1 |
280 |
jeremybenn |
/* Generic partial redundancy elimination with lazy code motion support.
|
2 |
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* These routines are meant to be used by various optimization
|
22 |
|
|
passes which can be modeled as lazy code motion problems.
|
23 |
|
|
Including, but not limited to:
|
24 |
|
|
|
25 |
|
|
* Traditional partial redundancy elimination.
|
26 |
|
|
|
27 |
|
|
* Placement of caller/caller register save/restores.
|
28 |
|
|
|
29 |
|
|
* Load/store motion.
|
30 |
|
|
|
31 |
|
|
* Copy motion.
|
32 |
|
|
|
33 |
|
|
* Conversion of flat register files to a stacked register
|
34 |
|
|
model.
|
35 |
|
|
|
36 |
|
|
* Dead load/store elimination.
|
37 |
|
|
|
38 |
|
|
These routines accept as input:
|
39 |
|
|
|
40 |
|
|
* Basic block information (number of blocks, lists of
|
41 |
|
|
predecessors and successors). Note the granularity
|
42 |
|
|
does not need to be basic block, they could be statements
|
43 |
|
|
or functions.
|
44 |
|
|
|
45 |
|
|
* Bitmaps of local properties (computed, transparent and
|
46 |
|
|
anticipatable expressions).
|
47 |
|
|
|
48 |
|
|
The output of these routines is bitmap of redundant computations
|
49 |
|
|
and a bitmap of optimal placement points. */
|
50 |
|
|
|
51 |
|
|
|
52 |
|
|
#include "config.h"
|
53 |
|
|
#include "system.h"
|
54 |
|
|
#include "coretypes.h"
|
55 |
|
|
#include "tm.h"
|
56 |
|
|
#include "rtl.h"
|
57 |
|
|
#include "regs.h"
|
58 |
|
|
#include "hard-reg-set.h"
|
59 |
|
|
#include "flags.h"
|
60 |
|
|
#include "real.h"
|
61 |
|
|
#include "insn-config.h"
|
62 |
|
|
#include "recog.h"
|
63 |
|
|
#include "basic-block.h"
|
64 |
|
|
#include "output.h"
|
65 |
|
|
#include "tm_p.h"
|
66 |
|
|
#include "function.h"
|
67 |
|
|
|
68 |
|
|
/* We want target macros for the mode switching code to be able to refer
|
69 |
|
|
to instruction attribute values. */
|
70 |
|
|
#include "insn-attr.h"
|
71 |
|
|
|
72 |
|
|
/* Edge based LCM routines. */
|
73 |
|
|
static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
|
74 |
|
|
static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *,
|
75 |
|
|
sbitmap *, sbitmap *, sbitmap *);
|
76 |
|
|
static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *,
|
77 |
|
|
sbitmap *, sbitmap *);
|
78 |
|
|
static void compute_insert_delete (struct edge_list *edge_list, sbitmap *,
|
79 |
|
|
sbitmap *, sbitmap *, sbitmap *, sbitmap *);
|
80 |
|
|
|
81 |
|
|
/* Edge based LCM routines on a reverse flowgraph. */
|
82 |
|
|
static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *,
|
83 |
|
|
sbitmap*, sbitmap *, sbitmap *);
|
84 |
|
|
static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *,
|
85 |
|
|
sbitmap *, sbitmap *);
|
86 |
|
|
static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *,
|
87 |
|
|
sbitmap *, sbitmap *, sbitmap *,
|
88 |
|
|
sbitmap *);
|
89 |
|
|
|
90 |
|
|
/* Edge based lcm routines. */
|
91 |
|
|
|
92 |
|
|
/* Compute expression anticipatability at entrance and exit of each block.
|
93 |
|
|
This is done based on the flow graph, and not on the pred-succ lists.
|
94 |
|
|
Other than that, its pretty much identical to compute_antinout. */
|
95 |
|
|
|
96 |
|
|
static void
|
97 |
|
|
compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin,
|
98 |
|
|
sbitmap *antout)
|
99 |
|
|
{
|
100 |
|
|
basic_block bb;
|
101 |
|
|
edge e;
|
102 |
|
|
basic_block *worklist, *qin, *qout, *qend;
|
103 |
|
|
unsigned int qlen;
|
104 |
|
|
edge_iterator ei;
|
105 |
|
|
|
106 |
|
|
/* Allocate a worklist array/queue. Entries are only added to the
|
107 |
|
|
list if they were not already on the list. So the size is
|
108 |
|
|
bounded by the number of basic blocks. */
|
109 |
|
|
qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks);
|
110 |
|
|
|
111 |
|
|
/* We want a maximal solution, so make an optimistic initialization of
|
112 |
|
|
ANTIN. */
|
113 |
|
|
sbitmap_vector_ones (antin, last_basic_block);
|
114 |
|
|
|
115 |
|
|
/* Put every block on the worklist; this is necessary because of the
|
116 |
|
|
optimistic initialization of ANTIN above. */
|
117 |
|
|
FOR_EACH_BB_REVERSE (bb)
|
118 |
|
|
{
|
119 |
|
|
*qin++ = bb;
|
120 |
|
|
bb->aux = bb;
|
121 |
|
|
}
|
122 |
|
|
|
123 |
|
|
qin = worklist;
|
124 |
|
|
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
|
125 |
|
|
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
|
126 |
|
|
|
127 |
|
|
/* Mark blocks which are predecessors of the exit block so that we
|
128 |
|
|
can easily identify them below. */
|
129 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
130 |
|
|
e->src->aux = EXIT_BLOCK_PTR;
|
131 |
|
|
|
132 |
|
|
/* Iterate until the worklist is empty. */
|
133 |
|
|
while (qlen)
|
134 |
|
|
{
|
135 |
|
|
/* Take the first entry off the worklist. */
|
136 |
|
|
bb = *qout++;
|
137 |
|
|
qlen--;
|
138 |
|
|
|
139 |
|
|
if (qout >= qend)
|
140 |
|
|
qout = worklist;
|
141 |
|
|
|
142 |
|
|
if (bb->aux == EXIT_BLOCK_PTR)
|
143 |
|
|
/* Do not clear the aux field for blocks which are predecessors of
|
144 |
|
|
the EXIT block. That way we never add then to the worklist
|
145 |
|
|
again. */
|
146 |
|
|
sbitmap_zero (antout[bb->index]);
|
147 |
|
|
else
|
148 |
|
|
{
|
149 |
|
|
/* Clear the aux field of this block so that it can be added to
|
150 |
|
|
the worklist again if necessary. */
|
151 |
|
|
bb->aux = NULL;
|
152 |
|
|
sbitmap_intersection_of_succs (antout[bb->index], antin, bb->index);
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
if (sbitmap_a_or_b_and_c_cg (antin[bb->index], antloc[bb->index],
|
156 |
|
|
transp[bb->index], antout[bb->index]))
|
157 |
|
|
/* If the in state of this block changed, then we need
|
158 |
|
|
to add the predecessors of this block to the worklist
|
159 |
|
|
if they are not already on the worklist. */
|
160 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
161 |
|
|
if (!e->src->aux && e->src != ENTRY_BLOCK_PTR)
|
162 |
|
|
{
|
163 |
|
|
*qin++ = e->src;
|
164 |
|
|
e->src->aux = e;
|
165 |
|
|
qlen++;
|
166 |
|
|
if (qin >= qend)
|
167 |
|
|
qin = worklist;
|
168 |
|
|
}
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
clear_aux_for_edges ();
|
172 |
|
|
clear_aux_for_blocks ();
|
173 |
|
|
free (worklist);
|
174 |
|
|
}
|
175 |
|
|
|
176 |
|
|
/* Compute the earliest vector for edge based lcm. */
|
177 |
|
|
|
178 |
|
|
static void
|
179 |
|
|
compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin,
|
180 |
|
|
sbitmap *antout, sbitmap *avout, sbitmap *kill,
|
181 |
|
|
sbitmap *earliest)
|
182 |
|
|
{
|
183 |
|
|
sbitmap difference, temp_bitmap;
|
184 |
|
|
int x, num_edges;
|
185 |
|
|
basic_block pred, succ;
|
186 |
|
|
|
187 |
|
|
num_edges = NUM_EDGES (edge_list);
|
188 |
|
|
|
189 |
|
|
difference = sbitmap_alloc (n_exprs);
|
190 |
|
|
temp_bitmap = sbitmap_alloc (n_exprs);
|
191 |
|
|
|
192 |
|
|
for (x = 0; x < num_edges; x++)
|
193 |
|
|
{
|
194 |
|
|
pred = INDEX_EDGE_PRED_BB (edge_list, x);
|
195 |
|
|
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
|
196 |
|
|
if (pred == ENTRY_BLOCK_PTR)
|
197 |
|
|
sbitmap_copy (earliest[x], antin[succ->index]);
|
198 |
|
|
else
|
199 |
|
|
{
|
200 |
|
|
if (succ == EXIT_BLOCK_PTR)
|
201 |
|
|
sbitmap_zero (earliest[x]);
|
202 |
|
|
else
|
203 |
|
|
{
|
204 |
|
|
sbitmap_difference (difference, antin[succ->index],
|
205 |
|
|
avout[pred->index]);
|
206 |
|
|
sbitmap_not (temp_bitmap, antout[pred->index]);
|
207 |
|
|
sbitmap_a_and_b_or_c (earliest[x], difference,
|
208 |
|
|
kill[pred->index], temp_bitmap);
|
209 |
|
|
}
|
210 |
|
|
}
|
211 |
|
|
}
|
212 |
|
|
|
213 |
|
|
sbitmap_free (temp_bitmap);
|
214 |
|
|
sbitmap_free (difference);
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
/* later(p,s) is dependent on the calculation of laterin(p).
|
218 |
|
|
laterin(p) is dependent on the calculation of later(p2,p).
|
219 |
|
|
|
220 |
|
|
laterin(ENTRY) is defined as all 0's
|
221 |
|
|
later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY)
|
222 |
|
|
laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)).
|
223 |
|
|
|
224 |
|
|
If we progress in this manner, starting with all basic blocks
|
225 |
|
|
in the work list, anytime we change later(bb), we need to add
|
226 |
|
|
succs(bb) to the worklist if they are not already on the worklist.
|
227 |
|
|
|
228 |
|
|
Boundary conditions:
|
229 |
|
|
|
230 |
|
|
We prime the worklist all the normal basic blocks. The ENTRY block can
|
231 |
|
|
never be added to the worklist since it is never the successor of any
|
232 |
|
|
block. We explicitly prevent the EXIT block from being added to the
|
233 |
|
|
worklist.
|
234 |
|
|
|
235 |
|
|
We optimistically initialize LATER. That is the only time this routine
|
236 |
|
|
will compute LATER for an edge out of the entry block since the entry
|
237 |
|
|
block is never on the worklist. Thus, LATERIN is neither used nor
|
238 |
|
|
computed for the ENTRY block.
|
239 |
|
|
|
240 |
|
|
Since the EXIT block is never added to the worklist, we will neither
|
241 |
|
|
use nor compute LATERIN for the exit block. Edges which reach the
|
242 |
|
|
EXIT block are handled in the normal fashion inside the loop. However,
|
243 |
|
|
the insertion/deletion computation needs LATERIN(EXIT), so we have
|
244 |
|
|
to compute it. */
|
245 |
|
|
|
246 |
|
|
static void
|
247 |
|
|
compute_laterin (struct edge_list *edge_list, sbitmap *earliest,
|
248 |
|
|
sbitmap *antloc, sbitmap *later, sbitmap *laterin)
|
249 |
|
|
{
|
250 |
|
|
int num_edges, i;
|
251 |
|
|
edge e;
|
252 |
|
|
basic_block *worklist, *qin, *qout, *qend, bb;
|
253 |
|
|
unsigned int qlen;
|
254 |
|
|
edge_iterator ei;
|
255 |
|
|
|
256 |
|
|
num_edges = NUM_EDGES (edge_list);
|
257 |
|
|
|
258 |
|
|
/* Allocate a worklist array/queue. Entries are only added to the
|
259 |
|
|
list if they were not already on the list. So the size is
|
260 |
|
|
bounded by the number of basic blocks. */
|
261 |
|
|
qin = qout = worklist
|
262 |
|
|
= XNEWVEC (basic_block, n_basic_blocks);
|
263 |
|
|
|
264 |
|
|
/* Initialize a mapping from each edge to its index. */
|
265 |
|
|
for (i = 0; i < num_edges; i++)
|
266 |
|
|
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
|
267 |
|
|
|
268 |
|
|
/* We want a maximal solution, so initially consider LATER true for
|
269 |
|
|
all edges. This allows propagation through a loop since the incoming
|
270 |
|
|
loop edge will have LATER set, so if all the other incoming edges
|
271 |
|
|
to the loop are set, then LATERIN will be set for the head of the
|
272 |
|
|
loop.
|
273 |
|
|
|
274 |
|
|
If the optimistic setting of LATER on that edge was incorrect (for
|
275 |
|
|
example the expression is ANTLOC in a block within the loop) then
|
276 |
|
|
this algorithm will detect it when we process the block at the head
|
277 |
|
|
of the optimistic edge. That will requeue the affected blocks. */
|
278 |
|
|
sbitmap_vector_ones (later, num_edges);
|
279 |
|
|
|
280 |
|
|
/* Note that even though we want an optimistic setting of LATER, we
|
281 |
|
|
do not want to be overly optimistic. Consider an outgoing edge from
|
282 |
|
|
the entry block. That edge should always have a LATER value the
|
283 |
|
|
same as EARLIEST for that edge. */
|
284 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
285 |
|
|
sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]);
|
286 |
|
|
|
287 |
|
|
/* Add all the blocks to the worklist. This prevents an early exit from
|
288 |
|
|
the loop given our optimistic initialization of LATER above. */
|
289 |
|
|
FOR_EACH_BB (bb)
|
290 |
|
|
{
|
291 |
|
|
*qin++ = bb;
|
292 |
|
|
bb->aux = bb;
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
/* Note that we do not use the last allocated element for our queue,
|
296 |
|
|
as EXIT_BLOCK is never inserted into it. */
|
297 |
|
|
qin = worklist;
|
298 |
|
|
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
|
299 |
|
|
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
|
300 |
|
|
|
301 |
|
|
/* Iterate until the worklist is empty. */
|
302 |
|
|
while (qlen)
|
303 |
|
|
{
|
304 |
|
|
/* Take the first entry off the worklist. */
|
305 |
|
|
bb = *qout++;
|
306 |
|
|
bb->aux = NULL;
|
307 |
|
|
qlen--;
|
308 |
|
|
if (qout >= qend)
|
309 |
|
|
qout = worklist;
|
310 |
|
|
|
311 |
|
|
/* Compute the intersection of LATERIN for each incoming edge to B. */
|
312 |
|
|
sbitmap_ones (laterin[bb->index]);
|
313 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
314 |
|
|
sbitmap_a_and_b (laterin[bb->index], laterin[bb->index],
|
315 |
|
|
later[(size_t)e->aux]);
|
316 |
|
|
|
317 |
|
|
/* Calculate LATER for all outgoing edges. */
|
318 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
319 |
|
|
if (sbitmap_union_of_diff_cg (later[(size_t) e->aux],
|
320 |
|
|
earliest[(size_t) e->aux],
|
321 |
|
|
laterin[e->src->index],
|
322 |
|
|
antloc[e->src->index])
|
323 |
|
|
/* If LATER for an outgoing edge was changed, then we need
|
324 |
|
|
to add the target of the outgoing edge to the worklist. */
|
325 |
|
|
&& e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0)
|
326 |
|
|
{
|
327 |
|
|
*qin++ = e->dest;
|
328 |
|
|
e->dest->aux = e;
|
329 |
|
|
qlen++;
|
330 |
|
|
if (qin >= qend)
|
331 |
|
|
qin = worklist;
|
332 |
|
|
}
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
/* Computation of insertion and deletion points requires computing LATERIN
|
336 |
|
|
for the EXIT block. We allocated an extra entry in the LATERIN array
|
337 |
|
|
for just this purpose. */
|
338 |
|
|
sbitmap_ones (laterin[last_basic_block]);
|
339 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
340 |
|
|
sbitmap_a_and_b (laterin[last_basic_block],
|
341 |
|
|
laterin[last_basic_block],
|
342 |
|
|
later[(size_t) e->aux]);
|
343 |
|
|
|
344 |
|
|
clear_aux_for_edges ();
|
345 |
|
|
free (worklist);
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
/* Compute the insertion and deletion points for edge based LCM. */
|
349 |
|
|
|
350 |
|
|
static void
|
351 |
|
|
compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc,
|
352 |
|
|
sbitmap *later, sbitmap *laterin, sbitmap *insert,
|
353 |
|
|
sbitmap *del)
|
354 |
|
|
{
|
355 |
|
|
int x;
|
356 |
|
|
basic_block bb;
|
357 |
|
|
|
358 |
|
|
FOR_EACH_BB (bb)
|
359 |
|
|
sbitmap_difference (del[bb->index], antloc[bb->index],
|
360 |
|
|
laterin[bb->index]);
|
361 |
|
|
|
362 |
|
|
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
363 |
|
|
{
|
364 |
|
|
basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x);
|
365 |
|
|
|
366 |
|
|
if (b == EXIT_BLOCK_PTR)
|
367 |
|
|
sbitmap_difference (insert[x], later[x], laterin[last_basic_block]);
|
368 |
|
|
else
|
369 |
|
|
sbitmap_difference (insert[x], later[x], laterin[b->index]);
|
370 |
|
|
}
|
371 |
|
|
}
|
372 |
|
|
|
373 |
|
|
/* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and
|
374 |
|
|
delete vectors for edge based LCM. Returns an edgelist which is used to
|
375 |
|
|
map the insert vector to what edge an expression should be inserted on. */
|
376 |
|
|
|
377 |
|
|
struct edge_list *
|
378 |
|
|
pre_edge_lcm (int n_exprs, sbitmap *transp,
|
379 |
|
|
sbitmap *avloc, sbitmap *antloc, sbitmap *kill,
|
380 |
|
|
sbitmap **insert, sbitmap **del)
|
381 |
|
|
{
|
382 |
|
|
sbitmap *antin, *antout, *earliest;
|
383 |
|
|
sbitmap *avin, *avout;
|
384 |
|
|
sbitmap *later, *laterin;
|
385 |
|
|
struct edge_list *edge_list;
|
386 |
|
|
int num_edges;
|
387 |
|
|
|
388 |
|
|
edge_list = create_edge_list ();
|
389 |
|
|
num_edges = NUM_EDGES (edge_list);
|
390 |
|
|
|
391 |
|
|
#ifdef LCM_DEBUG_INFO
|
392 |
|
|
if (dump_file)
|
393 |
|
|
{
|
394 |
|
|
fprintf (dump_file, "Edge List:\n");
|
395 |
|
|
verify_edge_list (dump_file, edge_list);
|
396 |
|
|
print_edge_list (dump_file, edge_list);
|
397 |
|
|
dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
|
398 |
|
|
dump_sbitmap_vector (dump_file, "antloc", "", antloc, last_basic_block);
|
399 |
|
|
dump_sbitmap_vector (dump_file, "avloc", "", avloc, last_basic_block);
|
400 |
|
|
dump_sbitmap_vector (dump_file, "kill", "", kill, last_basic_block);
|
401 |
|
|
}
|
402 |
|
|
#endif
|
403 |
|
|
|
404 |
|
|
/* Compute global availability. */
|
405 |
|
|
avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
406 |
|
|
avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
407 |
|
|
compute_available (avloc, kill, avout, avin);
|
408 |
|
|
sbitmap_vector_free (avin);
|
409 |
|
|
|
410 |
|
|
/* Compute global anticipatability. */
|
411 |
|
|
antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
412 |
|
|
antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
413 |
|
|
compute_antinout_edge (antloc, transp, antin, antout);
|
414 |
|
|
|
415 |
|
|
#ifdef LCM_DEBUG_INFO
|
416 |
|
|
if (dump_file)
|
417 |
|
|
{
|
418 |
|
|
dump_sbitmap_vector (dump_file, "antin", "", antin, last_basic_block);
|
419 |
|
|
dump_sbitmap_vector (dump_file, "antout", "", antout, last_basic_block);
|
420 |
|
|
}
|
421 |
|
|
#endif
|
422 |
|
|
|
423 |
|
|
/* Compute earliestness. */
|
424 |
|
|
earliest = sbitmap_vector_alloc (num_edges, n_exprs);
|
425 |
|
|
compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest);
|
426 |
|
|
|
427 |
|
|
#ifdef LCM_DEBUG_INFO
|
428 |
|
|
if (dump_file)
|
429 |
|
|
dump_sbitmap_vector (dump_file, "earliest", "", earliest, num_edges);
|
430 |
|
|
#endif
|
431 |
|
|
|
432 |
|
|
sbitmap_vector_free (antout);
|
433 |
|
|
sbitmap_vector_free (antin);
|
434 |
|
|
sbitmap_vector_free (avout);
|
435 |
|
|
|
436 |
|
|
later = sbitmap_vector_alloc (num_edges, n_exprs);
|
437 |
|
|
|
438 |
|
|
/* Allocate an extra element for the exit block in the laterin vector. */
|
439 |
|
|
laterin = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
|
440 |
|
|
compute_laterin (edge_list, earliest, antloc, later, laterin);
|
441 |
|
|
|
442 |
|
|
#ifdef LCM_DEBUG_INFO
|
443 |
|
|
if (dump_file)
|
444 |
|
|
{
|
445 |
|
|
dump_sbitmap_vector (dump_file, "laterin", "", laterin, last_basic_block + 1);
|
446 |
|
|
dump_sbitmap_vector (dump_file, "later", "", later, num_edges);
|
447 |
|
|
}
|
448 |
|
|
#endif
|
449 |
|
|
|
450 |
|
|
sbitmap_vector_free (earliest);
|
451 |
|
|
|
452 |
|
|
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
|
453 |
|
|
*del = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
454 |
|
|
compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del);
|
455 |
|
|
|
456 |
|
|
sbitmap_vector_free (laterin);
|
457 |
|
|
sbitmap_vector_free (later);
|
458 |
|
|
|
459 |
|
|
#ifdef LCM_DEBUG_INFO
|
460 |
|
|
if (dump_file)
|
461 |
|
|
{
|
462 |
|
|
dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
|
463 |
|
|
dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del,
|
464 |
|
|
last_basic_block);
|
465 |
|
|
}
|
466 |
|
|
#endif
|
467 |
|
|
|
468 |
|
|
return edge_list;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
/* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors.
|
472 |
|
|
Return the number of passes we performed to iterate to a solution. */
|
473 |
|
|
|
474 |
|
|
void
|
475 |
|
|
compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout,
|
476 |
|
|
sbitmap *avin)
|
477 |
|
|
{
|
478 |
|
|
edge e;
|
479 |
|
|
basic_block *worklist, *qin, *qout, *qend, bb;
|
480 |
|
|
unsigned int qlen;
|
481 |
|
|
edge_iterator ei;
|
482 |
|
|
|
483 |
|
|
/* Allocate a worklist array/queue. Entries are only added to the
|
484 |
|
|
list if they were not already on the list. So the size is
|
485 |
|
|
bounded by the number of basic blocks. */
|
486 |
|
|
qin = qout = worklist =
|
487 |
|
|
XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS);
|
488 |
|
|
|
489 |
|
|
/* We want a maximal solution. */
|
490 |
|
|
sbitmap_vector_ones (avout, last_basic_block);
|
491 |
|
|
|
492 |
|
|
/* Put every block on the worklist; this is necessary because of the
|
493 |
|
|
optimistic initialization of AVOUT above. */
|
494 |
|
|
FOR_EACH_BB (bb)
|
495 |
|
|
{
|
496 |
|
|
*qin++ = bb;
|
497 |
|
|
bb->aux = bb;
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
qin = worklist;
|
501 |
|
|
qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS];
|
502 |
|
|
qlen = n_basic_blocks - NUM_FIXED_BLOCKS;
|
503 |
|
|
|
504 |
|
|
/* Mark blocks which are successors of the entry block so that we
|
505 |
|
|
can easily identify them below. */
|
506 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
507 |
|
|
e->dest->aux = ENTRY_BLOCK_PTR;
|
508 |
|
|
|
509 |
|
|
/* Iterate until the worklist is empty. */
|
510 |
|
|
while (qlen)
|
511 |
|
|
{
|
512 |
|
|
/* Take the first entry off the worklist. */
|
513 |
|
|
bb = *qout++;
|
514 |
|
|
qlen--;
|
515 |
|
|
|
516 |
|
|
if (qout >= qend)
|
517 |
|
|
qout = worklist;
|
518 |
|
|
|
519 |
|
|
/* If one of the predecessor blocks is the ENTRY block, then the
|
520 |
|
|
intersection of avouts is the null set. We can identify such blocks
|
521 |
|
|
by the special value in the AUX field in the block structure. */
|
522 |
|
|
if (bb->aux == ENTRY_BLOCK_PTR)
|
523 |
|
|
/* Do not clear the aux field for blocks which are successors of the
|
524 |
|
|
ENTRY block. That way we never add then to the worklist again. */
|
525 |
|
|
sbitmap_zero (avin[bb->index]);
|
526 |
|
|
else
|
527 |
|
|
{
|
528 |
|
|
/* Clear the aux field of this block so that it can be added to
|
529 |
|
|
the worklist again if necessary. */
|
530 |
|
|
bb->aux = NULL;
|
531 |
|
|
sbitmap_intersection_of_preds (avin[bb->index], avout, bb->index);
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
if (sbitmap_union_of_diff_cg (avout[bb->index], avloc[bb->index],
|
535 |
|
|
avin[bb->index], kill[bb->index]))
|
536 |
|
|
/* If the out state of this block changed, then we need
|
537 |
|
|
to add the successors of this block to the worklist
|
538 |
|
|
if they are not already on the worklist. */
|
539 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
540 |
|
|
if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR)
|
541 |
|
|
{
|
542 |
|
|
*qin++ = e->dest;
|
543 |
|
|
e->dest->aux = e;
|
544 |
|
|
qlen++;
|
545 |
|
|
|
546 |
|
|
if (qin >= qend)
|
547 |
|
|
qin = worklist;
|
548 |
|
|
}
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
clear_aux_for_edges ();
|
552 |
|
|
clear_aux_for_blocks ();
|
553 |
|
|
free (worklist);
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
/* Compute the farthest vector for edge based lcm. */
|
557 |
|
|
|
558 |
|
|
static void
|
559 |
|
|
compute_farthest (struct edge_list *edge_list, int n_exprs,
|
560 |
|
|
sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin,
|
561 |
|
|
sbitmap *kill, sbitmap *farthest)
|
562 |
|
|
{
|
563 |
|
|
sbitmap difference, temp_bitmap;
|
564 |
|
|
int x, num_edges;
|
565 |
|
|
basic_block pred, succ;
|
566 |
|
|
|
567 |
|
|
num_edges = NUM_EDGES (edge_list);
|
568 |
|
|
|
569 |
|
|
difference = sbitmap_alloc (n_exprs);
|
570 |
|
|
temp_bitmap = sbitmap_alloc (n_exprs);
|
571 |
|
|
|
572 |
|
|
for (x = 0; x < num_edges; x++)
|
573 |
|
|
{
|
574 |
|
|
pred = INDEX_EDGE_PRED_BB (edge_list, x);
|
575 |
|
|
succ = INDEX_EDGE_SUCC_BB (edge_list, x);
|
576 |
|
|
if (succ == EXIT_BLOCK_PTR)
|
577 |
|
|
sbitmap_copy (farthest[x], st_avout[pred->index]);
|
578 |
|
|
else
|
579 |
|
|
{
|
580 |
|
|
if (pred == ENTRY_BLOCK_PTR)
|
581 |
|
|
sbitmap_zero (farthest[x]);
|
582 |
|
|
else
|
583 |
|
|
{
|
584 |
|
|
sbitmap_difference (difference, st_avout[pred->index],
|
585 |
|
|
st_antin[succ->index]);
|
586 |
|
|
sbitmap_not (temp_bitmap, st_avin[succ->index]);
|
587 |
|
|
sbitmap_a_and_b_or_c (farthest[x], difference,
|
588 |
|
|
kill[succ->index], temp_bitmap);
|
589 |
|
|
}
|
590 |
|
|
}
|
591 |
|
|
}
|
592 |
|
|
|
593 |
|
|
sbitmap_free (temp_bitmap);
|
594 |
|
|
sbitmap_free (difference);
|
595 |
|
|
}
|
596 |
|
|
|
597 |
|
|
/* Compute nearer and nearerout vectors for edge based lcm.
|
598 |
|
|
|
599 |
|
|
This is the mirror of compute_laterin, additional comments on the
|
600 |
|
|
implementation can be found before compute_laterin. */
|
601 |
|
|
|
602 |
|
|
static void
|
603 |
|
|
compute_nearerout (struct edge_list *edge_list, sbitmap *farthest,
|
604 |
|
|
sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout)
|
605 |
|
|
{
|
606 |
|
|
int num_edges, i;
|
607 |
|
|
edge e;
|
608 |
|
|
basic_block *worklist, *tos, bb;
|
609 |
|
|
edge_iterator ei;
|
610 |
|
|
|
611 |
|
|
num_edges = NUM_EDGES (edge_list);
|
612 |
|
|
|
613 |
|
|
/* Allocate a worklist array/queue. Entries are only added to the
|
614 |
|
|
list if they were not already on the list. So the size is
|
615 |
|
|
bounded by the number of basic blocks. */
|
616 |
|
|
tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
|
617 |
|
|
|
618 |
|
|
/* Initialize NEARER for each edge and build a mapping from an edge to
|
619 |
|
|
its index. */
|
620 |
|
|
for (i = 0; i < num_edges; i++)
|
621 |
|
|
INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i;
|
622 |
|
|
|
623 |
|
|
/* We want a maximal solution. */
|
624 |
|
|
sbitmap_vector_ones (nearer, num_edges);
|
625 |
|
|
|
626 |
|
|
/* Note that even though we want an optimistic setting of NEARER, we
|
627 |
|
|
do not want to be overly optimistic. Consider an incoming edge to
|
628 |
|
|
the exit block. That edge should always have a NEARER value the
|
629 |
|
|
same as FARTHEST for that edge. */
|
630 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
631 |
|
|
sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]);
|
632 |
|
|
|
633 |
|
|
/* Add all the blocks to the worklist. This prevents an early exit
|
634 |
|
|
from the loop given our optimistic initialization of NEARER. */
|
635 |
|
|
FOR_EACH_BB (bb)
|
636 |
|
|
{
|
637 |
|
|
*tos++ = bb;
|
638 |
|
|
bb->aux = bb;
|
639 |
|
|
}
|
640 |
|
|
|
641 |
|
|
/* Iterate until the worklist is empty. */
|
642 |
|
|
while (tos != worklist)
|
643 |
|
|
{
|
644 |
|
|
/* Take the first entry off the worklist. */
|
645 |
|
|
bb = *--tos;
|
646 |
|
|
bb->aux = NULL;
|
647 |
|
|
|
648 |
|
|
/* Compute the intersection of NEARER for each outgoing edge from B. */
|
649 |
|
|
sbitmap_ones (nearerout[bb->index]);
|
650 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
651 |
|
|
sbitmap_a_and_b (nearerout[bb->index], nearerout[bb->index],
|
652 |
|
|
nearer[(size_t) e->aux]);
|
653 |
|
|
|
654 |
|
|
/* Calculate NEARER for all incoming edges. */
|
655 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
656 |
|
|
if (sbitmap_union_of_diff_cg (nearer[(size_t) e->aux],
|
657 |
|
|
farthest[(size_t) e->aux],
|
658 |
|
|
nearerout[e->dest->index],
|
659 |
|
|
st_avloc[e->dest->index])
|
660 |
|
|
/* If NEARER for an incoming edge was changed, then we need
|
661 |
|
|
to add the source of the incoming edge to the worklist. */
|
662 |
|
|
&& e->src != ENTRY_BLOCK_PTR && e->src->aux == 0)
|
663 |
|
|
{
|
664 |
|
|
*tos++ = e->src;
|
665 |
|
|
e->src->aux = e;
|
666 |
|
|
}
|
667 |
|
|
}
|
668 |
|
|
|
669 |
|
|
/* Computation of insertion and deletion points requires computing NEAREROUT
|
670 |
|
|
for the ENTRY block. We allocated an extra entry in the NEAREROUT array
|
671 |
|
|
for just this purpose. */
|
672 |
|
|
sbitmap_ones (nearerout[last_basic_block]);
|
673 |
|
|
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
|
674 |
|
|
sbitmap_a_and_b (nearerout[last_basic_block],
|
675 |
|
|
nearerout[last_basic_block],
|
676 |
|
|
nearer[(size_t) e->aux]);
|
677 |
|
|
|
678 |
|
|
clear_aux_for_edges ();
|
679 |
|
|
free (tos);
|
680 |
|
|
}
|
681 |
|
|
|
682 |
|
|
/* Compute the insertion and deletion points for edge based LCM. */
|
683 |
|
|
|
684 |
|
|
static void
|
685 |
|
|
compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc,
|
686 |
|
|
sbitmap *nearer, sbitmap *nearerout,
|
687 |
|
|
sbitmap *insert, sbitmap *del)
|
688 |
|
|
{
|
689 |
|
|
int x;
|
690 |
|
|
basic_block bb;
|
691 |
|
|
|
692 |
|
|
FOR_EACH_BB (bb)
|
693 |
|
|
sbitmap_difference (del[bb->index], st_avloc[bb->index],
|
694 |
|
|
nearerout[bb->index]);
|
695 |
|
|
|
696 |
|
|
for (x = 0; x < NUM_EDGES (edge_list); x++)
|
697 |
|
|
{
|
698 |
|
|
basic_block b = INDEX_EDGE_PRED_BB (edge_list, x);
|
699 |
|
|
if (b == ENTRY_BLOCK_PTR)
|
700 |
|
|
sbitmap_difference (insert[x], nearer[x], nearerout[last_basic_block]);
|
701 |
|
|
else
|
702 |
|
|
sbitmap_difference (insert[x], nearer[x], nearerout[b->index]);
|
703 |
|
|
}
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the
|
707 |
|
|
insert and delete vectors for edge based reverse LCM. Returns an
|
708 |
|
|
edgelist which is used to map the insert vector to what edge
|
709 |
|
|
an expression should be inserted on. */
|
710 |
|
|
|
711 |
|
|
struct edge_list *
|
712 |
|
|
pre_edge_rev_lcm (int n_exprs, sbitmap *transp,
|
713 |
|
|
sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill,
|
714 |
|
|
sbitmap **insert, sbitmap **del)
|
715 |
|
|
{
|
716 |
|
|
sbitmap *st_antin, *st_antout;
|
717 |
|
|
sbitmap *st_avout, *st_avin, *farthest;
|
718 |
|
|
sbitmap *nearer, *nearerout;
|
719 |
|
|
struct edge_list *edge_list;
|
720 |
|
|
int num_edges;
|
721 |
|
|
|
722 |
|
|
edge_list = create_edge_list ();
|
723 |
|
|
num_edges = NUM_EDGES (edge_list);
|
724 |
|
|
|
725 |
|
|
st_antin = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
726 |
|
|
st_antout = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
727 |
|
|
sbitmap_vector_zero (st_antin, last_basic_block);
|
728 |
|
|
sbitmap_vector_zero (st_antout, last_basic_block);
|
729 |
|
|
compute_antinout_edge (st_antloc, transp, st_antin, st_antout);
|
730 |
|
|
|
731 |
|
|
/* Compute global anticipatability. */
|
732 |
|
|
st_avout = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
733 |
|
|
st_avin = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
734 |
|
|
compute_available (st_avloc, kill, st_avout, st_avin);
|
735 |
|
|
|
736 |
|
|
#ifdef LCM_DEBUG_INFO
|
737 |
|
|
if (dump_file)
|
738 |
|
|
{
|
739 |
|
|
fprintf (dump_file, "Edge List:\n");
|
740 |
|
|
verify_edge_list (dump_file, edge_list);
|
741 |
|
|
print_edge_list (dump_file, edge_list);
|
742 |
|
|
dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block);
|
743 |
|
|
dump_sbitmap_vector (dump_file, "st_avloc", "", st_avloc, last_basic_block);
|
744 |
|
|
dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block);
|
745 |
|
|
dump_sbitmap_vector (dump_file, "st_antin", "", st_antin, last_basic_block);
|
746 |
|
|
dump_sbitmap_vector (dump_file, "st_antout", "", st_antout, last_basic_block);
|
747 |
|
|
dump_sbitmap_vector (dump_file, "st_kill", "", kill, last_basic_block);
|
748 |
|
|
}
|
749 |
|
|
#endif
|
750 |
|
|
|
751 |
|
|
#ifdef LCM_DEBUG_INFO
|
752 |
|
|
if (dump_file)
|
753 |
|
|
{
|
754 |
|
|
dump_sbitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block);
|
755 |
|
|
dump_sbitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block);
|
756 |
|
|
}
|
757 |
|
|
#endif
|
758 |
|
|
|
759 |
|
|
/* Compute farthestness. */
|
760 |
|
|
farthest = sbitmap_vector_alloc (num_edges, n_exprs);
|
761 |
|
|
compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin,
|
762 |
|
|
kill, farthest);
|
763 |
|
|
|
764 |
|
|
#ifdef LCM_DEBUG_INFO
|
765 |
|
|
if (dump_file)
|
766 |
|
|
dump_sbitmap_vector (dump_file, "farthest", "", farthest, num_edges);
|
767 |
|
|
#endif
|
768 |
|
|
|
769 |
|
|
sbitmap_vector_free (st_antin);
|
770 |
|
|
sbitmap_vector_free (st_antout);
|
771 |
|
|
|
772 |
|
|
sbitmap_vector_free (st_avin);
|
773 |
|
|
sbitmap_vector_free (st_avout);
|
774 |
|
|
|
775 |
|
|
nearer = sbitmap_vector_alloc (num_edges, n_exprs);
|
776 |
|
|
|
777 |
|
|
/* Allocate an extra element for the entry block. */
|
778 |
|
|
nearerout = sbitmap_vector_alloc (last_basic_block + 1, n_exprs);
|
779 |
|
|
compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout);
|
780 |
|
|
|
781 |
|
|
#ifdef LCM_DEBUG_INFO
|
782 |
|
|
if (dump_file)
|
783 |
|
|
{
|
784 |
|
|
dump_sbitmap_vector (dump_file, "nearerout", "", nearerout,
|
785 |
|
|
last_basic_block + 1);
|
786 |
|
|
dump_sbitmap_vector (dump_file, "nearer", "", nearer, num_edges);
|
787 |
|
|
}
|
788 |
|
|
#endif
|
789 |
|
|
|
790 |
|
|
sbitmap_vector_free (farthest);
|
791 |
|
|
|
792 |
|
|
*insert = sbitmap_vector_alloc (num_edges, n_exprs);
|
793 |
|
|
*del = sbitmap_vector_alloc (last_basic_block, n_exprs);
|
794 |
|
|
compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout,
|
795 |
|
|
*insert, *del);
|
796 |
|
|
|
797 |
|
|
sbitmap_vector_free (nearerout);
|
798 |
|
|
sbitmap_vector_free (nearer);
|
799 |
|
|
|
800 |
|
|
#ifdef LCM_DEBUG_INFO
|
801 |
|
|
if (dump_file)
|
802 |
|
|
{
|
803 |
|
|
dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges);
|
804 |
|
|
dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del,
|
805 |
|
|
last_basic_block);
|
806 |
|
|
}
|
807 |
|
|
#endif
|
808 |
|
|
return edge_list;
|
809 |
|
|
}
|
810 |
|
|
|