1 |
280 |
jeremybenn |
/* Integrated Register Allocator (IRA) entry point.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* The integrated register allocator (IRA) is a
|
23 |
|
|
regional register allocator performing graph coloring on a top-down
|
24 |
|
|
traversal of nested regions. Graph coloring in a region is based
|
25 |
|
|
on Chaitin-Briggs algorithm. It is called integrated because
|
26 |
|
|
register coalescing, register live range splitting, and choosing a
|
27 |
|
|
better hard register are done on-the-fly during coloring. Register
|
28 |
|
|
coalescing and choosing a cheaper hard register is done by hard
|
29 |
|
|
register preferencing during hard register assigning. The live
|
30 |
|
|
range splitting is a byproduct of the regional register allocation.
|
31 |
|
|
|
32 |
|
|
Major IRA notions are:
|
33 |
|
|
|
34 |
|
|
o *Region* is a part of CFG where graph coloring based on
|
35 |
|
|
Chaitin-Briggs algorithm is done. IRA can work on any set of
|
36 |
|
|
nested CFG regions forming a tree. Currently the regions are
|
37 |
|
|
the entire function for the root region and natural loops for
|
38 |
|
|
the other regions. Therefore data structure representing a
|
39 |
|
|
region is called loop_tree_node.
|
40 |
|
|
|
41 |
|
|
o *Cover class* is a register class belonging to a set of
|
42 |
|
|
non-intersecting register classes containing all of the
|
43 |
|
|
hard-registers available for register allocation. The set of
|
44 |
|
|
all cover classes for a target is defined in the corresponding
|
45 |
|
|
machine-description file according some criteria. Such notion
|
46 |
|
|
is needed because Chaitin-Briggs algorithm works on
|
47 |
|
|
non-intersected register classes.
|
48 |
|
|
|
49 |
|
|
o *Allocno* represents the live range of a pseudo-register in a
|
50 |
|
|
region. Besides the obvious attributes like the corresponding
|
51 |
|
|
pseudo-register number, cover class, conflicting allocnos and
|
52 |
|
|
conflicting hard-registers, there are a few allocno attributes
|
53 |
|
|
which are important for understanding the allocation algorithm:
|
54 |
|
|
|
55 |
|
|
- *Live ranges*. This is a list of ranges of *program
|
56 |
|
|
points* where the allocno lives. Program points represent
|
57 |
|
|
places where a pseudo can be born or become dead (there are
|
58 |
|
|
approximately two times more program points than the insns)
|
59 |
|
|
and they are represented by integers starting with 0. The
|
60 |
|
|
live ranges are used to find conflicts between allocnos of
|
61 |
|
|
different cover classes. They also play very important role
|
62 |
|
|
for the transformation of the IRA internal representation of
|
63 |
|
|
several regions into a one region representation. The later is
|
64 |
|
|
used during the reload pass work because each allocno
|
65 |
|
|
represents all of the corresponding pseudo-registers.
|
66 |
|
|
|
67 |
|
|
- *Hard-register costs*. This is a vector of size equal to the
|
68 |
|
|
number of available hard-registers of the allocno's cover
|
69 |
|
|
class. The cost of a callee-clobbered hard-register for an
|
70 |
|
|
allocno is increased by the cost of save/restore code around
|
71 |
|
|
the calls through the given allocno's life. If the allocno
|
72 |
|
|
is a move instruction operand and another operand is a
|
73 |
|
|
hard-register of the allocno's cover class, the cost of the
|
74 |
|
|
hard-register is decreased by the move cost.
|
75 |
|
|
|
76 |
|
|
When an allocno is assigned, the hard-register with minimal
|
77 |
|
|
full cost is used. Initially, a hard-register's full cost is
|
78 |
|
|
the corresponding value from the hard-register's cost vector.
|
79 |
|
|
If the allocno is connected by a *copy* (see below) to
|
80 |
|
|
another allocno which has just received a hard-register, the
|
81 |
|
|
cost of the hard-register is decreased. Before choosing a
|
82 |
|
|
hard-register for an allocno, the allocno's current costs of
|
83 |
|
|
the hard-registers are modified by the conflict hard-register
|
84 |
|
|
costs of all of the conflicting allocnos which are not
|
85 |
|
|
assigned yet.
|
86 |
|
|
|
87 |
|
|
- *Conflict hard-register costs*. This is a vector of the same
|
88 |
|
|
size as the hard-register costs vector. To permit an
|
89 |
|
|
unassigned allocno to get a better hard-register, IRA uses
|
90 |
|
|
this vector to calculate the final full cost of the
|
91 |
|
|
available hard-registers. Conflict hard-register costs of an
|
92 |
|
|
unassigned allocno are also changed with a change of the
|
93 |
|
|
hard-register cost of the allocno when a copy involving the
|
94 |
|
|
allocno is processed as described above. This is done to
|
95 |
|
|
show other unassigned allocnos that a given allocno prefers
|
96 |
|
|
some hard-registers in order to remove the move instruction
|
97 |
|
|
corresponding to the copy.
|
98 |
|
|
|
99 |
|
|
o *Cap*. If a pseudo-register does not live in a region but
|
100 |
|
|
lives in a nested region, IRA creates a special allocno called
|
101 |
|
|
a cap in the outer region. A region cap is also created for a
|
102 |
|
|
subregion cap.
|
103 |
|
|
|
104 |
|
|
o *Copy*. Allocnos can be connected by copies. Copies are used
|
105 |
|
|
to modify hard-register costs for allocnos during coloring.
|
106 |
|
|
Such modifications reflects a preference to use the same
|
107 |
|
|
hard-register for the allocnos connected by copies. Usually
|
108 |
|
|
copies are created for move insns (in this case it results in
|
109 |
|
|
register coalescing). But IRA also creates copies for operands
|
110 |
|
|
of an insn which should be assigned to the same hard-register
|
111 |
|
|
due to constraints in the machine description (it usually
|
112 |
|
|
results in removing a move generated in reload to satisfy
|
113 |
|
|
the constraints) and copies referring to the allocno which is
|
114 |
|
|
the output operand of an instruction and the allocno which is
|
115 |
|
|
an input operand dying in the instruction (creation of such
|
116 |
|
|
copies results in less register shuffling). IRA *does not*
|
117 |
|
|
create copies between the same register allocnos from different
|
118 |
|
|
regions because we use another technique for propagating
|
119 |
|
|
hard-register preference on the borders of regions.
|
120 |
|
|
|
121 |
|
|
Allocnos (including caps) for the upper region in the region tree
|
122 |
|
|
*accumulate* information important for coloring from allocnos with
|
123 |
|
|
the same pseudo-register from nested regions. This includes
|
124 |
|
|
hard-register and memory costs, conflicts with hard-registers,
|
125 |
|
|
allocno conflicts, allocno copies and more. *Thus, attributes for
|
126 |
|
|
allocnos in a region have the same values as if the region had no
|
127 |
|
|
subregions*. It means that attributes for allocnos in the
|
128 |
|
|
outermost region corresponding to the function have the same values
|
129 |
|
|
as though the allocation used only one region which is the entire
|
130 |
|
|
function. It also means that we can look at IRA work as if the
|
131 |
|
|
first IRA did allocation for all function then it improved the
|
132 |
|
|
allocation for loops then their subloops and so on.
|
133 |
|
|
|
134 |
|
|
IRA major passes are:
|
135 |
|
|
|
136 |
|
|
o Building IRA internal representation which consists of the
|
137 |
|
|
following subpasses:
|
138 |
|
|
|
139 |
|
|
* First, IRA builds regions and creates allocnos (file
|
140 |
|
|
ira-build.c) and initializes most of their attributes.
|
141 |
|
|
|
142 |
|
|
* Then IRA finds a cover class for each allocno and calculates
|
143 |
|
|
its initial (non-accumulated) cost of memory and each
|
144 |
|
|
hard-register of its cover class (file ira-cost.c).
|
145 |
|
|
|
146 |
|
|
* IRA creates live ranges of each allocno, calulates register
|
147 |
|
|
pressure for each cover class in each region, sets up
|
148 |
|
|
conflict hard registers for each allocno and info about calls
|
149 |
|
|
the allocno lives through (file ira-lives.c).
|
150 |
|
|
|
151 |
|
|
* IRA removes low register pressure loops from the regions
|
152 |
|
|
mostly to speed IRA up (file ira-build.c).
|
153 |
|
|
|
154 |
|
|
* IRA propagates accumulated allocno info from lower region
|
155 |
|
|
allocnos to corresponding upper region allocnos (file
|
156 |
|
|
ira-build.c).
|
157 |
|
|
|
158 |
|
|
* IRA creates all caps (file ira-build.c).
|
159 |
|
|
|
160 |
|
|
* Having live-ranges of allocnos and their cover classes, IRA
|
161 |
|
|
creates conflicting allocnos of the same cover class for each
|
162 |
|
|
allocno. Conflicting allocnos are stored as a bit vector or
|
163 |
|
|
array of pointers to the conflicting allocnos whatever is
|
164 |
|
|
more profitable (file ira-conflicts.c). At this point IRA
|
165 |
|
|
creates allocno copies.
|
166 |
|
|
|
167 |
|
|
o Coloring. Now IRA has all necessary info to start graph coloring
|
168 |
|
|
process. It is done in each region on top-down traverse of the
|
169 |
|
|
region tree (file ira-color.c). There are following subpasses:
|
170 |
|
|
|
171 |
|
|
* Optional aggressive coalescing of allocnos in the region.
|
172 |
|
|
|
173 |
|
|
* Putting allocnos onto the coloring stack. IRA uses Briggs
|
174 |
|
|
optimistic coloring which is a major improvement over
|
175 |
|
|
Chaitin's coloring. Therefore IRA does not spill allocnos at
|
176 |
|
|
this point. There is some freedom in the order of putting
|
177 |
|
|
allocnos on the stack which can affect the final result of
|
178 |
|
|
the allocation. IRA uses some heuristics to improve the order.
|
179 |
|
|
|
180 |
|
|
* Popping the allocnos from the stack and assigning them hard
|
181 |
|
|
registers. If IRA can not assign a hard register to an
|
182 |
|
|
allocno and the allocno is coalesced, IRA undoes the
|
183 |
|
|
coalescing and puts the uncoalesced allocnos onto the stack in
|
184 |
|
|
the hope that some such allocnos will get a hard register
|
185 |
|
|
separately. If IRA fails to assign hard register or memory
|
186 |
|
|
is more profitable for it, IRA spills the allocno. IRA
|
187 |
|
|
assigns the allocno the hard-register with minimal full
|
188 |
|
|
allocation cost which reflects the cost of usage of the
|
189 |
|
|
hard-register for the allocno and cost of usage of the
|
190 |
|
|
hard-register for allocnos conflicting with given allocno.
|
191 |
|
|
|
192 |
|
|
* After allono assigning in the region, IRA modifies the hard
|
193 |
|
|
register and memory costs for the corresponding allocnos in
|
194 |
|
|
the subregions to reflect the cost of possible loads, stores,
|
195 |
|
|
or moves on the border of the region and its subregions.
|
196 |
|
|
When default regional allocation algorithm is used
|
197 |
|
|
(-fira-algorithm=mixed), IRA just propagates the assignment
|
198 |
|
|
for allocnos if the register pressure in the region for the
|
199 |
|
|
corresponding cover class is less than number of available
|
200 |
|
|
hard registers for given cover class.
|
201 |
|
|
|
202 |
|
|
o Spill/restore code moving. When IRA performs an allocation
|
203 |
|
|
by traversing regions in top-down order, it does not know what
|
204 |
|
|
happens below in the region tree. Therefore, sometimes IRA
|
205 |
|
|
misses opportunities to perform a better allocation. A simple
|
206 |
|
|
optimization tries to improve allocation in a region having
|
207 |
|
|
subregions and containing in another region. If the
|
208 |
|
|
corresponding allocnos in the subregion are spilled, it spills
|
209 |
|
|
the region allocno if it is profitable. The optimization
|
210 |
|
|
implements a simple iterative algorithm performing profitable
|
211 |
|
|
transformations while they are still possible. It is fast in
|
212 |
|
|
practice, so there is no real need for a better time complexity
|
213 |
|
|
algorithm.
|
214 |
|
|
|
215 |
|
|
o Code change. After coloring, two allocnos representing the same
|
216 |
|
|
pseudo-register outside and inside a region respectively may be
|
217 |
|
|
assigned to different locations (hard-registers or memory). In
|
218 |
|
|
this case IRA creates and uses a new pseudo-register inside the
|
219 |
|
|
region and adds code to move allocno values on the region's
|
220 |
|
|
borders. This is done during top-down traversal of the regions
|
221 |
|
|
(file ira-emit.c). In some complicated cases IRA can create a
|
222 |
|
|
new allocno to move allocno values (e.g. when a swap of values
|
223 |
|
|
stored in two hard-registers is needed). At this stage, the
|
224 |
|
|
new allocno is marked as spilled. IRA still creates the
|
225 |
|
|
pseudo-register and the moves on the region borders even when
|
226 |
|
|
both allocnos were assigned to the same hard-register. If the
|
227 |
|
|
reload pass spills a pseudo-register for some reason, the
|
228 |
|
|
effect will be smaller because another allocno will still be in
|
229 |
|
|
the hard-register. In most cases, this is better then spilling
|
230 |
|
|
both allocnos. If reload does not change the allocation
|
231 |
|
|
for the two pseudo-registers, the trivial move will be removed
|
232 |
|
|
by post-reload optimizations. IRA does not generate moves for
|
233 |
|
|
allocnos assigned to the same hard register when the default
|
234 |
|
|
regional allocation algorithm is used and the register pressure
|
235 |
|
|
in the region for the corresponding allocno cover class is less
|
236 |
|
|
than number of available hard registers for given cover class.
|
237 |
|
|
IRA also does some optimizations to remove redundant stores and
|
238 |
|
|
to reduce code duplication on the region borders.
|
239 |
|
|
|
240 |
|
|
o Flattening internal representation. After changing code, IRA
|
241 |
|
|
transforms its internal representation for several regions into
|
242 |
|
|
one region representation (file ira-build.c). This process is
|
243 |
|
|
called IR flattening. Such process is more complicated than IR
|
244 |
|
|
rebuilding would be, but is much faster.
|
245 |
|
|
|
246 |
|
|
o After IR flattening, IRA tries to assign hard registers to all
|
247 |
|
|
spilled allocnos. This is impelemented by a simple and fast
|
248 |
|
|
priority coloring algorithm (see function
|
249 |
|
|
ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
|
250 |
|
|
created during the code change pass can be assigned to hard
|
251 |
|
|
registers.
|
252 |
|
|
|
253 |
|
|
o At the end IRA calls the reload pass. The reload pass
|
254 |
|
|
communicates with IRA through several functions in file
|
255 |
|
|
ira-color.c to improve its decisions in
|
256 |
|
|
|
257 |
|
|
* sharing stack slots for the spilled pseudos based on IRA info
|
258 |
|
|
about pseudo-register conflicts.
|
259 |
|
|
|
260 |
|
|
* reassigning hard-registers to all spilled pseudos at the end
|
261 |
|
|
of each reload iteration.
|
262 |
|
|
|
263 |
|
|
* choosing a better hard-register to spill based on IRA info
|
264 |
|
|
about pseudo-register live ranges and the register pressure
|
265 |
|
|
in places where the pseudo-register lives.
|
266 |
|
|
|
267 |
|
|
IRA uses a lot of data representing the target processors. These
|
268 |
|
|
data are initilized in file ira.c.
|
269 |
|
|
|
270 |
|
|
If function has no loops (or the loops are ignored when
|
271 |
|
|
-fira-algorithm=CB is used), we have classic Chaitin-Briggs
|
272 |
|
|
coloring (only instead of separate pass of coalescing, we use hard
|
273 |
|
|
register preferencing). In such case, IRA works much faster
|
274 |
|
|
because many things are not made (like IR flattening, the
|
275 |
|
|
spill/restore optimization, and the code change).
|
276 |
|
|
|
277 |
|
|
Literature is worth to read for better understanding the code:
|
278 |
|
|
|
279 |
|
|
o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
|
280 |
|
|
Graph Coloring Register Allocation.
|
281 |
|
|
|
282 |
|
|
o David Callahan, Brian Koblenz. Register allocation via
|
283 |
|
|
hierarchical graph coloring.
|
284 |
|
|
|
285 |
|
|
o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
|
286 |
|
|
Coloring Register Allocation: A Study of the Chaitin-Briggs and
|
287 |
|
|
Callahan-Koblenz Algorithms.
|
288 |
|
|
|
289 |
|
|
o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
|
290 |
|
|
Register Allocation Based on Graph Fusion.
|
291 |
|
|
|
292 |
|
|
o Vladimir Makarov. The Integrated Register Allocator for GCC.
|
293 |
|
|
|
294 |
|
|
o Vladimir Makarov. The top-down register allocator for irregular
|
295 |
|
|
register file architectures.
|
296 |
|
|
|
297 |
|
|
*/
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
#include "config.h"
|
301 |
|
|
#include "system.h"
|
302 |
|
|
#include "coretypes.h"
|
303 |
|
|
#include "tm.h"
|
304 |
|
|
#include "regs.h"
|
305 |
|
|
#include "rtl.h"
|
306 |
|
|
#include "tm_p.h"
|
307 |
|
|
#include "target.h"
|
308 |
|
|
#include "flags.h"
|
309 |
|
|
#include "obstack.h"
|
310 |
|
|
#include "bitmap.h"
|
311 |
|
|
#include "hard-reg-set.h"
|
312 |
|
|
#include "basic-block.h"
|
313 |
|
|
#include "expr.h"
|
314 |
|
|
#include "recog.h"
|
315 |
|
|
#include "params.h"
|
316 |
|
|
#include "timevar.h"
|
317 |
|
|
#include "tree-pass.h"
|
318 |
|
|
#include "output.h"
|
319 |
|
|
#include "except.h"
|
320 |
|
|
#include "reload.h"
|
321 |
|
|
#include "errors.h"
|
322 |
|
|
#include "integrate.h"
|
323 |
|
|
#include "df.h"
|
324 |
|
|
#include "ggc.h"
|
325 |
|
|
#include "ira-int.h"
|
326 |
|
|
|
327 |
|
|
|
328 |
|
|
/* A modified value of flag `-fira-verbose' used internally. */
|
329 |
|
|
int internal_flag_ira_verbose;
|
330 |
|
|
|
331 |
|
|
/* Dump file of the allocator if it is not NULL. */
|
332 |
|
|
FILE *ira_dump_file;
|
333 |
|
|
|
334 |
|
|
/* Pools for allocnos, copies, allocno live ranges. */
|
335 |
|
|
alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
|
336 |
|
|
|
337 |
|
|
/* The number of elements in the following array. */
|
338 |
|
|
int ira_spilled_reg_stack_slots_num;
|
339 |
|
|
|
340 |
|
|
/* The following array contains info about spilled pseudo-registers
|
341 |
|
|
stack slots used in current function so far. */
|
342 |
|
|
struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
|
343 |
|
|
|
344 |
|
|
/* Correspondingly overall cost of the allocation, cost of the
|
345 |
|
|
allocnos assigned to hard-registers, cost of the allocnos assigned
|
346 |
|
|
to memory, cost of loads, stores and register move insns generated
|
347 |
|
|
for pseudo-register live range splitting (see ira-emit.c). */
|
348 |
|
|
int ira_overall_cost;
|
349 |
|
|
int ira_reg_cost, ira_mem_cost;
|
350 |
|
|
int ira_load_cost, ira_store_cost, ira_shuffle_cost;
|
351 |
|
|
int ira_move_loops_num, ira_additional_jumps_num;
|
352 |
|
|
|
353 |
|
|
/* All registers that can be eliminated. */
|
354 |
|
|
|
355 |
|
|
HARD_REG_SET eliminable_regset;
|
356 |
|
|
|
357 |
|
|
/* Map: hard regs X modes -> set of hard registers for storing value
|
358 |
|
|
of given mode starting with given hard register. */
|
359 |
|
|
HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
|
360 |
|
|
|
361 |
|
|
/* The following two variables are array analogs of the macros
|
362 |
|
|
MEMORY_MOVE_COST and REGISTER_MOVE_COST. */
|
363 |
|
|
short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
|
364 |
|
|
move_table *ira_register_move_cost[MAX_MACHINE_MODE];
|
365 |
|
|
|
366 |
|
|
/* Similar to may_move_in_cost but it is calculated in IRA instead of
|
367 |
|
|
regclass. Another difference is that we take only available hard
|
368 |
|
|
registers into account to figure out that one register class is a
|
369 |
|
|
subset of the another one. */
|
370 |
|
|
move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
|
371 |
|
|
|
372 |
|
|
/* Similar to may_move_out_cost but it is calculated in IRA instead of
|
373 |
|
|
regclass. Another difference is that we take only available hard
|
374 |
|
|
registers into account to figure out that one register class is a
|
375 |
|
|
subset of the another one. */
|
376 |
|
|
move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
|
377 |
|
|
|
378 |
|
|
/* Register class subset relation: TRUE if the first class is a subset
|
379 |
|
|
of the second one considering only hard registers available for the
|
380 |
|
|
allocation. */
|
381 |
|
|
int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
|
382 |
|
|
|
383 |
|
|
/* Temporary hard reg set used for a different calculation. */
|
384 |
|
|
static HARD_REG_SET temp_hard_regset;
|
385 |
|
|
|
386 |
|
|
|
387 |
|
|
|
388 |
|
|
/* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
|
389 |
|
|
static void
|
390 |
|
|
setup_reg_mode_hard_regset (void)
|
391 |
|
|
{
|
392 |
|
|
int i, m, hard_regno;
|
393 |
|
|
|
394 |
|
|
for (m = 0; m < NUM_MACHINE_MODES; m++)
|
395 |
|
|
for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
|
396 |
|
|
{
|
397 |
|
|
CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
|
398 |
|
|
for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
|
399 |
|
|
if (hard_regno + i < FIRST_PSEUDO_REGISTER)
|
400 |
|
|
SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
|
401 |
|
|
hard_regno + i);
|
402 |
|
|
}
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
|
406 |
|
|
|
407 |
|
|
/* Hard registers that can not be used for the register allocator for
|
408 |
|
|
all functions of the current compilation unit. */
|
409 |
|
|
static HARD_REG_SET no_unit_alloc_regs;
|
410 |
|
|
|
411 |
|
|
/* Array of the number of hard registers of given class which are
|
412 |
|
|
available for allocation. The order is defined by the
|
413 |
|
|
allocation order. */
|
414 |
|
|
short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
|
415 |
|
|
|
416 |
|
|
/* The number of elements of the above array for given register
|
417 |
|
|
class. */
|
418 |
|
|
int ira_class_hard_regs_num[N_REG_CLASSES];
|
419 |
|
|
|
420 |
|
|
/* Index (in ira_class_hard_regs) for given register class and hard
|
421 |
|
|
register (in general case a hard register can belong to several
|
422 |
|
|
register classes). The index is negative for hard registers
|
423 |
|
|
unavailable for the allocation. */
|
424 |
|
|
short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
|
425 |
|
|
|
426 |
|
|
/* The function sets up the three arrays declared above. */
|
427 |
|
|
static void
|
428 |
|
|
setup_class_hard_regs (void)
|
429 |
|
|
{
|
430 |
|
|
int cl, i, hard_regno, n;
|
431 |
|
|
HARD_REG_SET processed_hard_reg_set;
|
432 |
|
|
|
433 |
|
|
ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
|
434 |
|
|
/* We could call ORDER_REGS_FOR_LOCAL_ALLOC here (it is usually
|
435 |
|
|
putting hard callee-used hard registers first). But our
|
436 |
|
|
heuristics work better. */
|
437 |
|
|
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
438 |
|
|
{
|
439 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
440 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
441 |
|
|
CLEAR_HARD_REG_SET (processed_hard_reg_set);
|
442 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
443 |
|
|
ira_class_hard_reg_index[cl][0] = -1;
|
444 |
|
|
for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
445 |
|
|
{
|
446 |
|
|
#ifdef REG_ALLOC_ORDER
|
447 |
|
|
hard_regno = reg_alloc_order[i];
|
448 |
|
|
#else
|
449 |
|
|
hard_regno = i;
|
450 |
|
|
#endif
|
451 |
|
|
if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
|
452 |
|
|
continue;
|
453 |
|
|
SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
|
454 |
|
|
if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
|
455 |
|
|
ira_class_hard_reg_index[cl][hard_regno] = -1;
|
456 |
|
|
else
|
457 |
|
|
{
|
458 |
|
|
ira_class_hard_reg_index[cl][hard_regno] = n;
|
459 |
|
|
ira_class_hard_regs[cl][n++] = hard_regno;
|
460 |
|
|
}
|
461 |
|
|
}
|
462 |
|
|
ira_class_hard_regs_num[cl] = n;
|
463 |
|
|
}
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
/* Number of given class hard registers available for the register
|
467 |
|
|
allocation for given classes. */
|
468 |
|
|
int ira_available_class_regs[N_REG_CLASSES];
|
469 |
|
|
|
470 |
|
|
/* Set up IRA_AVAILABLE_CLASS_REGS. */
|
471 |
|
|
static void
|
472 |
|
|
setup_available_class_regs (void)
|
473 |
|
|
{
|
474 |
|
|
int i, j;
|
475 |
|
|
|
476 |
|
|
memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
|
477 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
478 |
|
|
{
|
479 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
480 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
481 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
482 |
|
|
if (TEST_HARD_REG_BIT (temp_hard_regset, j))
|
483 |
|
|
ira_available_class_regs[i]++;
|
484 |
|
|
}
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
/* Set up global variables defining info about hard registers for the
|
488 |
|
|
allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
|
489 |
|
|
that we can use the hard frame pointer for the allocation. */
|
490 |
|
|
static void
|
491 |
|
|
setup_alloc_regs (bool use_hard_frame_p)
|
492 |
|
|
{
|
493 |
|
|
COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
|
494 |
|
|
if (! use_hard_frame_p)
|
495 |
|
|
SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
|
496 |
|
|
setup_class_hard_regs ();
|
497 |
|
|
setup_available_class_regs ();
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
|
501 |
|
|
|
502 |
|
|
/* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
|
503 |
|
|
static void
|
504 |
|
|
setup_class_subset_and_memory_move_costs (void)
|
505 |
|
|
{
|
506 |
|
|
int cl, cl2, mode;
|
507 |
|
|
HARD_REG_SET temp_hard_regset2;
|
508 |
|
|
|
509 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
510 |
|
|
ira_memory_move_cost[mode][NO_REGS][0]
|
511 |
|
|
= ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
|
512 |
|
|
for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
|
513 |
|
|
{
|
514 |
|
|
if (cl != (int) NO_REGS)
|
515 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
516 |
|
|
{
|
517 |
|
|
ira_memory_move_cost[mode][cl][0] =
|
518 |
|
|
MEMORY_MOVE_COST ((enum machine_mode) mode,
|
519 |
|
|
(enum reg_class) cl, 0);
|
520 |
|
|
ira_memory_move_cost[mode][cl][1] =
|
521 |
|
|
MEMORY_MOVE_COST ((enum machine_mode) mode,
|
522 |
|
|
(enum reg_class) cl, 1);
|
523 |
|
|
/* Costs for NO_REGS are used in cost calculation on the
|
524 |
|
|
1st pass when the preferred register classes are not
|
525 |
|
|
known yet. In this case we take the best scenario. */
|
526 |
|
|
if (ira_memory_move_cost[mode][NO_REGS][0]
|
527 |
|
|
> ira_memory_move_cost[mode][cl][0])
|
528 |
|
|
ira_memory_move_cost[mode][NO_REGS][0]
|
529 |
|
|
= ira_memory_move_cost[mode][cl][0];
|
530 |
|
|
if (ira_memory_move_cost[mode][NO_REGS][1]
|
531 |
|
|
> ira_memory_move_cost[mode][cl][1])
|
532 |
|
|
ira_memory_move_cost[mode][NO_REGS][1]
|
533 |
|
|
= ira_memory_move_cost[mode][cl][1];
|
534 |
|
|
}
|
535 |
|
|
for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
|
536 |
|
|
{
|
537 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
538 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
539 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
|
540 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
541 |
|
|
ira_class_subset_p[cl][cl2]
|
542 |
|
|
= hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
|
543 |
|
|
}
|
544 |
|
|
}
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
|
549 |
|
|
/* Define the following macro if allocation through malloc if
|
550 |
|
|
preferable. */
|
551 |
|
|
#define IRA_NO_OBSTACK
|
552 |
|
|
|
553 |
|
|
#ifndef IRA_NO_OBSTACK
|
554 |
|
|
/* Obstack used for storing all dynamic data (except bitmaps) of the
|
555 |
|
|
IRA. */
|
556 |
|
|
static struct obstack ira_obstack;
|
557 |
|
|
#endif
|
558 |
|
|
|
559 |
|
|
/* Obstack used for storing all bitmaps of the IRA. */
|
560 |
|
|
static struct bitmap_obstack ira_bitmap_obstack;
|
561 |
|
|
|
562 |
|
|
/* Allocate memory of size LEN for IRA data. */
|
563 |
|
|
void *
|
564 |
|
|
ira_allocate (size_t len)
|
565 |
|
|
{
|
566 |
|
|
void *res;
|
567 |
|
|
|
568 |
|
|
#ifndef IRA_NO_OBSTACK
|
569 |
|
|
res = obstack_alloc (&ira_obstack, len);
|
570 |
|
|
#else
|
571 |
|
|
res = xmalloc (len);
|
572 |
|
|
#endif
|
573 |
|
|
return res;
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Reallocate memory PTR of size LEN for IRA data. */
|
577 |
|
|
void *
|
578 |
|
|
ira_reallocate (void *ptr, size_t len)
|
579 |
|
|
{
|
580 |
|
|
void *res;
|
581 |
|
|
|
582 |
|
|
#ifndef IRA_NO_OBSTACK
|
583 |
|
|
res = obstack_alloc (&ira_obstack, len);
|
584 |
|
|
#else
|
585 |
|
|
res = xrealloc (ptr, len);
|
586 |
|
|
#endif
|
587 |
|
|
return res;
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
/* Free memory ADDR allocated for IRA data. */
|
591 |
|
|
void
|
592 |
|
|
ira_free (void *addr ATTRIBUTE_UNUSED)
|
593 |
|
|
{
|
594 |
|
|
#ifndef IRA_NO_OBSTACK
|
595 |
|
|
/* do nothing */
|
596 |
|
|
#else
|
597 |
|
|
free (addr);
|
598 |
|
|
#endif
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
|
602 |
|
|
/* Allocate and returns bitmap for IRA. */
|
603 |
|
|
bitmap
|
604 |
|
|
ira_allocate_bitmap (void)
|
605 |
|
|
{
|
606 |
|
|
return BITMAP_ALLOC (&ira_bitmap_obstack);
|
607 |
|
|
}
|
608 |
|
|
|
609 |
|
|
/* Free bitmap B allocated for IRA. */
|
610 |
|
|
void
|
611 |
|
|
ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
|
612 |
|
|
{
|
613 |
|
|
/* do nothing */
|
614 |
|
|
}
|
615 |
|
|
|
616 |
|
|
|
617 |
|
|
|
618 |
|
|
/* Output information about allocation of all allocnos (except for
|
619 |
|
|
caps) into file F. */
|
620 |
|
|
void
|
621 |
|
|
ira_print_disposition (FILE *f)
|
622 |
|
|
{
|
623 |
|
|
int i, n, max_regno;
|
624 |
|
|
ira_allocno_t a;
|
625 |
|
|
basic_block bb;
|
626 |
|
|
|
627 |
|
|
fprintf (f, "Disposition:");
|
628 |
|
|
max_regno = max_reg_num ();
|
629 |
|
|
for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
|
630 |
|
|
for (a = ira_regno_allocno_map[i];
|
631 |
|
|
a != NULL;
|
632 |
|
|
a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
|
633 |
|
|
{
|
634 |
|
|
if (n % 4 == 0)
|
635 |
|
|
fprintf (f, "\n");
|
636 |
|
|
n++;
|
637 |
|
|
fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
638 |
|
|
if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
|
639 |
|
|
fprintf (f, "b%-3d", bb->index);
|
640 |
|
|
else
|
641 |
|
|
fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
|
642 |
|
|
if (ALLOCNO_HARD_REGNO (a) >= 0)
|
643 |
|
|
fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
|
644 |
|
|
else
|
645 |
|
|
fprintf (f, " mem");
|
646 |
|
|
}
|
647 |
|
|
fprintf (f, "\n");
|
648 |
|
|
}
|
649 |
|
|
|
650 |
|
|
/* Outputs information about allocation of all allocnos into
|
651 |
|
|
stderr. */
|
652 |
|
|
void
|
653 |
|
|
ira_debug_disposition (void)
|
654 |
|
|
{
|
655 |
|
|
ira_print_disposition (stderr);
|
656 |
|
|
}
|
657 |
|
|
|
658 |
|
|
|
659 |
|
|
|
660 |
|
|
/* For each reg class, table listing all the classes contained in it
|
661 |
|
|
(excluding the class itself. Non-allocatable registers are
|
662 |
|
|
excluded from the consideration). */
|
663 |
|
|
static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
|
664 |
|
|
|
665 |
|
|
/* Initialize the table of subclasses of each reg class. */
|
666 |
|
|
static void
|
667 |
|
|
setup_reg_subclasses (void)
|
668 |
|
|
{
|
669 |
|
|
int i, j;
|
670 |
|
|
HARD_REG_SET temp_hard_regset2;
|
671 |
|
|
|
672 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
673 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
674 |
|
|
alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
|
675 |
|
|
|
676 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
677 |
|
|
{
|
678 |
|
|
if (i == (int) NO_REGS)
|
679 |
|
|
continue;
|
680 |
|
|
|
681 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
682 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
683 |
|
|
if (hard_reg_set_empty_p (temp_hard_regset))
|
684 |
|
|
continue;
|
685 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
686 |
|
|
if (i != j)
|
687 |
|
|
{
|
688 |
|
|
enum reg_class *p;
|
689 |
|
|
|
690 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
|
691 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
692 |
|
|
if (! hard_reg_set_subset_p (temp_hard_regset,
|
693 |
|
|
temp_hard_regset2))
|
694 |
|
|
continue;
|
695 |
|
|
p = &alloc_reg_class_subclasses[j][0];
|
696 |
|
|
while (*p != LIM_REG_CLASSES) p++;
|
697 |
|
|
*p = (enum reg_class) i;
|
698 |
|
|
}
|
699 |
|
|
}
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
|
703 |
|
|
|
704 |
|
|
/* Number of cover classes. Cover classes is non-intersected register
|
705 |
|
|
classes containing all hard-registers available for the
|
706 |
|
|
allocation. */
|
707 |
|
|
int ira_reg_class_cover_size;
|
708 |
|
|
|
709 |
|
|
/* The array containing cover classes (see also comments for macro
|
710 |
|
|
IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
|
711 |
|
|
used for this. */
|
712 |
|
|
enum reg_class ira_reg_class_cover[N_REG_CLASSES];
|
713 |
|
|
|
714 |
|
|
/* The number of elements in the subsequent array. */
|
715 |
|
|
int ira_important_classes_num;
|
716 |
|
|
|
717 |
|
|
/* The array containing non-empty classes (including non-empty cover
|
718 |
|
|
classes) which are subclasses of cover classes. Such classes is
|
719 |
|
|
important for calculation of the hard register usage costs. */
|
720 |
|
|
enum reg_class ira_important_classes[N_REG_CLASSES];
|
721 |
|
|
|
722 |
|
|
/* The array containing indexes of important classes in the previous
|
723 |
|
|
array. The array elements are defined only for important
|
724 |
|
|
classes. */
|
725 |
|
|
int ira_important_class_nums[N_REG_CLASSES];
|
726 |
|
|
|
727 |
|
|
/* Set the four global variables defined above. */
|
728 |
|
|
static void
|
729 |
|
|
setup_cover_and_important_classes (void)
|
730 |
|
|
{
|
731 |
|
|
int i, j, n, cl;
|
732 |
|
|
bool set_p;
|
733 |
|
|
const enum reg_class *cover_classes;
|
734 |
|
|
HARD_REG_SET temp_hard_regset2;
|
735 |
|
|
static enum reg_class classes[LIM_REG_CLASSES + 1];
|
736 |
|
|
|
737 |
|
|
if (targetm.ira_cover_classes == NULL)
|
738 |
|
|
cover_classes = NULL;
|
739 |
|
|
else
|
740 |
|
|
cover_classes = targetm.ira_cover_classes ();
|
741 |
|
|
if (cover_classes == NULL)
|
742 |
|
|
ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
|
743 |
|
|
else
|
744 |
|
|
{
|
745 |
|
|
for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
|
746 |
|
|
classes[i] = (enum reg_class) cl;
|
747 |
|
|
classes[i] = LIM_REG_CLASSES;
|
748 |
|
|
}
|
749 |
|
|
|
750 |
|
|
if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
|
751 |
|
|
{
|
752 |
|
|
n = 0;
|
753 |
|
|
for (i = 0; i <= LIM_REG_CLASSES; i++)
|
754 |
|
|
{
|
755 |
|
|
if (i == NO_REGS)
|
756 |
|
|
continue;
|
757 |
|
|
#ifdef CONSTRAINT_NUM_DEFINED_P
|
758 |
|
|
for (j = 0; j < CONSTRAINT__LIMIT; j++)
|
759 |
|
|
if ((int) REG_CLASS_FOR_CONSTRAINT ((enum constraint_num) j) == i)
|
760 |
|
|
break;
|
761 |
|
|
if (j < CONSTRAINT__LIMIT)
|
762 |
|
|
{
|
763 |
|
|
classes[n++] = (enum reg_class) i;
|
764 |
|
|
continue;
|
765 |
|
|
}
|
766 |
|
|
#endif
|
767 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
|
768 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
769 |
|
|
for (j = 0; j < LIM_REG_CLASSES; j++)
|
770 |
|
|
{
|
771 |
|
|
if (i == j)
|
772 |
|
|
continue;
|
773 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
|
774 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2,
|
775 |
|
|
no_unit_alloc_regs);
|
776 |
|
|
if (hard_reg_set_equal_p (temp_hard_regset,
|
777 |
|
|
temp_hard_regset2))
|
778 |
|
|
break;
|
779 |
|
|
}
|
780 |
|
|
if (j >= i)
|
781 |
|
|
classes[n++] = (enum reg_class) i;
|
782 |
|
|
}
|
783 |
|
|
classes[n] = LIM_REG_CLASSES;
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
ira_reg_class_cover_size = 0;
|
787 |
|
|
for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
|
788 |
|
|
{
|
789 |
|
|
for (j = 0; j < i; j++)
|
790 |
|
|
if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
|
791 |
|
|
&& reg_classes_intersect_p ((enum reg_class) cl, classes[j]))
|
792 |
|
|
gcc_unreachable ();
|
793 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
794 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
795 |
|
|
if (! hard_reg_set_empty_p (temp_hard_regset))
|
796 |
|
|
ira_reg_class_cover[ira_reg_class_cover_size++] = (enum reg_class) cl;
|
797 |
|
|
}
|
798 |
|
|
ira_important_classes_num = 0;
|
799 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
800 |
|
|
{
|
801 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
802 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
803 |
|
|
if (! hard_reg_set_empty_p (temp_hard_regset))
|
804 |
|
|
{
|
805 |
|
|
set_p = false;
|
806 |
|
|
for (j = 0; j < ira_reg_class_cover_size; j++)
|
807 |
|
|
{
|
808 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
809 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
810 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2,
|
811 |
|
|
reg_class_contents[ira_reg_class_cover[j]]);
|
812 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
813 |
|
|
if ((enum reg_class) cl == ira_reg_class_cover[j]
|
814 |
|
|
|| hard_reg_set_equal_p (temp_hard_regset,
|
815 |
|
|
temp_hard_regset2))
|
816 |
|
|
break;
|
817 |
|
|
else if (hard_reg_set_subset_p (temp_hard_regset,
|
818 |
|
|
temp_hard_regset2))
|
819 |
|
|
set_p = true;
|
820 |
|
|
}
|
821 |
|
|
if (set_p && j >= ira_reg_class_cover_size)
|
822 |
|
|
ira_important_classes[ira_important_classes_num++]
|
823 |
|
|
= (enum reg_class) cl;
|
824 |
|
|
}
|
825 |
|
|
}
|
826 |
|
|
for (j = 0; j < ira_reg_class_cover_size; j++)
|
827 |
|
|
ira_important_classes[ira_important_classes_num++]
|
828 |
|
|
= ira_reg_class_cover[j];
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
/* Map of all register classes to corresponding cover class containing
|
832 |
|
|
the given class. If given class is not a subset of a cover class,
|
833 |
|
|
we translate it into the cheapest cover class. */
|
834 |
|
|
enum reg_class ira_class_translate[N_REG_CLASSES];
|
835 |
|
|
|
836 |
|
|
/* Set up array IRA_CLASS_TRANSLATE. */
|
837 |
|
|
static void
|
838 |
|
|
setup_class_translate (void)
|
839 |
|
|
{
|
840 |
|
|
int cl, mode;
|
841 |
|
|
enum reg_class cover_class, best_class, *cl_ptr;
|
842 |
|
|
int i, cost, min_cost, best_cost;
|
843 |
|
|
|
844 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
845 |
|
|
ira_class_translate[cl] = NO_REGS;
|
846 |
|
|
|
847 |
|
|
if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
|
848 |
|
|
for (cl = 0; cl < LIM_REG_CLASSES; cl++)
|
849 |
|
|
{
|
850 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
851 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
852 |
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
853 |
|
|
{
|
854 |
|
|
HARD_REG_SET temp_hard_regset2;
|
855 |
|
|
|
856 |
|
|
cover_class = ira_reg_class_cover[i];
|
857 |
|
|
COPY_HARD_REG_SET (temp_hard_regset2,
|
858 |
|
|
reg_class_contents[cover_class]);
|
859 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
|
860 |
|
|
if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
|
861 |
|
|
ira_class_translate[cl] = cover_class;
|
862 |
|
|
}
|
863 |
|
|
}
|
864 |
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
865 |
|
|
{
|
866 |
|
|
cover_class = ira_reg_class_cover[i];
|
867 |
|
|
if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
|
868 |
|
|
for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
|
869 |
|
|
(cl = *cl_ptr) != LIM_REG_CLASSES;
|
870 |
|
|
cl_ptr++)
|
871 |
|
|
{
|
872 |
|
|
if (ira_class_translate[cl] == NO_REGS)
|
873 |
|
|
ira_class_translate[cl] = cover_class;
|
874 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
875 |
|
|
else
|
876 |
|
|
{
|
877 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
878 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
879 |
|
|
if (! hard_reg_set_empty_p (temp_hard_regset))
|
880 |
|
|
gcc_unreachable ();
|
881 |
|
|
}
|
882 |
|
|
#endif
|
883 |
|
|
}
|
884 |
|
|
ira_class_translate[cover_class] = cover_class;
|
885 |
|
|
}
|
886 |
|
|
/* For classes which are not fully covered by a cover class (in
|
887 |
|
|
other words covered by more one cover class), use the cheapest
|
888 |
|
|
cover class. */
|
889 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
890 |
|
|
{
|
891 |
|
|
if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
|
892 |
|
|
continue;
|
893 |
|
|
best_class = NO_REGS;
|
894 |
|
|
best_cost = INT_MAX;
|
895 |
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
896 |
|
|
{
|
897 |
|
|
cover_class = ira_reg_class_cover[i];
|
898 |
|
|
COPY_HARD_REG_SET (temp_hard_regset,
|
899 |
|
|
reg_class_contents[cover_class]);
|
900 |
|
|
AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
|
901 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
902 |
|
|
if (! hard_reg_set_empty_p (temp_hard_regset))
|
903 |
|
|
{
|
904 |
|
|
min_cost = INT_MAX;
|
905 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
906 |
|
|
{
|
907 |
|
|
cost = (ira_memory_move_cost[mode][cl][0]
|
908 |
|
|
+ ira_memory_move_cost[mode][cl][1]);
|
909 |
|
|
if (min_cost > cost)
|
910 |
|
|
min_cost = cost;
|
911 |
|
|
}
|
912 |
|
|
if (best_class == NO_REGS || best_cost > min_cost)
|
913 |
|
|
{
|
914 |
|
|
best_class = cover_class;
|
915 |
|
|
best_cost = min_cost;
|
916 |
|
|
}
|
917 |
|
|
}
|
918 |
|
|
}
|
919 |
|
|
ira_class_translate[cl] = best_class;
|
920 |
|
|
}
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
/* Order numbers of cover classes in original target cover class
|
924 |
|
|
array, -1 for non-cover classes. */
|
925 |
|
|
static int cover_class_order[N_REG_CLASSES];
|
926 |
|
|
|
927 |
|
|
/* The function used to sort the important classes. */
|
928 |
|
|
static int
|
929 |
|
|
comp_reg_classes_func (const void *v1p, const void *v2p)
|
930 |
|
|
{
|
931 |
|
|
enum reg_class cl1 = *(const enum reg_class *) v1p;
|
932 |
|
|
enum reg_class cl2 = *(const enum reg_class *) v2p;
|
933 |
|
|
int diff;
|
934 |
|
|
|
935 |
|
|
cl1 = ira_class_translate[cl1];
|
936 |
|
|
cl2 = ira_class_translate[cl2];
|
937 |
|
|
if (cl1 != NO_REGS && cl2 != NO_REGS
|
938 |
|
|
&& (diff = cover_class_order[cl1] - cover_class_order[cl2]) != 0)
|
939 |
|
|
return diff;
|
940 |
|
|
return (int) cl1 - (int) cl2;
|
941 |
|
|
}
|
942 |
|
|
|
943 |
|
|
/* Reorder important classes according to the order of their cover
|
944 |
|
|
classes. Set up array ira_important_class_nums too. */
|
945 |
|
|
static void
|
946 |
|
|
reorder_important_classes (void)
|
947 |
|
|
{
|
948 |
|
|
int i;
|
949 |
|
|
|
950 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
951 |
|
|
cover_class_order[i] = -1;
|
952 |
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
953 |
|
|
cover_class_order[ira_reg_class_cover[i]] = i;
|
954 |
|
|
qsort (ira_important_classes, ira_important_classes_num,
|
955 |
|
|
sizeof (enum reg_class), comp_reg_classes_func);
|
956 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
957 |
|
|
ira_important_class_nums[ira_important_classes[i]] = i;
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
/* The biggest important reg_class inside of intersection of the two
|
961 |
|
|
reg_classes (that is calculated taking only hard registers
|
962 |
|
|
available for allocation into account). If the both reg_classes
|
963 |
|
|
contain no hard registers available for allocation, the value is
|
964 |
|
|
calculated by taking all hard-registers including fixed ones into
|
965 |
|
|
account. */
|
966 |
|
|
enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
|
967 |
|
|
|
968 |
|
|
/* True if the two classes (that is calculated taking only hard
|
969 |
|
|
registers available for allocation into account) are
|
970 |
|
|
intersected. */
|
971 |
|
|
bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
|
972 |
|
|
|
973 |
|
|
/* Important classes with end marker LIM_REG_CLASSES which are
|
974 |
|
|
supersets with given important class (the first index). That
|
975 |
|
|
includes given class itself. This is calculated taking only hard
|
976 |
|
|
registers available for allocation into account. */
|
977 |
|
|
enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
|
978 |
|
|
|
979 |
|
|
/* The biggest important reg_class inside of union of the two
|
980 |
|
|
reg_classes (that is calculated taking only hard registers
|
981 |
|
|
available for allocation into account). If the both reg_classes
|
982 |
|
|
contain no hard registers available for allocation, the value is
|
983 |
|
|
calculated by taking all hard-registers including fixed ones into
|
984 |
|
|
account. In other words, the value is the corresponding
|
985 |
|
|
reg_class_subunion value. */
|
986 |
|
|
enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
|
987 |
|
|
|
988 |
|
|
/* Set up the above reg class relations. */
|
989 |
|
|
static void
|
990 |
|
|
setup_reg_class_relations (void)
|
991 |
|
|
{
|
992 |
|
|
int i, cl1, cl2, cl3;
|
993 |
|
|
HARD_REG_SET intersection_set, union_set, temp_set2;
|
994 |
|
|
bool important_class_p[N_REG_CLASSES];
|
995 |
|
|
|
996 |
|
|
memset (important_class_p, 0, sizeof (important_class_p));
|
997 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
998 |
|
|
important_class_p[ira_important_classes[i]] = true;
|
999 |
|
|
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
|
1000 |
|
|
{
|
1001 |
|
|
ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
|
1002 |
|
|
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
|
1003 |
|
|
{
|
1004 |
|
|
ira_reg_classes_intersect_p[cl1][cl2] = false;
|
1005 |
|
|
ira_reg_class_intersect[cl1][cl2] = NO_REGS;
|
1006 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
|
1007 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
1008 |
|
|
COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
|
1009 |
|
|
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
1010 |
|
|
if (hard_reg_set_empty_p (temp_hard_regset)
|
1011 |
|
|
&& hard_reg_set_empty_p (temp_set2))
|
1012 |
|
|
{
|
1013 |
|
|
for (i = 0;; i++)
|
1014 |
|
|
{
|
1015 |
|
|
cl3 = reg_class_subclasses[cl1][i];
|
1016 |
|
|
if (cl3 == LIM_REG_CLASSES)
|
1017 |
|
|
break;
|
1018 |
|
|
if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
|
1019 |
|
|
(enum reg_class) cl3))
|
1020 |
|
|
ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
|
1021 |
|
|
}
|
1022 |
|
|
ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
|
1023 |
|
|
continue;
|
1024 |
|
|
}
|
1025 |
|
|
ira_reg_classes_intersect_p[cl1][cl2]
|
1026 |
|
|
= hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
|
1027 |
|
|
if (important_class_p[cl1] && important_class_p[cl2]
|
1028 |
|
|
&& hard_reg_set_subset_p (temp_hard_regset, temp_set2))
|
1029 |
|
|
{
|
1030 |
|
|
enum reg_class *p;
|
1031 |
|
|
|
1032 |
|
|
p = &ira_reg_class_super_classes[cl1][0];
|
1033 |
|
|
while (*p != LIM_REG_CLASSES)
|
1034 |
|
|
p++;
|
1035 |
|
|
*p++ = (enum reg_class) cl2;
|
1036 |
|
|
*p = LIM_REG_CLASSES;
|
1037 |
|
|
}
|
1038 |
|
|
ira_reg_class_union[cl1][cl2] = NO_REGS;
|
1039 |
|
|
COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
|
1040 |
|
|
AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
|
1041 |
|
|
AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
|
1042 |
|
|
COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
|
1043 |
|
|
IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
|
1044 |
|
|
AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
|
1045 |
|
|
for (i = 0; i < ira_important_classes_num; i++)
|
1046 |
|
|
{
|
1047 |
|
|
cl3 = ira_important_classes[i];
|
1048 |
|
|
COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
|
1049 |
|
|
AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
|
1050 |
|
|
if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
|
1051 |
|
|
{
|
1052 |
|
|
COPY_HARD_REG_SET
|
1053 |
|
|
(temp_set2,
|
1054 |
|
|
reg_class_contents[(int)
|
1055 |
|
|
ira_reg_class_intersect[cl1][cl2]]);
|
1056 |
|
|
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
1057 |
|
|
if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
|
1058 |
|
|
/* Ignore unavailable hard registers and prefer
|
1059 |
|
|
smallest class for debugging purposes. */
|
1060 |
|
|
|| (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
|
1061 |
|
|
&& hard_reg_set_subset_p
|
1062 |
|
|
(reg_class_contents[cl3],
|
1063 |
|
|
reg_class_contents
|
1064 |
|
|
[(int) ira_reg_class_intersect[cl1][cl2]])))
|
1065 |
|
|
ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
|
1066 |
|
|
}
|
1067 |
|
|
if (hard_reg_set_subset_p (temp_hard_regset, union_set))
|
1068 |
|
|
{
|
1069 |
|
|
COPY_HARD_REG_SET
|
1070 |
|
|
(temp_set2,
|
1071 |
|
|
reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
|
1072 |
|
|
AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
|
1073 |
|
|
if (ira_reg_class_union[cl1][cl2] == NO_REGS
|
1074 |
|
|
|| (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
|
1075 |
|
|
|
1076 |
|
|
&& (! hard_reg_set_equal_p (temp_set2,
|
1077 |
|
|
temp_hard_regset)
|
1078 |
|
|
/* Ignore unavailable hard registers and
|
1079 |
|
|
prefer smallest class for debugging
|
1080 |
|
|
purposes. */
|
1081 |
|
|
|| hard_reg_set_subset_p
|
1082 |
|
|
(reg_class_contents[cl3],
|
1083 |
|
|
reg_class_contents
|
1084 |
|
|
[(int) ira_reg_class_union[cl1][cl2]]))))
|
1085 |
|
|
ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
|
1086 |
|
|
}
|
1087 |
|
|
}
|
1088 |
|
|
}
|
1089 |
|
|
}
|
1090 |
|
|
}
|
1091 |
|
|
|
1092 |
|
|
/* Output all cover classes and the translation map into file F. */
|
1093 |
|
|
static void
|
1094 |
|
|
print_class_cover (FILE *f)
|
1095 |
|
|
{
|
1096 |
|
|
static const char *const reg_class_names[] = REG_CLASS_NAMES;
|
1097 |
|
|
int i;
|
1098 |
|
|
|
1099 |
|
|
fprintf (f, "Class cover:\n");
|
1100 |
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
1101 |
|
|
fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
|
1102 |
|
|
fprintf (f, "\nClass translation:\n");
|
1103 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
1104 |
|
|
fprintf (f, " %s -> %s\n", reg_class_names[i],
|
1105 |
|
|
reg_class_names[ira_class_translate[i]]);
|
1106 |
|
|
}
|
1107 |
|
|
|
1108 |
|
|
/* Output all cover classes and the translation map into
|
1109 |
|
|
stderr. */
|
1110 |
|
|
void
|
1111 |
|
|
ira_debug_class_cover (void)
|
1112 |
|
|
{
|
1113 |
|
|
print_class_cover (stderr);
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/* Set up different arrays concerning class subsets, cover and
|
1117 |
|
|
important classes. */
|
1118 |
|
|
static void
|
1119 |
|
|
find_reg_class_closure (void)
|
1120 |
|
|
{
|
1121 |
|
|
setup_reg_subclasses ();
|
1122 |
|
|
setup_cover_and_important_classes ();
|
1123 |
|
|
setup_class_translate ();
|
1124 |
|
|
reorder_important_classes ();
|
1125 |
|
|
setup_reg_class_relations ();
|
1126 |
|
|
}
|
1127 |
|
|
|
1128 |
|
|
|
1129 |
|
|
|
1130 |
|
|
/* Map: hard register number -> cover class it belongs to. If the
|
1131 |
|
|
corresponding class is NO_REGS, the hard register is not available
|
1132 |
|
|
for allocation. */
|
1133 |
|
|
enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
|
1134 |
|
|
|
1135 |
|
|
/* Set up the array above. */
|
1136 |
|
|
static void
|
1137 |
|
|
setup_hard_regno_cover_class (void)
|
1138 |
|
|
{
|
1139 |
|
|
int i, j;
|
1140 |
|
|
enum reg_class cl;
|
1141 |
|
|
|
1142 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1143 |
|
|
{
|
1144 |
|
|
ira_hard_regno_cover_class[i] = NO_REGS;
|
1145 |
|
|
for (j = 0; j < ira_reg_class_cover_size; j++)
|
1146 |
|
|
{
|
1147 |
|
|
cl = ira_reg_class_cover[j];
|
1148 |
|
|
if (ira_class_hard_reg_index[cl][i] >= 0)
|
1149 |
|
|
{
|
1150 |
|
|
ira_hard_regno_cover_class[i] = cl;
|
1151 |
|
|
break;
|
1152 |
|
|
}
|
1153 |
|
|
}
|
1154 |
|
|
|
1155 |
|
|
}
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
|
1159 |
|
|
|
1160 |
|
|
/* Map: register class x machine mode -> number of hard registers of
|
1161 |
|
|
given class needed to store value of given mode. If the number is
|
1162 |
|
|
different, the size will be negative. */
|
1163 |
|
|
int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
|
1164 |
|
|
|
1165 |
|
|
/* Maximal value of the previous array elements. */
|
1166 |
|
|
int ira_max_nregs;
|
1167 |
|
|
|
1168 |
|
|
/* Form IRA_REG_CLASS_NREGS map. */
|
1169 |
|
|
static void
|
1170 |
|
|
setup_reg_class_nregs (void)
|
1171 |
|
|
{
|
1172 |
|
|
int cl, m;
|
1173 |
|
|
|
1174 |
|
|
ira_max_nregs = -1;
|
1175 |
|
|
for (cl = 0; cl < N_REG_CLASSES; cl++)
|
1176 |
|
|
for (m = 0; m < MAX_MACHINE_MODE; m++)
|
1177 |
|
|
{
|
1178 |
|
|
ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
|
1179 |
|
|
(enum machine_mode) m);
|
1180 |
|
|
if (ira_max_nregs < ira_reg_class_nregs[cl][m])
|
1181 |
|
|
ira_max_nregs = ira_reg_class_nregs[cl][m];
|
1182 |
|
|
}
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
|
1186 |
|
|
|
1187 |
|
|
/* Array whose values are hard regset of hard registers available for
|
1188 |
|
|
the allocation of given register class whose HARD_REGNO_MODE_OK
|
1189 |
|
|
values for given mode are zero. */
|
1190 |
|
|
HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
|
1191 |
|
|
|
1192 |
|
|
/* Set up PROHIBITED_CLASS_MODE_REGS. */
|
1193 |
|
|
static void
|
1194 |
|
|
setup_prohibited_class_mode_regs (void)
|
1195 |
|
|
{
|
1196 |
|
|
int i, j, k, hard_regno;
|
1197 |
|
|
enum reg_class cl;
|
1198 |
|
|
|
1199 |
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
1200 |
|
|
{
|
1201 |
|
|
cl = ira_reg_class_cover[i];
|
1202 |
|
|
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
1203 |
|
|
{
|
1204 |
|
|
CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
|
1205 |
|
|
for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
|
1206 |
|
|
{
|
1207 |
|
|
hard_regno = ira_class_hard_regs[cl][k];
|
1208 |
|
|
if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
|
1209 |
|
|
SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
|
1210 |
|
|
hard_regno);
|
1211 |
|
|
}
|
1212 |
|
|
}
|
1213 |
|
|
}
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
|
1217 |
|
|
|
1218 |
|
|
/* Allocate and initialize IRA_REGISTER_MOVE_COST,
|
1219 |
|
|
IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
|
1220 |
|
|
not done yet. */
|
1221 |
|
|
void
|
1222 |
|
|
ira_init_register_move_cost (enum machine_mode mode)
|
1223 |
|
|
{
|
1224 |
|
|
int cl1, cl2;
|
1225 |
|
|
|
1226 |
|
|
ira_assert (ira_register_move_cost[mode] == NULL
|
1227 |
|
|
&& ira_may_move_in_cost[mode] == NULL
|
1228 |
|
|
&& ira_may_move_out_cost[mode] == NULL);
|
1229 |
|
|
if (move_cost[mode] == NULL)
|
1230 |
|
|
init_move_cost (mode);
|
1231 |
|
|
ira_register_move_cost[mode] = move_cost[mode];
|
1232 |
|
|
/* Don't use ira_allocate because the tables exist out of scope of a
|
1233 |
|
|
IRA call. */
|
1234 |
|
|
ira_may_move_in_cost[mode]
|
1235 |
|
|
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
1236 |
|
|
memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
|
1237 |
|
|
sizeof (move_table) * N_REG_CLASSES);
|
1238 |
|
|
ira_may_move_out_cost[mode]
|
1239 |
|
|
= (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
|
1240 |
|
|
memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
|
1241 |
|
|
sizeof (move_table) * N_REG_CLASSES);
|
1242 |
|
|
for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
|
1243 |
|
|
{
|
1244 |
|
|
for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
|
1245 |
|
|
{
|
1246 |
|
|
if (ira_class_subset_p[cl1][cl2])
|
1247 |
|
|
ira_may_move_in_cost[mode][cl1][cl2] = 0;
|
1248 |
|
|
if (ira_class_subset_p[cl2][cl1])
|
1249 |
|
|
ira_may_move_out_cost[mode][cl1][cl2] = 0;
|
1250 |
|
|
}
|
1251 |
|
|
}
|
1252 |
|
|
}
|
1253 |
|
|
|
1254 |
|
|
|
1255 |
|
|
|
1256 |
|
|
/* This is called once during compiler work. It sets up
|
1257 |
|
|
different arrays whose values don't depend on the compiled
|
1258 |
|
|
function. */
|
1259 |
|
|
void
|
1260 |
|
|
ira_init_once (void)
|
1261 |
|
|
{
|
1262 |
|
|
int mode;
|
1263 |
|
|
|
1264 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
1265 |
|
|
{
|
1266 |
|
|
ira_register_move_cost[mode] = NULL;
|
1267 |
|
|
ira_may_move_in_cost[mode] = NULL;
|
1268 |
|
|
ira_may_move_out_cost[mode] = NULL;
|
1269 |
|
|
}
|
1270 |
|
|
ira_init_costs_once ();
|
1271 |
|
|
}
|
1272 |
|
|
|
1273 |
|
|
/* Free ira_register_move_cost, ira_may_move_in_cost, and
|
1274 |
|
|
ira_may_move_out_cost for each mode. */
|
1275 |
|
|
static void
|
1276 |
|
|
free_register_move_costs (void)
|
1277 |
|
|
{
|
1278 |
|
|
int mode;
|
1279 |
|
|
|
1280 |
|
|
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
1281 |
|
|
{
|
1282 |
|
|
if (ira_may_move_in_cost[mode] != NULL)
|
1283 |
|
|
free (ira_may_move_in_cost[mode]);
|
1284 |
|
|
if (ira_may_move_out_cost[mode] != NULL)
|
1285 |
|
|
free (ira_may_move_out_cost[mode]);
|
1286 |
|
|
ira_register_move_cost[mode] = NULL;
|
1287 |
|
|
ira_may_move_in_cost[mode] = NULL;
|
1288 |
|
|
ira_may_move_out_cost[mode] = NULL;
|
1289 |
|
|
}
|
1290 |
|
|
}
|
1291 |
|
|
|
1292 |
|
|
/* This is called every time when register related information is
|
1293 |
|
|
changed. */
|
1294 |
|
|
void
|
1295 |
|
|
ira_init (void)
|
1296 |
|
|
{
|
1297 |
|
|
free_register_move_costs ();
|
1298 |
|
|
setup_reg_mode_hard_regset ();
|
1299 |
|
|
setup_alloc_regs (flag_omit_frame_pointer != 0);
|
1300 |
|
|
setup_class_subset_and_memory_move_costs ();
|
1301 |
|
|
find_reg_class_closure ();
|
1302 |
|
|
setup_hard_regno_cover_class ();
|
1303 |
|
|
setup_reg_class_nregs ();
|
1304 |
|
|
setup_prohibited_class_mode_regs ();
|
1305 |
|
|
ira_init_costs ();
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
/* Function called once at the end of compiler work. */
|
1309 |
|
|
void
|
1310 |
|
|
ira_finish_once (void)
|
1311 |
|
|
{
|
1312 |
|
|
ira_finish_costs_once ();
|
1313 |
|
|
free_register_move_costs ();
|
1314 |
|
|
}
|
1315 |
|
|
|
1316 |
|
|
|
1317 |
|
|
|
1318 |
|
|
/* Array whose values are hard regset of hard registers for which
|
1319 |
|
|
move of the hard register in given mode into itself is
|
1320 |
|
|
prohibited. */
|
1321 |
|
|
HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
|
1322 |
|
|
|
1323 |
|
|
/* Flag of that the above array has been initialized. */
|
1324 |
|
|
static bool ira_prohibited_mode_move_regs_initialized_p = false;
|
1325 |
|
|
|
1326 |
|
|
/* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
|
1327 |
|
|
static void
|
1328 |
|
|
setup_prohibited_mode_move_regs (void)
|
1329 |
|
|
{
|
1330 |
|
|
int i, j;
|
1331 |
|
|
rtx test_reg1, test_reg2, move_pat, move_insn;
|
1332 |
|
|
|
1333 |
|
|
if (ira_prohibited_mode_move_regs_initialized_p)
|
1334 |
|
|
return;
|
1335 |
|
|
ira_prohibited_mode_move_regs_initialized_p = true;
|
1336 |
|
|
test_reg1 = gen_rtx_REG (VOIDmode, 0);
|
1337 |
|
|
test_reg2 = gen_rtx_REG (VOIDmode, 0);
|
1338 |
|
|
move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
|
1339 |
|
|
move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
|
1340 |
|
|
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
1341 |
|
|
{
|
1342 |
|
|
SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
|
1343 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
1344 |
|
|
{
|
1345 |
|
|
if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
|
1346 |
|
|
continue;
|
1347 |
|
|
SET_REGNO (test_reg1, j);
|
1348 |
|
|
PUT_MODE (test_reg1, (enum machine_mode) i);
|
1349 |
|
|
SET_REGNO (test_reg2, j);
|
1350 |
|
|
PUT_MODE (test_reg2, (enum machine_mode) i);
|
1351 |
|
|
INSN_CODE (move_insn) = -1;
|
1352 |
|
|
recog_memoized (move_insn);
|
1353 |
|
|
if (INSN_CODE (move_insn) < 0)
|
1354 |
|
|
continue;
|
1355 |
|
|
extract_insn (move_insn);
|
1356 |
|
|
if (! constrain_operands (1))
|
1357 |
|
|
continue;
|
1358 |
|
|
CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
|
1359 |
|
|
}
|
1360 |
|
|
}
|
1361 |
|
|
}
|
1362 |
|
|
|
1363 |
|
|
|
1364 |
|
|
|
1365 |
|
|
/* Function specific hard registers that can not be used for the
|
1366 |
|
|
register allocation. */
|
1367 |
|
|
HARD_REG_SET ira_no_alloc_regs;
|
1368 |
|
|
|
1369 |
|
|
/* Return TRUE if *LOC contains an asm. */
|
1370 |
|
|
static int
|
1371 |
|
|
insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
1372 |
|
|
{
|
1373 |
|
|
if ( !*loc)
|
1374 |
|
|
return FALSE;
|
1375 |
|
|
if (GET_CODE (*loc) == ASM_OPERANDS)
|
1376 |
|
|
return TRUE;
|
1377 |
|
|
return FALSE;
|
1378 |
|
|
}
|
1379 |
|
|
|
1380 |
|
|
|
1381 |
|
|
/* Return TRUE if INSN contains an ASM. */
|
1382 |
|
|
static bool
|
1383 |
|
|
insn_contains_asm (rtx insn)
|
1384 |
|
|
{
|
1385 |
|
|
return for_each_rtx (&insn, insn_contains_asm_1, NULL);
|
1386 |
|
|
}
|
1387 |
|
|
|
1388 |
|
|
/* Set up regs_asm_clobbered. */
|
1389 |
|
|
static void
|
1390 |
|
|
compute_regs_asm_clobbered (char *regs_asm_clobbered)
|
1391 |
|
|
{
|
1392 |
|
|
basic_block bb;
|
1393 |
|
|
|
1394 |
|
|
memset (regs_asm_clobbered, 0, sizeof (char) * FIRST_PSEUDO_REGISTER);
|
1395 |
|
|
|
1396 |
|
|
FOR_EACH_BB (bb)
|
1397 |
|
|
{
|
1398 |
|
|
rtx insn;
|
1399 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
1400 |
|
|
{
|
1401 |
|
|
df_ref *def_rec;
|
1402 |
|
|
|
1403 |
|
|
if (insn_contains_asm (insn))
|
1404 |
|
|
for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
|
1405 |
|
|
{
|
1406 |
|
|
df_ref def = *def_rec;
|
1407 |
|
|
unsigned int dregno = DF_REF_REGNO (def);
|
1408 |
|
|
if (dregno < FIRST_PSEUDO_REGISTER)
|
1409 |
|
|
{
|
1410 |
|
|
unsigned int i;
|
1411 |
|
|
enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
|
1412 |
|
|
unsigned int end = dregno
|
1413 |
|
|
+ hard_regno_nregs[dregno][mode] - 1;
|
1414 |
|
|
|
1415 |
|
|
for (i = dregno; i <= end; ++i)
|
1416 |
|
|
regs_asm_clobbered[i] = 1;
|
1417 |
|
|
}
|
1418 |
|
|
}
|
1419 |
|
|
}
|
1420 |
|
|
}
|
1421 |
|
|
}
|
1422 |
|
|
|
1423 |
|
|
|
1424 |
|
|
/* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
|
1425 |
|
|
void
|
1426 |
|
|
ira_setup_eliminable_regset (void)
|
1427 |
|
|
{
|
1428 |
|
|
/* Like regs_ever_live, but 1 if a reg is set or clobbered from an
|
1429 |
|
|
asm. Unlike regs_ever_live, elements of this array corresponding
|
1430 |
|
|
to eliminable regs (like the frame pointer) are set if an asm
|
1431 |
|
|
sets them. */
|
1432 |
|
|
char *regs_asm_clobbered
|
1433 |
|
|
= (char *) alloca (FIRST_PSEUDO_REGISTER * sizeof (char));
|
1434 |
|
|
#ifdef ELIMINABLE_REGS
|
1435 |
|
|
int i;
|
1436 |
|
|
static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
|
1437 |
|
|
#endif
|
1438 |
|
|
/* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
|
1439 |
|
|
sp for alloca. So we can't eliminate the frame pointer in that
|
1440 |
|
|
case. At some point, we should improve this by emitting the
|
1441 |
|
|
sp-adjusting insns for this case. */
|
1442 |
|
|
int need_fp
|
1443 |
|
|
= (! flag_omit_frame_pointer
|
1444 |
|
|
|| (cfun->calls_alloca && EXIT_IGNORE_STACK)
|
1445 |
|
|
/* We need the frame pointer to catch stack overflow exceptions
|
1446 |
|
|
if the stack pointer is moving. */
|
1447 |
|
|
|| (flag_stack_check && STACK_CHECK_MOVING_SP)
|
1448 |
|
|
|| crtl->accesses_prior_frames
|
1449 |
|
|
|| crtl->stack_realign_needed
|
1450 |
|
|
|| targetm.frame_pointer_required ());
|
1451 |
|
|
|
1452 |
|
|
frame_pointer_needed = need_fp;
|
1453 |
|
|
|
1454 |
|
|
COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
|
1455 |
|
|
CLEAR_HARD_REG_SET (eliminable_regset);
|
1456 |
|
|
|
1457 |
|
|
compute_regs_asm_clobbered (regs_asm_clobbered);
|
1458 |
|
|
/* Build the regset of all eliminable registers and show we can't
|
1459 |
|
|
use those that we already know won't be eliminated. */
|
1460 |
|
|
#ifdef ELIMINABLE_REGS
|
1461 |
|
|
for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
|
1462 |
|
|
{
|
1463 |
|
|
bool cannot_elim
|
1464 |
|
|
= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
|
1465 |
|
|
|| (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
|
1466 |
|
|
|
1467 |
|
|
if (! regs_asm_clobbered[eliminables[i].from])
|
1468 |
|
|
{
|
1469 |
|
|
SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
|
1470 |
|
|
|
1471 |
|
|
if (cannot_elim)
|
1472 |
|
|
SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
|
1473 |
|
|
}
|
1474 |
|
|
else if (cannot_elim)
|
1475 |
|
|
error ("%s cannot be used in asm here",
|
1476 |
|
|
reg_names[eliminables[i].from]);
|
1477 |
|
|
else
|
1478 |
|
|
df_set_regs_ever_live (eliminables[i].from, true);
|
1479 |
|
|
}
|
1480 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
1481 |
|
|
if (! regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
|
1482 |
|
|
{
|
1483 |
|
|
SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
|
1484 |
|
|
if (need_fp)
|
1485 |
|
|
SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
|
1486 |
|
|
}
|
1487 |
|
|
else if (need_fp)
|
1488 |
|
|
error ("%s cannot be used in asm here",
|
1489 |
|
|
reg_names[HARD_FRAME_POINTER_REGNUM]);
|
1490 |
|
|
else
|
1491 |
|
|
df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
|
1492 |
|
|
#endif
|
1493 |
|
|
|
1494 |
|
|
#else
|
1495 |
|
|
if (! regs_asm_clobbered[FRAME_POINTER_REGNUM])
|
1496 |
|
|
{
|
1497 |
|
|
SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
|
1498 |
|
|
if (need_fp)
|
1499 |
|
|
SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
|
1500 |
|
|
}
|
1501 |
|
|
else if (need_fp)
|
1502 |
|
|
error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
|
1503 |
|
|
else
|
1504 |
|
|
df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
|
1505 |
|
|
#endif
|
1506 |
|
|
}
|
1507 |
|
|
|
1508 |
|
|
|
1509 |
|
|
|
1510 |
|
|
/* The length of the following two arrays. */
|
1511 |
|
|
int ira_reg_equiv_len;
|
1512 |
|
|
|
1513 |
|
|
/* The element value is TRUE if the corresponding regno value is
|
1514 |
|
|
invariant. */
|
1515 |
|
|
bool *ira_reg_equiv_invariant_p;
|
1516 |
|
|
|
1517 |
|
|
/* The element value is equiv constant of given pseudo-register or
|
1518 |
|
|
NULL_RTX. */
|
1519 |
|
|
rtx *ira_reg_equiv_const;
|
1520 |
|
|
|
1521 |
|
|
/* Set up the two arrays declared above. */
|
1522 |
|
|
static void
|
1523 |
|
|
find_reg_equiv_invariant_const (void)
|
1524 |
|
|
{
|
1525 |
|
|
int i;
|
1526 |
|
|
bool invariant_p;
|
1527 |
|
|
rtx list, insn, note, constant, x;
|
1528 |
|
|
|
1529 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
|
1530 |
|
|
{
|
1531 |
|
|
constant = NULL_RTX;
|
1532 |
|
|
invariant_p = false;
|
1533 |
|
|
for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
|
1534 |
|
|
{
|
1535 |
|
|
insn = XEXP (list, 0);
|
1536 |
|
|
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
1537 |
|
|
|
1538 |
|
|
if (note == NULL_RTX)
|
1539 |
|
|
continue;
|
1540 |
|
|
|
1541 |
|
|
x = XEXP (note, 0);
|
1542 |
|
|
|
1543 |
|
|
if (! function_invariant_p (x)
|
1544 |
|
|
|| ! flag_pic
|
1545 |
|
|
/* A function invariant is often CONSTANT_P but may
|
1546 |
|
|
include a register. We promise to only pass CONSTANT_P
|
1547 |
|
|
objects to LEGITIMATE_PIC_OPERAND_P. */
|
1548 |
|
|
|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
|
1549 |
|
|
{
|
1550 |
|
|
/* It can happen that a REG_EQUIV note contains a MEM
|
1551 |
|
|
that is not a legitimate memory operand. As later
|
1552 |
|
|
stages of the reload assume that all addresses found
|
1553 |
|
|
in the reg_equiv_* arrays were originally legitimate,
|
1554 |
|
|
we ignore such REG_EQUIV notes. */
|
1555 |
|
|
if (memory_operand (x, VOIDmode))
|
1556 |
|
|
invariant_p = MEM_READONLY_P (x);
|
1557 |
|
|
else if (function_invariant_p (x))
|
1558 |
|
|
{
|
1559 |
|
|
if (GET_CODE (x) == PLUS
|
1560 |
|
|
|| x == frame_pointer_rtx || x == arg_pointer_rtx)
|
1561 |
|
|
invariant_p = true;
|
1562 |
|
|
else
|
1563 |
|
|
constant = x;
|
1564 |
|
|
}
|
1565 |
|
|
}
|
1566 |
|
|
}
|
1567 |
|
|
ira_reg_equiv_invariant_p[i] = invariant_p;
|
1568 |
|
|
ira_reg_equiv_const[i] = constant;
|
1569 |
|
|
}
|
1570 |
|
|
}
|
1571 |
|
|
|
1572 |
|
|
|
1573 |
|
|
|
1574 |
|
|
/* Vector of substitutions of register numbers,
|
1575 |
|
|
used to map pseudo regs into hardware regs.
|
1576 |
|
|
This is set up as a result of register allocation.
|
1577 |
|
|
Element N is the hard reg assigned to pseudo reg N,
|
1578 |
|
|
or is -1 if no hard reg was assigned.
|
1579 |
|
|
If N is a hard reg number, element N is N. */
|
1580 |
|
|
short *reg_renumber;
|
1581 |
|
|
|
1582 |
|
|
/* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
|
1583 |
|
|
the allocation found by IRA. */
|
1584 |
|
|
static void
|
1585 |
|
|
setup_reg_renumber (void)
|
1586 |
|
|
{
|
1587 |
|
|
int regno, hard_regno;
|
1588 |
|
|
ira_allocno_t a;
|
1589 |
|
|
ira_allocno_iterator ai;
|
1590 |
|
|
|
1591 |
|
|
caller_save_needed = 0;
|
1592 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1593 |
|
|
{
|
1594 |
|
|
/* There are no caps at this point. */
|
1595 |
|
|
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
|
1596 |
|
|
if (! ALLOCNO_ASSIGNED_P (a))
|
1597 |
|
|
/* It can happen if A is not referenced but partially anticipated
|
1598 |
|
|
somewhere in a region. */
|
1599 |
|
|
ALLOCNO_ASSIGNED_P (a) = true;
|
1600 |
|
|
ira_free_allocno_updated_costs (a);
|
1601 |
|
|
hard_regno = ALLOCNO_HARD_REGNO (a);
|
1602 |
|
|
regno = (int) REGNO (ALLOCNO_REG (a));
|
1603 |
|
|
reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
|
1604 |
|
|
if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
|
1605 |
|
|
&& ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
|
1606 |
|
|
call_used_reg_set))
|
1607 |
|
|
{
|
1608 |
|
|
ira_assert (!optimize || flag_caller_saves
|
1609 |
|
|
|| regno >= ira_reg_equiv_len
|
1610 |
|
|
|| ira_reg_equiv_const[regno]
|
1611 |
|
|
|| ira_reg_equiv_invariant_p[regno]);
|
1612 |
|
|
caller_save_needed = 1;
|
1613 |
|
|
}
|
1614 |
|
|
}
|
1615 |
|
|
}
|
1616 |
|
|
|
1617 |
|
|
/* Set up allocno assignment flags for further allocation
|
1618 |
|
|
improvements. */
|
1619 |
|
|
static void
|
1620 |
|
|
setup_allocno_assignment_flags (void)
|
1621 |
|
|
{
|
1622 |
|
|
int hard_regno;
|
1623 |
|
|
ira_allocno_t a;
|
1624 |
|
|
ira_allocno_iterator ai;
|
1625 |
|
|
|
1626 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1627 |
|
|
{
|
1628 |
|
|
if (! ALLOCNO_ASSIGNED_P (a))
|
1629 |
|
|
/* It can happen if A is not referenced but partially anticipated
|
1630 |
|
|
somewhere in a region. */
|
1631 |
|
|
ira_free_allocno_updated_costs (a);
|
1632 |
|
|
hard_regno = ALLOCNO_HARD_REGNO (a);
|
1633 |
|
|
/* Don't assign hard registers to allocnos which are destination
|
1634 |
|
|
of removed store at the end of loop. It has no sense to keep
|
1635 |
|
|
the same value in different hard registers. It is also
|
1636 |
|
|
impossible to assign hard registers correctly to such
|
1637 |
|
|
allocnos because the cost info and info about intersected
|
1638 |
|
|
calls are incorrect for them. */
|
1639 |
|
|
ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
|
1640 |
|
|
|| ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
|
1641 |
|
|
|| (ALLOCNO_MEMORY_COST (a)
|
1642 |
|
|
- ALLOCNO_COVER_CLASS_COST (a)) < 0);
|
1643 |
|
|
ira_assert (hard_regno < 0
|
1644 |
|
|
|| ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
|
1645 |
|
|
reg_class_contents
|
1646 |
|
|
[ALLOCNO_COVER_CLASS (a)]));
|
1647 |
|
|
}
|
1648 |
|
|
}
|
1649 |
|
|
|
1650 |
|
|
/* Evaluate overall allocation cost and the costs for using hard
|
1651 |
|
|
registers and memory for allocnos. */
|
1652 |
|
|
static void
|
1653 |
|
|
calculate_allocation_cost (void)
|
1654 |
|
|
{
|
1655 |
|
|
int hard_regno, cost;
|
1656 |
|
|
ira_allocno_t a;
|
1657 |
|
|
ira_allocno_iterator ai;
|
1658 |
|
|
|
1659 |
|
|
ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
|
1660 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1661 |
|
|
{
|
1662 |
|
|
hard_regno = ALLOCNO_HARD_REGNO (a);
|
1663 |
|
|
ira_assert (hard_regno < 0
|
1664 |
|
|
|| ! ira_hard_reg_not_in_set_p
|
1665 |
|
|
(hard_regno, ALLOCNO_MODE (a),
|
1666 |
|
|
reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
|
1667 |
|
|
if (hard_regno < 0)
|
1668 |
|
|
{
|
1669 |
|
|
cost = ALLOCNO_MEMORY_COST (a);
|
1670 |
|
|
ira_mem_cost += cost;
|
1671 |
|
|
}
|
1672 |
|
|
else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
|
1673 |
|
|
{
|
1674 |
|
|
cost = (ALLOCNO_HARD_REG_COSTS (a)
|
1675 |
|
|
[ira_class_hard_reg_index
|
1676 |
|
|
[ALLOCNO_COVER_CLASS (a)][hard_regno]]);
|
1677 |
|
|
ira_reg_cost += cost;
|
1678 |
|
|
}
|
1679 |
|
|
else
|
1680 |
|
|
{
|
1681 |
|
|
cost = ALLOCNO_COVER_CLASS_COST (a);
|
1682 |
|
|
ira_reg_cost += cost;
|
1683 |
|
|
}
|
1684 |
|
|
ira_overall_cost += cost;
|
1685 |
|
|
}
|
1686 |
|
|
|
1687 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
1688 |
|
|
{
|
1689 |
|
|
fprintf (ira_dump_file,
|
1690 |
|
|
"+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
|
1691 |
|
|
ira_overall_cost, ira_reg_cost, ira_mem_cost,
|
1692 |
|
|
ira_load_cost, ira_store_cost, ira_shuffle_cost);
|
1693 |
|
|
fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
|
1694 |
|
|
ira_move_loops_num, ira_additional_jumps_num);
|
1695 |
|
|
}
|
1696 |
|
|
|
1697 |
|
|
}
|
1698 |
|
|
|
1699 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
1700 |
|
|
/* Check the correctness of the allocation. We do need this because
|
1701 |
|
|
of complicated code to transform more one region internal
|
1702 |
|
|
representation into one region representation. */
|
1703 |
|
|
static void
|
1704 |
|
|
check_allocation (void)
|
1705 |
|
|
{
|
1706 |
|
|
ira_allocno_t a, conflict_a;
|
1707 |
|
|
int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
|
1708 |
|
|
ira_allocno_conflict_iterator aci;
|
1709 |
|
|
ira_allocno_iterator ai;
|
1710 |
|
|
|
1711 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1712 |
|
|
{
|
1713 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL
|
1714 |
|
|
|| (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
|
1715 |
|
|
continue;
|
1716 |
|
|
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
|
1717 |
|
|
FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
|
1718 |
|
|
if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
|
1719 |
|
|
{
|
1720 |
|
|
conflict_nregs
|
1721 |
|
|
= (hard_regno_nregs
|
1722 |
|
|
[conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
|
1723 |
|
|
if ((conflict_hard_regno <= hard_regno
|
1724 |
|
|
&& hard_regno < conflict_hard_regno + conflict_nregs)
|
1725 |
|
|
|| (hard_regno <= conflict_hard_regno
|
1726 |
|
|
&& conflict_hard_regno < hard_regno + nregs))
|
1727 |
|
|
{
|
1728 |
|
|
fprintf (stderr, "bad allocation for %d and %d\n",
|
1729 |
|
|
ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
|
1730 |
|
|
gcc_unreachable ();
|
1731 |
|
|
}
|
1732 |
|
|
}
|
1733 |
|
|
}
|
1734 |
|
|
}
|
1735 |
|
|
#endif
|
1736 |
|
|
|
1737 |
|
|
/* Fix values of array REG_EQUIV_INIT after live range splitting done
|
1738 |
|
|
by IRA. */
|
1739 |
|
|
static void
|
1740 |
|
|
fix_reg_equiv_init (void)
|
1741 |
|
|
{
|
1742 |
|
|
int max_regno = max_reg_num ();
|
1743 |
|
|
int i, new_regno;
|
1744 |
|
|
rtx x, prev, next, insn, set;
|
1745 |
|
|
|
1746 |
|
|
if (reg_equiv_init_size < max_regno)
|
1747 |
|
|
{
|
1748 |
|
|
reg_equiv_init
|
1749 |
|
|
= (rtx *) ggc_realloc (reg_equiv_init, max_regno * sizeof (rtx));
|
1750 |
|
|
while (reg_equiv_init_size < max_regno)
|
1751 |
|
|
reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
|
1752 |
|
|
for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
|
1753 |
|
|
for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
|
1754 |
|
|
{
|
1755 |
|
|
next = XEXP (x, 1);
|
1756 |
|
|
insn = XEXP (x, 0);
|
1757 |
|
|
set = single_set (insn);
|
1758 |
|
|
ira_assert (set != NULL_RTX
|
1759 |
|
|
&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
|
1760 |
|
|
if (REG_P (SET_DEST (set))
|
1761 |
|
|
&& ((int) REGNO (SET_DEST (set)) == i
|
1762 |
|
|
|| (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
|
1763 |
|
|
new_regno = REGNO (SET_DEST (set));
|
1764 |
|
|
else if (REG_P (SET_SRC (set))
|
1765 |
|
|
&& ((int) REGNO (SET_SRC (set)) == i
|
1766 |
|
|
|| (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
|
1767 |
|
|
new_regno = REGNO (SET_SRC (set));
|
1768 |
|
|
else
|
1769 |
|
|
gcc_unreachable ();
|
1770 |
|
|
if (new_regno == i)
|
1771 |
|
|
prev = x;
|
1772 |
|
|
else
|
1773 |
|
|
{
|
1774 |
|
|
if (prev == NULL_RTX)
|
1775 |
|
|
reg_equiv_init[i] = next;
|
1776 |
|
|
else
|
1777 |
|
|
XEXP (prev, 1) = next;
|
1778 |
|
|
XEXP (x, 1) = reg_equiv_init[new_regno];
|
1779 |
|
|
reg_equiv_init[new_regno] = x;
|
1780 |
|
|
}
|
1781 |
|
|
}
|
1782 |
|
|
}
|
1783 |
|
|
}
|
1784 |
|
|
|
1785 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
1786 |
|
|
/* Print redundant memory-memory copies. */
|
1787 |
|
|
static void
|
1788 |
|
|
print_redundant_copies (void)
|
1789 |
|
|
{
|
1790 |
|
|
int hard_regno;
|
1791 |
|
|
ira_allocno_t a;
|
1792 |
|
|
ira_copy_t cp, next_cp;
|
1793 |
|
|
ira_allocno_iterator ai;
|
1794 |
|
|
|
1795 |
|
|
FOR_EACH_ALLOCNO (a, ai)
|
1796 |
|
|
{
|
1797 |
|
|
if (ALLOCNO_CAP_MEMBER (a) != NULL)
|
1798 |
|
|
/* It is a cap. */
|
1799 |
|
|
continue;
|
1800 |
|
|
hard_regno = ALLOCNO_HARD_REGNO (a);
|
1801 |
|
|
if (hard_regno >= 0)
|
1802 |
|
|
continue;
|
1803 |
|
|
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
|
1804 |
|
|
if (cp->first == a)
|
1805 |
|
|
next_cp = cp->next_first_allocno_copy;
|
1806 |
|
|
else
|
1807 |
|
|
{
|
1808 |
|
|
next_cp = cp->next_second_allocno_copy;
|
1809 |
|
|
if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
|
1810 |
|
|
&& cp->insn != NULL_RTX
|
1811 |
|
|
&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
|
1812 |
|
|
fprintf (ira_dump_file,
|
1813 |
|
|
" Redundant move from %d(freq %d):%d\n",
|
1814 |
|
|
INSN_UID (cp->insn), cp->freq, hard_regno);
|
1815 |
|
|
}
|
1816 |
|
|
}
|
1817 |
|
|
}
|
1818 |
|
|
#endif
|
1819 |
|
|
|
1820 |
|
|
/* Setup preferred and alternative classes for new pseudo-registers
|
1821 |
|
|
created by IRA starting with START. */
|
1822 |
|
|
static void
|
1823 |
|
|
setup_preferred_alternate_classes_for_new_pseudos (int start)
|
1824 |
|
|
{
|
1825 |
|
|
int i, old_regno;
|
1826 |
|
|
int max_regno = max_reg_num ();
|
1827 |
|
|
|
1828 |
|
|
for (i = start; i < max_regno; i++)
|
1829 |
|
|
{
|
1830 |
|
|
old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
|
1831 |
|
|
ira_assert (i != old_regno);
|
1832 |
|
|
setup_reg_classes (i, reg_preferred_class (old_regno),
|
1833 |
|
|
reg_alternate_class (old_regno),
|
1834 |
|
|
reg_cover_class (old_regno));
|
1835 |
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
1836 |
|
|
fprintf (ira_dump_file,
|
1837 |
|
|
" New r%d: setting preferred %s, alternative %s\n",
|
1838 |
|
|
i, reg_class_names[reg_preferred_class (old_regno)],
|
1839 |
|
|
reg_class_names[reg_alternate_class (old_regno)]);
|
1840 |
|
|
}
|
1841 |
|
|
}
|
1842 |
|
|
|
1843 |
|
|
|
1844 |
|
|
|
1845 |
|
|
/* Regional allocation can create new pseudo-registers. This function
|
1846 |
|
|
expands some arrays for pseudo-registers. */
|
1847 |
|
|
static void
|
1848 |
|
|
expand_reg_info (int old_size)
|
1849 |
|
|
{
|
1850 |
|
|
int i;
|
1851 |
|
|
int size = max_reg_num ();
|
1852 |
|
|
|
1853 |
|
|
resize_reg_info ();
|
1854 |
|
|
for (i = old_size; i < size; i++)
|
1855 |
|
|
setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
|
1856 |
|
|
}
|
1857 |
|
|
|
1858 |
|
|
/* Return TRUE if there is too high register pressure in the function.
|
1859 |
|
|
It is used to decide when stack slot sharing is worth to do. */
|
1860 |
|
|
static bool
|
1861 |
|
|
too_high_register_pressure_p (void)
|
1862 |
|
|
{
|
1863 |
|
|
int i;
|
1864 |
|
|
enum reg_class cover_class;
|
1865 |
|
|
|
1866 |
|
|
for (i = 0; i < ira_reg_class_cover_size; i++)
|
1867 |
|
|
{
|
1868 |
|
|
cover_class = ira_reg_class_cover[i];
|
1869 |
|
|
if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
|
1870 |
|
|
return true;
|
1871 |
|
|
}
|
1872 |
|
|
return false;
|
1873 |
|
|
}
|
1874 |
|
|
|
1875 |
|
|
|
1876 |
|
|
|
1877 |
|
|
/* Indicate that hard register number FROM was eliminated and replaced with
|
1878 |
|
|
an offset from hard register number TO. The status of hard registers live
|
1879 |
|
|
at the start of a basic block is updated by replacing a use of FROM with
|
1880 |
|
|
a use of TO. */
|
1881 |
|
|
|
1882 |
|
|
void
|
1883 |
|
|
mark_elimination (int from, int to)
|
1884 |
|
|
{
|
1885 |
|
|
basic_block bb;
|
1886 |
|
|
|
1887 |
|
|
FOR_EACH_BB (bb)
|
1888 |
|
|
{
|
1889 |
|
|
/* We don't use LIVE info in IRA. */
|
1890 |
|
|
regset r = DF_LR_IN (bb);
|
1891 |
|
|
|
1892 |
|
|
if (REGNO_REG_SET_P (r, from))
|
1893 |
|
|
{
|
1894 |
|
|
CLEAR_REGNO_REG_SET (r, from);
|
1895 |
|
|
SET_REGNO_REG_SET (r, to);
|
1896 |
|
|
}
|
1897 |
|
|
}
|
1898 |
|
|
}
|
1899 |
|
|
|
1900 |
|
|
|
1901 |
|
|
|
1902 |
|
|
struct equivalence
|
1903 |
|
|
{
|
1904 |
|
|
/* Set when a REG_EQUIV note is found or created. Use to
|
1905 |
|
|
keep track of what memory accesses might be created later,
|
1906 |
|
|
e.g. by reload. */
|
1907 |
|
|
rtx replacement;
|
1908 |
|
|
rtx *src_p;
|
1909 |
|
|
/* The list of each instruction which initializes this register. */
|
1910 |
|
|
rtx init_insns;
|
1911 |
|
|
/* Loop depth is used to recognize equivalences which appear
|
1912 |
|
|
to be present within the same loop (or in an inner loop). */
|
1913 |
|
|
int loop_depth;
|
1914 |
|
|
/* Nonzero if this had a preexisting REG_EQUIV note. */
|
1915 |
|
|
int is_arg_equivalence;
|
1916 |
|
|
/* Set when an attempt should be made to replace a register
|
1917 |
|
|
with the associated src_p entry. */
|
1918 |
|
|
char replace;
|
1919 |
|
|
};
|
1920 |
|
|
|
1921 |
|
|
/* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
|
1922 |
|
|
structure for that register. */
|
1923 |
|
|
static struct equivalence *reg_equiv;
|
1924 |
|
|
|
1925 |
|
|
/* Used for communication between the following two functions: contains
|
1926 |
|
|
a MEM that we wish to ensure remains unchanged. */
|
1927 |
|
|
static rtx equiv_mem;
|
1928 |
|
|
|
1929 |
|
|
/* Set nonzero if EQUIV_MEM is modified. */
|
1930 |
|
|
static int equiv_mem_modified;
|
1931 |
|
|
|
1932 |
|
|
/* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
|
1933 |
|
|
Called via note_stores. */
|
1934 |
|
|
static void
|
1935 |
|
|
validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
|
1936 |
|
|
void *data ATTRIBUTE_UNUSED)
|
1937 |
|
|
{
|
1938 |
|
|
if ((REG_P (dest)
|
1939 |
|
|
&& reg_overlap_mentioned_p (dest, equiv_mem))
|
1940 |
|
|
|| (MEM_P (dest)
|
1941 |
|
|
&& true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
|
1942 |
|
|
equiv_mem_modified = 1;
|
1943 |
|
|
}
|
1944 |
|
|
|
1945 |
|
|
/* Verify that no store between START and the death of REG invalidates
|
1946 |
|
|
MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
|
1947 |
|
|
by storing into an overlapping memory location, or with a non-const
|
1948 |
|
|
CALL_INSN.
|
1949 |
|
|
|
1950 |
|
|
Return 1 if MEMREF remains valid. */
|
1951 |
|
|
static int
|
1952 |
|
|
validate_equiv_mem (rtx start, rtx reg, rtx memref)
|
1953 |
|
|
{
|
1954 |
|
|
rtx insn;
|
1955 |
|
|
rtx note;
|
1956 |
|
|
|
1957 |
|
|
equiv_mem = memref;
|
1958 |
|
|
equiv_mem_modified = 0;
|
1959 |
|
|
|
1960 |
|
|
/* If the memory reference has side effects or is volatile, it isn't a
|
1961 |
|
|
valid equivalence. */
|
1962 |
|
|
if (side_effects_p (memref))
|
1963 |
|
|
return 0;
|
1964 |
|
|
|
1965 |
|
|
for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
|
1966 |
|
|
{
|
1967 |
|
|
if (! INSN_P (insn))
|
1968 |
|
|
continue;
|
1969 |
|
|
|
1970 |
|
|
if (find_reg_note (insn, REG_DEAD, reg))
|
1971 |
|
|
return 1;
|
1972 |
|
|
|
1973 |
|
|
if (CALL_P (insn) && ! MEM_READONLY_P (memref)
|
1974 |
|
|
&& ! RTL_CONST_OR_PURE_CALL_P (insn))
|
1975 |
|
|
return 0;
|
1976 |
|
|
|
1977 |
|
|
note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
|
1978 |
|
|
|
1979 |
|
|
/* If a register mentioned in MEMREF is modified via an
|
1980 |
|
|
auto-increment, we lose the equivalence. Do the same if one
|
1981 |
|
|
dies; although we could extend the life, it doesn't seem worth
|
1982 |
|
|
the trouble. */
|
1983 |
|
|
|
1984 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
1985 |
|
|
if ((REG_NOTE_KIND (note) == REG_INC
|
1986 |
|
|
|| REG_NOTE_KIND (note) == REG_DEAD)
|
1987 |
|
|
&& REG_P (XEXP (note, 0))
|
1988 |
|
|
&& reg_overlap_mentioned_p (XEXP (note, 0), memref))
|
1989 |
|
|
return 0;
|
1990 |
|
|
}
|
1991 |
|
|
|
1992 |
|
|
return 0;
|
1993 |
|
|
}
|
1994 |
|
|
|
1995 |
|
|
/* Returns zero if X is known to be invariant. */
|
1996 |
|
|
static int
|
1997 |
|
|
equiv_init_varies_p (rtx x)
|
1998 |
|
|
{
|
1999 |
|
|
RTX_CODE code = GET_CODE (x);
|
2000 |
|
|
int i;
|
2001 |
|
|
const char *fmt;
|
2002 |
|
|
|
2003 |
|
|
switch (code)
|
2004 |
|
|
{
|
2005 |
|
|
case MEM:
|
2006 |
|
|
return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
|
2007 |
|
|
|
2008 |
|
|
case CONST:
|
2009 |
|
|
case CONST_INT:
|
2010 |
|
|
case CONST_DOUBLE:
|
2011 |
|
|
case CONST_FIXED:
|
2012 |
|
|
case CONST_VECTOR:
|
2013 |
|
|
case SYMBOL_REF:
|
2014 |
|
|
case LABEL_REF:
|
2015 |
|
|
return 0;
|
2016 |
|
|
|
2017 |
|
|
case REG:
|
2018 |
|
|
return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
|
2019 |
|
|
|
2020 |
|
|
case ASM_OPERANDS:
|
2021 |
|
|
if (MEM_VOLATILE_P (x))
|
2022 |
|
|
return 1;
|
2023 |
|
|
|
2024 |
|
|
/* Fall through. */
|
2025 |
|
|
|
2026 |
|
|
default:
|
2027 |
|
|
break;
|
2028 |
|
|
}
|
2029 |
|
|
|
2030 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2031 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
2032 |
|
|
if (fmt[i] == 'e')
|
2033 |
|
|
{
|
2034 |
|
|
if (equiv_init_varies_p (XEXP (x, i)))
|
2035 |
|
|
return 1;
|
2036 |
|
|
}
|
2037 |
|
|
else if (fmt[i] == 'E')
|
2038 |
|
|
{
|
2039 |
|
|
int j;
|
2040 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
2041 |
|
|
if (equiv_init_varies_p (XVECEXP (x, i, j)))
|
2042 |
|
|
return 1;
|
2043 |
|
|
}
|
2044 |
|
|
|
2045 |
|
|
return 0;
|
2046 |
|
|
}
|
2047 |
|
|
|
2048 |
|
|
/* Returns nonzero if X (used to initialize register REGNO) is movable.
|
2049 |
|
|
X is only movable if the registers it uses have equivalent initializations
|
2050 |
|
|
which appear to be within the same loop (or in an inner loop) and movable
|
2051 |
|
|
or if they are not candidates for local_alloc and don't vary. */
|
2052 |
|
|
static int
|
2053 |
|
|
equiv_init_movable_p (rtx x, int regno)
|
2054 |
|
|
{
|
2055 |
|
|
int i, j;
|
2056 |
|
|
const char *fmt;
|
2057 |
|
|
enum rtx_code code = GET_CODE (x);
|
2058 |
|
|
|
2059 |
|
|
switch (code)
|
2060 |
|
|
{
|
2061 |
|
|
case SET:
|
2062 |
|
|
return equiv_init_movable_p (SET_SRC (x), regno);
|
2063 |
|
|
|
2064 |
|
|
case CC0:
|
2065 |
|
|
case CLOBBER:
|
2066 |
|
|
return 0;
|
2067 |
|
|
|
2068 |
|
|
case PRE_INC:
|
2069 |
|
|
case PRE_DEC:
|
2070 |
|
|
case POST_INC:
|
2071 |
|
|
case POST_DEC:
|
2072 |
|
|
case PRE_MODIFY:
|
2073 |
|
|
case POST_MODIFY:
|
2074 |
|
|
return 0;
|
2075 |
|
|
|
2076 |
|
|
case REG:
|
2077 |
|
|
return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
|
2078 |
|
|
&& reg_equiv[REGNO (x)].replace)
|
2079 |
|
|
|| (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
|
2080 |
|
|
|
2081 |
|
|
case UNSPEC_VOLATILE:
|
2082 |
|
|
return 0;
|
2083 |
|
|
|
2084 |
|
|
case ASM_OPERANDS:
|
2085 |
|
|
if (MEM_VOLATILE_P (x))
|
2086 |
|
|
return 0;
|
2087 |
|
|
|
2088 |
|
|
/* Fall through. */
|
2089 |
|
|
|
2090 |
|
|
default:
|
2091 |
|
|
break;
|
2092 |
|
|
}
|
2093 |
|
|
|
2094 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2095 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
2096 |
|
|
switch (fmt[i])
|
2097 |
|
|
{
|
2098 |
|
|
case 'e':
|
2099 |
|
|
if (! equiv_init_movable_p (XEXP (x, i), regno))
|
2100 |
|
|
return 0;
|
2101 |
|
|
break;
|
2102 |
|
|
case 'E':
|
2103 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
2104 |
|
|
if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
|
2105 |
|
|
return 0;
|
2106 |
|
|
break;
|
2107 |
|
|
}
|
2108 |
|
|
|
2109 |
|
|
return 1;
|
2110 |
|
|
}
|
2111 |
|
|
|
2112 |
|
|
/* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
|
2113 |
|
|
static int
|
2114 |
|
|
contains_replace_regs (rtx x)
|
2115 |
|
|
{
|
2116 |
|
|
int i, j;
|
2117 |
|
|
const char *fmt;
|
2118 |
|
|
enum rtx_code code = GET_CODE (x);
|
2119 |
|
|
|
2120 |
|
|
switch (code)
|
2121 |
|
|
{
|
2122 |
|
|
case CONST_INT:
|
2123 |
|
|
case CONST:
|
2124 |
|
|
case LABEL_REF:
|
2125 |
|
|
case SYMBOL_REF:
|
2126 |
|
|
case CONST_DOUBLE:
|
2127 |
|
|
case CONST_FIXED:
|
2128 |
|
|
case CONST_VECTOR:
|
2129 |
|
|
case PC:
|
2130 |
|
|
case CC0:
|
2131 |
|
|
case HIGH:
|
2132 |
|
|
return 0;
|
2133 |
|
|
|
2134 |
|
|
case REG:
|
2135 |
|
|
return reg_equiv[REGNO (x)].replace;
|
2136 |
|
|
|
2137 |
|
|
default:
|
2138 |
|
|
break;
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2142 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
2143 |
|
|
switch (fmt[i])
|
2144 |
|
|
{
|
2145 |
|
|
case 'e':
|
2146 |
|
|
if (contains_replace_regs (XEXP (x, i)))
|
2147 |
|
|
return 1;
|
2148 |
|
|
break;
|
2149 |
|
|
case 'E':
|
2150 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
2151 |
|
|
if (contains_replace_regs (XVECEXP (x, i, j)))
|
2152 |
|
|
return 1;
|
2153 |
|
|
break;
|
2154 |
|
|
}
|
2155 |
|
|
|
2156 |
|
|
return 0;
|
2157 |
|
|
}
|
2158 |
|
|
|
2159 |
|
|
/* TRUE if X references a memory location that would be affected by a store
|
2160 |
|
|
to MEMREF. */
|
2161 |
|
|
static int
|
2162 |
|
|
memref_referenced_p (rtx memref, rtx x)
|
2163 |
|
|
{
|
2164 |
|
|
int i, j;
|
2165 |
|
|
const char *fmt;
|
2166 |
|
|
enum rtx_code code = GET_CODE (x);
|
2167 |
|
|
|
2168 |
|
|
switch (code)
|
2169 |
|
|
{
|
2170 |
|
|
case CONST_INT:
|
2171 |
|
|
case CONST:
|
2172 |
|
|
case LABEL_REF:
|
2173 |
|
|
case SYMBOL_REF:
|
2174 |
|
|
case CONST_DOUBLE:
|
2175 |
|
|
case CONST_FIXED:
|
2176 |
|
|
case CONST_VECTOR:
|
2177 |
|
|
case PC:
|
2178 |
|
|
case CC0:
|
2179 |
|
|
case HIGH:
|
2180 |
|
|
case LO_SUM:
|
2181 |
|
|
return 0;
|
2182 |
|
|
|
2183 |
|
|
case REG:
|
2184 |
|
|
return (reg_equiv[REGNO (x)].replacement
|
2185 |
|
|
&& memref_referenced_p (memref,
|
2186 |
|
|
reg_equiv[REGNO (x)].replacement));
|
2187 |
|
|
|
2188 |
|
|
case MEM:
|
2189 |
|
|
if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
|
2190 |
|
|
return 1;
|
2191 |
|
|
break;
|
2192 |
|
|
|
2193 |
|
|
case SET:
|
2194 |
|
|
/* If we are setting a MEM, it doesn't count (its address does), but any
|
2195 |
|
|
other SET_DEST that has a MEM in it is referencing the MEM. */
|
2196 |
|
|
if (MEM_P (SET_DEST (x)))
|
2197 |
|
|
{
|
2198 |
|
|
if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
|
2199 |
|
|
return 1;
|
2200 |
|
|
}
|
2201 |
|
|
else if (memref_referenced_p (memref, SET_DEST (x)))
|
2202 |
|
|
return 1;
|
2203 |
|
|
|
2204 |
|
|
return memref_referenced_p (memref, SET_SRC (x));
|
2205 |
|
|
|
2206 |
|
|
default:
|
2207 |
|
|
break;
|
2208 |
|
|
}
|
2209 |
|
|
|
2210 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2211 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
2212 |
|
|
switch (fmt[i])
|
2213 |
|
|
{
|
2214 |
|
|
case 'e':
|
2215 |
|
|
if (memref_referenced_p (memref, XEXP (x, i)))
|
2216 |
|
|
return 1;
|
2217 |
|
|
break;
|
2218 |
|
|
case 'E':
|
2219 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
2220 |
|
|
if (memref_referenced_p (memref, XVECEXP (x, i, j)))
|
2221 |
|
|
return 1;
|
2222 |
|
|
break;
|
2223 |
|
|
}
|
2224 |
|
|
|
2225 |
|
|
return 0;
|
2226 |
|
|
}
|
2227 |
|
|
|
2228 |
|
|
/* TRUE if some insn in the range (START, END] references a memory location
|
2229 |
|
|
that would be affected by a store to MEMREF. */
|
2230 |
|
|
static int
|
2231 |
|
|
memref_used_between_p (rtx memref, rtx start, rtx end)
|
2232 |
|
|
{
|
2233 |
|
|
rtx insn;
|
2234 |
|
|
|
2235 |
|
|
for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
|
2236 |
|
|
insn = NEXT_INSN (insn))
|
2237 |
|
|
{
|
2238 |
|
|
if (!NONDEBUG_INSN_P (insn))
|
2239 |
|
|
continue;
|
2240 |
|
|
|
2241 |
|
|
if (memref_referenced_p (memref, PATTERN (insn)))
|
2242 |
|
|
return 1;
|
2243 |
|
|
|
2244 |
|
|
/* Nonconst functions may access memory. */
|
2245 |
|
|
if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
|
2246 |
|
|
return 1;
|
2247 |
|
|
}
|
2248 |
|
|
|
2249 |
|
|
return 0;
|
2250 |
|
|
}
|
2251 |
|
|
|
2252 |
|
|
/* Mark REG as having no known equivalence.
|
2253 |
|
|
Some instructions might have been processed before and furnished
|
2254 |
|
|
with REG_EQUIV notes for this register; these notes will have to be
|
2255 |
|
|
removed.
|
2256 |
|
|
STORE is the piece of RTL that does the non-constant / conflicting
|
2257 |
|
|
assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
|
2258 |
|
|
but needs to be there because this function is called from note_stores. */
|
2259 |
|
|
static void
|
2260 |
|
|
no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
|
2261 |
|
|
{
|
2262 |
|
|
int regno;
|
2263 |
|
|
rtx list;
|
2264 |
|
|
|
2265 |
|
|
if (!REG_P (reg))
|
2266 |
|
|
return;
|
2267 |
|
|
regno = REGNO (reg);
|
2268 |
|
|
list = reg_equiv[regno].init_insns;
|
2269 |
|
|
if (list == const0_rtx)
|
2270 |
|
|
return;
|
2271 |
|
|
reg_equiv[regno].init_insns = const0_rtx;
|
2272 |
|
|
reg_equiv[regno].replacement = NULL_RTX;
|
2273 |
|
|
/* This doesn't matter for equivalences made for argument registers, we
|
2274 |
|
|
should keep their initialization insns. */
|
2275 |
|
|
if (reg_equiv[regno].is_arg_equivalence)
|
2276 |
|
|
return;
|
2277 |
|
|
reg_equiv_init[regno] = NULL_RTX;
|
2278 |
|
|
for (; list; list = XEXP (list, 1))
|
2279 |
|
|
{
|
2280 |
|
|
rtx insn = XEXP (list, 0);
|
2281 |
|
|
remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
|
2282 |
|
|
}
|
2283 |
|
|
}
|
2284 |
|
|
|
2285 |
|
|
/* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
|
2286 |
|
|
equivalent replacement. */
|
2287 |
|
|
|
2288 |
|
|
static rtx
|
2289 |
|
|
adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
|
2290 |
|
|
{
|
2291 |
|
|
if (REG_P (loc))
|
2292 |
|
|
{
|
2293 |
|
|
bitmap cleared_regs = (bitmap) data;
|
2294 |
|
|
if (bitmap_bit_p (cleared_regs, REGNO (loc)))
|
2295 |
|
|
return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
|
2296 |
|
|
NULL_RTX, adjust_cleared_regs, data);
|
2297 |
|
|
}
|
2298 |
|
|
return NULL_RTX;
|
2299 |
|
|
}
|
2300 |
|
|
|
2301 |
|
|
/* Nonzero if we recorded an equivalence for a LABEL_REF. */
|
2302 |
|
|
static int recorded_label_ref;
|
2303 |
|
|
|
2304 |
|
|
/* Find registers that are equivalent to a single value throughout the
|
2305 |
|
|
compilation (either because they can be referenced in memory or are set once
|
2306 |
|
|
from a single constant). Lower their priority for a register.
|
2307 |
|
|
|
2308 |
|
|
If such a register is only referenced once, try substituting its value
|
2309 |
|
|
into the using insn. If it succeeds, we can eliminate the register
|
2310 |
|
|
completely.
|
2311 |
|
|
|
2312 |
|
|
Initialize the REG_EQUIV_INIT array of initializing insns.
|
2313 |
|
|
|
2314 |
|
|
Return non-zero if jump label rebuilding should be done. */
|
2315 |
|
|
static int
|
2316 |
|
|
update_equiv_regs (void)
|
2317 |
|
|
{
|
2318 |
|
|
rtx insn;
|
2319 |
|
|
basic_block bb;
|
2320 |
|
|
int loop_depth;
|
2321 |
|
|
bitmap cleared_regs;
|
2322 |
|
|
|
2323 |
|
|
/* We need to keep track of whether or not we recorded a LABEL_REF so
|
2324 |
|
|
that we know if the jump optimizer needs to be rerun. */
|
2325 |
|
|
recorded_label_ref = 0;
|
2326 |
|
|
|
2327 |
|
|
reg_equiv = XCNEWVEC (struct equivalence, max_regno);
|
2328 |
|
|
reg_equiv_init = GGC_CNEWVEC (rtx, max_regno);
|
2329 |
|
|
reg_equiv_init_size = max_regno;
|
2330 |
|
|
|
2331 |
|
|
init_alias_analysis ();
|
2332 |
|
|
|
2333 |
|
|
/* Scan the insns and find which registers have equivalences. Do this
|
2334 |
|
|
in a separate scan of the insns because (due to -fcse-follow-jumps)
|
2335 |
|
|
a register can be set below its use. */
|
2336 |
|
|
FOR_EACH_BB (bb)
|
2337 |
|
|
{
|
2338 |
|
|
loop_depth = bb->loop_depth;
|
2339 |
|
|
|
2340 |
|
|
for (insn = BB_HEAD (bb);
|
2341 |
|
|
insn != NEXT_INSN (BB_END (bb));
|
2342 |
|
|
insn = NEXT_INSN (insn))
|
2343 |
|
|
{
|
2344 |
|
|
rtx note;
|
2345 |
|
|
rtx set;
|
2346 |
|
|
rtx dest, src;
|
2347 |
|
|
int regno;
|
2348 |
|
|
|
2349 |
|
|
if (! INSN_P (insn))
|
2350 |
|
|
continue;
|
2351 |
|
|
|
2352 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
2353 |
|
|
if (REG_NOTE_KIND (note) == REG_INC)
|
2354 |
|
|
no_equiv (XEXP (note, 0), note, NULL);
|
2355 |
|
|
|
2356 |
|
|
set = single_set (insn);
|
2357 |
|
|
|
2358 |
|
|
/* If this insn contains more (or less) than a single SET,
|
2359 |
|
|
only mark all destinations as having no known equivalence. */
|
2360 |
|
|
if (set == 0)
|
2361 |
|
|
{
|
2362 |
|
|
note_stores (PATTERN (insn), no_equiv, NULL);
|
2363 |
|
|
continue;
|
2364 |
|
|
}
|
2365 |
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
2366 |
|
|
{
|
2367 |
|
|
int i;
|
2368 |
|
|
|
2369 |
|
|
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
2370 |
|
|
{
|
2371 |
|
|
rtx part = XVECEXP (PATTERN (insn), 0, i);
|
2372 |
|
|
if (part != set)
|
2373 |
|
|
note_stores (part, no_equiv, NULL);
|
2374 |
|
|
}
|
2375 |
|
|
}
|
2376 |
|
|
|
2377 |
|
|
dest = SET_DEST (set);
|
2378 |
|
|
src = SET_SRC (set);
|
2379 |
|
|
|
2380 |
|
|
/* See if this is setting up the equivalence between an argument
|
2381 |
|
|
register and its stack slot. */
|
2382 |
|
|
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
2383 |
|
|
if (note)
|
2384 |
|
|
{
|
2385 |
|
|
gcc_assert (REG_P (dest));
|
2386 |
|
|
regno = REGNO (dest);
|
2387 |
|
|
|
2388 |
|
|
/* Note that we don't want to clear reg_equiv_init even if there
|
2389 |
|
|
are multiple sets of this register. */
|
2390 |
|
|
reg_equiv[regno].is_arg_equivalence = 1;
|
2391 |
|
|
|
2392 |
|
|
/* Record for reload that this is an equivalencing insn. */
|
2393 |
|
|
if (rtx_equal_p (src, XEXP (note, 0)))
|
2394 |
|
|
reg_equiv_init[regno]
|
2395 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
|
2396 |
|
|
|
2397 |
|
|
/* Continue normally in case this is a candidate for
|
2398 |
|
|
replacements. */
|
2399 |
|
|
}
|
2400 |
|
|
|
2401 |
|
|
if (!optimize)
|
2402 |
|
|
continue;
|
2403 |
|
|
|
2404 |
|
|
/* We only handle the case of a pseudo register being set
|
2405 |
|
|
once, or always to the same value. */
|
2406 |
|
|
/* ??? The mn10200 port breaks if we add equivalences for
|
2407 |
|
|
values that need an ADDRESS_REGS register and set them equivalent
|
2408 |
|
|
to a MEM of a pseudo. The actual problem is in the over-conservative
|
2409 |
|
|
handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
|
2410 |
|
|
calculate_needs, but we traditionally work around this problem
|
2411 |
|
|
here by rejecting equivalences when the destination is in a register
|
2412 |
|
|
that's likely spilled. This is fragile, of course, since the
|
2413 |
|
|
preferred class of a pseudo depends on all instructions that set
|
2414 |
|
|
or use it. */
|
2415 |
|
|
|
2416 |
|
|
if (!REG_P (dest)
|
2417 |
|
|
|| (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
|
2418 |
|
|
|| reg_equiv[regno].init_insns == const0_rtx
|
2419 |
|
|
|| (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
|
2420 |
|
|
&& MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
|
2421 |
|
|
{
|
2422 |
|
|
/* This might be setting a SUBREG of a pseudo, a pseudo that is
|
2423 |
|
|
also set somewhere else to a constant. */
|
2424 |
|
|
note_stores (set, no_equiv, NULL);
|
2425 |
|
|
continue;
|
2426 |
|
|
}
|
2427 |
|
|
|
2428 |
|
|
note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
|
2429 |
|
|
|
2430 |
|
|
/* cse sometimes generates function invariants, but doesn't put a
|
2431 |
|
|
REG_EQUAL note on the insn. Since this note would be redundant,
|
2432 |
|
|
there's no point creating it earlier than here. */
|
2433 |
|
|
if (! note && ! rtx_varies_p (src, 0))
|
2434 |
|
|
note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
|
2435 |
|
|
|
2436 |
|
|
/* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
|
2437 |
|
|
since it represents a function call */
|
2438 |
|
|
if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
|
2439 |
|
|
note = NULL_RTX;
|
2440 |
|
|
|
2441 |
|
|
if (DF_REG_DEF_COUNT (regno) != 1
|
2442 |
|
|
&& (! note
|
2443 |
|
|
|| rtx_varies_p (XEXP (note, 0), 0)
|
2444 |
|
|
|| (reg_equiv[regno].replacement
|
2445 |
|
|
&& ! rtx_equal_p (XEXP (note, 0),
|
2446 |
|
|
reg_equiv[regno].replacement))))
|
2447 |
|
|
{
|
2448 |
|
|
no_equiv (dest, set, NULL);
|
2449 |
|
|
continue;
|
2450 |
|
|
}
|
2451 |
|
|
/* Record this insn as initializing this register. */
|
2452 |
|
|
reg_equiv[regno].init_insns
|
2453 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
|
2454 |
|
|
|
2455 |
|
|
/* If this register is known to be equal to a constant, record that
|
2456 |
|
|
it is always equivalent to the constant. */
|
2457 |
|
|
if (DF_REG_DEF_COUNT (regno) == 1
|
2458 |
|
|
&& note && ! rtx_varies_p (XEXP (note, 0), 0))
|
2459 |
|
|
{
|
2460 |
|
|
rtx note_value = XEXP (note, 0);
|
2461 |
|
|
remove_note (insn, note);
|
2462 |
|
|
set_unique_reg_note (insn, REG_EQUIV, note_value);
|
2463 |
|
|
}
|
2464 |
|
|
|
2465 |
|
|
/* If this insn introduces a "constant" register, decrease the priority
|
2466 |
|
|
of that register. Record this insn if the register is only used once
|
2467 |
|
|
more and the equivalence value is the same as our source.
|
2468 |
|
|
|
2469 |
|
|
The latter condition is checked for two reasons: First, it is an
|
2470 |
|
|
indication that it may be more efficient to actually emit the insn
|
2471 |
|
|
as written (if no registers are available, reload will substitute
|
2472 |
|
|
the equivalence). Secondly, it avoids problems with any registers
|
2473 |
|
|
dying in this insn whose death notes would be missed.
|
2474 |
|
|
|
2475 |
|
|
If we don't have a REG_EQUIV note, see if this insn is loading
|
2476 |
|
|
a register used only in one basic block from a MEM. If so, and the
|
2477 |
|
|
MEM remains unchanged for the life of the register, add a REG_EQUIV
|
2478 |
|
|
note. */
|
2479 |
|
|
|
2480 |
|
|
note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
|
2481 |
|
|
|
2482 |
|
|
if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
|
2483 |
|
|
&& MEM_P (SET_SRC (set))
|
2484 |
|
|
&& validate_equiv_mem (insn, dest, SET_SRC (set)))
|
2485 |
|
|
note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
|
2486 |
|
|
|
2487 |
|
|
if (note)
|
2488 |
|
|
{
|
2489 |
|
|
int regno = REGNO (dest);
|
2490 |
|
|
rtx x = XEXP (note, 0);
|
2491 |
|
|
|
2492 |
|
|
/* If we haven't done so, record for reload that this is an
|
2493 |
|
|
equivalencing insn. */
|
2494 |
|
|
if (!reg_equiv[regno].is_arg_equivalence)
|
2495 |
|
|
reg_equiv_init[regno]
|
2496 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
|
2497 |
|
|
|
2498 |
|
|
/* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
|
2499 |
|
|
We might end up substituting the LABEL_REF for uses of the
|
2500 |
|
|
pseudo here or later. That kind of transformation may turn an
|
2501 |
|
|
indirect jump into a direct jump, in which case we must rerun the
|
2502 |
|
|
jump optimizer to ensure that the JUMP_LABEL fields are valid. */
|
2503 |
|
|
if (GET_CODE (x) == LABEL_REF
|
2504 |
|
|
|| (GET_CODE (x) == CONST
|
2505 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
2506 |
|
|
&& (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
|
2507 |
|
|
recorded_label_ref = 1;
|
2508 |
|
|
|
2509 |
|
|
reg_equiv[regno].replacement = x;
|
2510 |
|
|
reg_equiv[regno].src_p = &SET_SRC (set);
|
2511 |
|
|
reg_equiv[regno].loop_depth = loop_depth;
|
2512 |
|
|
|
2513 |
|
|
/* Don't mess with things live during setjmp. */
|
2514 |
|
|
if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
|
2515 |
|
|
{
|
2516 |
|
|
/* Note that the statement below does not affect the priority
|
2517 |
|
|
in local-alloc! */
|
2518 |
|
|
REG_LIVE_LENGTH (regno) *= 2;
|
2519 |
|
|
|
2520 |
|
|
/* If the register is referenced exactly twice, meaning it is
|
2521 |
|
|
set once and used once, indicate that the reference may be
|
2522 |
|
|
replaced by the equivalence we computed above. Do this
|
2523 |
|
|
even if the register is only used in one block so that
|
2524 |
|
|
dependencies can be handled where the last register is
|
2525 |
|
|
used in a different block (i.e. HIGH / LO_SUM sequences)
|
2526 |
|
|
and to reduce the number of registers alive across
|
2527 |
|
|
calls. */
|
2528 |
|
|
|
2529 |
|
|
if (REG_N_REFS (regno) == 2
|
2530 |
|
|
&& (rtx_equal_p (x, src)
|
2531 |
|
|
|| ! equiv_init_varies_p (src))
|
2532 |
|
|
&& NONJUMP_INSN_P (insn)
|
2533 |
|
|
&& equiv_init_movable_p (PATTERN (insn), regno))
|
2534 |
|
|
reg_equiv[regno].replace = 1;
|
2535 |
|
|
}
|
2536 |
|
|
}
|
2537 |
|
|
}
|
2538 |
|
|
}
|
2539 |
|
|
|
2540 |
|
|
if (!optimize)
|
2541 |
|
|
goto out;
|
2542 |
|
|
|
2543 |
|
|
/* A second pass, to gather additional equivalences with memory. This needs
|
2544 |
|
|
to be done after we know which registers we are going to replace. */
|
2545 |
|
|
|
2546 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
2547 |
|
|
{
|
2548 |
|
|
rtx set, src, dest;
|
2549 |
|
|
unsigned regno;
|
2550 |
|
|
|
2551 |
|
|
if (! INSN_P (insn))
|
2552 |
|
|
continue;
|
2553 |
|
|
|
2554 |
|
|
set = single_set (insn);
|
2555 |
|
|
if (! set)
|
2556 |
|
|
continue;
|
2557 |
|
|
|
2558 |
|
|
dest = SET_DEST (set);
|
2559 |
|
|
src = SET_SRC (set);
|
2560 |
|
|
|
2561 |
|
|
/* If this sets a MEM to the contents of a REG that is only used
|
2562 |
|
|
in a single basic block, see if the register is always equivalent
|
2563 |
|
|
to that memory location and if moving the store from INSN to the
|
2564 |
|
|
insn that set REG is safe. If so, put a REG_EQUIV note on the
|
2565 |
|
|
initializing insn.
|
2566 |
|
|
|
2567 |
|
|
Don't add a REG_EQUIV note if the insn already has one. The existing
|
2568 |
|
|
REG_EQUIV is likely more useful than the one we are adding.
|
2569 |
|
|
|
2570 |
|
|
If one of the regs in the address has reg_equiv[REGNO].replace set,
|
2571 |
|
|
then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
|
2572 |
|
|
optimization may move the set of this register immediately before
|
2573 |
|
|
insn, which puts it after reg_equiv[REGNO].init_insns, and hence
|
2574 |
|
|
the mention in the REG_EQUIV note would be to an uninitialized
|
2575 |
|
|
pseudo. */
|
2576 |
|
|
|
2577 |
|
|
if (MEM_P (dest) && REG_P (src)
|
2578 |
|
|
&& (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
|
2579 |
|
|
&& REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
|
2580 |
|
|
&& DF_REG_DEF_COUNT (regno) == 1
|
2581 |
|
|
&& reg_equiv[regno].init_insns != 0
|
2582 |
|
|
&& reg_equiv[regno].init_insns != const0_rtx
|
2583 |
|
|
&& ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
|
2584 |
|
|
REG_EQUIV, NULL_RTX)
|
2585 |
|
|
&& ! contains_replace_regs (XEXP (dest, 0)))
|
2586 |
|
|
{
|
2587 |
|
|
rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
|
2588 |
|
|
if (validate_equiv_mem (init_insn, src, dest)
|
2589 |
|
|
&& ! memref_used_between_p (dest, init_insn, insn)
|
2590 |
|
|
/* Attaching a REG_EQUIV note will fail if INIT_INSN has
|
2591 |
|
|
multiple sets. */
|
2592 |
|
|
&& set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
|
2593 |
|
|
{
|
2594 |
|
|
/* This insn makes the equivalence, not the one initializing
|
2595 |
|
|
the register. */
|
2596 |
|
|
reg_equiv_init[regno]
|
2597 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
|
2598 |
|
|
df_notes_rescan (init_insn);
|
2599 |
|
|
}
|
2600 |
|
|
}
|
2601 |
|
|
}
|
2602 |
|
|
|
2603 |
|
|
cleared_regs = BITMAP_ALLOC (NULL);
|
2604 |
|
|
/* Now scan all regs killed in an insn to see if any of them are
|
2605 |
|
|
registers only used that once. If so, see if we can replace the
|
2606 |
|
|
reference with the equivalent form. If we can, delete the
|
2607 |
|
|
initializing reference and this register will go away. If we
|
2608 |
|
|
can't replace the reference, and the initializing reference is
|
2609 |
|
|
within the same loop (or in an inner loop), then move the register
|
2610 |
|
|
initialization just before the use, so that they are in the same
|
2611 |
|
|
basic block. */
|
2612 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
2613 |
|
|
{
|
2614 |
|
|
loop_depth = bb->loop_depth;
|
2615 |
|
|
for (insn = BB_END (bb);
|
2616 |
|
|
insn != PREV_INSN (BB_HEAD (bb));
|
2617 |
|
|
insn = PREV_INSN (insn))
|
2618 |
|
|
{
|
2619 |
|
|
rtx link;
|
2620 |
|
|
|
2621 |
|
|
if (! INSN_P (insn))
|
2622 |
|
|
continue;
|
2623 |
|
|
|
2624 |
|
|
/* Don't substitute into a non-local goto, this confuses CFG. */
|
2625 |
|
|
if (JUMP_P (insn)
|
2626 |
|
|
&& find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
|
2627 |
|
|
continue;
|
2628 |
|
|
|
2629 |
|
|
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
2630 |
|
|
{
|
2631 |
|
|
if (REG_NOTE_KIND (link) == REG_DEAD
|
2632 |
|
|
/* Make sure this insn still refers to the register. */
|
2633 |
|
|
&& reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
|
2634 |
|
|
{
|
2635 |
|
|
int regno = REGNO (XEXP (link, 0));
|
2636 |
|
|
rtx equiv_insn;
|
2637 |
|
|
|
2638 |
|
|
if (! reg_equiv[regno].replace
|
2639 |
|
|
|| reg_equiv[regno].loop_depth < loop_depth)
|
2640 |
|
|
continue;
|
2641 |
|
|
|
2642 |
|
|
/* reg_equiv[REGNO].replace gets set only when
|
2643 |
|
|
REG_N_REFS[REGNO] is 2, i.e. the register is set
|
2644 |
|
|
once and used once. (If it were only set, but not used,
|
2645 |
|
|
flow would have deleted the setting insns.) Hence
|
2646 |
|
|
there can only be one insn in reg_equiv[REGNO].init_insns. */
|
2647 |
|
|
gcc_assert (reg_equiv[regno].init_insns
|
2648 |
|
|
&& !XEXP (reg_equiv[regno].init_insns, 1));
|
2649 |
|
|
equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
|
2650 |
|
|
|
2651 |
|
|
/* We may not move instructions that can throw, since
|
2652 |
|
|
that changes basic block boundaries and we are not
|
2653 |
|
|
prepared to adjust the CFG to match. */
|
2654 |
|
|
if (can_throw_internal (equiv_insn))
|
2655 |
|
|
continue;
|
2656 |
|
|
|
2657 |
|
|
if (asm_noperands (PATTERN (equiv_insn)) < 0
|
2658 |
|
|
&& validate_replace_rtx (regno_reg_rtx[regno],
|
2659 |
|
|
*(reg_equiv[regno].src_p), insn))
|
2660 |
|
|
{
|
2661 |
|
|
rtx equiv_link;
|
2662 |
|
|
rtx last_link;
|
2663 |
|
|
rtx note;
|
2664 |
|
|
|
2665 |
|
|
/* Find the last note. */
|
2666 |
|
|
for (last_link = link; XEXP (last_link, 1);
|
2667 |
|
|
last_link = XEXP (last_link, 1))
|
2668 |
|
|
;
|
2669 |
|
|
|
2670 |
|
|
/* Append the REG_DEAD notes from equiv_insn. */
|
2671 |
|
|
equiv_link = REG_NOTES (equiv_insn);
|
2672 |
|
|
while (equiv_link)
|
2673 |
|
|
{
|
2674 |
|
|
note = equiv_link;
|
2675 |
|
|
equiv_link = XEXP (equiv_link, 1);
|
2676 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD)
|
2677 |
|
|
{
|
2678 |
|
|
remove_note (equiv_insn, note);
|
2679 |
|
|
XEXP (last_link, 1) = note;
|
2680 |
|
|
XEXP (note, 1) = NULL_RTX;
|
2681 |
|
|
last_link = note;
|
2682 |
|
|
}
|
2683 |
|
|
}
|
2684 |
|
|
|
2685 |
|
|
remove_death (regno, insn);
|
2686 |
|
|
SET_REG_N_REFS (regno, 0);
|
2687 |
|
|
REG_FREQ (regno) = 0;
|
2688 |
|
|
delete_insn (equiv_insn);
|
2689 |
|
|
|
2690 |
|
|
reg_equiv[regno].init_insns
|
2691 |
|
|
= XEXP (reg_equiv[regno].init_insns, 1);
|
2692 |
|
|
|
2693 |
|
|
reg_equiv_init[regno] = NULL_RTX;
|
2694 |
|
|
bitmap_set_bit (cleared_regs, regno);
|
2695 |
|
|
}
|
2696 |
|
|
/* Move the initialization of the register to just before
|
2697 |
|
|
INSN. Update the flow information. */
|
2698 |
|
|
else if (prev_nondebug_insn (insn) != equiv_insn)
|
2699 |
|
|
{
|
2700 |
|
|
rtx new_insn;
|
2701 |
|
|
|
2702 |
|
|
new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
|
2703 |
|
|
REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
|
2704 |
|
|
REG_NOTES (equiv_insn) = 0;
|
2705 |
|
|
/* Rescan it to process the notes. */
|
2706 |
|
|
df_insn_rescan (new_insn);
|
2707 |
|
|
|
2708 |
|
|
/* Make sure this insn is recognized before
|
2709 |
|
|
reload begins, otherwise
|
2710 |
|
|
eliminate_regs_in_insn will die. */
|
2711 |
|
|
INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
|
2712 |
|
|
|
2713 |
|
|
delete_insn (equiv_insn);
|
2714 |
|
|
|
2715 |
|
|
XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
|
2716 |
|
|
|
2717 |
|
|
REG_BASIC_BLOCK (regno) = bb->index;
|
2718 |
|
|
REG_N_CALLS_CROSSED (regno) = 0;
|
2719 |
|
|
REG_FREQ_CALLS_CROSSED (regno) = 0;
|
2720 |
|
|
REG_N_THROWING_CALLS_CROSSED (regno) = 0;
|
2721 |
|
|
REG_LIVE_LENGTH (regno) = 2;
|
2722 |
|
|
|
2723 |
|
|
if (insn == BB_HEAD (bb))
|
2724 |
|
|
BB_HEAD (bb) = PREV_INSN (insn);
|
2725 |
|
|
|
2726 |
|
|
reg_equiv_init[regno]
|
2727 |
|
|
= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
|
2728 |
|
|
bitmap_set_bit (cleared_regs, regno);
|
2729 |
|
|
}
|
2730 |
|
|
}
|
2731 |
|
|
}
|
2732 |
|
|
}
|
2733 |
|
|
}
|
2734 |
|
|
|
2735 |
|
|
if (!bitmap_empty_p (cleared_regs))
|
2736 |
|
|
{
|
2737 |
|
|
FOR_EACH_BB (bb)
|
2738 |
|
|
{
|
2739 |
|
|
bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
|
2740 |
|
|
bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
|
2741 |
|
|
bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
|
2742 |
|
|
bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
|
2743 |
|
|
}
|
2744 |
|
|
|
2745 |
|
|
/* Last pass - adjust debug insns referencing cleared regs. */
|
2746 |
|
|
if (MAY_HAVE_DEBUG_INSNS)
|
2747 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
2748 |
|
|
if (DEBUG_INSN_P (insn))
|
2749 |
|
|
{
|
2750 |
|
|
rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
|
2751 |
|
|
INSN_VAR_LOCATION_LOC (insn)
|
2752 |
|
|
= simplify_replace_fn_rtx (old_loc, NULL_RTX,
|
2753 |
|
|
adjust_cleared_regs,
|
2754 |
|
|
(void *) cleared_regs);
|
2755 |
|
|
if (old_loc != INSN_VAR_LOCATION_LOC (insn))
|
2756 |
|
|
df_insn_rescan (insn);
|
2757 |
|
|
}
|
2758 |
|
|
}
|
2759 |
|
|
|
2760 |
|
|
BITMAP_FREE (cleared_regs);
|
2761 |
|
|
|
2762 |
|
|
out:
|
2763 |
|
|
/* Clean up. */
|
2764 |
|
|
|
2765 |
|
|
end_alias_analysis ();
|
2766 |
|
|
free (reg_equiv);
|
2767 |
|
|
return recorded_label_ref;
|
2768 |
|
|
}
|
2769 |
|
|
|
2770 |
|
|
|
2771 |
|
|
|
2772 |
|
|
/* Print chain C to FILE. */
|
2773 |
|
|
static void
|
2774 |
|
|
print_insn_chain (FILE *file, struct insn_chain *c)
|
2775 |
|
|
{
|
2776 |
|
|
fprintf (file, "insn=%d, ", INSN_UID(c->insn));
|
2777 |
|
|
bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
|
2778 |
|
|
bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
|
2779 |
|
|
}
|
2780 |
|
|
|
2781 |
|
|
|
2782 |
|
|
/* Print all reload_insn_chains to FILE. */
|
2783 |
|
|
static void
|
2784 |
|
|
print_insn_chains (FILE *file)
|
2785 |
|
|
{
|
2786 |
|
|
struct insn_chain *c;
|
2787 |
|
|
for (c = reload_insn_chain; c ; c = c->next)
|
2788 |
|
|
print_insn_chain (file, c);
|
2789 |
|
|
}
|
2790 |
|
|
|
2791 |
|
|
/* Return true if pseudo REGNO should be added to set live_throughout
|
2792 |
|
|
or dead_or_set of the insn chains for reload consideration. */
|
2793 |
|
|
static bool
|
2794 |
|
|
pseudo_for_reload_consideration_p (int regno)
|
2795 |
|
|
{
|
2796 |
|
|
/* Consider spilled pseudos too for IRA because they still have a
|
2797 |
|
|
chance to get hard-registers in the reload when IRA is used. */
|
2798 |
|
|
return (reg_renumber[regno] >= 0
|
2799 |
|
|
|| (ira_conflicts_p && flag_ira_share_spill_slots));
|
2800 |
|
|
}
|
2801 |
|
|
|
2802 |
|
|
/* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
|
2803 |
|
|
REG to the number of nregs, and INIT_VALUE to get the
|
2804 |
|
|
initialization. ALLOCNUM need not be the regno of REG. */
|
2805 |
|
|
static void
|
2806 |
|
|
init_live_subregs (bool init_value, sbitmap *live_subregs,
|
2807 |
|
|
int *live_subregs_used, int allocnum, rtx reg)
|
2808 |
|
|
{
|
2809 |
|
|
unsigned int regno = REGNO (SUBREG_REG (reg));
|
2810 |
|
|
int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
|
2811 |
|
|
|
2812 |
|
|
gcc_assert (size > 0);
|
2813 |
|
|
|
2814 |
|
|
/* Been there, done that. */
|
2815 |
|
|
if (live_subregs_used[allocnum])
|
2816 |
|
|
return;
|
2817 |
|
|
|
2818 |
|
|
/* Create a new one with zeros. */
|
2819 |
|
|
if (live_subregs[allocnum] == NULL)
|
2820 |
|
|
live_subregs[allocnum] = sbitmap_alloc (size);
|
2821 |
|
|
|
2822 |
|
|
/* If the entire reg was live before blasting into subregs, we need
|
2823 |
|
|
to init all of the subregs to ones else init to 0. */
|
2824 |
|
|
if (init_value)
|
2825 |
|
|
sbitmap_ones (live_subregs[allocnum]);
|
2826 |
|
|
else
|
2827 |
|
|
sbitmap_zero (live_subregs[allocnum]);
|
2828 |
|
|
|
2829 |
|
|
/* Set the number of bits that we really want. */
|
2830 |
|
|
live_subregs_used[allocnum] = size;
|
2831 |
|
|
}
|
2832 |
|
|
|
2833 |
|
|
/* Walk the insns of the current function and build reload_insn_chain,
|
2834 |
|
|
and record register life information. */
|
2835 |
|
|
static void
|
2836 |
|
|
build_insn_chain (void)
|
2837 |
|
|
{
|
2838 |
|
|
unsigned int i;
|
2839 |
|
|
struct insn_chain **p = &reload_insn_chain;
|
2840 |
|
|
basic_block bb;
|
2841 |
|
|
struct insn_chain *c = NULL;
|
2842 |
|
|
struct insn_chain *next = NULL;
|
2843 |
|
|
bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
|
2844 |
|
|
bitmap elim_regset = BITMAP_ALLOC (NULL);
|
2845 |
|
|
/* live_subregs is a vector used to keep accurate information about
|
2846 |
|
|
which hardregs are live in multiword pseudos. live_subregs and
|
2847 |
|
|
live_subregs_used are indexed by pseudo number. The live_subreg
|
2848 |
|
|
entry for a particular pseudo is only used if the corresponding
|
2849 |
|
|
element is non zero in live_subregs_used. The value in
|
2850 |
|
|
live_subregs_used is number of bytes that the pseudo can
|
2851 |
|
|
occupy. */
|
2852 |
|
|
sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
|
2853 |
|
|
int *live_subregs_used = XNEWVEC (int, max_regno);
|
2854 |
|
|
|
2855 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
2856 |
|
|
if (TEST_HARD_REG_BIT (eliminable_regset, i))
|
2857 |
|
|
bitmap_set_bit (elim_regset, i);
|
2858 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
2859 |
|
|
{
|
2860 |
|
|
bitmap_iterator bi;
|
2861 |
|
|
rtx insn;
|
2862 |
|
|
|
2863 |
|
|
CLEAR_REG_SET (live_relevant_regs);
|
2864 |
|
|
memset (live_subregs_used, 0, max_regno * sizeof (int));
|
2865 |
|
|
|
2866 |
|
|
EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
|
2867 |
|
|
{
|
2868 |
|
|
if (i >= FIRST_PSEUDO_REGISTER)
|
2869 |
|
|
break;
|
2870 |
|
|
bitmap_set_bit (live_relevant_regs, i);
|
2871 |
|
|
}
|
2872 |
|
|
|
2873 |
|
|
EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
|
2874 |
|
|
FIRST_PSEUDO_REGISTER, i, bi)
|
2875 |
|
|
{
|
2876 |
|
|
if (pseudo_for_reload_consideration_p (i))
|
2877 |
|
|
bitmap_set_bit (live_relevant_regs, i);
|
2878 |
|
|
}
|
2879 |
|
|
|
2880 |
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
2881 |
|
|
{
|
2882 |
|
|
if (!NOTE_P (insn) && !BARRIER_P (insn))
|
2883 |
|
|
{
|
2884 |
|
|
unsigned int uid = INSN_UID (insn);
|
2885 |
|
|
df_ref *def_rec;
|
2886 |
|
|
df_ref *use_rec;
|
2887 |
|
|
|
2888 |
|
|
c = new_insn_chain ();
|
2889 |
|
|
c->next = next;
|
2890 |
|
|
next = c;
|
2891 |
|
|
*p = c;
|
2892 |
|
|
p = &c->prev;
|
2893 |
|
|
|
2894 |
|
|
c->insn = insn;
|
2895 |
|
|
c->block = bb->index;
|
2896 |
|
|
|
2897 |
|
|
if (INSN_P (insn))
|
2898 |
|
|
for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
|
2899 |
|
|
{
|
2900 |
|
|
df_ref def = *def_rec;
|
2901 |
|
|
unsigned int regno = DF_REF_REGNO (def);
|
2902 |
|
|
|
2903 |
|
|
/* Ignore may clobbers because these are generated
|
2904 |
|
|
from calls. However, every other kind of def is
|
2905 |
|
|
added to dead_or_set. */
|
2906 |
|
|
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
|
2907 |
|
|
{
|
2908 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
2909 |
|
|
{
|
2910 |
|
|
if (!fixed_regs[regno])
|
2911 |
|
|
bitmap_set_bit (&c->dead_or_set, regno);
|
2912 |
|
|
}
|
2913 |
|
|
else if (pseudo_for_reload_consideration_p (regno))
|
2914 |
|
|
bitmap_set_bit (&c->dead_or_set, regno);
|
2915 |
|
|
}
|
2916 |
|
|
|
2917 |
|
|
if ((regno < FIRST_PSEUDO_REGISTER
|
2918 |
|
|
|| reg_renumber[regno] >= 0
|
2919 |
|
|
|| ira_conflicts_p)
|
2920 |
|
|
&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
|
2921 |
|
|
{
|
2922 |
|
|
rtx reg = DF_REF_REG (def);
|
2923 |
|
|
|
2924 |
|
|
/* We can model subregs, but not if they are
|
2925 |
|
|
wrapped in ZERO_EXTRACTS. */
|
2926 |
|
|
if (GET_CODE (reg) == SUBREG
|
2927 |
|
|
&& !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
|
2928 |
|
|
{
|
2929 |
|
|
unsigned int start = SUBREG_BYTE (reg);
|
2930 |
|
|
unsigned int last = start
|
2931 |
|
|
+ GET_MODE_SIZE (GET_MODE (reg));
|
2932 |
|
|
|
2933 |
|
|
init_live_subregs
|
2934 |
|
|
(bitmap_bit_p (live_relevant_regs, regno),
|
2935 |
|
|
live_subregs, live_subregs_used, regno, reg);
|
2936 |
|
|
|
2937 |
|
|
if (!DF_REF_FLAGS_IS_SET
|
2938 |
|
|
(def, DF_REF_STRICT_LOW_PART))
|
2939 |
|
|
{
|
2940 |
|
|
/* Expand the range to cover entire words.
|
2941 |
|
|
Bytes added here are "don't care". */
|
2942 |
|
|
start
|
2943 |
|
|
= start / UNITS_PER_WORD * UNITS_PER_WORD;
|
2944 |
|
|
last = ((last + UNITS_PER_WORD - 1)
|
2945 |
|
|
/ UNITS_PER_WORD * UNITS_PER_WORD);
|
2946 |
|
|
}
|
2947 |
|
|
|
2948 |
|
|
/* Ignore the paradoxical bits. */
|
2949 |
|
|
if ((int)last > live_subregs_used[regno])
|
2950 |
|
|
last = live_subregs_used[regno];
|
2951 |
|
|
|
2952 |
|
|
while (start < last)
|
2953 |
|
|
{
|
2954 |
|
|
RESET_BIT (live_subregs[regno], start);
|
2955 |
|
|
start++;
|
2956 |
|
|
}
|
2957 |
|
|
|
2958 |
|
|
if (sbitmap_empty_p (live_subregs[regno]))
|
2959 |
|
|
{
|
2960 |
|
|
live_subregs_used[regno] = 0;
|
2961 |
|
|
bitmap_clear_bit (live_relevant_regs, regno);
|
2962 |
|
|
}
|
2963 |
|
|
else
|
2964 |
|
|
/* Set live_relevant_regs here because
|
2965 |
|
|
that bit has to be true to get us to
|
2966 |
|
|
look at the live_subregs fields. */
|
2967 |
|
|
bitmap_set_bit (live_relevant_regs, regno);
|
2968 |
|
|
}
|
2969 |
|
|
else
|
2970 |
|
|
{
|
2971 |
|
|
/* DF_REF_PARTIAL is generated for
|
2972 |
|
|
subregs, STRICT_LOW_PART, and
|
2973 |
|
|
ZERO_EXTRACT. We handle the subreg
|
2974 |
|
|
case above so here we have to keep from
|
2975 |
|
|
modeling the def as a killing def. */
|
2976 |
|
|
if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
|
2977 |
|
|
{
|
2978 |
|
|
bitmap_clear_bit (live_relevant_regs, regno);
|
2979 |
|
|
live_subregs_used[regno] = 0;
|
2980 |
|
|
}
|
2981 |
|
|
}
|
2982 |
|
|
}
|
2983 |
|
|
}
|
2984 |
|
|
|
2985 |
|
|
bitmap_and_compl_into (live_relevant_regs, elim_regset);
|
2986 |
|
|
bitmap_copy (&c->live_throughout, live_relevant_regs);
|
2987 |
|
|
|
2988 |
|
|
if (INSN_P (insn))
|
2989 |
|
|
for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
|
2990 |
|
|
{
|
2991 |
|
|
df_ref use = *use_rec;
|
2992 |
|
|
unsigned int regno = DF_REF_REGNO (use);
|
2993 |
|
|
rtx reg = DF_REF_REG (use);
|
2994 |
|
|
|
2995 |
|
|
/* DF_REF_READ_WRITE on a use means that this use
|
2996 |
|
|
is fabricated from a def that is a partial set
|
2997 |
|
|
to a multiword reg. Here, we only model the
|
2998 |
|
|
subreg case that is not wrapped in ZERO_EXTRACT
|
2999 |
|
|
precisely so we do not need to look at the
|
3000 |
|
|
fabricated use. */
|
3001 |
|
|
if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
|
3002 |
|
|
&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
|
3003 |
|
|
&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
|
3004 |
|
|
continue;
|
3005 |
|
|
|
3006 |
|
|
/* Add the last use of each var to dead_or_set. */
|
3007 |
|
|
if (!bitmap_bit_p (live_relevant_regs, regno))
|
3008 |
|
|
{
|
3009 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
3010 |
|
|
{
|
3011 |
|
|
if (!fixed_regs[regno])
|
3012 |
|
|
bitmap_set_bit (&c->dead_or_set, regno);
|
3013 |
|
|
}
|
3014 |
|
|
else if (pseudo_for_reload_consideration_p (regno))
|
3015 |
|
|
bitmap_set_bit (&c->dead_or_set, regno);
|
3016 |
|
|
}
|
3017 |
|
|
|
3018 |
|
|
if (regno < FIRST_PSEUDO_REGISTER
|
3019 |
|
|
|| pseudo_for_reload_consideration_p (regno))
|
3020 |
|
|
{
|
3021 |
|
|
if (GET_CODE (reg) == SUBREG
|
3022 |
|
|
&& !DF_REF_FLAGS_IS_SET (use,
|
3023 |
|
|
DF_REF_SIGN_EXTRACT
|
3024 |
|
|
| DF_REF_ZERO_EXTRACT))
|
3025 |
|
|
{
|
3026 |
|
|
unsigned int start = SUBREG_BYTE (reg);
|
3027 |
|
|
unsigned int last = start
|
3028 |
|
|
+ GET_MODE_SIZE (GET_MODE (reg));
|
3029 |
|
|
|
3030 |
|
|
init_live_subregs
|
3031 |
|
|
(bitmap_bit_p (live_relevant_regs, regno),
|
3032 |
|
|
live_subregs, live_subregs_used, regno, reg);
|
3033 |
|
|
|
3034 |
|
|
/* Ignore the paradoxical bits. */
|
3035 |
|
|
if ((int)last > live_subregs_used[regno])
|
3036 |
|
|
last = live_subregs_used[regno];
|
3037 |
|
|
|
3038 |
|
|
while (start < last)
|
3039 |
|
|
{
|
3040 |
|
|
SET_BIT (live_subregs[regno], start);
|
3041 |
|
|
start++;
|
3042 |
|
|
}
|
3043 |
|
|
}
|
3044 |
|
|
else
|
3045 |
|
|
/* Resetting the live_subregs_used is
|
3046 |
|
|
effectively saying do not use the subregs
|
3047 |
|
|
because we are reading the whole
|
3048 |
|
|
pseudo. */
|
3049 |
|
|
live_subregs_used[regno] = 0;
|
3050 |
|
|
bitmap_set_bit (live_relevant_regs, regno);
|
3051 |
|
|
}
|
3052 |
|
|
}
|
3053 |
|
|
}
|
3054 |
|
|
}
|
3055 |
|
|
|
3056 |
|
|
/* FIXME!! The following code is a disaster. Reload needs to see the
|
3057 |
|
|
labels and jump tables that are just hanging out in between
|
3058 |
|
|
the basic blocks. See pr33676. */
|
3059 |
|
|
insn = BB_HEAD (bb);
|
3060 |
|
|
|
3061 |
|
|
/* Skip over the barriers and cruft. */
|
3062 |
|
|
while (insn && (BARRIER_P (insn) || NOTE_P (insn)
|
3063 |
|
|
|| BLOCK_FOR_INSN (insn) == bb))
|
3064 |
|
|
insn = PREV_INSN (insn);
|
3065 |
|
|
|
3066 |
|
|
/* While we add anything except barriers and notes, the focus is
|
3067 |
|
|
to get the labels and jump tables into the
|
3068 |
|
|
reload_insn_chain. */
|
3069 |
|
|
while (insn)
|
3070 |
|
|
{
|
3071 |
|
|
if (!NOTE_P (insn) && !BARRIER_P (insn))
|
3072 |
|
|
{
|
3073 |
|
|
if (BLOCK_FOR_INSN (insn))
|
3074 |
|
|
break;
|
3075 |
|
|
|
3076 |
|
|
c = new_insn_chain ();
|
3077 |
|
|
c->next = next;
|
3078 |
|
|
next = c;
|
3079 |
|
|
*p = c;
|
3080 |
|
|
p = &c->prev;
|
3081 |
|
|
|
3082 |
|
|
/* The block makes no sense here, but it is what the old
|
3083 |
|
|
code did. */
|
3084 |
|
|
c->block = bb->index;
|
3085 |
|
|
c->insn = insn;
|
3086 |
|
|
bitmap_copy (&c->live_throughout, live_relevant_regs);
|
3087 |
|
|
}
|
3088 |
|
|
insn = PREV_INSN (insn);
|
3089 |
|
|
}
|
3090 |
|
|
}
|
3091 |
|
|
|
3092 |
|
|
for (i = 0; i < (unsigned int) max_regno; i++)
|
3093 |
|
|
if (live_subregs[i])
|
3094 |
|
|
free (live_subregs[i]);
|
3095 |
|
|
|
3096 |
|
|
reload_insn_chain = c;
|
3097 |
|
|
*p = NULL;
|
3098 |
|
|
|
3099 |
|
|
free (live_subregs);
|
3100 |
|
|
free (live_subregs_used);
|
3101 |
|
|
BITMAP_FREE (live_relevant_regs);
|
3102 |
|
|
BITMAP_FREE (elim_regset);
|
3103 |
|
|
|
3104 |
|
|
if (dump_file)
|
3105 |
|
|
print_insn_chains (dump_file);
|
3106 |
|
|
}
|
3107 |
|
|
|
3108 |
|
|
|
3109 |
|
|
|
3110 |
|
|
/* All natural loops. */
|
3111 |
|
|
struct loops ira_loops;
|
3112 |
|
|
|
3113 |
|
|
/* True if we have allocno conflicts. It is false for non-optimized
|
3114 |
|
|
mode or when the conflict table is too big. */
|
3115 |
|
|
bool ira_conflicts_p;
|
3116 |
|
|
|
3117 |
|
|
/* This is the main entry of IRA. */
|
3118 |
|
|
static void
|
3119 |
|
|
ira (FILE *f)
|
3120 |
|
|
{
|
3121 |
|
|
int overall_cost_before, allocated_reg_info_size;
|
3122 |
|
|
bool loops_p;
|
3123 |
|
|
int max_regno_before_ira, ira_max_point_before_emit;
|
3124 |
|
|
int rebuild_p;
|
3125 |
|
|
int saved_flag_ira_share_spill_slots;
|
3126 |
|
|
basic_block bb;
|
3127 |
|
|
|
3128 |
|
|
timevar_push (TV_IRA);
|
3129 |
|
|
|
3130 |
|
|
if (flag_caller_saves)
|
3131 |
|
|
init_caller_save ();
|
3132 |
|
|
|
3133 |
|
|
if (flag_ira_verbose < 10)
|
3134 |
|
|
{
|
3135 |
|
|
internal_flag_ira_verbose = flag_ira_verbose;
|
3136 |
|
|
ira_dump_file = f;
|
3137 |
|
|
}
|
3138 |
|
|
else
|
3139 |
|
|
{
|
3140 |
|
|
internal_flag_ira_verbose = flag_ira_verbose - 10;
|
3141 |
|
|
ira_dump_file = stderr;
|
3142 |
|
|
}
|
3143 |
|
|
|
3144 |
|
|
ira_conflicts_p = optimize > 0;
|
3145 |
|
|
setup_prohibited_mode_move_regs ();
|
3146 |
|
|
|
3147 |
|
|
df_note_add_problem ();
|
3148 |
|
|
|
3149 |
|
|
if (optimize == 1)
|
3150 |
|
|
{
|
3151 |
|
|
df_live_add_problem ();
|
3152 |
|
|
df_live_set_all_dirty ();
|
3153 |
|
|
}
|
3154 |
|
|
#ifdef ENABLE_CHECKING
|
3155 |
|
|
df->changeable_flags |= DF_VERIFY_SCHEDULED;
|
3156 |
|
|
#endif
|
3157 |
|
|
df_analyze ();
|
3158 |
|
|
df_clear_flags (DF_NO_INSN_RESCAN);
|
3159 |
|
|
regstat_init_n_sets_and_refs ();
|
3160 |
|
|
regstat_compute_ri ();
|
3161 |
|
|
|
3162 |
|
|
/* If we are not optimizing, then this is the only place before
|
3163 |
|
|
register allocation where dataflow is done. And that is needed
|
3164 |
|
|
to generate these warnings. */
|
3165 |
|
|
if (warn_clobbered)
|
3166 |
|
|
generate_setjmp_warnings ();
|
3167 |
|
|
|
3168 |
|
|
/* Determine if the current function is a leaf before running IRA
|
3169 |
|
|
since this can impact optimizations done by the prologue and
|
3170 |
|
|
epilogue thus changing register elimination offsets. */
|
3171 |
|
|
current_function_is_leaf = leaf_function_p ();
|
3172 |
|
|
|
3173 |
|
|
if (resize_reg_info () && flag_ira_loop_pressure)
|
3174 |
|
|
ira_set_pseudo_classes (ira_dump_file);
|
3175 |
|
|
|
3176 |
|
|
rebuild_p = update_equiv_regs ();
|
3177 |
|
|
|
3178 |
|
|
#ifndef IRA_NO_OBSTACK
|
3179 |
|
|
gcc_obstack_init (&ira_obstack);
|
3180 |
|
|
#endif
|
3181 |
|
|
bitmap_obstack_initialize (&ira_bitmap_obstack);
|
3182 |
|
|
if (optimize)
|
3183 |
|
|
{
|
3184 |
|
|
max_regno = max_reg_num ();
|
3185 |
|
|
ira_reg_equiv_len = max_regno;
|
3186 |
|
|
ira_reg_equiv_invariant_p
|
3187 |
|
|
= (bool *) ira_allocate (max_regno * sizeof (bool));
|
3188 |
|
|
memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
|
3189 |
|
|
ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
|
3190 |
|
|
memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
|
3191 |
|
|
find_reg_equiv_invariant_const ();
|
3192 |
|
|
if (rebuild_p)
|
3193 |
|
|
{
|
3194 |
|
|
timevar_push (TV_JUMP);
|
3195 |
|
|
rebuild_jump_labels (get_insns ());
|
3196 |
|
|
purge_all_dead_edges ();
|
3197 |
|
|
timevar_pop (TV_JUMP);
|
3198 |
|
|
}
|
3199 |
|
|
}
|
3200 |
|
|
|
3201 |
|
|
max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
|
3202 |
|
|
ira_setup_eliminable_regset ();
|
3203 |
|
|
|
3204 |
|
|
ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
|
3205 |
|
|
ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
|
3206 |
|
|
ira_move_loops_num = ira_additional_jumps_num = 0;
|
3207 |
|
|
|
3208 |
|
|
ira_assert (current_loops == NULL);
|
3209 |
|
|
flow_loops_find (&ira_loops);
|
3210 |
|
|
record_loop_exits ();
|
3211 |
|
|
current_loops = &ira_loops;
|
3212 |
|
|
|
3213 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
3214 |
|
|
fprintf (ira_dump_file, "Building IRA IR\n");
|
3215 |
|
|
loops_p = ira_build (optimize
|
3216 |
|
|
&& (flag_ira_region == IRA_REGION_ALL
|
3217 |
|
|
|| flag_ira_region == IRA_REGION_MIXED));
|
3218 |
|
|
|
3219 |
|
|
ira_assert (ira_conflicts_p || !loops_p);
|
3220 |
|
|
|
3221 |
|
|
saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
|
3222 |
|
|
if (too_high_register_pressure_p ())
|
3223 |
|
|
/* It is just wasting compiler's time to pack spilled pseudos into
|
3224 |
|
|
stack slots in this case -- prohibit it. */
|
3225 |
|
|
flag_ira_share_spill_slots = FALSE;
|
3226 |
|
|
|
3227 |
|
|
ira_color ();
|
3228 |
|
|
|
3229 |
|
|
ira_max_point_before_emit = ira_max_point;
|
3230 |
|
|
|
3231 |
|
|
ira_emit (loops_p);
|
3232 |
|
|
|
3233 |
|
|
if (ira_conflicts_p)
|
3234 |
|
|
{
|
3235 |
|
|
max_regno = max_reg_num ();
|
3236 |
|
|
|
3237 |
|
|
if (! loops_p)
|
3238 |
|
|
ira_initiate_assign ();
|
3239 |
|
|
else
|
3240 |
|
|
{
|
3241 |
|
|
expand_reg_info (allocated_reg_info_size);
|
3242 |
|
|
setup_preferred_alternate_classes_for_new_pseudos
|
3243 |
|
|
(allocated_reg_info_size);
|
3244 |
|
|
allocated_reg_info_size = max_regno;
|
3245 |
|
|
|
3246 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
|
3247 |
|
|
fprintf (ira_dump_file, "Flattening IR\n");
|
3248 |
|
|
ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
|
3249 |
|
|
/* New insns were generated: add notes and recalculate live
|
3250 |
|
|
info. */
|
3251 |
|
|
df_analyze ();
|
3252 |
|
|
|
3253 |
|
|
flow_loops_find (&ira_loops);
|
3254 |
|
|
record_loop_exits ();
|
3255 |
|
|
current_loops = &ira_loops;
|
3256 |
|
|
|
3257 |
|
|
setup_allocno_assignment_flags ();
|
3258 |
|
|
ira_initiate_assign ();
|
3259 |
|
|
ira_reassign_conflict_allocnos (max_regno);
|
3260 |
|
|
}
|
3261 |
|
|
}
|
3262 |
|
|
|
3263 |
|
|
setup_reg_renumber ();
|
3264 |
|
|
|
3265 |
|
|
calculate_allocation_cost ();
|
3266 |
|
|
|
3267 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
3268 |
|
|
if (ira_conflicts_p)
|
3269 |
|
|
check_allocation ();
|
3270 |
|
|
#endif
|
3271 |
|
|
|
3272 |
|
|
delete_trivially_dead_insns (get_insns (), max_reg_num ());
|
3273 |
|
|
max_regno = max_reg_num ();
|
3274 |
|
|
|
3275 |
|
|
/* And the reg_equiv_memory_loc array. */
|
3276 |
|
|
VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
|
3277 |
|
|
memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
|
3278 |
|
|
sizeof (rtx) * max_regno);
|
3279 |
|
|
reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
|
3280 |
|
|
|
3281 |
|
|
if (max_regno != max_regno_before_ira)
|
3282 |
|
|
{
|
3283 |
|
|
regstat_free_n_sets_and_refs ();
|
3284 |
|
|
regstat_free_ri ();
|
3285 |
|
|
regstat_init_n_sets_and_refs ();
|
3286 |
|
|
regstat_compute_ri ();
|
3287 |
|
|
}
|
3288 |
|
|
|
3289 |
|
|
allocate_initial_values (reg_equiv_memory_loc);
|
3290 |
|
|
|
3291 |
|
|
overall_cost_before = ira_overall_cost;
|
3292 |
|
|
if (ira_conflicts_p)
|
3293 |
|
|
{
|
3294 |
|
|
fix_reg_equiv_init ();
|
3295 |
|
|
|
3296 |
|
|
#ifdef ENABLE_IRA_CHECKING
|
3297 |
|
|
print_redundant_copies ();
|
3298 |
|
|
#endif
|
3299 |
|
|
|
3300 |
|
|
ira_spilled_reg_stack_slots_num = 0;
|
3301 |
|
|
ira_spilled_reg_stack_slots
|
3302 |
|
|
= ((struct ira_spilled_reg_stack_slot *)
|
3303 |
|
|
ira_allocate (max_regno
|
3304 |
|
|
* sizeof (struct ira_spilled_reg_stack_slot)));
|
3305 |
|
|
memset (ira_spilled_reg_stack_slots, 0,
|
3306 |
|
|
max_regno * sizeof (struct ira_spilled_reg_stack_slot));
|
3307 |
|
|
}
|
3308 |
|
|
|
3309 |
|
|
timevar_pop (TV_IRA);
|
3310 |
|
|
|
3311 |
|
|
timevar_push (TV_RELOAD);
|
3312 |
|
|
df_set_flags (DF_NO_INSN_RESCAN);
|
3313 |
|
|
build_insn_chain ();
|
3314 |
|
|
|
3315 |
|
|
reload_completed = !reload (get_insns (), ira_conflicts_p);
|
3316 |
|
|
|
3317 |
|
|
finish_subregs_of_mode ();
|
3318 |
|
|
|
3319 |
|
|
timevar_pop (TV_RELOAD);
|
3320 |
|
|
|
3321 |
|
|
timevar_push (TV_IRA);
|
3322 |
|
|
|
3323 |
|
|
if (ira_conflicts_p)
|
3324 |
|
|
{
|
3325 |
|
|
ira_free (ira_spilled_reg_stack_slots);
|
3326 |
|
|
|
3327 |
|
|
ira_finish_assign ();
|
3328 |
|
|
|
3329 |
|
|
}
|
3330 |
|
|
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
|
3331 |
|
|
&& overall_cost_before != ira_overall_cost)
|
3332 |
|
|
fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
|
3333 |
|
|
ira_destroy ();
|
3334 |
|
|
|
3335 |
|
|
flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
|
3336 |
|
|
|
3337 |
|
|
flow_loops_free (&ira_loops);
|
3338 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
3339 |
|
|
FOR_ALL_BB (bb)
|
3340 |
|
|
bb->loop_father = NULL;
|
3341 |
|
|
current_loops = NULL;
|
3342 |
|
|
|
3343 |
|
|
regstat_free_ri ();
|
3344 |
|
|
regstat_free_n_sets_and_refs ();
|
3345 |
|
|
|
3346 |
|
|
if (optimize)
|
3347 |
|
|
{
|
3348 |
|
|
cleanup_cfg (CLEANUP_EXPENSIVE);
|
3349 |
|
|
|
3350 |
|
|
ira_free (ira_reg_equiv_invariant_p);
|
3351 |
|
|
ira_free (ira_reg_equiv_const);
|
3352 |
|
|
}
|
3353 |
|
|
|
3354 |
|
|
bitmap_obstack_release (&ira_bitmap_obstack);
|
3355 |
|
|
#ifndef IRA_NO_OBSTACK
|
3356 |
|
|
obstack_free (&ira_obstack, NULL);
|
3357 |
|
|
#endif
|
3358 |
|
|
|
3359 |
|
|
/* The code after the reload has changed so much that at this point
|
3360 |
|
|
we might as well just rescan everything. Not that
|
3361 |
|
|
df_rescan_all_insns is not going to help here because it does not
|
3362 |
|
|
touch the artificial uses and defs. */
|
3363 |
|
|
df_finish_pass (true);
|
3364 |
|
|
if (optimize > 1)
|
3365 |
|
|
df_live_add_problem ();
|
3366 |
|
|
df_scan_alloc (NULL);
|
3367 |
|
|
df_scan_blocks ();
|
3368 |
|
|
|
3369 |
|
|
if (optimize)
|
3370 |
|
|
df_analyze ();
|
3371 |
|
|
|
3372 |
|
|
timevar_pop (TV_IRA);
|
3373 |
|
|
}
|
3374 |
|
|
|
3375 |
|
|
|
3376 |
|
|
|
3377 |
|
|
static bool
|
3378 |
|
|
gate_ira (void)
|
3379 |
|
|
{
|
3380 |
|
|
return true;
|
3381 |
|
|
}
|
3382 |
|
|
|
3383 |
|
|
/* Run the integrated register allocator. */
|
3384 |
|
|
static unsigned int
|
3385 |
|
|
rest_of_handle_ira (void)
|
3386 |
|
|
{
|
3387 |
|
|
ira (dump_file);
|
3388 |
|
|
return 0;
|
3389 |
|
|
}
|
3390 |
|
|
|
3391 |
|
|
struct rtl_opt_pass pass_ira =
|
3392 |
|
|
{
|
3393 |
|
|
{
|
3394 |
|
|
RTL_PASS,
|
3395 |
|
|
"ira", /* name */
|
3396 |
|
|
gate_ira, /* gate */
|
3397 |
|
|
rest_of_handle_ira, /* execute */
|
3398 |
|
|
NULL, /* sub */
|
3399 |
|
|
NULL, /* next */
|
3400 |
|
|
0, /* static_pass_number */
|
3401 |
|
|
TV_NONE, /* tv_id */
|
3402 |
|
|
0, /* properties_required */
|
3403 |
|
|
0, /* properties_provided */
|
3404 |
|
|
0, /* properties_destroyed */
|
3405 |
|
|
0, /* todo_flags_start */
|
3406 |
|
|
TODO_dump_func |
|
3407 |
|
|
TODO_ggc_collect /* todo_flags_finish */
|
3408 |
|
|
}
|
3409 |
|
|
};
|