < access_dim; i++)
|
227 |
|
|
{
|
228 |
|
|
if (i == alias_dim)
|
229 |
|
|
continue;
|
230 |
|
|
|
231 |
|
|
ds[pos] = i;
|
232 |
|
|
pos++;
|
233 |
|
|
}
|
234 |
|
|
|
235 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset,
|
236 |
|
|
ds,
|
237 |
|
|
access_dim - 1);
|
238 |
|
|
free (ds);
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* Return true when PDR1 and PDR2 may alias. */
|
242 |
|
|
|
243 |
|
|
static bool
|
244 |
|
|
poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2)
|
245 |
|
|
{
|
246 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2;
|
247 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1);
|
248 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2);
|
249 |
|
|
ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1);
|
250 |
|
|
ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2);
|
251 |
|
|
int empty_p;
|
252 |
|
|
|
253 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
254 |
|
|
(&alias_powerset1, accesses1);
|
255 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
256 |
|
|
(&alias_powerset2, accesses2);
|
257 |
|
|
|
258 |
|
|
build_alias_set_powerset (alias_powerset1, alias_dim1);
|
259 |
|
|
build_alias_set_powerset (alias_powerset2, alias_dim2);
|
260 |
|
|
|
261 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
|
262 |
|
|
(alias_powerset1, alias_powerset2);
|
263 |
|
|
|
264 |
|
|
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1);
|
265 |
|
|
|
266 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1);
|
267 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2);
|
268 |
|
|
|
269 |
|
|
return !empty_p;
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
/* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is
|
273 |
|
|
transformed into "a CUT0 c CUT1' b"
|
274 |
|
|
|
275 |
|
|
Add NB0 zeros before "a": "00...0 a CUT0 c CUT1' b"
|
276 |
|
|
Add NB1 zeros between "a" and "c": "00...0 a 00...0 c CUT1' b"
|
277 |
|
|
Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b":
|
278 |
|
|
"00...0 a 00...0 c 00...0 b". */
|
279 |
|
|
|
280 |
|
|
static ppl_Pointset_Powerset_C_Polyhedron_t
|
281 |
|
|
map_dr_into_dep_poly (graphite_dim_t dim,
|
282 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t dr,
|
283 |
|
|
graphite_dim_t cut0, graphite_dim_t cut1,
|
284 |
|
|
graphite_dim_t nb0, graphite_dim_t nb1)
|
285 |
|
|
{
|
286 |
|
|
ppl_dimension_type pdim;
|
287 |
|
|
ppl_dimension_type *map;
|
288 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t res;
|
289 |
|
|
ppl_dimension_type i;
|
290 |
|
|
|
291 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
|
292 |
|
|
(&res, dr);
|
293 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim);
|
294 |
|
|
|
295 |
|
|
map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim);
|
296 |
|
|
|
297 |
|
|
/* First mapping: move 'g' vector to right position. */
|
298 |
|
|
for (i = 0; i < cut0; i++)
|
299 |
|
|
map[i] = i;
|
300 |
|
|
|
301 |
|
|
for (i = cut0; i < cut1; i++)
|
302 |
|
|
map[i] = pdim - cut1 + i;
|
303 |
|
|
|
304 |
|
|
for (i = cut1; i < pdim; i++)
|
305 |
|
|
map[i] = cut0 + i - cut1;
|
306 |
|
|
|
307 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim);
|
308 |
|
|
free (map);
|
309 |
|
|
|
310 |
|
|
/* After swapping 's' and 'g' vectors, we have to update a new cut. */
|
311 |
|
|
cut1 = pdim - cut1 + cut0;
|
312 |
|
|
|
313 |
|
|
ppl_insert_dimensions_pointset (res, 0, nb0);
|
314 |
|
|
ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1);
|
315 |
|
|
ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1,
|
316 |
|
|
dim - nb0 - nb1 - pdim);
|
317 |
|
|
|
318 |
|
|
return res;
|
319 |
|
|
}
|
320 |
|
|
|
321 |
|
|
/* Builds subscript equality constraints. */
|
322 |
|
|
|
323 |
|
|
static ppl_Pointset_Powerset_C_Polyhedron_t
|
324 |
|
|
dr_equality_constraints (graphite_dim_t dim,
|
325 |
|
|
graphite_dim_t pos, graphite_dim_t nb_subscripts)
|
326 |
|
|
{
|
327 |
|
|
ppl_Polyhedron_t eqs;
|
328 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t res;
|
329 |
|
|
graphite_dim_t i;
|
330 |
|
|
|
331 |
|
|
ppl_new_C_Polyhedron_from_space_dimension (&eqs, dim, 0);
|
332 |
|
|
|
333 |
|
|
for (i = 0; i < nb_subscripts; i++)
|
334 |
|
|
{
|
335 |
|
|
ppl_Constraint_t cstr
|
336 |
|
|
= ppl_build_relation (dim, pos + i, pos + i + nb_subscripts,
|
337 |
|
|
0, PPL_CONSTRAINT_TYPE_EQUAL);
|
338 |
|
|
ppl_Polyhedron_add_constraint (eqs, cstr);
|
339 |
|
|
ppl_delete_Constraint (cstr);
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, eqs);
|
343 |
|
|
ppl_delete_Polyhedron (eqs);
|
344 |
|
|
return res;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
/* Builds scheduling inequality constraints: when DIRECTION is
|
348 |
|
|
1 builds a GE constraint,
|
349 |
|
|
|
350 |
|
|
-1 builds a LE constraint. */
|
351 |
|
|
|
352 |
|
|
static ppl_Pointset_Powerset_C_Polyhedron_t
|
353 |
|
|
build_pairwise_scheduling (graphite_dim_t dim,
|
354 |
|
|
graphite_dim_t pos,
|
355 |
|
|
graphite_dim_t offset,
|
356 |
|
|
int direction)
|
357 |
|
|
{
|
358 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t res;
|
359 |
|
|
ppl_Polyhedron_t equalities;
|
360 |
|
|
ppl_Constraint_t cstr;
|
361 |
|
|
|
362 |
|
|
ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
|
363 |
|
|
|
364 |
|
|
switch (direction)
|
365 |
|
|
{
|
366 |
|
|
case -1:
|
367 |
|
|
cstr = ppl_build_relation (dim, pos, pos + offset, 1,
|
368 |
|
|
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
|
369 |
|
|
break;
|
370 |
|
|
|
371 |
|
|
case 0:
|
372 |
|
|
cstr = ppl_build_relation (dim, pos, pos + offset, 0,
|
373 |
|
|
PPL_CONSTRAINT_TYPE_EQUAL);
|
374 |
|
|
break;
|
375 |
|
|
|
376 |
|
|
case 1:
|
377 |
|
|
cstr = ppl_build_relation (dim, pos, pos + offset, -1,
|
378 |
|
|
PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
|
379 |
|
|
break;
|
380 |
|
|
|
381 |
|
|
default:
|
382 |
|
|
gcc_unreachable ();
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
ppl_Polyhedron_add_constraint (equalities, cstr);
|
386 |
|
|
ppl_delete_Constraint (cstr);
|
387 |
|
|
|
388 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
|
389 |
|
|
ppl_delete_Polyhedron (equalities);
|
390 |
|
|
return res;
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
/* Add to a non empty polyhedron BAG the precedence constraints for
|
394 |
|
|
the lexicographical comparison of time vectors in BAG following the
|
395 |
|
|
lexicographical order. DIM is the dimension of the polyhedron BAG.
|
396 |
|
|
TDIM is the number of loops common to the two statements that are
|
397 |
|
|
compared lexicographically, i.e. the number of loops containing
|
398 |
|
|
both statements. OFFSET is the number of dimensions needed to
|
399 |
|
|
represent the first statement, i.e. dimT1 + dimI1 in the layout of
|
400 |
|
|
the BAG polyhedron: T1|I1|T2|I2|S1|S2|G. When DIRECTION is set to
|
401 |
|
|
1, compute the direct dependence from PDR1 to PDR2, and when
|
402 |
|
|
DIRECTION is -1, compute the reversed dependence relation, from
|
403 |
|
|
PDR2 to PDR1. */
|
404 |
|
|
|
405 |
|
|
static ppl_Pointset_Powerset_C_Polyhedron_t
|
406 |
|
|
build_lexicographical_constraint (ppl_Pointset_Powerset_C_Polyhedron_t bag,
|
407 |
|
|
graphite_dim_t dim,
|
408 |
|
|
graphite_dim_t tdim,
|
409 |
|
|
graphite_dim_t offset,
|
410 |
|
|
int direction)
|
411 |
|
|
{
|
412 |
|
|
graphite_dim_t i;
|
413 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t res, lex;
|
414 |
|
|
|
415 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 1);
|
416 |
|
|
|
417 |
|
|
lex = build_pairwise_scheduling (dim, 0, offset, direction);
|
418 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
|
419 |
|
|
|
420 |
|
|
if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (lex))
|
421 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
|
422 |
|
|
|
423 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
|
424 |
|
|
|
425 |
|
|
for (i = 0; i < tdim - 1; i++)
|
426 |
|
|
{
|
427 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t sceq;
|
428 |
|
|
|
429 |
|
|
sceq = build_pairwise_scheduling (dim, i, offset, 0);
|
430 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (bag, sceq);
|
431 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (sceq);
|
432 |
|
|
|
433 |
|
|
lex = build_pairwise_scheduling (dim, i + 1, offset, direction);
|
434 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
|
435 |
|
|
|
436 |
|
|
if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (lex))
|
437 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
|
438 |
|
|
|
439 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
|
440 |
|
|
}
|
441 |
|
|
|
442 |
|
|
return res;
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
/* Build the dependence polyhedron for data references PDR1 and PDR2.
|
446 |
|
|
The layout of the dependence polyhedron is:
|
447 |
|
|
|
448 |
|
|
T1|I1|T2|I2|S1|S2|G
|
449 |
|
|
|
450 |
|
|
with
|
451 |
|
|
| T1 and T2 the scattering dimensions for PDR1 and PDR2
|
452 |
|
|
| I1 and I2 the iteration domains
|
453 |
|
|
| S1 and S2 the subscripts
|
454 |
|
|
| G the global parameters.
|
455 |
|
|
|
456 |
|
|
When DIRECTION is set to 1, compute the direct dependence from PDR1
|
457 |
|
|
to PDR2, and when DIRECTION is -1, compute the reversed dependence
|
458 |
|
|
relation, from PDR2 to PDR1. */
|
459 |
|
|
|
460 |
|
|
static ppl_Pointset_Powerset_C_Polyhedron_t
|
461 |
|
|
dependence_polyhedron_1 (poly_dr_p pdr1, poly_dr_p pdr2,
|
462 |
|
|
int direction, bool original_scattering_p)
|
463 |
|
|
{
|
464 |
|
|
poly_bb_p pbb1 = PDR_PBB (pdr1);
|
465 |
|
|
poly_bb_p pbb2 = PDR_PBB (pdr2);
|
466 |
|
|
scop_p scop = PBB_SCOP (pbb1);
|
467 |
|
|
graphite_dim_t tdim1 = original_scattering_p ?
|
468 |
|
|
pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
|
469 |
|
|
graphite_dim_t tdim2 = original_scattering_p ?
|
470 |
|
|
pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
|
471 |
|
|
graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
|
472 |
|
|
graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2);
|
473 |
|
|
graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
|
474 |
|
|
graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
|
475 |
|
|
graphite_dim_t gdim = scop_nb_params (scop);
|
476 |
|
|
graphite_dim_t dim1 = pdr_dim (pdr1);
|
477 |
|
|
graphite_dim_t dim2 = pdr_dim (pdr2);
|
478 |
|
|
graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2 - gdim;
|
479 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t res;
|
480 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t idr1, idr2;
|
481 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq;
|
482 |
|
|
|
483 |
|
|
gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2));
|
484 |
|
|
|
485 |
|
|
combine_context_id_scat (&sc1, pbb1, original_scattering_p);
|
486 |
|
|
combine_context_id_scat (&sc2, pbb2, original_scattering_p);
|
487 |
|
|
|
488 |
|
|
ppl_insert_dimensions_pointset (sc1, tdim1 + ddim1,
|
489 |
|
|
tdim2 + ddim2 + sdim1 + sdim2);
|
490 |
|
|
|
491 |
|
|
ppl_insert_dimensions_pointset (sc2, 0, tdim1 + ddim1);
|
492 |
|
|
ppl_insert_dimensions_pointset (sc2, tdim1 + ddim1 + tdim2 + ddim2,
|
493 |
|
|
sdim1 + sdim2);
|
494 |
|
|
|
495 |
|
|
idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim,
|
496 |
|
|
tdim1, tdim2 + ddim2);
|
497 |
|
|
idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim,
|
498 |
|
|
tdim1 + ddim1 + tdim2, sdim1);
|
499 |
|
|
|
500 |
|
|
/* Now add the subscript equalities. */
|
501 |
|
|
dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1);
|
502 |
|
|
|
503 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0);
|
504 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc1);
|
505 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc2);
|
506 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1);
|
507 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2);
|
508 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq);
|
509 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (sc1);
|
510 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (sc2);
|
511 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (idr1);
|
512 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (idr2);
|
513 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (dreq);
|
514 |
|
|
|
515 |
|
|
if (!ppl_Pointset_Powerset_C_Polyhedron_is_empty (res))
|
516 |
|
|
{
|
517 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t lex =
|
518 |
|
|
build_lexicographical_constraint (res, dim, MIN (tdim1, tdim2),
|
519 |
|
|
tdim1 + ddim1, direction);
|
520 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (res);
|
521 |
|
|
res = lex;
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
return res;
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
/* Build the dependence polyhedron for data references PDR1 and PDR2.
|
528 |
|
|
If possible use already cached information.
|
529 |
|
|
|
530 |
|
|
When DIRECTION is set to 1, compute the direct dependence from PDR1
|
531 |
|
|
to PDR2, and when DIRECTION is -1, compute the reversed dependence
|
532 |
|
|
relation, from PDR2 to PDR1. */
|
533 |
|
|
|
534 |
|
|
static poly_ddr_p
|
535 |
|
|
dependence_polyhedron (poly_dr_p pdr1, poly_dr_p pdr2,
|
536 |
|
|
int direction, bool original_scattering_p)
|
537 |
|
|
{
|
538 |
|
|
PTR *x = NULL;
|
539 |
|
|
poly_ddr_p res;
|
540 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t ddp;
|
541 |
|
|
|
542 |
|
|
/* Return the PDDR from the cache if it already has been computed. */
|
543 |
|
|
if (original_scattering_p)
|
544 |
|
|
{
|
545 |
|
|
struct poly_ddr tmp;
|
546 |
|
|
scop_p scop = PBB_SCOP (PDR_PBB (pdr1));
|
547 |
|
|
|
548 |
|
|
tmp.source = pdr1;
|
549 |
|
|
tmp.sink = pdr2;
|
550 |
|
|
x = htab_find_slot (SCOP_ORIGINAL_PDDRS (scop),
|
551 |
|
|
&tmp, INSERT);
|
552 |
|
|
|
553 |
|
|
if (x && *x)
|
554 |
|
|
return (poly_ddr_p) *x;
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
if ((pdr_read_p (pdr1) && pdr_read_p (pdr2))
|
558 |
|
|
|| PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
|
559 |
|
|
|| PDR_NB_SUBSCRIPTS (pdr1) != PDR_NB_SUBSCRIPTS (pdr2)
|
560 |
|
|
|| !poly_drs_may_alias_p (pdr1, pdr2))
|
561 |
|
|
ddp = NULL;
|
562 |
|
|
else
|
563 |
|
|
ddp = dependence_polyhedron_1 (pdr1, pdr2, direction,
|
564 |
|
|
original_scattering_p);
|
565 |
|
|
|
566 |
|
|
res = new_poly_ddr (pdr1, pdr2, ddp, original_scattering_p);
|
567 |
|
|
|
568 |
|
|
if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
|
569 |
|
|
&& PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
|
570 |
|
|
&& poly_drs_may_alias_p (pdr1, pdr2))
|
571 |
|
|
PDDR_KIND (res) = unknown_dependence;
|
572 |
|
|
|
573 |
|
|
if (original_scattering_p)
|
574 |
|
|
*x = res;
|
575 |
|
|
|
576 |
|
|
return res;
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
/* Return true when the data dependence relation between the data
|
580 |
|
|
references PDR1 belonging to PBB1 and PDR2 is part of a
|
581 |
|
|
reduction. */
|
582 |
|
|
|
583 |
|
|
static inline bool
|
584 |
|
|
reduction_dr_1 (poly_bb_p pbb1, poly_dr_p pdr1, poly_dr_p pdr2)
|
585 |
|
|
{
|
586 |
|
|
int i;
|
587 |
|
|
poly_dr_p pdr;
|
588 |
|
|
|
589 |
|
|
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr); i++)
|
590 |
|
|
if (PDR_TYPE (pdr) == PDR_WRITE)
|
591 |
|
|
break;
|
592 |
|
|
|
593 |
|
|
return same_pdr_p (pdr, pdr1) && same_pdr_p (pdr, pdr2);
|
594 |
|
|
}
|
595 |
|
|
|
596 |
|
|
/* Return true when the data dependence relation between the data
|
597 |
|
|
references PDR1 belonging to PBB1 and PDR2 belonging to PBB2 is
|
598 |
|
|
part of a reduction. */
|
599 |
|
|
|
600 |
|
|
static inline bool
|
601 |
|
|
reduction_dr_p (poly_dr_p pdr1, poly_dr_p pdr2)
|
602 |
|
|
{
|
603 |
|
|
poly_bb_p pbb1 = PDR_PBB (pdr1);
|
604 |
|
|
poly_bb_p pbb2 = PDR_PBB (pdr2);
|
605 |
|
|
|
606 |
|
|
if (PBB_IS_REDUCTION (pbb1))
|
607 |
|
|
return reduction_dr_1 (pbb1, pdr1, pdr2);
|
608 |
|
|
|
609 |
|
|
if (PBB_IS_REDUCTION (pbb2))
|
610 |
|
|
return reduction_dr_1 (pbb2, pdr2, pdr1);
|
611 |
|
|
|
612 |
|
|
return false;
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
/* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1
|
616 |
|
|
and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING
|
617 |
|
|
functions. */
|
618 |
|
|
|
619 |
|
|
static bool
|
620 |
|
|
graphite_legal_transform_dr (poly_dr_p pdr1, poly_dr_p pdr2)
|
621 |
|
|
{
|
622 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t po, pt;
|
623 |
|
|
graphite_dim_t ddim1, otdim1, otdim2, ttdim1, ttdim2;
|
624 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t po_temp;
|
625 |
|
|
ppl_dimension_type pdim;
|
626 |
|
|
bool is_empty_p;
|
627 |
|
|
poly_ddr_p opddr, tpddr;
|
628 |
|
|
poly_bb_p pbb1, pbb2;
|
629 |
|
|
|
630 |
|
|
if (reduction_dr_p (pdr1, pdr2))
|
631 |
|
|
return true;
|
632 |
|
|
|
633 |
|
|
/* We build the reverse dependence relation for the transformed
|
634 |
|
|
scattering, such that when we intersect it with the original PO,
|
635 |
|
|
we get an empty intersection when the transform is legal:
|
636 |
|
|
i.e. the transform should reverse no dependences, and so PT, the
|
637 |
|
|
reversed transformed PDDR, should have no constraint from PO. */
|
638 |
|
|
opddr = dependence_polyhedron (pdr1, pdr2, 1, true);
|
639 |
|
|
|
640 |
|
|
if (PDDR_KIND (opddr) == unknown_dependence)
|
641 |
|
|
return false;
|
642 |
|
|
|
643 |
|
|
/* There are no dependences between PDR1 and PDR2 in the original
|
644 |
|
|
version of the program, or after the transform, so the
|
645 |
|
|
transform is legal. */
|
646 |
|
|
if (pddr_is_empty (opddr))
|
647 |
|
|
return true;
|
648 |
|
|
|
649 |
|
|
tpddr = dependence_polyhedron (pdr1, pdr2, -1, false);
|
650 |
|
|
|
651 |
|
|
if (PDDR_KIND (tpddr) == unknown_dependence)
|
652 |
|
|
{
|
653 |
|
|
free_poly_ddr (tpddr);
|
654 |
|
|
return false;
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
if (pddr_is_empty (tpddr))
|
658 |
|
|
{
|
659 |
|
|
free_poly_ddr (tpddr);
|
660 |
|
|
return true;
|
661 |
|
|
}
|
662 |
|
|
|
663 |
|
|
po = PDDR_DDP (opddr);
|
664 |
|
|
pt = PDDR_DDP (tpddr);
|
665 |
|
|
|
666 |
|
|
/* Copy PO into PO_TEMP, such that PO is not destroyed. PO is
|
667 |
|
|
stored in a cache and should not be modified or freed. */
|
668 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &pdim);
|
669 |
|
|
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&po_temp,
|
670 |
|
|
pdim, 0);
|
671 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, po);
|
672 |
|
|
|
673 |
|
|
/* Extend PO and PT to have the same dimensions. */
|
674 |
|
|
pbb1 = PDR_PBB (pdr1);
|
675 |
|
|
pbb2 = PDR_PBB (pdr2);
|
676 |
|
|
ddim1 = pbb_dim_iter_domain (pbb1);
|
677 |
|
|
otdim1 = pbb_nb_scattering_orig (pbb1);
|
678 |
|
|
otdim2 = pbb_nb_scattering_orig (pbb2);
|
679 |
|
|
ttdim1 = pbb_nb_scattering_transform (pbb1);
|
680 |
|
|
ttdim2 = pbb_nb_scattering_transform (pbb2);
|
681 |
|
|
ppl_insert_dimensions_pointset (po_temp, otdim1, ttdim1);
|
682 |
|
|
ppl_insert_dimensions_pointset (po_temp, otdim1 + ttdim1 + ddim1 + otdim2,
|
683 |
|
|
ttdim2);
|
684 |
|
|
ppl_insert_dimensions_pointset (pt, 0, otdim1);
|
685 |
|
|
ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2);
|
686 |
|
|
|
687 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, pt);
|
688 |
|
|
is_empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (po_temp);
|
689 |
|
|
|
690 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (po_temp);
|
691 |
|
|
free_poly_ddr (tpddr);
|
692 |
|
|
|
693 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
694 |
|
|
fprintf (dump_file, "\nloop carries dependency.\n");
|
695 |
|
|
|
696 |
|
|
return is_empty_p;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
/* Return true when the data dependence relation for PBB1 and PBB2 is
|
700 |
|
|
part of a reduction. */
|
701 |
|
|
|
702 |
|
|
static inline bool
|
703 |
|
|
reduction_ddr_p (poly_bb_p pbb1, poly_bb_p pbb2)
|
704 |
|
|
{
|
705 |
|
|
return pbb1 == pbb2 && PBB_IS_REDUCTION (pbb1);
|
706 |
|
|
}
|
707 |
|
|
|
708 |
|
|
/* Iterates over the data references of PBB1 and PBB2 and detect
|
709 |
|
|
whether the transformed schedule is correct. */
|
710 |
|
|
|
711 |
|
|
static bool
|
712 |
|
|
graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2)
|
713 |
|
|
{
|
714 |
|
|
int i, j;
|
715 |
|
|
poly_dr_p pdr1, pdr2;
|
716 |
|
|
|
717 |
|
|
if (!PBB_PDR_DUPLICATES_REMOVED (pbb1))
|
718 |
|
|
pbb_remove_duplicate_pdrs (pbb1);
|
719 |
|
|
|
720 |
|
|
if (!PBB_PDR_DUPLICATES_REMOVED (pbb2))
|
721 |
|
|
pbb_remove_duplicate_pdrs (pbb2);
|
722 |
|
|
|
723 |
|
|
if (reduction_ddr_p (pbb1, pbb2))
|
724 |
|
|
return true;
|
725 |
|
|
|
726 |
|
|
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++)
|
727 |
|
|
for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++)
|
728 |
|
|
if (!graphite_legal_transform_dr (pdr1, pdr2))
|
729 |
|
|
return false;
|
730 |
|
|
|
731 |
|
|
return true;
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
/* Iterates over the SCOP and detect whether the transformed schedule
|
735 |
|
|
is correct. */
|
736 |
|
|
|
737 |
|
|
bool
|
738 |
|
|
graphite_legal_transform (scop_p scop)
|
739 |
|
|
{
|
740 |
|
|
int i, j;
|
741 |
|
|
poly_bb_p pbb1, pbb2;
|
742 |
|
|
|
743 |
|
|
timevar_push (TV_GRAPHITE_DATA_DEPS);
|
744 |
|
|
|
745 |
|
|
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
|
746 |
|
|
for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
|
747 |
|
|
if (!graphite_legal_transform_bb (pbb1, pbb2))
|
748 |
|
|
{
|
749 |
|
|
timevar_pop (TV_GRAPHITE_DATA_DEPS);
|
750 |
|
|
return false;
|
751 |
|
|
}
|
752 |
|
|
|
753 |
|
|
timevar_pop (TV_GRAPHITE_DATA_DEPS);
|
754 |
|
|
return true;
|
755 |
|
|
}
|
756 |
|
|
|
757 |
|
|
/* Returns TRUE when the dependence polyhedron between PDR1 and
|
758 |
|
|
PDR2 represents a loop carried dependence at level LEVEL. */
|
759 |
|
|
|
760 |
|
|
static bool
|
761 |
|
|
graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2,
|
762 |
|
|
int level)
|
763 |
|
|
{
|
764 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t po;
|
765 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_t eqpp;
|
766 |
|
|
graphite_dim_t tdim1 = pbb_nb_scattering_transform (PDR_PBB (pdr1));
|
767 |
|
|
graphite_dim_t ddim1 = pbb_dim_iter_domain (PDR_PBB (pdr1));
|
768 |
|
|
ppl_dimension_type dim;
|
769 |
|
|
bool empty_p;
|
770 |
|
|
poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
|
771 |
|
|
|
772 |
|
|
if (PDDR_KIND (pddr) == unknown_dependence)
|
773 |
|
|
{
|
774 |
|
|
free_poly_ddr (pddr);
|
775 |
|
|
return true;
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
if (pddr_is_empty (pddr))
|
779 |
|
|
{
|
780 |
|
|
free_poly_ddr (pddr);
|
781 |
|
|
return false;
|
782 |
|
|
}
|
783 |
|
|
|
784 |
|
|
po = PDDR_DDP (pddr);
|
785 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim);
|
786 |
|
|
eqpp = build_pairwise_scheduling (dim, level, tdim1 + ddim1, 1);
|
787 |
|
|
|
788 |
|
|
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po);
|
789 |
|
|
empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (eqpp);
|
790 |
|
|
|
791 |
|
|
ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp);
|
792 |
|
|
free_poly_ddr (pddr);
|
793 |
|
|
|
794 |
|
|
return !empty_p;
|
795 |
|
|
}
|
796 |
|
|
|
797 |
|
|
/* Check data dependency between PBB1 and PBB2 at level LEVEL. */
|
798 |
|
|
|
799 |
|
|
bool
|
800 |
|
|
dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level)
|
801 |
|
|
{
|
802 |
|
|
int i, j;
|
803 |
|
|
poly_dr_p pdr1, pdr2;
|
804 |
|
|
|
805 |
|
|
timevar_push (TV_GRAPHITE_DATA_DEPS);
|
806 |
|
|
|
807 |
|
|
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), i, pdr1); i++)
|
808 |
|
|
for (j = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), j, pdr2); j++)
|
809 |
|
|
if (graphite_carried_dependence_level_k (pdr1, pdr2, level))
|
810 |
|
|
{
|
811 |
|
|
timevar_pop (TV_GRAPHITE_DATA_DEPS);
|
812 |
|
|
return true;
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
timevar_pop (TV_GRAPHITE_DATA_DEPS);
|
816 |
|
|
return false;
|
817 |
|
|
}
|
818 |
|
|
|
819 |
|
|
/* Pretty print to FILE all the original data dependences of SCoP in
|
820 |
|
|
DOT format. */
|
821 |
|
|
|
822 |
|
|
static void
|
823 |
|
|
dot_original_deps_stmt_1 (FILE *file, scop_p scop)
|
824 |
|
|
{
|
825 |
|
|
int i, j, k, l;
|
826 |
|
|
poly_bb_p pbb1, pbb2;
|
827 |
|
|
poly_dr_p pdr1, pdr2;
|
828 |
|
|
|
829 |
|
|
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
|
830 |
|
|
for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
|
831 |
|
|
{
|
832 |
|
|
for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
|
833 |
|
|
for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
|
834 |
|
|
if (!pddr_is_empty (dependence_polyhedron (pdr1, pdr2, 1, true)))
|
835 |
|
|
{
|
836 |
|
|
fprintf (file, "OS%d -> OS%d\n",
|
837 |
|
|
pbb_index (pbb1), pbb_index (pbb2));
|
838 |
|
|
goto done;
|
839 |
|
|
}
|
840 |
|
|
done:;
|
841 |
|
|
}
|
842 |
|
|
}
|
843 |
|
|
|
844 |
|
|
/* Pretty print to FILE all the transformed data dependences of SCoP in
|
845 |
|
|
DOT format. */
|
846 |
|
|
|
847 |
|
|
static void
|
848 |
|
|
dot_transformed_deps_stmt_1 (FILE *file, scop_p scop)
|
849 |
|
|
{
|
850 |
|
|
int i, j, k, l;
|
851 |
|
|
poly_bb_p pbb1, pbb2;
|
852 |
|
|
poly_dr_p pdr1, pdr2;
|
853 |
|
|
|
854 |
|
|
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
|
855 |
|
|
for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
|
856 |
|
|
{
|
857 |
|
|
for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
|
858 |
|
|
for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
|
859 |
|
|
{
|
860 |
|
|
poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
|
861 |
|
|
|
862 |
|
|
if (!pddr_is_empty (pddr))
|
863 |
|
|
{
|
864 |
|
|
fprintf (file, "TS%d -> TS%d\n",
|
865 |
|
|
pbb_index (pbb1), pbb_index (pbb2));
|
866 |
|
|
|
867 |
|
|
free_poly_ddr (pddr);
|
868 |
|
|
goto done;
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
free_poly_ddr (pddr);
|
872 |
|
|
}
|
873 |
|
|
done:;
|
874 |
|
|
}
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
|
878 |
|
|
/* Pretty print to FILE all the data dependences of SCoP in DOT
|
879 |
|
|
format. */
|
880 |
|
|
|
881 |
|
|
static void
|
882 |
|
|
dot_deps_stmt_1 (FILE *file, scop_p scop)
|
883 |
|
|
{
|
884 |
|
|
fputs ("digraph all {\n", file);
|
885 |
|
|
|
886 |
|
|
dot_original_deps_stmt_1 (file, scop);
|
887 |
|
|
dot_transformed_deps_stmt_1 (file, scop);
|
888 |
|
|
|
889 |
|
|
fputs ("}\n\n", file);
|
890 |
|
|
}
|
891 |
|
|
|
892 |
|
|
/* Pretty print to FILE all the original data dependences of SCoP in
|
893 |
|
|
DOT format. */
|
894 |
|
|
|
895 |
|
|
static void
|
896 |
|
|
dot_original_deps (FILE *file, scop_p scop)
|
897 |
|
|
{
|
898 |
|
|
int i, j, k, l;
|
899 |
|
|
poly_bb_p pbb1, pbb2;
|
900 |
|
|
poly_dr_p pdr1, pdr2;
|
901 |
|
|
|
902 |
|
|
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
|
903 |
|
|
for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
|
904 |
|
|
for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
|
905 |
|
|
for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
|
906 |
|
|
if (!pddr_is_empty (dependence_polyhedron (pdr1, pdr2, 1, true)))
|
907 |
|
|
fprintf (file, "OS%d_D%d -> OS%d_D%d\n",
|
908 |
|
|
pbb_index (pbb1), PDR_ID (pdr1),
|
909 |
|
|
pbb_index (pbb2), PDR_ID (pdr2));
|
910 |
|
|
}
|
911 |
|
|
|
912 |
|
|
/* Pretty print to FILE all the transformed data dependences of SCoP in
|
913 |
|
|
DOT format. */
|
914 |
|
|
|
915 |
|
|
static void
|
916 |
|
|
dot_transformed_deps (FILE *file, scop_p scop)
|
917 |
|
|
{
|
918 |
|
|
int i, j, k, l;
|
919 |
|
|
poly_bb_p pbb1, pbb2;
|
920 |
|
|
poly_dr_p pdr1, pdr2;
|
921 |
|
|
|
922 |
|
|
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb1); i++)
|
923 |
|
|
for (j = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), j, pbb2); j++)
|
924 |
|
|
for (k = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb1), k, pdr1); k++)
|
925 |
|
|
for (l = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb2), l, pdr2); l++)
|
926 |
|
|
{
|
927 |
|
|
poly_ddr_p pddr = dependence_polyhedron (pdr1, pdr2, 1, false);
|
928 |
|
|
|
929 |
|
|
if (!pddr_is_empty (pddr))
|
930 |
|
|
fprintf (file, "TS%d_D%d -> TS%d_D%d\n",
|
931 |
|
|
pbb_index (pbb1), PDR_ID (pdr1),
|
932 |
|
|
pbb_index (pbb2), PDR_ID (pdr2));
|
933 |
|
|
|
934 |
|
|
free_poly_ddr (pddr);
|
935 |
|
|
}
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
/* Pretty print to FILE all the data dependences of SCoP in DOT
|
939 |
|
|
format. */
|
940 |
|
|
|
941 |
|
|
static void
|
942 |
|
|
dot_deps_1 (FILE *file, scop_p scop)
|
943 |
|
|
{
|
944 |
|
|
fputs ("digraph all {\n", file);
|
945 |
|
|
|
946 |
|
|
dot_original_deps (file, scop);
|
947 |
|
|
dot_transformed_deps (file, scop);
|
948 |
|
|
|
949 |
|
|
fputs ("}\n\n", file);
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
/* Display all the data dependences in SCoP using dotty. */
|
953 |
|
|
|
954 |
|
|
void
|
955 |
|
|
dot_deps (scop_p scop)
|
956 |
|
|
{
|
957 |
|
|
/* When debugging, enable the following code. This cannot be used
|
958 |
|
|
in production compilers because it calls "system". */
|
959 |
|
|
#if 0
|
960 |
|
|
int x;
|
961 |
|
|
FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
|
962 |
|
|
gcc_assert (stream);
|
963 |
|
|
|
964 |
|
|
dot_deps_1 (stream, scop);
|
965 |
|
|
fclose (stream);
|
966 |
|
|
|
967 |
|
|
x = system ("dotty /tmp/scopdeps.dot");
|
968 |
|
|
#else
|
969 |
|
|
dot_deps_1 (stderr, scop);
|
970 |
|
|
#endif
|
971 |
|
|
}
|
972 |
|
|
|
973 |
|
|
/* Display all the statement dependences in SCoP using dotty. */
|
974 |
|
|
|
975 |
|
|
void
|
976 |
|
|
dot_deps_stmt (scop_p scop)
|
977 |
|
|
{
|
978 |
|
|
/* When debugging, enable the following code. This cannot be used
|
979 |
|
|
in production compilers because it calls "system". */
|
980 |
|
|
#if 0
|
981 |
|
|
int x;
|
982 |
|
|
FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
|
983 |
|
|
gcc_assert (stream);
|
984 |
|
|
|
985 |
|
|
dot_deps_stmt_1 (stream, scop);
|
986 |
|
|
fclose (stream);
|
987 |
|
|
|
988 |
|
|
x = system ("dotty /tmp/scopdeps.dot");
|
989 |
|
|
#else
|
990 |
|
|
dot_deps_stmt_1 (stderr, scop);
|
991 |
|
|
#endif
|
992 |
|
|
}
|
993 |
|
|
|
994 |
|
|
#endif
|