1 |
280 |
jeremybenn |
/* Inlining decision heuristics.
|
2 |
|
|
Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Jan Hubicka
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* Inlining decision heuristics
|
23 |
|
|
|
24 |
|
|
We separate inlining decisions from the inliner itself and store it
|
25 |
|
|
inside callgraph as so called inline plan. Refer to cgraph.c
|
26 |
|
|
documentation about particular representation of inline plans in the
|
27 |
|
|
callgraph.
|
28 |
|
|
|
29 |
|
|
There are three major parts of this file:
|
30 |
|
|
|
31 |
|
|
cgraph_mark_inline implementation
|
32 |
|
|
|
33 |
|
|
This function allows to mark given call inline and performs necessary
|
34 |
|
|
modifications of cgraph (production of the clones and updating overall
|
35 |
|
|
statistics)
|
36 |
|
|
|
37 |
|
|
inlining heuristics limits
|
38 |
|
|
|
39 |
|
|
These functions allow to check that particular inlining is allowed
|
40 |
|
|
by the limits specified by user (allowed function growth, overall unit
|
41 |
|
|
growth and so on).
|
42 |
|
|
|
43 |
|
|
inlining heuristics
|
44 |
|
|
|
45 |
|
|
This is implementation of IPA pass aiming to get as much of benefit
|
46 |
|
|
from inlining obeying the limits checked above.
|
47 |
|
|
|
48 |
|
|
The implementation of particular heuristics is separated from
|
49 |
|
|
the rest of code to make it easier to replace it with more complicated
|
50 |
|
|
implementation in the future. The rest of inlining code acts as a
|
51 |
|
|
library aimed to modify the callgraph and verify that the parameters
|
52 |
|
|
on code size growth fits.
|
53 |
|
|
|
54 |
|
|
To mark given call inline, use cgraph_mark_inline function, the
|
55 |
|
|
verification is performed by cgraph_default_inline_p and
|
56 |
|
|
cgraph_check_inline_limits.
|
57 |
|
|
|
58 |
|
|
The heuristics implements simple knapsack style algorithm ordering
|
59 |
|
|
all functions by their "profitability" (estimated by code size growth)
|
60 |
|
|
and inlining them in priority order.
|
61 |
|
|
|
62 |
|
|
cgraph_decide_inlining implements heuristics taking whole callgraph
|
63 |
|
|
into account, while cgraph_decide_inlining_incrementally considers
|
64 |
|
|
only one function at a time and is used by early inliner.
|
65 |
|
|
|
66 |
|
|
The inliner itself is split into several passes:
|
67 |
|
|
|
68 |
|
|
pass_inline_parameters
|
69 |
|
|
|
70 |
|
|
This pass computes local properties of functions that are used by inliner:
|
71 |
|
|
estimated function body size, whether function is inlinable at all and
|
72 |
|
|
stack frame consumption.
|
73 |
|
|
|
74 |
|
|
Before executing any of inliner passes, this local pass has to be applied
|
75 |
|
|
to each function in the callgraph (ie run as subpass of some earlier
|
76 |
|
|
IPA pass). The results are made out of date by any optimization applied
|
77 |
|
|
on the function body.
|
78 |
|
|
|
79 |
|
|
pass_early_inlining
|
80 |
|
|
|
81 |
|
|
Simple local inlining pass inlining callees into current function. This
|
82 |
|
|
pass makes no global whole compilation unit analysis and this when allowed
|
83 |
|
|
to do inlining expanding code size it might result in unbounded growth of
|
84 |
|
|
whole unit.
|
85 |
|
|
|
86 |
|
|
The pass is run during conversion into SSA form. Only functions already
|
87 |
|
|
converted into SSA form are inlined, so the conversion must happen in
|
88 |
|
|
topological order on the callgraph (that is maintained by pass manager).
|
89 |
|
|
The functions after inlining are early optimized so the early inliner sees
|
90 |
|
|
unoptimized function itself, but all considered callees are already
|
91 |
|
|
optimized allowing it to unfold abstraction penalty on C++ effectively and
|
92 |
|
|
cheaply.
|
93 |
|
|
|
94 |
|
|
pass_ipa_early_inlining
|
95 |
|
|
|
96 |
|
|
With profiling, the early inlining is also necessary to reduce
|
97 |
|
|
instrumentation costs on program with high abstraction penalty (doing
|
98 |
|
|
many redundant calls). This can't happen in parallel with early
|
99 |
|
|
optimization and profile instrumentation, because we would end up
|
100 |
|
|
re-instrumenting already instrumented function bodies we brought in via
|
101 |
|
|
inlining.
|
102 |
|
|
|
103 |
|
|
To avoid this, this pass is executed as IPA pass before profiling. It is
|
104 |
|
|
simple wrapper to pass_early_inlining and ensures first inlining.
|
105 |
|
|
|
106 |
|
|
pass_ipa_inline
|
107 |
|
|
|
108 |
|
|
This is the main pass implementing simple greedy algorithm to do inlining
|
109 |
|
|
of small functions that results in overall growth of compilation unit and
|
110 |
|
|
inlining of functions called once. The pass compute just so called inline
|
111 |
|
|
plan (representation of inlining to be done in callgraph) and unlike early
|
112 |
|
|
inlining it is not performing the inlining itself.
|
113 |
|
|
|
114 |
|
|
pass_apply_inline
|
115 |
|
|
|
116 |
|
|
This pass performs actual inlining according to pass_ipa_inline on given
|
117 |
|
|
function. Possible the function body before inlining is saved when it is
|
118 |
|
|
needed for further inlining later.
|
119 |
|
|
*/
|
120 |
|
|
|
121 |
|
|
#include "config.h"
|
122 |
|
|
#include "system.h"
|
123 |
|
|
#include "coretypes.h"
|
124 |
|
|
#include "tm.h"
|
125 |
|
|
#include "tree.h"
|
126 |
|
|
#include "tree-inline.h"
|
127 |
|
|
#include "langhooks.h"
|
128 |
|
|
#include "flags.h"
|
129 |
|
|
#include "cgraph.h"
|
130 |
|
|
#include "diagnostic.h"
|
131 |
|
|
#include "timevar.h"
|
132 |
|
|
#include "params.h"
|
133 |
|
|
#include "fibheap.h"
|
134 |
|
|
#include "intl.h"
|
135 |
|
|
#include "tree-pass.h"
|
136 |
|
|
#include "hashtab.h"
|
137 |
|
|
#include "coverage.h"
|
138 |
|
|
#include "ggc.h"
|
139 |
|
|
#include "tree-flow.h"
|
140 |
|
|
#include "rtl.h"
|
141 |
|
|
#include "ipa-prop.h"
|
142 |
|
|
#include "except.h"
|
143 |
|
|
|
144 |
|
|
#define MAX_TIME 1000000000
|
145 |
|
|
|
146 |
|
|
/* Mode incremental inliner operate on:
|
147 |
|
|
|
148 |
|
|
In ALWAYS_INLINE only functions marked
|
149 |
|
|
always_inline are inlined. This mode is used after detecting cycle during
|
150 |
|
|
flattening.
|
151 |
|
|
|
152 |
|
|
In SIZE mode, only functions that reduce function body size after inlining
|
153 |
|
|
are inlined, this is used during early inlining.
|
154 |
|
|
|
155 |
|
|
in ALL mode, everything is inlined. This is used during flattening. */
|
156 |
|
|
enum inlining_mode {
|
157 |
|
|
INLINE_NONE = 0,
|
158 |
|
|
INLINE_ALWAYS_INLINE,
|
159 |
|
|
INLINE_SIZE_NORECURSIVE,
|
160 |
|
|
INLINE_SIZE,
|
161 |
|
|
INLINE_ALL
|
162 |
|
|
};
|
163 |
|
|
static bool
|
164 |
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *, enum inlining_mode,
|
165 |
|
|
int);
|
166 |
|
|
|
167 |
|
|
|
168 |
|
|
/* Statistics we collect about inlining algorithm. */
|
169 |
|
|
static int ncalls_inlined;
|
170 |
|
|
static int nfunctions_inlined;
|
171 |
|
|
static int overall_size;
|
172 |
|
|
static gcov_type max_count, max_benefit;
|
173 |
|
|
|
174 |
|
|
/* Holders of ipa cgraph hooks: */
|
175 |
|
|
static struct cgraph_node_hook_list *function_insertion_hook_holder;
|
176 |
|
|
|
177 |
|
|
static inline struct inline_summary *
|
178 |
|
|
inline_summary (struct cgraph_node *node)
|
179 |
|
|
{
|
180 |
|
|
return &node->local.inline_summary;
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
/* Estimate self time of the function after inlining WHAT into TO. */
|
184 |
|
|
|
185 |
|
|
static int
|
186 |
|
|
cgraph_estimate_time_after_inlining (int frequency, struct cgraph_node *to,
|
187 |
|
|
struct cgraph_node *what)
|
188 |
|
|
{
|
189 |
|
|
gcov_type time = (((gcov_type)what->global.time
|
190 |
|
|
- inline_summary (what)->time_inlining_benefit)
|
191 |
|
|
* frequency + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE
|
192 |
|
|
+ to->global.time;
|
193 |
|
|
if (time < 0)
|
194 |
|
|
time = 0;
|
195 |
|
|
if (time > MAX_TIME)
|
196 |
|
|
time = MAX_TIME;
|
197 |
|
|
return time;
|
198 |
|
|
}
|
199 |
|
|
|
200 |
|
|
/* Estimate self time of the function after inlining WHAT into TO. */
|
201 |
|
|
|
202 |
|
|
static int
|
203 |
|
|
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
|
204 |
|
|
struct cgraph_node *what)
|
205 |
|
|
{
|
206 |
|
|
int size = (what->global.size - inline_summary (what)->size_inlining_benefit) * times + to->global.size;
|
207 |
|
|
gcc_assert (size >= 0);
|
208 |
|
|
return size;
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
/* Scale frequency of NODE edges by FREQ_SCALE and increase loop nest
|
212 |
|
|
by NEST. */
|
213 |
|
|
|
214 |
|
|
static void
|
215 |
|
|
update_noncloned_frequencies (struct cgraph_node *node,
|
216 |
|
|
int freq_scale, int nest)
|
217 |
|
|
{
|
218 |
|
|
struct cgraph_edge *e;
|
219 |
|
|
|
220 |
|
|
/* We do not want to ignore high loop nest after freq drops to 0. */
|
221 |
|
|
if (!freq_scale)
|
222 |
|
|
freq_scale = 1;
|
223 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
224 |
|
|
{
|
225 |
|
|
e->loop_nest += nest;
|
226 |
|
|
e->frequency = e->frequency * (gcov_type) freq_scale / CGRAPH_FREQ_BASE;
|
227 |
|
|
if (e->frequency > CGRAPH_FREQ_MAX)
|
228 |
|
|
e->frequency = CGRAPH_FREQ_MAX;
|
229 |
|
|
if (!e->inline_failed)
|
230 |
|
|
update_noncloned_frequencies (e->callee, freq_scale, nest);
|
231 |
|
|
}
|
232 |
|
|
}
|
233 |
|
|
|
234 |
|
|
/* E is expected to be an edge being inlined. Clone destination node of
|
235 |
|
|
the edge and redirect it to the new clone.
|
236 |
|
|
DUPLICATE is used for bookkeeping on whether we are actually creating new
|
237 |
|
|
clones or re-using node originally representing out-of-line function call.
|
238 |
|
|
*/
|
239 |
|
|
void
|
240 |
|
|
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
|
241 |
|
|
bool update_original)
|
242 |
|
|
{
|
243 |
|
|
HOST_WIDE_INT peak;
|
244 |
|
|
|
245 |
|
|
if (duplicate)
|
246 |
|
|
{
|
247 |
|
|
/* We may eliminate the need for out-of-line copy to be output.
|
248 |
|
|
In that case just go ahead and re-use it. */
|
249 |
|
|
if (!e->callee->callers->next_caller
|
250 |
|
|
&& cgraph_can_remove_if_no_direct_calls_p (e->callee)
|
251 |
|
|
/* Don't reuse if more than one function shares a comdat group.
|
252 |
|
|
If the other function(s) are needed, we need to emit even
|
253 |
|
|
this function out of line. */
|
254 |
|
|
&& !e->callee->same_comdat_group
|
255 |
|
|
&& !cgraph_new_nodes)
|
256 |
|
|
{
|
257 |
|
|
gcc_assert (!e->callee->global.inlined_to);
|
258 |
|
|
if (e->callee->analyzed)
|
259 |
|
|
{
|
260 |
|
|
overall_size -= e->callee->global.size;
|
261 |
|
|
nfunctions_inlined++;
|
262 |
|
|
}
|
263 |
|
|
duplicate = false;
|
264 |
|
|
e->callee->local.externally_visible = false;
|
265 |
|
|
update_noncloned_frequencies (e->callee, e->frequency, e->loop_nest);
|
266 |
|
|
}
|
267 |
|
|
else
|
268 |
|
|
{
|
269 |
|
|
struct cgraph_node *n;
|
270 |
|
|
n = cgraph_clone_node (e->callee, e->count, e->frequency, e->loop_nest,
|
271 |
|
|
update_original, NULL);
|
272 |
|
|
cgraph_redirect_edge_callee (e, n);
|
273 |
|
|
}
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
if (e->caller->global.inlined_to)
|
277 |
|
|
e->callee->global.inlined_to = e->caller->global.inlined_to;
|
278 |
|
|
else
|
279 |
|
|
e->callee->global.inlined_to = e->caller;
|
280 |
|
|
e->callee->global.stack_frame_offset
|
281 |
|
|
= e->caller->global.stack_frame_offset
|
282 |
|
|
+ inline_summary (e->caller)->estimated_self_stack_size;
|
283 |
|
|
peak = e->callee->global.stack_frame_offset
|
284 |
|
|
+ inline_summary (e->callee)->estimated_self_stack_size;
|
285 |
|
|
if (e->callee->global.inlined_to->global.estimated_stack_size < peak)
|
286 |
|
|
e->callee->global.inlined_to->global.estimated_stack_size = peak;
|
287 |
|
|
|
288 |
|
|
/* Recursively clone all bodies. */
|
289 |
|
|
for (e = e->callee->callees; e; e = e->next_callee)
|
290 |
|
|
if (!e->inline_failed)
|
291 |
|
|
cgraph_clone_inlined_nodes (e, duplicate, update_original);
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
/* Mark edge E as inlined and update callgraph accordingly. UPDATE_ORIGINAL
|
295 |
|
|
specify whether profile of original function should be updated. If any new
|
296 |
|
|
indirect edges are discovered in the process, add them to NEW_EDGES, unless
|
297 |
|
|
it is NULL. Return true iff any new callgraph edges were discovered as a
|
298 |
|
|
result of inlining. */
|
299 |
|
|
|
300 |
|
|
static bool
|
301 |
|
|
cgraph_mark_inline_edge (struct cgraph_edge *e, bool update_original,
|
302 |
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
303 |
|
|
{
|
304 |
|
|
int old_size = 0, new_size = 0;
|
305 |
|
|
struct cgraph_node *to = NULL, *what;
|
306 |
|
|
struct cgraph_edge *curr = e;
|
307 |
|
|
int freq;
|
308 |
|
|
|
309 |
|
|
gcc_assert (e->inline_failed);
|
310 |
|
|
e->inline_failed = CIF_OK;
|
311 |
|
|
|
312 |
|
|
if (!e->callee->global.inlined)
|
313 |
|
|
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
|
314 |
|
|
e->callee->global.inlined = true;
|
315 |
|
|
|
316 |
|
|
cgraph_clone_inlined_nodes (e, true, update_original);
|
317 |
|
|
|
318 |
|
|
what = e->callee;
|
319 |
|
|
|
320 |
|
|
freq = e->frequency;
|
321 |
|
|
/* Now update size of caller and all functions caller is inlined into. */
|
322 |
|
|
for (;e && !e->inline_failed; e = e->caller->callers)
|
323 |
|
|
{
|
324 |
|
|
to = e->caller;
|
325 |
|
|
old_size = e->caller->global.size;
|
326 |
|
|
new_size = cgraph_estimate_size_after_inlining (1, to, what);
|
327 |
|
|
to->global.size = new_size;
|
328 |
|
|
to->global.time = cgraph_estimate_time_after_inlining (freq, to, what);
|
329 |
|
|
}
|
330 |
|
|
gcc_assert (what->global.inlined_to == to);
|
331 |
|
|
if (new_size > old_size)
|
332 |
|
|
overall_size += new_size - old_size;
|
333 |
|
|
ncalls_inlined++;
|
334 |
|
|
|
335 |
|
|
if (flag_indirect_inlining)
|
336 |
|
|
return ipa_propagate_indirect_call_infos (curr, new_edges);
|
337 |
|
|
else
|
338 |
|
|
return false;
|
339 |
|
|
}
|
340 |
|
|
|
341 |
|
|
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
|
342 |
|
|
Return following unredirected edge in the list of callers
|
343 |
|
|
of EDGE->CALLEE */
|
344 |
|
|
|
345 |
|
|
static struct cgraph_edge *
|
346 |
|
|
cgraph_mark_inline (struct cgraph_edge *edge)
|
347 |
|
|
{
|
348 |
|
|
struct cgraph_node *to = edge->caller;
|
349 |
|
|
struct cgraph_node *what = edge->callee;
|
350 |
|
|
struct cgraph_edge *e, *next;
|
351 |
|
|
|
352 |
|
|
gcc_assert (!edge->call_stmt_cannot_inline_p);
|
353 |
|
|
/* Look for all calls, mark them inline and clone recursively
|
354 |
|
|
all inlined functions. */
|
355 |
|
|
for (e = what->callers; e; e = next)
|
356 |
|
|
{
|
357 |
|
|
next = e->next_caller;
|
358 |
|
|
if (e->caller == to && e->inline_failed)
|
359 |
|
|
{
|
360 |
|
|
cgraph_mark_inline_edge (e, true, NULL);
|
361 |
|
|
if (e == edge)
|
362 |
|
|
edge = next;
|
363 |
|
|
}
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
return edge;
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
/* Estimate the growth caused by inlining NODE into all callees. */
|
370 |
|
|
|
371 |
|
|
static int
|
372 |
|
|
cgraph_estimate_growth (struct cgraph_node *node)
|
373 |
|
|
{
|
374 |
|
|
int growth = 0;
|
375 |
|
|
struct cgraph_edge *e;
|
376 |
|
|
bool self_recursive = false;
|
377 |
|
|
|
378 |
|
|
if (node->global.estimated_growth != INT_MIN)
|
379 |
|
|
return node->global.estimated_growth;
|
380 |
|
|
|
381 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
382 |
|
|
{
|
383 |
|
|
if (e->caller == node)
|
384 |
|
|
self_recursive = true;
|
385 |
|
|
if (e->inline_failed)
|
386 |
|
|
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
|
387 |
|
|
- e->caller->global.size);
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
/* ??? Wrong for non-trivially self recursive functions or cases where
|
391 |
|
|
we decide to not inline for different reasons, but it is not big deal
|
392 |
|
|
as in that case we will keep the body around, but we will also avoid
|
393 |
|
|
some inlining. */
|
394 |
|
|
if (cgraph_only_called_directly_p (node)
|
395 |
|
|
&& !DECL_EXTERNAL (node->decl) && !self_recursive)
|
396 |
|
|
growth -= node->global.size;
|
397 |
|
|
|
398 |
|
|
node->global.estimated_growth = growth;
|
399 |
|
|
return growth;
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
/* Return false when inlining WHAT into TO is not good idea
|
403 |
|
|
as it would cause too large growth of function bodies.
|
404 |
|
|
When ONE_ONLY is true, assume that only one call site is going
|
405 |
|
|
to be inlined, otherwise figure out how many call sites in
|
406 |
|
|
TO calls WHAT and verify that all can be inlined.
|
407 |
|
|
*/
|
408 |
|
|
|
409 |
|
|
static bool
|
410 |
|
|
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
|
411 |
|
|
cgraph_inline_failed_t *reason, bool one_only)
|
412 |
|
|
{
|
413 |
|
|
int times = 0;
|
414 |
|
|
struct cgraph_edge *e;
|
415 |
|
|
int newsize;
|
416 |
|
|
int limit;
|
417 |
|
|
HOST_WIDE_INT stack_size_limit, inlined_stack;
|
418 |
|
|
|
419 |
|
|
if (one_only)
|
420 |
|
|
times = 1;
|
421 |
|
|
else
|
422 |
|
|
for (e = to->callees; e; e = e->next_callee)
|
423 |
|
|
if (e->callee == what)
|
424 |
|
|
times++;
|
425 |
|
|
|
426 |
|
|
if (to->global.inlined_to)
|
427 |
|
|
to = to->global.inlined_to;
|
428 |
|
|
|
429 |
|
|
/* When inlining large function body called once into small function,
|
430 |
|
|
take the inlined function as base for limiting the growth. */
|
431 |
|
|
if (inline_summary (to)->self_size > inline_summary(what)->self_size)
|
432 |
|
|
limit = inline_summary (to)->self_size;
|
433 |
|
|
else
|
434 |
|
|
limit = inline_summary (what)->self_size;
|
435 |
|
|
|
436 |
|
|
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
|
437 |
|
|
|
438 |
|
|
/* Check the size after inlining against the function limits. But allow
|
439 |
|
|
the function to shrink if it went over the limits by forced inlining. */
|
440 |
|
|
newsize = cgraph_estimate_size_after_inlining (times, to, what);
|
441 |
|
|
if (newsize >= to->global.size
|
442 |
|
|
&& newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
|
443 |
|
|
&& newsize > limit)
|
444 |
|
|
{
|
445 |
|
|
if (reason)
|
446 |
|
|
*reason = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
|
447 |
|
|
return false;
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
stack_size_limit = inline_summary (to)->estimated_self_stack_size;
|
451 |
|
|
|
452 |
|
|
stack_size_limit += stack_size_limit * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100;
|
453 |
|
|
|
454 |
|
|
inlined_stack = (to->global.stack_frame_offset
|
455 |
|
|
+ inline_summary (to)->estimated_self_stack_size
|
456 |
|
|
+ what->global.estimated_stack_size);
|
457 |
|
|
if (inlined_stack > stack_size_limit
|
458 |
|
|
&& inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
|
459 |
|
|
{
|
460 |
|
|
if (reason)
|
461 |
|
|
*reason = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
|
462 |
|
|
return false;
|
463 |
|
|
}
|
464 |
|
|
return true;
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
/* Return true when function N is small enough to be inlined. */
|
468 |
|
|
|
469 |
|
|
static bool
|
470 |
|
|
cgraph_default_inline_p (struct cgraph_node *n, cgraph_inline_failed_t *reason)
|
471 |
|
|
{
|
472 |
|
|
tree decl = n->decl;
|
473 |
|
|
|
474 |
|
|
if (!flag_inline_small_functions && !DECL_DECLARED_INLINE_P (decl))
|
475 |
|
|
{
|
476 |
|
|
if (reason)
|
477 |
|
|
*reason = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
|
478 |
|
|
return false;
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
if (!n->analyzed)
|
482 |
|
|
{
|
483 |
|
|
if (reason)
|
484 |
|
|
*reason = CIF_BODY_NOT_AVAILABLE;
|
485 |
|
|
return false;
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
if (DECL_DECLARED_INLINE_P (decl))
|
489 |
|
|
{
|
490 |
|
|
if (n->global.size >= MAX_INLINE_INSNS_SINGLE)
|
491 |
|
|
{
|
492 |
|
|
if (reason)
|
493 |
|
|
*reason = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
|
494 |
|
|
return false;
|
495 |
|
|
}
|
496 |
|
|
}
|
497 |
|
|
else
|
498 |
|
|
{
|
499 |
|
|
if (n->global.size >= MAX_INLINE_INSNS_AUTO)
|
500 |
|
|
{
|
501 |
|
|
if (reason)
|
502 |
|
|
*reason = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
|
503 |
|
|
return false;
|
504 |
|
|
}
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
return true;
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
/* Return true when inlining WHAT would create recursive inlining.
|
511 |
|
|
We call recursive inlining all cases where same function appears more than
|
512 |
|
|
once in the single recursion nest path in the inline graph. */
|
513 |
|
|
|
514 |
|
|
static bool
|
515 |
|
|
cgraph_recursive_inlining_p (struct cgraph_node *to,
|
516 |
|
|
struct cgraph_node *what,
|
517 |
|
|
cgraph_inline_failed_t *reason)
|
518 |
|
|
{
|
519 |
|
|
bool recursive;
|
520 |
|
|
if (to->global.inlined_to)
|
521 |
|
|
recursive = what->decl == to->global.inlined_to->decl;
|
522 |
|
|
else
|
523 |
|
|
recursive = what->decl == to->decl;
|
524 |
|
|
/* Marking recursive function inline has sane semantic and thus we should
|
525 |
|
|
not warn on it. */
|
526 |
|
|
if (recursive && reason)
|
527 |
|
|
*reason = (what->local.disregard_inline_limits
|
528 |
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
529 |
|
|
return recursive;
|
530 |
|
|
}
|
531 |
|
|
|
532 |
|
|
/* A cost model driving the inlining heuristics in a way so the edges with
|
533 |
|
|
smallest badness are inlined first. After each inlining is performed
|
534 |
|
|
the costs of all caller edges of nodes affected are recomputed so the
|
535 |
|
|
metrics may accurately depend on values such as number of inlinable callers
|
536 |
|
|
of the function or function body size. */
|
537 |
|
|
|
538 |
|
|
static int
|
539 |
|
|
cgraph_edge_badness (struct cgraph_edge *edge, bool dump)
|
540 |
|
|
{
|
541 |
|
|
gcov_type badness;
|
542 |
|
|
int growth =
|
543 |
|
|
(cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee)
|
544 |
|
|
- edge->caller->global.size);
|
545 |
|
|
|
546 |
|
|
if (edge->callee->local.disregard_inline_limits)
|
547 |
|
|
return INT_MIN;
|
548 |
|
|
|
549 |
|
|
if (dump)
|
550 |
|
|
{
|
551 |
|
|
fprintf (dump_file, " Badness calculcation for %s -> %s\n",
|
552 |
|
|
cgraph_node_name (edge->caller),
|
553 |
|
|
cgraph_node_name (edge->callee));
|
554 |
|
|
fprintf (dump_file, " growth %i, time %i-%i, size %i-%i\n",
|
555 |
|
|
growth,
|
556 |
|
|
edge->callee->global.time,
|
557 |
|
|
inline_summary (edge->callee)->time_inlining_benefit,
|
558 |
|
|
edge->callee->global.size,
|
559 |
|
|
inline_summary (edge->callee)->size_inlining_benefit);
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
/* Always prefer inlining saving code size. */
|
563 |
|
|
if (growth <= 0)
|
564 |
|
|
{
|
565 |
|
|
badness = INT_MIN - growth;
|
566 |
|
|
if (dump)
|
567 |
|
|
fprintf (dump_file, " %i: Growth %i < 0\n", (int) badness,
|
568 |
|
|
growth);
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* When profiling is available, base priorities -(#calls / growth).
|
572 |
|
|
So we optimize for overall number of "executed" inlined calls. */
|
573 |
|
|
else if (max_count)
|
574 |
|
|
{
|
575 |
|
|
badness =
|
576 |
|
|
((int)
|
577 |
|
|
((double) edge->count * INT_MIN / max_count / (max_benefit + 1)) *
|
578 |
|
|
(inline_summary (edge->callee)->time_inlining_benefit + 1)) / growth;
|
579 |
|
|
if (dump)
|
580 |
|
|
{
|
581 |
|
|
fprintf (dump_file,
|
582 |
|
|
" %i (relative %f): profile info. Relative count %f"
|
583 |
|
|
" * Relative benefit %f\n",
|
584 |
|
|
(int) badness, (double) badness / INT_MIN,
|
585 |
|
|
(double) edge->count / max_count,
|
586 |
|
|
(double) (inline_summary (edge->callee)->
|
587 |
|
|
time_inlining_benefit + 1) / (max_benefit + 1));
|
588 |
|
|
}
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
/* When function local profile is available, base priorities on
|
592 |
|
|
growth / frequency, so we optimize for overall frequency of inlined
|
593 |
|
|
calls. This is not too accurate since while the call might be frequent
|
594 |
|
|
within function, the function itself is infrequent.
|
595 |
|
|
|
596 |
|
|
Other objective to optimize for is number of different calls inlined.
|
597 |
|
|
We add the estimated growth after inlining all functions to bias the
|
598 |
|
|
priorities slightly in this direction (so fewer times called functions
|
599 |
|
|
of the same size gets priority). */
|
600 |
|
|
else if (flag_guess_branch_prob)
|
601 |
|
|
{
|
602 |
|
|
int div = edge->frequency * 100 / CGRAPH_FREQ_BASE + 1;
|
603 |
|
|
int benefitperc;
|
604 |
|
|
int growth_for_all;
|
605 |
|
|
badness = growth * 10000;
|
606 |
|
|
benefitperc =
|
607 |
|
|
MIN (100 * inline_summary (edge->callee)->time_inlining_benefit /
|
608 |
|
|
(edge->callee->global.time + 1) +1, 100);
|
609 |
|
|
div *= benefitperc;
|
610 |
|
|
|
611 |
|
|
|
612 |
|
|
/* Decrease badness if call is nested. */
|
613 |
|
|
/* Compress the range so we don't overflow. */
|
614 |
|
|
if (div > 10000)
|
615 |
|
|
div = 10000 + ceil_log2 (div) - 8;
|
616 |
|
|
if (div < 1)
|
617 |
|
|
div = 1;
|
618 |
|
|
if (badness > 0)
|
619 |
|
|
badness /= div;
|
620 |
|
|
growth_for_all = cgraph_estimate_growth (edge->callee);
|
621 |
|
|
badness += growth_for_all;
|
622 |
|
|
if (badness > INT_MAX)
|
623 |
|
|
badness = INT_MAX;
|
624 |
|
|
if (dump)
|
625 |
|
|
{
|
626 |
|
|
fprintf (dump_file,
|
627 |
|
|
" %i: guessed profile. frequency %i, overall growth %i,"
|
628 |
|
|
" benefit %i%%, divisor %i\n",
|
629 |
|
|
(int) badness, edge->frequency, growth_for_all, benefitperc, div);
|
630 |
|
|
}
|
631 |
|
|
}
|
632 |
|
|
/* When function local profile is not available or it does not give
|
633 |
|
|
useful information (ie frequency is zero), base the cost on
|
634 |
|
|
loop nest and overall size growth, so we optimize for overall number
|
635 |
|
|
of functions fully inlined in program. */
|
636 |
|
|
else
|
637 |
|
|
{
|
638 |
|
|
int nest = MIN (edge->loop_nest, 8);
|
639 |
|
|
badness = cgraph_estimate_growth (edge->callee) * 256;
|
640 |
|
|
|
641 |
|
|
/* Decrease badness if call is nested. */
|
642 |
|
|
if (badness > 0)
|
643 |
|
|
badness >>= nest;
|
644 |
|
|
else
|
645 |
|
|
{
|
646 |
|
|
badness <<= nest;
|
647 |
|
|
}
|
648 |
|
|
if (dump)
|
649 |
|
|
fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
|
650 |
|
|
nest);
|
651 |
|
|
}
|
652 |
|
|
|
653 |
|
|
/* Make recursive inlining happen always after other inlining is done. */
|
654 |
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL))
|
655 |
|
|
return badness + 1;
|
656 |
|
|
else
|
657 |
|
|
return badness;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
/* Recompute heap nodes for each of caller edge. */
|
661 |
|
|
|
662 |
|
|
static void
|
663 |
|
|
update_caller_keys (fibheap_t heap, struct cgraph_node *node,
|
664 |
|
|
bitmap updated_nodes)
|
665 |
|
|
{
|
666 |
|
|
struct cgraph_edge *edge;
|
667 |
|
|
cgraph_inline_failed_t failed_reason;
|
668 |
|
|
|
669 |
|
|
if (!node->local.inlinable || node->local.disregard_inline_limits
|
670 |
|
|
|| node->global.inlined_to)
|
671 |
|
|
return;
|
672 |
|
|
if (bitmap_bit_p (updated_nodes, node->uid))
|
673 |
|
|
return;
|
674 |
|
|
bitmap_set_bit (updated_nodes, node->uid);
|
675 |
|
|
node->global.estimated_growth = INT_MIN;
|
676 |
|
|
|
677 |
|
|
if (!node->local.inlinable)
|
678 |
|
|
return;
|
679 |
|
|
/* See if there is something to do. */
|
680 |
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
681 |
|
|
if (edge->inline_failed)
|
682 |
|
|
break;
|
683 |
|
|
if (!edge)
|
684 |
|
|
return;
|
685 |
|
|
/* Prune out edges we won't inline into anymore. */
|
686 |
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
687 |
|
|
{
|
688 |
|
|
for (; edge; edge = edge->next_caller)
|
689 |
|
|
if (edge->aux)
|
690 |
|
|
{
|
691 |
|
|
fibheap_delete_node (heap, (fibnode_t) edge->aux);
|
692 |
|
|
edge->aux = NULL;
|
693 |
|
|
if (edge->inline_failed)
|
694 |
|
|
edge->inline_failed = failed_reason;
|
695 |
|
|
}
|
696 |
|
|
return;
|
697 |
|
|
}
|
698 |
|
|
|
699 |
|
|
for (; edge; edge = edge->next_caller)
|
700 |
|
|
if (edge->inline_failed)
|
701 |
|
|
{
|
702 |
|
|
int badness = cgraph_edge_badness (edge, false);
|
703 |
|
|
if (edge->aux)
|
704 |
|
|
{
|
705 |
|
|
fibnode_t n = (fibnode_t) edge->aux;
|
706 |
|
|
gcc_assert (n->data == edge);
|
707 |
|
|
if (n->key == badness)
|
708 |
|
|
continue;
|
709 |
|
|
|
710 |
|
|
/* fibheap_replace_key only decrease the keys.
|
711 |
|
|
When we increase the key we do not update heap
|
712 |
|
|
and instead re-insert the element once it becomes
|
713 |
|
|
a minium of heap. */
|
714 |
|
|
if (badness < n->key)
|
715 |
|
|
{
|
716 |
|
|
fibheap_replace_key (heap, n, badness);
|
717 |
|
|
gcc_assert (n->key == badness);
|
718 |
|
|
continue;
|
719 |
|
|
}
|
720 |
|
|
}
|
721 |
|
|
else
|
722 |
|
|
edge->aux = fibheap_insert (heap, badness, edge);
|
723 |
|
|
}
|
724 |
|
|
}
|
725 |
|
|
|
726 |
|
|
/* Recompute heap nodes for each of caller edges of each of callees.
|
727 |
|
|
Walk recursively into all inline clones. */
|
728 |
|
|
|
729 |
|
|
static void
|
730 |
|
|
update_callee_keys (fibheap_t heap, struct cgraph_node *node,
|
731 |
|
|
bitmap updated_nodes)
|
732 |
|
|
{
|
733 |
|
|
struct cgraph_edge *e = node->callees;
|
734 |
|
|
node->global.estimated_growth = INT_MIN;
|
735 |
|
|
|
736 |
|
|
if (!e)
|
737 |
|
|
return;
|
738 |
|
|
while (true)
|
739 |
|
|
if (!e->inline_failed && e->callee->callees)
|
740 |
|
|
e = e->callee->callees;
|
741 |
|
|
else
|
742 |
|
|
{
|
743 |
|
|
if (e->inline_failed)
|
744 |
|
|
update_caller_keys (heap, e->callee, updated_nodes);
|
745 |
|
|
if (e->next_callee)
|
746 |
|
|
e = e->next_callee;
|
747 |
|
|
else
|
748 |
|
|
{
|
749 |
|
|
do
|
750 |
|
|
{
|
751 |
|
|
if (e->caller == node)
|
752 |
|
|
return;
|
753 |
|
|
e = e->caller->callers;
|
754 |
|
|
}
|
755 |
|
|
while (!e->next_callee);
|
756 |
|
|
e = e->next_callee;
|
757 |
|
|
}
|
758 |
|
|
}
|
759 |
|
|
}
|
760 |
|
|
|
761 |
|
|
/* Enqueue all recursive calls from NODE into priority queue depending on
|
762 |
|
|
how likely we want to recursively inline the call. */
|
763 |
|
|
|
764 |
|
|
static void
|
765 |
|
|
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
|
766 |
|
|
fibheap_t heap)
|
767 |
|
|
{
|
768 |
|
|
static int priority;
|
769 |
|
|
struct cgraph_edge *e;
|
770 |
|
|
for (e = where->callees; e; e = e->next_callee)
|
771 |
|
|
if (e->callee == node)
|
772 |
|
|
{
|
773 |
|
|
/* When profile feedback is available, prioritize by expected number
|
774 |
|
|
of calls. Without profile feedback we maintain simple queue
|
775 |
|
|
to order candidates via recursive depths. */
|
776 |
|
|
fibheap_insert (heap,
|
777 |
|
|
!max_count ? priority++
|
778 |
|
|
: -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
|
779 |
|
|
e);
|
780 |
|
|
}
|
781 |
|
|
for (e = where->callees; e; e = e->next_callee)
|
782 |
|
|
if (!e->inline_failed)
|
783 |
|
|
lookup_recursive_calls (node, e->callee, heap);
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
/* Decide on recursive inlining: in the case function has recursive calls,
|
787 |
|
|
inline until body size reaches given argument. If any new indirect edges
|
788 |
|
|
are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
|
789 |
|
|
is NULL. */
|
790 |
|
|
|
791 |
|
|
static bool
|
792 |
|
|
cgraph_decide_recursive_inlining (struct cgraph_node *node,
|
793 |
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
794 |
|
|
{
|
795 |
|
|
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
|
796 |
|
|
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
|
797 |
|
|
int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY);
|
798 |
|
|
fibheap_t heap;
|
799 |
|
|
struct cgraph_edge *e;
|
800 |
|
|
struct cgraph_node *master_clone, *next;
|
801 |
|
|
int depth = 0;
|
802 |
|
|
int n = 0;
|
803 |
|
|
|
804 |
|
|
if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION (node->decl))
|
805 |
|
|
|| (!flag_inline_functions && !DECL_DECLARED_INLINE_P (node->decl)))
|
806 |
|
|
return false;
|
807 |
|
|
|
808 |
|
|
if (DECL_DECLARED_INLINE_P (node->decl))
|
809 |
|
|
{
|
810 |
|
|
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
|
811 |
|
|
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
|
812 |
|
|
}
|
813 |
|
|
|
814 |
|
|
/* Make sure that function is small enough to be considered for inlining. */
|
815 |
|
|
if (!max_depth
|
816 |
|
|
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
|
817 |
|
|
return false;
|
818 |
|
|
heap = fibheap_new ();
|
819 |
|
|
lookup_recursive_calls (node, node, heap);
|
820 |
|
|
if (fibheap_empty (heap))
|
821 |
|
|
{
|
822 |
|
|
fibheap_delete (heap);
|
823 |
|
|
return false;
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
if (dump_file)
|
827 |
|
|
fprintf (dump_file,
|
828 |
|
|
" Performing recursive inlining on %s\n",
|
829 |
|
|
cgraph_node_name (node));
|
830 |
|
|
|
831 |
|
|
/* We need original clone to copy around. */
|
832 |
|
|
master_clone = cgraph_clone_node (node, node->count, CGRAPH_FREQ_BASE, 1,
|
833 |
|
|
false, NULL);
|
834 |
|
|
master_clone->needed = true;
|
835 |
|
|
for (e = master_clone->callees; e; e = e->next_callee)
|
836 |
|
|
if (!e->inline_failed)
|
837 |
|
|
cgraph_clone_inlined_nodes (e, true, false);
|
838 |
|
|
|
839 |
|
|
/* Do the inlining and update list of recursive call during process. */
|
840 |
|
|
while (!fibheap_empty (heap)
|
841 |
|
|
&& (cgraph_estimate_size_after_inlining (1, node, master_clone)
|
842 |
|
|
<= limit))
|
843 |
|
|
{
|
844 |
|
|
struct cgraph_edge *curr
|
845 |
|
|
= (struct cgraph_edge *) fibheap_extract_min (heap);
|
846 |
|
|
struct cgraph_node *cnode;
|
847 |
|
|
|
848 |
|
|
depth = 1;
|
849 |
|
|
for (cnode = curr->caller;
|
850 |
|
|
cnode->global.inlined_to; cnode = cnode->callers->caller)
|
851 |
|
|
if (node->decl == curr->callee->decl)
|
852 |
|
|
depth++;
|
853 |
|
|
if (depth > max_depth)
|
854 |
|
|
{
|
855 |
|
|
if (dump_file)
|
856 |
|
|
fprintf (dump_file,
|
857 |
|
|
" maximal depth reached\n");
|
858 |
|
|
continue;
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
if (max_count)
|
862 |
|
|
{
|
863 |
|
|
if (!cgraph_maybe_hot_edge_p (curr))
|
864 |
|
|
{
|
865 |
|
|
if (dump_file)
|
866 |
|
|
fprintf (dump_file, " Not inlining cold call\n");
|
867 |
|
|
continue;
|
868 |
|
|
}
|
869 |
|
|
if (curr->count * 100 / node->count < probability)
|
870 |
|
|
{
|
871 |
|
|
if (dump_file)
|
872 |
|
|
fprintf (dump_file,
|
873 |
|
|
" Probability of edge is too small\n");
|
874 |
|
|
continue;
|
875 |
|
|
}
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
if (dump_file)
|
879 |
|
|
{
|
880 |
|
|
fprintf (dump_file,
|
881 |
|
|
" Inlining call of depth %i", depth);
|
882 |
|
|
if (node->count)
|
883 |
|
|
{
|
884 |
|
|
fprintf (dump_file, " called approx. %.2f times per call",
|
885 |
|
|
(double)curr->count / node->count);
|
886 |
|
|
}
|
887 |
|
|
fprintf (dump_file, "\n");
|
888 |
|
|
}
|
889 |
|
|
cgraph_redirect_edge_callee (curr, master_clone);
|
890 |
|
|
cgraph_mark_inline_edge (curr, false, new_edges);
|
891 |
|
|
lookup_recursive_calls (node, curr->callee, heap);
|
892 |
|
|
n++;
|
893 |
|
|
}
|
894 |
|
|
if (!fibheap_empty (heap) && dump_file)
|
895 |
|
|
fprintf (dump_file, " Recursive inlining growth limit met.\n");
|
896 |
|
|
|
897 |
|
|
fibheap_delete (heap);
|
898 |
|
|
if (dump_file)
|
899 |
|
|
fprintf (dump_file,
|
900 |
|
|
"\n Inlined %i times, body grown from size %i to %i, time %i to %i\n", n,
|
901 |
|
|
master_clone->global.size, node->global.size,
|
902 |
|
|
master_clone->global.time, node->global.time);
|
903 |
|
|
|
904 |
|
|
/* Remove master clone we used for inlining. We rely that clones inlined
|
905 |
|
|
into master clone gets queued just before master clone so we don't
|
906 |
|
|
need recursion. */
|
907 |
|
|
for (node = cgraph_nodes; node != master_clone;
|
908 |
|
|
node = next)
|
909 |
|
|
{
|
910 |
|
|
next = node->next;
|
911 |
|
|
if (node->global.inlined_to == master_clone)
|
912 |
|
|
cgraph_remove_node (node);
|
913 |
|
|
}
|
914 |
|
|
cgraph_remove_node (master_clone);
|
915 |
|
|
/* FIXME: Recursive inlining actually reduces number of calls of the
|
916 |
|
|
function. At this place we should probably walk the function and
|
917 |
|
|
inline clones and compensate the counts accordingly. This probably
|
918 |
|
|
doesn't matter much in practice. */
|
919 |
|
|
return n > 0;
|
920 |
|
|
}
|
921 |
|
|
|
922 |
|
|
/* Set inline_failed for all callers of given function to REASON. */
|
923 |
|
|
|
924 |
|
|
static void
|
925 |
|
|
cgraph_set_inline_failed (struct cgraph_node *node,
|
926 |
|
|
cgraph_inline_failed_t reason)
|
927 |
|
|
{
|
928 |
|
|
struct cgraph_edge *e;
|
929 |
|
|
|
930 |
|
|
if (dump_file)
|
931 |
|
|
fprintf (dump_file, "Inlining failed: %s\n",
|
932 |
|
|
cgraph_inline_failed_string (reason));
|
933 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
934 |
|
|
if (e->inline_failed)
|
935 |
|
|
e->inline_failed = reason;
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
/* Given whole compilation unit estimate of INSNS, compute how large we can
|
939 |
|
|
allow the unit to grow. */
|
940 |
|
|
static int
|
941 |
|
|
compute_max_insns (int insns)
|
942 |
|
|
{
|
943 |
|
|
int max_insns = insns;
|
944 |
|
|
if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
|
945 |
|
|
max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
|
946 |
|
|
|
947 |
|
|
return ((HOST_WIDEST_INT) max_insns
|
948 |
|
|
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
/* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
|
952 |
|
|
static void
|
953 |
|
|
add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
|
954 |
|
|
{
|
955 |
|
|
while (VEC_length (cgraph_edge_p, new_edges) > 0)
|
956 |
|
|
{
|
957 |
|
|
struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
|
958 |
|
|
|
959 |
|
|
gcc_assert (!edge->aux);
|
960 |
|
|
if (edge->callee->local.inlinable
|
961 |
|
|
&& cgraph_default_inline_p (edge->callee, &edge->inline_failed))
|
962 |
|
|
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge, false), edge);
|
963 |
|
|
}
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
|
967 |
|
|
/* We use greedy algorithm for inlining of small functions:
|
968 |
|
|
All inline candidates are put into prioritized heap based on estimated
|
969 |
|
|
growth of the overall number of instructions and then update the estimates.
|
970 |
|
|
|
971 |
|
|
INLINED and INLINED_CALEES are just pointers to arrays large enough
|
972 |
|
|
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
|
973 |
|
|
|
974 |
|
|
static void
|
975 |
|
|
cgraph_decide_inlining_of_small_functions (void)
|
976 |
|
|
{
|
977 |
|
|
struct cgraph_node *node;
|
978 |
|
|
struct cgraph_edge *edge;
|
979 |
|
|
cgraph_inline_failed_t failed_reason;
|
980 |
|
|
fibheap_t heap = fibheap_new ();
|
981 |
|
|
bitmap updated_nodes = BITMAP_ALLOC (NULL);
|
982 |
|
|
int min_size, max_size;
|
983 |
|
|
VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
|
984 |
|
|
|
985 |
|
|
if (flag_indirect_inlining)
|
986 |
|
|
new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
|
987 |
|
|
|
988 |
|
|
if (dump_file)
|
989 |
|
|
fprintf (dump_file, "\nDeciding on smaller functions:\n");
|
990 |
|
|
|
991 |
|
|
/* Put all inline candidates into the heap. */
|
992 |
|
|
|
993 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
994 |
|
|
{
|
995 |
|
|
if (!node->local.inlinable || !node->callers
|
996 |
|
|
|| node->local.disregard_inline_limits)
|
997 |
|
|
continue;
|
998 |
|
|
if (dump_file)
|
999 |
|
|
fprintf (dump_file, "Considering inline candidate %s.\n", cgraph_node_name (node));
|
1000 |
|
|
|
1001 |
|
|
node->global.estimated_growth = INT_MIN;
|
1002 |
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
1003 |
|
|
{
|
1004 |
|
|
cgraph_set_inline_failed (node, failed_reason);
|
1005 |
|
|
continue;
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
1009 |
|
|
if (edge->inline_failed)
|
1010 |
|
|
{
|
1011 |
|
|
gcc_assert (!edge->aux);
|
1012 |
|
|
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge, false), edge);
|
1013 |
|
|
}
|
1014 |
|
|
}
|
1015 |
|
|
|
1016 |
|
|
max_size = compute_max_insns (overall_size);
|
1017 |
|
|
min_size = overall_size;
|
1018 |
|
|
|
1019 |
|
|
while (overall_size <= max_size
|
1020 |
|
|
&& !fibheap_empty (heap))
|
1021 |
|
|
{
|
1022 |
|
|
int old_size = overall_size;
|
1023 |
|
|
struct cgraph_node *where, *callee;
|
1024 |
|
|
int badness = fibheap_min_key (heap);
|
1025 |
|
|
int current_badness;
|
1026 |
|
|
int growth;
|
1027 |
|
|
cgraph_inline_failed_t not_good = CIF_OK;
|
1028 |
|
|
|
1029 |
|
|
edge = (struct cgraph_edge *) fibheap_extract_min (heap);
|
1030 |
|
|
gcc_assert (edge->aux);
|
1031 |
|
|
edge->aux = NULL;
|
1032 |
|
|
if (!edge->inline_failed)
|
1033 |
|
|
continue;
|
1034 |
|
|
|
1035 |
|
|
/* When updating the edge costs, we only decrease badness in the keys.
|
1036 |
|
|
When the badness increase, we keep the heap as it is and re-insert
|
1037 |
|
|
key now. */
|
1038 |
|
|
current_badness = cgraph_edge_badness (edge, false);
|
1039 |
|
|
gcc_assert (current_badness >= badness);
|
1040 |
|
|
if (current_badness != badness)
|
1041 |
|
|
{
|
1042 |
|
|
edge->aux = fibheap_insert (heap, current_badness, edge);
|
1043 |
|
|
continue;
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
callee = edge->callee;
|
1047 |
|
|
|
1048 |
|
|
growth = (cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee)
|
1049 |
|
|
- edge->caller->global.size);
|
1050 |
|
|
|
1051 |
|
|
if (dump_file)
|
1052 |
|
|
{
|
1053 |
|
|
fprintf (dump_file,
|
1054 |
|
|
"\nConsidering %s with %i size\n",
|
1055 |
|
|
cgraph_node_name (edge->callee),
|
1056 |
|
|
edge->callee->global.size);
|
1057 |
|
|
fprintf (dump_file,
|
1058 |
|
|
" to be inlined into %s in %s:%i\n"
|
1059 |
|
|
" Estimated growth after inlined into all callees is %+i insns.\n"
|
1060 |
|
|
" Estimated badness is %i, frequency %.2f.\n",
|
1061 |
|
|
cgraph_node_name (edge->caller),
|
1062 |
|
|
flag_wpa ? "unknown"
|
1063 |
|
|
: gimple_filename ((const_gimple) edge->call_stmt),
|
1064 |
|
|
flag_wpa ? -1 : gimple_lineno ((const_gimple) edge->call_stmt),
|
1065 |
|
|
cgraph_estimate_growth (edge->callee),
|
1066 |
|
|
badness,
|
1067 |
|
|
edge->frequency / (double)CGRAPH_FREQ_BASE);
|
1068 |
|
|
if (edge->count)
|
1069 |
|
|
fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
|
1070 |
|
|
if (dump_flags & TDF_DETAILS)
|
1071 |
|
|
cgraph_edge_badness (edge, true);
|
1072 |
|
|
}
|
1073 |
|
|
|
1074 |
|
|
/* When not having profile info ready we don't weight by any way the
|
1075 |
|
|
position of call in procedure itself. This means if call of
|
1076 |
|
|
function A from function B seems profitable to inline, the recursive
|
1077 |
|
|
call of function A in inline copy of A in B will look profitable too
|
1078 |
|
|
and we end up inlining until reaching maximal function growth. This
|
1079 |
|
|
is not good idea so prohibit the recursive inlining.
|
1080 |
|
|
|
1081 |
|
|
??? When the frequencies are taken into account we might not need this
|
1082 |
|
|
restriction.
|
1083 |
|
|
|
1084 |
|
|
We need to be cureful here, in some testcases, e.g. directivec.c in
|
1085 |
|
|
libcpp, we can estimate self recursive function to have negative growth
|
1086 |
|
|
for inlining completely.
|
1087 |
|
|
*/
|
1088 |
|
|
if (!edge->count)
|
1089 |
|
|
{
|
1090 |
|
|
where = edge->caller;
|
1091 |
|
|
while (where->global.inlined_to)
|
1092 |
|
|
{
|
1093 |
|
|
if (where->decl == edge->callee->decl)
|
1094 |
|
|
break;
|
1095 |
|
|
where = where->callers->caller;
|
1096 |
|
|
}
|
1097 |
|
|
if (where->global.inlined_to)
|
1098 |
|
|
{
|
1099 |
|
|
edge->inline_failed
|
1100 |
|
|
= (edge->callee->local.disregard_inline_limits
|
1101 |
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
1102 |
|
|
if (dump_file)
|
1103 |
|
|
fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n");
|
1104 |
|
|
continue;
|
1105 |
|
|
}
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
if (!cgraph_maybe_hot_edge_p (edge))
|
1109 |
|
|
not_good = CIF_UNLIKELY_CALL;
|
1110 |
|
|
if (!flag_inline_functions
|
1111 |
|
|
&& !DECL_DECLARED_INLINE_P (edge->callee->decl))
|
1112 |
|
|
not_good = CIF_NOT_DECLARED_INLINED;
|
1113 |
|
|
if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION(edge->caller->decl)))
|
1114 |
|
|
not_good = CIF_OPTIMIZING_FOR_SIZE;
|
1115 |
|
|
if (not_good && growth > 0 && cgraph_estimate_growth (edge->callee) > 0)
|
1116 |
|
|
{
|
1117 |
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
1118 |
|
|
&edge->inline_failed))
|
1119 |
|
|
{
|
1120 |
|
|
edge->inline_failed = not_good;
|
1121 |
|
|
if (dump_file)
|
1122 |
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
1123 |
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
1124 |
|
|
}
|
1125 |
|
|
continue;
|
1126 |
|
|
}
|
1127 |
|
|
if (!cgraph_default_inline_p (edge->callee, &edge->inline_failed))
|
1128 |
|
|
{
|
1129 |
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
1130 |
|
|
&edge->inline_failed))
|
1131 |
|
|
{
|
1132 |
|
|
if (dump_file)
|
1133 |
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
1134 |
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
1135 |
|
|
}
|
1136 |
|
|
continue;
|
1137 |
|
|
}
|
1138 |
|
|
if (!tree_can_inline_p (edge))
|
1139 |
|
|
{
|
1140 |
|
|
if (dump_file)
|
1141 |
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
1142 |
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
1143 |
|
|
continue;
|
1144 |
|
|
}
|
1145 |
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
1146 |
|
|
&edge->inline_failed))
|
1147 |
|
|
{
|
1148 |
|
|
where = edge->caller;
|
1149 |
|
|
if (where->global.inlined_to)
|
1150 |
|
|
where = where->global.inlined_to;
|
1151 |
|
|
if (!cgraph_decide_recursive_inlining (where,
|
1152 |
|
|
flag_indirect_inlining
|
1153 |
|
|
? &new_indirect_edges : NULL))
|
1154 |
|
|
continue;
|
1155 |
|
|
if (flag_indirect_inlining)
|
1156 |
|
|
add_new_edges_to_heap (heap, new_indirect_edges);
|
1157 |
|
|
update_callee_keys (heap, where, updated_nodes);
|
1158 |
|
|
}
|
1159 |
|
|
else
|
1160 |
|
|
{
|
1161 |
|
|
struct cgraph_node *callee;
|
1162 |
|
|
if (edge->call_stmt_cannot_inline_p
|
1163 |
|
|
|| !cgraph_check_inline_limits (edge->caller, edge->callee,
|
1164 |
|
|
&edge->inline_failed, true))
|
1165 |
|
|
{
|
1166 |
|
|
if (dump_file)
|
1167 |
|
|
fprintf (dump_file, " Not inlining into %s:%s.\n",
|
1168 |
|
|
cgraph_node_name (edge->caller),
|
1169 |
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
1170 |
|
|
continue;
|
1171 |
|
|
}
|
1172 |
|
|
callee = edge->callee;
|
1173 |
|
|
cgraph_mark_inline_edge (edge, true, &new_indirect_edges);
|
1174 |
|
|
if (flag_indirect_inlining)
|
1175 |
|
|
add_new_edges_to_heap (heap, new_indirect_edges);
|
1176 |
|
|
|
1177 |
|
|
update_callee_keys (heap, callee, updated_nodes);
|
1178 |
|
|
}
|
1179 |
|
|
where = edge->caller;
|
1180 |
|
|
if (where->global.inlined_to)
|
1181 |
|
|
where = where->global.inlined_to;
|
1182 |
|
|
|
1183 |
|
|
/* Our profitability metric can depend on local properties
|
1184 |
|
|
such as number of inlinable calls and size of the function body.
|
1185 |
|
|
After inlining these properties might change for the function we
|
1186 |
|
|
inlined into (since it's body size changed) and for the functions
|
1187 |
|
|
called by function we inlined (since number of it inlinable callers
|
1188 |
|
|
might change). */
|
1189 |
|
|
update_caller_keys (heap, where, updated_nodes);
|
1190 |
|
|
|
1191 |
|
|
/* We removed one call of the function we just inlined. If offline
|
1192 |
|
|
copy is still needed, be sure to update the keys. */
|
1193 |
|
|
if (callee != where && !callee->global.inlined_to)
|
1194 |
|
|
update_caller_keys (heap, callee, updated_nodes);
|
1195 |
|
|
bitmap_clear (updated_nodes);
|
1196 |
|
|
|
1197 |
|
|
if (dump_file)
|
1198 |
|
|
{
|
1199 |
|
|
fprintf (dump_file,
|
1200 |
|
|
" Inlined into %s which now has size %i and self time %i,"
|
1201 |
|
|
"net change of %+i.\n",
|
1202 |
|
|
cgraph_node_name (edge->caller),
|
1203 |
|
|
edge->caller->global.time,
|
1204 |
|
|
edge->caller->global.size,
|
1205 |
|
|
overall_size - old_size);
|
1206 |
|
|
}
|
1207 |
|
|
if (min_size > overall_size)
|
1208 |
|
|
{
|
1209 |
|
|
min_size = overall_size;
|
1210 |
|
|
max_size = compute_max_insns (min_size);
|
1211 |
|
|
|
1212 |
|
|
if (dump_file)
|
1213 |
|
|
fprintf (dump_file, "New minimal size reached: %i\n", min_size);
|
1214 |
|
|
}
|
1215 |
|
|
}
|
1216 |
|
|
while ((edge = (struct cgraph_edge *) fibheap_extract_min (heap)) != NULL)
|
1217 |
|
|
{
|
1218 |
|
|
gcc_assert (edge->aux);
|
1219 |
|
|
edge->aux = NULL;
|
1220 |
|
|
if (!edge->callee->local.disregard_inline_limits && edge->inline_failed
|
1221 |
|
|
&& !cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
1222 |
|
|
&edge->inline_failed))
|
1223 |
|
|
edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
|
1224 |
|
|
}
|
1225 |
|
|
|
1226 |
|
|
if (new_indirect_edges)
|
1227 |
|
|
VEC_free (cgraph_edge_p, heap, new_indirect_edges);
|
1228 |
|
|
fibheap_delete (heap);
|
1229 |
|
|
BITMAP_FREE (updated_nodes);
|
1230 |
|
|
}
|
1231 |
|
|
|
1232 |
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
1233 |
|
|
expenses on updating data structures. */
|
1234 |
|
|
|
1235 |
|
|
static unsigned int
|
1236 |
|
|
cgraph_decide_inlining (void)
|
1237 |
|
|
{
|
1238 |
|
|
struct cgraph_node *node;
|
1239 |
|
|
int nnodes;
|
1240 |
|
|
struct cgraph_node **order =
|
1241 |
|
|
XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
|
1242 |
|
|
int old_size = 0;
|
1243 |
|
|
int i;
|
1244 |
|
|
bool redo_always_inline = true;
|
1245 |
|
|
int initial_size = 0;
|
1246 |
|
|
|
1247 |
|
|
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
|
1248 |
|
|
if (in_lto_p && flag_indirect_inlining)
|
1249 |
|
|
ipa_update_after_lto_read ();
|
1250 |
|
|
|
1251 |
|
|
max_count = 0;
|
1252 |
|
|
max_benefit = 0;
|
1253 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
1254 |
|
|
if (node->analyzed)
|
1255 |
|
|
{
|
1256 |
|
|
struct cgraph_edge *e;
|
1257 |
|
|
|
1258 |
|
|
gcc_assert (inline_summary (node)->self_size == node->global.size);
|
1259 |
|
|
initial_size += node->global.size;
|
1260 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
1261 |
|
|
if (max_count < e->count)
|
1262 |
|
|
max_count = e->count;
|
1263 |
|
|
if (max_benefit < inline_summary (node)->time_inlining_benefit)
|
1264 |
|
|
max_benefit = inline_summary (node)->time_inlining_benefit;
|
1265 |
|
|
}
|
1266 |
|
|
gcc_assert (in_lto_p
|
1267 |
|
|
|| !max_count
|
1268 |
|
|
|| (profile_info && flag_branch_probabilities));
|
1269 |
|
|
overall_size = initial_size;
|
1270 |
|
|
|
1271 |
|
|
nnodes = cgraph_postorder (order);
|
1272 |
|
|
|
1273 |
|
|
if (dump_file)
|
1274 |
|
|
fprintf (dump_file,
|
1275 |
|
|
"\nDeciding on inlining. Starting with size %i.\n",
|
1276 |
|
|
initial_size);
|
1277 |
|
|
|
1278 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
1279 |
|
|
node->aux = 0;
|
1280 |
|
|
|
1281 |
|
|
if (dump_file)
|
1282 |
|
|
fprintf (dump_file, "\nInlining always_inline functions:\n");
|
1283 |
|
|
|
1284 |
|
|
/* In the first pass mark all always_inline edges. Do this with a priority
|
1285 |
|
|
so none of our later choices will make this impossible. */
|
1286 |
|
|
while (redo_always_inline)
|
1287 |
|
|
{
|
1288 |
|
|
redo_always_inline = false;
|
1289 |
|
|
for (i = nnodes - 1; i >= 0; i--)
|
1290 |
|
|
{
|
1291 |
|
|
struct cgraph_edge *e, *next;
|
1292 |
|
|
|
1293 |
|
|
node = order[i];
|
1294 |
|
|
|
1295 |
|
|
/* Handle nodes to be flattened, but don't update overall unit
|
1296 |
|
|
size. */
|
1297 |
|
|
if (lookup_attribute ("flatten",
|
1298 |
|
|
DECL_ATTRIBUTES (node->decl)) != NULL)
|
1299 |
|
|
{
|
1300 |
|
|
if (dump_file)
|
1301 |
|
|
fprintf (dump_file,
|
1302 |
|
|
"Flattening %s\n", cgraph_node_name (node));
|
1303 |
|
|
cgraph_decide_inlining_incrementally (node, INLINE_ALL, 0);
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
if (!node->local.disregard_inline_limits)
|
1307 |
|
|
continue;
|
1308 |
|
|
if (dump_file)
|
1309 |
|
|
fprintf (dump_file,
|
1310 |
|
|
"\nConsidering %s size:%i (always inline)\n",
|
1311 |
|
|
cgraph_node_name (node), node->global.size);
|
1312 |
|
|
old_size = overall_size;
|
1313 |
|
|
for (e = node->callers; e; e = next)
|
1314 |
|
|
{
|
1315 |
|
|
next = e->next_caller;
|
1316 |
|
|
if (!e->inline_failed || e->call_stmt_cannot_inline_p)
|
1317 |
|
|
continue;
|
1318 |
|
|
if (cgraph_recursive_inlining_p (e->caller, e->callee,
|
1319 |
|
|
&e->inline_failed))
|
1320 |
|
|
continue;
|
1321 |
|
|
if (!tree_can_inline_p (e))
|
1322 |
|
|
continue;
|
1323 |
|
|
if (cgraph_mark_inline_edge (e, true, NULL))
|
1324 |
|
|
redo_always_inline = true;
|
1325 |
|
|
if (dump_file)
|
1326 |
|
|
fprintf (dump_file,
|
1327 |
|
|
" Inlined into %s which now has size %i.\n",
|
1328 |
|
|
cgraph_node_name (e->caller),
|
1329 |
|
|
e->caller->global.size);
|
1330 |
|
|
}
|
1331 |
|
|
/* Inlining self recursive function might introduce new calls to
|
1332 |
|
|
themselves we didn't see in the loop above. Fill in the proper
|
1333 |
|
|
reason why inline failed. */
|
1334 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
1335 |
|
|
if (e->inline_failed)
|
1336 |
|
|
e->inline_failed = CIF_RECURSIVE_INLINING;
|
1337 |
|
|
if (dump_file)
|
1338 |
|
|
fprintf (dump_file,
|
1339 |
|
|
" Inlined for a net change of %+i size.\n",
|
1340 |
|
|
overall_size - old_size);
|
1341 |
|
|
}
|
1342 |
|
|
}
|
1343 |
|
|
|
1344 |
|
|
cgraph_decide_inlining_of_small_functions ();
|
1345 |
|
|
|
1346 |
|
|
if (flag_inline_functions_called_once)
|
1347 |
|
|
{
|
1348 |
|
|
if (dump_file)
|
1349 |
|
|
fprintf (dump_file, "\nDeciding on functions called once:\n");
|
1350 |
|
|
|
1351 |
|
|
/* And finally decide what functions are called once. */
|
1352 |
|
|
for (i = nnodes - 1; i >= 0; i--)
|
1353 |
|
|
{
|
1354 |
|
|
node = order[i];
|
1355 |
|
|
|
1356 |
|
|
if (node->callers
|
1357 |
|
|
&& !node->callers->next_caller
|
1358 |
|
|
&& cgraph_only_called_directly_p (node)
|
1359 |
|
|
&& node->local.inlinable
|
1360 |
|
|
&& node->callers->inline_failed
|
1361 |
|
|
&& node->callers->caller != node
|
1362 |
|
|
&& node->callers->caller->global.inlined_to != node
|
1363 |
|
|
&& !node->callers->call_stmt_cannot_inline_p
|
1364 |
|
|
&& !DECL_EXTERNAL (node->decl)
|
1365 |
|
|
&& !DECL_COMDAT (node->decl))
|
1366 |
|
|
{
|
1367 |
|
|
cgraph_inline_failed_t reason;
|
1368 |
|
|
old_size = overall_size;
|
1369 |
|
|
if (dump_file)
|
1370 |
|
|
{
|
1371 |
|
|
fprintf (dump_file,
|
1372 |
|
|
"\nConsidering %s size %i.\n",
|
1373 |
|
|
cgraph_node_name (node), node->global.size);
|
1374 |
|
|
fprintf (dump_file,
|
1375 |
|
|
" Called once from %s %i insns.\n",
|
1376 |
|
|
cgraph_node_name (node->callers->caller),
|
1377 |
|
|
node->callers->caller->global.size);
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
if (cgraph_check_inline_limits (node->callers->caller, node,
|
1381 |
|
|
&reason, false))
|
1382 |
|
|
{
|
1383 |
|
|
cgraph_mark_inline (node->callers);
|
1384 |
|
|
if (dump_file)
|
1385 |
|
|
fprintf (dump_file,
|
1386 |
|
|
" Inlined into %s which now has %i size"
|
1387 |
|
|
" for a net change of %+i size.\n",
|
1388 |
|
|
cgraph_node_name (node->callers->caller),
|
1389 |
|
|
node->callers->caller->global.size,
|
1390 |
|
|
overall_size - old_size);
|
1391 |
|
|
}
|
1392 |
|
|
else
|
1393 |
|
|
{
|
1394 |
|
|
if (dump_file)
|
1395 |
|
|
fprintf (dump_file,
|
1396 |
|
|
" Not inlining: %s.\n",
|
1397 |
|
|
cgraph_inline_failed_string (reason));
|
1398 |
|
|
}
|
1399 |
|
|
}
|
1400 |
|
|
}
|
1401 |
|
|
}
|
1402 |
|
|
|
1403 |
|
|
/* Free ipa-prop structures if they are no longer needed. */
|
1404 |
|
|
if (flag_indirect_inlining)
|
1405 |
|
|
free_all_ipa_structures_after_iinln ();
|
1406 |
|
|
|
1407 |
|
|
if (dump_file)
|
1408 |
|
|
fprintf (dump_file,
|
1409 |
|
|
"\nInlined %i calls, eliminated %i functions, "
|
1410 |
|
|
"size %i turned to %i size.\n\n",
|
1411 |
|
|
ncalls_inlined, nfunctions_inlined, initial_size,
|
1412 |
|
|
overall_size);
|
1413 |
|
|
free (order);
|
1414 |
|
|
return 0;
|
1415 |
|
|
}
|
1416 |
|
|
|
1417 |
|
|
/* Try to inline edge E from incremental inliner. MODE specifies mode
|
1418 |
|
|
of inliner.
|
1419 |
|
|
|
1420 |
|
|
We are detecting cycles by storing mode of inliner into cgraph_node last
|
1421 |
|
|
time we visited it in the recursion. In general when mode is set, we have
|
1422 |
|
|
recursive inlining, but as an special case, we want to try harder inline
|
1423 |
|
|
ALWAYS_INLINE functions: consider callgraph a->b->c->b, with a being
|
1424 |
|
|
flatten, b being always inline. Flattening 'a' will collapse
|
1425 |
|
|
a->b->c before hitting cycle. To accommodate always inline, we however
|
1426 |
|
|
need to inline a->b->c->b.
|
1427 |
|
|
|
1428 |
|
|
So after hitting cycle first time, we switch into ALWAYS_INLINE mode and
|
1429 |
|
|
stop inlining only after hitting ALWAYS_INLINE in ALWAY_INLINE mode. */
|
1430 |
|
|
static bool
|
1431 |
|
|
try_inline (struct cgraph_edge *e, enum inlining_mode mode, int depth)
|
1432 |
|
|
{
|
1433 |
|
|
struct cgraph_node *callee = e->callee;
|
1434 |
|
|
enum inlining_mode callee_mode = (enum inlining_mode) (size_t) callee->aux;
|
1435 |
|
|
bool always_inline = e->callee->local.disregard_inline_limits;
|
1436 |
|
|
bool inlined = false;
|
1437 |
|
|
|
1438 |
|
|
/* We've hit cycle? */
|
1439 |
|
|
if (callee_mode)
|
1440 |
|
|
{
|
1441 |
|
|
/* It is first time we see it and we are not in ALWAY_INLINE only
|
1442 |
|
|
mode yet. and the function in question is always_inline. */
|
1443 |
|
|
if (always_inline && mode != INLINE_ALWAYS_INLINE)
|
1444 |
|
|
{
|
1445 |
|
|
if (dump_file)
|
1446 |
|
|
{
|
1447 |
|
|
indent_to (dump_file, depth);
|
1448 |
|
|
fprintf (dump_file,
|
1449 |
|
|
"Hit cycle in %s, switching to always inline only.\n",
|
1450 |
|
|
cgraph_node_name (callee));
|
1451 |
|
|
}
|
1452 |
|
|
mode = INLINE_ALWAYS_INLINE;
|
1453 |
|
|
}
|
1454 |
|
|
/* Otherwise it is time to give up. */
|
1455 |
|
|
else
|
1456 |
|
|
{
|
1457 |
|
|
if (dump_file)
|
1458 |
|
|
{
|
1459 |
|
|
indent_to (dump_file, depth);
|
1460 |
|
|
fprintf (dump_file,
|
1461 |
|
|
"Not inlining %s into %s to avoid cycle.\n",
|
1462 |
|
|
cgraph_node_name (callee),
|
1463 |
|
|
cgraph_node_name (e->caller));
|
1464 |
|
|
}
|
1465 |
|
|
e->inline_failed = (e->callee->local.disregard_inline_limits
|
1466 |
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
1467 |
|
|
return false;
|
1468 |
|
|
}
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
callee->aux = (void *)(size_t) mode;
|
1472 |
|
|
if (dump_file)
|
1473 |
|
|
{
|
1474 |
|
|
indent_to (dump_file, depth);
|
1475 |
|
|
fprintf (dump_file, " Inlining %s into %s.\n",
|
1476 |
|
|
cgraph_node_name (e->callee),
|
1477 |
|
|
cgraph_node_name (e->caller));
|
1478 |
|
|
}
|
1479 |
|
|
if (e->inline_failed)
|
1480 |
|
|
{
|
1481 |
|
|
cgraph_mark_inline (e);
|
1482 |
|
|
|
1483 |
|
|
/* In order to fully inline always_inline functions, we need to
|
1484 |
|
|
recurse here, since the inlined functions might not be processed by
|
1485 |
|
|
incremental inlining at all yet.
|
1486 |
|
|
|
1487 |
|
|
Also flattening needs to be done recursively. */
|
1488 |
|
|
|
1489 |
|
|
if (mode == INLINE_ALL || always_inline)
|
1490 |
|
|
cgraph_decide_inlining_incrementally (e->callee, mode, depth + 1);
|
1491 |
|
|
inlined = true;
|
1492 |
|
|
}
|
1493 |
|
|
callee->aux = (void *)(size_t) callee_mode;
|
1494 |
|
|
return inlined;
|
1495 |
|
|
}
|
1496 |
|
|
|
1497 |
|
|
/* Return true when N is leaf function. Accept cheap (pure&const) builtins
|
1498 |
|
|
in leaf functions. */
|
1499 |
|
|
static bool
|
1500 |
|
|
leaf_node_p (struct cgraph_node *n)
|
1501 |
|
|
{
|
1502 |
|
|
struct cgraph_edge *e;
|
1503 |
|
|
for (e = n->callees; e; e = e->next_callee)
|
1504 |
|
|
if (!DECL_BUILT_IN (e->callee->decl)
|
1505 |
|
|
|| (!TREE_READONLY (e->callee->decl)
|
1506 |
|
|
|| DECL_PURE_P (e->callee->decl)))
|
1507 |
|
|
return false;
|
1508 |
|
|
return true;
|
1509 |
|
|
}
|
1510 |
|
|
|
1511 |
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
1512 |
|
|
expenses on updating data structures.
|
1513 |
|
|
DEPTH is depth of recursion, used only for debug output. */
|
1514 |
|
|
|
1515 |
|
|
static bool
|
1516 |
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *node,
|
1517 |
|
|
enum inlining_mode mode,
|
1518 |
|
|
int depth)
|
1519 |
|
|
{
|
1520 |
|
|
struct cgraph_edge *e;
|
1521 |
|
|
bool inlined = false;
|
1522 |
|
|
cgraph_inline_failed_t failed_reason;
|
1523 |
|
|
enum inlining_mode old_mode;
|
1524 |
|
|
|
1525 |
|
|
#ifdef ENABLE_CHECKING
|
1526 |
|
|
verify_cgraph_node (node);
|
1527 |
|
|
#endif
|
1528 |
|
|
|
1529 |
|
|
old_mode = (enum inlining_mode) (size_t)node->aux;
|
1530 |
|
|
|
1531 |
|
|
if (mode != INLINE_ALWAYS_INLINE && mode != INLINE_SIZE_NORECURSIVE
|
1532 |
|
|
&& lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL)
|
1533 |
|
|
{
|
1534 |
|
|
if (dump_file)
|
1535 |
|
|
{
|
1536 |
|
|
indent_to (dump_file, depth);
|
1537 |
|
|
fprintf (dump_file, "Flattening %s\n", cgraph_node_name (node));
|
1538 |
|
|
}
|
1539 |
|
|
mode = INLINE_ALL;
|
1540 |
|
|
}
|
1541 |
|
|
|
1542 |
|
|
node->aux = (void *)(size_t) mode;
|
1543 |
|
|
|
1544 |
|
|
/* First of all look for always inline functions. */
|
1545 |
|
|
if (mode != INLINE_SIZE_NORECURSIVE)
|
1546 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
1547 |
|
|
{
|
1548 |
|
|
if (!e->callee->local.disregard_inline_limits
|
1549 |
|
|
&& (mode != INLINE_ALL || !e->callee->local.inlinable))
|
1550 |
|
|
continue;
|
1551 |
|
|
if (e->call_stmt_cannot_inline_p)
|
1552 |
|
|
continue;
|
1553 |
|
|
/* When the edge is already inlined, we just need to recurse into
|
1554 |
|
|
it in order to fully flatten the leaves. */
|
1555 |
|
|
if (!e->inline_failed && mode == INLINE_ALL)
|
1556 |
|
|
{
|
1557 |
|
|
inlined |= try_inline (e, mode, depth);
|
1558 |
|
|
continue;
|
1559 |
|
|
}
|
1560 |
|
|
if (dump_file)
|
1561 |
|
|
{
|
1562 |
|
|
indent_to (dump_file, depth);
|
1563 |
|
|
fprintf (dump_file,
|
1564 |
|
|
"Considering to always inline inline candidate %s.\n",
|
1565 |
|
|
cgraph_node_name (e->callee));
|
1566 |
|
|
}
|
1567 |
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
1568 |
|
|
{
|
1569 |
|
|
if (dump_file)
|
1570 |
|
|
{
|
1571 |
|
|
indent_to (dump_file, depth);
|
1572 |
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
1573 |
|
|
}
|
1574 |
|
|
continue;
|
1575 |
|
|
}
|
1576 |
|
|
if (!tree_can_inline_p (e))
|
1577 |
|
|
{
|
1578 |
|
|
if (dump_file)
|
1579 |
|
|
{
|
1580 |
|
|
indent_to (dump_file, depth);
|
1581 |
|
|
fprintf (dump_file,
|
1582 |
|
|
"Not inlining: %s",
|
1583 |
|
|
cgraph_inline_failed_string (e->inline_failed));
|
1584 |
|
|
}
|
1585 |
|
|
continue;
|
1586 |
|
|
}
|
1587 |
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
1588 |
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
1589 |
|
|
{
|
1590 |
|
|
if (dump_file)
|
1591 |
|
|
{
|
1592 |
|
|
indent_to (dump_file, depth);
|
1593 |
|
|
fprintf (dump_file, "Not inlining: SSA form does not match.\n");
|
1594 |
|
|
}
|
1595 |
|
|
continue;
|
1596 |
|
|
}
|
1597 |
|
|
if (!e->callee->analyzed)
|
1598 |
|
|
{
|
1599 |
|
|
if (dump_file)
|
1600 |
|
|
{
|
1601 |
|
|
indent_to (dump_file, depth);
|
1602 |
|
|
fprintf (dump_file,
|
1603 |
|
|
"Not inlining: Function body no longer available.\n");
|
1604 |
|
|
}
|
1605 |
|
|
continue;
|
1606 |
|
|
}
|
1607 |
|
|
inlined |= try_inline (e, mode, depth);
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
/* Now do the automatic inlining. */
|
1611 |
|
|
if (mode != INLINE_ALL && mode != INLINE_ALWAYS_INLINE
|
1612 |
|
|
/* Never inline regular functions into always-inline functions
|
1613 |
|
|
during incremental inlining. */
|
1614 |
|
|
&& !node->local.disregard_inline_limits)
|
1615 |
|
|
{
|
1616 |
|
|
bitmap visited = BITMAP_ALLOC (NULL);
|
1617 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
1618 |
|
|
{
|
1619 |
|
|
int allowed_growth = 0;
|
1620 |
|
|
if (!e->callee->local.inlinable
|
1621 |
|
|
|| !e->inline_failed
|
1622 |
|
|
|| e->callee->local.disregard_inline_limits)
|
1623 |
|
|
continue;
|
1624 |
|
|
/* We are inlining a function to all call-sites in node
|
1625 |
|
|
or to none. So visit each candidate only once. */
|
1626 |
|
|
if (!bitmap_set_bit (visited, e->callee->uid))
|
1627 |
|
|
continue;
|
1628 |
|
|
if (dump_file)
|
1629 |
|
|
fprintf (dump_file, "Considering inline candidate %s.\n",
|
1630 |
|
|
cgraph_node_name (e->callee));
|
1631 |
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
1632 |
|
|
{
|
1633 |
|
|
if (dump_file)
|
1634 |
|
|
{
|
1635 |
|
|
indent_to (dump_file, depth);
|
1636 |
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
1637 |
|
|
}
|
1638 |
|
|
continue;
|
1639 |
|
|
}
|
1640 |
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
1641 |
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
1642 |
|
|
{
|
1643 |
|
|
if (dump_file)
|
1644 |
|
|
{
|
1645 |
|
|
indent_to (dump_file, depth);
|
1646 |
|
|
fprintf (dump_file,
|
1647 |
|
|
"Not inlining: SSA form does not match.\n");
|
1648 |
|
|
}
|
1649 |
|
|
continue;
|
1650 |
|
|
}
|
1651 |
|
|
|
1652 |
|
|
if (cgraph_maybe_hot_edge_p (e) && leaf_node_p (e->callee)
|
1653 |
|
|
&& optimize_function_for_speed_p (cfun))
|
1654 |
|
|
allowed_growth = PARAM_VALUE (PARAM_EARLY_INLINING_INSNS);
|
1655 |
|
|
|
1656 |
|
|
/* When the function body would grow and inlining the function
|
1657 |
|
|
won't eliminate the need for offline copy of the function,
|
1658 |
|
|
don't inline. */
|
1659 |
|
|
if (((mode == INLINE_SIZE || mode == INLINE_SIZE_NORECURSIVE)
|
1660 |
|
|
|| (!flag_inline_functions
|
1661 |
|
|
&& !DECL_DECLARED_INLINE_P (e->callee->decl)))
|
1662 |
|
|
&& (cgraph_estimate_size_after_inlining (1, e->caller, e->callee)
|
1663 |
|
|
> e->caller->global.size + allowed_growth)
|
1664 |
|
|
&& cgraph_estimate_growth (e->callee) > allowed_growth)
|
1665 |
|
|
{
|
1666 |
|
|
if (dump_file)
|
1667 |
|
|
{
|
1668 |
|
|
indent_to (dump_file, depth);
|
1669 |
|
|
fprintf (dump_file,
|
1670 |
|
|
"Not inlining: code size would grow by %i.\n",
|
1671 |
|
|
cgraph_estimate_size_after_inlining (1, e->caller,
|
1672 |
|
|
e->callee)
|
1673 |
|
|
- e->caller->global.size);
|
1674 |
|
|
}
|
1675 |
|
|
continue;
|
1676 |
|
|
}
|
1677 |
|
|
if (!cgraph_check_inline_limits (node, e->callee, &e->inline_failed,
|
1678 |
|
|
false)
|
1679 |
|
|
|| e->call_stmt_cannot_inline_p)
|
1680 |
|
|
{
|
1681 |
|
|
if (dump_file)
|
1682 |
|
|
{
|
1683 |
|
|
indent_to (dump_file, depth);
|
1684 |
|
|
fprintf (dump_file, "Not inlining: %s.\n",
|
1685 |
|
|
cgraph_inline_failed_string (e->inline_failed));
|
1686 |
|
|
}
|
1687 |
|
|
continue;
|
1688 |
|
|
}
|
1689 |
|
|
if (!e->callee->analyzed)
|
1690 |
|
|
{
|
1691 |
|
|
if (dump_file)
|
1692 |
|
|
{
|
1693 |
|
|
indent_to (dump_file, depth);
|
1694 |
|
|
fprintf (dump_file,
|
1695 |
|
|
"Not inlining: Function body no longer available.\n");
|
1696 |
|
|
}
|
1697 |
|
|
continue;
|
1698 |
|
|
}
|
1699 |
|
|
if (!tree_can_inline_p (e))
|
1700 |
|
|
{
|
1701 |
|
|
if (dump_file)
|
1702 |
|
|
{
|
1703 |
|
|
indent_to (dump_file, depth);
|
1704 |
|
|
fprintf (dump_file,
|
1705 |
|
|
"Not inlining: %s.",
|
1706 |
|
|
cgraph_inline_failed_string (e->inline_failed));
|
1707 |
|
|
}
|
1708 |
|
|
continue;
|
1709 |
|
|
}
|
1710 |
|
|
if (cgraph_default_inline_p (e->callee, &failed_reason))
|
1711 |
|
|
inlined |= try_inline (e, mode, depth);
|
1712 |
|
|
}
|
1713 |
|
|
BITMAP_FREE (visited);
|
1714 |
|
|
}
|
1715 |
|
|
node->aux = (void *)(size_t) old_mode;
|
1716 |
|
|
return inlined;
|
1717 |
|
|
}
|
1718 |
|
|
|
1719 |
|
|
/* Because inlining might remove no-longer reachable nodes, we need to
|
1720 |
|
|
keep the array visible to garbage collector to avoid reading collected
|
1721 |
|
|
out nodes. */
|
1722 |
|
|
static int nnodes;
|
1723 |
|
|
static GTY ((length ("nnodes"))) struct cgraph_node **order;
|
1724 |
|
|
|
1725 |
|
|
/* Do inlining of small functions. Doing so early helps profiling and other
|
1726 |
|
|
passes to be somewhat more effective and avoids some code duplication in
|
1727 |
|
|
later real inlining pass for testcases with very many function calls. */
|
1728 |
|
|
static unsigned int
|
1729 |
|
|
cgraph_early_inlining (void)
|
1730 |
|
|
{
|
1731 |
|
|
struct cgraph_node *node = cgraph_node (current_function_decl);
|
1732 |
|
|
unsigned int todo = 0;
|
1733 |
|
|
int iterations = 0;
|
1734 |
|
|
|
1735 |
|
|
if (sorrycount || errorcount)
|
1736 |
|
|
return 0;
|
1737 |
|
|
while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
|
1738 |
|
|
&& cgraph_decide_inlining_incrementally (node,
|
1739 |
|
|
iterations
|
1740 |
|
|
? INLINE_SIZE_NORECURSIVE : INLINE_SIZE, 0))
|
1741 |
|
|
{
|
1742 |
|
|
timevar_push (TV_INTEGRATION);
|
1743 |
|
|
todo |= optimize_inline_calls (current_function_decl);
|
1744 |
|
|
iterations++;
|
1745 |
|
|
timevar_pop (TV_INTEGRATION);
|
1746 |
|
|
}
|
1747 |
|
|
if (dump_file)
|
1748 |
|
|
fprintf (dump_file, "Iterations: %i\n", iterations);
|
1749 |
|
|
cfun->always_inline_functions_inlined = true;
|
1750 |
|
|
return todo;
|
1751 |
|
|
}
|
1752 |
|
|
|
1753 |
|
|
/* When inlining shall be performed. */
|
1754 |
|
|
static bool
|
1755 |
|
|
cgraph_gate_early_inlining (void)
|
1756 |
|
|
{
|
1757 |
|
|
return flag_early_inlining;
|
1758 |
|
|
}
|
1759 |
|
|
|
1760 |
|
|
struct gimple_opt_pass pass_early_inline =
|
1761 |
|
|
{
|
1762 |
|
|
{
|
1763 |
|
|
GIMPLE_PASS,
|
1764 |
|
|
"einline", /* name */
|
1765 |
|
|
cgraph_gate_early_inlining, /* gate */
|
1766 |
|
|
cgraph_early_inlining, /* execute */
|
1767 |
|
|
NULL, /* sub */
|
1768 |
|
|
NULL, /* next */
|
1769 |
|
|
0, /* static_pass_number */
|
1770 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
1771 |
|
|
0, /* properties_required */
|
1772 |
|
|
0, /* properties_provided */
|
1773 |
|
|
0, /* properties_destroyed */
|
1774 |
|
|
0, /* todo_flags_start */
|
1775 |
|
|
TODO_dump_func /* todo_flags_finish */
|
1776 |
|
|
}
|
1777 |
|
|
};
|
1778 |
|
|
|
1779 |
|
|
/* When inlining shall be performed. */
|
1780 |
|
|
static bool
|
1781 |
|
|
cgraph_gate_ipa_early_inlining (void)
|
1782 |
|
|
{
|
1783 |
|
|
return (flag_early_inlining
|
1784 |
|
|
&& !in_lto_p
|
1785 |
|
|
&& (flag_branch_probabilities || flag_test_coverage
|
1786 |
|
|
|| profile_arc_flag));
|
1787 |
|
|
}
|
1788 |
|
|
|
1789 |
|
|
/* IPA pass wrapper for early inlining pass. We need to run early inlining
|
1790 |
|
|
before tree profiling so we have stand alone IPA pass for doing so. */
|
1791 |
|
|
struct simple_ipa_opt_pass pass_ipa_early_inline =
|
1792 |
|
|
{
|
1793 |
|
|
{
|
1794 |
|
|
SIMPLE_IPA_PASS,
|
1795 |
|
|
"einline_ipa", /* name */
|
1796 |
|
|
cgraph_gate_ipa_early_inlining, /* gate */
|
1797 |
|
|
NULL, /* execute */
|
1798 |
|
|
NULL, /* sub */
|
1799 |
|
|
NULL, /* next */
|
1800 |
|
|
0, /* static_pass_number */
|
1801 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
1802 |
|
|
0, /* properties_required */
|
1803 |
|
|
0, /* properties_provided */
|
1804 |
|
|
0, /* properties_destroyed */
|
1805 |
|
|
0, /* todo_flags_start */
|
1806 |
|
|
TODO_dump_cgraph /* todo_flags_finish */
|
1807 |
|
|
}
|
1808 |
|
|
};
|
1809 |
|
|
|
1810 |
|
|
/* See if statement might disappear after inlining. We are not terribly
|
1811 |
|
|
sophisficated, basically looking for simple abstraction penalty wrappers. */
|
1812 |
|
|
|
1813 |
|
|
static bool
|
1814 |
|
|
likely_eliminated_by_inlining_p (gimple stmt)
|
1815 |
|
|
{
|
1816 |
|
|
enum gimple_code code = gimple_code (stmt);
|
1817 |
|
|
switch (code)
|
1818 |
|
|
{
|
1819 |
|
|
case GIMPLE_RETURN:
|
1820 |
|
|
return true;
|
1821 |
|
|
case GIMPLE_ASSIGN:
|
1822 |
|
|
if (gimple_num_ops (stmt) != 2)
|
1823 |
|
|
return false;
|
1824 |
|
|
|
1825 |
|
|
/* Casts of parameters, loads from parameters passed by reference
|
1826 |
|
|
and stores to return value or parameters are probably free after
|
1827 |
|
|
inlining. */
|
1828 |
|
|
if (gimple_assign_rhs_code (stmt) == CONVERT_EXPR
|
1829 |
|
|
|| gimple_assign_rhs_code (stmt) == NOP_EXPR
|
1830 |
|
|
|| gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR
|
1831 |
|
|
|| gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
1832 |
|
|
{
|
1833 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
1834 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
1835 |
|
|
tree inner_rhs = rhs;
|
1836 |
|
|
tree inner_lhs = lhs;
|
1837 |
|
|
bool rhs_free = false;
|
1838 |
|
|
bool lhs_free = false;
|
1839 |
|
|
|
1840 |
|
|
while (handled_component_p (inner_lhs) || TREE_CODE (inner_lhs) == INDIRECT_REF)
|
1841 |
|
|
inner_lhs = TREE_OPERAND (inner_lhs, 0);
|
1842 |
|
|
while (handled_component_p (inner_rhs)
|
1843 |
|
|
|| TREE_CODE (inner_rhs) == ADDR_EXPR || TREE_CODE (inner_rhs) == INDIRECT_REF)
|
1844 |
|
|
inner_rhs = TREE_OPERAND (inner_rhs, 0);
|
1845 |
|
|
|
1846 |
|
|
|
1847 |
|
|
if (TREE_CODE (inner_rhs) == PARM_DECL
|
1848 |
|
|
|| (TREE_CODE (inner_rhs) == SSA_NAME
|
1849 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (inner_rhs)
|
1850 |
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_rhs)) == PARM_DECL))
|
1851 |
|
|
rhs_free = true;
|
1852 |
|
|
if (rhs_free && is_gimple_reg (lhs))
|
1853 |
|
|
lhs_free = true;
|
1854 |
|
|
if (((TREE_CODE (inner_lhs) == PARM_DECL
|
1855 |
|
|
|| (TREE_CODE (inner_lhs) == SSA_NAME
|
1856 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (inner_lhs)
|
1857 |
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_lhs)) == PARM_DECL))
|
1858 |
|
|
&& inner_lhs != lhs)
|
1859 |
|
|
|| TREE_CODE (inner_lhs) == RESULT_DECL
|
1860 |
|
|
|| (TREE_CODE (inner_lhs) == SSA_NAME
|
1861 |
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_lhs)) == RESULT_DECL))
|
1862 |
|
|
lhs_free = true;
|
1863 |
|
|
if (lhs_free && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
|
1864 |
|
|
rhs_free = true;
|
1865 |
|
|
if (lhs_free && rhs_free)
|
1866 |
|
|
return true;
|
1867 |
|
|
}
|
1868 |
|
|
return false;
|
1869 |
|
|
default:
|
1870 |
|
|
return false;
|
1871 |
|
|
}
|
1872 |
|
|
}
|
1873 |
|
|
|
1874 |
|
|
/* Compute function body size parameters for NODE. */
|
1875 |
|
|
|
1876 |
|
|
static void
|
1877 |
|
|
estimate_function_body_sizes (struct cgraph_node *node)
|
1878 |
|
|
{
|
1879 |
|
|
gcov_type time = 0;
|
1880 |
|
|
gcov_type time_inlining_benefit = 0;
|
1881 |
|
|
int size = 0;
|
1882 |
|
|
int size_inlining_benefit = 0;
|
1883 |
|
|
basic_block bb;
|
1884 |
|
|
gimple_stmt_iterator bsi;
|
1885 |
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
1886 |
|
|
tree arg;
|
1887 |
|
|
int freq;
|
1888 |
|
|
tree funtype = TREE_TYPE (node->decl);
|
1889 |
|
|
|
1890 |
|
|
if (dump_file)
|
1891 |
|
|
fprintf (dump_file, "Analyzing function body size: %s\n",
|
1892 |
|
|
cgraph_node_name (node));
|
1893 |
|
|
|
1894 |
|
|
gcc_assert (my_function && my_function->cfg);
|
1895 |
|
|
FOR_EACH_BB_FN (bb, my_function)
|
1896 |
|
|
{
|
1897 |
|
|
freq = compute_call_stmt_bb_frequency (node->decl, bb);
|
1898 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
1899 |
|
|
{
|
1900 |
|
|
gimple stmt = gsi_stmt (bsi);
|
1901 |
|
|
int this_size = estimate_num_insns (stmt, &eni_size_weights);
|
1902 |
|
|
int this_time = estimate_num_insns (stmt, &eni_time_weights);
|
1903 |
|
|
|
1904 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1905 |
|
|
{
|
1906 |
|
|
fprintf (dump_file, " freq:%6i size:%3i time:%3i ",
|
1907 |
|
|
freq, this_size, this_time);
|
1908 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1909 |
|
|
}
|
1910 |
|
|
this_time *= freq;
|
1911 |
|
|
time += this_time;
|
1912 |
|
|
size += this_size;
|
1913 |
|
|
if (likely_eliminated_by_inlining_p (stmt))
|
1914 |
|
|
{
|
1915 |
|
|
size_inlining_benefit += this_size;
|
1916 |
|
|
time_inlining_benefit += this_time;
|
1917 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1918 |
|
|
fprintf (dump_file, " Likely eliminated\n");
|
1919 |
|
|
}
|
1920 |
|
|
gcc_assert (time >= 0);
|
1921 |
|
|
gcc_assert (size >= 0);
|
1922 |
|
|
}
|
1923 |
|
|
}
|
1924 |
|
|
time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
1925 |
|
|
time_inlining_benefit = ((time_inlining_benefit + CGRAPH_FREQ_BASE / 2)
|
1926 |
|
|
/ CGRAPH_FREQ_BASE);
|
1927 |
|
|
if (dump_file)
|
1928 |
|
|
fprintf (dump_file, "Overall function body time: %i-%i size: %i-%i\n",
|
1929 |
|
|
(int)time, (int)time_inlining_benefit,
|
1930 |
|
|
size, size_inlining_benefit);
|
1931 |
|
|
time_inlining_benefit += eni_time_weights.call_cost;
|
1932 |
|
|
size_inlining_benefit += eni_size_weights.call_cost;
|
1933 |
|
|
if (!VOID_TYPE_P (TREE_TYPE (funtype)))
|
1934 |
|
|
{
|
1935 |
|
|
int cost = estimate_move_cost (TREE_TYPE (funtype));
|
1936 |
|
|
time_inlining_benefit += cost;
|
1937 |
|
|
size_inlining_benefit += cost;
|
1938 |
|
|
}
|
1939 |
|
|
for (arg = DECL_ARGUMENTS (node->decl); arg; arg = TREE_CHAIN (arg))
|
1940 |
|
|
if (!VOID_TYPE_P (TREE_TYPE (arg)))
|
1941 |
|
|
{
|
1942 |
|
|
int cost = estimate_move_cost (TREE_TYPE (arg));
|
1943 |
|
|
time_inlining_benefit += cost;
|
1944 |
|
|
size_inlining_benefit += cost;
|
1945 |
|
|
}
|
1946 |
|
|
if (time_inlining_benefit > MAX_TIME)
|
1947 |
|
|
time_inlining_benefit = MAX_TIME;
|
1948 |
|
|
if (time > MAX_TIME)
|
1949 |
|
|
time = MAX_TIME;
|
1950 |
|
|
inline_summary (node)->self_time = time;
|
1951 |
|
|
inline_summary (node)->self_size = size;
|
1952 |
|
|
if (dump_file)
|
1953 |
|
|
fprintf (dump_file, "With function call overhead time: %i-%i size: %i-%i\n",
|
1954 |
|
|
(int)time, (int)time_inlining_benefit,
|
1955 |
|
|
size, size_inlining_benefit);
|
1956 |
|
|
inline_summary (node)->time_inlining_benefit = time_inlining_benefit;
|
1957 |
|
|
inline_summary (node)->size_inlining_benefit = size_inlining_benefit;
|
1958 |
|
|
}
|
1959 |
|
|
|
1960 |
|
|
/* Compute parameters of functions used by inliner. */
|
1961 |
|
|
unsigned int
|
1962 |
|
|
compute_inline_parameters (struct cgraph_node *node)
|
1963 |
|
|
{
|
1964 |
|
|
HOST_WIDE_INT self_stack_size;
|
1965 |
|
|
|
1966 |
|
|
gcc_assert (!node->global.inlined_to);
|
1967 |
|
|
|
1968 |
|
|
/* Estimate the stack size for the function. But not at -O0
|
1969 |
|
|
because estimated_stack_frame_size is a quadratic problem. */
|
1970 |
|
|
self_stack_size = optimize ? estimated_stack_frame_size () : 0;
|
1971 |
|
|
inline_summary (node)->estimated_self_stack_size = self_stack_size;
|
1972 |
|
|
node->global.estimated_stack_size = self_stack_size;
|
1973 |
|
|
node->global.stack_frame_offset = 0;
|
1974 |
|
|
|
1975 |
|
|
/* Can this function be inlined at all? */
|
1976 |
|
|
node->local.inlinable = tree_inlinable_function_p (node->decl);
|
1977 |
|
|
if (node->local.inlinable && !node->local.disregard_inline_limits)
|
1978 |
|
|
node->local.disregard_inline_limits
|
1979 |
|
|
= DECL_DISREGARD_INLINE_LIMITS (node->decl);
|
1980 |
|
|
estimate_function_body_sizes (node);
|
1981 |
|
|
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
|
1982 |
|
|
node->global.time = inline_summary (node)->self_time;
|
1983 |
|
|
node->global.size = inline_summary (node)->self_size;
|
1984 |
|
|
return 0;
|
1985 |
|
|
}
|
1986 |
|
|
|
1987 |
|
|
|
1988 |
|
|
/* Compute parameters of functions used by inliner using
|
1989 |
|
|
current_function_decl. */
|
1990 |
|
|
static unsigned int
|
1991 |
|
|
compute_inline_parameters_for_current (void)
|
1992 |
|
|
{
|
1993 |
|
|
compute_inline_parameters (cgraph_node (current_function_decl));
|
1994 |
|
|
return 0;
|
1995 |
|
|
}
|
1996 |
|
|
|
1997 |
|
|
struct gimple_opt_pass pass_inline_parameters =
|
1998 |
|
|
{
|
1999 |
|
|
{
|
2000 |
|
|
GIMPLE_PASS,
|
2001 |
|
|
"inline_param", /* name */
|
2002 |
|
|
NULL, /* gate */
|
2003 |
|
|
compute_inline_parameters_for_current,/* execute */
|
2004 |
|
|
NULL, /* sub */
|
2005 |
|
|
NULL, /* next */
|
2006 |
|
|
0, /* static_pass_number */
|
2007 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
2008 |
|
|
0, /* properties_required */
|
2009 |
|
|
0, /* properties_provided */
|
2010 |
|
|
0, /* properties_destroyed */
|
2011 |
|
|
0, /* todo_flags_start */
|
2012 |
|
|
|
2013 |
|
|
}
|
2014 |
|
|
};
|
2015 |
|
|
|
2016 |
|
|
/* This function performs intraprocedural analyzis in NODE that is required to
|
2017 |
|
|
inline indirect calls. */
|
2018 |
|
|
static void
|
2019 |
|
|
inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
|
2020 |
|
|
{
|
2021 |
|
|
struct cgraph_edge *cs;
|
2022 |
|
|
|
2023 |
|
|
if (!flag_ipa_cp)
|
2024 |
|
|
{
|
2025 |
|
|
ipa_initialize_node_params (node);
|
2026 |
|
|
ipa_detect_param_modifications (node);
|
2027 |
|
|
}
|
2028 |
|
|
ipa_analyze_params_uses (node);
|
2029 |
|
|
|
2030 |
|
|
if (!flag_ipa_cp)
|
2031 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
2032 |
|
|
{
|
2033 |
|
|
ipa_count_arguments (cs);
|
2034 |
|
|
ipa_compute_jump_functions (cs);
|
2035 |
|
|
}
|
2036 |
|
|
|
2037 |
|
|
if (dump_file)
|
2038 |
|
|
{
|
2039 |
|
|
ipa_print_node_params (dump_file, node);
|
2040 |
|
|
ipa_print_node_jump_functions (dump_file, node);
|
2041 |
|
|
}
|
2042 |
|
|
}
|
2043 |
|
|
|
2044 |
|
|
/* Note function body size. */
|
2045 |
|
|
static void
|
2046 |
|
|
analyze_function (struct cgraph_node *node)
|
2047 |
|
|
{
|
2048 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
2049 |
|
|
current_function_decl = node->decl;
|
2050 |
|
|
|
2051 |
|
|
compute_inline_parameters (node);
|
2052 |
|
|
if (flag_indirect_inlining)
|
2053 |
|
|
inline_indirect_intraprocedural_analysis (node);
|
2054 |
|
|
|
2055 |
|
|
current_function_decl = NULL;
|
2056 |
|
|
pop_cfun ();
|
2057 |
|
|
}
|
2058 |
|
|
|
2059 |
|
|
/* Called when new function is inserted to callgraph late. */
|
2060 |
|
|
static void
|
2061 |
|
|
add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
2062 |
|
|
{
|
2063 |
|
|
analyze_function (node);
|
2064 |
|
|
}
|
2065 |
|
|
|
2066 |
|
|
/* Note function body size. */
|
2067 |
|
|
static void
|
2068 |
|
|
inline_generate_summary (void)
|
2069 |
|
|
{
|
2070 |
|
|
struct cgraph_node *node;
|
2071 |
|
|
|
2072 |
|
|
function_insertion_hook_holder =
|
2073 |
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
2074 |
|
|
|
2075 |
|
|
if (flag_indirect_inlining)
|
2076 |
|
|
{
|
2077 |
|
|
ipa_register_cgraph_hooks ();
|
2078 |
|
|
ipa_check_create_node_params ();
|
2079 |
|
|
ipa_check_create_edge_args ();
|
2080 |
|
|
}
|
2081 |
|
|
|
2082 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
2083 |
|
|
if (node->analyzed)
|
2084 |
|
|
analyze_function (node);
|
2085 |
|
|
|
2086 |
|
|
return;
|
2087 |
|
|
}
|
2088 |
|
|
|
2089 |
|
|
/* Apply inline plan to function. */
|
2090 |
|
|
static unsigned int
|
2091 |
|
|
inline_transform (struct cgraph_node *node)
|
2092 |
|
|
{
|
2093 |
|
|
unsigned int todo = 0;
|
2094 |
|
|
struct cgraph_edge *e;
|
2095 |
|
|
|
2096 |
|
|
/* FIXME: Currently the passmanager is adding inline transform more than once to some
|
2097 |
|
|
clones. This needs revisiting after WPA cleanups. */
|
2098 |
|
|
if (cfun->after_inlining)
|
2099 |
|
|
return 0;
|
2100 |
|
|
|
2101 |
|
|
/* We might need the body of this function so that we can expand
|
2102 |
|
|
it inline somewhere else. */
|
2103 |
|
|
if (cgraph_preserve_function_body_p (node->decl))
|
2104 |
|
|
save_inline_function_body (node);
|
2105 |
|
|
|
2106 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
2107 |
|
|
if (!e->inline_failed || warn_inline)
|
2108 |
|
|
break;
|
2109 |
|
|
|
2110 |
|
|
if (e)
|
2111 |
|
|
{
|
2112 |
|
|
timevar_push (TV_INTEGRATION);
|
2113 |
|
|
todo = optimize_inline_calls (current_function_decl);
|
2114 |
|
|
timevar_pop (TV_INTEGRATION);
|
2115 |
|
|
}
|
2116 |
|
|
cfun->always_inline_functions_inlined = true;
|
2117 |
|
|
cfun->after_inlining = true;
|
2118 |
|
|
return todo | execute_fixup_cfg ();
|
2119 |
|
|
}
|
2120 |
|
|
|
2121 |
|
|
/* Read inline summary. Jump functions are shared among ipa-cp
|
2122 |
|
|
and inliner, so when ipa-cp is active, we don't need to write them
|
2123 |
|
|
twice. */
|
2124 |
|
|
|
2125 |
|
|
static void
|
2126 |
|
|
inline_read_summary (void)
|
2127 |
|
|
{
|
2128 |
|
|
if (flag_indirect_inlining)
|
2129 |
|
|
{
|
2130 |
|
|
ipa_register_cgraph_hooks ();
|
2131 |
|
|
if (!flag_ipa_cp)
|
2132 |
|
|
ipa_prop_read_jump_functions ();
|
2133 |
|
|
}
|
2134 |
|
|
function_insertion_hook_holder =
|
2135 |
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
2136 |
|
|
}
|
2137 |
|
|
|
2138 |
|
|
/* Write inline summary for node in SET.
|
2139 |
|
|
Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
|
2140 |
|
|
active, we don't need to write them twice. */
|
2141 |
|
|
|
2142 |
|
|
static void
|
2143 |
|
|
inline_write_summary (cgraph_node_set set)
|
2144 |
|
|
{
|
2145 |
|
|
if (flag_indirect_inlining && !flag_ipa_cp)
|
2146 |
|
|
ipa_prop_write_jump_functions (set);
|
2147 |
|
|
}
|
2148 |
|
|
|
2149 |
|
|
struct ipa_opt_pass_d pass_ipa_inline =
|
2150 |
|
|
{
|
2151 |
|
|
{
|
2152 |
|
|
IPA_PASS,
|
2153 |
|
|
"inline", /* name */
|
2154 |
|
|
NULL, /* gate */
|
2155 |
|
|
cgraph_decide_inlining, /* execute */
|
2156 |
|
|
NULL, /* sub */
|
2157 |
|
|
NULL, /* next */
|
2158 |
|
|
0, /* static_pass_number */
|
2159 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
2160 |
|
|
0, /* properties_required */
|
2161 |
|
|
0, /* properties_provided */
|
2162 |
|
|
0, /* properties_destroyed */
|
2163 |
|
|
TODO_remove_functions, /* todo_flags_finish */
|
2164 |
|
|
TODO_dump_cgraph | TODO_dump_func
|
2165 |
|
|
| TODO_remove_functions /* todo_flags_finish */
|
2166 |
|
|
},
|
2167 |
|
|
inline_generate_summary, /* generate_summary */
|
2168 |
|
|
inline_write_summary, /* write_summary */
|
2169 |
|
|
inline_read_summary, /* read_summary */
|
2170 |
|
|
NULL, /* function_read_summary */
|
2171 |
|
|
lto_ipa_fixup_call_notes, /* stmt_fixup */
|
2172 |
|
|
0, /* TODOs */
|
2173 |
|
|
inline_transform, /* function_transform */
|
2174 |
|
|
NULL, /* variable_transform */
|
2175 |
|
|
};
|
2176 |
|
|
|
2177 |
|
|
|
2178 |
|
|
#include "gt-ipa-inline.h"
|