1 |
280 |
jeremybenn |
/* Loop transformation code generation
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Daniel Berlin <dberlin@dberlin.org>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "ggc.h"
|
27 |
|
|
#include "tree.h"
|
28 |
|
|
#include "target.h"
|
29 |
|
|
#include "rtl.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "diagnostic.h"
|
32 |
|
|
#include "obstack.h"
|
33 |
|
|
#include "tree-flow.h"
|
34 |
|
|
#include "tree-dump.h"
|
35 |
|
|
#include "timevar.h"
|
36 |
|
|
#include "cfgloop.h"
|
37 |
|
|
#include "expr.h"
|
38 |
|
|
#include "optabs.h"
|
39 |
|
|
#include "tree-chrec.h"
|
40 |
|
|
#include "tree-data-ref.h"
|
41 |
|
|
#include "tree-pass.h"
|
42 |
|
|
#include "tree-scalar-evolution.h"
|
43 |
|
|
#include "vec.h"
|
44 |
|
|
#include "lambda.h"
|
45 |
|
|
#include "vecprim.h"
|
46 |
|
|
#include "pointer-set.h"
|
47 |
|
|
|
48 |
|
|
/* This loop nest code generation is based on non-singular matrix
|
49 |
|
|
math.
|
50 |
|
|
|
51 |
|
|
A little terminology and a general sketch of the algorithm. See "A singular
|
52 |
|
|
loop transformation framework based on non-singular matrices" by Wei Li and
|
53 |
|
|
Keshav Pingali for formal proofs that the various statements below are
|
54 |
|
|
correct.
|
55 |
|
|
|
56 |
|
|
A loop iteration space represents the points traversed by the loop. A point in the
|
57 |
|
|
iteration space can be represented by a vector of size <loop depth>. You can
|
58 |
|
|
therefore represent the iteration space as an integral combinations of a set
|
59 |
|
|
of basis vectors.
|
60 |
|
|
|
61 |
|
|
A loop iteration space is dense if every integer point between the loop
|
62 |
|
|
bounds is a point in the iteration space. Every loop with a step of 1
|
63 |
|
|
therefore has a dense iteration space.
|
64 |
|
|
|
65 |
|
|
for i = 1 to 3, step 1 is a dense iteration space.
|
66 |
|
|
|
67 |
|
|
A loop iteration space is sparse if it is not dense. That is, the iteration
|
68 |
|
|
space skips integer points that are within the loop bounds.
|
69 |
|
|
|
70 |
|
|
for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
|
71 |
|
|
2 is skipped.
|
72 |
|
|
|
73 |
|
|
Dense source spaces are easy to transform, because they don't skip any
|
74 |
|
|
points to begin with. Thus we can compute the exact bounds of the target
|
75 |
|
|
space using min/max and floor/ceil.
|
76 |
|
|
|
77 |
|
|
For a dense source space, we take the transformation matrix, decompose it
|
78 |
|
|
into a lower triangular part (H) and a unimodular part (U).
|
79 |
|
|
We then compute the auxiliary space from the unimodular part (source loop
|
80 |
|
|
nest . U = auxiliary space) , which has two important properties:
|
81 |
|
|
1. It traverses the iterations in the same lexicographic order as the source
|
82 |
|
|
space.
|
83 |
|
|
2. It is a dense space when the source is a dense space (even if the target
|
84 |
|
|
space is going to be sparse).
|
85 |
|
|
|
86 |
|
|
Given the auxiliary space, we use the lower triangular part to compute the
|
87 |
|
|
bounds in the target space by simple matrix multiplication.
|
88 |
|
|
The gaps in the target space (IE the new loop step sizes) will be the
|
89 |
|
|
diagonals of the H matrix.
|
90 |
|
|
|
91 |
|
|
Sparse source spaces require another step, because you can't directly compute
|
92 |
|
|
the exact bounds of the auxiliary and target space from the sparse space.
|
93 |
|
|
Rather than try to come up with a separate algorithm to handle sparse source
|
94 |
|
|
spaces directly, we just find a legal transformation matrix that gives you
|
95 |
|
|
the sparse source space, from a dense space, and then transform the dense
|
96 |
|
|
space.
|
97 |
|
|
|
98 |
|
|
For a regular sparse space, you can represent the source space as an integer
|
99 |
|
|
lattice, and the base space of that lattice will always be dense. Thus, we
|
100 |
|
|
effectively use the lattice to figure out the transformation from the lattice
|
101 |
|
|
base space, to the sparse iteration space (IE what transform was applied to
|
102 |
|
|
the dense space to make it sparse). We then compose this transform with the
|
103 |
|
|
transformation matrix specified by the user (since our matrix transformations
|
104 |
|
|
are closed under composition, this is okay). We can then use the base space
|
105 |
|
|
(which is dense) plus the composed transformation matrix, to compute the rest
|
106 |
|
|
of the transform using the dense space algorithm above.
|
107 |
|
|
|
108 |
|
|
In other words, our sparse source space (B) is decomposed into a dense base
|
109 |
|
|
space (A), and a matrix (L) that transforms A into B, such that A.L = B.
|
110 |
|
|
We then compute the composition of L and the user transformation matrix (T),
|
111 |
|
|
so that T is now a transform from A to the result, instead of from B to the
|
112 |
|
|
result.
|
113 |
|
|
IE A.(LT) = result instead of B.T = result
|
114 |
|
|
Since A is now a dense source space, we can use the dense source space
|
115 |
|
|
algorithm above to compute the result of applying transform (LT) to A.
|
116 |
|
|
|
117 |
|
|
Fourier-Motzkin elimination is used to compute the bounds of the base space
|
118 |
|
|
of the lattice. */
|
119 |
|
|
|
120 |
|
|
static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
|
121 |
|
|
VEC(tree,heap) *, VEC(int,heap) *,
|
122 |
|
|
VEC(tree,heap) *);
|
123 |
|
|
/* Lattice stuff that is internal to the code generation algorithm. */
|
124 |
|
|
|
125 |
|
|
typedef struct lambda_lattice_s
|
126 |
|
|
{
|
127 |
|
|
/* Lattice base matrix. */
|
128 |
|
|
lambda_matrix base;
|
129 |
|
|
/* Lattice dimension. */
|
130 |
|
|
int dimension;
|
131 |
|
|
/* Origin vector for the coefficients. */
|
132 |
|
|
lambda_vector origin;
|
133 |
|
|
/* Origin matrix for the invariants. */
|
134 |
|
|
lambda_matrix origin_invariants;
|
135 |
|
|
/* Number of invariants. */
|
136 |
|
|
int invariants;
|
137 |
|
|
} *lambda_lattice;
|
138 |
|
|
|
139 |
|
|
#define LATTICE_BASE(T) ((T)->base)
|
140 |
|
|
#define LATTICE_DIMENSION(T) ((T)->dimension)
|
141 |
|
|
#define LATTICE_ORIGIN(T) ((T)->origin)
|
142 |
|
|
#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
|
143 |
|
|
#define LATTICE_INVARIANTS(T) ((T)->invariants)
|
144 |
|
|
|
145 |
|
|
static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
|
146 |
|
|
int, int);
|
147 |
|
|
static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
|
148 |
|
|
static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
|
149 |
|
|
struct obstack *);
|
150 |
|
|
|
151 |
|
|
static bool can_convert_to_perfect_nest (struct loop *);
|
152 |
|
|
|
153 |
|
|
/* Create a new lambda body vector. */
|
154 |
|
|
|
155 |
|
|
lambda_body_vector
|
156 |
|
|
lambda_body_vector_new (int size, struct obstack * lambda_obstack)
|
157 |
|
|
{
|
158 |
|
|
lambda_body_vector ret;
|
159 |
|
|
|
160 |
|
|
ret = (lambda_body_vector)obstack_alloc (lambda_obstack, sizeof (*ret));
|
161 |
|
|
LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
|
162 |
|
|
LBV_SIZE (ret) = size;
|
163 |
|
|
LBV_DENOMINATOR (ret) = 1;
|
164 |
|
|
return ret;
|
165 |
|
|
}
|
166 |
|
|
|
167 |
|
|
/* Compute the new coefficients for the vector based on the
|
168 |
|
|
*inverse* of the transformation matrix. */
|
169 |
|
|
|
170 |
|
|
lambda_body_vector
|
171 |
|
|
lambda_body_vector_compute_new (lambda_trans_matrix transform,
|
172 |
|
|
lambda_body_vector vect,
|
173 |
|
|
struct obstack * lambda_obstack)
|
174 |
|
|
{
|
175 |
|
|
lambda_body_vector temp;
|
176 |
|
|
int depth;
|
177 |
|
|
|
178 |
|
|
/* Make sure the matrix is square. */
|
179 |
|
|
gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
|
180 |
|
|
|
181 |
|
|
depth = LTM_ROWSIZE (transform);
|
182 |
|
|
|
183 |
|
|
temp = lambda_body_vector_new (depth, lambda_obstack);
|
184 |
|
|
LBV_DENOMINATOR (temp) =
|
185 |
|
|
LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
|
186 |
|
|
lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
|
187 |
|
|
LTM_MATRIX (transform), depth,
|
188 |
|
|
LBV_COEFFICIENTS (temp));
|
189 |
|
|
LBV_SIZE (temp) = LBV_SIZE (vect);
|
190 |
|
|
return temp;
|
191 |
|
|
}
|
192 |
|
|
|
193 |
|
|
/* Print out a lambda body vector. */
|
194 |
|
|
|
195 |
|
|
void
|
196 |
|
|
print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
|
197 |
|
|
{
|
198 |
|
|
print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
/* Return TRUE if two linear expressions are equal. */
|
202 |
|
|
|
203 |
|
|
static bool
|
204 |
|
|
lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
|
205 |
|
|
int depth, int invariants)
|
206 |
|
|
{
|
207 |
|
|
int i;
|
208 |
|
|
|
209 |
|
|
if (lle1 == NULL || lle2 == NULL)
|
210 |
|
|
return false;
|
211 |
|
|
if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
|
212 |
|
|
return false;
|
213 |
|
|
if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
|
214 |
|
|
return false;
|
215 |
|
|
for (i = 0; i < depth; i++)
|
216 |
|
|
if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
|
217 |
|
|
return false;
|
218 |
|
|
for (i = 0; i < invariants; i++)
|
219 |
|
|
if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
|
220 |
|
|
LLE_INVARIANT_COEFFICIENTS (lle2)[i])
|
221 |
|
|
return false;
|
222 |
|
|
return true;
|
223 |
|
|
}
|
224 |
|
|
|
225 |
|
|
/* Create a new linear expression with dimension DIM, and total number
|
226 |
|
|
of invariants INVARIANTS. */
|
227 |
|
|
|
228 |
|
|
lambda_linear_expression
|
229 |
|
|
lambda_linear_expression_new (int dim, int invariants,
|
230 |
|
|
struct obstack * lambda_obstack)
|
231 |
|
|
{
|
232 |
|
|
lambda_linear_expression ret;
|
233 |
|
|
|
234 |
|
|
ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
|
235 |
|
|
sizeof (*ret));
|
236 |
|
|
LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
|
237 |
|
|
LLE_CONSTANT (ret) = 0;
|
238 |
|
|
LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
|
239 |
|
|
LLE_DENOMINATOR (ret) = 1;
|
240 |
|
|
LLE_NEXT (ret) = NULL;
|
241 |
|
|
|
242 |
|
|
return ret;
|
243 |
|
|
}
|
244 |
|
|
|
245 |
|
|
/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
|
246 |
|
|
The starting letter used for variable names is START. */
|
247 |
|
|
|
248 |
|
|
static void
|
249 |
|
|
print_linear_expression (FILE * outfile, lambda_vector expr, int size,
|
250 |
|
|
char start)
|
251 |
|
|
{
|
252 |
|
|
int i;
|
253 |
|
|
bool first = true;
|
254 |
|
|
for (i = 0; i < size; i++)
|
255 |
|
|
{
|
256 |
|
|
if (expr[i] != 0)
|
257 |
|
|
{
|
258 |
|
|
if (first)
|
259 |
|
|
{
|
260 |
|
|
if (expr[i] < 0)
|
261 |
|
|
fprintf (outfile, "-");
|
262 |
|
|
first = false;
|
263 |
|
|
}
|
264 |
|
|
else if (expr[i] > 0)
|
265 |
|
|
fprintf (outfile, " + ");
|
266 |
|
|
else
|
267 |
|
|
fprintf (outfile, " - ");
|
268 |
|
|
if (abs (expr[i]) == 1)
|
269 |
|
|
fprintf (outfile, "%c", start + i);
|
270 |
|
|
else
|
271 |
|
|
fprintf (outfile, "%d%c", abs (expr[i]), start + i);
|
272 |
|
|
}
|
273 |
|
|
}
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
|
277 |
|
|
depth/number of coefficients is given by DEPTH, the number of invariants is
|
278 |
|
|
given by INVARIANTS, and the character to start variable names with is given
|
279 |
|
|
by START. */
|
280 |
|
|
|
281 |
|
|
void
|
282 |
|
|
print_lambda_linear_expression (FILE * outfile,
|
283 |
|
|
lambda_linear_expression expr,
|
284 |
|
|
int depth, int invariants, char start)
|
285 |
|
|
{
|
286 |
|
|
fprintf (outfile, "\tLinear expression: ");
|
287 |
|
|
print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
|
288 |
|
|
fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
|
289 |
|
|
fprintf (outfile, " invariants: ");
|
290 |
|
|
print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
|
291 |
|
|
invariants, 'A');
|
292 |
|
|
fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
/* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
|
296 |
|
|
coefficients is given by DEPTH, the number of invariants is
|
297 |
|
|
given by INVARIANTS, and the character to start variable names with is given
|
298 |
|
|
by START. */
|
299 |
|
|
|
300 |
|
|
void
|
301 |
|
|
print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
|
302 |
|
|
int invariants, char start)
|
303 |
|
|
{
|
304 |
|
|
int step;
|
305 |
|
|
lambda_linear_expression expr;
|
306 |
|
|
|
307 |
|
|
gcc_assert (loop);
|
308 |
|
|
|
309 |
|
|
expr = LL_LINEAR_OFFSET (loop);
|
310 |
|
|
step = LL_STEP (loop);
|
311 |
|
|
fprintf (outfile, " step size = %d \n", step);
|
312 |
|
|
|
313 |
|
|
if (expr)
|
314 |
|
|
{
|
315 |
|
|
fprintf (outfile, " linear offset: \n");
|
316 |
|
|
print_lambda_linear_expression (outfile, expr, depth, invariants,
|
317 |
|
|
start);
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
fprintf (outfile, " lower bound: \n");
|
321 |
|
|
for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
|
322 |
|
|
print_lambda_linear_expression (outfile, expr, depth, invariants, start);
|
323 |
|
|
fprintf (outfile, " upper bound: \n");
|
324 |
|
|
for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
|
325 |
|
|
print_lambda_linear_expression (outfile, expr, depth, invariants, start);
|
326 |
|
|
}
|
327 |
|
|
|
328 |
|
|
/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
|
329 |
|
|
number of invariants. */
|
330 |
|
|
|
331 |
|
|
lambda_loopnest
|
332 |
|
|
lambda_loopnest_new (int depth, int invariants,
|
333 |
|
|
struct obstack * lambda_obstack)
|
334 |
|
|
{
|
335 |
|
|
lambda_loopnest ret;
|
336 |
|
|
ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
|
337 |
|
|
|
338 |
|
|
LN_LOOPS (ret) = (lambda_loop *)
|
339 |
|
|
obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
|
340 |
|
|
LN_DEPTH (ret) = depth;
|
341 |
|
|
LN_INVARIANTS (ret) = invariants;
|
342 |
|
|
|
343 |
|
|
return ret;
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
/* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
|
347 |
|
|
character to use for loop names is given by START. */
|
348 |
|
|
|
349 |
|
|
void
|
350 |
|
|
print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
|
351 |
|
|
{
|
352 |
|
|
int i;
|
353 |
|
|
for (i = 0; i < LN_DEPTH (nest); i++)
|
354 |
|
|
{
|
355 |
|
|
fprintf (outfile, "Loop %c\n", start + i);
|
356 |
|
|
print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
|
357 |
|
|
LN_INVARIANTS (nest), 'i');
|
358 |
|
|
fprintf (outfile, "\n");
|
359 |
|
|
}
|
360 |
|
|
}
|
361 |
|
|
|
362 |
|
|
/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
|
363 |
|
|
of invariants. */
|
364 |
|
|
|
365 |
|
|
static lambda_lattice
|
366 |
|
|
lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
|
367 |
|
|
{
|
368 |
|
|
lambda_lattice ret
|
369 |
|
|
= (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
|
370 |
|
|
LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
|
371 |
|
|
LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
|
372 |
|
|
LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
|
373 |
|
|
LATTICE_DIMENSION (ret) = depth;
|
374 |
|
|
LATTICE_INVARIANTS (ret) = invariants;
|
375 |
|
|
return ret;
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
/* Compute the lattice base for NEST. The lattice base is essentially a
|
379 |
|
|
non-singular transform from a dense base space to a sparse iteration space.
|
380 |
|
|
We use it so that we don't have to specially handle the case of a sparse
|
381 |
|
|
iteration space in other parts of the algorithm. As a result, this routine
|
382 |
|
|
only does something interesting (IE produce a matrix that isn't the
|
383 |
|
|
identity matrix) if NEST is a sparse space. */
|
384 |
|
|
|
385 |
|
|
static lambda_lattice
|
386 |
|
|
lambda_lattice_compute_base (lambda_loopnest nest,
|
387 |
|
|
struct obstack * lambda_obstack)
|
388 |
|
|
{
|
389 |
|
|
lambda_lattice ret;
|
390 |
|
|
int depth, invariants;
|
391 |
|
|
lambda_matrix base;
|
392 |
|
|
|
393 |
|
|
int i, j, step;
|
394 |
|
|
lambda_loop loop;
|
395 |
|
|
lambda_linear_expression expression;
|
396 |
|
|
|
397 |
|
|
depth = LN_DEPTH (nest);
|
398 |
|
|
invariants = LN_INVARIANTS (nest);
|
399 |
|
|
|
400 |
|
|
ret = lambda_lattice_new (depth, invariants, lambda_obstack);
|
401 |
|
|
base = LATTICE_BASE (ret);
|
402 |
|
|
for (i = 0; i < depth; i++)
|
403 |
|
|
{
|
404 |
|
|
loop = LN_LOOPS (nest)[i];
|
405 |
|
|
gcc_assert (loop);
|
406 |
|
|
step = LL_STEP (loop);
|
407 |
|
|
/* If we have a step of 1, then the base is one, and the
|
408 |
|
|
origin and invariant coefficients are 0. */
|
409 |
|
|
if (step == 1)
|
410 |
|
|
{
|
411 |
|
|
for (j = 0; j < depth; j++)
|
412 |
|
|
base[i][j] = 0;
|
413 |
|
|
base[i][i] = 1;
|
414 |
|
|
LATTICE_ORIGIN (ret)[i] = 0;
|
415 |
|
|
for (j = 0; j < invariants; j++)
|
416 |
|
|
LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
|
417 |
|
|
}
|
418 |
|
|
else
|
419 |
|
|
{
|
420 |
|
|
/* Otherwise, we need the lower bound expression (which must
|
421 |
|
|
be an affine function) to determine the base. */
|
422 |
|
|
expression = LL_LOWER_BOUND (loop);
|
423 |
|
|
gcc_assert (expression && !LLE_NEXT (expression)
|
424 |
|
|
&& LLE_DENOMINATOR (expression) == 1);
|
425 |
|
|
|
426 |
|
|
/* The lower triangular portion of the base is going to be the
|
427 |
|
|
coefficient times the step */
|
428 |
|
|
for (j = 0; j < i; j++)
|
429 |
|
|
base[i][j] = LLE_COEFFICIENTS (expression)[j]
|
430 |
|
|
* LL_STEP (LN_LOOPS (nest)[j]);
|
431 |
|
|
base[i][i] = step;
|
432 |
|
|
for (j = i + 1; j < depth; j++)
|
433 |
|
|
base[i][j] = 0;
|
434 |
|
|
|
435 |
|
|
/* Origin for this loop is the constant of the lower bound
|
436 |
|
|
expression. */
|
437 |
|
|
LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
|
438 |
|
|
|
439 |
|
|
/* Coefficient for the invariants are equal to the invariant
|
440 |
|
|
coefficients in the expression. */
|
441 |
|
|
for (j = 0; j < invariants; j++)
|
442 |
|
|
LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
|
443 |
|
|
LLE_INVARIANT_COEFFICIENTS (expression)[j];
|
444 |
|
|
}
|
445 |
|
|
}
|
446 |
|
|
return ret;
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
/* Compute the least common multiple of two numbers A and B . */
|
450 |
|
|
|
451 |
|
|
int
|
452 |
|
|
least_common_multiple (int a, int b)
|
453 |
|
|
{
|
454 |
|
|
return (abs (a) * abs (b) / gcd (a, b));
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
/* Perform Fourier-Motzkin elimination to calculate the bounds of the
|
458 |
|
|
auxiliary nest.
|
459 |
|
|
Fourier-Motzkin is a way of reducing systems of linear inequalities so that
|
460 |
|
|
it is easy to calculate the answer and bounds.
|
461 |
|
|
A sketch of how it works:
|
462 |
|
|
Given a system of linear inequalities, ai * xj >= bk, you can always
|
463 |
|
|
rewrite the constraints so they are all of the form
|
464 |
|
|
a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
|
465 |
|
|
in b1 ... bk, and some a in a1...ai)
|
466 |
|
|
You can then eliminate this x from the non-constant inequalities by
|
467 |
|
|
rewriting these as a <= b, x >= constant, and delete the x variable.
|
468 |
|
|
You can then repeat this for any remaining x variables, and then we have
|
469 |
|
|
an easy to use variable <= constant (or no variables at all) form that we
|
470 |
|
|
can construct our bounds from.
|
471 |
|
|
|
472 |
|
|
In our case, each time we eliminate, we construct part of the bound from
|
473 |
|
|
the ith variable, then delete the ith variable.
|
474 |
|
|
|
475 |
|
|
Remember the constant are in our vector a, our coefficient matrix is A,
|
476 |
|
|
and our invariant coefficient matrix is B.
|
477 |
|
|
|
478 |
|
|
SIZE is the size of the matrices being passed.
|
479 |
|
|
DEPTH is the loop nest depth.
|
480 |
|
|
INVARIANTS is the number of loop invariants.
|
481 |
|
|
A, B, and a are the coefficient matrix, invariant coefficient, and a
|
482 |
|
|
vector of constants, respectively. */
|
483 |
|
|
|
484 |
|
|
static lambda_loopnest
|
485 |
|
|
compute_nest_using_fourier_motzkin (int size,
|
486 |
|
|
int depth,
|
487 |
|
|
int invariants,
|
488 |
|
|
lambda_matrix A,
|
489 |
|
|
lambda_matrix B,
|
490 |
|
|
lambda_vector a,
|
491 |
|
|
struct obstack * lambda_obstack)
|
492 |
|
|
{
|
493 |
|
|
|
494 |
|
|
int multiple, f1, f2;
|
495 |
|
|
int i, j, k;
|
496 |
|
|
lambda_linear_expression expression;
|
497 |
|
|
lambda_loop loop;
|
498 |
|
|
lambda_loopnest auxillary_nest;
|
499 |
|
|
lambda_matrix swapmatrix, A1, B1;
|
500 |
|
|
lambda_vector swapvector, a1;
|
501 |
|
|
int newsize;
|
502 |
|
|
|
503 |
|
|
A1 = lambda_matrix_new (128, depth);
|
504 |
|
|
B1 = lambda_matrix_new (128, invariants);
|
505 |
|
|
a1 = lambda_vector_new (128);
|
506 |
|
|
|
507 |
|
|
auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
|
508 |
|
|
|
509 |
|
|
for (i = depth - 1; i >= 0; i--)
|
510 |
|
|
{
|
511 |
|
|
loop = lambda_loop_new ();
|
512 |
|
|
LN_LOOPS (auxillary_nest)[i] = loop;
|
513 |
|
|
LL_STEP (loop) = 1;
|
514 |
|
|
|
515 |
|
|
for (j = 0; j < size; j++)
|
516 |
|
|
{
|
517 |
|
|
if (A[j][i] < 0)
|
518 |
|
|
{
|
519 |
|
|
/* Any linear expression in the matrix with a coefficient less
|
520 |
|
|
than 0 becomes part of the new lower bound. */
|
521 |
|
|
expression = lambda_linear_expression_new (depth, invariants,
|
522 |
|
|
lambda_obstack);
|
523 |
|
|
|
524 |
|
|
for (k = 0; k < i; k++)
|
525 |
|
|
LLE_COEFFICIENTS (expression)[k] = A[j][k];
|
526 |
|
|
|
527 |
|
|
for (k = 0; k < invariants; k++)
|
528 |
|
|
LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
|
529 |
|
|
|
530 |
|
|
LLE_DENOMINATOR (expression) = -1 * A[j][i];
|
531 |
|
|
LLE_CONSTANT (expression) = -1 * a[j];
|
532 |
|
|
|
533 |
|
|
/* Ignore if identical to the existing lower bound. */
|
534 |
|
|
if (!lle_equal (LL_LOWER_BOUND (loop),
|
535 |
|
|
expression, depth, invariants))
|
536 |
|
|
{
|
537 |
|
|
LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
|
538 |
|
|
LL_LOWER_BOUND (loop) = expression;
|
539 |
|
|
}
|
540 |
|
|
|
541 |
|
|
}
|
542 |
|
|
else if (A[j][i] > 0)
|
543 |
|
|
{
|
544 |
|
|
/* Any linear expression with a coefficient greater than 0
|
545 |
|
|
becomes part of the new upper bound. */
|
546 |
|
|
expression = lambda_linear_expression_new (depth, invariants,
|
547 |
|
|
lambda_obstack);
|
548 |
|
|
for (k = 0; k < i; k++)
|
549 |
|
|
LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
|
550 |
|
|
|
551 |
|
|
for (k = 0; k < invariants; k++)
|
552 |
|
|
LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
|
553 |
|
|
|
554 |
|
|
LLE_DENOMINATOR (expression) = A[j][i];
|
555 |
|
|
LLE_CONSTANT (expression) = a[j];
|
556 |
|
|
|
557 |
|
|
/* Ignore if identical to the existing upper bound. */
|
558 |
|
|
if (!lle_equal (LL_UPPER_BOUND (loop),
|
559 |
|
|
expression, depth, invariants))
|
560 |
|
|
{
|
561 |
|
|
LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
|
562 |
|
|
LL_UPPER_BOUND (loop) = expression;
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
}
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
/* This portion creates a new system of linear inequalities by deleting
|
569 |
|
|
the i'th variable, reducing the system by one variable. */
|
570 |
|
|
newsize = 0;
|
571 |
|
|
for (j = 0; j < size; j++)
|
572 |
|
|
{
|
573 |
|
|
/* If the coefficient for the i'th variable is 0, then we can just
|
574 |
|
|
eliminate the variable straightaway. Otherwise, we have to
|
575 |
|
|
multiply through by the coefficients we are eliminating. */
|
576 |
|
|
if (A[j][i] == 0)
|
577 |
|
|
{
|
578 |
|
|
lambda_vector_copy (A[j], A1[newsize], depth);
|
579 |
|
|
lambda_vector_copy (B[j], B1[newsize], invariants);
|
580 |
|
|
a1[newsize] = a[j];
|
581 |
|
|
newsize++;
|
582 |
|
|
}
|
583 |
|
|
else if (A[j][i] > 0)
|
584 |
|
|
{
|
585 |
|
|
for (k = 0; k < size; k++)
|
586 |
|
|
{
|
587 |
|
|
if (A[k][i] < 0)
|
588 |
|
|
{
|
589 |
|
|
multiple = least_common_multiple (A[j][i], A[k][i]);
|
590 |
|
|
f1 = multiple / A[j][i];
|
591 |
|
|
f2 = -1 * multiple / A[k][i];
|
592 |
|
|
|
593 |
|
|
lambda_vector_add_mc (A[j], f1, A[k], f2,
|
594 |
|
|
A1[newsize], depth);
|
595 |
|
|
lambda_vector_add_mc (B[j], f1, B[k], f2,
|
596 |
|
|
B1[newsize], invariants);
|
597 |
|
|
a1[newsize] = f1 * a[j] + f2 * a[k];
|
598 |
|
|
newsize++;
|
599 |
|
|
}
|
600 |
|
|
}
|
601 |
|
|
}
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
swapmatrix = A;
|
605 |
|
|
A = A1;
|
606 |
|
|
A1 = swapmatrix;
|
607 |
|
|
|
608 |
|
|
swapmatrix = B;
|
609 |
|
|
B = B1;
|
610 |
|
|
B1 = swapmatrix;
|
611 |
|
|
|
612 |
|
|
swapvector = a;
|
613 |
|
|
a = a1;
|
614 |
|
|
a1 = swapvector;
|
615 |
|
|
|
616 |
|
|
size = newsize;
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
return auxillary_nest;
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
/* Compute the loop bounds for the auxiliary space NEST.
|
623 |
|
|
Input system used is Ax <= b. TRANS is the unimodular transformation.
|
624 |
|
|
Given the original nest, this function will
|
625 |
|
|
1. Convert the nest into matrix form, which consists of a matrix for the
|
626 |
|
|
coefficients, a matrix for the
|
627 |
|
|
invariant coefficients, and a vector for the constants.
|
628 |
|
|
2. Use the matrix form to calculate the lattice base for the nest (which is
|
629 |
|
|
a dense space)
|
630 |
|
|
3. Compose the dense space transform with the user specified transform, to
|
631 |
|
|
get a transform we can easily calculate transformed bounds for.
|
632 |
|
|
4. Multiply the composed transformation matrix times the matrix form of the
|
633 |
|
|
loop.
|
634 |
|
|
5. Transform the newly created matrix (from step 4) back into a loop nest
|
635 |
|
|
using Fourier-Motzkin elimination to figure out the bounds. */
|
636 |
|
|
|
637 |
|
|
static lambda_loopnest
|
638 |
|
|
lambda_compute_auxillary_space (lambda_loopnest nest,
|
639 |
|
|
lambda_trans_matrix trans,
|
640 |
|
|
struct obstack * lambda_obstack)
|
641 |
|
|
{
|
642 |
|
|
lambda_matrix A, B, A1, B1;
|
643 |
|
|
lambda_vector a, a1;
|
644 |
|
|
lambda_matrix invertedtrans;
|
645 |
|
|
int depth, invariants, size;
|
646 |
|
|
int i, j;
|
647 |
|
|
lambda_loop loop;
|
648 |
|
|
lambda_linear_expression expression;
|
649 |
|
|
lambda_lattice lattice;
|
650 |
|
|
|
651 |
|
|
depth = LN_DEPTH (nest);
|
652 |
|
|
invariants = LN_INVARIANTS (nest);
|
653 |
|
|
|
654 |
|
|
/* Unfortunately, we can't know the number of constraints we'll have
|
655 |
|
|
ahead of time, but this should be enough even in ridiculous loop nest
|
656 |
|
|
cases. We must not go over this limit. */
|
657 |
|
|
A = lambda_matrix_new (128, depth);
|
658 |
|
|
B = lambda_matrix_new (128, invariants);
|
659 |
|
|
a = lambda_vector_new (128);
|
660 |
|
|
|
661 |
|
|
A1 = lambda_matrix_new (128, depth);
|
662 |
|
|
B1 = lambda_matrix_new (128, invariants);
|
663 |
|
|
a1 = lambda_vector_new (128);
|
664 |
|
|
|
665 |
|
|
/* Store the bounds in the equation matrix A, constant vector a, and
|
666 |
|
|
invariant matrix B, so that we have Ax <= a + B.
|
667 |
|
|
This requires a little equation rearranging so that everything is on the
|
668 |
|
|
correct side of the inequality. */
|
669 |
|
|
size = 0;
|
670 |
|
|
for (i = 0; i < depth; i++)
|
671 |
|
|
{
|
672 |
|
|
loop = LN_LOOPS (nest)[i];
|
673 |
|
|
|
674 |
|
|
/* First we do the lower bound. */
|
675 |
|
|
if (LL_STEP (loop) > 0)
|
676 |
|
|
expression = LL_LOWER_BOUND (loop);
|
677 |
|
|
else
|
678 |
|
|
expression = LL_UPPER_BOUND (loop);
|
679 |
|
|
|
680 |
|
|
for (; expression != NULL; expression = LLE_NEXT (expression))
|
681 |
|
|
{
|
682 |
|
|
/* Fill in the coefficient. */
|
683 |
|
|
for (j = 0; j < i; j++)
|
684 |
|
|
A[size][j] = LLE_COEFFICIENTS (expression)[j];
|
685 |
|
|
|
686 |
|
|
/* And the invariant coefficient. */
|
687 |
|
|
for (j = 0; j < invariants; j++)
|
688 |
|
|
B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
|
689 |
|
|
|
690 |
|
|
/* And the constant. */
|
691 |
|
|
a[size] = LLE_CONSTANT (expression);
|
692 |
|
|
|
693 |
|
|
/* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
|
694 |
|
|
constants and single variables on */
|
695 |
|
|
A[size][i] = -1 * LLE_DENOMINATOR (expression);
|
696 |
|
|
a[size] *= -1;
|
697 |
|
|
for (j = 0; j < invariants; j++)
|
698 |
|
|
B[size][j] *= -1;
|
699 |
|
|
|
700 |
|
|
size++;
|
701 |
|
|
/* Need to increase matrix sizes above. */
|
702 |
|
|
gcc_assert (size <= 127);
|
703 |
|
|
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* Then do the exact same thing for the upper bounds. */
|
707 |
|
|
if (LL_STEP (loop) > 0)
|
708 |
|
|
expression = LL_UPPER_BOUND (loop);
|
709 |
|
|
else
|
710 |
|
|
expression = LL_LOWER_BOUND (loop);
|
711 |
|
|
|
712 |
|
|
for (; expression != NULL; expression = LLE_NEXT (expression))
|
713 |
|
|
{
|
714 |
|
|
/* Fill in the coefficient. */
|
715 |
|
|
for (j = 0; j < i; j++)
|
716 |
|
|
A[size][j] = LLE_COEFFICIENTS (expression)[j];
|
717 |
|
|
|
718 |
|
|
/* And the invariant coefficient. */
|
719 |
|
|
for (j = 0; j < invariants; j++)
|
720 |
|
|
B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
|
721 |
|
|
|
722 |
|
|
/* And the constant. */
|
723 |
|
|
a[size] = LLE_CONSTANT (expression);
|
724 |
|
|
|
725 |
|
|
/* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
|
726 |
|
|
for (j = 0; j < i; j++)
|
727 |
|
|
A[size][j] *= -1;
|
728 |
|
|
A[size][i] = LLE_DENOMINATOR (expression);
|
729 |
|
|
size++;
|
730 |
|
|
/* Need to increase matrix sizes above. */
|
731 |
|
|
gcc_assert (size <= 127);
|
732 |
|
|
|
733 |
|
|
}
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
/* Compute the lattice base x = base * y + origin, where y is the
|
737 |
|
|
base space. */
|
738 |
|
|
lattice = lambda_lattice_compute_base (nest, lambda_obstack);
|
739 |
|
|
|
740 |
|
|
/* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
|
741 |
|
|
|
742 |
|
|
/* A1 = A * L */
|
743 |
|
|
lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
|
744 |
|
|
|
745 |
|
|
/* a1 = a - A * origin constant. */
|
746 |
|
|
lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
|
747 |
|
|
lambda_vector_add_mc (a, 1, a1, -1, a1, size);
|
748 |
|
|
|
749 |
|
|
/* B1 = B - A * origin invariant. */
|
750 |
|
|
lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
|
751 |
|
|
invariants);
|
752 |
|
|
lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
|
753 |
|
|
|
754 |
|
|
/* Now compute the auxiliary space bounds by first inverting U, multiplying
|
755 |
|
|
it by A1, then performing Fourier-Motzkin. */
|
756 |
|
|
|
757 |
|
|
invertedtrans = lambda_matrix_new (depth, depth);
|
758 |
|
|
|
759 |
|
|
/* Compute the inverse of U. */
|
760 |
|
|
lambda_matrix_inverse (LTM_MATRIX (trans),
|
761 |
|
|
invertedtrans, depth);
|
762 |
|
|
|
763 |
|
|
/* A = A1 inv(U). */
|
764 |
|
|
lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
|
765 |
|
|
|
766 |
|
|
return compute_nest_using_fourier_motzkin (size, depth, invariants,
|
767 |
|
|
A, B1, a1, lambda_obstack);
|
768 |
|
|
}
|
769 |
|
|
|
770 |
|
|
/* Compute the loop bounds for the target space, using the bounds of
|
771 |
|
|
the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
|
772 |
|
|
The target space loop bounds are computed by multiplying the triangular
|
773 |
|
|
matrix H by the auxiliary nest, to get the new loop bounds. The sign of
|
774 |
|
|
the loop steps (positive or negative) is then used to swap the bounds if
|
775 |
|
|
the loop counts downwards.
|
776 |
|
|
Return the target loopnest. */
|
777 |
|
|
|
778 |
|
|
static lambda_loopnest
|
779 |
|
|
lambda_compute_target_space (lambda_loopnest auxillary_nest,
|
780 |
|
|
lambda_trans_matrix H, lambda_vector stepsigns,
|
781 |
|
|
struct obstack * lambda_obstack)
|
782 |
|
|
{
|
783 |
|
|
lambda_matrix inverse, H1;
|
784 |
|
|
int determinant, i, j;
|
785 |
|
|
int gcd1, gcd2;
|
786 |
|
|
int factor;
|
787 |
|
|
|
788 |
|
|
lambda_loopnest target_nest;
|
789 |
|
|
int depth, invariants;
|
790 |
|
|
lambda_matrix target;
|
791 |
|
|
|
792 |
|
|
lambda_loop auxillary_loop, target_loop;
|
793 |
|
|
lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
|
794 |
|
|
|
795 |
|
|
depth = LN_DEPTH (auxillary_nest);
|
796 |
|
|
invariants = LN_INVARIANTS (auxillary_nest);
|
797 |
|
|
|
798 |
|
|
inverse = lambda_matrix_new (depth, depth);
|
799 |
|
|
determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
|
800 |
|
|
|
801 |
|
|
/* H1 is H excluding its diagonal. */
|
802 |
|
|
H1 = lambda_matrix_new (depth, depth);
|
803 |
|
|
lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
|
804 |
|
|
|
805 |
|
|
for (i = 0; i < depth; i++)
|
806 |
|
|
H1[i][i] = 0;
|
807 |
|
|
|
808 |
|
|
/* Computes the linear offsets of the loop bounds. */
|
809 |
|
|
target = lambda_matrix_new (depth, depth);
|
810 |
|
|
lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
|
811 |
|
|
|
812 |
|
|
target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
|
813 |
|
|
|
814 |
|
|
for (i = 0; i < depth; i++)
|
815 |
|
|
{
|
816 |
|
|
|
817 |
|
|
/* Get a new loop structure. */
|
818 |
|
|
target_loop = lambda_loop_new ();
|
819 |
|
|
LN_LOOPS (target_nest)[i] = target_loop;
|
820 |
|
|
|
821 |
|
|
/* Computes the gcd of the coefficients of the linear part. */
|
822 |
|
|
gcd1 = lambda_vector_gcd (target[i], i);
|
823 |
|
|
|
824 |
|
|
/* Include the denominator in the GCD. */
|
825 |
|
|
gcd1 = gcd (gcd1, determinant);
|
826 |
|
|
|
827 |
|
|
/* Now divide through by the gcd. */
|
828 |
|
|
for (j = 0; j < i; j++)
|
829 |
|
|
target[i][j] = target[i][j] / gcd1;
|
830 |
|
|
|
831 |
|
|
expression = lambda_linear_expression_new (depth, invariants,
|
832 |
|
|
lambda_obstack);
|
833 |
|
|
lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
|
834 |
|
|
LLE_DENOMINATOR (expression) = determinant / gcd1;
|
835 |
|
|
LLE_CONSTANT (expression) = 0;
|
836 |
|
|
lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
|
837 |
|
|
invariants);
|
838 |
|
|
LL_LINEAR_OFFSET (target_loop) = expression;
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
/* For each loop, compute the new bounds from H. */
|
842 |
|
|
for (i = 0; i < depth; i++)
|
843 |
|
|
{
|
844 |
|
|
auxillary_loop = LN_LOOPS (auxillary_nest)[i];
|
845 |
|
|
target_loop = LN_LOOPS (target_nest)[i];
|
846 |
|
|
LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
|
847 |
|
|
factor = LTM_MATRIX (H)[i][i];
|
848 |
|
|
|
849 |
|
|
/* First we do the lower bound. */
|
850 |
|
|
auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
|
851 |
|
|
|
852 |
|
|
for (; auxillary_expr != NULL;
|
853 |
|
|
auxillary_expr = LLE_NEXT (auxillary_expr))
|
854 |
|
|
{
|
855 |
|
|
target_expr = lambda_linear_expression_new (depth, invariants,
|
856 |
|
|
lambda_obstack);
|
857 |
|
|
lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
|
858 |
|
|
depth, inverse, depth,
|
859 |
|
|
LLE_COEFFICIENTS (target_expr));
|
860 |
|
|
lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
|
861 |
|
|
LLE_COEFFICIENTS (target_expr), depth,
|
862 |
|
|
factor);
|
863 |
|
|
|
864 |
|
|
LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
|
865 |
|
|
lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
|
866 |
|
|
LLE_INVARIANT_COEFFICIENTS (target_expr),
|
867 |
|
|
invariants);
|
868 |
|
|
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
|
869 |
|
|
LLE_INVARIANT_COEFFICIENTS (target_expr),
|
870 |
|
|
invariants, factor);
|
871 |
|
|
LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
|
872 |
|
|
|
873 |
|
|
if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
|
874 |
|
|
{
|
875 |
|
|
LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
|
876 |
|
|
* determinant;
|
877 |
|
|
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
|
878 |
|
|
(target_expr),
|
879 |
|
|
LLE_INVARIANT_COEFFICIENTS
|
880 |
|
|
(target_expr), invariants,
|
881 |
|
|
determinant);
|
882 |
|
|
LLE_DENOMINATOR (target_expr) =
|
883 |
|
|
LLE_DENOMINATOR (target_expr) * determinant;
|
884 |
|
|
}
|
885 |
|
|
/* Find the gcd and divide by it here, rather than doing it
|
886 |
|
|
at the tree level. */
|
887 |
|
|
gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
|
888 |
|
|
gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
|
889 |
|
|
invariants);
|
890 |
|
|
gcd1 = gcd (gcd1, gcd2);
|
891 |
|
|
gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
|
892 |
|
|
gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
|
893 |
|
|
for (j = 0; j < depth; j++)
|
894 |
|
|
LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
|
895 |
|
|
for (j = 0; j < invariants; j++)
|
896 |
|
|
LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
|
897 |
|
|
LLE_CONSTANT (target_expr) /= gcd1;
|
898 |
|
|
LLE_DENOMINATOR (target_expr) /= gcd1;
|
899 |
|
|
/* Ignore if identical to existing bound. */
|
900 |
|
|
if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
|
901 |
|
|
invariants))
|
902 |
|
|
{
|
903 |
|
|
LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
|
904 |
|
|
LL_LOWER_BOUND (target_loop) = target_expr;
|
905 |
|
|
}
|
906 |
|
|
}
|
907 |
|
|
/* Now do the upper bound. */
|
908 |
|
|
auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
|
909 |
|
|
|
910 |
|
|
for (; auxillary_expr != NULL;
|
911 |
|
|
auxillary_expr = LLE_NEXT (auxillary_expr))
|
912 |
|
|
{
|
913 |
|
|
target_expr = lambda_linear_expression_new (depth, invariants,
|
914 |
|
|
lambda_obstack);
|
915 |
|
|
lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
|
916 |
|
|
depth, inverse, depth,
|
917 |
|
|
LLE_COEFFICIENTS (target_expr));
|
918 |
|
|
lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
|
919 |
|
|
LLE_COEFFICIENTS (target_expr), depth,
|
920 |
|
|
factor);
|
921 |
|
|
LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
|
922 |
|
|
lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
|
923 |
|
|
LLE_INVARIANT_COEFFICIENTS (target_expr),
|
924 |
|
|
invariants);
|
925 |
|
|
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
|
926 |
|
|
LLE_INVARIANT_COEFFICIENTS (target_expr),
|
927 |
|
|
invariants, factor);
|
928 |
|
|
LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
|
929 |
|
|
|
930 |
|
|
if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
|
931 |
|
|
{
|
932 |
|
|
LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
|
933 |
|
|
* determinant;
|
934 |
|
|
lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
|
935 |
|
|
(target_expr),
|
936 |
|
|
LLE_INVARIANT_COEFFICIENTS
|
937 |
|
|
(target_expr), invariants,
|
938 |
|
|
determinant);
|
939 |
|
|
LLE_DENOMINATOR (target_expr) =
|
940 |
|
|
LLE_DENOMINATOR (target_expr) * determinant;
|
941 |
|
|
}
|
942 |
|
|
/* Find the gcd and divide by it here, instead of at the
|
943 |
|
|
tree level. */
|
944 |
|
|
gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
|
945 |
|
|
gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
|
946 |
|
|
invariants);
|
947 |
|
|
gcd1 = gcd (gcd1, gcd2);
|
948 |
|
|
gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
|
949 |
|
|
gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
|
950 |
|
|
for (j = 0; j < depth; j++)
|
951 |
|
|
LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
|
952 |
|
|
for (j = 0; j < invariants; j++)
|
953 |
|
|
LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
|
954 |
|
|
LLE_CONSTANT (target_expr) /= gcd1;
|
955 |
|
|
LLE_DENOMINATOR (target_expr) /= gcd1;
|
956 |
|
|
/* Ignore if equal to existing bound. */
|
957 |
|
|
if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
|
958 |
|
|
invariants))
|
959 |
|
|
{
|
960 |
|
|
LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
|
961 |
|
|
LL_UPPER_BOUND (target_loop) = target_expr;
|
962 |
|
|
}
|
963 |
|
|
}
|
964 |
|
|
}
|
965 |
|
|
for (i = 0; i < depth; i++)
|
966 |
|
|
{
|
967 |
|
|
target_loop = LN_LOOPS (target_nest)[i];
|
968 |
|
|
/* If necessary, exchange the upper and lower bounds and negate
|
969 |
|
|
the step size. */
|
970 |
|
|
if (stepsigns[i] < 0)
|
971 |
|
|
{
|
972 |
|
|
LL_STEP (target_loop) *= -1;
|
973 |
|
|
tmp_expr = LL_LOWER_BOUND (target_loop);
|
974 |
|
|
LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
|
975 |
|
|
LL_UPPER_BOUND (target_loop) = tmp_expr;
|
976 |
|
|
}
|
977 |
|
|
}
|
978 |
|
|
return target_nest;
|
979 |
|
|
}
|
980 |
|
|
|
981 |
|
|
/* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
|
982 |
|
|
result. */
|
983 |
|
|
|
984 |
|
|
static lambda_vector
|
985 |
|
|
lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
|
986 |
|
|
{
|
987 |
|
|
lambda_matrix matrix, H;
|
988 |
|
|
int size;
|
989 |
|
|
lambda_vector newsteps;
|
990 |
|
|
int i, j, factor, minimum_column;
|
991 |
|
|
int temp;
|
992 |
|
|
|
993 |
|
|
matrix = LTM_MATRIX (trans);
|
994 |
|
|
size = LTM_ROWSIZE (trans);
|
995 |
|
|
H = lambda_matrix_new (size, size);
|
996 |
|
|
|
997 |
|
|
newsteps = lambda_vector_new (size);
|
998 |
|
|
lambda_vector_copy (stepsigns, newsteps, size);
|
999 |
|
|
|
1000 |
|
|
lambda_matrix_copy (matrix, H, size, size);
|
1001 |
|
|
|
1002 |
|
|
for (j = 0; j < size; j++)
|
1003 |
|
|
{
|
1004 |
|
|
lambda_vector row;
|
1005 |
|
|
row = H[j];
|
1006 |
|
|
for (i = j; i < size; i++)
|
1007 |
|
|
if (row[i] < 0)
|
1008 |
|
|
lambda_matrix_col_negate (H, size, i);
|
1009 |
|
|
while (lambda_vector_first_nz (row, size, j + 1) < size)
|
1010 |
|
|
{
|
1011 |
|
|
minimum_column = lambda_vector_min_nz (row, size, j);
|
1012 |
|
|
lambda_matrix_col_exchange (H, size, j, minimum_column);
|
1013 |
|
|
|
1014 |
|
|
temp = newsteps[j];
|
1015 |
|
|
newsteps[j] = newsteps[minimum_column];
|
1016 |
|
|
newsteps[minimum_column] = temp;
|
1017 |
|
|
|
1018 |
|
|
for (i = j + 1; i < size; i++)
|
1019 |
|
|
{
|
1020 |
|
|
factor = row[i] / row[j];
|
1021 |
|
|
lambda_matrix_col_add (H, size, j, i, -1 * factor);
|
1022 |
|
|
}
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
return newsteps;
|
1026 |
|
|
}
|
1027 |
|
|
|
1028 |
|
|
/* Transform NEST according to TRANS, and return the new loopnest.
|
1029 |
|
|
This involves
|
1030 |
|
|
1. Computing a lattice base for the transformation
|
1031 |
|
|
2. Composing the dense base with the specified transformation (TRANS)
|
1032 |
|
|
3. Decomposing the combined transformation into a lower triangular portion,
|
1033 |
|
|
and a unimodular portion.
|
1034 |
|
|
4. Computing the auxiliary nest using the unimodular portion.
|
1035 |
|
|
5. Computing the target nest using the auxiliary nest and the lower
|
1036 |
|
|
triangular portion. */
|
1037 |
|
|
|
1038 |
|
|
lambda_loopnest
|
1039 |
|
|
lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
|
1040 |
|
|
struct obstack * lambda_obstack)
|
1041 |
|
|
{
|
1042 |
|
|
lambda_loopnest auxillary_nest, target_nest;
|
1043 |
|
|
|
1044 |
|
|
int depth, invariants;
|
1045 |
|
|
int i, j;
|
1046 |
|
|
lambda_lattice lattice;
|
1047 |
|
|
lambda_trans_matrix trans1, H, U;
|
1048 |
|
|
lambda_loop loop;
|
1049 |
|
|
lambda_linear_expression expression;
|
1050 |
|
|
lambda_vector origin;
|
1051 |
|
|
lambda_matrix origin_invariants;
|
1052 |
|
|
lambda_vector stepsigns;
|
1053 |
|
|
int f;
|
1054 |
|
|
|
1055 |
|
|
depth = LN_DEPTH (nest);
|
1056 |
|
|
invariants = LN_INVARIANTS (nest);
|
1057 |
|
|
|
1058 |
|
|
/* Keep track of the signs of the loop steps. */
|
1059 |
|
|
stepsigns = lambda_vector_new (depth);
|
1060 |
|
|
for (i = 0; i < depth; i++)
|
1061 |
|
|
{
|
1062 |
|
|
if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
|
1063 |
|
|
stepsigns[i] = 1;
|
1064 |
|
|
else
|
1065 |
|
|
stepsigns[i] = -1;
|
1066 |
|
|
}
|
1067 |
|
|
|
1068 |
|
|
/* Compute the lattice base. */
|
1069 |
|
|
lattice = lambda_lattice_compute_base (nest, lambda_obstack);
|
1070 |
|
|
trans1 = lambda_trans_matrix_new (depth, depth);
|
1071 |
|
|
|
1072 |
|
|
/* Multiply the transformation matrix by the lattice base. */
|
1073 |
|
|
|
1074 |
|
|
lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
|
1075 |
|
|
LTM_MATRIX (trans1), depth, depth, depth);
|
1076 |
|
|
|
1077 |
|
|
/* Compute the Hermite normal form for the new transformation matrix. */
|
1078 |
|
|
H = lambda_trans_matrix_new (depth, depth);
|
1079 |
|
|
U = lambda_trans_matrix_new (depth, depth);
|
1080 |
|
|
lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
|
1081 |
|
|
LTM_MATRIX (U));
|
1082 |
|
|
|
1083 |
|
|
/* Compute the auxiliary loop nest's space from the unimodular
|
1084 |
|
|
portion. */
|
1085 |
|
|
auxillary_nest = lambda_compute_auxillary_space (nest, U, lambda_obstack);
|
1086 |
|
|
|
1087 |
|
|
/* Compute the loop step signs from the old step signs and the
|
1088 |
|
|
transformation matrix. */
|
1089 |
|
|
stepsigns = lambda_compute_step_signs (trans1, stepsigns);
|
1090 |
|
|
|
1091 |
|
|
/* Compute the target loop nest space from the auxiliary nest and
|
1092 |
|
|
the lower triangular matrix H. */
|
1093 |
|
|
target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
|
1094 |
|
|
lambda_obstack);
|
1095 |
|
|
origin = lambda_vector_new (depth);
|
1096 |
|
|
origin_invariants = lambda_matrix_new (depth, invariants);
|
1097 |
|
|
lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
|
1098 |
|
|
LATTICE_ORIGIN (lattice), origin);
|
1099 |
|
|
lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
|
1100 |
|
|
origin_invariants, depth, depth, invariants);
|
1101 |
|
|
|
1102 |
|
|
for (i = 0; i < depth; i++)
|
1103 |
|
|
{
|
1104 |
|
|
loop = LN_LOOPS (target_nest)[i];
|
1105 |
|
|
expression = LL_LINEAR_OFFSET (loop);
|
1106 |
|
|
if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
|
1107 |
|
|
f = 1;
|
1108 |
|
|
else
|
1109 |
|
|
f = LLE_DENOMINATOR (expression);
|
1110 |
|
|
|
1111 |
|
|
LLE_CONSTANT (expression) += f * origin[i];
|
1112 |
|
|
|
1113 |
|
|
for (j = 0; j < invariants; j++)
|
1114 |
|
|
LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
|
1115 |
|
|
f * origin_invariants[i][j];
|
1116 |
|
|
}
|
1117 |
|
|
|
1118 |
|
|
return target_nest;
|
1119 |
|
|
|
1120 |
|
|
}
|
1121 |
|
|
|
1122 |
|
|
/* Convert a gcc tree expression EXPR to a lambda linear expression, and
|
1123 |
|
|
return the new expression. DEPTH is the depth of the loopnest.
|
1124 |
|
|
OUTERINDUCTIONVARS is an array of the induction variables for outer loops
|
1125 |
|
|
in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
|
1126 |
|
|
is the amount we have to add/subtract from the expression because of the
|
1127 |
|
|
type of comparison it is used in. */
|
1128 |
|
|
|
1129 |
|
|
static lambda_linear_expression
|
1130 |
|
|
gcc_tree_to_linear_expression (int depth, tree expr,
|
1131 |
|
|
VEC(tree,heap) *outerinductionvars,
|
1132 |
|
|
VEC(tree,heap) *invariants, int extra,
|
1133 |
|
|
struct obstack * lambda_obstack)
|
1134 |
|
|
{
|
1135 |
|
|
lambda_linear_expression lle = NULL;
|
1136 |
|
|
switch (TREE_CODE (expr))
|
1137 |
|
|
{
|
1138 |
|
|
case INTEGER_CST:
|
1139 |
|
|
{
|
1140 |
|
|
lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
|
1141 |
|
|
LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
|
1142 |
|
|
if (extra != 0)
|
1143 |
|
|
LLE_CONSTANT (lle) += extra;
|
1144 |
|
|
|
1145 |
|
|
LLE_DENOMINATOR (lle) = 1;
|
1146 |
|
|
}
|
1147 |
|
|
break;
|
1148 |
|
|
case SSA_NAME:
|
1149 |
|
|
{
|
1150 |
|
|
tree iv, invar;
|
1151 |
|
|
size_t i;
|
1152 |
|
|
for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
|
1153 |
|
|
if (iv != NULL)
|
1154 |
|
|
{
|
1155 |
|
|
if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
|
1156 |
|
|
{
|
1157 |
|
|
lle = lambda_linear_expression_new (depth, 2 * depth,
|
1158 |
|
|
lambda_obstack);
|
1159 |
|
|
LLE_COEFFICIENTS (lle)[i] = 1;
|
1160 |
|
|
if (extra != 0)
|
1161 |
|
|
LLE_CONSTANT (lle) = extra;
|
1162 |
|
|
|
1163 |
|
|
LLE_DENOMINATOR (lle) = 1;
|
1164 |
|
|
}
|
1165 |
|
|
}
|
1166 |
|
|
for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
|
1167 |
|
|
if (invar != NULL)
|
1168 |
|
|
{
|
1169 |
|
|
if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
|
1170 |
|
|
{
|
1171 |
|
|
lle = lambda_linear_expression_new (depth, 2 * depth,
|
1172 |
|
|
lambda_obstack);
|
1173 |
|
|
LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
|
1174 |
|
|
if (extra != 0)
|
1175 |
|
|
LLE_CONSTANT (lle) = extra;
|
1176 |
|
|
LLE_DENOMINATOR (lle) = 1;
|
1177 |
|
|
}
|
1178 |
|
|
}
|
1179 |
|
|
}
|
1180 |
|
|
break;
|
1181 |
|
|
default:
|
1182 |
|
|
return NULL;
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
return lle;
|
1186 |
|
|
}
|
1187 |
|
|
|
1188 |
|
|
/* Return the depth of the loopnest NEST */
|
1189 |
|
|
|
1190 |
|
|
static int
|
1191 |
|
|
depth_of_nest (struct loop *nest)
|
1192 |
|
|
{
|
1193 |
|
|
size_t depth = 0;
|
1194 |
|
|
while (nest)
|
1195 |
|
|
{
|
1196 |
|
|
depth++;
|
1197 |
|
|
nest = nest->inner;
|
1198 |
|
|
}
|
1199 |
|
|
return depth;
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
|
1203 |
|
|
/* Return true if OP is invariant in LOOP and all outer loops. */
|
1204 |
|
|
|
1205 |
|
|
static bool
|
1206 |
|
|
invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
|
1207 |
|
|
{
|
1208 |
|
|
if (is_gimple_min_invariant (op))
|
1209 |
|
|
return true;
|
1210 |
|
|
if (loop_depth (loop) == 0)
|
1211 |
|
|
return true;
|
1212 |
|
|
if (!expr_invariant_in_loop_p (loop, op))
|
1213 |
|
|
return false;
|
1214 |
|
|
if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
|
1215 |
|
|
return false;
|
1216 |
|
|
return true;
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
/* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
|
1220 |
|
|
or NULL if it could not be converted.
|
1221 |
|
|
DEPTH is the depth of the loop.
|
1222 |
|
|
INVARIANTS is a pointer to the array of loop invariants.
|
1223 |
|
|
The induction variable for this loop should be stored in the parameter
|
1224 |
|
|
OURINDUCTIONVAR.
|
1225 |
|
|
OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
|
1226 |
|
|
|
1227 |
|
|
static lambda_loop
|
1228 |
|
|
gcc_loop_to_lambda_loop (struct loop *loop, int depth,
|
1229 |
|
|
VEC(tree,heap) ** invariants,
|
1230 |
|
|
tree * ourinductionvar,
|
1231 |
|
|
VEC(tree,heap) * outerinductionvars,
|
1232 |
|
|
VEC(tree,heap) ** lboundvars,
|
1233 |
|
|
VEC(tree,heap) ** uboundvars,
|
1234 |
|
|
VEC(int,heap) ** steps,
|
1235 |
|
|
struct obstack * lambda_obstack)
|
1236 |
|
|
{
|
1237 |
|
|
gimple phi;
|
1238 |
|
|
gimple exit_cond;
|
1239 |
|
|
tree access_fn, inductionvar;
|
1240 |
|
|
tree step;
|
1241 |
|
|
lambda_loop lloop = NULL;
|
1242 |
|
|
lambda_linear_expression lbound, ubound;
|
1243 |
|
|
tree test_lhs, test_rhs;
|
1244 |
|
|
int stepint;
|
1245 |
|
|
int extra = 0;
|
1246 |
|
|
tree lboundvar, uboundvar, uboundresult;
|
1247 |
|
|
|
1248 |
|
|
/* Find out induction var and exit condition. */
|
1249 |
|
|
inductionvar = find_induction_var_from_exit_cond (loop);
|
1250 |
|
|
exit_cond = get_loop_exit_condition (loop);
|
1251 |
|
|
|
1252 |
|
|
if (inductionvar == NULL || exit_cond == NULL)
|
1253 |
|
|
{
|
1254 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1255 |
|
|
fprintf (dump_file,
|
1256 |
|
|
"Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
|
1257 |
|
|
return NULL;
|
1258 |
|
|
}
|
1259 |
|
|
|
1260 |
|
|
if (SSA_NAME_DEF_STMT (inductionvar) == NULL)
|
1261 |
|
|
{
|
1262 |
|
|
|
1263 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1264 |
|
|
fprintf (dump_file,
|
1265 |
|
|
"Unable to convert loop: Cannot find PHI node for induction variable\n");
|
1266 |
|
|
|
1267 |
|
|
return NULL;
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
phi = SSA_NAME_DEF_STMT (inductionvar);
|
1271 |
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
1272 |
|
|
{
|
1273 |
|
|
tree op = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
|
1274 |
|
|
if (!op)
|
1275 |
|
|
{
|
1276 |
|
|
|
1277 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1278 |
|
|
fprintf (dump_file,
|
1279 |
|
|
"Unable to convert loop: Cannot find PHI node for induction variable\n");
|
1280 |
|
|
|
1281 |
|
|
return NULL;
|
1282 |
|
|
}
|
1283 |
|
|
|
1284 |
|
|
phi = SSA_NAME_DEF_STMT (op);
|
1285 |
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
1286 |
|
|
{
|
1287 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1288 |
|
|
fprintf (dump_file,
|
1289 |
|
|
"Unable to convert loop: Cannot find PHI node for induction variable\n");
|
1290 |
|
|
return NULL;
|
1291 |
|
|
}
|
1292 |
|
|
}
|
1293 |
|
|
|
1294 |
|
|
/* The induction variable name/version we want to put in the array is the
|
1295 |
|
|
result of the induction variable phi node. */
|
1296 |
|
|
*ourinductionvar = PHI_RESULT (phi);
|
1297 |
|
|
access_fn = instantiate_parameters
|
1298 |
|
|
(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
|
1299 |
|
|
if (access_fn == chrec_dont_know)
|
1300 |
|
|
{
|
1301 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1302 |
|
|
fprintf (dump_file,
|
1303 |
|
|
"Unable to convert loop: Access function for induction variable phi is unknown\n");
|
1304 |
|
|
|
1305 |
|
|
return NULL;
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
step = evolution_part_in_loop_num (access_fn, loop->num);
|
1309 |
|
|
if (!step || step == chrec_dont_know)
|
1310 |
|
|
{
|
1311 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1312 |
|
|
fprintf (dump_file,
|
1313 |
|
|
"Unable to convert loop: Cannot determine step of loop.\n");
|
1314 |
|
|
|
1315 |
|
|
return NULL;
|
1316 |
|
|
}
|
1317 |
|
|
if (TREE_CODE (step) != INTEGER_CST)
|
1318 |
|
|
{
|
1319 |
|
|
|
1320 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1321 |
|
|
fprintf (dump_file,
|
1322 |
|
|
"Unable to convert loop: Step of loop is not integer.\n");
|
1323 |
|
|
return NULL;
|
1324 |
|
|
}
|
1325 |
|
|
|
1326 |
|
|
stepint = TREE_INT_CST_LOW (step);
|
1327 |
|
|
|
1328 |
|
|
/* Only want phis for induction vars, which will have two
|
1329 |
|
|
arguments. */
|
1330 |
|
|
if (gimple_phi_num_args (phi) != 2)
|
1331 |
|
|
{
|
1332 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1333 |
|
|
fprintf (dump_file,
|
1334 |
|
|
"Unable to convert loop: PHI node for induction variable has >2 arguments\n");
|
1335 |
|
|
return NULL;
|
1336 |
|
|
}
|
1337 |
|
|
|
1338 |
|
|
/* Another induction variable check. One argument's source should be
|
1339 |
|
|
in the loop, one outside the loop. */
|
1340 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src)
|
1341 |
|
|
&& flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 1)->src))
|
1342 |
|
|
{
|
1343 |
|
|
|
1344 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1345 |
|
|
fprintf (dump_file,
|
1346 |
|
|
"Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
|
1347 |
|
|
|
1348 |
|
|
return NULL;
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src))
|
1352 |
|
|
{
|
1353 |
|
|
lboundvar = PHI_ARG_DEF (phi, 1);
|
1354 |
|
|
lbound = gcc_tree_to_linear_expression (depth, lboundvar,
|
1355 |
|
|
outerinductionvars, *invariants,
|
1356 |
|
|
0, lambda_obstack);
|
1357 |
|
|
}
|
1358 |
|
|
else
|
1359 |
|
|
{
|
1360 |
|
|
lboundvar = PHI_ARG_DEF (phi, 0);
|
1361 |
|
|
lbound = gcc_tree_to_linear_expression (depth, lboundvar,
|
1362 |
|
|
outerinductionvars, *invariants,
|
1363 |
|
|
0, lambda_obstack);
|
1364 |
|
|
}
|
1365 |
|
|
|
1366 |
|
|
if (!lbound)
|
1367 |
|
|
{
|
1368 |
|
|
|
1369 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1370 |
|
|
fprintf (dump_file,
|
1371 |
|
|
"Unable to convert loop: Cannot convert lower bound to linear expression\n");
|
1372 |
|
|
|
1373 |
|
|
return NULL;
|
1374 |
|
|
}
|
1375 |
|
|
/* One part of the test may be a loop invariant tree. */
|
1376 |
|
|
VEC_reserve (tree, heap, *invariants, 1);
|
1377 |
|
|
test_lhs = gimple_cond_lhs (exit_cond);
|
1378 |
|
|
test_rhs = gimple_cond_rhs (exit_cond);
|
1379 |
|
|
|
1380 |
|
|
if (TREE_CODE (test_rhs) == SSA_NAME
|
1381 |
|
|
&& invariant_in_loop_and_outer_loops (loop, test_rhs))
|
1382 |
|
|
VEC_quick_push (tree, *invariants, test_rhs);
|
1383 |
|
|
else if (TREE_CODE (test_lhs) == SSA_NAME
|
1384 |
|
|
&& invariant_in_loop_and_outer_loops (loop, test_lhs))
|
1385 |
|
|
VEC_quick_push (tree, *invariants, test_lhs);
|
1386 |
|
|
|
1387 |
|
|
/* The non-induction variable part of the test is the upper bound variable.
|
1388 |
|
|
*/
|
1389 |
|
|
if (test_lhs == inductionvar)
|
1390 |
|
|
uboundvar = test_rhs;
|
1391 |
|
|
else
|
1392 |
|
|
uboundvar = test_lhs;
|
1393 |
|
|
|
1394 |
|
|
/* We only size the vectors assuming we have, at max, 2 times as many
|
1395 |
|
|
invariants as we do loops (one for each bound).
|
1396 |
|
|
This is just an arbitrary number, but it has to be matched against the
|
1397 |
|
|
code below. */
|
1398 |
|
|
gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
|
1399 |
|
|
|
1400 |
|
|
|
1401 |
|
|
/* We might have some leftover. */
|
1402 |
|
|
if (gimple_cond_code (exit_cond) == LT_EXPR)
|
1403 |
|
|
extra = -1 * stepint;
|
1404 |
|
|
else if (gimple_cond_code (exit_cond) == NE_EXPR)
|
1405 |
|
|
extra = -1 * stepint;
|
1406 |
|
|
else if (gimple_cond_code (exit_cond) == GT_EXPR)
|
1407 |
|
|
extra = -1 * stepint;
|
1408 |
|
|
else if (gimple_cond_code (exit_cond) == EQ_EXPR)
|
1409 |
|
|
extra = 1 * stepint;
|
1410 |
|
|
|
1411 |
|
|
ubound = gcc_tree_to_linear_expression (depth, uboundvar,
|
1412 |
|
|
outerinductionvars,
|
1413 |
|
|
*invariants, extra, lambda_obstack);
|
1414 |
|
|
uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
|
1415 |
|
|
build_int_cst (TREE_TYPE (uboundvar), extra));
|
1416 |
|
|
VEC_safe_push (tree, heap, *uboundvars, uboundresult);
|
1417 |
|
|
VEC_safe_push (tree, heap, *lboundvars, lboundvar);
|
1418 |
|
|
VEC_safe_push (int, heap, *steps, stepint);
|
1419 |
|
|
if (!ubound)
|
1420 |
|
|
{
|
1421 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1422 |
|
|
fprintf (dump_file,
|
1423 |
|
|
"Unable to convert loop: Cannot convert upper bound to linear expression\n");
|
1424 |
|
|
return NULL;
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
lloop = lambda_loop_new ();
|
1428 |
|
|
LL_STEP (lloop) = stepint;
|
1429 |
|
|
LL_LOWER_BOUND (lloop) = lbound;
|
1430 |
|
|
LL_UPPER_BOUND (lloop) = ubound;
|
1431 |
|
|
return lloop;
|
1432 |
|
|
}
|
1433 |
|
|
|
1434 |
|
|
/* Given a LOOP, find the induction variable it is testing against in the exit
|
1435 |
|
|
condition. Return the induction variable if found, NULL otherwise. */
|
1436 |
|
|
|
1437 |
|
|
tree
|
1438 |
|
|
find_induction_var_from_exit_cond (struct loop *loop)
|
1439 |
|
|
{
|
1440 |
|
|
gimple expr = get_loop_exit_condition (loop);
|
1441 |
|
|
tree ivarop;
|
1442 |
|
|
tree test_lhs, test_rhs;
|
1443 |
|
|
if (expr == NULL)
|
1444 |
|
|
return NULL_TREE;
|
1445 |
|
|
if (gimple_code (expr) != GIMPLE_COND)
|
1446 |
|
|
return NULL_TREE;
|
1447 |
|
|
test_lhs = gimple_cond_lhs (expr);
|
1448 |
|
|
test_rhs = gimple_cond_rhs (expr);
|
1449 |
|
|
|
1450 |
|
|
/* Find the side that is invariant in this loop. The ivar must be the other
|
1451 |
|
|
side. */
|
1452 |
|
|
|
1453 |
|
|
if (expr_invariant_in_loop_p (loop, test_lhs))
|
1454 |
|
|
ivarop = test_rhs;
|
1455 |
|
|
else if (expr_invariant_in_loop_p (loop, test_rhs))
|
1456 |
|
|
ivarop = test_lhs;
|
1457 |
|
|
else
|
1458 |
|
|
return NULL_TREE;
|
1459 |
|
|
|
1460 |
|
|
if (TREE_CODE (ivarop) != SSA_NAME)
|
1461 |
|
|
return NULL_TREE;
|
1462 |
|
|
return ivarop;
|
1463 |
|
|
}
|
1464 |
|
|
|
1465 |
|
|
DEF_VEC_P(lambda_loop);
|
1466 |
|
|
DEF_VEC_ALLOC_P(lambda_loop,heap);
|
1467 |
|
|
|
1468 |
|
|
/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
|
1469 |
|
|
Return the new loop nest.
|
1470 |
|
|
INDUCTIONVARS is a pointer to an array of induction variables for the
|
1471 |
|
|
loopnest that will be filled in during this process.
|
1472 |
|
|
INVARIANTS is a pointer to an array of invariants that will be filled in
|
1473 |
|
|
during this process. */
|
1474 |
|
|
|
1475 |
|
|
lambda_loopnest
|
1476 |
|
|
gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
|
1477 |
|
|
VEC(tree,heap) **inductionvars,
|
1478 |
|
|
VEC(tree,heap) **invariants,
|
1479 |
|
|
struct obstack * lambda_obstack)
|
1480 |
|
|
{
|
1481 |
|
|
lambda_loopnest ret = NULL;
|
1482 |
|
|
struct loop *temp = loop_nest;
|
1483 |
|
|
int depth = depth_of_nest (loop_nest);
|
1484 |
|
|
size_t i;
|
1485 |
|
|
VEC(lambda_loop,heap) *loops = NULL;
|
1486 |
|
|
VEC(tree,heap) *uboundvars = NULL;
|
1487 |
|
|
VEC(tree,heap) *lboundvars = NULL;
|
1488 |
|
|
VEC(int,heap) *steps = NULL;
|
1489 |
|
|
lambda_loop newloop;
|
1490 |
|
|
tree inductionvar = NULL;
|
1491 |
|
|
bool perfect_nest = perfect_nest_p (loop_nest);
|
1492 |
|
|
|
1493 |
|
|
if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
|
1494 |
|
|
goto fail;
|
1495 |
|
|
|
1496 |
|
|
while (temp)
|
1497 |
|
|
{
|
1498 |
|
|
newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
|
1499 |
|
|
&inductionvar, *inductionvars,
|
1500 |
|
|
&lboundvars, &uboundvars,
|
1501 |
|
|
&steps, lambda_obstack);
|
1502 |
|
|
if (!newloop)
|
1503 |
|
|
goto fail;
|
1504 |
|
|
|
1505 |
|
|
VEC_safe_push (tree, heap, *inductionvars, inductionvar);
|
1506 |
|
|
VEC_safe_push (lambda_loop, heap, loops, newloop);
|
1507 |
|
|
temp = temp->inner;
|
1508 |
|
|
}
|
1509 |
|
|
|
1510 |
|
|
if (!perfect_nest)
|
1511 |
|
|
{
|
1512 |
|
|
if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
|
1513 |
|
|
*inductionvars))
|
1514 |
|
|
{
|
1515 |
|
|
if (dump_file)
|
1516 |
|
|
fprintf (dump_file,
|
1517 |
|
|
"Not a perfect loop nest and couldn't convert to one.\n");
|
1518 |
|
|
goto fail;
|
1519 |
|
|
}
|
1520 |
|
|
else if (dump_file)
|
1521 |
|
|
fprintf (dump_file,
|
1522 |
|
|
"Successfully converted loop nest to perfect loop nest.\n");
|
1523 |
|
|
}
|
1524 |
|
|
|
1525 |
|
|
ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
|
1526 |
|
|
|
1527 |
|
|
for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
|
1528 |
|
|
LN_LOOPS (ret)[i] = newloop;
|
1529 |
|
|
|
1530 |
|
|
fail:
|
1531 |
|
|
VEC_free (lambda_loop, heap, loops);
|
1532 |
|
|
VEC_free (tree, heap, uboundvars);
|
1533 |
|
|
VEC_free (tree, heap, lboundvars);
|
1534 |
|
|
VEC_free (int, heap, steps);
|
1535 |
|
|
|
1536 |
|
|
return ret;
|
1537 |
|
|
}
|
1538 |
|
|
|
1539 |
|
|
/* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
|
1540 |
|
|
STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
|
1541 |
|
|
inserted for us are stored. INDUCTION_VARS is the array of induction
|
1542 |
|
|
variables for the loop this LBV is from. TYPE is the tree type to use for
|
1543 |
|
|
the variables and trees involved. */
|
1544 |
|
|
|
1545 |
|
|
static tree
|
1546 |
|
|
lbv_to_gcc_expression (lambda_body_vector lbv,
|
1547 |
|
|
tree type, VEC(tree,heap) *induction_vars,
|
1548 |
|
|
gimple_seq *stmts_to_insert)
|
1549 |
|
|
{
|
1550 |
|
|
int k;
|
1551 |
|
|
tree resvar;
|
1552 |
|
|
tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
|
1553 |
|
|
|
1554 |
|
|
k = LBV_DENOMINATOR (lbv);
|
1555 |
|
|
gcc_assert (k != 0);
|
1556 |
|
|
if (k != 1)
|
1557 |
|
|
expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
|
1558 |
|
|
|
1559 |
|
|
resvar = create_tmp_var (type, "lbvtmp");
|
1560 |
|
|
add_referenced_var (resvar);
|
1561 |
|
|
return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
/* Convert a linear expression from coefficient and constant form to a
|
1565 |
|
|
gcc tree.
|
1566 |
|
|
Return the tree that represents the final value of the expression.
|
1567 |
|
|
LLE is the linear expression to convert.
|
1568 |
|
|
OFFSET is the linear offset to apply to the expression.
|
1569 |
|
|
TYPE is the tree type to use for the variables and math.
|
1570 |
|
|
INDUCTION_VARS is a vector of induction variables for the loops.
|
1571 |
|
|
INVARIANTS is a vector of the loop nest invariants.
|
1572 |
|
|
WRAP specifies what tree code to wrap the results in, if there is more than
|
1573 |
|
|
one (it is either MAX_EXPR, or MIN_EXPR).
|
1574 |
|
|
STMTS_TO_INSERT Is a pointer to the statement list we fill in with
|
1575 |
|
|
statements that need to be inserted for the linear expression. */
|
1576 |
|
|
|
1577 |
|
|
static tree
|
1578 |
|
|
lle_to_gcc_expression (lambda_linear_expression lle,
|
1579 |
|
|
lambda_linear_expression offset,
|
1580 |
|
|
tree type,
|
1581 |
|
|
VEC(tree,heap) *induction_vars,
|
1582 |
|
|
VEC(tree,heap) *invariants,
|
1583 |
|
|
enum tree_code wrap, gimple_seq *stmts_to_insert)
|
1584 |
|
|
{
|
1585 |
|
|
int k;
|
1586 |
|
|
tree resvar;
|
1587 |
|
|
tree expr = NULL_TREE;
|
1588 |
|
|
VEC(tree,heap) *results = NULL;
|
1589 |
|
|
|
1590 |
|
|
gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
|
1591 |
|
|
|
1592 |
|
|
/* Build up the linear expressions. */
|
1593 |
|
|
for (; lle != NULL; lle = LLE_NEXT (lle))
|
1594 |
|
|
{
|
1595 |
|
|
expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
|
1596 |
|
|
expr = fold_build2 (PLUS_EXPR, type, expr,
|
1597 |
|
|
build_linear_expr (type,
|
1598 |
|
|
LLE_INVARIANT_COEFFICIENTS (lle),
|
1599 |
|
|
invariants));
|
1600 |
|
|
|
1601 |
|
|
k = LLE_CONSTANT (lle);
|
1602 |
|
|
if (k)
|
1603 |
|
|
expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
|
1604 |
|
|
|
1605 |
|
|
k = LLE_CONSTANT (offset);
|
1606 |
|
|
if (k)
|
1607 |
|
|
expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
|
1608 |
|
|
|
1609 |
|
|
k = LLE_DENOMINATOR (lle);
|
1610 |
|
|
if (k != 1)
|
1611 |
|
|
expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
|
1612 |
|
|
type, expr, build_int_cst (type, k));
|
1613 |
|
|
|
1614 |
|
|
expr = fold (expr);
|
1615 |
|
|
VEC_safe_push (tree, heap, results, expr);
|
1616 |
|
|
}
|
1617 |
|
|
|
1618 |
|
|
gcc_assert (expr);
|
1619 |
|
|
|
1620 |
|
|
/* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
|
1621 |
|
|
if (VEC_length (tree, results) > 1)
|
1622 |
|
|
{
|
1623 |
|
|
size_t i;
|
1624 |
|
|
tree op;
|
1625 |
|
|
|
1626 |
|
|
expr = VEC_index (tree, results, 0);
|
1627 |
|
|
for (i = 1; VEC_iterate (tree, results, i, op); i++)
|
1628 |
|
|
expr = fold_build2 (wrap, type, expr, op);
|
1629 |
|
|
}
|
1630 |
|
|
|
1631 |
|
|
VEC_free (tree, heap, results);
|
1632 |
|
|
|
1633 |
|
|
resvar = create_tmp_var (type, "lletmp");
|
1634 |
|
|
add_referenced_var (resvar);
|
1635 |
|
|
return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
|
1636 |
|
|
}
|
1637 |
|
|
|
1638 |
|
|
/* Remove the induction variable defined at IV_STMT. */
|
1639 |
|
|
|
1640 |
|
|
void
|
1641 |
|
|
remove_iv (gimple iv_stmt)
|
1642 |
|
|
{
|
1643 |
|
|
gimple_stmt_iterator si = gsi_for_stmt (iv_stmt);
|
1644 |
|
|
|
1645 |
|
|
if (gimple_code (iv_stmt) == GIMPLE_PHI)
|
1646 |
|
|
{
|
1647 |
|
|
unsigned i;
|
1648 |
|
|
|
1649 |
|
|
for (i = 0; i < gimple_phi_num_args (iv_stmt); i++)
|
1650 |
|
|
{
|
1651 |
|
|
gimple stmt;
|
1652 |
|
|
imm_use_iterator imm_iter;
|
1653 |
|
|
tree arg = gimple_phi_arg_def (iv_stmt, i);
|
1654 |
|
|
bool used = false;
|
1655 |
|
|
|
1656 |
|
|
if (TREE_CODE (arg) != SSA_NAME)
|
1657 |
|
|
continue;
|
1658 |
|
|
|
1659 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
|
1660 |
|
|
if (stmt != iv_stmt && !is_gimple_debug (stmt))
|
1661 |
|
|
used = true;
|
1662 |
|
|
|
1663 |
|
|
if (!used)
|
1664 |
|
|
remove_iv (SSA_NAME_DEF_STMT (arg));
|
1665 |
|
|
}
|
1666 |
|
|
|
1667 |
|
|
remove_phi_node (&si, true);
|
1668 |
|
|
}
|
1669 |
|
|
else
|
1670 |
|
|
{
|
1671 |
|
|
gsi_remove (&si, true);
|
1672 |
|
|
release_defs (iv_stmt);
|
1673 |
|
|
}
|
1674 |
|
|
}
|
1675 |
|
|
|
1676 |
|
|
/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
|
1677 |
|
|
it, back into gcc code. This changes the
|
1678 |
|
|
loops, their induction variables, and their bodies, so that they
|
1679 |
|
|
match the transformed loopnest.
|
1680 |
|
|
OLD_LOOPNEST is the loopnest before we've replaced it with the new
|
1681 |
|
|
loopnest.
|
1682 |
|
|
OLD_IVS is a vector of induction variables from the old loopnest.
|
1683 |
|
|
INVARIANTS is a vector of loop invariants from the old loopnest.
|
1684 |
|
|
NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
|
1685 |
|
|
TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
|
1686 |
|
|
NEW_LOOPNEST. */
|
1687 |
|
|
|
1688 |
|
|
void
|
1689 |
|
|
lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
|
1690 |
|
|
VEC(tree,heap) *old_ivs,
|
1691 |
|
|
VEC(tree,heap) *invariants,
|
1692 |
|
|
VEC(gimple,heap) **remove_ivs,
|
1693 |
|
|
lambda_loopnest new_loopnest,
|
1694 |
|
|
lambda_trans_matrix transform,
|
1695 |
|
|
struct obstack * lambda_obstack)
|
1696 |
|
|
{
|
1697 |
|
|
struct loop *temp;
|
1698 |
|
|
size_t i = 0;
|
1699 |
|
|
unsigned j;
|
1700 |
|
|
size_t depth = 0;
|
1701 |
|
|
VEC(tree,heap) *new_ivs = NULL;
|
1702 |
|
|
tree oldiv;
|
1703 |
|
|
gimple_stmt_iterator bsi;
|
1704 |
|
|
|
1705 |
|
|
transform = lambda_trans_matrix_inverse (transform);
|
1706 |
|
|
|
1707 |
|
|
if (dump_file)
|
1708 |
|
|
{
|
1709 |
|
|
fprintf (dump_file, "Inverse of transformation matrix:\n");
|
1710 |
|
|
print_lambda_trans_matrix (dump_file, transform);
|
1711 |
|
|
}
|
1712 |
|
|
depth = depth_of_nest (old_loopnest);
|
1713 |
|
|
temp = old_loopnest;
|
1714 |
|
|
|
1715 |
|
|
while (temp)
|
1716 |
|
|
{
|
1717 |
|
|
lambda_loop newloop;
|
1718 |
|
|
basic_block bb;
|
1719 |
|
|
edge exit;
|
1720 |
|
|
tree ivvar, ivvarinced;
|
1721 |
|
|
gimple exitcond;
|
1722 |
|
|
gimple_seq stmts;
|
1723 |
|
|
enum tree_code testtype;
|
1724 |
|
|
tree newupperbound, newlowerbound;
|
1725 |
|
|
lambda_linear_expression offset;
|
1726 |
|
|
tree type;
|
1727 |
|
|
bool insert_after;
|
1728 |
|
|
gimple inc_stmt;
|
1729 |
|
|
|
1730 |
|
|
oldiv = VEC_index (tree, old_ivs, i);
|
1731 |
|
|
type = TREE_TYPE (oldiv);
|
1732 |
|
|
|
1733 |
|
|
/* First, build the new induction variable temporary */
|
1734 |
|
|
|
1735 |
|
|
ivvar = create_tmp_var (type, "lnivtmp");
|
1736 |
|
|
add_referenced_var (ivvar);
|
1737 |
|
|
|
1738 |
|
|
VEC_safe_push (tree, heap, new_ivs, ivvar);
|
1739 |
|
|
|
1740 |
|
|
newloop = LN_LOOPS (new_loopnest)[i];
|
1741 |
|
|
|
1742 |
|
|
/* Linear offset is a bit tricky to handle. Punt on the unhandled
|
1743 |
|
|
cases for now. */
|
1744 |
|
|
offset = LL_LINEAR_OFFSET (newloop);
|
1745 |
|
|
|
1746 |
|
|
gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
|
1747 |
|
|
lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
|
1748 |
|
|
|
1749 |
|
|
/* Now build the new lower bounds, and insert the statements
|
1750 |
|
|
necessary to generate it on the loop preheader. */
|
1751 |
|
|
stmts = NULL;
|
1752 |
|
|
newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
|
1753 |
|
|
LL_LINEAR_OFFSET (newloop),
|
1754 |
|
|
type,
|
1755 |
|
|
new_ivs,
|
1756 |
|
|
invariants, MAX_EXPR, &stmts);
|
1757 |
|
|
|
1758 |
|
|
if (stmts)
|
1759 |
|
|
{
|
1760 |
|
|
gsi_insert_seq_on_edge (loop_preheader_edge (temp), stmts);
|
1761 |
|
|
gsi_commit_edge_inserts ();
|
1762 |
|
|
}
|
1763 |
|
|
/* Build the new upper bound and insert its statements in the
|
1764 |
|
|
basic block of the exit condition */
|
1765 |
|
|
stmts = NULL;
|
1766 |
|
|
newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
|
1767 |
|
|
LL_LINEAR_OFFSET (newloop),
|
1768 |
|
|
type,
|
1769 |
|
|
new_ivs,
|
1770 |
|
|
invariants, MIN_EXPR, &stmts);
|
1771 |
|
|
exit = single_exit (temp);
|
1772 |
|
|
exitcond = get_loop_exit_condition (temp);
|
1773 |
|
|
bb = gimple_bb (exitcond);
|
1774 |
|
|
bsi = gsi_after_labels (bb);
|
1775 |
|
|
if (stmts)
|
1776 |
|
|
gsi_insert_seq_before (&bsi, stmts, GSI_NEW_STMT);
|
1777 |
|
|
|
1778 |
|
|
/* Create the new iv. */
|
1779 |
|
|
|
1780 |
|
|
standard_iv_increment_position (temp, &bsi, &insert_after);
|
1781 |
|
|
create_iv (newlowerbound,
|
1782 |
|
|
build_int_cst (type, LL_STEP (newloop)),
|
1783 |
|
|
ivvar, temp, &bsi, insert_after, &ivvar,
|
1784 |
|
|
NULL);
|
1785 |
|
|
|
1786 |
|
|
/* Unfortunately, the incremented ivvar that create_iv inserted may not
|
1787 |
|
|
dominate the block containing the exit condition.
|
1788 |
|
|
So we simply create our own incremented iv to use in the new exit
|
1789 |
|
|
test, and let redundancy elimination sort it out. */
|
1790 |
|
|
inc_stmt = gimple_build_assign_with_ops (PLUS_EXPR, SSA_NAME_VAR (ivvar),
|
1791 |
|
|
ivvar,
|
1792 |
|
|
build_int_cst (type, LL_STEP (newloop)));
|
1793 |
|
|
|
1794 |
|
|
ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
|
1795 |
|
|
gimple_assign_set_lhs (inc_stmt, ivvarinced);
|
1796 |
|
|
bsi = gsi_for_stmt (exitcond);
|
1797 |
|
|
gsi_insert_before (&bsi, inc_stmt, GSI_SAME_STMT);
|
1798 |
|
|
|
1799 |
|
|
/* Replace the exit condition with the new upper bound
|
1800 |
|
|
comparison. */
|
1801 |
|
|
|
1802 |
|
|
testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
|
1803 |
|
|
|
1804 |
|
|
/* We want to build a conditional where true means exit the loop, and
|
1805 |
|
|
false means continue the loop.
|
1806 |
|
|
So swap the testtype if this isn't the way things are.*/
|
1807 |
|
|
|
1808 |
|
|
if (exit->flags & EDGE_FALSE_VALUE)
|
1809 |
|
|
testtype = swap_tree_comparison (testtype);
|
1810 |
|
|
|
1811 |
|
|
gimple_cond_set_condition (exitcond, testtype, newupperbound, ivvarinced);
|
1812 |
|
|
update_stmt (exitcond);
|
1813 |
|
|
VEC_replace (tree, new_ivs, i, ivvar);
|
1814 |
|
|
|
1815 |
|
|
i++;
|
1816 |
|
|
temp = temp->inner;
|
1817 |
|
|
}
|
1818 |
|
|
|
1819 |
|
|
/* Rewrite uses of the old ivs so that they are now specified in terms of
|
1820 |
|
|
the new ivs. */
|
1821 |
|
|
|
1822 |
|
|
for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
|
1823 |
|
|
{
|
1824 |
|
|
imm_use_iterator imm_iter;
|
1825 |
|
|
use_operand_p use_p;
|
1826 |
|
|
tree oldiv_def;
|
1827 |
|
|
gimple oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
|
1828 |
|
|
gimple stmt;
|
1829 |
|
|
|
1830 |
|
|
if (gimple_code (oldiv_stmt) == GIMPLE_PHI)
|
1831 |
|
|
oldiv_def = PHI_RESULT (oldiv_stmt);
|
1832 |
|
|
else
|
1833 |
|
|
oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
|
1834 |
|
|
gcc_assert (oldiv_def != NULL_TREE);
|
1835 |
|
|
|
1836 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
|
1837 |
|
|
{
|
1838 |
|
|
tree newiv;
|
1839 |
|
|
gimple_seq stmts;
|
1840 |
|
|
lambda_body_vector lbv, newlbv;
|
1841 |
|
|
|
1842 |
|
|
if (is_gimple_debug (stmt))
|
1843 |
|
|
continue;
|
1844 |
|
|
|
1845 |
|
|
/* Compute the new expression for the induction
|
1846 |
|
|
variable. */
|
1847 |
|
|
depth = VEC_length (tree, new_ivs);
|
1848 |
|
|
lbv = lambda_body_vector_new (depth, lambda_obstack);
|
1849 |
|
|
LBV_COEFFICIENTS (lbv)[i] = 1;
|
1850 |
|
|
|
1851 |
|
|
newlbv = lambda_body_vector_compute_new (transform, lbv,
|
1852 |
|
|
lambda_obstack);
|
1853 |
|
|
|
1854 |
|
|
stmts = NULL;
|
1855 |
|
|
newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
|
1856 |
|
|
new_ivs, &stmts);
|
1857 |
|
|
|
1858 |
|
|
if (stmts && gimple_code (stmt) != GIMPLE_PHI)
|
1859 |
|
|
{
|
1860 |
|
|
bsi = gsi_for_stmt (stmt);
|
1861 |
|
|
gsi_insert_seq_before (&bsi, stmts, GSI_SAME_STMT);
|
1862 |
|
|
}
|
1863 |
|
|
|
1864 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
|
1865 |
|
|
propagate_value (use_p, newiv);
|
1866 |
|
|
|
1867 |
|
|
if (stmts && gimple_code (stmt) == GIMPLE_PHI)
|
1868 |
|
|
for (j = 0; j < gimple_phi_num_args (stmt); j++)
|
1869 |
|
|
if (gimple_phi_arg_def (stmt, j) == newiv)
|
1870 |
|
|
gsi_insert_seq_on_edge (gimple_phi_arg_edge (stmt, j), stmts);
|
1871 |
|
|
|
1872 |
|
|
update_stmt (stmt);
|
1873 |
|
|
}
|
1874 |
|
|
|
1875 |
|
|
/* Remove the now unused induction variable. */
|
1876 |
|
|
VEC_safe_push (gimple, heap, *remove_ivs, oldiv_stmt);
|
1877 |
|
|
}
|
1878 |
|
|
VEC_free (tree, heap, new_ivs);
|
1879 |
|
|
}
|
1880 |
|
|
|
1881 |
|
|
/* Return TRUE if this is not interesting statement from the perspective of
|
1882 |
|
|
determining if we have a perfect loop nest. */
|
1883 |
|
|
|
1884 |
|
|
static bool
|
1885 |
|
|
not_interesting_stmt (gimple stmt)
|
1886 |
|
|
{
|
1887 |
|
|
/* Note that COND_EXPR's aren't interesting because if they were exiting the
|
1888 |
|
|
loop, we would have already failed the number of exits tests. */
|
1889 |
|
|
if (gimple_code (stmt) == GIMPLE_LABEL
|
1890 |
|
|
|| gimple_code (stmt) == GIMPLE_GOTO
|
1891 |
|
|
|| gimple_code (stmt) == GIMPLE_COND
|
1892 |
|
|
|| is_gimple_debug (stmt))
|
1893 |
|
|
return true;
|
1894 |
|
|
return false;
|
1895 |
|
|
}
|
1896 |
|
|
|
1897 |
|
|
/* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
|
1898 |
|
|
|
1899 |
|
|
static bool
|
1900 |
|
|
phi_loop_edge_uses_def (struct loop *loop, gimple phi, tree def)
|
1901 |
|
|
{
|
1902 |
|
|
unsigned i;
|
1903 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
1904 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
|
1905 |
|
|
if (PHI_ARG_DEF (phi, i) == def)
|
1906 |
|
|
return true;
|
1907 |
|
|
return false;
|
1908 |
|
|
}
|
1909 |
|
|
|
1910 |
|
|
/* Return TRUE if STMT is a use of PHI_RESULT. */
|
1911 |
|
|
|
1912 |
|
|
static bool
|
1913 |
|
|
stmt_uses_phi_result (gimple stmt, tree phi_result)
|
1914 |
|
|
{
|
1915 |
|
|
tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
|
1916 |
|
|
|
1917 |
|
|
/* This is conservatively true, because we only want SIMPLE bumpers
|
1918 |
|
|
of the form x +- constant for our pass. */
|
1919 |
|
|
return (use == phi_result);
|
1920 |
|
|
}
|
1921 |
|
|
|
1922 |
|
|
/* STMT is a bumper stmt for LOOP if the version it defines is used in the
|
1923 |
|
|
in-loop-edge in a phi node, and the operand it uses is the result of that
|
1924 |
|
|
phi node.
|
1925 |
|
|
I.E. i_29 = i_3 + 1
|
1926 |
|
|
i_3 = PHI (0, i_29); */
|
1927 |
|
|
|
1928 |
|
|
static bool
|
1929 |
|
|
stmt_is_bumper_for_loop (struct loop *loop, gimple stmt)
|
1930 |
|
|
{
|
1931 |
|
|
gimple use;
|
1932 |
|
|
tree def;
|
1933 |
|
|
imm_use_iterator iter;
|
1934 |
|
|
use_operand_p use_p;
|
1935 |
|
|
|
1936 |
|
|
def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
|
1937 |
|
|
if (!def)
|
1938 |
|
|
return false;
|
1939 |
|
|
|
1940 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, def)
|
1941 |
|
|
{
|
1942 |
|
|
use = USE_STMT (use_p);
|
1943 |
|
|
if (gimple_code (use) == GIMPLE_PHI)
|
1944 |
|
|
{
|
1945 |
|
|
if (phi_loop_edge_uses_def (loop, use, def))
|
1946 |
|
|
if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
|
1947 |
|
|
return true;
|
1948 |
|
|
}
|
1949 |
|
|
}
|
1950 |
|
|
return false;
|
1951 |
|
|
}
|
1952 |
|
|
|
1953 |
|
|
|
1954 |
|
|
/* Return true if LOOP is a perfect loop nest.
|
1955 |
|
|
Perfect loop nests are those loop nests where all code occurs in the
|
1956 |
|
|
innermost loop body.
|
1957 |
|
|
If S is a program statement, then
|
1958 |
|
|
|
1959 |
|
|
i.e.
|
1960 |
|
|
DO I = 1, 20
|
1961 |
|
|
S1
|
1962 |
|
|
DO J = 1, 20
|
1963 |
|
|
...
|
1964 |
|
|
END DO
|
1965 |
|
|
END DO
|
1966 |
|
|
is not a perfect loop nest because of S1.
|
1967 |
|
|
|
1968 |
|
|
DO I = 1, 20
|
1969 |
|
|
DO J = 1, 20
|
1970 |
|
|
S1
|
1971 |
|
|
...
|
1972 |
|
|
END DO
|
1973 |
|
|
END DO
|
1974 |
|
|
is a perfect loop nest.
|
1975 |
|
|
|
1976 |
|
|
Since we don't have high level loops anymore, we basically have to walk our
|
1977 |
|
|
statements and ignore those that are there because the loop needs them (IE
|
1978 |
|
|
the induction variable increment, and jump back to the top of the loop). */
|
1979 |
|
|
|
1980 |
|
|
bool
|
1981 |
|
|
perfect_nest_p (struct loop *loop)
|
1982 |
|
|
{
|
1983 |
|
|
basic_block *bbs;
|
1984 |
|
|
size_t i;
|
1985 |
|
|
gimple exit_cond;
|
1986 |
|
|
|
1987 |
|
|
/* Loops at depth 0 are perfect nests. */
|
1988 |
|
|
if (!loop->inner)
|
1989 |
|
|
return true;
|
1990 |
|
|
|
1991 |
|
|
bbs = get_loop_body (loop);
|
1992 |
|
|
exit_cond = get_loop_exit_condition (loop);
|
1993 |
|
|
|
1994 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1995 |
|
|
{
|
1996 |
|
|
if (bbs[i]->loop_father == loop)
|
1997 |
|
|
{
|
1998 |
|
|
gimple_stmt_iterator bsi;
|
1999 |
|
|
|
2000 |
|
|
for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi))
|
2001 |
|
|
{
|
2002 |
|
|
gimple stmt = gsi_stmt (bsi);
|
2003 |
|
|
|
2004 |
|
|
if (gimple_code (stmt) == GIMPLE_COND
|
2005 |
|
|
&& exit_cond != stmt)
|
2006 |
|
|
goto non_perfectly_nested;
|
2007 |
|
|
|
2008 |
|
|
if (stmt == exit_cond
|
2009 |
|
|
|| not_interesting_stmt (stmt)
|
2010 |
|
|
|| stmt_is_bumper_for_loop (loop, stmt))
|
2011 |
|
|
continue;
|
2012 |
|
|
|
2013 |
|
|
non_perfectly_nested:
|
2014 |
|
|
free (bbs);
|
2015 |
|
|
return false;
|
2016 |
|
|
}
|
2017 |
|
|
}
|
2018 |
|
|
}
|
2019 |
|
|
|
2020 |
|
|
free (bbs);
|
2021 |
|
|
|
2022 |
|
|
return perfect_nest_p (loop->inner);
|
2023 |
|
|
}
|
2024 |
|
|
|
2025 |
|
|
/* Replace the USES of X in STMT, or uses with the same step as X with Y.
|
2026 |
|
|
YINIT is the initial value of Y, REPLACEMENTS is a hash table to
|
2027 |
|
|
avoid creating duplicate temporaries and FIRSTBSI is statement
|
2028 |
|
|
iterator where new temporaries should be inserted at the beginning
|
2029 |
|
|
of body basic block. */
|
2030 |
|
|
|
2031 |
|
|
static void
|
2032 |
|
|
replace_uses_equiv_to_x_with_y (struct loop *loop, gimple stmt, tree x,
|
2033 |
|
|
int xstep, tree y, tree yinit,
|
2034 |
|
|
htab_t replacements,
|
2035 |
|
|
gimple_stmt_iterator *firstbsi)
|
2036 |
|
|
{
|
2037 |
|
|
ssa_op_iter iter;
|
2038 |
|
|
use_operand_p use_p;
|
2039 |
|
|
|
2040 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
|
2041 |
|
|
{
|
2042 |
|
|
tree use = USE_FROM_PTR (use_p);
|
2043 |
|
|
tree step = NULL_TREE;
|
2044 |
|
|
tree scev, init, val, var;
|
2045 |
|
|
gimple setstmt;
|
2046 |
|
|
struct tree_map *h, in;
|
2047 |
|
|
void **loc;
|
2048 |
|
|
|
2049 |
|
|
/* Replace uses of X with Y right away. */
|
2050 |
|
|
if (use == x)
|
2051 |
|
|
{
|
2052 |
|
|
SET_USE (use_p, y);
|
2053 |
|
|
continue;
|
2054 |
|
|
}
|
2055 |
|
|
|
2056 |
|
|
scev = instantiate_parameters (loop,
|
2057 |
|
|
analyze_scalar_evolution (loop, use));
|
2058 |
|
|
|
2059 |
|
|
if (scev == NULL || scev == chrec_dont_know)
|
2060 |
|
|
continue;
|
2061 |
|
|
|
2062 |
|
|
step = evolution_part_in_loop_num (scev, loop->num);
|
2063 |
|
|
if (step == NULL
|
2064 |
|
|
|| step == chrec_dont_know
|
2065 |
|
|
|| TREE_CODE (step) != INTEGER_CST
|
2066 |
|
|
|| int_cst_value (step) != xstep)
|
2067 |
|
|
continue;
|
2068 |
|
|
|
2069 |
|
|
/* Use REPLACEMENTS hash table to cache already created
|
2070 |
|
|
temporaries. */
|
2071 |
|
|
in.hash = htab_hash_pointer (use);
|
2072 |
|
|
in.base.from = use;
|
2073 |
|
|
h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
|
2074 |
|
|
if (h != NULL)
|
2075 |
|
|
{
|
2076 |
|
|
SET_USE (use_p, h->to);
|
2077 |
|
|
continue;
|
2078 |
|
|
}
|
2079 |
|
|
|
2080 |
|
|
/* USE which has the same step as X should be replaced
|
2081 |
|
|
with a temporary set to Y + YINIT - INIT. */
|
2082 |
|
|
init = initial_condition_in_loop_num (scev, loop->num);
|
2083 |
|
|
gcc_assert (init != NULL && init != chrec_dont_know);
|
2084 |
|
|
if (TREE_TYPE (use) == TREE_TYPE (y))
|
2085 |
|
|
{
|
2086 |
|
|
val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
|
2087 |
|
|
val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
|
2088 |
|
|
if (val == y)
|
2089 |
|
|
{
|
2090 |
|
|
/* If X has the same type as USE, the same step
|
2091 |
|
|
and same initial value, it can be replaced by Y. */
|
2092 |
|
|
SET_USE (use_p, y);
|
2093 |
|
|
continue;
|
2094 |
|
|
}
|
2095 |
|
|
}
|
2096 |
|
|
else
|
2097 |
|
|
{
|
2098 |
|
|
val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
|
2099 |
|
|
val = fold_convert (TREE_TYPE (use), val);
|
2100 |
|
|
val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
|
2101 |
|
|
}
|
2102 |
|
|
|
2103 |
|
|
/* Create a temporary variable and insert it at the beginning
|
2104 |
|
|
of the loop body basic block, right after the PHI node
|
2105 |
|
|
which sets Y. */
|
2106 |
|
|
var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
|
2107 |
|
|
add_referenced_var (var);
|
2108 |
|
|
val = force_gimple_operand_gsi (firstbsi, val, false, NULL,
|
2109 |
|
|
true, GSI_SAME_STMT);
|
2110 |
|
|
setstmt = gimple_build_assign (var, val);
|
2111 |
|
|
var = make_ssa_name (var, setstmt);
|
2112 |
|
|
gimple_assign_set_lhs (setstmt, var);
|
2113 |
|
|
gsi_insert_before (firstbsi, setstmt, GSI_SAME_STMT);
|
2114 |
|
|
update_stmt (setstmt);
|
2115 |
|
|
SET_USE (use_p, var);
|
2116 |
|
|
h = GGC_NEW (struct tree_map);
|
2117 |
|
|
h->hash = in.hash;
|
2118 |
|
|
h->base.from = use;
|
2119 |
|
|
h->to = var;
|
2120 |
|
|
loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
|
2121 |
|
|
gcc_assert ((*(struct tree_map **)loc) == NULL);
|
2122 |
|
|
*(struct tree_map **) loc = h;
|
2123 |
|
|
}
|
2124 |
|
|
}
|
2125 |
|
|
|
2126 |
|
|
/* Return true if STMT is an exit PHI for LOOP */
|
2127 |
|
|
|
2128 |
|
|
static bool
|
2129 |
|
|
exit_phi_for_loop_p (struct loop *loop, gimple stmt)
|
2130 |
|
|
{
|
2131 |
|
|
if (gimple_code (stmt) != GIMPLE_PHI
|
2132 |
|
|
|| gimple_phi_num_args (stmt) != 1
|
2133 |
|
|
|| gimple_bb (stmt) != single_exit (loop)->dest)
|
2134 |
|
|
return false;
|
2135 |
|
|
|
2136 |
|
|
return true;
|
2137 |
|
|
}
|
2138 |
|
|
|
2139 |
|
|
/* Return true if STMT can be put back into the loop INNER, by
|
2140 |
|
|
copying it to the beginning of that loop and changing the uses. */
|
2141 |
|
|
|
2142 |
|
|
static bool
|
2143 |
|
|
can_put_in_inner_loop (struct loop *inner, gimple stmt)
|
2144 |
|
|
{
|
2145 |
|
|
imm_use_iterator imm_iter;
|
2146 |
|
|
use_operand_p use_p;
|
2147 |
|
|
|
2148 |
|
|
gcc_assert (is_gimple_assign (stmt));
|
2149 |
|
|
if (gimple_vuse (stmt)
|
2150 |
|
|
|| !stmt_invariant_in_loop_p (inner, stmt))
|
2151 |
|
|
return false;
|
2152 |
|
|
|
2153 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
|
2154 |
|
|
{
|
2155 |
|
|
if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
|
2156 |
|
|
{
|
2157 |
|
|
basic_block immbb = gimple_bb (USE_STMT (use_p));
|
2158 |
|
|
|
2159 |
|
|
if (!flow_bb_inside_loop_p (inner, immbb))
|
2160 |
|
|
return false;
|
2161 |
|
|
}
|
2162 |
|
|
}
|
2163 |
|
|
return true;
|
2164 |
|
|
}
|
2165 |
|
|
|
2166 |
|
|
/* Return true if STMT can be put *after* the inner loop of LOOP. */
|
2167 |
|
|
|
2168 |
|
|
static bool
|
2169 |
|
|
can_put_after_inner_loop (struct loop *loop, gimple stmt)
|
2170 |
|
|
{
|
2171 |
|
|
imm_use_iterator imm_iter;
|
2172 |
|
|
use_operand_p use_p;
|
2173 |
|
|
|
2174 |
|
|
if (gimple_vuse (stmt))
|
2175 |
|
|
return false;
|
2176 |
|
|
|
2177 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
|
2178 |
|
|
{
|
2179 |
|
|
if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
|
2180 |
|
|
{
|
2181 |
|
|
basic_block immbb = gimple_bb (USE_STMT (use_p));
|
2182 |
|
|
|
2183 |
|
|
if (!dominated_by_p (CDI_DOMINATORS,
|
2184 |
|
|
immbb,
|
2185 |
|
|
loop->inner->header)
|
2186 |
|
|
&& !can_put_in_inner_loop (loop->inner, stmt))
|
2187 |
|
|
return false;
|
2188 |
|
|
}
|
2189 |
|
|
}
|
2190 |
|
|
return true;
|
2191 |
|
|
}
|
2192 |
|
|
|
2193 |
|
|
/* Return true when the induction variable IV is simple enough to be
|
2194 |
|
|
re-synthesized. */
|
2195 |
|
|
|
2196 |
|
|
static bool
|
2197 |
|
|
can_duplicate_iv (tree iv, struct loop *loop)
|
2198 |
|
|
{
|
2199 |
|
|
tree scev = instantiate_parameters
|
2200 |
|
|
(loop, analyze_scalar_evolution (loop, iv));
|
2201 |
|
|
|
2202 |
|
|
if (!automatically_generated_chrec_p (scev))
|
2203 |
|
|
{
|
2204 |
|
|
tree step = evolution_part_in_loop_num (scev, loop->num);
|
2205 |
|
|
|
2206 |
|
|
if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
|
2207 |
|
|
return true;
|
2208 |
|
|
}
|
2209 |
|
|
|
2210 |
|
|
return false;
|
2211 |
|
|
}
|
2212 |
|
|
|
2213 |
|
|
/* If this is a scalar operation that can be put back into the inner
|
2214 |
|
|
loop, or after the inner loop, through copying, then do so. This
|
2215 |
|
|
works on the theory that any amount of scalar code we have to
|
2216 |
|
|
reduplicate into or after the loops is less expensive that the win
|
2217 |
|
|
we get from rearranging the memory walk the loop is doing so that
|
2218 |
|
|
it has better cache behavior. */
|
2219 |
|
|
|
2220 |
|
|
static bool
|
2221 |
|
|
cannot_convert_modify_to_perfect_nest (gimple stmt, struct loop *loop)
|
2222 |
|
|
{
|
2223 |
|
|
use_operand_p use_a, use_b;
|
2224 |
|
|
imm_use_iterator imm_iter;
|
2225 |
|
|
ssa_op_iter op_iter, op_iter1;
|
2226 |
|
|
tree op0 = gimple_assign_lhs (stmt);
|
2227 |
|
|
|
2228 |
|
|
/* The statement should not define a variable used in the inner
|
2229 |
|
|
loop. */
|
2230 |
|
|
if (TREE_CODE (op0) == SSA_NAME
|
2231 |
|
|
&& !can_duplicate_iv (op0, loop))
|
2232 |
|
|
FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
|
2233 |
|
|
if (gimple_bb (USE_STMT (use_a))->loop_father == loop->inner)
|
2234 |
|
|
return true;
|
2235 |
|
|
|
2236 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
|
2237 |
|
|
{
|
2238 |
|
|
gimple node;
|
2239 |
|
|
tree op = USE_FROM_PTR (use_a);
|
2240 |
|
|
|
2241 |
|
|
/* The variables should not be used in both loops. */
|
2242 |
|
|
if (!can_duplicate_iv (op, loop))
|
2243 |
|
|
FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
|
2244 |
|
|
if (gimple_bb (USE_STMT (use_b))->loop_father == loop->inner)
|
2245 |
|
|
return true;
|
2246 |
|
|
|
2247 |
|
|
/* The statement should not use the value of a scalar that was
|
2248 |
|
|
modified in the loop. */
|
2249 |
|
|
node = SSA_NAME_DEF_STMT (op);
|
2250 |
|
|
if (gimple_code (node) == GIMPLE_PHI)
|
2251 |
|
|
FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
|
2252 |
|
|
{
|
2253 |
|
|
tree arg = USE_FROM_PTR (use_b);
|
2254 |
|
|
|
2255 |
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
2256 |
|
|
{
|
2257 |
|
|
gimple arg_stmt = SSA_NAME_DEF_STMT (arg);
|
2258 |
|
|
|
2259 |
|
|
if (gimple_bb (arg_stmt)
|
2260 |
|
|
&& (gimple_bb (arg_stmt)->loop_father == loop->inner))
|
2261 |
|
|
return true;
|
2262 |
|
|
}
|
2263 |
|
|
}
|
2264 |
|
|
}
|
2265 |
|
|
|
2266 |
|
|
return false;
|
2267 |
|
|
}
|
2268 |
|
|
/* Return true when BB contains statements that can harm the transform
|
2269 |
|
|
to a perfect loop nest. */
|
2270 |
|
|
|
2271 |
|
|
static bool
|
2272 |
|
|
cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
|
2273 |
|
|
{
|
2274 |
|
|
gimple_stmt_iterator bsi;
|
2275 |
|
|
gimple exit_condition = get_loop_exit_condition (loop);
|
2276 |
|
|
|
2277 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
2278 |
|
|
{
|
2279 |
|
|
gimple stmt = gsi_stmt (bsi);
|
2280 |
|
|
|
2281 |
|
|
if (stmt == exit_condition
|
2282 |
|
|
|| not_interesting_stmt (stmt)
|
2283 |
|
|
|| stmt_is_bumper_for_loop (loop, stmt))
|
2284 |
|
|
continue;
|
2285 |
|
|
|
2286 |
|
|
if (is_gimple_assign (stmt))
|
2287 |
|
|
{
|
2288 |
|
|
if (cannot_convert_modify_to_perfect_nest (stmt, loop))
|
2289 |
|
|
return true;
|
2290 |
|
|
|
2291 |
|
|
if (can_duplicate_iv (gimple_assign_lhs (stmt), loop))
|
2292 |
|
|
continue;
|
2293 |
|
|
|
2294 |
|
|
if (can_put_in_inner_loop (loop->inner, stmt)
|
2295 |
|
|
|| can_put_after_inner_loop (loop, stmt))
|
2296 |
|
|
continue;
|
2297 |
|
|
}
|
2298 |
|
|
|
2299 |
|
|
/* If the bb of a statement we care about isn't dominated by the
|
2300 |
|
|
header of the inner loop, then we can't handle this case
|
2301 |
|
|
right now. This test ensures that the statement comes
|
2302 |
|
|
completely *after* the inner loop. */
|
2303 |
|
|
if (!dominated_by_p (CDI_DOMINATORS,
|
2304 |
|
|
gimple_bb (stmt),
|
2305 |
|
|
loop->inner->header))
|
2306 |
|
|
return true;
|
2307 |
|
|
}
|
2308 |
|
|
|
2309 |
|
|
return false;
|
2310 |
|
|
}
|
2311 |
|
|
|
2312 |
|
|
|
2313 |
|
|
/* Return TRUE if LOOP is an imperfect nest that we can convert to a
|
2314 |
|
|
perfect one. At the moment, we only handle imperfect nests of
|
2315 |
|
|
depth 2, where all of the statements occur after the inner loop. */
|
2316 |
|
|
|
2317 |
|
|
static bool
|
2318 |
|
|
can_convert_to_perfect_nest (struct loop *loop)
|
2319 |
|
|
{
|
2320 |
|
|
basic_block *bbs;
|
2321 |
|
|
size_t i;
|
2322 |
|
|
gimple_stmt_iterator si;
|
2323 |
|
|
|
2324 |
|
|
/* Can't handle triply nested+ loops yet. */
|
2325 |
|
|
if (!loop->inner || loop->inner->inner)
|
2326 |
|
|
return false;
|
2327 |
|
|
|
2328 |
|
|
bbs = get_loop_body (loop);
|
2329 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
2330 |
|
|
if (bbs[i]->loop_father == loop
|
2331 |
|
|
&& cannot_convert_bb_to_perfect_nest (bbs[i], loop))
|
2332 |
|
|
goto fail;
|
2333 |
|
|
|
2334 |
|
|
/* We also need to make sure the loop exit only has simple copy phis in it,
|
2335 |
|
|
otherwise we don't know how to transform it into a perfect nest. */
|
2336 |
|
|
for (si = gsi_start_phis (single_exit (loop)->dest);
|
2337 |
|
|
!gsi_end_p (si);
|
2338 |
|
|
gsi_next (&si))
|
2339 |
|
|
if (gimple_phi_num_args (gsi_stmt (si)) != 1)
|
2340 |
|
|
goto fail;
|
2341 |
|
|
|
2342 |
|
|
free (bbs);
|
2343 |
|
|
return true;
|
2344 |
|
|
|
2345 |
|
|
fail:
|
2346 |
|
|
free (bbs);
|
2347 |
|
|
return false;
|
2348 |
|
|
}
|
2349 |
|
|
|
2350 |
|
|
|
2351 |
|
|
DEF_VEC_I(source_location);
|
2352 |
|
|
DEF_VEC_ALLOC_I(source_location,heap);
|
2353 |
|
|
|
2354 |
|
|
/* Transform the loop nest into a perfect nest, if possible.
|
2355 |
|
|
LOOP is the loop nest to transform into a perfect nest
|
2356 |
|
|
LBOUNDS are the lower bounds for the loops to transform
|
2357 |
|
|
UBOUNDS are the upper bounds for the loops to transform
|
2358 |
|
|
STEPS is the STEPS for the loops to transform.
|
2359 |
|
|
LOOPIVS is the induction variables for the loops to transform.
|
2360 |
|
|
|
2361 |
|
|
Basically, for the case of
|
2362 |
|
|
|
2363 |
|
|
FOR (i = 0; i < 50; i++)
|
2364 |
|
|
{
|
2365 |
|
|
FOR (j =0; j < 50; j++)
|
2366 |
|
|
{
|
2367 |
|
|
<whatever>
|
2368 |
|
|
}
|
2369 |
|
|
<some code>
|
2370 |
|
|
}
|
2371 |
|
|
|
2372 |
|
|
This function will transform it into a perfect loop nest by splitting the
|
2373 |
|
|
outer loop into two loops, like so:
|
2374 |
|
|
|
2375 |
|
|
FOR (i = 0; i < 50; i++)
|
2376 |
|
|
{
|
2377 |
|
|
FOR (j = 0; j < 50; j++)
|
2378 |
|
|
{
|
2379 |
|
|
<whatever>
|
2380 |
|
|
}
|
2381 |
|
|
}
|
2382 |
|
|
|
2383 |
|
|
FOR (i = 0; i < 50; i ++)
|
2384 |
|
|
{
|
2385 |
|
|
<some code>
|
2386 |
|
|
}
|
2387 |
|
|
|
2388 |
|
|
Return FALSE if we can't make this loop into a perfect nest. */
|
2389 |
|
|
|
2390 |
|
|
static bool
|
2391 |
|
|
perfect_nestify (struct loop *loop,
|
2392 |
|
|
VEC(tree,heap) *lbounds,
|
2393 |
|
|
VEC(tree,heap) *ubounds,
|
2394 |
|
|
VEC(int,heap) *steps,
|
2395 |
|
|
VEC(tree,heap) *loopivs)
|
2396 |
|
|
{
|
2397 |
|
|
basic_block *bbs;
|
2398 |
|
|
gimple exit_condition;
|
2399 |
|
|
gimple cond_stmt;
|
2400 |
|
|
basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
|
2401 |
|
|
int i;
|
2402 |
|
|
gimple_stmt_iterator bsi, firstbsi;
|
2403 |
|
|
bool insert_after;
|
2404 |
|
|
edge e;
|
2405 |
|
|
struct loop *newloop;
|
2406 |
|
|
gimple phi;
|
2407 |
|
|
tree uboundvar;
|
2408 |
|
|
gimple stmt;
|
2409 |
|
|
tree oldivvar, ivvar, ivvarinced;
|
2410 |
|
|
VEC(tree,heap) *phis = NULL;
|
2411 |
|
|
VEC(source_location,heap) *locations = NULL;
|
2412 |
|
|
htab_t replacements = NULL;
|
2413 |
|
|
|
2414 |
|
|
/* Create the new loop. */
|
2415 |
|
|
olddest = single_exit (loop)->dest;
|
2416 |
|
|
preheaderbb = split_edge (single_exit (loop));
|
2417 |
|
|
headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
|
2418 |
|
|
|
2419 |
|
|
/* Push the exit phi nodes that we are moving. */
|
2420 |
|
|
for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); gsi_next (&bsi))
|
2421 |
|
|
{
|
2422 |
|
|
phi = gsi_stmt (bsi);
|
2423 |
|
|
VEC_reserve (tree, heap, phis, 2);
|
2424 |
|
|
VEC_reserve (source_location, heap, locations, 1);
|
2425 |
|
|
VEC_quick_push (tree, phis, PHI_RESULT (phi));
|
2426 |
|
|
VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
|
2427 |
|
|
VEC_quick_push (source_location, locations,
|
2428 |
|
|
gimple_phi_arg_location (phi, 0));
|
2429 |
|
|
}
|
2430 |
|
|
e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
|
2431 |
|
|
|
2432 |
|
|
/* Remove the exit phis from the old basic block. */
|
2433 |
|
|
for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); )
|
2434 |
|
|
remove_phi_node (&bsi, false);
|
2435 |
|
|
|
2436 |
|
|
/* and add them back to the new basic block. */
|
2437 |
|
|
while (VEC_length (tree, phis) != 0)
|
2438 |
|
|
{
|
2439 |
|
|
tree def;
|
2440 |
|
|
tree phiname;
|
2441 |
|
|
source_location locus;
|
2442 |
|
|
def = VEC_pop (tree, phis);
|
2443 |
|
|
phiname = VEC_pop (tree, phis);
|
2444 |
|
|
locus = VEC_pop (source_location, locations);
|
2445 |
|
|
phi = create_phi_node (phiname, preheaderbb);
|
2446 |
|
|
add_phi_arg (phi, def, single_pred_edge (preheaderbb), locus);
|
2447 |
|
|
}
|
2448 |
|
|
flush_pending_stmts (e);
|
2449 |
|
|
VEC_free (tree, heap, phis);
|
2450 |
|
|
|
2451 |
|
|
bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
|
2452 |
|
|
latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
|
2453 |
|
|
make_edge (headerbb, bodybb, EDGE_FALLTHRU);
|
2454 |
|
|
cond_stmt = gimple_build_cond (NE_EXPR, integer_one_node, integer_zero_node,
|
2455 |
|
|
NULL_TREE, NULL_TREE);
|
2456 |
|
|
bsi = gsi_start_bb (bodybb);
|
2457 |
|
|
gsi_insert_after (&bsi, cond_stmt, GSI_NEW_STMT);
|
2458 |
|
|
e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
|
2459 |
|
|
make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
|
2460 |
|
|
make_edge (latchbb, headerbb, EDGE_FALLTHRU);
|
2461 |
|
|
|
2462 |
|
|
/* Update the loop structures. */
|
2463 |
|
|
newloop = duplicate_loop (loop, olddest->loop_father);
|
2464 |
|
|
newloop->header = headerbb;
|
2465 |
|
|
newloop->latch = latchbb;
|
2466 |
|
|
add_bb_to_loop (latchbb, newloop);
|
2467 |
|
|
add_bb_to_loop (bodybb, newloop);
|
2468 |
|
|
add_bb_to_loop (headerbb, newloop);
|
2469 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
|
2470 |
|
|
set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
|
2471 |
|
|
set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
|
2472 |
|
|
single_exit (loop)->src);
|
2473 |
|
|
set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
|
2474 |
|
|
set_immediate_dominator (CDI_DOMINATORS, olddest,
|
2475 |
|
|
recompute_dominator (CDI_DOMINATORS, olddest));
|
2476 |
|
|
/* Create the new iv. */
|
2477 |
|
|
oldivvar = VEC_index (tree, loopivs, 0);
|
2478 |
|
|
ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
|
2479 |
|
|
add_referenced_var (ivvar);
|
2480 |
|
|
standard_iv_increment_position (newloop, &bsi, &insert_after);
|
2481 |
|
|
create_iv (VEC_index (tree, lbounds, 0),
|
2482 |
|
|
build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
|
2483 |
|
|
ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
|
2484 |
|
|
|
2485 |
|
|
/* Create the new upper bound. This may be not just a variable, so we copy
|
2486 |
|
|
it to one just in case. */
|
2487 |
|
|
|
2488 |
|
|
exit_condition = get_loop_exit_condition (newloop);
|
2489 |
|
|
uboundvar = create_tmp_var (TREE_TYPE (VEC_index (tree, ubounds, 0)),
|
2490 |
|
|
"uboundvar");
|
2491 |
|
|
add_referenced_var (uboundvar);
|
2492 |
|
|
stmt = gimple_build_assign (uboundvar, VEC_index (tree, ubounds, 0));
|
2493 |
|
|
uboundvar = make_ssa_name (uboundvar, stmt);
|
2494 |
|
|
gimple_assign_set_lhs (stmt, uboundvar);
|
2495 |
|
|
|
2496 |
|
|
if (insert_after)
|
2497 |
|
|
gsi_insert_after (&bsi, stmt, GSI_SAME_STMT);
|
2498 |
|
|
else
|
2499 |
|
|
gsi_insert_before (&bsi, stmt, GSI_SAME_STMT);
|
2500 |
|
|
update_stmt (stmt);
|
2501 |
|
|
gimple_cond_set_condition (exit_condition, GE_EXPR, uboundvar, ivvarinced);
|
2502 |
|
|
update_stmt (exit_condition);
|
2503 |
|
|
replacements = htab_create_ggc (20, tree_map_hash,
|
2504 |
|
|
tree_map_eq, NULL);
|
2505 |
|
|
bbs = get_loop_body_in_dom_order (loop);
|
2506 |
|
|
/* Now move the statements, and replace the induction variable in the moved
|
2507 |
|
|
statements with the correct loop induction variable. */
|
2508 |
|
|
oldivvar = VEC_index (tree, loopivs, 0);
|
2509 |
|
|
firstbsi = gsi_start_bb (bodybb);
|
2510 |
|
|
for (i = loop->num_nodes - 1; i >= 0 ; i--)
|
2511 |
|
|
{
|
2512 |
|
|
gimple_stmt_iterator tobsi = gsi_last_bb (bodybb);
|
2513 |
|
|
if (bbs[i]->loop_father == loop)
|
2514 |
|
|
{
|
2515 |
|
|
/* If this is true, we are *before* the inner loop.
|
2516 |
|
|
If this isn't true, we are *after* it.
|
2517 |
|
|
|
2518 |
|
|
The only time can_convert_to_perfect_nest returns true when we
|
2519 |
|
|
have statements before the inner loop is if they can be moved
|
2520 |
|
|
into the inner loop.
|
2521 |
|
|
|
2522 |
|
|
The only time can_convert_to_perfect_nest returns true when we
|
2523 |
|
|
have statements after the inner loop is if they can be moved into
|
2524 |
|
|
the new split loop. */
|
2525 |
|
|
|
2526 |
|
|
if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
|
2527 |
|
|
{
|
2528 |
|
|
gimple_stmt_iterator header_bsi
|
2529 |
|
|
= gsi_after_labels (loop->inner->header);
|
2530 |
|
|
|
2531 |
|
|
for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
|
2532 |
|
|
{
|
2533 |
|
|
gimple stmt = gsi_stmt (bsi);
|
2534 |
|
|
|
2535 |
|
|
if (stmt == exit_condition
|
2536 |
|
|
|| not_interesting_stmt (stmt)
|
2537 |
|
|
|| stmt_is_bumper_for_loop (loop, stmt))
|
2538 |
|
|
{
|
2539 |
|
|
gsi_next (&bsi);
|
2540 |
|
|
continue;
|
2541 |
|
|
}
|
2542 |
|
|
|
2543 |
|
|
gsi_move_before (&bsi, &header_bsi);
|
2544 |
|
|
}
|
2545 |
|
|
}
|
2546 |
|
|
else
|
2547 |
|
|
{
|
2548 |
|
|
/* Note that the bsi only needs to be explicitly incremented
|
2549 |
|
|
when we don't move something, since it is automatically
|
2550 |
|
|
incremented when we do. */
|
2551 |
|
|
for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
|
2552 |
|
|
{
|
2553 |
|
|
gimple stmt = gsi_stmt (bsi);
|
2554 |
|
|
|
2555 |
|
|
if (stmt == exit_condition
|
2556 |
|
|
|| not_interesting_stmt (stmt)
|
2557 |
|
|
|| stmt_is_bumper_for_loop (loop, stmt))
|
2558 |
|
|
{
|
2559 |
|
|
gsi_next (&bsi);
|
2560 |
|
|
continue;
|
2561 |
|
|
}
|
2562 |
|
|
|
2563 |
|
|
replace_uses_equiv_to_x_with_y
|
2564 |
|
|
(loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
|
2565 |
|
|
VEC_index (tree, lbounds, 0), replacements, &firstbsi);
|
2566 |
|
|
|
2567 |
|
|
gsi_move_before (&bsi, &tobsi);
|
2568 |
|
|
|
2569 |
|
|
/* If the statement has any virtual operands, they may
|
2570 |
|
|
need to be rewired because the original loop may
|
2571 |
|
|
still reference them. */
|
2572 |
|
|
if (gimple_vuse (stmt))
|
2573 |
|
|
mark_sym_for_renaming (gimple_vop (cfun));
|
2574 |
|
|
}
|
2575 |
|
|
}
|
2576 |
|
|
|
2577 |
|
|
}
|
2578 |
|
|
}
|
2579 |
|
|
|
2580 |
|
|
free (bbs);
|
2581 |
|
|
htab_delete (replacements);
|
2582 |
|
|
return perfect_nest_p (loop);
|
2583 |
|
|
}
|
2584 |
|
|
|
2585 |
|
|
/* Return true if TRANS is a legal transformation matrix that respects
|
2586 |
|
|
the dependence vectors in DISTS and DIRS. The conservative answer
|
2587 |
|
|
is false.
|
2588 |
|
|
|
2589 |
|
|
"Wolfe proves that a unimodular transformation represented by the
|
2590 |
|
|
matrix T is legal when applied to a loop nest with a set of
|
2591 |
|
|
lexicographically non-negative distance vectors RDG if and only if
|
2592 |
|
|
for each vector d in RDG, (T.d >= 0) is lexicographically positive.
|
2593 |
|
|
i.e.: if and only if it transforms the lexicographically positive
|
2594 |
|
|
distance vectors to lexicographically positive vectors. Note that
|
2595 |
|
|
a unimodular matrix must transform the zero vector (and only it) to
|
2596 |
|
|
the zero vector." S.Muchnick. */
|
2597 |
|
|
|
2598 |
|
|
bool
|
2599 |
|
|
lambda_transform_legal_p (lambda_trans_matrix trans,
|
2600 |
|
|
int nb_loops,
|
2601 |
|
|
VEC (ddr_p, heap) *dependence_relations)
|
2602 |
|
|
{
|
2603 |
|
|
unsigned int i, j;
|
2604 |
|
|
lambda_vector distres;
|
2605 |
|
|
struct data_dependence_relation *ddr;
|
2606 |
|
|
|
2607 |
|
|
gcc_assert (LTM_COLSIZE (trans) == nb_loops
|
2608 |
|
|
&& LTM_ROWSIZE (trans) == nb_loops);
|
2609 |
|
|
|
2610 |
|
|
/* When there are no dependences, the transformation is correct. */
|
2611 |
|
|
if (VEC_length (ddr_p, dependence_relations) == 0)
|
2612 |
|
|
return true;
|
2613 |
|
|
|
2614 |
|
|
ddr = VEC_index (ddr_p, dependence_relations, 0);
|
2615 |
|
|
if (ddr == NULL)
|
2616 |
|
|
return true;
|
2617 |
|
|
|
2618 |
|
|
/* When there is an unknown relation in the dependence_relations, we
|
2619 |
|
|
know that it is no worth looking at this loop nest: give up. */
|
2620 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
2621 |
|
|
return false;
|
2622 |
|
|
|
2623 |
|
|
distres = lambda_vector_new (nb_loops);
|
2624 |
|
|
|
2625 |
|
|
/* For each distance vector in the dependence graph. */
|
2626 |
|
|
for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
|
2627 |
|
|
{
|
2628 |
|
|
/* Don't care about relations for which we know that there is no
|
2629 |
|
|
dependence, nor about read-read (aka. output-dependences):
|
2630 |
|
|
these data accesses can happen in any order. */
|
2631 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_known
|
2632 |
|
|
|| (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
|
2633 |
|
|
continue;
|
2634 |
|
|
|
2635 |
|
|
/* Conservatively answer: "this transformation is not valid". */
|
2636 |
|
|
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
2637 |
|
|
return false;
|
2638 |
|
|
|
2639 |
|
|
/* If the dependence could not be captured by a distance vector,
|
2640 |
|
|
conservatively answer that the transform is not valid. */
|
2641 |
|
|
if (DDR_NUM_DIST_VECTS (ddr) == 0)
|
2642 |
|
|
return false;
|
2643 |
|
|
|
2644 |
|
|
/* Compute trans.dist_vect */
|
2645 |
|
|
for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
|
2646 |
|
|
{
|
2647 |
|
|
lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
|
2648 |
|
|
DDR_DIST_VECT (ddr, j), distres);
|
2649 |
|
|
|
2650 |
|
|
if (!lambda_vector_lexico_pos (distres, nb_loops))
|
2651 |
|
|
return false;
|
2652 |
|
|
}
|
2653 |
|
|
}
|
2654 |
|
|
return true;
|
2655 |
|
|
}
|
2656 |
|
|
|
2657 |
|
|
|
2658 |
|
|
/* Collects parameters from affine function ACCESS_FUNCTION, and push
|
2659 |
|
|
them in PARAMETERS. */
|
2660 |
|
|
|
2661 |
|
|
static void
|
2662 |
|
|
lambda_collect_parameters_from_af (tree access_function,
|
2663 |
|
|
struct pointer_set_t *param_set,
|
2664 |
|
|
VEC (tree, heap) **parameters)
|
2665 |
|
|
{
|
2666 |
|
|
if (access_function == NULL)
|
2667 |
|
|
return;
|
2668 |
|
|
|
2669 |
|
|
if (TREE_CODE (access_function) == SSA_NAME
|
2670 |
|
|
&& pointer_set_contains (param_set, access_function) == 0)
|
2671 |
|
|
{
|
2672 |
|
|
pointer_set_insert (param_set, access_function);
|
2673 |
|
|
VEC_safe_push (tree, heap, *parameters, access_function);
|
2674 |
|
|
}
|
2675 |
|
|
else
|
2676 |
|
|
{
|
2677 |
|
|
int i, num_operands = tree_operand_length (access_function);
|
2678 |
|
|
|
2679 |
|
|
for (i = 0; i < num_operands; i++)
|
2680 |
|
|
lambda_collect_parameters_from_af (TREE_OPERAND (access_function, i),
|
2681 |
|
|
param_set, parameters);
|
2682 |
|
|
}
|
2683 |
|
|
}
|
2684 |
|
|
|
2685 |
|
|
/* Collects parameters from DATAREFS, and push them in PARAMETERS. */
|
2686 |
|
|
|
2687 |
|
|
void
|
2688 |
|
|
lambda_collect_parameters (VEC (data_reference_p, heap) *datarefs,
|
2689 |
|
|
VEC (tree, heap) **parameters)
|
2690 |
|
|
{
|
2691 |
|
|
unsigned i, j;
|
2692 |
|
|
struct pointer_set_t *parameter_set = pointer_set_create ();
|
2693 |
|
|
data_reference_p data_reference;
|
2694 |
|
|
|
2695 |
|
|
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, data_reference); i++)
|
2696 |
|
|
for (j = 0; j < DR_NUM_DIMENSIONS (data_reference); j++)
|
2697 |
|
|
lambda_collect_parameters_from_af (DR_ACCESS_FN (data_reference, j),
|
2698 |
|
|
parameter_set, parameters);
|
2699 |
|
|
pointer_set_destroy (parameter_set);
|
2700 |
|
|
}
|
2701 |
|
|
|
2702 |
|
|
/* Translates BASE_EXPR to vector CY. AM is needed for inferring
|
2703 |
|
|
indexing positions in the data access vector. CST is the analyzed
|
2704 |
|
|
integer constant. */
|
2705 |
|
|
|
2706 |
|
|
static bool
|
2707 |
|
|
av_for_af_base (tree base_expr, lambda_vector cy, struct access_matrix *am,
|
2708 |
|
|
int cst)
|
2709 |
|
|
{
|
2710 |
|
|
bool result = true;
|
2711 |
|
|
|
2712 |
|
|
switch (TREE_CODE (base_expr))
|
2713 |
|
|
{
|
2714 |
|
|
case INTEGER_CST:
|
2715 |
|
|
/* Constant part. */
|
2716 |
|
|
cy[AM_CONST_COLUMN_INDEX (am)] += int_cst_value (base_expr) * cst;
|
2717 |
|
|
return true;
|
2718 |
|
|
|
2719 |
|
|
case SSA_NAME:
|
2720 |
|
|
{
|
2721 |
|
|
int param_index =
|
2722 |
|
|
access_matrix_get_index_for_parameter (base_expr, am);
|
2723 |
|
|
|
2724 |
|
|
if (param_index >= 0)
|
2725 |
|
|
{
|
2726 |
|
|
cy[param_index] = cst + cy[param_index];
|
2727 |
|
|
return true;
|
2728 |
|
|
}
|
2729 |
|
|
|
2730 |
|
|
return false;
|
2731 |
|
|
}
|
2732 |
|
|
|
2733 |
|
|
case PLUS_EXPR:
|
2734 |
|
|
return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
|
2735 |
|
|
&& av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, cst);
|
2736 |
|
|
|
2737 |
|
|
case MINUS_EXPR:
|
2738 |
|
|
return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
|
2739 |
|
|
&& av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, -1 * cst);
|
2740 |
|
|
|
2741 |
|
|
case MULT_EXPR:
|
2742 |
|
|
if (TREE_CODE (TREE_OPERAND (base_expr, 0)) == INTEGER_CST)
|
2743 |
|
|
result = av_for_af_base (TREE_OPERAND (base_expr, 1),
|
2744 |
|
|
cy, am, cst *
|
2745 |
|
|
int_cst_value (TREE_OPERAND (base_expr, 0)));
|
2746 |
|
|
else if (TREE_CODE (TREE_OPERAND (base_expr, 1)) == INTEGER_CST)
|
2747 |
|
|
result = av_for_af_base (TREE_OPERAND (base_expr, 0),
|
2748 |
|
|
cy, am, cst *
|
2749 |
|
|
int_cst_value (TREE_OPERAND (base_expr, 1)));
|
2750 |
|
|
else
|
2751 |
|
|
result = false;
|
2752 |
|
|
|
2753 |
|
|
return result;
|
2754 |
|
|
|
2755 |
|
|
case NEGATE_EXPR:
|
2756 |
|
|
return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, -1 * cst);
|
2757 |
|
|
|
2758 |
|
|
default:
|
2759 |
|
|
return false;
|
2760 |
|
|
}
|
2761 |
|
|
|
2762 |
|
|
return result;
|
2763 |
|
|
}
|
2764 |
|
|
|
2765 |
|
|
/* Translates ACCESS_FUN to vector CY. AM is needed for inferring
|
2766 |
|
|
indexing positions in the data access vector. */
|
2767 |
|
|
|
2768 |
|
|
static bool
|
2769 |
|
|
av_for_af (tree access_fun, lambda_vector cy, struct access_matrix *am)
|
2770 |
|
|
{
|
2771 |
|
|
switch (TREE_CODE (access_fun))
|
2772 |
|
|
{
|
2773 |
|
|
case POLYNOMIAL_CHREC:
|
2774 |
|
|
{
|
2775 |
|
|
tree left = CHREC_LEFT (access_fun);
|
2776 |
|
|
tree right = CHREC_RIGHT (access_fun);
|
2777 |
|
|
unsigned var;
|
2778 |
|
|
|
2779 |
|
|
if (TREE_CODE (right) != INTEGER_CST)
|
2780 |
|
|
return false;
|
2781 |
|
|
|
2782 |
|
|
var = am_vector_index_for_loop (am, CHREC_VARIABLE (access_fun));
|
2783 |
|
|
cy[var] = int_cst_value (right);
|
2784 |
|
|
|
2785 |
|
|
if (TREE_CODE (left) == POLYNOMIAL_CHREC)
|
2786 |
|
|
return av_for_af (left, cy, am);
|
2787 |
|
|
else
|
2788 |
|
|
return av_for_af_base (left, cy, am, 1);
|
2789 |
|
|
}
|
2790 |
|
|
|
2791 |
|
|
case INTEGER_CST:
|
2792 |
|
|
/* Constant part. */
|
2793 |
|
|
return av_for_af_base (access_fun, cy, am, 1);
|
2794 |
|
|
|
2795 |
|
|
default:
|
2796 |
|
|
return false;
|
2797 |
|
|
}
|
2798 |
|
|
}
|
2799 |
|
|
|
2800 |
|
|
/* Initializes the access matrix for DATA_REFERENCE. */
|
2801 |
|
|
|
2802 |
|
|
static bool
|
2803 |
|
|
build_access_matrix (data_reference_p data_reference,
|
2804 |
|
|
VEC (tree, heap) *parameters, VEC (loop_p, heap) *nest)
|
2805 |
|
|
{
|
2806 |
|
|
struct access_matrix *am = GGC_NEW (struct access_matrix);
|
2807 |
|
|
unsigned i, ndim = DR_NUM_DIMENSIONS (data_reference);
|
2808 |
|
|
unsigned nivs = VEC_length (loop_p, nest);
|
2809 |
|
|
unsigned lambda_nb_columns;
|
2810 |
|
|
|
2811 |
|
|
AM_LOOP_NEST (am) = nest;
|
2812 |
|
|
AM_NB_INDUCTION_VARS (am) = nivs;
|
2813 |
|
|
AM_PARAMETERS (am) = parameters;
|
2814 |
|
|
|
2815 |
|
|
lambda_nb_columns = AM_NB_COLUMNS (am);
|
2816 |
|
|
AM_MATRIX (am) = VEC_alloc (lambda_vector, gc, ndim);
|
2817 |
|
|
|
2818 |
|
|
for (i = 0; i < ndim; i++)
|
2819 |
|
|
{
|
2820 |
|
|
lambda_vector access_vector = lambda_vector_new (lambda_nb_columns);
|
2821 |
|
|
tree access_function = DR_ACCESS_FN (data_reference, i);
|
2822 |
|
|
|
2823 |
|
|
if (!av_for_af (access_function, access_vector, am))
|
2824 |
|
|
return false;
|
2825 |
|
|
|
2826 |
|
|
VEC_quick_push (lambda_vector, AM_MATRIX (am), access_vector);
|
2827 |
|
|
}
|
2828 |
|
|
|
2829 |
|
|
DR_ACCESS_MATRIX (data_reference) = am;
|
2830 |
|
|
return true;
|
2831 |
|
|
}
|
2832 |
|
|
|
2833 |
|
|
/* Returns false when one of the access matrices cannot be built. */
|
2834 |
|
|
|
2835 |
|
|
bool
|
2836 |
|
|
lambda_compute_access_matrices (VEC (data_reference_p, heap) *datarefs,
|
2837 |
|
|
VEC (tree, heap) *parameters,
|
2838 |
|
|
VEC (loop_p, heap) *nest)
|
2839 |
|
|
{
|
2840 |
|
|
data_reference_p dataref;
|
2841 |
|
|
unsigned ix;
|
2842 |
|
|
|
2843 |
|
|
for (ix = 0; VEC_iterate (data_reference_p, datarefs, ix, dataref); ix++)
|
2844 |
|
|
if (!build_access_matrix (dataref, parameters, nest))
|
2845 |
|
|
return false;
|
2846 |
|
|
|
2847 |
|
|
return true;
|
2848 |
|
|
}
|