| 1 |
280 |
jeremybenn |
/* Lambda matrix and vector interface.
|
| 2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Daniel Berlin <dberlin@dberlin.org>
|
| 5 |
|
|
|
| 6 |
|
|
This file is part of GCC.
|
| 7 |
|
|
|
| 8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 9 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 11 |
|
|
version.
|
| 12 |
|
|
|
| 13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 16 |
|
|
for more details.
|
| 17 |
|
|
|
| 18 |
|
|
You should have received a copy of the GNU General Public License
|
| 19 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 20 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 21 |
|
|
|
| 22 |
|
|
#ifndef LAMBDA_H
|
| 23 |
|
|
#define LAMBDA_H
|
| 24 |
|
|
|
| 25 |
|
|
#include "vec.h"
|
| 26 |
|
|
|
| 27 |
|
|
/* An integer vector. A vector formally consists of an element of a vector
|
| 28 |
|
|
space. A vector space is a set that is closed under vector addition
|
| 29 |
|
|
and scalar multiplication. In this vector space, an element is a list of
|
| 30 |
|
|
integers. */
|
| 31 |
|
|
typedef int *lambda_vector;
|
| 32 |
|
|
DEF_VEC_P(lambda_vector);
|
| 33 |
|
|
DEF_VEC_ALLOC_P(lambda_vector,heap);
|
| 34 |
|
|
DEF_VEC_ALLOC_P(lambda_vector,gc);
|
| 35 |
|
|
|
| 36 |
|
|
typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
|
| 37 |
|
|
DEF_VEC_P (lambda_vector_vec_p);
|
| 38 |
|
|
DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
|
| 39 |
|
|
|
| 40 |
|
|
/* An integer matrix. A matrix consists of m vectors of length n (IE
|
| 41 |
|
|
all vectors are the same length). */
|
| 42 |
|
|
typedef lambda_vector *lambda_matrix;
|
| 43 |
|
|
|
| 44 |
|
|
DEF_VEC_P (lambda_matrix);
|
| 45 |
|
|
DEF_VEC_ALLOC_P (lambda_matrix, heap);
|
| 46 |
|
|
|
| 47 |
|
|
/* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
|
| 48 |
|
|
matrix. Rather than use floats, we simply keep a single DENOMINATOR that
|
| 49 |
|
|
represents the denominator for every element in the matrix. */
|
| 50 |
|
|
typedef struct lambda_trans_matrix_s
|
| 51 |
|
|
{
|
| 52 |
|
|
lambda_matrix matrix;
|
| 53 |
|
|
int rowsize;
|
| 54 |
|
|
int colsize;
|
| 55 |
|
|
int denominator;
|
| 56 |
|
|
} *lambda_trans_matrix;
|
| 57 |
|
|
#define LTM_MATRIX(T) ((T)->matrix)
|
| 58 |
|
|
#define LTM_ROWSIZE(T) ((T)->rowsize)
|
| 59 |
|
|
#define LTM_COLSIZE(T) ((T)->colsize)
|
| 60 |
|
|
#define LTM_DENOMINATOR(T) ((T)->denominator)
|
| 61 |
|
|
|
| 62 |
|
|
/* A vector representing a statement in the body of a loop.
|
| 63 |
|
|
The COEFFICIENTS vector contains a coefficient for each induction variable
|
| 64 |
|
|
in the loop nest containing the statement.
|
| 65 |
|
|
The DENOMINATOR represents the denominator for each coefficient in the
|
| 66 |
|
|
COEFFICIENT vector.
|
| 67 |
|
|
|
| 68 |
|
|
This structure is used during code generation in order to rewrite the old
|
| 69 |
|
|
induction variable uses in a statement in terms of the newly created
|
| 70 |
|
|
induction variables. */
|
| 71 |
|
|
typedef struct lambda_body_vector_s
|
| 72 |
|
|
{
|
| 73 |
|
|
lambda_vector coefficients;
|
| 74 |
|
|
int size;
|
| 75 |
|
|
int denominator;
|
| 76 |
|
|
} *lambda_body_vector;
|
| 77 |
|
|
#define LBV_COEFFICIENTS(T) ((T)->coefficients)
|
| 78 |
|
|
#define LBV_SIZE(T) ((T)->size)
|
| 79 |
|
|
#define LBV_DENOMINATOR(T) ((T)->denominator)
|
| 80 |
|
|
|
| 81 |
|
|
/* Piecewise linear expression.
|
| 82 |
|
|
This structure represents a linear expression with terms for the invariants
|
| 83 |
|
|
and induction variables of a loop.
|
| 84 |
|
|
COEFFICIENTS is a vector of coefficients for the induction variables, one
|
| 85 |
|
|
per loop in the loop nest.
|
| 86 |
|
|
CONSTANT is the constant portion of the linear expression
|
| 87 |
|
|
INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
|
| 88 |
|
|
one per invariant.
|
| 89 |
|
|
DENOMINATOR is the denominator for all of the coefficients and constants in
|
| 90 |
|
|
the expression.
|
| 91 |
|
|
The linear expressions can be linked together using the NEXT field, in
|
| 92 |
|
|
order to represent MAX or MIN of a group of linear expressions. */
|
| 93 |
|
|
typedef struct lambda_linear_expression_s
|
| 94 |
|
|
{
|
| 95 |
|
|
lambda_vector coefficients;
|
| 96 |
|
|
int constant;
|
| 97 |
|
|
lambda_vector invariant_coefficients;
|
| 98 |
|
|
int denominator;
|
| 99 |
|
|
struct lambda_linear_expression_s *next;
|
| 100 |
|
|
} *lambda_linear_expression;
|
| 101 |
|
|
|
| 102 |
|
|
#define LLE_COEFFICIENTS(T) ((T)->coefficients)
|
| 103 |
|
|
#define LLE_CONSTANT(T) ((T)->constant)
|
| 104 |
|
|
#define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
|
| 105 |
|
|
#define LLE_DENOMINATOR(T) ((T)->denominator)
|
| 106 |
|
|
#define LLE_NEXT(T) ((T)->next)
|
| 107 |
|
|
|
| 108 |
|
|
struct obstack;
|
| 109 |
|
|
|
| 110 |
|
|
lambda_linear_expression lambda_linear_expression_new (int, int,
|
| 111 |
|
|
struct obstack *);
|
| 112 |
|
|
void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
|
| 113 |
|
|
int, char);
|
| 114 |
|
|
|
| 115 |
|
|
/* Loop structure. Our loop structure consists of a constant representing the
|
| 116 |
|
|
STEP of the loop, a set of linear expressions representing the LOWER_BOUND
|
| 117 |
|
|
of the loop, a set of linear expressions representing the UPPER_BOUND of
|
| 118 |
|
|
the loop, and a set of linear expressions representing the LINEAR_OFFSET of
|
| 119 |
|
|
the loop. The linear offset is a set of linear expressions that are
|
| 120 |
|
|
applied to *both* the lower bound, and the upper bound. */
|
| 121 |
|
|
typedef struct lambda_loop_s
|
| 122 |
|
|
{
|
| 123 |
|
|
lambda_linear_expression lower_bound;
|
| 124 |
|
|
lambda_linear_expression upper_bound;
|
| 125 |
|
|
lambda_linear_expression linear_offset;
|
| 126 |
|
|
int step;
|
| 127 |
|
|
} *lambda_loop;
|
| 128 |
|
|
|
| 129 |
|
|
#define LL_LOWER_BOUND(T) ((T)->lower_bound)
|
| 130 |
|
|
#define LL_UPPER_BOUND(T) ((T)->upper_bound)
|
| 131 |
|
|
#define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
|
| 132 |
|
|
#define LL_STEP(T) ((T)->step)
|
| 133 |
|
|
|
| 134 |
|
|
/* Loop nest structure.
|
| 135 |
|
|
The loop nest structure consists of a set of loop structures (defined
|
| 136 |
|
|
above) in LOOPS, along with an integer representing the DEPTH of the loop,
|
| 137 |
|
|
and an integer representing the number of INVARIANTS in the loop. Both of
|
| 138 |
|
|
these integers are used to size the associated coefficient vectors in the
|
| 139 |
|
|
linear expression structures. */
|
| 140 |
|
|
typedef struct lambda_loopnest_s
|
| 141 |
|
|
{
|
| 142 |
|
|
lambda_loop *loops;
|
| 143 |
|
|
int depth;
|
| 144 |
|
|
int invariants;
|
| 145 |
|
|
} *lambda_loopnest;
|
| 146 |
|
|
|
| 147 |
|
|
#define LN_LOOPS(T) ((T)->loops)
|
| 148 |
|
|
#define LN_DEPTH(T) ((T)->depth)
|
| 149 |
|
|
#define LN_INVARIANTS(T) ((T)->invariants)
|
| 150 |
|
|
|
| 151 |
|
|
lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
|
| 152 |
|
|
lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
|
| 153 |
|
|
lambda_trans_matrix,
|
| 154 |
|
|
struct obstack *);
|
| 155 |
|
|
struct loop;
|
| 156 |
|
|
bool perfect_nest_p (struct loop *);
|
| 157 |
|
|
void print_lambda_loopnest (FILE *, lambda_loopnest, char);
|
| 158 |
|
|
|
| 159 |
|
|
#define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
|
| 160 |
|
|
|
| 161 |
|
|
void print_lambda_loop (FILE *, lambda_loop, int, int, char);
|
| 162 |
|
|
|
| 163 |
|
|
lambda_matrix lambda_matrix_new (int, int);
|
| 164 |
|
|
|
| 165 |
|
|
void lambda_matrix_id (lambda_matrix, int);
|
| 166 |
|
|
bool lambda_matrix_id_p (lambda_matrix, int);
|
| 167 |
|
|
void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
|
| 168 |
|
|
void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
|
| 169 |
|
|
void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
|
| 170 |
|
|
void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
|
| 171 |
|
|
int);
|
| 172 |
|
|
void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
|
| 173 |
|
|
lambda_matrix, int, int);
|
| 174 |
|
|
void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
|
| 175 |
|
|
int, int, int);
|
| 176 |
|
|
void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
|
| 177 |
|
|
void lambda_matrix_row_exchange (lambda_matrix, int, int);
|
| 178 |
|
|
void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
|
| 179 |
|
|
void lambda_matrix_row_negate (lambda_matrix mat, int, int);
|
| 180 |
|
|
void lambda_matrix_row_mc (lambda_matrix, int, int, int);
|
| 181 |
|
|
void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
|
| 182 |
|
|
void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
|
| 183 |
|
|
void lambda_matrix_col_negate (lambda_matrix, int, int);
|
| 184 |
|
|
void lambda_matrix_col_mc (lambda_matrix, int, int, int);
|
| 185 |
|
|
int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
|
| 186 |
|
|
void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
|
| 187 |
|
|
void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
|
| 188 |
|
|
void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
|
| 189 |
|
|
int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
|
| 190 |
|
|
void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
|
| 191 |
|
|
lambda_vector);
|
| 192 |
|
|
void print_lambda_matrix (FILE *, lambda_matrix, int, int);
|
| 193 |
|
|
|
| 194 |
|
|
lambda_trans_matrix lambda_trans_matrix_new (int, int);
|
| 195 |
|
|
bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
|
| 196 |
|
|
bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
|
| 197 |
|
|
int lambda_trans_matrix_rank (lambda_trans_matrix);
|
| 198 |
|
|
lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
|
| 199 |
|
|
lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
|
| 200 |
|
|
lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
|
| 201 |
|
|
void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
|
| 202 |
|
|
void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
|
| 203 |
|
|
lambda_vector);
|
| 204 |
|
|
bool lambda_trans_matrix_id_p (lambda_trans_matrix);
|
| 205 |
|
|
|
| 206 |
|
|
lambda_body_vector lambda_body_vector_new (int, struct obstack *);
|
| 207 |
|
|
lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
|
| 208 |
|
|
lambda_body_vector,
|
| 209 |
|
|
struct obstack *);
|
| 210 |
|
|
void print_lambda_body_vector (FILE *, lambda_body_vector);
|
| 211 |
|
|
lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
|
| 212 |
|
|
VEC(tree,heap) **,
|
| 213 |
|
|
VEC(tree,heap) **,
|
| 214 |
|
|
struct obstack *);
|
| 215 |
|
|
void lambda_loopnest_to_gcc_loopnest (struct loop *,
|
| 216 |
|
|
VEC(tree,heap) *, VEC(tree,heap) *,
|
| 217 |
|
|
VEC(gimple,heap) **,
|
| 218 |
|
|
lambda_loopnest, lambda_trans_matrix,
|
| 219 |
|
|
struct obstack *);
|
| 220 |
|
|
void remove_iv (gimple);
|
| 221 |
|
|
tree find_induction_var_from_exit_cond (struct loop *);
|
| 222 |
|
|
|
| 223 |
|
|
static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
|
| 224 |
|
|
static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
|
| 225 |
|
|
static inline void lambda_vector_add (lambda_vector, lambda_vector,
|
| 226 |
|
|
lambda_vector, int);
|
| 227 |
|
|
static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
|
| 228 |
|
|
lambda_vector, int);
|
| 229 |
|
|
static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
|
| 230 |
|
|
static inline bool lambda_vector_zerop (lambda_vector, int);
|
| 231 |
|
|
static inline void lambda_vector_clear (lambda_vector, int);
|
| 232 |
|
|
static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
|
| 233 |
|
|
static inline int lambda_vector_min_nz (lambda_vector, int, int);
|
| 234 |
|
|
static inline int lambda_vector_first_nz (lambda_vector, int, int);
|
| 235 |
|
|
static inline void print_lambda_vector (FILE *, lambda_vector, int);
|
| 236 |
|
|
|
| 237 |
|
|
/* Allocate a new vector of given SIZE. */
|
| 238 |
|
|
|
| 239 |
|
|
static inline lambda_vector
|
| 240 |
|
|
lambda_vector_new (int size)
|
| 241 |
|
|
{
|
| 242 |
|
|
return GGC_CNEWVEC (int, size);
|
| 243 |
|
|
}
|
| 244 |
|
|
|
| 245 |
|
|
|
| 246 |
|
|
|
| 247 |
|
|
/* Multiply vector VEC1 of length SIZE by a constant CONST1,
|
| 248 |
|
|
and store the result in VEC2. */
|
| 249 |
|
|
|
| 250 |
|
|
static inline void
|
| 251 |
|
|
lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
|
| 252 |
|
|
int size, int const1)
|
| 253 |
|
|
{
|
| 254 |
|
|
int i;
|
| 255 |
|
|
|
| 256 |
|
|
if (const1 == 0)
|
| 257 |
|
|
lambda_vector_clear (vec2, size);
|
| 258 |
|
|
else
|
| 259 |
|
|
for (i = 0; i < size; i++)
|
| 260 |
|
|
vec2[i] = const1 * vec1[i];
|
| 261 |
|
|
}
|
| 262 |
|
|
|
| 263 |
|
|
/* Negate vector VEC1 with length SIZE and store it in VEC2. */
|
| 264 |
|
|
|
| 265 |
|
|
static inline void
|
| 266 |
|
|
lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
|
| 267 |
|
|
int size)
|
| 268 |
|
|
{
|
| 269 |
|
|
lambda_vector_mult_const (vec1, vec2, size, -1);
|
| 270 |
|
|
}
|
| 271 |
|
|
|
| 272 |
|
|
/* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
|
| 273 |
|
|
|
| 274 |
|
|
static inline void
|
| 275 |
|
|
lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
|
| 276 |
|
|
lambda_vector vec3, int size)
|
| 277 |
|
|
{
|
| 278 |
|
|
int i;
|
| 279 |
|
|
for (i = 0; i < size; i++)
|
| 280 |
|
|
vec3[i] = vec1[i] + vec2[i];
|
| 281 |
|
|
}
|
| 282 |
|
|
|
| 283 |
|
|
/* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
|
| 284 |
|
|
|
| 285 |
|
|
static inline void
|
| 286 |
|
|
lambda_vector_add_mc (lambda_vector vec1, int const1,
|
| 287 |
|
|
lambda_vector vec2, int const2,
|
| 288 |
|
|
lambda_vector vec3, int size)
|
| 289 |
|
|
{
|
| 290 |
|
|
int i;
|
| 291 |
|
|
for (i = 0; i < size; i++)
|
| 292 |
|
|
vec3[i] = const1 * vec1[i] + const2 * vec2[i];
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
|
| 296 |
|
|
|
| 297 |
|
|
static inline void
|
| 298 |
|
|
lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
|
| 299 |
|
|
int size)
|
| 300 |
|
|
{
|
| 301 |
|
|
memcpy (vec2, vec1, size * sizeof (*vec1));
|
| 302 |
|
|
}
|
| 303 |
|
|
|
| 304 |
|
|
/* Return true if vector VEC1 of length SIZE is the zero vector. */
|
| 305 |
|
|
|
| 306 |
|
|
static inline bool
|
| 307 |
|
|
lambda_vector_zerop (lambda_vector vec1, int size)
|
| 308 |
|
|
{
|
| 309 |
|
|
int i;
|
| 310 |
|
|
for (i = 0; i < size; i++)
|
| 311 |
|
|
if (vec1[i] != 0)
|
| 312 |
|
|
return false;
|
| 313 |
|
|
return true;
|
| 314 |
|
|
}
|
| 315 |
|
|
|
| 316 |
|
|
/* Clear out vector VEC1 of length SIZE. */
|
| 317 |
|
|
|
| 318 |
|
|
static inline void
|
| 319 |
|
|
lambda_vector_clear (lambda_vector vec1, int size)
|
| 320 |
|
|
{
|
| 321 |
|
|
memset (vec1, 0, size * sizeof (*vec1));
|
| 322 |
|
|
}
|
| 323 |
|
|
|
| 324 |
|
|
/* Return true if two vectors are equal. */
|
| 325 |
|
|
|
| 326 |
|
|
static inline bool
|
| 327 |
|
|
lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
|
| 328 |
|
|
{
|
| 329 |
|
|
int i;
|
| 330 |
|
|
for (i = 0; i < size; i++)
|
| 331 |
|
|
if (vec1[i] != vec2[i])
|
| 332 |
|
|
return false;
|
| 333 |
|
|
return true;
|
| 334 |
|
|
}
|
| 335 |
|
|
|
| 336 |
|
|
/* Return the minimum nonzero element in vector VEC1 between START and N.
|
| 337 |
|
|
We must have START <= N. */
|
| 338 |
|
|
|
| 339 |
|
|
static inline int
|
| 340 |
|
|
lambda_vector_min_nz (lambda_vector vec1, int n, int start)
|
| 341 |
|
|
{
|
| 342 |
|
|
int j;
|
| 343 |
|
|
int min = -1;
|
| 344 |
|
|
|
| 345 |
|
|
gcc_assert (start <= n);
|
| 346 |
|
|
for (j = start; j < n; j++)
|
| 347 |
|
|
{
|
| 348 |
|
|
if (vec1[j])
|
| 349 |
|
|
if (min < 0 || vec1[j] < vec1[min])
|
| 350 |
|
|
min = j;
|
| 351 |
|
|
}
|
| 352 |
|
|
gcc_assert (min >= 0);
|
| 353 |
|
|
|
| 354 |
|
|
return min;
|
| 355 |
|
|
}
|
| 356 |
|
|
|
| 357 |
|
|
/* Return the first nonzero element of vector VEC1 between START and N.
|
| 358 |
|
|
We must have START <= N. Returns N if VEC1 is the zero vector. */
|
| 359 |
|
|
|
| 360 |
|
|
static inline int
|
| 361 |
|
|
lambda_vector_first_nz (lambda_vector vec1, int n, int start)
|
| 362 |
|
|
{
|
| 363 |
|
|
int j = start;
|
| 364 |
|
|
while (j < n && vec1[j] == 0)
|
| 365 |
|
|
j++;
|
| 366 |
|
|
return j;
|
| 367 |
|
|
}
|
| 368 |
|
|
|
| 369 |
|
|
|
| 370 |
|
|
/* Multiply a vector by a matrix. */
|
| 371 |
|
|
|
| 372 |
|
|
static inline void
|
| 373 |
|
|
lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
|
| 374 |
|
|
int n, lambda_vector dest)
|
| 375 |
|
|
{
|
| 376 |
|
|
int i, j;
|
| 377 |
|
|
lambda_vector_clear (dest, n);
|
| 378 |
|
|
for (i = 0; i < n; i++)
|
| 379 |
|
|
for (j = 0; j < m; j++)
|
| 380 |
|
|
dest[i] += mat[j][i] * vect[j];
|
| 381 |
|
|
}
|
| 382 |
|
|
|
| 383 |
|
|
/* Compare two vectors returning an integer less than, equal to, or
|
| 384 |
|
|
greater than zero if the first argument is considered to be respectively
|
| 385 |
|
|
less than, equal to, or greater than the second.
|
| 386 |
|
|
We use the lexicographic order. */
|
| 387 |
|
|
|
| 388 |
|
|
static inline int
|
| 389 |
|
|
lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
|
| 390 |
|
|
int length2)
|
| 391 |
|
|
{
|
| 392 |
|
|
int min_length;
|
| 393 |
|
|
int i;
|
| 394 |
|
|
|
| 395 |
|
|
if (length1 < length2)
|
| 396 |
|
|
min_length = length1;
|
| 397 |
|
|
else
|
| 398 |
|
|
min_length = length2;
|
| 399 |
|
|
|
| 400 |
|
|
for (i = 0; i < min_length; i++)
|
| 401 |
|
|
if (vec1[i] < vec2[i])
|
| 402 |
|
|
return -1;
|
| 403 |
|
|
else if (vec1[i] > vec2[i])
|
| 404 |
|
|
return 1;
|
| 405 |
|
|
else
|
| 406 |
|
|
continue;
|
| 407 |
|
|
|
| 408 |
|
|
return length1 - length2;
|
| 409 |
|
|
}
|
| 410 |
|
|
|
| 411 |
|
|
/* Print out a vector VEC of length N to OUTFILE. */
|
| 412 |
|
|
|
| 413 |
|
|
static inline void
|
| 414 |
|
|
print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
|
| 415 |
|
|
{
|
| 416 |
|
|
int i;
|
| 417 |
|
|
|
| 418 |
|
|
for (i = 0; i < n; i++)
|
| 419 |
|
|
fprintf (outfile, "%3d ", vector[i]);
|
| 420 |
|
|
fprintf (outfile, "\n");
|
| 421 |
|
|
}
|
| 422 |
|
|
|
| 423 |
|
|
/* Compute the greatest common divisor of two numbers using
|
| 424 |
|
|
Euclid's algorithm. */
|
| 425 |
|
|
|
| 426 |
|
|
static inline int
|
| 427 |
|
|
gcd (int a, int b)
|
| 428 |
|
|
{
|
| 429 |
|
|
int x, y, z;
|
| 430 |
|
|
|
| 431 |
|
|
x = abs (a);
|
| 432 |
|
|
y = abs (b);
|
| 433 |
|
|
|
| 434 |
|
|
while (x > 0)
|
| 435 |
|
|
{
|
| 436 |
|
|
z = y % x;
|
| 437 |
|
|
y = x;
|
| 438 |
|
|
x = z;
|
| 439 |
|
|
}
|
| 440 |
|
|
|
| 441 |
|
|
return y;
|
| 442 |
|
|
}
|
| 443 |
|
|
|
| 444 |
|
|
/* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
|
| 445 |
|
|
|
| 446 |
|
|
static inline int
|
| 447 |
|
|
lambda_vector_gcd (lambda_vector vector, int size)
|
| 448 |
|
|
{
|
| 449 |
|
|
int i;
|
| 450 |
|
|
int gcd1 = 0;
|
| 451 |
|
|
|
| 452 |
|
|
if (size > 0)
|
| 453 |
|
|
{
|
| 454 |
|
|
gcd1 = vector[0];
|
| 455 |
|
|
for (i = 1; i < size; i++)
|
| 456 |
|
|
gcd1 = gcd (gcd1, vector[i]);
|
| 457 |
|
|
}
|
| 458 |
|
|
return gcd1;
|
| 459 |
|
|
}
|
| 460 |
|
|
|
| 461 |
|
|
/* Returns true when the vector V is lexicographically positive, in
|
| 462 |
|
|
other words, when the first nonzero element is positive. */
|
| 463 |
|
|
|
| 464 |
|
|
static inline bool
|
| 465 |
|
|
lambda_vector_lexico_pos (lambda_vector v,
|
| 466 |
|
|
unsigned n)
|
| 467 |
|
|
{
|
| 468 |
|
|
unsigned i;
|
| 469 |
|
|
for (i = 0; i < n; i++)
|
| 470 |
|
|
{
|
| 471 |
|
|
if (v[i] == 0)
|
| 472 |
|
|
continue;
|
| 473 |
|
|
if (v[i] < 0)
|
| 474 |
|
|
return false;
|
| 475 |
|
|
if (v[i] > 0)
|
| 476 |
|
|
return true;
|
| 477 |
|
|
}
|
| 478 |
|
|
return true;
|
| 479 |
|
|
}
|
| 480 |
|
|
|
| 481 |
|
|
/* Given a vector of induction variables IVS, and a vector of
|
| 482 |
|
|
coefficients COEFS, build a tree that is a linear combination of
|
| 483 |
|
|
the induction variables. */
|
| 484 |
|
|
|
| 485 |
|
|
static inline tree
|
| 486 |
|
|
build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
|
| 487 |
|
|
{
|
| 488 |
|
|
unsigned i;
|
| 489 |
|
|
tree iv;
|
| 490 |
|
|
tree expr = fold_convert (type, integer_zero_node);
|
| 491 |
|
|
|
| 492 |
|
|
for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
|
| 493 |
|
|
{
|
| 494 |
|
|
int k = coefs[i];
|
| 495 |
|
|
|
| 496 |
|
|
if (k == 1)
|
| 497 |
|
|
expr = fold_build2 (PLUS_EXPR, type, expr, iv);
|
| 498 |
|
|
|
| 499 |
|
|
else if (k != 0)
|
| 500 |
|
|
expr = fold_build2 (PLUS_EXPR, type, expr,
|
| 501 |
|
|
fold_build2 (MULT_EXPR, type, iv,
|
| 502 |
|
|
build_int_cst (type, k)));
|
| 503 |
|
|
}
|
| 504 |
|
|
|
| 505 |
|
|
return expr;
|
| 506 |
|
|
}
|
| 507 |
|
|
|
| 508 |
|
|
/* Returns the dependence level for a vector DIST of size LENGTH.
|
| 509 |
|
|
LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
|
| 510 |
|
|
to the sequence of statements, not carried by any loop. */
|
| 511 |
|
|
|
| 512 |
|
|
|
| 513 |
|
|
static inline unsigned
|
| 514 |
|
|
dependence_level (lambda_vector dist_vect, int length)
|
| 515 |
|
|
{
|
| 516 |
|
|
int i;
|
| 517 |
|
|
|
| 518 |
|
|
for (i = 0; i < length; i++)
|
| 519 |
|
|
if (dist_vect[i] != 0)
|
| 520 |
|
|
return i + 1;
|
| 521 |
|
|
|
| 522 |
|
|
return 0;
|
| 523 |
|
|
}
|
| 524 |
|
|
|
| 525 |
|
|
#endif /* LAMBDA_H */
|