| 1 |
280 |
jeremybenn |
/* Optimize jump instructions, for GNU compiler.
|
| 2 |
|
|
Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
|
| 3 |
|
|
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
/* This is the pathetic reminder of old fame of the jump-optimization pass
|
| 23 |
|
|
of the compiler. Now it contains basically a set of utility functions to
|
| 24 |
|
|
operate with jumps.
|
| 25 |
|
|
|
| 26 |
|
|
Each CODE_LABEL has a count of the times it is used
|
| 27 |
|
|
stored in the LABEL_NUSES internal field, and each JUMP_INSN
|
| 28 |
|
|
has one label that it refers to stored in the
|
| 29 |
|
|
JUMP_LABEL internal field. With this we can detect labels that
|
| 30 |
|
|
become unused because of the deletion of all the jumps that
|
| 31 |
|
|
formerly used them. The JUMP_LABEL info is sometimes looked
|
| 32 |
|
|
at by later passes.
|
| 33 |
|
|
|
| 34 |
|
|
The subroutines redirect_jump and invert_jump are used
|
| 35 |
|
|
from other passes as well. */
|
| 36 |
|
|
|
| 37 |
|
|
#include "config.h"
|
| 38 |
|
|
#include "system.h"
|
| 39 |
|
|
#include "coretypes.h"
|
| 40 |
|
|
#include "tm.h"
|
| 41 |
|
|
#include "rtl.h"
|
| 42 |
|
|
#include "tm_p.h"
|
| 43 |
|
|
#include "flags.h"
|
| 44 |
|
|
#include "hard-reg-set.h"
|
| 45 |
|
|
#include "regs.h"
|
| 46 |
|
|
#include "insn-config.h"
|
| 47 |
|
|
#include "insn-attr.h"
|
| 48 |
|
|
#include "recog.h"
|
| 49 |
|
|
#include "function.h"
|
| 50 |
|
|
#include "expr.h"
|
| 51 |
|
|
#include "real.h"
|
| 52 |
|
|
#include "except.h"
|
| 53 |
|
|
#include "diagnostic.h"
|
| 54 |
|
|
#include "toplev.h"
|
| 55 |
|
|
#include "reload.h"
|
| 56 |
|
|
#include "predict.h"
|
| 57 |
|
|
#include "timevar.h"
|
| 58 |
|
|
#include "tree-pass.h"
|
| 59 |
|
|
#include "target.h"
|
| 60 |
|
|
|
| 61 |
|
|
/* Optimize jump y; x: ... y: jumpif... x?
|
| 62 |
|
|
Don't know if it is worth bothering with. */
|
| 63 |
|
|
/* Optimize two cases of conditional jump to conditional jump?
|
| 64 |
|
|
This can never delete any instruction or make anything dead,
|
| 65 |
|
|
or even change what is live at any point.
|
| 66 |
|
|
So perhaps let combiner do it. */
|
| 67 |
|
|
|
| 68 |
|
|
static void init_label_info (rtx);
|
| 69 |
|
|
static void mark_all_labels (rtx);
|
| 70 |
|
|
static void mark_jump_label_1 (rtx, rtx, bool, bool);
|
| 71 |
|
|
static void mark_jump_label_asm (rtx, rtx);
|
| 72 |
|
|
static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
|
| 73 |
|
|
static int invert_exp_1 (rtx, rtx);
|
| 74 |
|
|
static int returnjump_p_1 (rtx *, void *);
|
| 75 |
|
|
|
| 76 |
|
|
/* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
|
| 77 |
|
|
notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
|
| 78 |
|
|
instructions and jumping insns that have labels as operands
|
| 79 |
|
|
(e.g. cbranchsi4). */
|
| 80 |
|
|
void
|
| 81 |
|
|
rebuild_jump_labels (rtx f)
|
| 82 |
|
|
{
|
| 83 |
|
|
rtx insn;
|
| 84 |
|
|
|
| 85 |
|
|
timevar_push (TV_REBUILD_JUMP);
|
| 86 |
|
|
init_label_info (f);
|
| 87 |
|
|
mark_all_labels (f);
|
| 88 |
|
|
|
| 89 |
|
|
/* Keep track of labels used from static data; we don't track them
|
| 90 |
|
|
closely enough to delete them here, so make sure their reference
|
| 91 |
|
|
count doesn't drop to zero. */
|
| 92 |
|
|
|
| 93 |
|
|
for (insn = forced_labels; insn; insn = XEXP (insn, 1))
|
| 94 |
|
|
if (LABEL_P (XEXP (insn, 0)))
|
| 95 |
|
|
LABEL_NUSES (XEXP (insn, 0))++;
|
| 96 |
|
|
timevar_pop (TV_REBUILD_JUMP);
|
| 97 |
|
|
}
|
| 98 |
|
|
|
| 99 |
|
|
/* Some old code expects exactly one BARRIER as the NEXT_INSN of a
|
| 100 |
|
|
non-fallthru insn. This is not generally true, as multiple barriers
|
| 101 |
|
|
may have crept in, or the BARRIER may be separated from the last
|
| 102 |
|
|
real insn by one or more NOTEs.
|
| 103 |
|
|
|
| 104 |
|
|
This simple pass moves barriers and removes duplicates so that the
|
| 105 |
|
|
old code is happy.
|
| 106 |
|
|
*/
|
| 107 |
|
|
unsigned int
|
| 108 |
|
|
cleanup_barriers (void)
|
| 109 |
|
|
{
|
| 110 |
|
|
rtx insn, next, prev;
|
| 111 |
|
|
for (insn = get_insns (); insn; insn = next)
|
| 112 |
|
|
{
|
| 113 |
|
|
next = NEXT_INSN (insn);
|
| 114 |
|
|
if (BARRIER_P (insn))
|
| 115 |
|
|
{
|
| 116 |
|
|
prev = prev_nonnote_insn (insn);
|
| 117 |
|
|
if (!prev)
|
| 118 |
|
|
continue;
|
| 119 |
|
|
if (BARRIER_P (prev))
|
| 120 |
|
|
delete_insn (insn);
|
| 121 |
|
|
else if (prev != PREV_INSN (insn))
|
| 122 |
|
|
reorder_insns (insn, insn, prev);
|
| 123 |
|
|
}
|
| 124 |
|
|
}
|
| 125 |
|
|
return 0;
|
| 126 |
|
|
}
|
| 127 |
|
|
|
| 128 |
|
|
struct rtl_opt_pass pass_cleanup_barriers =
|
| 129 |
|
|
{
|
| 130 |
|
|
{
|
| 131 |
|
|
RTL_PASS,
|
| 132 |
|
|
"barriers", /* name */
|
| 133 |
|
|
NULL, /* gate */
|
| 134 |
|
|
cleanup_barriers, /* execute */
|
| 135 |
|
|
NULL, /* sub */
|
| 136 |
|
|
NULL, /* next */
|
| 137 |
|
|
0, /* static_pass_number */
|
| 138 |
|
|
TV_NONE, /* tv_id */
|
| 139 |
|
|
0, /* properties_required */
|
| 140 |
|
|
0, /* properties_provided */
|
| 141 |
|
|
0, /* properties_destroyed */
|
| 142 |
|
|
0, /* todo_flags_start */
|
| 143 |
|
|
TODO_dump_func /* todo_flags_finish */
|
| 144 |
|
|
}
|
| 145 |
|
|
};
|
| 146 |
|
|
|
| 147 |
|
|
|
| 148 |
|
|
/* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
|
| 149 |
|
|
for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
|
| 150 |
|
|
notes whose labels don't occur in the insn any more. */
|
| 151 |
|
|
|
| 152 |
|
|
static void
|
| 153 |
|
|
init_label_info (rtx f)
|
| 154 |
|
|
{
|
| 155 |
|
|
rtx insn;
|
| 156 |
|
|
|
| 157 |
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
| 158 |
|
|
{
|
| 159 |
|
|
if (LABEL_P (insn))
|
| 160 |
|
|
LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
|
| 161 |
|
|
|
| 162 |
|
|
/* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
|
| 163 |
|
|
sticky and not reset here; that way we won't lose association
|
| 164 |
|
|
with a label when e.g. the source for a target register
|
| 165 |
|
|
disappears out of reach for targets that may use jump-target
|
| 166 |
|
|
registers. Jump transformations are supposed to transform
|
| 167 |
|
|
any REG_LABEL_TARGET notes. The target label reference in a
|
| 168 |
|
|
branch may disappear from the branch (and from the
|
| 169 |
|
|
instruction before it) for other reasons, like register
|
| 170 |
|
|
allocation. */
|
| 171 |
|
|
|
| 172 |
|
|
if (INSN_P (insn))
|
| 173 |
|
|
{
|
| 174 |
|
|
rtx note, next;
|
| 175 |
|
|
|
| 176 |
|
|
for (note = REG_NOTES (insn); note; note = next)
|
| 177 |
|
|
{
|
| 178 |
|
|
next = XEXP (note, 1);
|
| 179 |
|
|
if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
|
| 180 |
|
|
&& ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
|
| 181 |
|
|
remove_note (insn, note);
|
| 182 |
|
|
}
|
| 183 |
|
|
}
|
| 184 |
|
|
}
|
| 185 |
|
|
}
|
| 186 |
|
|
|
| 187 |
|
|
/* Mark the label each jump jumps to.
|
| 188 |
|
|
Combine consecutive labels, and count uses of labels. */
|
| 189 |
|
|
|
| 190 |
|
|
static void
|
| 191 |
|
|
mark_all_labels (rtx f)
|
| 192 |
|
|
{
|
| 193 |
|
|
rtx insn;
|
| 194 |
|
|
rtx prev_nonjump_insn = NULL;
|
| 195 |
|
|
|
| 196 |
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
| 197 |
|
|
if (INSN_P (insn))
|
| 198 |
|
|
{
|
| 199 |
|
|
mark_jump_label (PATTERN (insn), insn, 0);
|
| 200 |
|
|
|
| 201 |
|
|
/* If the previous non-jump insn sets something to a label,
|
| 202 |
|
|
something that this jump insn uses, make that label the primary
|
| 203 |
|
|
target of this insn if we don't yet have any. That previous
|
| 204 |
|
|
insn must be a single_set and not refer to more than one label.
|
| 205 |
|
|
The jump insn must not refer to other labels as jump targets
|
| 206 |
|
|
and must be a plain (set (pc) ...), maybe in a parallel, and
|
| 207 |
|
|
may refer to the item being set only directly or as one of the
|
| 208 |
|
|
arms in an IF_THEN_ELSE. */
|
| 209 |
|
|
if (! INSN_DELETED_P (insn)
|
| 210 |
|
|
&& JUMP_P (insn)
|
| 211 |
|
|
&& JUMP_LABEL (insn) == NULL)
|
| 212 |
|
|
{
|
| 213 |
|
|
rtx label_note = NULL;
|
| 214 |
|
|
rtx pc = pc_set (insn);
|
| 215 |
|
|
rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
|
| 216 |
|
|
|
| 217 |
|
|
if (prev_nonjump_insn != NULL)
|
| 218 |
|
|
label_note
|
| 219 |
|
|
= find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
|
| 220 |
|
|
|
| 221 |
|
|
if (label_note != NULL && pc_src != NULL)
|
| 222 |
|
|
{
|
| 223 |
|
|
rtx label_set = single_set (prev_nonjump_insn);
|
| 224 |
|
|
rtx label_dest
|
| 225 |
|
|
= label_set != NULL ? SET_DEST (label_set) : NULL;
|
| 226 |
|
|
|
| 227 |
|
|
if (label_set != NULL
|
| 228 |
|
|
/* The source must be the direct LABEL_REF, not a
|
| 229 |
|
|
PLUS, UNSPEC, IF_THEN_ELSE etc. */
|
| 230 |
|
|
&& GET_CODE (SET_SRC (label_set)) == LABEL_REF
|
| 231 |
|
|
&& (rtx_equal_p (label_dest, pc_src)
|
| 232 |
|
|
|| (GET_CODE (pc_src) == IF_THEN_ELSE
|
| 233 |
|
|
&& (rtx_equal_p (label_dest, XEXP (pc_src, 1))
|
| 234 |
|
|
|| rtx_equal_p (label_dest,
|
| 235 |
|
|
XEXP (pc_src, 2))))))
|
| 236 |
|
|
|
| 237 |
|
|
{
|
| 238 |
|
|
/* The CODE_LABEL referred to in the note must be the
|
| 239 |
|
|
CODE_LABEL in the LABEL_REF of the "set". We can
|
| 240 |
|
|
conveniently use it for the marker function, which
|
| 241 |
|
|
requires a LABEL_REF wrapping. */
|
| 242 |
|
|
gcc_assert (XEXP (label_note, 0)
|
| 243 |
|
|
== XEXP (SET_SRC (label_set), 0));
|
| 244 |
|
|
|
| 245 |
|
|
mark_jump_label_1 (label_set, insn, false, true);
|
| 246 |
|
|
gcc_assert (JUMP_LABEL (insn)
|
| 247 |
|
|
== XEXP (SET_SRC (label_set), 0));
|
| 248 |
|
|
}
|
| 249 |
|
|
}
|
| 250 |
|
|
}
|
| 251 |
|
|
else if (! INSN_DELETED_P (insn))
|
| 252 |
|
|
prev_nonjump_insn = insn;
|
| 253 |
|
|
}
|
| 254 |
|
|
else if (LABEL_P (insn))
|
| 255 |
|
|
prev_nonjump_insn = NULL;
|
| 256 |
|
|
|
| 257 |
|
|
/* If we are in cfglayout mode, there may be non-insns between the
|
| 258 |
|
|
basic blocks. If those non-insns represent tablejump data, they
|
| 259 |
|
|
contain label references that we must record. */
|
| 260 |
|
|
if (current_ir_type () == IR_RTL_CFGLAYOUT)
|
| 261 |
|
|
{
|
| 262 |
|
|
basic_block bb;
|
| 263 |
|
|
rtx insn;
|
| 264 |
|
|
FOR_EACH_BB (bb)
|
| 265 |
|
|
{
|
| 266 |
|
|
for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
|
| 267 |
|
|
if (INSN_P (insn))
|
| 268 |
|
|
{
|
| 269 |
|
|
gcc_assert (JUMP_TABLE_DATA_P (insn));
|
| 270 |
|
|
mark_jump_label (PATTERN (insn), insn, 0);
|
| 271 |
|
|
}
|
| 272 |
|
|
|
| 273 |
|
|
for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
|
| 274 |
|
|
if (INSN_P (insn))
|
| 275 |
|
|
{
|
| 276 |
|
|
gcc_assert (JUMP_TABLE_DATA_P (insn));
|
| 277 |
|
|
mark_jump_label (PATTERN (insn), insn, 0);
|
| 278 |
|
|
}
|
| 279 |
|
|
}
|
| 280 |
|
|
}
|
| 281 |
|
|
}
|
| 282 |
|
|
|
| 283 |
|
|
/* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
|
| 284 |
|
|
of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
|
| 285 |
|
|
UNKNOWN may be returned in case we are having CC_MODE compare and we don't
|
| 286 |
|
|
know whether it's source is floating point or integer comparison. Machine
|
| 287 |
|
|
description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
|
| 288 |
|
|
to help this function avoid overhead in these cases. */
|
| 289 |
|
|
enum rtx_code
|
| 290 |
|
|
reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
|
| 291 |
|
|
const_rtx arg1, const_rtx insn)
|
| 292 |
|
|
{
|
| 293 |
|
|
enum machine_mode mode;
|
| 294 |
|
|
|
| 295 |
|
|
/* If this is not actually a comparison, we can't reverse it. */
|
| 296 |
|
|
if (GET_RTX_CLASS (code) != RTX_COMPARE
|
| 297 |
|
|
&& GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
|
| 298 |
|
|
return UNKNOWN;
|
| 299 |
|
|
|
| 300 |
|
|
mode = GET_MODE (arg0);
|
| 301 |
|
|
if (mode == VOIDmode)
|
| 302 |
|
|
mode = GET_MODE (arg1);
|
| 303 |
|
|
|
| 304 |
|
|
/* First see if machine description supplies us way to reverse the
|
| 305 |
|
|
comparison. Give it priority over everything else to allow
|
| 306 |
|
|
machine description to do tricks. */
|
| 307 |
|
|
if (GET_MODE_CLASS (mode) == MODE_CC
|
| 308 |
|
|
&& REVERSIBLE_CC_MODE (mode))
|
| 309 |
|
|
{
|
| 310 |
|
|
#ifdef REVERSE_CONDITION
|
| 311 |
|
|
return REVERSE_CONDITION (code, mode);
|
| 312 |
|
|
#endif
|
| 313 |
|
|
return reverse_condition (code);
|
| 314 |
|
|
}
|
| 315 |
|
|
|
| 316 |
|
|
/* Try a few special cases based on the comparison code. */
|
| 317 |
|
|
switch (code)
|
| 318 |
|
|
{
|
| 319 |
|
|
case GEU:
|
| 320 |
|
|
case GTU:
|
| 321 |
|
|
case LEU:
|
| 322 |
|
|
case LTU:
|
| 323 |
|
|
case NE:
|
| 324 |
|
|
case EQ:
|
| 325 |
|
|
/* It is always safe to reverse EQ and NE, even for the floating
|
| 326 |
|
|
point. Similarly the unsigned comparisons are never used for
|
| 327 |
|
|
floating point so we can reverse them in the default way. */
|
| 328 |
|
|
return reverse_condition (code);
|
| 329 |
|
|
case ORDERED:
|
| 330 |
|
|
case UNORDERED:
|
| 331 |
|
|
case LTGT:
|
| 332 |
|
|
case UNEQ:
|
| 333 |
|
|
/* In case we already see unordered comparison, we can be sure to
|
| 334 |
|
|
be dealing with floating point so we don't need any more tests. */
|
| 335 |
|
|
return reverse_condition_maybe_unordered (code);
|
| 336 |
|
|
case UNLT:
|
| 337 |
|
|
case UNLE:
|
| 338 |
|
|
case UNGT:
|
| 339 |
|
|
case UNGE:
|
| 340 |
|
|
/* We don't have safe way to reverse these yet. */
|
| 341 |
|
|
return UNKNOWN;
|
| 342 |
|
|
default:
|
| 343 |
|
|
break;
|
| 344 |
|
|
}
|
| 345 |
|
|
|
| 346 |
|
|
if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
|
| 347 |
|
|
{
|
| 348 |
|
|
const_rtx prev;
|
| 349 |
|
|
/* Try to search for the comparison to determine the real mode.
|
| 350 |
|
|
This code is expensive, but with sane machine description it
|
| 351 |
|
|
will be never used, since REVERSIBLE_CC_MODE will return true
|
| 352 |
|
|
in all cases. */
|
| 353 |
|
|
if (! insn)
|
| 354 |
|
|
return UNKNOWN;
|
| 355 |
|
|
|
| 356 |
|
|
/* These CONST_CAST's are okay because prev_nonnote_insn just
|
| 357 |
|
|
returns its argument and we assign it to a const_rtx
|
| 358 |
|
|
variable. */
|
| 359 |
|
|
for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
|
| 360 |
|
|
prev != 0 && !LABEL_P (prev);
|
| 361 |
|
|
prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
|
| 362 |
|
|
{
|
| 363 |
|
|
const_rtx set = set_of (arg0, prev);
|
| 364 |
|
|
if (set && GET_CODE (set) == SET
|
| 365 |
|
|
&& rtx_equal_p (SET_DEST (set), arg0))
|
| 366 |
|
|
{
|
| 367 |
|
|
rtx src = SET_SRC (set);
|
| 368 |
|
|
|
| 369 |
|
|
if (GET_CODE (src) == COMPARE)
|
| 370 |
|
|
{
|
| 371 |
|
|
rtx comparison = src;
|
| 372 |
|
|
arg0 = XEXP (src, 0);
|
| 373 |
|
|
mode = GET_MODE (arg0);
|
| 374 |
|
|
if (mode == VOIDmode)
|
| 375 |
|
|
mode = GET_MODE (XEXP (comparison, 1));
|
| 376 |
|
|
break;
|
| 377 |
|
|
}
|
| 378 |
|
|
/* We can get past reg-reg moves. This may be useful for model
|
| 379 |
|
|
of i387 comparisons that first move flag registers around. */
|
| 380 |
|
|
if (REG_P (src))
|
| 381 |
|
|
{
|
| 382 |
|
|
arg0 = src;
|
| 383 |
|
|
continue;
|
| 384 |
|
|
}
|
| 385 |
|
|
}
|
| 386 |
|
|
/* If register is clobbered in some ununderstandable way,
|
| 387 |
|
|
give up. */
|
| 388 |
|
|
if (set)
|
| 389 |
|
|
return UNKNOWN;
|
| 390 |
|
|
}
|
| 391 |
|
|
}
|
| 392 |
|
|
|
| 393 |
|
|
/* Test for an integer condition, or a floating-point comparison
|
| 394 |
|
|
in which NaNs can be ignored. */
|
| 395 |
|
|
if (CONST_INT_P (arg0)
|
| 396 |
|
|
|| (GET_MODE (arg0) != VOIDmode
|
| 397 |
|
|
&& GET_MODE_CLASS (mode) != MODE_CC
|
| 398 |
|
|
&& !HONOR_NANS (mode)))
|
| 399 |
|
|
return reverse_condition (code);
|
| 400 |
|
|
|
| 401 |
|
|
return UNKNOWN;
|
| 402 |
|
|
}
|
| 403 |
|
|
|
| 404 |
|
|
/* A wrapper around the previous function to take COMPARISON as rtx
|
| 405 |
|
|
expression. This simplifies many callers. */
|
| 406 |
|
|
enum rtx_code
|
| 407 |
|
|
reversed_comparison_code (const_rtx comparison, const_rtx insn)
|
| 408 |
|
|
{
|
| 409 |
|
|
if (!COMPARISON_P (comparison))
|
| 410 |
|
|
return UNKNOWN;
|
| 411 |
|
|
return reversed_comparison_code_parts (GET_CODE (comparison),
|
| 412 |
|
|
XEXP (comparison, 0),
|
| 413 |
|
|
XEXP (comparison, 1), insn);
|
| 414 |
|
|
}
|
| 415 |
|
|
|
| 416 |
|
|
/* Return comparison with reversed code of EXP.
|
| 417 |
|
|
Return NULL_RTX in case we fail to do the reversal. */
|
| 418 |
|
|
rtx
|
| 419 |
|
|
reversed_comparison (const_rtx exp, enum machine_mode mode)
|
| 420 |
|
|
{
|
| 421 |
|
|
enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
|
| 422 |
|
|
if (reversed_code == UNKNOWN)
|
| 423 |
|
|
return NULL_RTX;
|
| 424 |
|
|
else
|
| 425 |
|
|
return simplify_gen_relational (reversed_code, mode, VOIDmode,
|
| 426 |
|
|
XEXP (exp, 0), XEXP (exp, 1));
|
| 427 |
|
|
}
|
| 428 |
|
|
|
| 429 |
|
|
|
| 430 |
|
|
/* Given an rtx-code for a comparison, return the code for the negated
|
| 431 |
|
|
comparison. If no such code exists, return UNKNOWN.
|
| 432 |
|
|
|
| 433 |
|
|
WATCH OUT! reverse_condition is not safe to use on a jump that might
|
| 434 |
|
|
be acting on the results of an IEEE floating point comparison, because
|
| 435 |
|
|
of the special treatment of non-signaling nans in comparisons.
|
| 436 |
|
|
Use reversed_comparison_code instead. */
|
| 437 |
|
|
|
| 438 |
|
|
enum rtx_code
|
| 439 |
|
|
reverse_condition (enum rtx_code code)
|
| 440 |
|
|
{
|
| 441 |
|
|
switch (code)
|
| 442 |
|
|
{
|
| 443 |
|
|
case EQ:
|
| 444 |
|
|
return NE;
|
| 445 |
|
|
case NE:
|
| 446 |
|
|
return EQ;
|
| 447 |
|
|
case GT:
|
| 448 |
|
|
return LE;
|
| 449 |
|
|
case GE:
|
| 450 |
|
|
return LT;
|
| 451 |
|
|
case LT:
|
| 452 |
|
|
return GE;
|
| 453 |
|
|
case LE:
|
| 454 |
|
|
return GT;
|
| 455 |
|
|
case GTU:
|
| 456 |
|
|
return LEU;
|
| 457 |
|
|
case GEU:
|
| 458 |
|
|
return LTU;
|
| 459 |
|
|
case LTU:
|
| 460 |
|
|
return GEU;
|
| 461 |
|
|
case LEU:
|
| 462 |
|
|
return GTU;
|
| 463 |
|
|
case UNORDERED:
|
| 464 |
|
|
return ORDERED;
|
| 465 |
|
|
case ORDERED:
|
| 466 |
|
|
return UNORDERED;
|
| 467 |
|
|
|
| 468 |
|
|
case UNLT:
|
| 469 |
|
|
case UNLE:
|
| 470 |
|
|
case UNGT:
|
| 471 |
|
|
case UNGE:
|
| 472 |
|
|
case UNEQ:
|
| 473 |
|
|
case LTGT:
|
| 474 |
|
|
return UNKNOWN;
|
| 475 |
|
|
|
| 476 |
|
|
default:
|
| 477 |
|
|
gcc_unreachable ();
|
| 478 |
|
|
}
|
| 479 |
|
|
}
|
| 480 |
|
|
|
| 481 |
|
|
/* Similar, but we're allowed to generate unordered comparisons, which
|
| 482 |
|
|
makes it safe for IEEE floating-point. Of course, we have to recognize
|
| 483 |
|
|
that the target will support them too... */
|
| 484 |
|
|
|
| 485 |
|
|
enum rtx_code
|
| 486 |
|
|
reverse_condition_maybe_unordered (enum rtx_code code)
|
| 487 |
|
|
{
|
| 488 |
|
|
switch (code)
|
| 489 |
|
|
{
|
| 490 |
|
|
case EQ:
|
| 491 |
|
|
return NE;
|
| 492 |
|
|
case NE:
|
| 493 |
|
|
return EQ;
|
| 494 |
|
|
case GT:
|
| 495 |
|
|
return UNLE;
|
| 496 |
|
|
case GE:
|
| 497 |
|
|
return UNLT;
|
| 498 |
|
|
case LT:
|
| 499 |
|
|
return UNGE;
|
| 500 |
|
|
case LE:
|
| 501 |
|
|
return UNGT;
|
| 502 |
|
|
case LTGT:
|
| 503 |
|
|
return UNEQ;
|
| 504 |
|
|
case UNORDERED:
|
| 505 |
|
|
return ORDERED;
|
| 506 |
|
|
case ORDERED:
|
| 507 |
|
|
return UNORDERED;
|
| 508 |
|
|
case UNLT:
|
| 509 |
|
|
return GE;
|
| 510 |
|
|
case UNLE:
|
| 511 |
|
|
return GT;
|
| 512 |
|
|
case UNGT:
|
| 513 |
|
|
return LE;
|
| 514 |
|
|
case UNGE:
|
| 515 |
|
|
return LT;
|
| 516 |
|
|
case UNEQ:
|
| 517 |
|
|
return LTGT;
|
| 518 |
|
|
|
| 519 |
|
|
default:
|
| 520 |
|
|
gcc_unreachable ();
|
| 521 |
|
|
}
|
| 522 |
|
|
}
|
| 523 |
|
|
|
| 524 |
|
|
/* Similar, but return the code when two operands of a comparison are swapped.
|
| 525 |
|
|
This IS safe for IEEE floating-point. */
|
| 526 |
|
|
|
| 527 |
|
|
enum rtx_code
|
| 528 |
|
|
swap_condition (enum rtx_code code)
|
| 529 |
|
|
{
|
| 530 |
|
|
switch (code)
|
| 531 |
|
|
{
|
| 532 |
|
|
case EQ:
|
| 533 |
|
|
case NE:
|
| 534 |
|
|
case UNORDERED:
|
| 535 |
|
|
case ORDERED:
|
| 536 |
|
|
case UNEQ:
|
| 537 |
|
|
case LTGT:
|
| 538 |
|
|
return code;
|
| 539 |
|
|
|
| 540 |
|
|
case GT:
|
| 541 |
|
|
return LT;
|
| 542 |
|
|
case GE:
|
| 543 |
|
|
return LE;
|
| 544 |
|
|
case LT:
|
| 545 |
|
|
return GT;
|
| 546 |
|
|
case LE:
|
| 547 |
|
|
return GE;
|
| 548 |
|
|
case GTU:
|
| 549 |
|
|
return LTU;
|
| 550 |
|
|
case GEU:
|
| 551 |
|
|
return LEU;
|
| 552 |
|
|
case LTU:
|
| 553 |
|
|
return GTU;
|
| 554 |
|
|
case LEU:
|
| 555 |
|
|
return GEU;
|
| 556 |
|
|
case UNLT:
|
| 557 |
|
|
return UNGT;
|
| 558 |
|
|
case UNLE:
|
| 559 |
|
|
return UNGE;
|
| 560 |
|
|
case UNGT:
|
| 561 |
|
|
return UNLT;
|
| 562 |
|
|
case UNGE:
|
| 563 |
|
|
return UNLE;
|
| 564 |
|
|
|
| 565 |
|
|
default:
|
| 566 |
|
|
gcc_unreachable ();
|
| 567 |
|
|
}
|
| 568 |
|
|
}
|
| 569 |
|
|
|
| 570 |
|
|
/* Given a comparison CODE, return the corresponding unsigned comparison.
|
| 571 |
|
|
If CODE is an equality comparison or already an unsigned comparison,
|
| 572 |
|
|
CODE is returned. */
|
| 573 |
|
|
|
| 574 |
|
|
enum rtx_code
|
| 575 |
|
|
unsigned_condition (enum rtx_code code)
|
| 576 |
|
|
{
|
| 577 |
|
|
switch (code)
|
| 578 |
|
|
{
|
| 579 |
|
|
case EQ:
|
| 580 |
|
|
case NE:
|
| 581 |
|
|
case GTU:
|
| 582 |
|
|
case GEU:
|
| 583 |
|
|
case LTU:
|
| 584 |
|
|
case LEU:
|
| 585 |
|
|
return code;
|
| 586 |
|
|
|
| 587 |
|
|
case GT:
|
| 588 |
|
|
return GTU;
|
| 589 |
|
|
case GE:
|
| 590 |
|
|
return GEU;
|
| 591 |
|
|
case LT:
|
| 592 |
|
|
return LTU;
|
| 593 |
|
|
case LE:
|
| 594 |
|
|
return LEU;
|
| 595 |
|
|
|
| 596 |
|
|
default:
|
| 597 |
|
|
gcc_unreachable ();
|
| 598 |
|
|
}
|
| 599 |
|
|
}
|
| 600 |
|
|
|
| 601 |
|
|
/* Similarly, return the signed version of a comparison. */
|
| 602 |
|
|
|
| 603 |
|
|
enum rtx_code
|
| 604 |
|
|
signed_condition (enum rtx_code code)
|
| 605 |
|
|
{
|
| 606 |
|
|
switch (code)
|
| 607 |
|
|
{
|
| 608 |
|
|
case EQ:
|
| 609 |
|
|
case NE:
|
| 610 |
|
|
case GT:
|
| 611 |
|
|
case GE:
|
| 612 |
|
|
case LT:
|
| 613 |
|
|
case LE:
|
| 614 |
|
|
return code;
|
| 615 |
|
|
|
| 616 |
|
|
case GTU:
|
| 617 |
|
|
return GT;
|
| 618 |
|
|
case GEU:
|
| 619 |
|
|
return GE;
|
| 620 |
|
|
case LTU:
|
| 621 |
|
|
return LT;
|
| 622 |
|
|
case LEU:
|
| 623 |
|
|
return LE;
|
| 624 |
|
|
|
| 625 |
|
|
default:
|
| 626 |
|
|
gcc_unreachable ();
|
| 627 |
|
|
}
|
| 628 |
|
|
}
|
| 629 |
|
|
|
| 630 |
|
|
/* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
|
| 631 |
|
|
truth of CODE1 implies the truth of CODE2. */
|
| 632 |
|
|
|
| 633 |
|
|
int
|
| 634 |
|
|
comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
|
| 635 |
|
|
{
|
| 636 |
|
|
/* UNKNOWN comparison codes can happen as a result of trying to revert
|
| 637 |
|
|
comparison codes.
|
| 638 |
|
|
They can't match anything, so we have to reject them here. */
|
| 639 |
|
|
if (code1 == UNKNOWN || code2 == UNKNOWN)
|
| 640 |
|
|
return 0;
|
| 641 |
|
|
|
| 642 |
|
|
if (code1 == code2)
|
| 643 |
|
|
return 1;
|
| 644 |
|
|
|
| 645 |
|
|
switch (code1)
|
| 646 |
|
|
{
|
| 647 |
|
|
case UNEQ:
|
| 648 |
|
|
if (code2 == UNLE || code2 == UNGE)
|
| 649 |
|
|
return 1;
|
| 650 |
|
|
break;
|
| 651 |
|
|
|
| 652 |
|
|
case EQ:
|
| 653 |
|
|
if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
|
| 654 |
|
|
|| code2 == ORDERED)
|
| 655 |
|
|
return 1;
|
| 656 |
|
|
break;
|
| 657 |
|
|
|
| 658 |
|
|
case UNLT:
|
| 659 |
|
|
if (code2 == UNLE || code2 == NE)
|
| 660 |
|
|
return 1;
|
| 661 |
|
|
break;
|
| 662 |
|
|
|
| 663 |
|
|
case LT:
|
| 664 |
|
|
if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
|
| 665 |
|
|
return 1;
|
| 666 |
|
|
break;
|
| 667 |
|
|
|
| 668 |
|
|
case UNGT:
|
| 669 |
|
|
if (code2 == UNGE || code2 == NE)
|
| 670 |
|
|
return 1;
|
| 671 |
|
|
break;
|
| 672 |
|
|
|
| 673 |
|
|
case GT:
|
| 674 |
|
|
if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
|
| 675 |
|
|
return 1;
|
| 676 |
|
|
break;
|
| 677 |
|
|
|
| 678 |
|
|
case GE:
|
| 679 |
|
|
case LE:
|
| 680 |
|
|
if (code2 == ORDERED)
|
| 681 |
|
|
return 1;
|
| 682 |
|
|
break;
|
| 683 |
|
|
|
| 684 |
|
|
case LTGT:
|
| 685 |
|
|
if (code2 == NE || code2 == ORDERED)
|
| 686 |
|
|
return 1;
|
| 687 |
|
|
break;
|
| 688 |
|
|
|
| 689 |
|
|
case LTU:
|
| 690 |
|
|
if (code2 == LEU || code2 == NE)
|
| 691 |
|
|
return 1;
|
| 692 |
|
|
break;
|
| 693 |
|
|
|
| 694 |
|
|
case GTU:
|
| 695 |
|
|
if (code2 == GEU || code2 == NE)
|
| 696 |
|
|
return 1;
|
| 697 |
|
|
break;
|
| 698 |
|
|
|
| 699 |
|
|
case UNORDERED:
|
| 700 |
|
|
if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
|
| 701 |
|
|
|| code2 == UNGE || code2 == UNGT)
|
| 702 |
|
|
return 1;
|
| 703 |
|
|
break;
|
| 704 |
|
|
|
| 705 |
|
|
default:
|
| 706 |
|
|
break;
|
| 707 |
|
|
}
|
| 708 |
|
|
|
| 709 |
|
|
return 0;
|
| 710 |
|
|
}
|
| 711 |
|
|
|
| 712 |
|
|
/* Return 1 if INSN is an unconditional jump and nothing else. */
|
| 713 |
|
|
|
| 714 |
|
|
int
|
| 715 |
|
|
simplejump_p (const_rtx insn)
|
| 716 |
|
|
{
|
| 717 |
|
|
return (JUMP_P (insn)
|
| 718 |
|
|
&& GET_CODE (PATTERN (insn)) == SET
|
| 719 |
|
|
&& GET_CODE (SET_DEST (PATTERN (insn))) == PC
|
| 720 |
|
|
&& GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
|
| 721 |
|
|
}
|
| 722 |
|
|
|
| 723 |
|
|
/* Return nonzero if INSN is a (possibly) conditional jump
|
| 724 |
|
|
and nothing more.
|
| 725 |
|
|
|
| 726 |
|
|
Use of this function is deprecated, since we need to support combined
|
| 727 |
|
|
branch and compare insns. Use any_condjump_p instead whenever possible. */
|
| 728 |
|
|
|
| 729 |
|
|
int
|
| 730 |
|
|
condjump_p (const_rtx insn)
|
| 731 |
|
|
{
|
| 732 |
|
|
const_rtx x = PATTERN (insn);
|
| 733 |
|
|
|
| 734 |
|
|
if (GET_CODE (x) != SET
|
| 735 |
|
|
|| GET_CODE (SET_DEST (x)) != PC)
|
| 736 |
|
|
return 0;
|
| 737 |
|
|
|
| 738 |
|
|
x = SET_SRC (x);
|
| 739 |
|
|
if (GET_CODE (x) == LABEL_REF)
|
| 740 |
|
|
return 1;
|
| 741 |
|
|
else
|
| 742 |
|
|
return (GET_CODE (x) == IF_THEN_ELSE
|
| 743 |
|
|
&& ((GET_CODE (XEXP (x, 2)) == PC
|
| 744 |
|
|
&& (GET_CODE (XEXP (x, 1)) == LABEL_REF
|
| 745 |
|
|
|| GET_CODE (XEXP (x, 1)) == RETURN))
|
| 746 |
|
|
|| (GET_CODE (XEXP (x, 1)) == PC
|
| 747 |
|
|
&& (GET_CODE (XEXP (x, 2)) == LABEL_REF
|
| 748 |
|
|
|| GET_CODE (XEXP (x, 2)) == RETURN))));
|
| 749 |
|
|
}
|
| 750 |
|
|
|
| 751 |
|
|
/* Return nonzero if INSN is a (possibly) conditional jump inside a
|
| 752 |
|
|
PARALLEL.
|
| 753 |
|
|
|
| 754 |
|
|
Use this function is deprecated, since we need to support combined
|
| 755 |
|
|
branch and compare insns. Use any_condjump_p instead whenever possible. */
|
| 756 |
|
|
|
| 757 |
|
|
int
|
| 758 |
|
|
condjump_in_parallel_p (const_rtx insn)
|
| 759 |
|
|
{
|
| 760 |
|
|
const_rtx x = PATTERN (insn);
|
| 761 |
|
|
|
| 762 |
|
|
if (GET_CODE (x) != PARALLEL)
|
| 763 |
|
|
return 0;
|
| 764 |
|
|
else
|
| 765 |
|
|
x = XVECEXP (x, 0, 0);
|
| 766 |
|
|
|
| 767 |
|
|
if (GET_CODE (x) != SET)
|
| 768 |
|
|
return 0;
|
| 769 |
|
|
if (GET_CODE (SET_DEST (x)) != PC)
|
| 770 |
|
|
return 0;
|
| 771 |
|
|
if (GET_CODE (SET_SRC (x)) == LABEL_REF)
|
| 772 |
|
|
return 1;
|
| 773 |
|
|
if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
|
| 774 |
|
|
return 0;
|
| 775 |
|
|
if (XEXP (SET_SRC (x), 2) == pc_rtx
|
| 776 |
|
|
&& (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
|
| 777 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
|
| 778 |
|
|
return 1;
|
| 779 |
|
|
if (XEXP (SET_SRC (x), 1) == pc_rtx
|
| 780 |
|
|
&& (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
|
| 781 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
|
| 782 |
|
|
return 1;
|
| 783 |
|
|
return 0;
|
| 784 |
|
|
}
|
| 785 |
|
|
|
| 786 |
|
|
/* Return set of PC, otherwise NULL. */
|
| 787 |
|
|
|
| 788 |
|
|
rtx
|
| 789 |
|
|
pc_set (const_rtx insn)
|
| 790 |
|
|
{
|
| 791 |
|
|
rtx pat;
|
| 792 |
|
|
if (!JUMP_P (insn))
|
| 793 |
|
|
return NULL_RTX;
|
| 794 |
|
|
pat = PATTERN (insn);
|
| 795 |
|
|
|
| 796 |
|
|
/* The set is allowed to appear either as the insn pattern or
|
| 797 |
|
|
the first set in a PARALLEL. */
|
| 798 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
| 799 |
|
|
pat = XVECEXP (pat, 0, 0);
|
| 800 |
|
|
if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
|
| 801 |
|
|
return pat;
|
| 802 |
|
|
|
| 803 |
|
|
return NULL_RTX;
|
| 804 |
|
|
}
|
| 805 |
|
|
|
| 806 |
|
|
/* Return true when insn is an unconditional direct jump,
|
| 807 |
|
|
possibly bundled inside a PARALLEL. */
|
| 808 |
|
|
|
| 809 |
|
|
int
|
| 810 |
|
|
any_uncondjump_p (const_rtx insn)
|
| 811 |
|
|
{
|
| 812 |
|
|
const_rtx x = pc_set (insn);
|
| 813 |
|
|
if (!x)
|
| 814 |
|
|
return 0;
|
| 815 |
|
|
if (GET_CODE (SET_SRC (x)) != LABEL_REF)
|
| 816 |
|
|
return 0;
|
| 817 |
|
|
if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
|
| 818 |
|
|
return 0;
|
| 819 |
|
|
return 1;
|
| 820 |
|
|
}
|
| 821 |
|
|
|
| 822 |
|
|
/* Return true when insn is a conditional jump. This function works for
|
| 823 |
|
|
instructions containing PC sets in PARALLELs. The instruction may have
|
| 824 |
|
|
various other effects so before removing the jump you must verify
|
| 825 |
|
|
onlyjump_p.
|
| 826 |
|
|
|
| 827 |
|
|
Note that unlike condjump_p it returns false for unconditional jumps. */
|
| 828 |
|
|
|
| 829 |
|
|
int
|
| 830 |
|
|
any_condjump_p (const_rtx insn)
|
| 831 |
|
|
{
|
| 832 |
|
|
const_rtx x = pc_set (insn);
|
| 833 |
|
|
enum rtx_code a, b;
|
| 834 |
|
|
|
| 835 |
|
|
if (!x)
|
| 836 |
|
|
return 0;
|
| 837 |
|
|
if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
|
| 838 |
|
|
return 0;
|
| 839 |
|
|
|
| 840 |
|
|
a = GET_CODE (XEXP (SET_SRC (x), 1));
|
| 841 |
|
|
b = GET_CODE (XEXP (SET_SRC (x), 2));
|
| 842 |
|
|
|
| 843 |
|
|
return ((b == PC && (a == LABEL_REF || a == RETURN))
|
| 844 |
|
|
|| (a == PC && (b == LABEL_REF || b == RETURN)));
|
| 845 |
|
|
}
|
| 846 |
|
|
|
| 847 |
|
|
/* Return the label of a conditional jump. */
|
| 848 |
|
|
|
| 849 |
|
|
rtx
|
| 850 |
|
|
condjump_label (const_rtx insn)
|
| 851 |
|
|
{
|
| 852 |
|
|
rtx x = pc_set (insn);
|
| 853 |
|
|
|
| 854 |
|
|
if (!x)
|
| 855 |
|
|
return NULL_RTX;
|
| 856 |
|
|
x = SET_SRC (x);
|
| 857 |
|
|
if (GET_CODE (x) == LABEL_REF)
|
| 858 |
|
|
return x;
|
| 859 |
|
|
if (GET_CODE (x) != IF_THEN_ELSE)
|
| 860 |
|
|
return NULL_RTX;
|
| 861 |
|
|
if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
|
| 862 |
|
|
return XEXP (x, 1);
|
| 863 |
|
|
if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
|
| 864 |
|
|
return XEXP (x, 2);
|
| 865 |
|
|
return NULL_RTX;
|
| 866 |
|
|
}
|
| 867 |
|
|
|
| 868 |
|
|
/* Return true if INSN is a (possibly conditional) return insn. */
|
| 869 |
|
|
|
| 870 |
|
|
static int
|
| 871 |
|
|
returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
| 872 |
|
|
{
|
| 873 |
|
|
rtx x = *loc;
|
| 874 |
|
|
|
| 875 |
|
|
if (x == NULL)
|
| 876 |
|
|
return false;
|
| 877 |
|
|
|
| 878 |
|
|
switch (GET_CODE (x))
|
| 879 |
|
|
{
|
| 880 |
|
|
case RETURN:
|
| 881 |
|
|
case EH_RETURN:
|
| 882 |
|
|
return true;
|
| 883 |
|
|
|
| 884 |
|
|
case SET:
|
| 885 |
|
|
return SET_IS_RETURN_P (x);
|
| 886 |
|
|
|
| 887 |
|
|
default:
|
| 888 |
|
|
return false;
|
| 889 |
|
|
}
|
| 890 |
|
|
}
|
| 891 |
|
|
|
| 892 |
|
|
/* Return TRUE if INSN is a return jump. */
|
| 893 |
|
|
|
| 894 |
|
|
int
|
| 895 |
|
|
returnjump_p (rtx insn)
|
| 896 |
|
|
{
|
| 897 |
|
|
if (!JUMP_P (insn))
|
| 898 |
|
|
return 0;
|
| 899 |
|
|
return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
|
| 900 |
|
|
}
|
| 901 |
|
|
|
| 902 |
|
|
/* Return true if INSN is a (possibly conditional) return insn. */
|
| 903 |
|
|
|
| 904 |
|
|
static int
|
| 905 |
|
|
eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
| 906 |
|
|
{
|
| 907 |
|
|
return *loc && GET_CODE (*loc) == EH_RETURN;
|
| 908 |
|
|
}
|
| 909 |
|
|
|
| 910 |
|
|
int
|
| 911 |
|
|
eh_returnjump_p (rtx insn)
|
| 912 |
|
|
{
|
| 913 |
|
|
if (!JUMP_P (insn))
|
| 914 |
|
|
return 0;
|
| 915 |
|
|
return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
|
| 916 |
|
|
}
|
| 917 |
|
|
|
| 918 |
|
|
/* Return true if INSN is a jump that only transfers control and
|
| 919 |
|
|
nothing more. */
|
| 920 |
|
|
|
| 921 |
|
|
int
|
| 922 |
|
|
onlyjump_p (const_rtx insn)
|
| 923 |
|
|
{
|
| 924 |
|
|
rtx set;
|
| 925 |
|
|
|
| 926 |
|
|
if (!JUMP_P (insn))
|
| 927 |
|
|
return 0;
|
| 928 |
|
|
|
| 929 |
|
|
set = single_set (insn);
|
| 930 |
|
|
if (set == NULL)
|
| 931 |
|
|
return 0;
|
| 932 |
|
|
if (GET_CODE (SET_DEST (set)) != PC)
|
| 933 |
|
|
return 0;
|
| 934 |
|
|
if (side_effects_p (SET_SRC (set)))
|
| 935 |
|
|
return 0;
|
| 936 |
|
|
|
| 937 |
|
|
return 1;
|
| 938 |
|
|
}
|
| 939 |
|
|
|
| 940 |
|
|
#ifdef HAVE_cc0
|
| 941 |
|
|
|
| 942 |
|
|
/* Return nonzero if X is an RTX that only sets the condition codes
|
| 943 |
|
|
and has no side effects. */
|
| 944 |
|
|
|
| 945 |
|
|
int
|
| 946 |
|
|
only_sets_cc0_p (const_rtx x)
|
| 947 |
|
|
{
|
| 948 |
|
|
if (! x)
|
| 949 |
|
|
return 0;
|
| 950 |
|
|
|
| 951 |
|
|
if (INSN_P (x))
|
| 952 |
|
|
x = PATTERN (x);
|
| 953 |
|
|
|
| 954 |
|
|
return sets_cc0_p (x) == 1 && ! side_effects_p (x);
|
| 955 |
|
|
}
|
| 956 |
|
|
|
| 957 |
|
|
/* Return 1 if X is an RTX that does nothing but set the condition codes
|
| 958 |
|
|
and CLOBBER or USE registers.
|
| 959 |
|
|
Return -1 if X does explicitly set the condition codes,
|
| 960 |
|
|
but also does other things. */
|
| 961 |
|
|
|
| 962 |
|
|
int
|
| 963 |
|
|
sets_cc0_p (const_rtx x)
|
| 964 |
|
|
{
|
| 965 |
|
|
if (! x)
|
| 966 |
|
|
return 0;
|
| 967 |
|
|
|
| 968 |
|
|
if (INSN_P (x))
|
| 969 |
|
|
x = PATTERN (x);
|
| 970 |
|
|
|
| 971 |
|
|
if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
|
| 972 |
|
|
return 1;
|
| 973 |
|
|
if (GET_CODE (x) == PARALLEL)
|
| 974 |
|
|
{
|
| 975 |
|
|
int i;
|
| 976 |
|
|
int sets_cc0 = 0;
|
| 977 |
|
|
int other_things = 0;
|
| 978 |
|
|
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
|
| 979 |
|
|
{
|
| 980 |
|
|
if (GET_CODE (XVECEXP (x, 0, i)) == SET
|
| 981 |
|
|
&& SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
|
| 982 |
|
|
sets_cc0 = 1;
|
| 983 |
|
|
else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
|
| 984 |
|
|
other_things = 1;
|
| 985 |
|
|
}
|
| 986 |
|
|
return ! sets_cc0 ? 0 : other_things ? -1 : 1;
|
| 987 |
|
|
}
|
| 988 |
|
|
return 0;
|
| 989 |
|
|
}
|
| 990 |
|
|
#endif
|
| 991 |
|
|
|
| 992 |
|
|
/* Find all CODE_LABELs referred to in X, and increment their use
|
| 993 |
|
|
counts. If INSN is a JUMP_INSN and there is at least one
|
| 994 |
|
|
CODE_LABEL referenced in INSN as a jump target, then store the last
|
| 995 |
|
|
one in JUMP_LABEL (INSN). For a tablejump, this must be the label
|
| 996 |
|
|
for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
|
| 997 |
|
|
notes. If INSN is an INSN or a CALL_INSN or non-target operands of
|
| 998 |
|
|
a JUMP_INSN, and there is at least one CODE_LABEL referenced in
|
| 999 |
|
|
INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
|
| 1000 |
|
|
|
| 1001 |
|
|
Note that two labels separated by a loop-beginning note
|
| 1002 |
|
|
must be kept distinct if we have not yet done loop-optimization,
|
| 1003 |
|
|
because the gap between them is where loop-optimize
|
| 1004 |
|
|
will want to move invariant code to. CROSS_JUMP tells us
|
| 1005 |
|
|
that loop-optimization is done with. */
|
| 1006 |
|
|
|
| 1007 |
|
|
void
|
| 1008 |
|
|
mark_jump_label (rtx x, rtx insn, int in_mem)
|
| 1009 |
|
|
{
|
| 1010 |
|
|
rtx asmop = extract_asm_operands (x);
|
| 1011 |
|
|
if (asmop)
|
| 1012 |
|
|
mark_jump_label_asm (asmop, insn);
|
| 1013 |
|
|
else
|
| 1014 |
|
|
mark_jump_label_1 (x, insn, in_mem != 0,
|
| 1015 |
|
|
(insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
|
| 1016 |
|
|
}
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
|
| 1019 |
|
|
within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
|
| 1020 |
|
|
jump-target; when the JUMP_LABEL field of INSN should be set or a
|
| 1021 |
|
|
REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
|
| 1022 |
|
|
note. */
|
| 1023 |
|
|
|
| 1024 |
|
|
static void
|
| 1025 |
|
|
mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
|
| 1026 |
|
|
{
|
| 1027 |
|
|
RTX_CODE code = GET_CODE (x);
|
| 1028 |
|
|
int i;
|
| 1029 |
|
|
const char *fmt;
|
| 1030 |
|
|
|
| 1031 |
|
|
switch (code)
|
| 1032 |
|
|
{
|
| 1033 |
|
|
case PC:
|
| 1034 |
|
|
case CC0:
|
| 1035 |
|
|
case REG:
|
| 1036 |
|
|
case CONST_INT:
|
| 1037 |
|
|
case CONST_DOUBLE:
|
| 1038 |
|
|
case CLOBBER:
|
| 1039 |
|
|
case CALL:
|
| 1040 |
|
|
return;
|
| 1041 |
|
|
|
| 1042 |
|
|
case MEM:
|
| 1043 |
|
|
in_mem = true;
|
| 1044 |
|
|
break;
|
| 1045 |
|
|
|
| 1046 |
|
|
case SEQUENCE:
|
| 1047 |
|
|
for (i = 0; i < XVECLEN (x, 0); i++)
|
| 1048 |
|
|
mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
|
| 1049 |
|
|
XVECEXP (x, 0, i), 0);
|
| 1050 |
|
|
return;
|
| 1051 |
|
|
|
| 1052 |
|
|
case SYMBOL_REF:
|
| 1053 |
|
|
if (!in_mem)
|
| 1054 |
|
|
return;
|
| 1055 |
|
|
|
| 1056 |
|
|
/* If this is a constant-pool reference, see if it is a label. */
|
| 1057 |
|
|
if (CONSTANT_POOL_ADDRESS_P (x))
|
| 1058 |
|
|
mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
|
| 1059 |
|
|
break;
|
| 1060 |
|
|
|
| 1061 |
|
|
/* Handle operands in the condition of an if-then-else as for a
|
| 1062 |
|
|
non-jump insn. */
|
| 1063 |
|
|
case IF_THEN_ELSE:
|
| 1064 |
|
|
if (!is_target)
|
| 1065 |
|
|
break;
|
| 1066 |
|
|
mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
|
| 1067 |
|
|
mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
|
| 1068 |
|
|
mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
|
| 1069 |
|
|
return;
|
| 1070 |
|
|
|
| 1071 |
|
|
case LABEL_REF:
|
| 1072 |
|
|
{
|
| 1073 |
|
|
rtx label = XEXP (x, 0);
|
| 1074 |
|
|
|
| 1075 |
|
|
/* Ignore remaining references to unreachable labels that
|
| 1076 |
|
|
have been deleted. */
|
| 1077 |
|
|
if (NOTE_P (label)
|
| 1078 |
|
|
&& NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
|
| 1079 |
|
|
break;
|
| 1080 |
|
|
|
| 1081 |
|
|
gcc_assert (LABEL_P (label));
|
| 1082 |
|
|
|
| 1083 |
|
|
/* Ignore references to labels of containing functions. */
|
| 1084 |
|
|
if (LABEL_REF_NONLOCAL_P (x))
|
| 1085 |
|
|
break;
|
| 1086 |
|
|
|
| 1087 |
|
|
XEXP (x, 0) = label;
|
| 1088 |
|
|
if (! insn || ! INSN_DELETED_P (insn))
|
| 1089 |
|
|
++LABEL_NUSES (label);
|
| 1090 |
|
|
|
| 1091 |
|
|
if (insn)
|
| 1092 |
|
|
{
|
| 1093 |
|
|
if (is_target
|
| 1094 |
|
|
/* Do not change a previous setting of JUMP_LABEL. If the
|
| 1095 |
|
|
JUMP_LABEL slot is occupied by a different label,
|
| 1096 |
|
|
create a note for this label. */
|
| 1097 |
|
|
&& (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
|
| 1098 |
|
|
JUMP_LABEL (insn) = label;
|
| 1099 |
|
|
else
|
| 1100 |
|
|
{
|
| 1101 |
|
|
enum reg_note kind
|
| 1102 |
|
|
= is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
|
| 1103 |
|
|
|
| 1104 |
|
|
/* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
|
| 1105 |
|
|
for LABEL unless there already is one. All uses of
|
| 1106 |
|
|
a label, except for the primary target of a jump,
|
| 1107 |
|
|
must have such a note. */
|
| 1108 |
|
|
if (! find_reg_note (insn, kind, label))
|
| 1109 |
|
|
add_reg_note (insn, kind, label);
|
| 1110 |
|
|
}
|
| 1111 |
|
|
}
|
| 1112 |
|
|
return;
|
| 1113 |
|
|
}
|
| 1114 |
|
|
|
| 1115 |
|
|
/* Do walk the labels in a vector, but not the first operand of an
|
| 1116 |
|
|
ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
|
| 1117 |
|
|
case ADDR_VEC:
|
| 1118 |
|
|
case ADDR_DIFF_VEC:
|
| 1119 |
|
|
if (! INSN_DELETED_P (insn))
|
| 1120 |
|
|
{
|
| 1121 |
|
|
int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
|
| 1122 |
|
|
|
| 1123 |
|
|
for (i = 0; i < XVECLEN (x, eltnum); i++)
|
| 1124 |
|
|
mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
|
| 1125 |
|
|
is_target);
|
| 1126 |
|
|
}
|
| 1127 |
|
|
return;
|
| 1128 |
|
|
|
| 1129 |
|
|
default:
|
| 1130 |
|
|
break;
|
| 1131 |
|
|
}
|
| 1132 |
|
|
|
| 1133 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 1134 |
|
|
|
| 1135 |
|
|
/* The primary target of a tablejump is the label of the ADDR_VEC,
|
| 1136 |
|
|
which is canonically mentioned *last* in the insn. To get it
|
| 1137 |
|
|
marked as JUMP_LABEL, we iterate over items in reverse order. */
|
| 1138 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 1139 |
|
|
{
|
| 1140 |
|
|
if (fmt[i] == 'e')
|
| 1141 |
|
|
mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
|
| 1142 |
|
|
else if (fmt[i] == 'E')
|
| 1143 |
|
|
{
|
| 1144 |
|
|
int j;
|
| 1145 |
|
|
|
| 1146 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 1147 |
|
|
mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
|
| 1148 |
|
|
is_target);
|
| 1149 |
|
|
}
|
| 1150 |
|
|
}
|
| 1151 |
|
|
}
|
| 1152 |
|
|
|
| 1153 |
|
|
/* Worker function for mark_jump_label. Handle asm insns specially.
|
| 1154 |
|
|
In particular, output operands need not be considered so we can
|
| 1155 |
|
|
avoid re-scanning the replicated asm_operand. Also, the asm_labels
|
| 1156 |
|
|
need to be considered targets. */
|
| 1157 |
|
|
|
| 1158 |
|
|
static void
|
| 1159 |
|
|
mark_jump_label_asm (rtx asmop, rtx insn)
|
| 1160 |
|
|
{
|
| 1161 |
|
|
int i;
|
| 1162 |
|
|
|
| 1163 |
|
|
for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
|
| 1164 |
|
|
mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
|
| 1165 |
|
|
|
| 1166 |
|
|
for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
|
| 1167 |
|
|
mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
|
| 1168 |
|
|
}
|
| 1169 |
|
|
|
| 1170 |
|
|
/* Delete insn INSN from the chain of insns and update label ref counts
|
| 1171 |
|
|
and delete insns now unreachable.
|
| 1172 |
|
|
|
| 1173 |
|
|
Returns the first insn after INSN that was not deleted.
|
| 1174 |
|
|
|
| 1175 |
|
|
Usage of this instruction is deprecated. Use delete_insn instead and
|
| 1176 |
|
|
subsequent cfg_cleanup pass to delete unreachable code if needed. */
|
| 1177 |
|
|
|
| 1178 |
|
|
rtx
|
| 1179 |
|
|
delete_related_insns (rtx insn)
|
| 1180 |
|
|
{
|
| 1181 |
|
|
int was_code_label = (LABEL_P (insn));
|
| 1182 |
|
|
rtx note;
|
| 1183 |
|
|
rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
|
| 1184 |
|
|
|
| 1185 |
|
|
while (next && INSN_DELETED_P (next))
|
| 1186 |
|
|
next = NEXT_INSN (next);
|
| 1187 |
|
|
|
| 1188 |
|
|
/* This insn is already deleted => return first following nondeleted. */
|
| 1189 |
|
|
if (INSN_DELETED_P (insn))
|
| 1190 |
|
|
return next;
|
| 1191 |
|
|
|
| 1192 |
|
|
delete_insn (insn);
|
| 1193 |
|
|
|
| 1194 |
|
|
/* If instruction is followed by a barrier,
|
| 1195 |
|
|
delete the barrier too. */
|
| 1196 |
|
|
|
| 1197 |
|
|
if (next != 0 && BARRIER_P (next))
|
| 1198 |
|
|
delete_insn (next);
|
| 1199 |
|
|
|
| 1200 |
|
|
/* If deleting a jump, decrement the count of the label,
|
| 1201 |
|
|
and delete the label if it is now unused. */
|
| 1202 |
|
|
|
| 1203 |
|
|
if (JUMP_P (insn) && JUMP_LABEL (insn))
|
| 1204 |
|
|
{
|
| 1205 |
|
|
rtx lab = JUMP_LABEL (insn), lab_next;
|
| 1206 |
|
|
|
| 1207 |
|
|
if (LABEL_NUSES (lab) == 0)
|
| 1208 |
|
|
/* This can delete NEXT or PREV,
|
| 1209 |
|
|
either directly if NEXT is JUMP_LABEL (INSN),
|
| 1210 |
|
|
or indirectly through more levels of jumps. */
|
| 1211 |
|
|
delete_related_insns (lab);
|
| 1212 |
|
|
else if (tablejump_p (insn, NULL, &lab_next))
|
| 1213 |
|
|
{
|
| 1214 |
|
|
/* If we're deleting the tablejump, delete the dispatch table.
|
| 1215 |
|
|
We may not be able to kill the label immediately preceding
|
| 1216 |
|
|
just yet, as it might be referenced in code leading up to
|
| 1217 |
|
|
the tablejump. */
|
| 1218 |
|
|
delete_related_insns (lab_next);
|
| 1219 |
|
|
}
|
| 1220 |
|
|
}
|
| 1221 |
|
|
|
| 1222 |
|
|
/* Likewise if we're deleting a dispatch table. */
|
| 1223 |
|
|
|
| 1224 |
|
|
if (JUMP_TABLE_DATA_P (insn))
|
| 1225 |
|
|
{
|
| 1226 |
|
|
rtx pat = PATTERN (insn);
|
| 1227 |
|
|
int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
|
| 1228 |
|
|
int len = XVECLEN (pat, diff_vec_p);
|
| 1229 |
|
|
|
| 1230 |
|
|
for (i = 0; i < len; i++)
|
| 1231 |
|
|
if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
|
| 1232 |
|
|
delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
|
| 1233 |
|
|
while (next && INSN_DELETED_P (next))
|
| 1234 |
|
|
next = NEXT_INSN (next);
|
| 1235 |
|
|
return next;
|
| 1236 |
|
|
}
|
| 1237 |
|
|
|
| 1238 |
|
|
/* Likewise for any JUMP_P / INSN / CALL_INSN with a
|
| 1239 |
|
|
REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
|
| 1240 |
|
|
if (INSN_P (insn))
|
| 1241 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
| 1242 |
|
|
if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
|
| 1243 |
|
|
|| REG_NOTE_KIND (note) == REG_LABEL_TARGET)
|
| 1244 |
|
|
/* This could also be a NOTE_INSN_DELETED_LABEL note. */
|
| 1245 |
|
|
&& LABEL_P (XEXP (note, 0)))
|
| 1246 |
|
|
if (LABEL_NUSES (XEXP (note, 0)) == 0)
|
| 1247 |
|
|
delete_related_insns (XEXP (note, 0));
|
| 1248 |
|
|
|
| 1249 |
|
|
while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
|
| 1250 |
|
|
prev = PREV_INSN (prev);
|
| 1251 |
|
|
|
| 1252 |
|
|
/* If INSN was a label and a dispatch table follows it,
|
| 1253 |
|
|
delete the dispatch table. The tablejump must have gone already.
|
| 1254 |
|
|
It isn't useful to fall through into a table. */
|
| 1255 |
|
|
|
| 1256 |
|
|
if (was_code_label
|
| 1257 |
|
|
&& NEXT_INSN (insn) != 0
|
| 1258 |
|
|
&& JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
|
| 1259 |
|
|
next = delete_related_insns (NEXT_INSN (insn));
|
| 1260 |
|
|
|
| 1261 |
|
|
/* If INSN was a label, delete insns following it if now unreachable. */
|
| 1262 |
|
|
|
| 1263 |
|
|
if (was_code_label && prev && BARRIER_P (prev))
|
| 1264 |
|
|
{
|
| 1265 |
|
|
enum rtx_code code;
|
| 1266 |
|
|
while (next)
|
| 1267 |
|
|
{
|
| 1268 |
|
|
code = GET_CODE (next);
|
| 1269 |
|
|
if (code == NOTE)
|
| 1270 |
|
|
next = NEXT_INSN (next);
|
| 1271 |
|
|
/* Keep going past other deleted labels to delete what follows. */
|
| 1272 |
|
|
else if (code == CODE_LABEL && INSN_DELETED_P (next))
|
| 1273 |
|
|
next = NEXT_INSN (next);
|
| 1274 |
|
|
else if (code == BARRIER || INSN_P (next))
|
| 1275 |
|
|
/* Note: if this deletes a jump, it can cause more
|
| 1276 |
|
|
deletion of unreachable code, after a different label.
|
| 1277 |
|
|
As long as the value from this recursive call is correct,
|
| 1278 |
|
|
this invocation functions correctly. */
|
| 1279 |
|
|
next = delete_related_insns (next);
|
| 1280 |
|
|
else
|
| 1281 |
|
|
break;
|
| 1282 |
|
|
}
|
| 1283 |
|
|
}
|
| 1284 |
|
|
|
| 1285 |
|
|
/* I feel a little doubtful about this loop,
|
| 1286 |
|
|
but I see no clean and sure alternative way
|
| 1287 |
|
|
to find the first insn after INSN that is not now deleted.
|
| 1288 |
|
|
I hope this works. */
|
| 1289 |
|
|
while (next && INSN_DELETED_P (next))
|
| 1290 |
|
|
next = NEXT_INSN (next);
|
| 1291 |
|
|
return next;
|
| 1292 |
|
|
}
|
| 1293 |
|
|
|
| 1294 |
|
|
/* Delete a range of insns from FROM to TO, inclusive.
|
| 1295 |
|
|
This is for the sake of peephole optimization, so assume
|
| 1296 |
|
|
that whatever these insns do will still be done by a new
|
| 1297 |
|
|
peephole insn that will replace them. */
|
| 1298 |
|
|
|
| 1299 |
|
|
void
|
| 1300 |
|
|
delete_for_peephole (rtx from, rtx to)
|
| 1301 |
|
|
{
|
| 1302 |
|
|
rtx insn = from;
|
| 1303 |
|
|
|
| 1304 |
|
|
while (1)
|
| 1305 |
|
|
{
|
| 1306 |
|
|
rtx next = NEXT_INSN (insn);
|
| 1307 |
|
|
rtx prev = PREV_INSN (insn);
|
| 1308 |
|
|
|
| 1309 |
|
|
if (!NOTE_P (insn))
|
| 1310 |
|
|
{
|
| 1311 |
|
|
INSN_DELETED_P (insn) = 1;
|
| 1312 |
|
|
|
| 1313 |
|
|
/* Patch this insn out of the chain. */
|
| 1314 |
|
|
/* We don't do this all at once, because we
|
| 1315 |
|
|
must preserve all NOTEs. */
|
| 1316 |
|
|
if (prev)
|
| 1317 |
|
|
NEXT_INSN (prev) = next;
|
| 1318 |
|
|
|
| 1319 |
|
|
if (next)
|
| 1320 |
|
|
PREV_INSN (next) = prev;
|
| 1321 |
|
|
}
|
| 1322 |
|
|
|
| 1323 |
|
|
if (insn == to)
|
| 1324 |
|
|
break;
|
| 1325 |
|
|
insn = next;
|
| 1326 |
|
|
}
|
| 1327 |
|
|
|
| 1328 |
|
|
/* Note that if TO is an unconditional jump
|
| 1329 |
|
|
we *do not* delete the BARRIER that follows,
|
| 1330 |
|
|
since the peephole that replaces this sequence
|
| 1331 |
|
|
is also an unconditional jump in that case. */
|
| 1332 |
|
|
}
|
| 1333 |
|
|
|
| 1334 |
|
|
/* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
|
| 1335 |
|
|
NLABEL as a return. Accrue modifications into the change group. */
|
| 1336 |
|
|
|
| 1337 |
|
|
static void
|
| 1338 |
|
|
redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
|
| 1339 |
|
|
{
|
| 1340 |
|
|
rtx x = *loc;
|
| 1341 |
|
|
RTX_CODE code = GET_CODE (x);
|
| 1342 |
|
|
int i;
|
| 1343 |
|
|
const char *fmt;
|
| 1344 |
|
|
|
| 1345 |
|
|
if (code == LABEL_REF)
|
| 1346 |
|
|
{
|
| 1347 |
|
|
if (XEXP (x, 0) == olabel)
|
| 1348 |
|
|
{
|
| 1349 |
|
|
rtx n;
|
| 1350 |
|
|
if (nlabel)
|
| 1351 |
|
|
n = gen_rtx_LABEL_REF (Pmode, nlabel);
|
| 1352 |
|
|
else
|
| 1353 |
|
|
n = gen_rtx_RETURN (VOIDmode);
|
| 1354 |
|
|
|
| 1355 |
|
|
validate_change (insn, loc, n, 1);
|
| 1356 |
|
|
return;
|
| 1357 |
|
|
}
|
| 1358 |
|
|
}
|
| 1359 |
|
|
else if (code == RETURN && olabel == 0)
|
| 1360 |
|
|
{
|
| 1361 |
|
|
if (nlabel)
|
| 1362 |
|
|
x = gen_rtx_LABEL_REF (Pmode, nlabel);
|
| 1363 |
|
|
else
|
| 1364 |
|
|
x = gen_rtx_RETURN (VOIDmode);
|
| 1365 |
|
|
if (loc == &PATTERN (insn))
|
| 1366 |
|
|
x = gen_rtx_SET (VOIDmode, pc_rtx, x);
|
| 1367 |
|
|
validate_change (insn, loc, x, 1);
|
| 1368 |
|
|
return;
|
| 1369 |
|
|
}
|
| 1370 |
|
|
|
| 1371 |
|
|
if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
|
| 1372 |
|
|
&& GET_CODE (SET_SRC (x)) == LABEL_REF
|
| 1373 |
|
|
&& XEXP (SET_SRC (x), 0) == olabel)
|
| 1374 |
|
|
{
|
| 1375 |
|
|
validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
|
| 1376 |
|
|
return;
|
| 1377 |
|
|
}
|
| 1378 |
|
|
|
| 1379 |
|
|
if (code == IF_THEN_ELSE)
|
| 1380 |
|
|
{
|
| 1381 |
|
|
/* Skip the condition of an IF_THEN_ELSE. We only want to
|
| 1382 |
|
|
change jump destinations, not eventual label comparisons. */
|
| 1383 |
|
|
redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
|
| 1384 |
|
|
redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
|
| 1385 |
|
|
return;
|
| 1386 |
|
|
}
|
| 1387 |
|
|
|
| 1388 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 1389 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 1390 |
|
|
{
|
| 1391 |
|
|
if (fmt[i] == 'e')
|
| 1392 |
|
|
redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
|
| 1393 |
|
|
else if (fmt[i] == 'E')
|
| 1394 |
|
|
{
|
| 1395 |
|
|
int j;
|
| 1396 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 1397 |
|
|
redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
|
| 1398 |
|
|
}
|
| 1399 |
|
|
}
|
| 1400 |
|
|
}
|
| 1401 |
|
|
|
| 1402 |
|
|
/* Make JUMP go to NLABEL instead of where it jumps now. Accrue
|
| 1403 |
|
|
the modifications into the change group. Return false if we did
|
| 1404 |
|
|
not see how to do that. */
|
| 1405 |
|
|
|
| 1406 |
|
|
int
|
| 1407 |
|
|
redirect_jump_1 (rtx jump, rtx nlabel)
|
| 1408 |
|
|
{
|
| 1409 |
|
|
int ochanges = num_validated_changes ();
|
| 1410 |
|
|
rtx *loc, asmop;
|
| 1411 |
|
|
|
| 1412 |
|
|
asmop = extract_asm_operands (PATTERN (jump));
|
| 1413 |
|
|
if (asmop)
|
| 1414 |
|
|
{
|
| 1415 |
|
|
if (nlabel == NULL)
|
| 1416 |
|
|
return 0;
|
| 1417 |
|
|
gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
|
| 1418 |
|
|
loc = &ASM_OPERANDS_LABEL (asmop, 0);
|
| 1419 |
|
|
}
|
| 1420 |
|
|
else if (GET_CODE (PATTERN (jump)) == PARALLEL)
|
| 1421 |
|
|
loc = &XVECEXP (PATTERN (jump), 0, 0);
|
| 1422 |
|
|
else
|
| 1423 |
|
|
loc = &PATTERN (jump);
|
| 1424 |
|
|
|
| 1425 |
|
|
redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
|
| 1426 |
|
|
return num_validated_changes () > ochanges;
|
| 1427 |
|
|
}
|
| 1428 |
|
|
|
| 1429 |
|
|
/* Make JUMP go to NLABEL instead of where it jumps now. If the old
|
| 1430 |
|
|
jump target label is unused as a result, it and the code following
|
| 1431 |
|
|
it may be deleted.
|
| 1432 |
|
|
|
| 1433 |
|
|
If NLABEL is zero, we are to turn the jump into a (possibly conditional)
|
| 1434 |
|
|
RETURN insn.
|
| 1435 |
|
|
|
| 1436 |
|
|
The return value will be 1 if the change was made, 0 if it wasn't
|
| 1437 |
|
|
(this can only occur for NLABEL == 0). */
|
| 1438 |
|
|
|
| 1439 |
|
|
int
|
| 1440 |
|
|
redirect_jump (rtx jump, rtx nlabel, int delete_unused)
|
| 1441 |
|
|
{
|
| 1442 |
|
|
rtx olabel = JUMP_LABEL (jump);
|
| 1443 |
|
|
|
| 1444 |
|
|
if (nlabel == olabel)
|
| 1445 |
|
|
return 1;
|
| 1446 |
|
|
|
| 1447 |
|
|
if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
|
| 1448 |
|
|
return 0;
|
| 1449 |
|
|
|
| 1450 |
|
|
redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
|
| 1451 |
|
|
return 1;
|
| 1452 |
|
|
}
|
| 1453 |
|
|
|
| 1454 |
|
|
/* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
|
| 1455 |
|
|
NLABEL in JUMP.
|
| 1456 |
|
|
If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
|
| 1457 |
|
|
count has dropped to zero. */
|
| 1458 |
|
|
void
|
| 1459 |
|
|
redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
|
| 1460 |
|
|
int invert)
|
| 1461 |
|
|
{
|
| 1462 |
|
|
rtx note;
|
| 1463 |
|
|
|
| 1464 |
|
|
gcc_assert (JUMP_LABEL (jump) == olabel);
|
| 1465 |
|
|
|
| 1466 |
|
|
/* Negative DELETE_UNUSED used to be used to signalize behavior on
|
| 1467 |
|
|
moving FUNCTION_END note. Just sanity check that no user still worry
|
| 1468 |
|
|
about this. */
|
| 1469 |
|
|
gcc_assert (delete_unused >= 0);
|
| 1470 |
|
|
JUMP_LABEL (jump) = nlabel;
|
| 1471 |
|
|
if (nlabel)
|
| 1472 |
|
|
++LABEL_NUSES (nlabel);
|
| 1473 |
|
|
|
| 1474 |
|
|
/* Update labels in any REG_EQUAL note. */
|
| 1475 |
|
|
if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
|
| 1476 |
|
|
{
|
| 1477 |
|
|
if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
|
| 1478 |
|
|
remove_note (jump, note);
|
| 1479 |
|
|
else
|
| 1480 |
|
|
{
|
| 1481 |
|
|
redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
|
| 1482 |
|
|
confirm_change_group ();
|
| 1483 |
|
|
}
|
| 1484 |
|
|
}
|
| 1485 |
|
|
|
| 1486 |
|
|
if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
|
| 1487 |
|
|
/* Undefined labels will remain outside the insn stream. */
|
| 1488 |
|
|
&& INSN_UID (olabel))
|
| 1489 |
|
|
delete_related_insns (olabel);
|
| 1490 |
|
|
if (invert)
|
| 1491 |
|
|
invert_br_probabilities (jump);
|
| 1492 |
|
|
}
|
| 1493 |
|
|
|
| 1494 |
|
|
/* Invert the jump condition X contained in jump insn INSN. Accrue the
|
| 1495 |
|
|
modifications into the change group. Return nonzero for success. */
|
| 1496 |
|
|
static int
|
| 1497 |
|
|
invert_exp_1 (rtx x, rtx insn)
|
| 1498 |
|
|
{
|
| 1499 |
|
|
RTX_CODE code = GET_CODE (x);
|
| 1500 |
|
|
|
| 1501 |
|
|
if (code == IF_THEN_ELSE)
|
| 1502 |
|
|
{
|
| 1503 |
|
|
rtx comp = XEXP (x, 0);
|
| 1504 |
|
|
rtx tem;
|
| 1505 |
|
|
enum rtx_code reversed_code;
|
| 1506 |
|
|
|
| 1507 |
|
|
/* We can do this in two ways: The preferable way, which can only
|
| 1508 |
|
|
be done if this is not an integer comparison, is to reverse
|
| 1509 |
|
|
the comparison code. Otherwise, swap the THEN-part and ELSE-part
|
| 1510 |
|
|
of the IF_THEN_ELSE. If we can't do either, fail. */
|
| 1511 |
|
|
|
| 1512 |
|
|
reversed_code = reversed_comparison_code (comp, insn);
|
| 1513 |
|
|
|
| 1514 |
|
|
if (reversed_code != UNKNOWN)
|
| 1515 |
|
|
{
|
| 1516 |
|
|
validate_change (insn, &XEXP (x, 0),
|
| 1517 |
|
|
gen_rtx_fmt_ee (reversed_code,
|
| 1518 |
|
|
GET_MODE (comp), XEXP (comp, 0),
|
| 1519 |
|
|
XEXP (comp, 1)),
|
| 1520 |
|
|
1);
|
| 1521 |
|
|
return 1;
|
| 1522 |
|
|
}
|
| 1523 |
|
|
|
| 1524 |
|
|
tem = XEXP (x, 1);
|
| 1525 |
|
|
validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
|
| 1526 |
|
|
validate_change (insn, &XEXP (x, 2), tem, 1);
|
| 1527 |
|
|
return 1;
|
| 1528 |
|
|
}
|
| 1529 |
|
|
else
|
| 1530 |
|
|
return 0;
|
| 1531 |
|
|
}
|
| 1532 |
|
|
|
| 1533 |
|
|
/* Invert the condition of the jump JUMP, and make it jump to label
|
| 1534 |
|
|
NLABEL instead of where it jumps now. Accrue changes into the
|
| 1535 |
|
|
change group. Return false if we didn't see how to perform the
|
| 1536 |
|
|
inversion and redirection. */
|
| 1537 |
|
|
|
| 1538 |
|
|
int
|
| 1539 |
|
|
invert_jump_1 (rtx jump, rtx nlabel)
|
| 1540 |
|
|
{
|
| 1541 |
|
|
rtx x = pc_set (jump);
|
| 1542 |
|
|
int ochanges;
|
| 1543 |
|
|
int ok;
|
| 1544 |
|
|
|
| 1545 |
|
|
ochanges = num_validated_changes ();
|
| 1546 |
|
|
if (x == NULL)
|
| 1547 |
|
|
return 0;
|
| 1548 |
|
|
ok = invert_exp_1 (SET_SRC (x), jump);
|
| 1549 |
|
|
gcc_assert (ok);
|
| 1550 |
|
|
|
| 1551 |
|
|
if (num_validated_changes () == ochanges)
|
| 1552 |
|
|
return 0;
|
| 1553 |
|
|
|
| 1554 |
|
|
/* redirect_jump_1 will fail of nlabel == olabel, and the current use is
|
| 1555 |
|
|
in Pmode, so checking this is not merely an optimization. */
|
| 1556 |
|
|
return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
|
| 1557 |
|
|
}
|
| 1558 |
|
|
|
| 1559 |
|
|
/* Invert the condition of the jump JUMP, and make it jump to label
|
| 1560 |
|
|
NLABEL instead of where it jumps now. Return true if successful. */
|
| 1561 |
|
|
|
| 1562 |
|
|
int
|
| 1563 |
|
|
invert_jump (rtx jump, rtx nlabel, int delete_unused)
|
| 1564 |
|
|
{
|
| 1565 |
|
|
rtx olabel = JUMP_LABEL (jump);
|
| 1566 |
|
|
|
| 1567 |
|
|
if (invert_jump_1 (jump, nlabel) && apply_change_group ())
|
| 1568 |
|
|
{
|
| 1569 |
|
|
redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
|
| 1570 |
|
|
return 1;
|
| 1571 |
|
|
}
|
| 1572 |
|
|
cancel_changes (0);
|
| 1573 |
|
|
return 0;
|
| 1574 |
|
|
}
|
| 1575 |
|
|
|
| 1576 |
|
|
|
| 1577 |
|
|
/* Like rtx_equal_p except that it considers two REGs as equal
|
| 1578 |
|
|
if they renumber to the same value and considers two commutative
|
| 1579 |
|
|
operations to be the same if the order of the operands has been
|
| 1580 |
|
|
reversed. */
|
| 1581 |
|
|
|
| 1582 |
|
|
int
|
| 1583 |
|
|
rtx_renumbered_equal_p (const_rtx x, const_rtx y)
|
| 1584 |
|
|
{
|
| 1585 |
|
|
int i;
|
| 1586 |
|
|
const enum rtx_code code = GET_CODE (x);
|
| 1587 |
|
|
const char *fmt;
|
| 1588 |
|
|
|
| 1589 |
|
|
if (x == y)
|
| 1590 |
|
|
return 1;
|
| 1591 |
|
|
|
| 1592 |
|
|
if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
|
| 1593 |
|
|
&& (REG_P (y) || (GET_CODE (y) == SUBREG
|
| 1594 |
|
|
&& REG_P (SUBREG_REG (y)))))
|
| 1595 |
|
|
{
|
| 1596 |
|
|
int reg_x = -1, reg_y = -1;
|
| 1597 |
|
|
int byte_x = 0, byte_y = 0;
|
| 1598 |
|
|
struct subreg_info info;
|
| 1599 |
|
|
|
| 1600 |
|
|
if (GET_MODE (x) != GET_MODE (y))
|
| 1601 |
|
|
return 0;
|
| 1602 |
|
|
|
| 1603 |
|
|
/* If we haven't done any renumbering, don't
|
| 1604 |
|
|
make any assumptions. */
|
| 1605 |
|
|
if (reg_renumber == 0)
|
| 1606 |
|
|
return rtx_equal_p (x, y);
|
| 1607 |
|
|
|
| 1608 |
|
|
if (code == SUBREG)
|
| 1609 |
|
|
{
|
| 1610 |
|
|
reg_x = REGNO (SUBREG_REG (x));
|
| 1611 |
|
|
byte_x = SUBREG_BYTE (x);
|
| 1612 |
|
|
|
| 1613 |
|
|
if (reg_renumber[reg_x] >= 0)
|
| 1614 |
|
|
{
|
| 1615 |
|
|
subreg_get_info (reg_renumber[reg_x],
|
| 1616 |
|
|
GET_MODE (SUBREG_REG (x)), byte_x,
|
| 1617 |
|
|
GET_MODE (x), &info);
|
| 1618 |
|
|
if (!info.representable_p)
|
| 1619 |
|
|
return 0;
|
| 1620 |
|
|
reg_x = info.offset;
|
| 1621 |
|
|
byte_x = 0;
|
| 1622 |
|
|
}
|
| 1623 |
|
|
}
|
| 1624 |
|
|
else
|
| 1625 |
|
|
{
|
| 1626 |
|
|
reg_x = REGNO (x);
|
| 1627 |
|
|
if (reg_renumber[reg_x] >= 0)
|
| 1628 |
|
|
reg_x = reg_renumber[reg_x];
|
| 1629 |
|
|
}
|
| 1630 |
|
|
|
| 1631 |
|
|
if (GET_CODE (y) == SUBREG)
|
| 1632 |
|
|
{
|
| 1633 |
|
|
reg_y = REGNO (SUBREG_REG (y));
|
| 1634 |
|
|
byte_y = SUBREG_BYTE (y);
|
| 1635 |
|
|
|
| 1636 |
|
|
if (reg_renumber[reg_y] >= 0)
|
| 1637 |
|
|
{
|
| 1638 |
|
|
subreg_get_info (reg_renumber[reg_y],
|
| 1639 |
|
|
GET_MODE (SUBREG_REG (y)), byte_y,
|
| 1640 |
|
|
GET_MODE (y), &info);
|
| 1641 |
|
|
if (!info.representable_p)
|
| 1642 |
|
|
return 0;
|
| 1643 |
|
|
reg_y = info.offset;
|
| 1644 |
|
|
byte_y = 0;
|
| 1645 |
|
|
}
|
| 1646 |
|
|
}
|
| 1647 |
|
|
else
|
| 1648 |
|
|
{
|
| 1649 |
|
|
reg_y = REGNO (y);
|
| 1650 |
|
|
if (reg_renumber[reg_y] >= 0)
|
| 1651 |
|
|
reg_y = reg_renumber[reg_y];
|
| 1652 |
|
|
}
|
| 1653 |
|
|
|
| 1654 |
|
|
return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
|
| 1655 |
|
|
}
|
| 1656 |
|
|
|
| 1657 |
|
|
/* Now we have disposed of all the cases
|
| 1658 |
|
|
in which different rtx codes can match. */
|
| 1659 |
|
|
if (code != GET_CODE (y))
|
| 1660 |
|
|
return 0;
|
| 1661 |
|
|
|
| 1662 |
|
|
switch (code)
|
| 1663 |
|
|
{
|
| 1664 |
|
|
case PC:
|
| 1665 |
|
|
case CC0:
|
| 1666 |
|
|
case ADDR_VEC:
|
| 1667 |
|
|
case ADDR_DIFF_VEC:
|
| 1668 |
|
|
case CONST_INT:
|
| 1669 |
|
|
case CONST_DOUBLE:
|
| 1670 |
|
|
return 0;
|
| 1671 |
|
|
|
| 1672 |
|
|
case LABEL_REF:
|
| 1673 |
|
|
/* We can't assume nonlocal labels have their following insns yet. */
|
| 1674 |
|
|
if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
|
| 1675 |
|
|
return XEXP (x, 0) == XEXP (y, 0);
|
| 1676 |
|
|
|
| 1677 |
|
|
/* Two label-refs are equivalent if they point at labels
|
| 1678 |
|
|
in the same position in the instruction stream. */
|
| 1679 |
|
|
return (next_real_insn (XEXP (x, 0))
|
| 1680 |
|
|
== next_real_insn (XEXP (y, 0)));
|
| 1681 |
|
|
|
| 1682 |
|
|
case SYMBOL_REF:
|
| 1683 |
|
|
return XSTR (x, 0) == XSTR (y, 0);
|
| 1684 |
|
|
|
| 1685 |
|
|
case CODE_LABEL:
|
| 1686 |
|
|
/* If we didn't match EQ equality above, they aren't the same. */
|
| 1687 |
|
|
return 0;
|
| 1688 |
|
|
|
| 1689 |
|
|
default:
|
| 1690 |
|
|
break;
|
| 1691 |
|
|
}
|
| 1692 |
|
|
|
| 1693 |
|
|
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
|
| 1694 |
|
|
|
| 1695 |
|
|
if (GET_MODE (x) != GET_MODE (y))
|
| 1696 |
|
|
return 0;
|
| 1697 |
|
|
|
| 1698 |
|
|
/* MEMs refering to different address space are not equivalent. */
|
| 1699 |
|
|
if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
|
| 1700 |
|
|
return 0;
|
| 1701 |
|
|
|
| 1702 |
|
|
/* For commutative operations, the RTX match if the operand match in any
|
| 1703 |
|
|
order. Also handle the simple binary and unary cases without a loop. */
|
| 1704 |
|
|
if (targetm.commutative_p (x, UNKNOWN))
|
| 1705 |
|
|
return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
|
| 1706 |
|
|
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
|
| 1707 |
|
|
|| (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
|
| 1708 |
|
|
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
|
| 1709 |
|
|
else if (NON_COMMUTATIVE_P (x))
|
| 1710 |
|
|
return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
|
| 1711 |
|
|
&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
|
| 1712 |
|
|
else if (UNARY_P (x))
|
| 1713 |
|
|
return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
|
| 1714 |
|
|
|
| 1715 |
|
|
/* Compare the elements. If any pair of corresponding elements
|
| 1716 |
|
|
fail to match, return 0 for the whole things. */
|
| 1717 |
|
|
|
| 1718 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 1719 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 1720 |
|
|
{
|
| 1721 |
|
|
int j;
|
| 1722 |
|
|
switch (fmt[i])
|
| 1723 |
|
|
{
|
| 1724 |
|
|
case 'w':
|
| 1725 |
|
|
if (XWINT (x, i) != XWINT (y, i))
|
| 1726 |
|
|
return 0;
|
| 1727 |
|
|
break;
|
| 1728 |
|
|
|
| 1729 |
|
|
case 'i':
|
| 1730 |
|
|
if (XINT (x, i) != XINT (y, i))
|
| 1731 |
|
|
return 0;
|
| 1732 |
|
|
break;
|
| 1733 |
|
|
|
| 1734 |
|
|
case 't':
|
| 1735 |
|
|
if (XTREE (x, i) != XTREE (y, i))
|
| 1736 |
|
|
return 0;
|
| 1737 |
|
|
break;
|
| 1738 |
|
|
|
| 1739 |
|
|
case 's':
|
| 1740 |
|
|
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
| 1741 |
|
|
return 0;
|
| 1742 |
|
|
break;
|
| 1743 |
|
|
|
| 1744 |
|
|
case 'e':
|
| 1745 |
|
|
if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
|
| 1746 |
|
|
return 0;
|
| 1747 |
|
|
break;
|
| 1748 |
|
|
|
| 1749 |
|
|
case 'u':
|
| 1750 |
|
|
if (XEXP (x, i) != XEXP (y, i))
|
| 1751 |
|
|
return 0;
|
| 1752 |
|
|
/* Fall through. */
|
| 1753 |
|
|
case '0':
|
| 1754 |
|
|
break;
|
| 1755 |
|
|
|
| 1756 |
|
|
case 'E':
|
| 1757 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
| 1758 |
|
|
return 0;
|
| 1759 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
| 1760 |
|
|
if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
|
| 1761 |
|
|
return 0;
|
| 1762 |
|
|
break;
|
| 1763 |
|
|
|
| 1764 |
|
|
default:
|
| 1765 |
|
|
gcc_unreachable ();
|
| 1766 |
|
|
}
|
| 1767 |
|
|
}
|
| 1768 |
|
|
return 1;
|
| 1769 |
|
|
}
|
| 1770 |
|
|
|
| 1771 |
|
|
/* If X is a hard register or equivalent to one or a subregister of one,
|
| 1772 |
|
|
return the hard register number. If X is a pseudo register that was not
|
| 1773 |
|
|
assigned a hard register, return the pseudo register number. Otherwise,
|
| 1774 |
|
|
return -1. Any rtx is valid for X. */
|
| 1775 |
|
|
|
| 1776 |
|
|
int
|
| 1777 |
|
|
true_regnum (const_rtx x)
|
| 1778 |
|
|
{
|
| 1779 |
|
|
if (REG_P (x))
|
| 1780 |
|
|
{
|
| 1781 |
|
|
if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
|
| 1782 |
|
|
return reg_renumber[REGNO (x)];
|
| 1783 |
|
|
return REGNO (x);
|
| 1784 |
|
|
}
|
| 1785 |
|
|
if (GET_CODE (x) == SUBREG)
|
| 1786 |
|
|
{
|
| 1787 |
|
|
int base = true_regnum (SUBREG_REG (x));
|
| 1788 |
|
|
if (base >= 0
|
| 1789 |
|
|
&& base < FIRST_PSEUDO_REGISTER)
|
| 1790 |
|
|
{
|
| 1791 |
|
|
struct subreg_info info;
|
| 1792 |
|
|
|
| 1793 |
|
|
subreg_get_info (REGNO (SUBREG_REG (x)),
|
| 1794 |
|
|
GET_MODE (SUBREG_REG (x)),
|
| 1795 |
|
|
SUBREG_BYTE (x), GET_MODE (x), &info);
|
| 1796 |
|
|
|
| 1797 |
|
|
if (info.representable_p)
|
| 1798 |
|
|
return base + info.offset;
|
| 1799 |
|
|
}
|
| 1800 |
|
|
}
|
| 1801 |
|
|
return -1;
|
| 1802 |
|
|
}
|
| 1803 |
|
|
|
| 1804 |
|
|
/* Return regno of the register REG and handle subregs too. */
|
| 1805 |
|
|
unsigned int
|
| 1806 |
|
|
reg_or_subregno (const_rtx reg)
|
| 1807 |
|
|
{
|
| 1808 |
|
|
if (GET_CODE (reg) == SUBREG)
|
| 1809 |
|
|
reg = SUBREG_REG (reg);
|
| 1810 |
|
|
gcc_assert (REG_P (reg));
|
| 1811 |
|
|
return REGNO (reg);
|
| 1812 |
|
|
}
|