| 1 |
280 |
jeremybenn |
/* Inlining decision heuristics.
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Jan Hubicka
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
/* Inlining decision heuristics
|
| 23 |
|
|
|
| 24 |
|
|
We separate inlining decisions from the inliner itself and store it
|
| 25 |
|
|
inside callgraph as so called inline plan. Refer to cgraph.c
|
| 26 |
|
|
documentation about particular representation of inline plans in the
|
| 27 |
|
|
callgraph.
|
| 28 |
|
|
|
| 29 |
|
|
There are three major parts of this file:
|
| 30 |
|
|
|
| 31 |
|
|
cgraph_mark_inline implementation
|
| 32 |
|
|
|
| 33 |
|
|
This function allows to mark given call inline and performs necessary
|
| 34 |
|
|
modifications of cgraph (production of the clones and updating overall
|
| 35 |
|
|
statistics)
|
| 36 |
|
|
|
| 37 |
|
|
inlining heuristics limits
|
| 38 |
|
|
|
| 39 |
|
|
These functions allow to check that particular inlining is allowed
|
| 40 |
|
|
by the limits specified by user (allowed function growth, overall unit
|
| 41 |
|
|
growth and so on).
|
| 42 |
|
|
|
| 43 |
|
|
inlining heuristics
|
| 44 |
|
|
|
| 45 |
|
|
This is implementation of IPA pass aiming to get as much of benefit
|
| 46 |
|
|
from inlining obeying the limits checked above.
|
| 47 |
|
|
|
| 48 |
|
|
The implementation of particular heuristics is separated from
|
| 49 |
|
|
the rest of code to make it easier to replace it with more complicated
|
| 50 |
|
|
implementation in the future. The rest of inlining code acts as a
|
| 51 |
|
|
library aimed to modify the callgraph and verify that the parameters
|
| 52 |
|
|
on code size growth fits.
|
| 53 |
|
|
|
| 54 |
|
|
To mark given call inline, use cgraph_mark_inline function, the
|
| 55 |
|
|
verification is performed by cgraph_default_inline_p and
|
| 56 |
|
|
cgraph_check_inline_limits.
|
| 57 |
|
|
|
| 58 |
|
|
The heuristics implements simple knapsack style algorithm ordering
|
| 59 |
|
|
all functions by their "profitability" (estimated by code size growth)
|
| 60 |
|
|
and inlining them in priority order.
|
| 61 |
|
|
|
| 62 |
|
|
cgraph_decide_inlining implements heuristics taking whole callgraph
|
| 63 |
|
|
into account, while cgraph_decide_inlining_incrementally considers
|
| 64 |
|
|
only one function at a time and is used by early inliner.
|
| 65 |
|
|
|
| 66 |
|
|
The inliner itself is split into several passes:
|
| 67 |
|
|
|
| 68 |
|
|
pass_inline_parameters
|
| 69 |
|
|
|
| 70 |
|
|
This pass computes local properties of functions that are used by inliner:
|
| 71 |
|
|
estimated function body size, whether function is inlinable at all and
|
| 72 |
|
|
stack frame consumption.
|
| 73 |
|
|
|
| 74 |
|
|
Before executing any of inliner passes, this local pass has to be applied
|
| 75 |
|
|
to each function in the callgraph (ie run as subpass of some earlier
|
| 76 |
|
|
IPA pass). The results are made out of date by any optimization applied
|
| 77 |
|
|
on the function body.
|
| 78 |
|
|
|
| 79 |
|
|
pass_early_inlining
|
| 80 |
|
|
|
| 81 |
|
|
Simple local inlining pass inlining callees into current function. This
|
| 82 |
|
|
pass makes no global whole compilation unit analysis and this when allowed
|
| 83 |
|
|
to do inlining expanding code size it might result in unbounded growth of
|
| 84 |
|
|
whole unit.
|
| 85 |
|
|
|
| 86 |
|
|
The pass is run during conversion into SSA form. Only functions already
|
| 87 |
|
|
converted into SSA form are inlined, so the conversion must happen in
|
| 88 |
|
|
topological order on the callgraph (that is maintained by pass manager).
|
| 89 |
|
|
The functions after inlining are early optimized so the early inliner sees
|
| 90 |
|
|
unoptimized function itself, but all considered callees are already
|
| 91 |
|
|
optimized allowing it to unfold abstraction penalty on C++ effectively and
|
| 92 |
|
|
cheaply.
|
| 93 |
|
|
|
| 94 |
|
|
pass_ipa_early_inlining
|
| 95 |
|
|
|
| 96 |
|
|
With profiling, the early inlining is also necessary to reduce
|
| 97 |
|
|
instrumentation costs on program with high abstraction penalty (doing
|
| 98 |
|
|
many redundant calls). This can't happen in parallel with early
|
| 99 |
|
|
optimization and profile instrumentation, because we would end up
|
| 100 |
|
|
re-instrumenting already instrumented function bodies we brought in via
|
| 101 |
|
|
inlining.
|
| 102 |
|
|
|
| 103 |
|
|
To avoid this, this pass is executed as IPA pass before profiling. It is
|
| 104 |
|
|
simple wrapper to pass_early_inlining and ensures first inlining.
|
| 105 |
|
|
|
| 106 |
|
|
pass_ipa_inline
|
| 107 |
|
|
|
| 108 |
|
|
This is the main pass implementing simple greedy algorithm to do inlining
|
| 109 |
|
|
of small functions that results in overall growth of compilation unit and
|
| 110 |
|
|
inlining of functions called once. The pass compute just so called inline
|
| 111 |
|
|
plan (representation of inlining to be done in callgraph) and unlike early
|
| 112 |
|
|
inlining it is not performing the inlining itself.
|
| 113 |
|
|
|
| 114 |
|
|
pass_apply_inline
|
| 115 |
|
|
|
| 116 |
|
|
This pass performs actual inlining according to pass_ipa_inline on given
|
| 117 |
|
|
function. Possible the function body before inlining is saved when it is
|
| 118 |
|
|
needed for further inlining later.
|
| 119 |
|
|
*/
|
| 120 |
|
|
|
| 121 |
|
|
#include "config.h"
|
| 122 |
|
|
#include "system.h"
|
| 123 |
|
|
#include "coretypes.h"
|
| 124 |
|
|
#include "tm.h"
|
| 125 |
|
|
#include "tree.h"
|
| 126 |
|
|
#include "tree-inline.h"
|
| 127 |
|
|
#include "langhooks.h"
|
| 128 |
|
|
#include "flags.h"
|
| 129 |
|
|
#include "cgraph.h"
|
| 130 |
|
|
#include "diagnostic.h"
|
| 131 |
|
|
#include "timevar.h"
|
| 132 |
|
|
#include "params.h"
|
| 133 |
|
|
#include "fibheap.h"
|
| 134 |
|
|
#include "intl.h"
|
| 135 |
|
|
#include "tree-pass.h"
|
| 136 |
|
|
#include "hashtab.h"
|
| 137 |
|
|
#include "coverage.h"
|
| 138 |
|
|
#include "ggc.h"
|
| 139 |
|
|
#include "tree-flow.h"
|
| 140 |
|
|
#include "rtl.h"
|
| 141 |
|
|
#include "ipa-prop.h"
|
| 142 |
|
|
#include "except.h"
|
| 143 |
|
|
|
| 144 |
|
|
#define MAX_TIME 1000000000
|
| 145 |
|
|
|
| 146 |
|
|
/* Mode incremental inliner operate on:
|
| 147 |
|
|
|
| 148 |
|
|
In ALWAYS_INLINE only functions marked
|
| 149 |
|
|
always_inline are inlined. This mode is used after detecting cycle during
|
| 150 |
|
|
flattening.
|
| 151 |
|
|
|
| 152 |
|
|
In SIZE mode, only functions that reduce function body size after inlining
|
| 153 |
|
|
are inlined, this is used during early inlining.
|
| 154 |
|
|
|
| 155 |
|
|
in ALL mode, everything is inlined. This is used during flattening. */
|
| 156 |
|
|
enum inlining_mode {
|
| 157 |
|
|
INLINE_NONE = 0,
|
| 158 |
|
|
INLINE_ALWAYS_INLINE,
|
| 159 |
|
|
INLINE_SIZE_NORECURSIVE,
|
| 160 |
|
|
INLINE_SIZE,
|
| 161 |
|
|
INLINE_ALL
|
| 162 |
|
|
};
|
| 163 |
|
|
static bool
|
| 164 |
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *, enum inlining_mode,
|
| 165 |
|
|
int);
|
| 166 |
|
|
|
| 167 |
|
|
|
| 168 |
|
|
/* Statistics we collect about inlining algorithm. */
|
| 169 |
|
|
static int ncalls_inlined;
|
| 170 |
|
|
static int nfunctions_inlined;
|
| 171 |
|
|
static int overall_size;
|
| 172 |
|
|
static gcov_type max_count, max_benefit;
|
| 173 |
|
|
|
| 174 |
|
|
/* Holders of ipa cgraph hooks: */
|
| 175 |
|
|
static struct cgraph_node_hook_list *function_insertion_hook_holder;
|
| 176 |
|
|
|
| 177 |
|
|
static inline struct inline_summary *
|
| 178 |
|
|
inline_summary (struct cgraph_node *node)
|
| 179 |
|
|
{
|
| 180 |
|
|
return &node->local.inline_summary;
|
| 181 |
|
|
}
|
| 182 |
|
|
|
| 183 |
|
|
/* Estimate self time of the function after inlining WHAT into TO. */
|
| 184 |
|
|
|
| 185 |
|
|
static int
|
| 186 |
|
|
cgraph_estimate_time_after_inlining (int frequency, struct cgraph_node *to,
|
| 187 |
|
|
struct cgraph_node *what)
|
| 188 |
|
|
{
|
| 189 |
|
|
gcov_type time = (((gcov_type)what->global.time
|
| 190 |
|
|
- inline_summary (what)->time_inlining_benefit)
|
| 191 |
|
|
* frequency + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE
|
| 192 |
|
|
+ to->global.time;
|
| 193 |
|
|
if (time < 0)
|
| 194 |
|
|
time = 0;
|
| 195 |
|
|
if (time > MAX_TIME)
|
| 196 |
|
|
time = MAX_TIME;
|
| 197 |
|
|
return time;
|
| 198 |
|
|
}
|
| 199 |
|
|
|
| 200 |
|
|
/* Estimate self time of the function after inlining WHAT into TO. */
|
| 201 |
|
|
|
| 202 |
|
|
static int
|
| 203 |
|
|
cgraph_estimate_size_after_inlining (int times, struct cgraph_node *to,
|
| 204 |
|
|
struct cgraph_node *what)
|
| 205 |
|
|
{
|
| 206 |
|
|
int size = (what->global.size - inline_summary (what)->size_inlining_benefit) * times + to->global.size;
|
| 207 |
|
|
gcc_assert (size >= 0);
|
| 208 |
|
|
return size;
|
| 209 |
|
|
}
|
| 210 |
|
|
|
| 211 |
|
|
/* Scale frequency of NODE edges by FREQ_SCALE and increase loop nest
|
| 212 |
|
|
by NEST. */
|
| 213 |
|
|
|
| 214 |
|
|
static void
|
| 215 |
|
|
update_noncloned_frequencies (struct cgraph_node *node,
|
| 216 |
|
|
int freq_scale, int nest)
|
| 217 |
|
|
{
|
| 218 |
|
|
struct cgraph_edge *e;
|
| 219 |
|
|
|
| 220 |
|
|
/* We do not want to ignore high loop nest after freq drops to 0. */
|
| 221 |
|
|
if (!freq_scale)
|
| 222 |
|
|
freq_scale = 1;
|
| 223 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 224 |
|
|
{
|
| 225 |
|
|
e->loop_nest += nest;
|
| 226 |
|
|
e->frequency = e->frequency * (gcov_type) freq_scale / CGRAPH_FREQ_BASE;
|
| 227 |
|
|
if (e->frequency > CGRAPH_FREQ_MAX)
|
| 228 |
|
|
e->frequency = CGRAPH_FREQ_MAX;
|
| 229 |
|
|
if (!e->inline_failed)
|
| 230 |
|
|
update_noncloned_frequencies (e->callee, freq_scale, nest);
|
| 231 |
|
|
}
|
| 232 |
|
|
}
|
| 233 |
|
|
|
| 234 |
|
|
/* E is expected to be an edge being inlined. Clone destination node of
|
| 235 |
|
|
the edge and redirect it to the new clone.
|
| 236 |
|
|
DUPLICATE is used for bookkeeping on whether we are actually creating new
|
| 237 |
|
|
clones or re-using node originally representing out-of-line function call.
|
| 238 |
|
|
*/
|
| 239 |
|
|
void
|
| 240 |
|
|
cgraph_clone_inlined_nodes (struct cgraph_edge *e, bool duplicate,
|
| 241 |
|
|
bool update_original)
|
| 242 |
|
|
{
|
| 243 |
|
|
HOST_WIDE_INT peak;
|
| 244 |
|
|
|
| 245 |
|
|
if (duplicate)
|
| 246 |
|
|
{
|
| 247 |
|
|
/* We may eliminate the need for out-of-line copy to be output.
|
| 248 |
|
|
In that case just go ahead and re-use it. */
|
| 249 |
|
|
if (!e->callee->callers->next_caller
|
| 250 |
|
|
&& cgraph_can_remove_if_no_direct_calls_p (e->callee)
|
| 251 |
|
|
/* Don't reuse if more than one function shares a comdat group.
|
| 252 |
|
|
If the other function(s) are needed, we need to emit even
|
| 253 |
|
|
this function out of line. */
|
| 254 |
|
|
&& !e->callee->same_comdat_group
|
| 255 |
|
|
&& !cgraph_new_nodes)
|
| 256 |
|
|
{
|
| 257 |
|
|
gcc_assert (!e->callee->global.inlined_to);
|
| 258 |
|
|
if (e->callee->analyzed)
|
| 259 |
|
|
{
|
| 260 |
|
|
overall_size -= e->callee->global.size;
|
| 261 |
|
|
nfunctions_inlined++;
|
| 262 |
|
|
}
|
| 263 |
|
|
duplicate = false;
|
| 264 |
|
|
e->callee->local.externally_visible = false;
|
| 265 |
|
|
update_noncloned_frequencies (e->callee, e->frequency, e->loop_nest);
|
| 266 |
|
|
}
|
| 267 |
|
|
else
|
| 268 |
|
|
{
|
| 269 |
|
|
struct cgraph_node *n;
|
| 270 |
|
|
n = cgraph_clone_node (e->callee, e->count, e->frequency, e->loop_nest,
|
| 271 |
|
|
update_original, NULL);
|
| 272 |
|
|
cgraph_redirect_edge_callee (e, n);
|
| 273 |
|
|
}
|
| 274 |
|
|
}
|
| 275 |
|
|
|
| 276 |
|
|
if (e->caller->global.inlined_to)
|
| 277 |
|
|
e->callee->global.inlined_to = e->caller->global.inlined_to;
|
| 278 |
|
|
else
|
| 279 |
|
|
e->callee->global.inlined_to = e->caller;
|
| 280 |
|
|
e->callee->global.stack_frame_offset
|
| 281 |
|
|
= e->caller->global.stack_frame_offset
|
| 282 |
|
|
+ inline_summary (e->caller)->estimated_self_stack_size;
|
| 283 |
|
|
peak = e->callee->global.stack_frame_offset
|
| 284 |
|
|
+ inline_summary (e->callee)->estimated_self_stack_size;
|
| 285 |
|
|
if (e->callee->global.inlined_to->global.estimated_stack_size < peak)
|
| 286 |
|
|
e->callee->global.inlined_to->global.estimated_stack_size = peak;
|
| 287 |
|
|
|
| 288 |
|
|
/* Recursively clone all bodies. */
|
| 289 |
|
|
for (e = e->callee->callees; e; e = e->next_callee)
|
| 290 |
|
|
if (!e->inline_failed)
|
| 291 |
|
|
cgraph_clone_inlined_nodes (e, duplicate, update_original);
|
| 292 |
|
|
}
|
| 293 |
|
|
|
| 294 |
|
|
/* Mark edge E as inlined and update callgraph accordingly. UPDATE_ORIGINAL
|
| 295 |
|
|
specify whether profile of original function should be updated. If any new
|
| 296 |
|
|
indirect edges are discovered in the process, add them to NEW_EDGES, unless
|
| 297 |
|
|
it is NULL. Return true iff any new callgraph edges were discovered as a
|
| 298 |
|
|
result of inlining. */
|
| 299 |
|
|
|
| 300 |
|
|
static bool
|
| 301 |
|
|
cgraph_mark_inline_edge (struct cgraph_edge *e, bool update_original,
|
| 302 |
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
| 303 |
|
|
{
|
| 304 |
|
|
int old_size = 0, new_size = 0;
|
| 305 |
|
|
struct cgraph_node *to = NULL, *what;
|
| 306 |
|
|
struct cgraph_edge *curr = e;
|
| 307 |
|
|
int freq;
|
| 308 |
|
|
|
| 309 |
|
|
gcc_assert (e->inline_failed);
|
| 310 |
|
|
e->inline_failed = CIF_OK;
|
| 311 |
|
|
|
| 312 |
|
|
if (!e->callee->global.inlined)
|
| 313 |
|
|
DECL_POSSIBLY_INLINED (e->callee->decl) = true;
|
| 314 |
|
|
e->callee->global.inlined = true;
|
| 315 |
|
|
|
| 316 |
|
|
cgraph_clone_inlined_nodes (e, true, update_original);
|
| 317 |
|
|
|
| 318 |
|
|
what = e->callee;
|
| 319 |
|
|
|
| 320 |
|
|
freq = e->frequency;
|
| 321 |
|
|
/* Now update size of caller and all functions caller is inlined into. */
|
| 322 |
|
|
for (;e && !e->inline_failed; e = e->caller->callers)
|
| 323 |
|
|
{
|
| 324 |
|
|
to = e->caller;
|
| 325 |
|
|
old_size = e->caller->global.size;
|
| 326 |
|
|
new_size = cgraph_estimate_size_after_inlining (1, to, what);
|
| 327 |
|
|
to->global.size = new_size;
|
| 328 |
|
|
to->global.time = cgraph_estimate_time_after_inlining (freq, to, what);
|
| 329 |
|
|
}
|
| 330 |
|
|
gcc_assert (what->global.inlined_to == to);
|
| 331 |
|
|
if (new_size > old_size)
|
| 332 |
|
|
overall_size += new_size - old_size;
|
| 333 |
|
|
ncalls_inlined++;
|
| 334 |
|
|
|
| 335 |
|
|
if (flag_indirect_inlining)
|
| 336 |
|
|
return ipa_propagate_indirect_call_infos (curr, new_edges);
|
| 337 |
|
|
else
|
| 338 |
|
|
return false;
|
| 339 |
|
|
}
|
| 340 |
|
|
|
| 341 |
|
|
/* Mark all calls of EDGE->CALLEE inlined into EDGE->CALLER.
|
| 342 |
|
|
Return following unredirected edge in the list of callers
|
| 343 |
|
|
of EDGE->CALLEE */
|
| 344 |
|
|
|
| 345 |
|
|
static struct cgraph_edge *
|
| 346 |
|
|
cgraph_mark_inline (struct cgraph_edge *edge)
|
| 347 |
|
|
{
|
| 348 |
|
|
struct cgraph_node *to = edge->caller;
|
| 349 |
|
|
struct cgraph_node *what = edge->callee;
|
| 350 |
|
|
struct cgraph_edge *e, *next;
|
| 351 |
|
|
|
| 352 |
|
|
gcc_assert (!edge->call_stmt_cannot_inline_p);
|
| 353 |
|
|
/* Look for all calls, mark them inline and clone recursively
|
| 354 |
|
|
all inlined functions. */
|
| 355 |
|
|
for (e = what->callers; e; e = next)
|
| 356 |
|
|
{
|
| 357 |
|
|
next = e->next_caller;
|
| 358 |
|
|
if (e->caller == to && e->inline_failed)
|
| 359 |
|
|
{
|
| 360 |
|
|
cgraph_mark_inline_edge (e, true, NULL);
|
| 361 |
|
|
if (e == edge)
|
| 362 |
|
|
edge = next;
|
| 363 |
|
|
}
|
| 364 |
|
|
}
|
| 365 |
|
|
|
| 366 |
|
|
return edge;
|
| 367 |
|
|
}
|
| 368 |
|
|
|
| 369 |
|
|
/* Estimate the growth caused by inlining NODE into all callees. */
|
| 370 |
|
|
|
| 371 |
|
|
static int
|
| 372 |
|
|
cgraph_estimate_growth (struct cgraph_node *node)
|
| 373 |
|
|
{
|
| 374 |
|
|
int growth = 0;
|
| 375 |
|
|
struct cgraph_edge *e;
|
| 376 |
|
|
bool self_recursive = false;
|
| 377 |
|
|
|
| 378 |
|
|
if (node->global.estimated_growth != INT_MIN)
|
| 379 |
|
|
return node->global.estimated_growth;
|
| 380 |
|
|
|
| 381 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
| 382 |
|
|
{
|
| 383 |
|
|
if (e->caller == node)
|
| 384 |
|
|
self_recursive = true;
|
| 385 |
|
|
if (e->inline_failed)
|
| 386 |
|
|
growth += (cgraph_estimate_size_after_inlining (1, e->caller, node)
|
| 387 |
|
|
- e->caller->global.size);
|
| 388 |
|
|
}
|
| 389 |
|
|
|
| 390 |
|
|
/* ??? Wrong for non-trivially self recursive functions or cases where
|
| 391 |
|
|
we decide to not inline for different reasons, but it is not big deal
|
| 392 |
|
|
as in that case we will keep the body around, but we will also avoid
|
| 393 |
|
|
some inlining. */
|
| 394 |
|
|
if (cgraph_only_called_directly_p (node)
|
| 395 |
|
|
&& !DECL_EXTERNAL (node->decl) && !self_recursive)
|
| 396 |
|
|
growth -= node->global.size;
|
| 397 |
|
|
|
| 398 |
|
|
node->global.estimated_growth = growth;
|
| 399 |
|
|
return growth;
|
| 400 |
|
|
}
|
| 401 |
|
|
|
| 402 |
|
|
/* Return false when inlining WHAT into TO is not good idea
|
| 403 |
|
|
as it would cause too large growth of function bodies.
|
| 404 |
|
|
When ONE_ONLY is true, assume that only one call site is going
|
| 405 |
|
|
to be inlined, otherwise figure out how many call sites in
|
| 406 |
|
|
TO calls WHAT and verify that all can be inlined.
|
| 407 |
|
|
*/
|
| 408 |
|
|
|
| 409 |
|
|
static bool
|
| 410 |
|
|
cgraph_check_inline_limits (struct cgraph_node *to, struct cgraph_node *what,
|
| 411 |
|
|
cgraph_inline_failed_t *reason, bool one_only)
|
| 412 |
|
|
{
|
| 413 |
|
|
int times = 0;
|
| 414 |
|
|
struct cgraph_edge *e;
|
| 415 |
|
|
int newsize;
|
| 416 |
|
|
int limit;
|
| 417 |
|
|
HOST_WIDE_INT stack_size_limit, inlined_stack;
|
| 418 |
|
|
|
| 419 |
|
|
if (one_only)
|
| 420 |
|
|
times = 1;
|
| 421 |
|
|
else
|
| 422 |
|
|
for (e = to->callees; e; e = e->next_callee)
|
| 423 |
|
|
if (e->callee == what)
|
| 424 |
|
|
times++;
|
| 425 |
|
|
|
| 426 |
|
|
if (to->global.inlined_to)
|
| 427 |
|
|
to = to->global.inlined_to;
|
| 428 |
|
|
|
| 429 |
|
|
/* When inlining large function body called once into small function,
|
| 430 |
|
|
take the inlined function as base for limiting the growth. */
|
| 431 |
|
|
if (inline_summary (to)->self_size > inline_summary(what)->self_size)
|
| 432 |
|
|
limit = inline_summary (to)->self_size;
|
| 433 |
|
|
else
|
| 434 |
|
|
limit = inline_summary (what)->self_size;
|
| 435 |
|
|
|
| 436 |
|
|
limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
|
| 437 |
|
|
|
| 438 |
|
|
/* Check the size after inlining against the function limits. But allow
|
| 439 |
|
|
the function to shrink if it went over the limits by forced inlining. */
|
| 440 |
|
|
newsize = cgraph_estimate_size_after_inlining (times, to, what);
|
| 441 |
|
|
if (newsize >= to->global.size
|
| 442 |
|
|
&& newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
|
| 443 |
|
|
&& newsize > limit)
|
| 444 |
|
|
{
|
| 445 |
|
|
if (reason)
|
| 446 |
|
|
*reason = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
|
| 447 |
|
|
return false;
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
stack_size_limit = inline_summary (to)->estimated_self_stack_size;
|
| 451 |
|
|
|
| 452 |
|
|
stack_size_limit += stack_size_limit * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100;
|
| 453 |
|
|
|
| 454 |
|
|
inlined_stack = (to->global.stack_frame_offset
|
| 455 |
|
|
+ inline_summary (to)->estimated_self_stack_size
|
| 456 |
|
|
+ what->global.estimated_stack_size);
|
| 457 |
|
|
if (inlined_stack > stack_size_limit
|
| 458 |
|
|
&& inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
|
| 459 |
|
|
{
|
| 460 |
|
|
if (reason)
|
| 461 |
|
|
*reason = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
|
| 462 |
|
|
return false;
|
| 463 |
|
|
}
|
| 464 |
|
|
return true;
|
| 465 |
|
|
}
|
| 466 |
|
|
|
| 467 |
|
|
/* Return true when function N is small enough to be inlined. */
|
| 468 |
|
|
|
| 469 |
|
|
static bool
|
| 470 |
|
|
cgraph_default_inline_p (struct cgraph_node *n, cgraph_inline_failed_t *reason)
|
| 471 |
|
|
{
|
| 472 |
|
|
tree decl = n->decl;
|
| 473 |
|
|
|
| 474 |
|
|
if (!flag_inline_small_functions && !DECL_DECLARED_INLINE_P (decl))
|
| 475 |
|
|
{
|
| 476 |
|
|
if (reason)
|
| 477 |
|
|
*reason = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
|
| 478 |
|
|
return false;
|
| 479 |
|
|
}
|
| 480 |
|
|
|
| 481 |
|
|
if (!n->analyzed)
|
| 482 |
|
|
{
|
| 483 |
|
|
if (reason)
|
| 484 |
|
|
*reason = CIF_BODY_NOT_AVAILABLE;
|
| 485 |
|
|
return false;
|
| 486 |
|
|
}
|
| 487 |
|
|
|
| 488 |
|
|
if (DECL_DECLARED_INLINE_P (decl))
|
| 489 |
|
|
{
|
| 490 |
|
|
if (n->global.size >= MAX_INLINE_INSNS_SINGLE)
|
| 491 |
|
|
{
|
| 492 |
|
|
if (reason)
|
| 493 |
|
|
*reason = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
|
| 494 |
|
|
return false;
|
| 495 |
|
|
}
|
| 496 |
|
|
}
|
| 497 |
|
|
else
|
| 498 |
|
|
{
|
| 499 |
|
|
if (n->global.size >= MAX_INLINE_INSNS_AUTO)
|
| 500 |
|
|
{
|
| 501 |
|
|
if (reason)
|
| 502 |
|
|
*reason = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
|
| 503 |
|
|
return false;
|
| 504 |
|
|
}
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
return true;
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
/* Return true when inlining WHAT would create recursive inlining.
|
| 511 |
|
|
We call recursive inlining all cases where same function appears more than
|
| 512 |
|
|
once in the single recursion nest path in the inline graph. */
|
| 513 |
|
|
|
| 514 |
|
|
static bool
|
| 515 |
|
|
cgraph_recursive_inlining_p (struct cgraph_node *to,
|
| 516 |
|
|
struct cgraph_node *what,
|
| 517 |
|
|
cgraph_inline_failed_t *reason)
|
| 518 |
|
|
{
|
| 519 |
|
|
bool recursive;
|
| 520 |
|
|
if (to->global.inlined_to)
|
| 521 |
|
|
recursive = what->decl == to->global.inlined_to->decl;
|
| 522 |
|
|
else
|
| 523 |
|
|
recursive = what->decl == to->decl;
|
| 524 |
|
|
/* Marking recursive function inline has sane semantic and thus we should
|
| 525 |
|
|
not warn on it. */
|
| 526 |
|
|
if (recursive && reason)
|
| 527 |
|
|
*reason = (what->local.disregard_inline_limits
|
| 528 |
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
| 529 |
|
|
return recursive;
|
| 530 |
|
|
}
|
| 531 |
|
|
|
| 532 |
|
|
/* A cost model driving the inlining heuristics in a way so the edges with
|
| 533 |
|
|
smallest badness are inlined first. After each inlining is performed
|
| 534 |
|
|
the costs of all caller edges of nodes affected are recomputed so the
|
| 535 |
|
|
metrics may accurately depend on values such as number of inlinable callers
|
| 536 |
|
|
of the function or function body size. */
|
| 537 |
|
|
|
| 538 |
|
|
static int
|
| 539 |
|
|
cgraph_edge_badness (struct cgraph_edge *edge, bool dump)
|
| 540 |
|
|
{
|
| 541 |
|
|
gcov_type badness;
|
| 542 |
|
|
int growth =
|
| 543 |
|
|
(cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee)
|
| 544 |
|
|
- edge->caller->global.size);
|
| 545 |
|
|
|
| 546 |
|
|
if (edge->callee->local.disregard_inline_limits)
|
| 547 |
|
|
return INT_MIN;
|
| 548 |
|
|
|
| 549 |
|
|
if (dump)
|
| 550 |
|
|
{
|
| 551 |
|
|
fprintf (dump_file, " Badness calculcation for %s -> %s\n",
|
| 552 |
|
|
cgraph_node_name (edge->caller),
|
| 553 |
|
|
cgraph_node_name (edge->callee));
|
| 554 |
|
|
fprintf (dump_file, " growth %i, time %i-%i, size %i-%i\n",
|
| 555 |
|
|
growth,
|
| 556 |
|
|
edge->callee->global.time,
|
| 557 |
|
|
inline_summary (edge->callee)->time_inlining_benefit,
|
| 558 |
|
|
edge->callee->global.size,
|
| 559 |
|
|
inline_summary (edge->callee)->size_inlining_benefit);
|
| 560 |
|
|
}
|
| 561 |
|
|
|
| 562 |
|
|
/* Always prefer inlining saving code size. */
|
| 563 |
|
|
if (growth <= 0)
|
| 564 |
|
|
{
|
| 565 |
|
|
badness = INT_MIN - growth;
|
| 566 |
|
|
if (dump)
|
| 567 |
|
|
fprintf (dump_file, " %i: Growth %i < 0\n", (int) badness,
|
| 568 |
|
|
growth);
|
| 569 |
|
|
}
|
| 570 |
|
|
|
| 571 |
|
|
/* When profiling is available, base priorities -(#calls / growth).
|
| 572 |
|
|
So we optimize for overall number of "executed" inlined calls. */
|
| 573 |
|
|
else if (max_count)
|
| 574 |
|
|
{
|
| 575 |
|
|
badness =
|
| 576 |
|
|
((int)
|
| 577 |
|
|
((double) edge->count * INT_MIN / max_count / (max_benefit + 1)) *
|
| 578 |
|
|
(inline_summary (edge->callee)->time_inlining_benefit + 1)) / growth;
|
| 579 |
|
|
if (dump)
|
| 580 |
|
|
{
|
| 581 |
|
|
fprintf (dump_file,
|
| 582 |
|
|
" %i (relative %f): profile info. Relative count %f"
|
| 583 |
|
|
" * Relative benefit %f\n",
|
| 584 |
|
|
(int) badness, (double) badness / INT_MIN,
|
| 585 |
|
|
(double) edge->count / max_count,
|
| 586 |
|
|
(double) (inline_summary (edge->callee)->
|
| 587 |
|
|
time_inlining_benefit + 1) / (max_benefit + 1));
|
| 588 |
|
|
}
|
| 589 |
|
|
}
|
| 590 |
|
|
|
| 591 |
|
|
/* When function local profile is available, base priorities on
|
| 592 |
|
|
growth / frequency, so we optimize for overall frequency of inlined
|
| 593 |
|
|
calls. This is not too accurate since while the call might be frequent
|
| 594 |
|
|
within function, the function itself is infrequent.
|
| 595 |
|
|
|
| 596 |
|
|
Other objective to optimize for is number of different calls inlined.
|
| 597 |
|
|
We add the estimated growth after inlining all functions to bias the
|
| 598 |
|
|
priorities slightly in this direction (so fewer times called functions
|
| 599 |
|
|
of the same size gets priority). */
|
| 600 |
|
|
else if (flag_guess_branch_prob)
|
| 601 |
|
|
{
|
| 602 |
|
|
int div = edge->frequency * 100 / CGRAPH_FREQ_BASE + 1;
|
| 603 |
|
|
int benefitperc;
|
| 604 |
|
|
int growth_for_all;
|
| 605 |
|
|
badness = growth * 10000;
|
| 606 |
|
|
benefitperc =
|
| 607 |
|
|
MIN (100 * inline_summary (edge->callee)->time_inlining_benefit /
|
| 608 |
|
|
(edge->callee->global.time + 1) +1, 100);
|
| 609 |
|
|
div *= benefitperc;
|
| 610 |
|
|
|
| 611 |
|
|
|
| 612 |
|
|
/* Decrease badness if call is nested. */
|
| 613 |
|
|
/* Compress the range so we don't overflow. */
|
| 614 |
|
|
if (div > 10000)
|
| 615 |
|
|
div = 10000 + ceil_log2 (div) - 8;
|
| 616 |
|
|
if (div < 1)
|
| 617 |
|
|
div = 1;
|
| 618 |
|
|
if (badness > 0)
|
| 619 |
|
|
badness /= div;
|
| 620 |
|
|
growth_for_all = cgraph_estimate_growth (edge->callee);
|
| 621 |
|
|
badness += growth_for_all;
|
| 622 |
|
|
if (badness > INT_MAX)
|
| 623 |
|
|
badness = INT_MAX;
|
| 624 |
|
|
if (dump)
|
| 625 |
|
|
{
|
| 626 |
|
|
fprintf (dump_file,
|
| 627 |
|
|
" %i: guessed profile. frequency %i, overall growth %i,"
|
| 628 |
|
|
" benefit %i%%, divisor %i\n",
|
| 629 |
|
|
(int) badness, edge->frequency, growth_for_all, benefitperc, div);
|
| 630 |
|
|
}
|
| 631 |
|
|
}
|
| 632 |
|
|
/* When function local profile is not available or it does not give
|
| 633 |
|
|
useful information (ie frequency is zero), base the cost on
|
| 634 |
|
|
loop nest and overall size growth, so we optimize for overall number
|
| 635 |
|
|
of functions fully inlined in program. */
|
| 636 |
|
|
else
|
| 637 |
|
|
{
|
| 638 |
|
|
int nest = MIN (edge->loop_nest, 8);
|
| 639 |
|
|
badness = cgraph_estimate_growth (edge->callee) * 256;
|
| 640 |
|
|
|
| 641 |
|
|
/* Decrease badness if call is nested. */
|
| 642 |
|
|
if (badness > 0)
|
| 643 |
|
|
badness >>= nest;
|
| 644 |
|
|
else
|
| 645 |
|
|
{
|
| 646 |
|
|
badness <<= nest;
|
| 647 |
|
|
}
|
| 648 |
|
|
if (dump)
|
| 649 |
|
|
fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
|
| 650 |
|
|
nest);
|
| 651 |
|
|
}
|
| 652 |
|
|
|
| 653 |
|
|
/* Make recursive inlining happen always after other inlining is done. */
|
| 654 |
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee, NULL))
|
| 655 |
|
|
return badness + 1;
|
| 656 |
|
|
else
|
| 657 |
|
|
return badness;
|
| 658 |
|
|
}
|
| 659 |
|
|
|
| 660 |
|
|
/* Recompute heap nodes for each of caller edge. */
|
| 661 |
|
|
|
| 662 |
|
|
static void
|
| 663 |
|
|
update_caller_keys (fibheap_t heap, struct cgraph_node *node,
|
| 664 |
|
|
bitmap updated_nodes)
|
| 665 |
|
|
{
|
| 666 |
|
|
struct cgraph_edge *edge;
|
| 667 |
|
|
cgraph_inline_failed_t failed_reason;
|
| 668 |
|
|
|
| 669 |
|
|
if (!node->local.inlinable || node->local.disregard_inline_limits
|
| 670 |
|
|
|| node->global.inlined_to)
|
| 671 |
|
|
return;
|
| 672 |
|
|
if (bitmap_bit_p (updated_nodes, node->uid))
|
| 673 |
|
|
return;
|
| 674 |
|
|
bitmap_set_bit (updated_nodes, node->uid);
|
| 675 |
|
|
node->global.estimated_growth = INT_MIN;
|
| 676 |
|
|
|
| 677 |
|
|
if (!node->local.inlinable)
|
| 678 |
|
|
return;
|
| 679 |
|
|
/* See if there is something to do. */
|
| 680 |
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
| 681 |
|
|
if (edge->inline_failed)
|
| 682 |
|
|
break;
|
| 683 |
|
|
if (!edge)
|
| 684 |
|
|
return;
|
| 685 |
|
|
/* Prune out edges we won't inline into anymore. */
|
| 686 |
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
| 687 |
|
|
{
|
| 688 |
|
|
for (; edge; edge = edge->next_caller)
|
| 689 |
|
|
if (edge->aux)
|
| 690 |
|
|
{
|
| 691 |
|
|
fibheap_delete_node (heap, (fibnode_t) edge->aux);
|
| 692 |
|
|
edge->aux = NULL;
|
| 693 |
|
|
if (edge->inline_failed)
|
| 694 |
|
|
edge->inline_failed = failed_reason;
|
| 695 |
|
|
}
|
| 696 |
|
|
return;
|
| 697 |
|
|
}
|
| 698 |
|
|
|
| 699 |
|
|
for (; edge; edge = edge->next_caller)
|
| 700 |
|
|
if (edge->inline_failed)
|
| 701 |
|
|
{
|
| 702 |
|
|
int badness = cgraph_edge_badness (edge, false);
|
| 703 |
|
|
if (edge->aux)
|
| 704 |
|
|
{
|
| 705 |
|
|
fibnode_t n = (fibnode_t) edge->aux;
|
| 706 |
|
|
gcc_assert (n->data == edge);
|
| 707 |
|
|
if (n->key == badness)
|
| 708 |
|
|
continue;
|
| 709 |
|
|
|
| 710 |
|
|
/* fibheap_replace_key only decrease the keys.
|
| 711 |
|
|
When we increase the key we do not update heap
|
| 712 |
|
|
and instead re-insert the element once it becomes
|
| 713 |
|
|
a minium of heap. */
|
| 714 |
|
|
if (badness < n->key)
|
| 715 |
|
|
{
|
| 716 |
|
|
fibheap_replace_key (heap, n, badness);
|
| 717 |
|
|
gcc_assert (n->key == badness);
|
| 718 |
|
|
continue;
|
| 719 |
|
|
}
|
| 720 |
|
|
}
|
| 721 |
|
|
else
|
| 722 |
|
|
edge->aux = fibheap_insert (heap, badness, edge);
|
| 723 |
|
|
}
|
| 724 |
|
|
}
|
| 725 |
|
|
|
| 726 |
|
|
/* Recompute heap nodes for each of caller edges of each of callees.
|
| 727 |
|
|
Walk recursively into all inline clones. */
|
| 728 |
|
|
|
| 729 |
|
|
static void
|
| 730 |
|
|
update_callee_keys (fibheap_t heap, struct cgraph_node *node,
|
| 731 |
|
|
bitmap updated_nodes)
|
| 732 |
|
|
{
|
| 733 |
|
|
struct cgraph_edge *e = node->callees;
|
| 734 |
|
|
node->global.estimated_growth = INT_MIN;
|
| 735 |
|
|
|
| 736 |
|
|
if (!e)
|
| 737 |
|
|
return;
|
| 738 |
|
|
while (true)
|
| 739 |
|
|
if (!e->inline_failed && e->callee->callees)
|
| 740 |
|
|
e = e->callee->callees;
|
| 741 |
|
|
else
|
| 742 |
|
|
{
|
| 743 |
|
|
if (e->inline_failed)
|
| 744 |
|
|
update_caller_keys (heap, e->callee, updated_nodes);
|
| 745 |
|
|
if (e->next_callee)
|
| 746 |
|
|
e = e->next_callee;
|
| 747 |
|
|
else
|
| 748 |
|
|
{
|
| 749 |
|
|
do
|
| 750 |
|
|
{
|
| 751 |
|
|
if (e->caller == node)
|
| 752 |
|
|
return;
|
| 753 |
|
|
e = e->caller->callers;
|
| 754 |
|
|
}
|
| 755 |
|
|
while (!e->next_callee);
|
| 756 |
|
|
e = e->next_callee;
|
| 757 |
|
|
}
|
| 758 |
|
|
}
|
| 759 |
|
|
}
|
| 760 |
|
|
|
| 761 |
|
|
/* Enqueue all recursive calls from NODE into priority queue depending on
|
| 762 |
|
|
how likely we want to recursively inline the call. */
|
| 763 |
|
|
|
| 764 |
|
|
static void
|
| 765 |
|
|
lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
|
| 766 |
|
|
fibheap_t heap)
|
| 767 |
|
|
{
|
| 768 |
|
|
static int priority;
|
| 769 |
|
|
struct cgraph_edge *e;
|
| 770 |
|
|
for (e = where->callees; e; e = e->next_callee)
|
| 771 |
|
|
if (e->callee == node)
|
| 772 |
|
|
{
|
| 773 |
|
|
/* When profile feedback is available, prioritize by expected number
|
| 774 |
|
|
of calls. Without profile feedback we maintain simple queue
|
| 775 |
|
|
to order candidates via recursive depths. */
|
| 776 |
|
|
fibheap_insert (heap,
|
| 777 |
|
|
!max_count ? priority++
|
| 778 |
|
|
: -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
|
| 779 |
|
|
e);
|
| 780 |
|
|
}
|
| 781 |
|
|
for (e = where->callees; e; e = e->next_callee)
|
| 782 |
|
|
if (!e->inline_failed)
|
| 783 |
|
|
lookup_recursive_calls (node, e->callee, heap);
|
| 784 |
|
|
}
|
| 785 |
|
|
|
| 786 |
|
|
/* Decide on recursive inlining: in the case function has recursive calls,
|
| 787 |
|
|
inline until body size reaches given argument. If any new indirect edges
|
| 788 |
|
|
are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
|
| 789 |
|
|
is NULL. */
|
| 790 |
|
|
|
| 791 |
|
|
static bool
|
| 792 |
|
|
cgraph_decide_recursive_inlining (struct cgraph_node *node,
|
| 793 |
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
| 794 |
|
|
{
|
| 795 |
|
|
int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
|
| 796 |
|
|
int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
|
| 797 |
|
|
int probability = PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY);
|
| 798 |
|
|
fibheap_t heap;
|
| 799 |
|
|
struct cgraph_edge *e;
|
| 800 |
|
|
struct cgraph_node *master_clone, *next;
|
| 801 |
|
|
int depth = 0;
|
| 802 |
|
|
int n = 0;
|
| 803 |
|
|
|
| 804 |
|
|
if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION (node->decl))
|
| 805 |
|
|
|| (!flag_inline_functions && !DECL_DECLARED_INLINE_P (node->decl)))
|
| 806 |
|
|
return false;
|
| 807 |
|
|
|
| 808 |
|
|
if (DECL_DECLARED_INLINE_P (node->decl))
|
| 809 |
|
|
{
|
| 810 |
|
|
limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
|
| 811 |
|
|
max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
|
| 812 |
|
|
}
|
| 813 |
|
|
|
| 814 |
|
|
/* Make sure that function is small enough to be considered for inlining. */
|
| 815 |
|
|
if (!max_depth
|
| 816 |
|
|
|| cgraph_estimate_size_after_inlining (1, node, node) >= limit)
|
| 817 |
|
|
return false;
|
| 818 |
|
|
heap = fibheap_new ();
|
| 819 |
|
|
lookup_recursive_calls (node, node, heap);
|
| 820 |
|
|
if (fibheap_empty (heap))
|
| 821 |
|
|
{
|
| 822 |
|
|
fibheap_delete (heap);
|
| 823 |
|
|
return false;
|
| 824 |
|
|
}
|
| 825 |
|
|
|
| 826 |
|
|
if (dump_file)
|
| 827 |
|
|
fprintf (dump_file,
|
| 828 |
|
|
" Performing recursive inlining on %s\n",
|
| 829 |
|
|
cgraph_node_name (node));
|
| 830 |
|
|
|
| 831 |
|
|
/* We need original clone to copy around. */
|
| 832 |
|
|
master_clone = cgraph_clone_node (node, node->count, CGRAPH_FREQ_BASE, 1,
|
| 833 |
|
|
false, NULL);
|
| 834 |
|
|
master_clone->needed = true;
|
| 835 |
|
|
for (e = master_clone->callees; e; e = e->next_callee)
|
| 836 |
|
|
if (!e->inline_failed)
|
| 837 |
|
|
cgraph_clone_inlined_nodes (e, true, false);
|
| 838 |
|
|
|
| 839 |
|
|
/* Do the inlining and update list of recursive call during process. */
|
| 840 |
|
|
while (!fibheap_empty (heap)
|
| 841 |
|
|
&& (cgraph_estimate_size_after_inlining (1, node, master_clone)
|
| 842 |
|
|
<= limit))
|
| 843 |
|
|
{
|
| 844 |
|
|
struct cgraph_edge *curr
|
| 845 |
|
|
= (struct cgraph_edge *) fibheap_extract_min (heap);
|
| 846 |
|
|
struct cgraph_node *cnode;
|
| 847 |
|
|
|
| 848 |
|
|
depth = 1;
|
| 849 |
|
|
for (cnode = curr->caller;
|
| 850 |
|
|
cnode->global.inlined_to; cnode = cnode->callers->caller)
|
| 851 |
|
|
if (node->decl == curr->callee->decl)
|
| 852 |
|
|
depth++;
|
| 853 |
|
|
if (depth > max_depth)
|
| 854 |
|
|
{
|
| 855 |
|
|
if (dump_file)
|
| 856 |
|
|
fprintf (dump_file,
|
| 857 |
|
|
" maximal depth reached\n");
|
| 858 |
|
|
continue;
|
| 859 |
|
|
}
|
| 860 |
|
|
|
| 861 |
|
|
if (max_count)
|
| 862 |
|
|
{
|
| 863 |
|
|
if (!cgraph_maybe_hot_edge_p (curr))
|
| 864 |
|
|
{
|
| 865 |
|
|
if (dump_file)
|
| 866 |
|
|
fprintf (dump_file, " Not inlining cold call\n");
|
| 867 |
|
|
continue;
|
| 868 |
|
|
}
|
| 869 |
|
|
if (curr->count * 100 / node->count < probability)
|
| 870 |
|
|
{
|
| 871 |
|
|
if (dump_file)
|
| 872 |
|
|
fprintf (dump_file,
|
| 873 |
|
|
" Probability of edge is too small\n");
|
| 874 |
|
|
continue;
|
| 875 |
|
|
}
|
| 876 |
|
|
}
|
| 877 |
|
|
|
| 878 |
|
|
if (dump_file)
|
| 879 |
|
|
{
|
| 880 |
|
|
fprintf (dump_file,
|
| 881 |
|
|
" Inlining call of depth %i", depth);
|
| 882 |
|
|
if (node->count)
|
| 883 |
|
|
{
|
| 884 |
|
|
fprintf (dump_file, " called approx. %.2f times per call",
|
| 885 |
|
|
(double)curr->count / node->count);
|
| 886 |
|
|
}
|
| 887 |
|
|
fprintf (dump_file, "\n");
|
| 888 |
|
|
}
|
| 889 |
|
|
cgraph_redirect_edge_callee (curr, master_clone);
|
| 890 |
|
|
cgraph_mark_inline_edge (curr, false, new_edges);
|
| 891 |
|
|
lookup_recursive_calls (node, curr->callee, heap);
|
| 892 |
|
|
n++;
|
| 893 |
|
|
}
|
| 894 |
|
|
if (!fibheap_empty (heap) && dump_file)
|
| 895 |
|
|
fprintf (dump_file, " Recursive inlining growth limit met.\n");
|
| 896 |
|
|
|
| 897 |
|
|
fibheap_delete (heap);
|
| 898 |
|
|
if (dump_file)
|
| 899 |
|
|
fprintf (dump_file,
|
| 900 |
|
|
"\n Inlined %i times, body grown from size %i to %i, time %i to %i\n", n,
|
| 901 |
|
|
master_clone->global.size, node->global.size,
|
| 902 |
|
|
master_clone->global.time, node->global.time);
|
| 903 |
|
|
|
| 904 |
|
|
/* Remove master clone we used for inlining. We rely that clones inlined
|
| 905 |
|
|
into master clone gets queued just before master clone so we don't
|
| 906 |
|
|
need recursion. */
|
| 907 |
|
|
for (node = cgraph_nodes; node != master_clone;
|
| 908 |
|
|
node = next)
|
| 909 |
|
|
{
|
| 910 |
|
|
next = node->next;
|
| 911 |
|
|
if (node->global.inlined_to == master_clone)
|
| 912 |
|
|
cgraph_remove_node (node);
|
| 913 |
|
|
}
|
| 914 |
|
|
cgraph_remove_node (master_clone);
|
| 915 |
|
|
/* FIXME: Recursive inlining actually reduces number of calls of the
|
| 916 |
|
|
function. At this place we should probably walk the function and
|
| 917 |
|
|
inline clones and compensate the counts accordingly. This probably
|
| 918 |
|
|
doesn't matter much in practice. */
|
| 919 |
|
|
return n > 0;
|
| 920 |
|
|
}
|
| 921 |
|
|
|
| 922 |
|
|
/* Set inline_failed for all callers of given function to REASON. */
|
| 923 |
|
|
|
| 924 |
|
|
static void
|
| 925 |
|
|
cgraph_set_inline_failed (struct cgraph_node *node,
|
| 926 |
|
|
cgraph_inline_failed_t reason)
|
| 927 |
|
|
{
|
| 928 |
|
|
struct cgraph_edge *e;
|
| 929 |
|
|
|
| 930 |
|
|
if (dump_file)
|
| 931 |
|
|
fprintf (dump_file, "Inlining failed: %s\n",
|
| 932 |
|
|
cgraph_inline_failed_string (reason));
|
| 933 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
| 934 |
|
|
if (e->inline_failed)
|
| 935 |
|
|
e->inline_failed = reason;
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
/* Given whole compilation unit estimate of INSNS, compute how large we can
|
| 939 |
|
|
allow the unit to grow. */
|
| 940 |
|
|
static int
|
| 941 |
|
|
compute_max_insns (int insns)
|
| 942 |
|
|
{
|
| 943 |
|
|
int max_insns = insns;
|
| 944 |
|
|
if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
|
| 945 |
|
|
max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
|
| 946 |
|
|
|
| 947 |
|
|
return ((HOST_WIDEST_INT) max_insns
|
| 948 |
|
|
* (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
|
| 949 |
|
|
}
|
| 950 |
|
|
|
| 951 |
|
|
/* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
|
| 952 |
|
|
static void
|
| 953 |
|
|
add_new_edges_to_heap (fibheap_t heap, VEC (cgraph_edge_p, heap) *new_edges)
|
| 954 |
|
|
{
|
| 955 |
|
|
while (VEC_length (cgraph_edge_p, new_edges) > 0)
|
| 956 |
|
|
{
|
| 957 |
|
|
struct cgraph_edge *edge = VEC_pop (cgraph_edge_p, new_edges);
|
| 958 |
|
|
|
| 959 |
|
|
gcc_assert (!edge->aux);
|
| 960 |
|
|
if (edge->callee->local.inlinable
|
| 961 |
|
|
&& cgraph_default_inline_p (edge->callee, &edge->inline_failed))
|
| 962 |
|
|
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge, false), edge);
|
| 963 |
|
|
}
|
| 964 |
|
|
}
|
| 965 |
|
|
|
| 966 |
|
|
|
| 967 |
|
|
/* We use greedy algorithm for inlining of small functions:
|
| 968 |
|
|
All inline candidates are put into prioritized heap based on estimated
|
| 969 |
|
|
growth of the overall number of instructions and then update the estimates.
|
| 970 |
|
|
|
| 971 |
|
|
INLINED and INLINED_CALEES are just pointers to arrays large enough
|
| 972 |
|
|
to be passed to cgraph_inlined_into and cgraph_inlined_callees. */
|
| 973 |
|
|
|
| 974 |
|
|
static void
|
| 975 |
|
|
cgraph_decide_inlining_of_small_functions (void)
|
| 976 |
|
|
{
|
| 977 |
|
|
struct cgraph_node *node;
|
| 978 |
|
|
struct cgraph_edge *edge;
|
| 979 |
|
|
cgraph_inline_failed_t failed_reason;
|
| 980 |
|
|
fibheap_t heap = fibheap_new ();
|
| 981 |
|
|
bitmap updated_nodes = BITMAP_ALLOC (NULL);
|
| 982 |
|
|
int min_size, max_size;
|
| 983 |
|
|
VEC (cgraph_edge_p, heap) *new_indirect_edges = NULL;
|
| 984 |
|
|
|
| 985 |
|
|
if (flag_indirect_inlining)
|
| 986 |
|
|
new_indirect_edges = VEC_alloc (cgraph_edge_p, heap, 8);
|
| 987 |
|
|
|
| 988 |
|
|
if (dump_file)
|
| 989 |
|
|
fprintf (dump_file, "\nDeciding on smaller functions:\n");
|
| 990 |
|
|
|
| 991 |
|
|
/* Put all inline candidates into the heap. */
|
| 992 |
|
|
|
| 993 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
| 994 |
|
|
{
|
| 995 |
|
|
if (!node->local.inlinable || !node->callers
|
| 996 |
|
|
|| node->local.disregard_inline_limits)
|
| 997 |
|
|
continue;
|
| 998 |
|
|
if (dump_file)
|
| 999 |
|
|
fprintf (dump_file, "Considering inline candidate %s.\n", cgraph_node_name (node));
|
| 1000 |
|
|
|
| 1001 |
|
|
node->global.estimated_growth = INT_MIN;
|
| 1002 |
|
|
if (!cgraph_default_inline_p (node, &failed_reason))
|
| 1003 |
|
|
{
|
| 1004 |
|
|
cgraph_set_inline_failed (node, failed_reason);
|
| 1005 |
|
|
continue;
|
| 1006 |
|
|
}
|
| 1007 |
|
|
|
| 1008 |
|
|
for (edge = node->callers; edge; edge = edge->next_caller)
|
| 1009 |
|
|
if (edge->inline_failed)
|
| 1010 |
|
|
{
|
| 1011 |
|
|
gcc_assert (!edge->aux);
|
| 1012 |
|
|
edge->aux = fibheap_insert (heap, cgraph_edge_badness (edge, false), edge);
|
| 1013 |
|
|
}
|
| 1014 |
|
|
}
|
| 1015 |
|
|
|
| 1016 |
|
|
max_size = compute_max_insns (overall_size);
|
| 1017 |
|
|
min_size = overall_size;
|
| 1018 |
|
|
|
| 1019 |
|
|
while (overall_size <= max_size
|
| 1020 |
|
|
&& !fibheap_empty (heap))
|
| 1021 |
|
|
{
|
| 1022 |
|
|
int old_size = overall_size;
|
| 1023 |
|
|
struct cgraph_node *where, *callee;
|
| 1024 |
|
|
int badness = fibheap_min_key (heap);
|
| 1025 |
|
|
int current_badness;
|
| 1026 |
|
|
int growth;
|
| 1027 |
|
|
cgraph_inline_failed_t not_good = CIF_OK;
|
| 1028 |
|
|
|
| 1029 |
|
|
edge = (struct cgraph_edge *) fibheap_extract_min (heap);
|
| 1030 |
|
|
gcc_assert (edge->aux);
|
| 1031 |
|
|
edge->aux = NULL;
|
| 1032 |
|
|
if (!edge->inline_failed)
|
| 1033 |
|
|
continue;
|
| 1034 |
|
|
|
| 1035 |
|
|
/* When updating the edge costs, we only decrease badness in the keys.
|
| 1036 |
|
|
When the badness increase, we keep the heap as it is and re-insert
|
| 1037 |
|
|
key now. */
|
| 1038 |
|
|
current_badness = cgraph_edge_badness (edge, false);
|
| 1039 |
|
|
gcc_assert (current_badness >= badness);
|
| 1040 |
|
|
if (current_badness != badness)
|
| 1041 |
|
|
{
|
| 1042 |
|
|
edge->aux = fibheap_insert (heap, current_badness, edge);
|
| 1043 |
|
|
continue;
|
| 1044 |
|
|
}
|
| 1045 |
|
|
|
| 1046 |
|
|
callee = edge->callee;
|
| 1047 |
|
|
|
| 1048 |
|
|
growth = (cgraph_estimate_size_after_inlining (1, edge->caller, edge->callee)
|
| 1049 |
|
|
- edge->caller->global.size);
|
| 1050 |
|
|
|
| 1051 |
|
|
if (dump_file)
|
| 1052 |
|
|
{
|
| 1053 |
|
|
fprintf (dump_file,
|
| 1054 |
|
|
"\nConsidering %s with %i size\n",
|
| 1055 |
|
|
cgraph_node_name (edge->callee),
|
| 1056 |
|
|
edge->callee->global.size);
|
| 1057 |
|
|
fprintf (dump_file,
|
| 1058 |
|
|
" to be inlined into %s in %s:%i\n"
|
| 1059 |
|
|
" Estimated growth after inlined into all callees is %+i insns.\n"
|
| 1060 |
|
|
" Estimated badness is %i, frequency %.2f.\n",
|
| 1061 |
|
|
cgraph_node_name (edge->caller),
|
| 1062 |
|
|
flag_wpa ? "unknown"
|
| 1063 |
|
|
: gimple_filename ((const_gimple) edge->call_stmt),
|
| 1064 |
|
|
flag_wpa ? -1 : gimple_lineno ((const_gimple) edge->call_stmt),
|
| 1065 |
|
|
cgraph_estimate_growth (edge->callee),
|
| 1066 |
|
|
badness,
|
| 1067 |
|
|
edge->frequency / (double)CGRAPH_FREQ_BASE);
|
| 1068 |
|
|
if (edge->count)
|
| 1069 |
|
|
fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", edge->count);
|
| 1070 |
|
|
if (dump_flags & TDF_DETAILS)
|
| 1071 |
|
|
cgraph_edge_badness (edge, true);
|
| 1072 |
|
|
}
|
| 1073 |
|
|
|
| 1074 |
|
|
/* When not having profile info ready we don't weight by any way the
|
| 1075 |
|
|
position of call in procedure itself. This means if call of
|
| 1076 |
|
|
function A from function B seems profitable to inline, the recursive
|
| 1077 |
|
|
call of function A in inline copy of A in B will look profitable too
|
| 1078 |
|
|
and we end up inlining until reaching maximal function growth. This
|
| 1079 |
|
|
is not good idea so prohibit the recursive inlining.
|
| 1080 |
|
|
|
| 1081 |
|
|
??? When the frequencies are taken into account we might not need this
|
| 1082 |
|
|
restriction.
|
| 1083 |
|
|
|
| 1084 |
|
|
We need to be cureful here, in some testcases, e.g. directivec.c in
|
| 1085 |
|
|
libcpp, we can estimate self recursive function to have negative growth
|
| 1086 |
|
|
for inlining completely.
|
| 1087 |
|
|
*/
|
| 1088 |
|
|
if (!edge->count)
|
| 1089 |
|
|
{
|
| 1090 |
|
|
where = edge->caller;
|
| 1091 |
|
|
while (where->global.inlined_to)
|
| 1092 |
|
|
{
|
| 1093 |
|
|
if (where->decl == edge->callee->decl)
|
| 1094 |
|
|
break;
|
| 1095 |
|
|
where = where->callers->caller;
|
| 1096 |
|
|
}
|
| 1097 |
|
|
if (where->global.inlined_to)
|
| 1098 |
|
|
{
|
| 1099 |
|
|
edge->inline_failed
|
| 1100 |
|
|
= (edge->callee->local.disregard_inline_limits
|
| 1101 |
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
| 1102 |
|
|
if (dump_file)
|
| 1103 |
|
|
fprintf (dump_file, " inline_failed:Recursive inlining performed only for function itself.\n");
|
| 1104 |
|
|
continue;
|
| 1105 |
|
|
}
|
| 1106 |
|
|
}
|
| 1107 |
|
|
|
| 1108 |
|
|
if (!cgraph_maybe_hot_edge_p (edge))
|
| 1109 |
|
|
not_good = CIF_UNLIKELY_CALL;
|
| 1110 |
|
|
if (!flag_inline_functions
|
| 1111 |
|
|
&& !DECL_DECLARED_INLINE_P (edge->callee->decl))
|
| 1112 |
|
|
not_good = CIF_NOT_DECLARED_INLINED;
|
| 1113 |
|
|
if (optimize_function_for_size_p (DECL_STRUCT_FUNCTION(edge->caller->decl)))
|
| 1114 |
|
|
not_good = CIF_OPTIMIZING_FOR_SIZE;
|
| 1115 |
|
|
if (not_good && growth > 0 && cgraph_estimate_growth (edge->callee) > 0)
|
| 1116 |
|
|
{
|
| 1117 |
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
| 1118 |
|
|
&edge->inline_failed))
|
| 1119 |
|
|
{
|
| 1120 |
|
|
edge->inline_failed = not_good;
|
| 1121 |
|
|
if (dump_file)
|
| 1122 |
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
| 1123 |
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
| 1124 |
|
|
}
|
| 1125 |
|
|
continue;
|
| 1126 |
|
|
}
|
| 1127 |
|
|
if (!cgraph_default_inline_p (edge->callee, &edge->inline_failed))
|
| 1128 |
|
|
{
|
| 1129 |
|
|
if (!cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
| 1130 |
|
|
&edge->inline_failed))
|
| 1131 |
|
|
{
|
| 1132 |
|
|
if (dump_file)
|
| 1133 |
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
| 1134 |
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
| 1135 |
|
|
}
|
| 1136 |
|
|
continue;
|
| 1137 |
|
|
}
|
| 1138 |
|
|
if (!tree_can_inline_p (edge))
|
| 1139 |
|
|
{
|
| 1140 |
|
|
if (dump_file)
|
| 1141 |
|
|
fprintf (dump_file, " inline_failed:%s.\n",
|
| 1142 |
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
| 1143 |
|
|
continue;
|
| 1144 |
|
|
}
|
| 1145 |
|
|
if (cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
| 1146 |
|
|
&edge->inline_failed))
|
| 1147 |
|
|
{
|
| 1148 |
|
|
where = edge->caller;
|
| 1149 |
|
|
if (where->global.inlined_to)
|
| 1150 |
|
|
where = where->global.inlined_to;
|
| 1151 |
|
|
if (!cgraph_decide_recursive_inlining (where,
|
| 1152 |
|
|
flag_indirect_inlining
|
| 1153 |
|
|
? &new_indirect_edges : NULL))
|
| 1154 |
|
|
continue;
|
| 1155 |
|
|
if (flag_indirect_inlining)
|
| 1156 |
|
|
add_new_edges_to_heap (heap, new_indirect_edges);
|
| 1157 |
|
|
update_callee_keys (heap, where, updated_nodes);
|
| 1158 |
|
|
}
|
| 1159 |
|
|
else
|
| 1160 |
|
|
{
|
| 1161 |
|
|
struct cgraph_node *callee;
|
| 1162 |
|
|
if (edge->call_stmt_cannot_inline_p
|
| 1163 |
|
|
|| !cgraph_check_inline_limits (edge->caller, edge->callee,
|
| 1164 |
|
|
&edge->inline_failed, true))
|
| 1165 |
|
|
{
|
| 1166 |
|
|
if (dump_file)
|
| 1167 |
|
|
fprintf (dump_file, " Not inlining into %s:%s.\n",
|
| 1168 |
|
|
cgraph_node_name (edge->caller),
|
| 1169 |
|
|
cgraph_inline_failed_string (edge->inline_failed));
|
| 1170 |
|
|
continue;
|
| 1171 |
|
|
}
|
| 1172 |
|
|
callee = edge->callee;
|
| 1173 |
|
|
cgraph_mark_inline_edge (edge, true, &new_indirect_edges);
|
| 1174 |
|
|
if (flag_indirect_inlining)
|
| 1175 |
|
|
add_new_edges_to_heap (heap, new_indirect_edges);
|
| 1176 |
|
|
|
| 1177 |
|
|
update_callee_keys (heap, callee, updated_nodes);
|
| 1178 |
|
|
}
|
| 1179 |
|
|
where = edge->caller;
|
| 1180 |
|
|
if (where->global.inlined_to)
|
| 1181 |
|
|
where = where->global.inlined_to;
|
| 1182 |
|
|
|
| 1183 |
|
|
/* Our profitability metric can depend on local properties
|
| 1184 |
|
|
such as number of inlinable calls and size of the function body.
|
| 1185 |
|
|
After inlining these properties might change for the function we
|
| 1186 |
|
|
inlined into (since it's body size changed) and for the functions
|
| 1187 |
|
|
called by function we inlined (since number of it inlinable callers
|
| 1188 |
|
|
might change). */
|
| 1189 |
|
|
update_caller_keys (heap, where, updated_nodes);
|
| 1190 |
|
|
|
| 1191 |
|
|
/* We removed one call of the function we just inlined. If offline
|
| 1192 |
|
|
copy is still needed, be sure to update the keys. */
|
| 1193 |
|
|
if (callee != where && !callee->global.inlined_to)
|
| 1194 |
|
|
update_caller_keys (heap, callee, updated_nodes);
|
| 1195 |
|
|
bitmap_clear (updated_nodes);
|
| 1196 |
|
|
|
| 1197 |
|
|
if (dump_file)
|
| 1198 |
|
|
{
|
| 1199 |
|
|
fprintf (dump_file,
|
| 1200 |
|
|
" Inlined into %s which now has size %i and self time %i,"
|
| 1201 |
|
|
"net change of %+i.\n",
|
| 1202 |
|
|
cgraph_node_name (edge->caller),
|
| 1203 |
|
|
edge->caller->global.time,
|
| 1204 |
|
|
edge->caller->global.size,
|
| 1205 |
|
|
overall_size - old_size);
|
| 1206 |
|
|
}
|
| 1207 |
|
|
if (min_size > overall_size)
|
| 1208 |
|
|
{
|
| 1209 |
|
|
min_size = overall_size;
|
| 1210 |
|
|
max_size = compute_max_insns (min_size);
|
| 1211 |
|
|
|
| 1212 |
|
|
if (dump_file)
|
| 1213 |
|
|
fprintf (dump_file, "New minimal size reached: %i\n", min_size);
|
| 1214 |
|
|
}
|
| 1215 |
|
|
}
|
| 1216 |
|
|
while ((edge = (struct cgraph_edge *) fibheap_extract_min (heap)) != NULL)
|
| 1217 |
|
|
{
|
| 1218 |
|
|
gcc_assert (edge->aux);
|
| 1219 |
|
|
edge->aux = NULL;
|
| 1220 |
|
|
if (!edge->callee->local.disregard_inline_limits && edge->inline_failed
|
| 1221 |
|
|
&& !cgraph_recursive_inlining_p (edge->caller, edge->callee,
|
| 1222 |
|
|
&edge->inline_failed))
|
| 1223 |
|
|
edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
|
| 1224 |
|
|
}
|
| 1225 |
|
|
|
| 1226 |
|
|
if (new_indirect_edges)
|
| 1227 |
|
|
VEC_free (cgraph_edge_p, heap, new_indirect_edges);
|
| 1228 |
|
|
fibheap_delete (heap);
|
| 1229 |
|
|
BITMAP_FREE (updated_nodes);
|
| 1230 |
|
|
}
|
| 1231 |
|
|
|
| 1232 |
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
| 1233 |
|
|
expenses on updating data structures. */
|
| 1234 |
|
|
|
| 1235 |
|
|
static unsigned int
|
| 1236 |
|
|
cgraph_decide_inlining (void)
|
| 1237 |
|
|
{
|
| 1238 |
|
|
struct cgraph_node *node;
|
| 1239 |
|
|
int nnodes;
|
| 1240 |
|
|
struct cgraph_node **order =
|
| 1241 |
|
|
XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
|
| 1242 |
|
|
int old_size = 0;
|
| 1243 |
|
|
int i;
|
| 1244 |
|
|
bool redo_always_inline = true;
|
| 1245 |
|
|
int initial_size = 0;
|
| 1246 |
|
|
|
| 1247 |
|
|
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
|
| 1248 |
|
|
if (in_lto_p && flag_indirect_inlining)
|
| 1249 |
|
|
ipa_update_after_lto_read ();
|
| 1250 |
|
|
|
| 1251 |
|
|
max_count = 0;
|
| 1252 |
|
|
max_benefit = 0;
|
| 1253 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
| 1254 |
|
|
if (node->analyzed)
|
| 1255 |
|
|
{
|
| 1256 |
|
|
struct cgraph_edge *e;
|
| 1257 |
|
|
|
| 1258 |
|
|
gcc_assert (inline_summary (node)->self_size == node->global.size);
|
| 1259 |
|
|
initial_size += node->global.size;
|
| 1260 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 1261 |
|
|
if (max_count < e->count)
|
| 1262 |
|
|
max_count = e->count;
|
| 1263 |
|
|
if (max_benefit < inline_summary (node)->time_inlining_benefit)
|
| 1264 |
|
|
max_benefit = inline_summary (node)->time_inlining_benefit;
|
| 1265 |
|
|
}
|
| 1266 |
|
|
gcc_assert (in_lto_p
|
| 1267 |
|
|
|| !max_count
|
| 1268 |
|
|
|| (profile_info && flag_branch_probabilities));
|
| 1269 |
|
|
overall_size = initial_size;
|
| 1270 |
|
|
|
| 1271 |
|
|
nnodes = cgraph_postorder (order);
|
| 1272 |
|
|
|
| 1273 |
|
|
if (dump_file)
|
| 1274 |
|
|
fprintf (dump_file,
|
| 1275 |
|
|
"\nDeciding on inlining. Starting with size %i.\n",
|
| 1276 |
|
|
initial_size);
|
| 1277 |
|
|
|
| 1278 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
| 1279 |
|
|
node->aux = 0;
|
| 1280 |
|
|
|
| 1281 |
|
|
if (dump_file)
|
| 1282 |
|
|
fprintf (dump_file, "\nInlining always_inline functions:\n");
|
| 1283 |
|
|
|
| 1284 |
|
|
/* In the first pass mark all always_inline edges. Do this with a priority
|
| 1285 |
|
|
so none of our later choices will make this impossible. */
|
| 1286 |
|
|
while (redo_always_inline)
|
| 1287 |
|
|
{
|
| 1288 |
|
|
redo_always_inline = false;
|
| 1289 |
|
|
for (i = nnodes - 1; i >= 0; i--)
|
| 1290 |
|
|
{
|
| 1291 |
|
|
struct cgraph_edge *e, *next;
|
| 1292 |
|
|
|
| 1293 |
|
|
node = order[i];
|
| 1294 |
|
|
|
| 1295 |
|
|
/* Handle nodes to be flattened, but don't update overall unit
|
| 1296 |
|
|
size. */
|
| 1297 |
|
|
if (lookup_attribute ("flatten",
|
| 1298 |
|
|
DECL_ATTRIBUTES (node->decl)) != NULL)
|
| 1299 |
|
|
{
|
| 1300 |
|
|
if (dump_file)
|
| 1301 |
|
|
fprintf (dump_file,
|
| 1302 |
|
|
"Flattening %s\n", cgraph_node_name (node));
|
| 1303 |
|
|
cgraph_decide_inlining_incrementally (node, INLINE_ALL, 0);
|
| 1304 |
|
|
}
|
| 1305 |
|
|
|
| 1306 |
|
|
if (!node->local.disregard_inline_limits)
|
| 1307 |
|
|
continue;
|
| 1308 |
|
|
if (dump_file)
|
| 1309 |
|
|
fprintf (dump_file,
|
| 1310 |
|
|
"\nConsidering %s size:%i (always inline)\n",
|
| 1311 |
|
|
cgraph_node_name (node), node->global.size);
|
| 1312 |
|
|
old_size = overall_size;
|
| 1313 |
|
|
for (e = node->callers; e; e = next)
|
| 1314 |
|
|
{
|
| 1315 |
|
|
next = e->next_caller;
|
| 1316 |
|
|
if (!e->inline_failed || e->call_stmt_cannot_inline_p)
|
| 1317 |
|
|
continue;
|
| 1318 |
|
|
if (cgraph_recursive_inlining_p (e->caller, e->callee,
|
| 1319 |
|
|
&e->inline_failed))
|
| 1320 |
|
|
continue;
|
| 1321 |
|
|
if (!tree_can_inline_p (e))
|
| 1322 |
|
|
continue;
|
| 1323 |
|
|
if (cgraph_mark_inline_edge (e, true, NULL))
|
| 1324 |
|
|
redo_always_inline = true;
|
| 1325 |
|
|
if (dump_file)
|
| 1326 |
|
|
fprintf (dump_file,
|
| 1327 |
|
|
" Inlined into %s which now has size %i.\n",
|
| 1328 |
|
|
cgraph_node_name (e->caller),
|
| 1329 |
|
|
e->caller->global.size);
|
| 1330 |
|
|
}
|
| 1331 |
|
|
/* Inlining self recursive function might introduce new calls to
|
| 1332 |
|
|
themselves we didn't see in the loop above. Fill in the proper
|
| 1333 |
|
|
reason why inline failed. */
|
| 1334 |
|
|
for (e = node->callers; e; e = e->next_caller)
|
| 1335 |
|
|
if (e->inline_failed)
|
| 1336 |
|
|
e->inline_failed = CIF_RECURSIVE_INLINING;
|
| 1337 |
|
|
if (dump_file)
|
| 1338 |
|
|
fprintf (dump_file,
|
| 1339 |
|
|
" Inlined for a net change of %+i size.\n",
|
| 1340 |
|
|
overall_size - old_size);
|
| 1341 |
|
|
}
|
| 1342 |
|
|
}
|
| 1343 |
|
|
|
| 1344 |
|
|
cgraph_decide_inlining_of_small_functions ();
|
| 1345 |
|
|
|
| 1346 |
|
|
if (flag_inline_functions_called_once)
|
| 1347 |
|
|
{
|
| 1348 |
|
|
if (dump_file)
|
| 1349 |
|
|
fprintf (dump_file, "\nDeciding on functions called once:\n");
|
| 1350 |
|
|
|
| 1351 |
|
|
/* And finally decide what functions are called once. */
|
| 1352 |
|
|
for (i = nnodes - 1; i >= 0; i--)
|
| 1353 |
|
|
{
|
| 1354 |
|
|
node = order[i];
|
| 1355 |
|
|
|
| 1356 |
|
|
if (node->callers
|
| 1357 |
|
|
&& !node->callers->next_caller
|
| 1358 |
|
|
&& cgraph_only_called_directly_p (node)
|
| 1359 |
|
|
&& node->local.inlinable
|
| 1360 |
|
|
&& node->callers->inline_failed
|
| 1361 |
|
|
&& node->callers->caller != node
|
| 1362 |
|
|
&& node->callers->caller->global.inlined_to != node
|
| 1363 |
|
|
&& !node->callers->call_stmt_cannot_inline_p
|
| 1364 |
|
|
&& !DECL_EXTERNAL (node->decl)
|
| 1365 |
|
|
&& !DECL_COMDAT (node->decl))
|
| 1366 |
|
|
{
|
| 1367 |
|
|
cgraph_inline_failed_t reason;
|
| 1368 |
|
|
old_size = overall_size;
|
| 1369 |
|
|
if (dump_file)
|
| 1370 |
|
|
{
|
| 1371 |
|
|
fprintf (dump_file,
|
| 1372 |
|
|
"\nConsidering %s size %i.\n",
|
| 1373 |
|
|
cgraph_node_name (node), node->global.size);
|
| 1374 |
|
|
fprintf (dump_file,
|
| 1375 |
|
|
" Called once from %s %i insns.\n",
|
| 1376 |
|
|
cgraph_node_name (node->callers->caller),
|
| 1377 |
|
|
node->callers->caller->global.size);
|
| 1378 |
|
|
}
|
| 1379 |
|
|
|
| 1380 |
|
|
if (cgraph_check_inline_limits (node->callers->caller, node,
|
| 1381 |
|
|
&reason, false))
|
| 1382 |
|
|
{
|
| 1383 |
|
|
cgraph_mark_inline (node->callers);
|
| 1384 |
|
|
if (dump_file)
|
| 1385 |
|
|
fprintf (dump_file,
|
| 1386 |
|
|
" Inlined into %s which now has %i size"
|
| 1387 |
|
|
" for a net change of %+i size.\n",
|
| 1388 |
|
|
cgraph_node_name (node->callers->caller),
|
| 1389 |
|
|
node->callers->caller->global.size,
|
| 1390 |
|
|
overall_size - old_size);
|
| 1391 |
|
|
}
|
| 1392 |
|
|
else
|
| 1393 |
|
|
{
|
| 1394 |
|
|
if (dump_file)
|
| 1395 |
|
|
fprintf (dump_file,
|
| 1396 |
|
|
" Not inlining: %s.\n",
|
| 1397 |
|
|
cgraph_inline_failed_string (reason));
|
| 1398 |
|
|
}
|
| 1399 |
|
|
}
|
| 1400 |
|
|
}
|
| 1401 |
|
|
}
|
| 1402 |
|
|
|
| 1403 |
|
|
/* Free ipa-prop structures if they are no longer needed. */
|
| 1404 |
|
|
if (flag_indirect_inlining)
|
| 1405 |
|
|
free_all_ipa_structures_after_iinln ();
|
| 1406 |
|
|
|
| 1407 |
|
|
if (dump_file)
|
| 1408 |
|
|
fprintf (dump_file,
|
| 1409 |
|
|
"\nInlined %i calls, eliminated %i functions, "
|
| 1410 |
|
|
"size %i turned to %i size.\n\n",
|
| 1411 |
|
|
ncalls_inlined, nfunctions_inlined, initial_size,
|
| 1412 |
|
|
overall_size);
|
| 1413 |
|
|
free (order);
|
| 1414 |
|
|
return 0;
|
| 1415 |
|
|
}
|
| 1416 |
|
|
|
| 1417 |
|
|
/* Try to inline edge E from incremental inliner. MODE specifies mode
|
| 1418 |
|
|
of inliner.
|
| 1419 |
|
|
|
| 1420 |
|
|
We are detecting cycles by storing mode of inliner into cgraph_node last
|
| 1421 |
|
|
time we visited it in the recursion. In general when mode is set, we have
|
| 1422 |
|
|
recursive inlining, but as an special case, we want to try harder inline
|
| 1423 |
|
|
ALWAYS_INLINE functions: consider callgraph a->b->c->b, with a being
|
| 1424 |
|
|
flatten, b being always inline. Flattening 'a' will collapse
|
| 1425 |
|
|
a->b->c before hitting cycle. To accommodate always inline, we however
|
| 1426 |
|
|
need to inline a->b->c->b.
|
| 1427 |
|
|
|
| 1428 |
|
|
So after hitting cycle first time, we switch into ALWAYS_INLINE mode and
|
| 1429 |
|
|
stop inlining only after hitting ALWAYS_INLINE in ALWAY_INLINE mode. */
|
| 1430 |
|
|
static bool
|
| 1431 |
|
|
try_inline (struct cgraph_edge *e, enum inlining_mode mode, int depth)
|
| 1432 |
|
|
{
|
| 1433 |
|
|
struct cgraph_node *callee = e->callee;
|
| 1434 |
|
|
enum inlining_mode callee_mode = (enum inlining_mode) (size_t) callee->aux;
|
| 1435 |
|
|
bool always_inline = e->callee->local.disregard_inline_limits;
|
| 1436 |
|
|
bool inlined = false;
|
| 1437 |
|
|
|
| 1438 |
|
|
/* We've hit cycle? */
|
| 1439 |
|
|
if (callee_mode)
|
| 1440 |
|
|
{
|
| 1441 |
|
|
/* It is first time we see it and we are not in ALWAY_INLINE only
|
| 1442 |
|
|
mode yet. and the function in question is always_inline. */
|
| 1443 |
|
|
if (always_inline && mode != INLINE_ALWAYS_INLINE)
|
| 1444 |
|
|
{
|
| 1445 |
|
|
if (dump_file)
|
| 1446 |
|
|
{
|
| 1447 |
|
|
indent_to (dump_file, depth);
|
| 1448 |
|
|
fprintf (dump_file,
|
| 1449 |
|
|
"Hit cycle in %s, switching to always inline only.\n",
|
| 1450 |
|
|
cgraph_node_name (callee));
|
| 1451 |
|
|
}
|
| 1452 |
|
|
mode = INLINE_ALWAYS_INLINE;
|
| 1453 |
|
|
}
|
| 1454 |
|
|
/* Otherwise it is time to give up. */
|
| 1455 |
|
|
else
|
| 1456 |
|
|
{
|
| 1457 |
|
|
if (dump_file)
|
| 1458 |
|
|
{
|
| 1459 |
|
|
indent_to (dump_file, depth);
|
| 1460 |
|
|
fprintf (dump_file,
|
| 1461 |
|
|
"Not inlining %s into %s to avoid cycle.\n",
|
| 1462 |
|
|
cgraph_node_name (callee),
|
| 1463 |
|
|
cgraph_node_name (e->caller));
|
| 1464 |
|
|
}
|
| 1465 |
|
|
e->inline_failed = (e->callee->local.disregard_inline_limits
|
| 1466 |
|
|
? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
|
| 1467 |
|
|
return false;
|
| 1468 |
|
|
}
|
| 1469 |
|
|
}
|
| 1470 |
|
|
|
| 1471 |
|
|
callee->aux = (void *)(size_t) mode;
|
| 1472 |
|
|
if (dump_file)
|
| 1473 |
|
|
{
|
| 1474 |
|
|
indent_to (dump_file, depth);
|
| 1475 |
|
|
fprintf (dump_file, " Inlining %s into %s.\n",
|
| 1476 |
|
|
cgraph_node_name (e->callee),
|
| 1477 |
|
|
cgraph_node_name (e->caller));
|
| 1478 |
|
|
}
|
| 1479 |
|
|
if (e->inline_failed)
|
| 1480 |
|
|
{
|
| 1481 |
|
|
cgraph_mark_inline (e);
|
| 1482 |
|
|
|
| 1483 |
|
|
/* In order to fully inline always_inline functions, we need to
|
| 1484 |
|
|
recurse here, since the inlined functions might not be processed by
|
| 1485 |
|
|
incremental inlining at all yet.
|
| 1486 |
|
|
|
| 1487 |
|
|
Also flattening needs to be done recursively. */
|
| 1488 |
|
|
|
| 1489 |
|
|
if (mode == INLINE_ALL || always_inline)
|
| 1490 |
|
|
cgraph_decide_inlining_incrementally (e->callee, mode, depth + 1);
|
| 1491 |
|
|
inlined = true;
|
| 1492 |
|
|
}
|
| 1493 |
|
|
callee->aux = (void *)(size_t) callee_mode;
|
| 1494 |
|
|
return inlined;
|
| 1495 |
|
|
}
|
| 1496 |
|
|
|
| 1497 |
|
|
/* Return true when N is leaf function. Accept cheap (pure&const) builtins
|
| 1498 |
|
|
in leaf functions. */
|
| 1499 |
|
|
static bool
|
| 1500 |
|
|
leaf_node_p (struct cgraph_node *n)
|
| 1501 |
|
|
{
|
| 1502 |
|
|
struct cgraph_edge *e;
|
| 1503 |
|
|
for (e = n->callees; e; e = e->next_callee)
|
| 1504 |
|
|
if (!DECL_BUILT_IN (e->callee->decl)
|
| 1505 |
|
|
|| (!TREE_READONLY (e->callee->decl)
|
| 1506 |
|
|
|| DECL_PURE_P (e->callee->decl)))
|
| 1507 |
|
|
return false;
|
| 1508 |
|
|
return true;
|
| 1509 |
|
|
}
|
| 1510 |
|
|
|
| 1511 |
|
|
/* Decide on the inlining. We do so in the topological order to avoid
|
| 1512 |
|
|
expenses on updating data structures.
|
| 1513 |
|
|
DEPTH is depth of recursion, used only for debug output. */
|
| 1514 |
|
|
|
| 1515 |
|
|
static bool
|
| 1516 |
|
|
cgraph_decide_inlining_incrementally (struct cgraph_node *node,
|
| 1517 |
|
|
enum inlining_mode mode,
|
| 1518 |
|
|
int depth)
|
| 1519 |
|
|
{
|
| 1520 |
|
|
struct cgraph_edge *e;
|
| 1521 |
|
|
bool inlined = false;
|
| 1522 |
|
|
cgraph_inline_failed_t failed_reason;
|
| 1523 |
|
|
enum inlining_mode old_mode;
|
| 1524 |
|
|
|
| 1525 |
|
|
#ifdef ENABLE_CHECKING
|
| 1526 |
|
|
verify_cgraph_node (node);
|
| 1527 |
|
|
#endif
|
| 1528 |
|
|
|
| 1529 |
|
|
old_mode = (enum inlining_mode) (size_t)node->aux;
|
| 1530 |
|
|
|
| 1531 |
|
|
if (mode != INLINE_ALWAYS_INLINE && mode != INLINE_SIZE_NORECURSIVE
|
| 1532 |
|
|
&& lookup_attribute ("flatten", DECL_ATTRIBUTES (node->decl)) != NULL)
|
| 1533 |
|
|
{
|
| 1534 |
|
|
if (dump_file)
|
| 1535 |
|
|
{
|
| 1536 |
|
|
indent_to (dump_file, depth);
|
| 1537 |
|
|
fprintf (dump_file, "Flattening %s\n", cgraph_node_name (node));
|
| 1538 |
|
|
}
|
| 1539 |
|
|
mode = INLINE_ALL;
|
| 1540 |
|
|
}
|
| 1541 |
|
|
|
| 1542 |
|
|
node->aux = (void *)(size_t) mode;
|
| 1543 |
|
|
|
| 1544 |
|
|
/* First of all look for always inline functions. */
|
| 1545 |
|
|
if (mode != INLINE_SIZE_NORECURSIVE)
|
| 1546 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 1547 |
|
|
{
|
| 1548 |
|
|
if (!e->callee->local.disregard_inline_limits
|
| 1549 |
|
|
&& (mode != INLINE_ALL || !e->callee->local.inlinable))
|
| 1550 |
|
|
continue;
|
| 1551 |
|
|
if (e->call_stmt_cannot_inline_p)
|
| 1552 |
|
|
continue;
|
| 1553 |
|
|
/* When the edge is already inlined, we just need to recurse into
|
| 1554 |
|
|
it in order to fully flatten the leaves. */
|
| 1555 |
|
|
if (!e->inline_failed && mode == INLINE_ALL)
|
| 1556 |
|
|
{
|
| 1557 |
|
|
inlined |= try_inline (e, mode, depth);
|
| 1558 |
|
|
continue;
|
| 1559 |
|
|
}
|
| 1560 |
|
|
if (dump_file)
|
| 1561 |
|
|
{
|
| 1562 |
|
|
indent_to (dump_file, depth);
|
| 1563 |
|
|
fprintf (dump_file,
|
| 1564 |
|
|
"Considering to always inline inline candidate %s.\n",
|
| 1565 |
|
|
cgraph_node_name (e->callee));
|
| 1566 |
|
|
}
|
| 1567 |
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
| 1568 |
|
|
{
|
| 1569 |
|
|
if (dump_file)
|
| 1570 |
|
|
{
|
| 1571 |
|
|
indent_to (dump_file, depth);
|
| 1572 |
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
| 1573 |
|
|
}
|
| 1574 |
|
|
continue;
|
| 1575 |
|
|
}
|
| 1576 |
|
|
if (!tree_can_inline_p (e))
|
| 1577 |
|
|
{
|
| 1578 |
|
|
if (dump_file)
|
| 1579 |
|
|
{
|
| 1580 |
|
|
indent_to (dump_file, depth);
|
| 1581 |
|
|
fprintf (dump_file,
|
| 1582 |
|
|
"Not inlining: %s",
|
| 1583 |
|
|
cgraph_inline_failed_string (e->inline_failed));
|
| 1584 |
|
|
}
|
| 1585 |
|
|
continue;
|
| 1586 |
|
|
}
|
| 1587 |
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
| 1588 |
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
| 1589 |
|
|
{
|
| 1590 |
|
|
if (dump_file)
|
| 1591 |
|
|
{
|
| 1592 |
|
|
indent_to (dump_file, depth);
|
| 1593 |
|
|
fprintf (dump_file, "Not inlining: SSA form does not match.\n");
|
| 1594 |
|
|
}
|
| 1595 |
|
|
continue;
|
| 1596 |
|
|
}
|
| 1597 |
|
|
if (!e->callee->analyzed)
|
| 1598 |
|
|
{
|
| 1599 |
|
|
if (dump_file)
|
| 1600 |
|
|
{
|
| 1601 |
|
|
indent_to (dump_file, depth);
|
| 1602 |
|
|
fprintf (dump_file,
|
| 1603 |
|
|
"Not inlining: Function body no longer available.\n");
|
| 1604 |
|
|
}
|
| 1605 |
|
|
continue;
|
| 1606 |
|
|
}
|
| 1607 |
|
|
inlined |= try_inline (e, mode, depth);
|
| 1608 |
|
|
}
|
| 1609 |
|
|
|
| 1610 |
|
|
/* Now do the automatic inlining. */
|
| 1611 |
|
|
if (mode != INLINE_ALL && mode != INLINE_ALWAYS_INLINE
|
| 1612 |
|
|
/* Never inline regular functions into always-inline functions
|
| 1613 |
|
|
during incremental inlining. */
|
| 1614 |
|
|
&& !node->local.disregard_inline_limits)
|
| 1615 |
|
|
{
|
| 1616 |
|
|
bitmap visited = BITMAP_ALLOC (NULL);
|
| 1617 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 1618 |
|
|
{
|
| 1619 |
|
|
int allowed_growth = 0;
|
| 1620 |
|
|
if (!e->callee->local.inlinable
|
| 1621 |
|
|
|| !e->inline_failed
|
| 1622 |
|
|
|| e->callee->local.disregard_inline_limits)
|
| 1623 |
|
|
continue;
|
| 1624 |
|
|
/* We are inlining a function to all call-sites in node
|
| 1625 |
|
|
or to none. So visit each candidate only once. */
|
| 1626 |
|
|
if (!bitmap_set_bit (visited, e->callee->uid))
|
| 1627 |
|
|
continue;
|
| 1628 |
|
|
if (dump_file)
|
| 1629 |
|
|
fprintf (dump_file, "Considering inline candidate %s.\n",
|
| 1630 |
|
|
cgraph_node_name (e->callee));
|
| 1631 |
|
|
if (cgraph_recursive_inlining_p (node, e->callee, &e->inline_failed))
|
| 1632 |
|
|
{
|
| 1633 |
|
|
if (dump_file)
|
| 1634 |
|
|
{
|
| 1635 |
|
|
indent_to (dump_file, depth);
|
| 1636 |
|
|
fprintf (dump_file, "Not inlining: recursive call.\n");
|
| 1637 |
|
|
}
|
| 1638 |
|
|
continue;
|
| 1639 |
|
|
}
|
| 1640 |
|
|
if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->decl))
|
| 1641 |
|
|
!= gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->callee->decl)))
|
| 1642 |
|
|
{
|
| 1643 |
|
|
if (dump_file)
|
| 1644 |
|
|
{
|
| 1645 |
|
|
indent_to (dump_file, depth);
|
| 1646 |
|
|
fprintf (dump_file,
|
| 1647 |
|
|
"Not inlining: SSA form does not match.\n");
|
| 1648 |
|
|
}
|
| 1649 |
|
|
continue;
|
| 1650 |
|
|
}
|
| 1651 |
|
|
|
| 1652 |
|
|
if (cgraph_maybe_hot_edge_p (e) && leaf_node_p (e->callee)
|
| 1653 |
|
|
&& optimize_function_for_speed_p (cfun))
|
| 1654 |
|
|
allowed_growth = PARAM_VALUE (PARAM_EARLY_INLINING_INSNS);
|
| 1655 |
|
|
|
| 1656 |
|
|
/* When the function body would grow and inlining the function
|
| 1657 |
|
|
won't eliminate the need for offline copy of the function,
|
| 1658 |
|
|
don't inline. */
|
| 1659 |
|
|
if (((mode == INLINE_SIZE || mode == INLINE_SIZE_NORECURSIVE)
|
| 1660 |
|
|
|| (!flag_inline_functions
|
| 1661 |
|
|
&& !DECL_DECLARED_INLINE_P (e->callee->decl)))
|
| 1662 |
|
|
&& (cgraph_estimate_size_after_inlining (1, e->caller, e->callee)
|
| 1663 |
|
|
> e->caller->global.size + allowed_growth)
|
| 1664 |
|
|
&& cgraph_estimate_growth (e->callee) > allowed_growth)
|
| 1665 |
|
|
{
|
| 1666 |
|
|
if (dump_file)
|
| 1667 |
|
|
{
|
| 1668 |
|
|
indent_to (dump_file, depth);
|
| 1669 |
|
|
fprintf (dump_file,
|
| 1670 |
|
|
"Not inlining: code size would grow by %i.\n",
|
| 1671 |
|
|
cgraph_estimate_size_after_inlining (1, e->caller,
|
| 1672 |
|
|
e->callee)
|
| 1673 |
|
|
- e->caller->global.size);
|
| 1674 |
|
|
}
|
| 1675 |
|
|
continue;
|
| 1676 |
|
|
}
|
| 1677 |
|
|
if (!cgraph_check_inline_limits (node, e->callee, &e->inline_failed,
|
| 1678 |
|
|
false)
|
| 1679 |
|
|
|| e->call_stmt_cannot_inline_p)
|
| 1680 |
|
|
{
|
| 1681 |
|
|
if (dump_file)
|
| 1682 |
|
|
{
|
| 1683 |
|
|
indent_to (dump_file, depth);
|
| 1684 |
|
|
fprintf (dump_file, "Not inlining: %s.\n",
|
| 1685 |
|
|
cgraph_inline_failed_string (e->inline_failed));
|
| 1686 |
|
|
}
|
| 1687 |
|
|
continue;
|
| 1688 |
|
|
}
|
| 1689 |
|
|
if (!e->callee->analyzed)
|
| 1690 |
|
|
{
|
| 1691 |
|
|
if (dump_file)
|
| 1692 |
|
|
{
|
| 1693 |
|
|
indent_to (dump_file, depth);
|
| 1694 |
|
|
fprintf (dump_file,
|
| 1695 |
|
|
"Not inlining: Function body no longer available.\n");
|
| 1696 |
|
|
}
|
| 1697 |
|
|
continue;
|
| 1698 |
|
|
}
|
| 1699 |
|
|
if (!tree_can_inline_p (e))
|
| 1700 |
|
|
{
|
| 1701 |
|
|
if (dump_file)
|
| 1702 |
|
|
{
|
| 1703 |
|
|
indent_to (dump_file, depth);
|
| 1704 |
|
|
fprintf (dump_file,
|
| 1705 |
|
|
"Not inlining: %s.",
|
| 1706 |
|
|
cgraph_inline_failed_string (e->inline_failed));
|
| 1707 |
|
|
}
|
| 1708 |
|
|
continue;
|
| 1709 |
|
|
}
|
| 1710 |
|
|
if (cgraph_default_inline_p (e->callee, &failed_reason))
|
| 1711 |
|
|
inlined |= try_inline (e, mode, depth);
|
| 1712 |
|
|
}
|
| 1713 |
|
|
BITMAP_FREE (visited);
|
| 1714 |
|
|
}
|
| 1715 |
|
|
node->aux = (void *)(size_t) old_mode;
|
| 1716 |
|
|
return inlined;
|
| 1717 |
|
|
}
|
| 1718 |
|
|
|
| 1719 |
|
|
/* Because inlining might remove no-longer reachable nodes, we need to
|
| 1720 |
|
|
keep the array visible to garbage collector to avoid reading collected
|
| 1721 |
|
|
out nodes. */
|
| 1722 |
|
|
static int nnodes;
|
| 1723 |
|
|
static GTY ((length ("nnodes"))) struct cgraph_node **order;
|
| 1724 |
|
|
|
| 1725 |
|
|
/* Do inlining of small functions. Doing so early helps profiling and other
|
| 1726 |
|
|
passes to be somewhat more effective and avoids some code duplication in
|
| 1727 |
|
|
later real inlining pass for testcases with very many function calls. */
|
| 1728 |
|
|
static unsigned int
|
| 1729 |
|
|
cgraph_early_inlining (void)
|
| 1730 |
|
|
{
|
| 1731 |
|
|
struct cgraph_node *node = cgraph_node (current_function_decl);
|
| 1732 |
|
|
unsigned int todo = 0;
|
| 1733 |
|
|
int iterations = 0;
|
| 1734 |
|
|
|
| 1735 |
|
|
if (sorrycount || errorcount)
|
| 1736 |
|
|
return 0;
|
| 1737 |
|
|
while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
|
| 1738 |
|
|
&& cgraph_decide_inlining_incrementally (node,
|
| 1739 |
|
|
iterations
|
| 1740 |
|
|
? INLINE_SIZE_NORECURSIVE : INLINE_SIZE, 0))
|
| 1741 |
|
|
{
|
| 1742 |
|
|
timevar_push (TV_INTEGRATION);
|
| 1743 |
|
|
todo |= optimize_inline_calls (current_function_decl);
|
| 1744 |
|
|
iterations++;
|
| 1745 |
|
|
timevar_pop (TV_INTEGRATION);
|
| 1746 |
|
|
}
|
| 1747 |
|
|
if (dump_file)
|
| 1748 |
|
|
fprintf (dump_file, "Iterations: %i\n", iterations);
|
| 1749 |
|
|
cfun->always_inline_functions_inlined = true;
|
| 1750 |
|
|
return todo;
|
| 1751 |
|
|
}
|
| 1752 |
|
|
|
| 1753 |
|
|
/* When inlining shall be performed. */
|
| 1754 |
|
|
static bool
|
| 1755 |
|
|
cgraph_gate_early_inlining (void)
|
| 1756 |
|
|
{
|
| 1757 |
|
|
return flag_early_inlining;
|
| 1758 |
|
|
}
|
| 1759 |
|
|
|
| 1760 |
|
|
struct gimple_opt_pass pass_early_inline =
|
| 1761 |
|
|
{
|
| 1762 |
|
|
{
|
| 1763 |
|
|
GIMPLE_PASS,
|
| 1764 |
|
|
"einline", /* name */
|
| 1765 |
|
|
cgraph_gate_early_inlining, /* gate */
|
| 1766 |
|
|
cgraph_early_inlining, /* execute */
|
| 1767 |
|
|
NULL, /* sub */
|
| 1768 |
|
|
NULL, /* next */
|
| 1769 |
|
|
0, /* static_pass_number */
|
| 1770 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
| 1771 |
|
|
0, /* properties_required */
|
| 1772 |
|
|
0, /* properties_provided */
|
| 1773 |
|
|
0, /* properties_destroyed */
|
| 1774 |
|
|
0, /* todo_flags_start */
|
| 1775 |
|
|
TODO_dump_func /* todo_flags_finish */
|
| 1776 |
|
|
}
|
| 1777 |
|
|
};
|
| 1778 |
|
|
|
| 1779 |
|
|
/* When inlining shall be performed. */
|
| 1780 |
|
|
static bool
|
| 1781 |
|
|
cgraph_gate_ipa_early_inlining (void)
|
| 1782 |
|
|
{
|
| 1783 |
|
|
return (flag_early_inlining
|
| 1784 |
|
|
&& !in_lto_p
|
| 1785 |
|
|
&& (flag_branch_probabilities || flag_test_coverage
|
| 1786 |
|
|
|| profile_arc_flag));
|
| 1787 |
|
|
}
|
| 1788 |
|
|
|
| 1789 |
|
|
/* IPA pass wrapper for early inlining pass. We need to run early inlining
|
| 1790 |
|
|
before tree profiling so we have stand alone IPA pass for doing so. */
|
| 1791 |
|
|
struct simple_ipa_opt_pass pass_ipa_early_inline =
|
| 1792 |
|
|
{
|
| 1793 |
|
|
{
|
| 1794 |
|
|
SIMPLE_IPA_PASS,
|
| 1795 |
|
|
"einline_ipa", /* name */
|
| 1796 |
|
|
cgraph_gate_ipa_early_inlining, /* gate */
|
| 1797 |
|
|
NULL, /* execute */
|
| 1798 |
|
|
NULL, /* sub */
|
| 1799 |
|
|
NULL, /* next */
|
| 1800 |
|
|
0, /* static_pass_number */
|
| 1801 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
| 1802 |
|
|
0, /* properties_required */
|
| 1803 |
|
|
0, /* properties_provided */
|
| 1804 |
|
|
0, /* properties_destroyed */
|
| 1805 |
|
|
0, /* todo_flags_start */
|
| 1806 |
|
|
TODO_dump_cgraph /* todo_flags_finish */
|
| 1807 |
|
|
}
|
| 1808 |
|
|
};
|
| 1809 |
|
|
|
| 1810 |
|
|
/* See if statement might disappear after inlining. We are not terribly
|
| 1811 |
|
|
sophisficated, basically looking for simple abstraction penalty wrappers. */
|
| 1812 |
|
|
|
| 1813 |
|
|
static bool
|
| 1814 |
|
|
likely_eliminated_by_inlining_p (gimple stmt)
|
| 1815 |
|
|
{
|
| 1816 |
|
|
enum gimple_code code = gimple_code (stmt);
|
| 1817 |
|
|
switch (code)
|
| 1818 |
|
|
{
|
| 1819 |
|
|
case GIMPLE_RETURN:
|
| 1820 |
|
|
return true;
|
| 1821 |
|
|
case GIMPLE_ASSIGN:
|
| 1822 |
|
|
if (gimple_num_ops (stmt) != 2)
|
| 1823 |
|
|
return false;
|
| 1824 |
|
|
|
| 1825 |
|
|
/* Casts of parameters, loads from parameters passed by reference
|
| 1826 |
|
|
and stores to return value or parameters are probably free after
|
| 1827 |
|
|
inlining. */
|
| 1828 |
|
|
if (gimple_assign_rhs_code (stmt) == CONVERT_EXPR
|
| 1829 |
|
|
|| gimple_assign_rhs_code (stmt) == NOP_EXPR
|
| 1830 |
|
|
|| gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR
|
| 1831 |
|
|
|| gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
| 1832 |
|
|
{
|
| 1833 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 1834 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 1835 |
|
|
tree inner_rhs = rhs;
|
| 1836 |
|
|
tree inner_lhs = lhs;
|
| 1837 |
|
|
bool rhs_free = false;
|
| 1838 |
|
|
bool lhs_free = false;
|
| 1839 |
|
|
|
| 1840 |
|
|
while (handled_component_p (inner_lhs) || TREE_CODE (inner_lhs) == INDIRECT_REF)
|
| 1841 |
|
|
inner_lhs = TREE_OPERAND (inner_lhs, 0);
|
| 1842 |
|
|
while (handled_component_p (inner_rhs)
|
| 1843 |
|
|
|| TREE_CODE (inner_rhs) == ADDR_EXPR || TREE_CODE (inner_rhs) == INDIRECT_REF)
|
| 1844 |
|
|
inner_rhs = TREE_OPERAND (inner_rhs, 0);
|
| 1845 |
|
|
|
| 1846 |
|
|
|
| 1847 |
|
|
if (TREE_CODE (inner_rhs) == PARM_DECL
|
| 1848 |
|
|
|| (TREE_CODE (inner_rhs) == SSA_NAME
|
| 1849 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (inner_rhs)
|
| 1850 |
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_rhs)) == PARM_DECL))
|
| 1851 |
|
|
rhs_free = true;
|
| 1852 |
|
|
if (rhs_free && is_gimple_reg (lhs))
|
| 1853 |
|
|
lhs_free = true;
|
| 1854 |
|
|
if (((TREE_CODE (inner_lhs) == PARM_DECL
|
| 1855 |
|
|
|| (TREE_CODE (inner_lhs) == SSA_NAME
|
| 1856 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (inner_lhs)
|
| 1857 |
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_lhs)) == PARM_DECL))
|
| 1858 |
|
|
&& inner_lhs != lhs)
|
| 1859 |
|
|
|| TREE_CODE (inner_lhs) == RESULT_DECL
|
| 1860 |
|
|
|| (TREE_CODE (inner_lhs) == SSA_NAME
|
| 1861 |
|
|
&& TREE_CODE (SSA_NAME_VAR (inner_lhs)) == RESULT_DECL))
|
| 1862 |
|
|
lhs_free = true;
|
| 1863 |
|
|
if (lhs_free && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
|
| 1864 |
|
|
rhs_free = true;
|
| 1865 |
|
|
if (lhs_free && rhs_free)
|
| 1866 |
|
|
return true;
|
| 1867 |
|
|
}
|
| 1868 |
|
|
return false;
|
| 1869 |
|
|
default:
|
| 1870 |
|
|
return false;
|
| 1871 |
|
|
}
|
| 1872 |
|
|
}
|
| 1873 |
|
|
|
| 1874 |
|
|
/* Compute function body size parameters for NODE. */
|
| 1875 |
|
|
|
| 1876 |
|
|
static void
|
| 1877 |
|
|
estimate_function_body_sizes (struct cgraph_node *node)
|
| 1878 |
|
|
{
|
| 1879 |
|
|
gcov_type time = 0;
|
| 1880 |
|
|
gcov_type time_inlining_benefit = 0;
|
| 1881 |
|
|
int size = 0;
|
| 1882 |
|
|
int size_inlining_benefit = 0;
|
| 1883 |
|
|
basic_block bb;
|
| 1884 |
|
|
gimple_stmt_iterator bsi;
|
| 1885 |
|
|
struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
|
| 1886 |
|
|
tree arg;
|
| 1887 |
|
|
int freq;
|
| 1888 |
|
|
tree funtype = TREE_TYPE (node->decl);
|
| 1889 |
|
|
|
| 1890 |
|
|
if (dump_file)
|
| 1891 |
|
|
fprintf (dump_file, "Analyzing function body size: %s\n",
|
| 1892 |
|
|
cgraph_node_name (node));
|
| 1893 |
|
|
|
| 1894 |
|
|
gcc_assert (my_function && my_function->cfg);
|
| 1895 |
|
|
FOR_EACH_BB_FN (bb, my_function)
|
| 1896 |
|
|
{
|
| 1897 |
|
|
freq = compute_call_stmt_bb_frequency (node->decl, bb);
|
| 1898 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 1899 |
|
|
{
|
| 1900 |
|
|
gimple stmt = gsi_stmt (bsi);
|
| 1901 |
|
|
int this_size = estimate_num_insns (stmt, &eni_size_weights);
|
| 1902 |
|
|
int this_time = estimate_num_insns (stmt, &eni_time_weights);
|
| 1903 |
|
|
|
| 1904 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1905 |
|
|
{
|
| 1906 |
|
|
fprintf (dump_file, " freq:%6i size:%3i time:%3i ",
|
| 1907 |
|
|
freq, this_size, this_time);
|
| 1908 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 1909 |
|
|
}
|
| 1910 |
|
|
this_time *= freq;
|
| 1911 |
|
|
time += this_time;
|
| 1912 |
|
|
size += this_size;
|
| 1913 |
|
|
if (likely_eliminated_by_inlining_p (stmt))
|
| 1914 |
|
|
{
|
| 1915 |
|
|
size_inlining_benefit += this_size;
|
| 1916 |
|
|
time_inlining_benefit += this_time;
|
| 1917 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1918 |
|
|
fprintf (dump_file, " Likely eliminated\n");
|
| 1919 |
|
|
}
|
| 1920 |
|
|
gcc_assert (time >= 0);
|
| 1921 |
|
|
gcc_assert (size >= 0);
|
| 1922 |
|
|
}
|
| 1923 |
|
|
}
|
| 1924 |
|
|
time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
|
| 1925 |
|
|
time_inlining_benefit = ((time_inlining_benefit + CGRAPH_FREQ_BASE / 2)
|
| 1926 |
|
|
/ CGRAPH_FREQ_BASE);
|
| 1927 |
|
|
if (dump_file)
|
| 1928 |
|
|
fprintf (dump_file, "Overall function body time: %i-%i size: %i-%i\n",
|
| 1929 |
|
|
(int)time, (int)time_inlining_benefit,
|
| 1930 |
|
|
size, size_inlining_benefit);
|
| 1931 |
|
|
time_inlining_benefit += eni_time_weights.call_cost;
|
| 1932 |
|
|
size_inlining_benefit += eni_size_weights.call_cost;
|
| 1933 |
|
|
if (!VOID_TYPE_P (TREE_TYPE (funtype)))
|
| 1934 |
|
|
{
|
| 1935 |
|
|
int cost = estimate_move_cost (TREE_TYPE (funtype));
|
| 1936 |
|
|
time_inlining_benefit += cost;
|
| 1937 |
|
|
size_inlining_benefit += cost;
|
| 1938 |
|
|
}
|
| 1939 |
|
|
for (arg = DECL_ARGUMENTS (node->decl); arg; arg = TREE_CHAIN (arg))
|
| 1940 |
|
|
if (!VOID_TYPE_P (TREE_TYPE (arg)))
|
| 1941 |
|
|
{
|
| 1942 |
|
|
int cost = estimate_move_cost (TREE_TYPE (arg));
|
| 1943 |
|
|
time_inlining_benefit += cost;
|
| 1944 |
|
|
size_inlining_benefit += cost;
|
| 1945 |
|
|
}
|
| 1946 |
|
|
if (time_inlining_benefit > MAX_TIME)
|
| 1947 |
|
|
time_inlining_benefit = MAX_TIME;
|
| 1948 |
|
|
if (time > MAX_TIME)
|
| 1949 |
|
|
time = MAX_TIME;
|
| 1950 |
|
|
inline_summary (node)->self_time = time;
|
| 1951 |
|
|
inline_summary (node)->self_size = size;
|
| 1952 |
|
|
if (dump_file)
|
| 1953 |
|
|
fprintf (dump_file, "With function call overhead time: %i-%i size: %i-%i\n",
|
| 1954 |
|
|
(int)time, (int)time_inlining_benefit,
|
| 1955 |
|
|
size, size_inlining_benefit);
|
| 1956 |
|
|
inline_summary (node)->time_inlining_benefit = time_inlining_benefit;
|
| 1957 |
|
|
inline_summary (node)->size_inlining_benefit = size_inlining_benefit;
|
| 1958 |
|
|
}
|
| 1959 |
|
|
|
| 1960 |
|
|
/* Compute parameters of functions used by inliner. */
|
| 1961 |
|
|
unsigned int
|
| 1962 |
|
|
compute_inline_parameters (struct cgraph_node *node)
|
| 1963 |
|
|
{
|
| 1964 |
|
|
HOST_WIDE_INT self_stack_size;
|
| 1965 |
|
|
|
| 1966 |
|
|
gcc_assert (!node->global.inlined_to);
|
| 1967 |
|
|
|
| 1968 |
|
|
/* Estimate the stack size for the function. But not at -O0
|
| 1969 |
|
|
because estimated_stack_frame_size is a quadratic problem. */
|
| 1970 |
|
|
self_stack_size = optimize ? estimated_stack_frame_size () : 0;
|
| 1971 |
|
|
inline_summary (node)->estimated_self_stack_size = self_stack_size;
|
| 1972 |
|
|
node->global.estimated_stack_size = self_stack_size;
|
| 1973 |
|
|
node->global.stack_frame_offset = 0;
|
| 1974 |
|
|
|
| 1975 |
|
|
/* Can this function be inlined at all? */
|
| 1976 |
|
|
node->local.inlinable = tree_inlinable_function_p (node->decl);
|
| 1977 |
|
|
if (node->local.inlinable && !node->local.disregard_inline_limits)
|
| 1978 |
|
|
node->local.disregard_inline_limits
|
| 1979 |
|
|
= DECL_DISREGARD_INLINE_LIMITS (node->decl);
|
| 1980 |
|
|
estimate_function_body_sizes (node);
|
| 1981 |
|
|
/* Inlining characteristics are maintained by the cgraph_mark_inline. */
|
| 1982 |
|
|
node->global.time = inline_summary (node)->self_time;
|
| 1983 |
|
|
node->global.size = inline_summary (node)->self_size;
|
| 1984 |
|
|
return 0;
|
| 1985 |
|
|
}
|
| 1986 |
|
|
|
| 1987 |
|
|
|
| 1988 |
|
|
/* Compute parameters of functions used by inliner using
|
| 1989 |
|
|
current_function_decl. */
|
| 1990 |
|
|
static unsigned int
|
| 1991 |
|
|
compute_inline_parameters_for_current (void)
|
| 1992 |
|
|
{
|
| 1993 |
|
|
compute_inline_parameters (cgraph_node (current_function_decl));
|
| 1994 |
|
|
return 0;
|
| 1995 |
|
|
}
|
| 1996 |
|
|
|
| 1997 |
|
|
struct gimple_opt_pass pass_inline_parameters =
|
| 1998 |
|
|
{
|
| 1999 |
|
|
{
|
| 2000 |
|
|
GIMPLE_PASS,
|
| 2001 |
|
|
"inline_param", /* name */
|
| 2002 |
|
|
NULL, /* gate */
|
| 2003 |
|
|
compute_inline_parameters_for_current,/* execute */
|
| 2004 |
|
|
NULL, /* sub */
|
| 2005 |
|
|
NULL, /* next */
|
| 2006 |
|
|
0, /* static_pass_number */
|
| 2007 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
| 2008 |
|
|
0, /* properties_required */
|
| 2009 |
|
|
0, /* properties_provided */
|
| 2010 |
|
|
0, /* properties_destroyed */
|
| 2011 |
|
|
0, /* todo_flags_start */
|
| 2012 |
|
|
|
| 2013 |
|
|
}
|
| 2014 |
|
|
};
|
| 2015 |
|
|
|
| 2016 |
|
|
/* This function performs intraprocedural analyzis in NODE that is required to
|
| 2017 |
|
|
inline indirect calls. */
|
| 2018 |
|
|
static void
|
| 2019 |
|
|
inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
|
| 2020 |
|
|
{
|
| 2021 |
|
|
struct cgraph_edge *cs;
|
| 2022 |
|
|
|
| 2023 |
|
|
if (!flag_ipa_cp)
|
| 2024 |
|
|
{
|
| 2025 |
|
|
ipa_initialize_node_params (node);
|
| 2026 |
|
|
ipa_detect_param_modifications (node);
|
| 2027 |
|
|
}
|
| 2028 |
|
|
ipa_analyze_params_uses (node);
|
| 2029 |
|
|
|
| 2030 |
|
|
if (!flag_ipa_cp)
|
| 2031 |
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
| 2032 |
|
|
{
|
| 2033 |
|
|
ipa_count_arguments (cs);
|
| 2034 |
|
|
ipa_compute_jump_functions (cs);
|
| 2035 |
|
|
}
|
| 2036 |
|
|
|
| 2037 |
|
|
if (dump_file)
|
| 2038 |
|
|
{
|
| 2039 |
|
|
ipa_print_node_params (dump_file, node);
|
| 2040 |
|
|
ipa_print_node_jump_functions (dump_file, node);
|
| 2041 |
|
|
}
|
| 2042 |
|
|
}
|
| 2043 |
|
|
|
| 2044 |
|
|
/* Note function body size. */
|
| 2045 |
|
|
static void
|
| 2046 |
|
|
analyze_function (struct cgraph_node *node)
|
| 2047 |
|
|
{
|
| 2048 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
| 2049 |
|
|
current_function_decl = node->decl;
|
| 2050 |
|
|
|
| 2051 |
|
|
compute_inline_parameters (node);
|
| 2052 |
|
|
if (flag_indirect_inlining)
|
| 2053 |
|
|
inline_indirect_intraprocedural_analysis (node);
|
| 2054 |
|
|
|
| 2055 |
|
|
current_function_decl = NULL;
|
| 2056 |
|
|
pop_cfun ();
|
| 2057 |
|
|
}
|
| 2058 |
|
|
|
| 2059 |
|
|
/* Called when new function is inserted to callgraph late. */
|
| 2060 |
|
|
static void
|
| 2061 |
|
|
add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
| 2062 |
|
|
{
|
| 2063 |
|
|
analyze_function (node);
|
| 2064 |
|
|
}
|
| 2065 |
|
|
|
| 2066 |
|
|
/* Note function body size. */
|
| 2067 |
|
|
static void
|
| 2068 |
|
|
inline_generate_summary (void)
|
| 2069 |
|
|
{
|
| 2070 |
|
|
struct cgraph_node *node;
|
| 2071 |
|
|
|
| 2072 |
|
|
function_insertion_hook_holder =
|
| 2073 |
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
| 2074 |
|
|
|
| 2075 |
|
|
if (flag_indirect_inlining)
|
| 2076 |
|
|
{
|
| 2077 |
|
|
ipa_register_cgraph_hooks ();
|
| 2078 |
|
|
ipa_check_create_node_params ();
|
| 2079 |
|
|
ipa_check_create_edge_args ();
|
| 2080 |
|
|
}
|
| 2081 |
|
|
|
| 2082 |
|
|
for (node = cgraph_nodes; node; node = node->next)
|
| 2083 |
|
|
if (node->analyzed)
|
| 2084 |
|
|
analyze_function (node);
|
| 2085 |
|
|
|
| 2086 |
|
|
return;
|
| 2087 |
|
|
}
|
| 2088 |
|
|
|
| 2089 |
|
|
/* Apply inline plan to function. */
|
| 2090 |
|
|
static unsigned int
|
| 2091 |
|
|
inline_transform (struct cgraph_node *node)
|
| 2092 |
|
|
{
|
| 2093 |
|
|
unsigned int todo = 0;
|
| 2094 |
|
|
struct cgraph_edge *e;
|
| 2095 |
|
|
|
| 2096 |
|
|
/* FIXME: Currently the passmanager is adding inline transform more than once to some
|
| 2097 |
|
|
clones. This needs revisiting after WPA cleanups. */
|
| 2098 |
|
|
if (cfun->after_inlining)
|
| 2099 |
|
|
return 0;
|
| 2100 |
|
|
|
| 2101 |
|
|
/* We might need the body of this function so that we can expand
|
| 2102 |
|
|
it inline somewhere else. */
|
| 2103 |
|
|
if (cgraph_preserve_function_body_p (node->decl))
|
| 2104 |
|
|
save_inline_function_body (node);
|
| 2105 |
|
|
|
| 2106 |
|
|
for (e = node->callees; e; e = e->next_callee)
|
| 2107 |
|
|
if (!e->inline_failed || warn_inline)
|
| 2108 |
|
|
break;
|
| 2109 |
|
|
|
| 2110 |
|
|
if (e)
|
| 2111 |
|
|
{
|
| 2112 |
|
|
timevar_push (TV_INTEGRATION);
|
| 2113 |
|
|
todo = optimize_inline_calls (current_function_decl);
|
| 2114 |
|
|
timevar_pop (TV_INTEGRATION);
|
| 2115 |
|
|
}
|
| 2116 |
|
|
cfun->always_inline_functions_inlined = true;
|
| 2117 |
|
|
cfun->after_inlining = true;
|
| 2118 |
|
|
return todo | execute_fixup_cfg ();
|
| 2119 |
|
|
}
|
| 2120 |
|
|
|
| 2121 |
|
|
/* Read inline summary. Jump functions are shared among ipa-cp
|
| 2122 |
|
|
and inliner, so when ipa-cp is active, we don't need to write them
|
| 2123 |
|
|
twice. */
|
| 2124 |
|
|
|
| 2125 |
|
|
static void
|
| 2126 |
|
|
inline_read_summary (void)
|
| 2127 |
|
|
{
|
| 2128 |
|
|
if (flag_indirect_inlining)
|
| 2129 |
|
|
{
|
| 2130 |
|
|
ipa_register_cgraph_hooks ();
|
| 2131 |
|
|
if (!flag_ipa_cp)
|
| 2132 |
|
|
ipa_prop_read_jump_functions ();
|
| 2133 |
|
|
}
|
| 2134 |
|
|
function_insertion_hook_holder =
|
| 2135 |
|
|
cgraph_add_function_insertion_hook (&add_new_function, NULL);
|
| 2136 |
|
|
}
|
| 2137 |
|
|
|
| 2138 |
|
|
/* Write inline summary for node in SET.
|
| 2139 |
|
|
Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
|
| 2140 |
|
|
active, we don't need to write them twice. */
|
| 2141 |
|
|
|
| 2142 |
|
|
static void
|
| 2143 |
|
|
inline_write_summary (cgraph_node_set set)
|
| 2144 |
|
|
{
|
| 2145 |
|
|
if (flag_indirect_inlining && !flag_ipa_cp)
|
| 2146 |
|
|
ipa_prop_write_jump_functions (set);
|
| 2147 |
|
|
}
|
| 2148 |
|
|
|
| 2149 |
|
|
struct ipa_opt_pass_d pass_ipa_inline =
|
| 2150 |
|
|
{
|
| 2151 |
|
|
{
|
| 2152 |
|
|
IPA_PASS,
|
| 2153 |
|
|
"inline", /* name */
|
| 2154 |
|
|
NULL, /* gate */
|
| 2155 |
|
|
cgraph_decide_inlining, /* execute */
|
| 2156 |
|
|
NULL, /* sub */
|
| 2157 |
|
|
NULL, /* next */
|
| 2158 |
|
|
0, /* static_pass_number */
|
| 2159 |
|
|
TV_INLINE_HEURISTICS, /* tv_id */
|
| 2160 |
|
|
0, /* properties_required */
|
| 2161 |
|
|
0, /* properties_provided */
|
| 2162 |
|
|
0, /* properties_destroyed */
|
| 2163 |
|
|
TODO_remove_functions, /* todo_flags_finish */
|
| 2164 |
|
|
TODO_dump_cgraph | TODO_dump_func
|
| 2165 |
|
|
| TODO_remove_functions /* todo_flags_finish */
|
| 2166 |
|
|
},
|
| 2167 |
|
|
inline_generate_summary, /* generate_summary */
|
| 2168 |
|
|
inline_write_summary, /* write_summary */
|
| 2169 |
|
|
inline_read_summary, /* read_summary */
|
| 2170 |
|
|
NULL, /* function_read_summary */
|
| 2171 |
|
|
lto_ipa_fixup_call_notes, /* stmt_fixup */
|
| 2172 |
|
|
0, /* TODOs */
|
| 2173 |
|
|
inline_transform, /* function_transform */
|
| 2174 |
|
|
NULL, /* variable_transform */
|
| 2175 |
|
|
};
|
| 2176 |
|
|
|
| 2177 |
|
|
|
| 2178 |
|
|
#include "gt-ipa-inline.h"
|