1 |
280 |
jeremybenn |
/* Loop unrolling and peeling.
|
2 |
|
|
Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "rtl.h"
|
26 |
|
|
#include "hard-reg-set.h"
|
27 |
|
|
#include "obstack.h"
|
28 |
|
|
#include "basic-block.h"
|
29 |
|
|
#include "cfgloop.h"
|
30 |
|
|
#include "cfglayout.h"
|
31 |
|
|
#include "params.h"
|
32 |
|
|
#include "output.h"
|
33 |
|
|
#include "expr.h"
|
34 |
|
|
#include "hashtab.h"
|
35 |
|
|
#include "recog.h"
|
36 |
|
|
|
37 |
|
|
/* This pass performs loop unrolling and peeling. We only perform these
|
38 |
|
|
optimizations on innermost loops (with single exception) because
|
39 |
|
|
the impact on performance is greatest here, and we want to avoid
|
40 |
|
|
unnecessary code size growth. The gain is caused by greater sequentiality
|
41 |
|
|
of code, better code to optimize for further passes and in some cases
|
42 |
|
|
by fewer testings of exit conditions. The main problem is code growth,
|
43 |
|
|
that impacts performance negatively due to effect of caches.
|
44 |
|
|
|
45 |
|
|
What we do:
|
46 |
|
|
|
47 |
|
|
-- complete peeling of once-rolling loops; this is the above mentioned
|
48 |
|
|
exception, as this causes loop to be cancelled completely and
|
49 |
|
|
does not cause code growth
|
50 |
|
|
-- complete peeling of loops that roll (small) constant times.
|
51 |
|
|
-- simple peeling of first iterations of loops that do not roll much
|
52 |
|
|
(according to profile feedback)
|
53 |
|
|
-- unrolling of loops that roll constant times; this is almost always
|
54 |
|
|
win, as we get rid of exit condition tests.
|
55 |
|
|
-- unrolling of loops that roll number of times that we can compute
|
56 |
|
|
in runtime; we also get rid of exit condition tests here, but there
|
57 |
|
|
is the extra expense for calculating the number of iterations
|
58 |
|
|
-- simple unrolling of remaining loops; this is performed only if we
|
59 |
|
|
are asked to, as the gain is questionable in this case and often
|
60 |
|
|
it may even slow down the code
|
61 |
|
|
For more detailed descriptions of each of those, see comments at
|
62 |
|
|
appropriate function below.
|
63 |
|
|
|
64 |
|
|
There is a lot of parameters (defined and described in params.def) that
|
65 |
|
|
control how much we unroll/peel.
|
66 |
|
|
|
67 |
|
|
??? A great problem is that we don't have a good way how to determine
|
68 |
|
|
how many times we should unroll the loop; the experiments I have made
|
69 |
|
|
showed that this choice may affect performance in order of several %.
|
70 |
|
|
*/
|
71 |
|
|
|
72 |
|
|
/* Information about induction variables to split. */
|
73 |
|
|
|
74 |
|
|
struct iv_to_split
|
75 |
|
|
{
|
76 |
|
|
rtx insn; /* The insn in that the induction variable occurs. */
|
77 |
|
|
rtx base_var; /* The variable on that the values in the further
|
78 |
|
|
iterations are based. */
|
79 |
|
|
rtx step; /* Step of the induction variable. */
|
80 |
|
|
struct iv_to_split *next; /* Next entry in walking order. */
|
81 |
|
|
unsigned n_loc;
|
82 |
|
|
unsigned loc[3]; /* Location where the definition of the induction
|
83 |
|
|
variable occurs in the insn. For example if
|
84 |
|
|
N_LOC is 2, the expression is located at
|
85 |
|
|
XEXP (XEXP (single_set, loc[0]), loc[1]). */
|
86 |
|
|
};
|
87 |
|
|
|
88 |
|
|
/* Information about accumulators to expand. */
|
89 |
|
|
|
90 |
|
|
struct var_to_expand
|
91 |
|
|
{
|
92 |
|
|
rtx insn; /* The insn in that the variable expansion occurs. */
|
93 |
|
|
rtx reg; /* The accumulator which is expanded. */
|
94 |
|
|
VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
|
95 |
|
|
struct var_to_expand *next; /* Next entry in walking order. */
|
96 |
|
|
enum rtx_code op; /* The type of the accumulation - addition, subtraction
|
97 |
|
|
or multiplication. */
|
98 |
|
|
int expansion_count; /* Count the number of expansions generated so far. */
|
99 |
|
|
int reuse_expansion; /* The expansion we intend to reuse to expand
|
100 |
|
|
the accumulator. If REUSE_EXPANSION is 0 reuse
|
101 |
|
|
the original accumulator. Else use
|
102 |
|
|
var_expansions[REUSE_EXPANSION - 1]. */
|
103 |
|
|
unsigned accum_pos; /* The position in which the accumulator is placed in
|
104 |
|
|
the insn src. For example in x = x + something
|
105 |
|
|
accum_pos is 0 while in x = something + x accum_pos
|
106 |
|
|
is 1. */
|
107 |
|
|
};
|
108 |
|
|
|
109 |
|
|
/* Information about optimization applied in
|
110 |
|
|
the unrolled loop. */
|
111 |
|
|
|
112 |
|
|
struct opt_info
|
113 |
|
|
{
|
114 |
|
|
htab_t insns_to_split; /* A hashtable of insns to split. */
|
115 |
|
|
struct iv_to_split *iv_to_split_head; /* The first iv to split. */
|
116 |
|
|
struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
|
117 |
|
|
htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
|
118 |
|
|
to expand. */
|
119 |
|
|
struct var_to_expand *var_to_expand_head; /* The first var to expand. */
|
120 |
|
|
struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
|
121 |
|
|
unsigned first_new_block; /* The first basic block that was
|
122 |
|
|
duplicated. */
|
123 |
|
|
basic_block loop_exit; /* The loop exit basic block. */
|
124 |
|
|
basic_block loop_preheader; /* The loop preheader basic block. */
|
125 |
|
|
};
|
126 |
|
|
|
127 |
|
|
static void decide_unrolling_and_peeling (int);
|
128 |
|
|
static void peel_loops_completely (int);
|
129 |
|
|
static void decide_peel_simple (struct loop *, int);
|
130 |
|
|
static void decide_peel_once_rolling (struct loop *, int);
|
131 |
|
|
static void decide_peel_completely (struct loop *, int);
|
132 |
|
|
static void decide_unroll_stupid (struct loop *, int);
|
133 |
|
|
static void decide_unroll_constant_iterations (struct loop *, int);
|
134 |
|
|
static void decide_unroll_runtime_iterations (struct loop *, int);
|
135 |
|
|
static void peel_loop_simple (struct loop *);
|
136 |
|
|
static void peel_loop_completely (struct loop *);
|
137 |
|
|
static void unroll_loop_stupid (struct loop *);
|
138 |
|
|
static void unroll_loop_constant_iterations (struct loop *);
|
139 |
|
|
static void unroll_loop_runtime_iterations (struct loop *);
|
140 |
|
|
static struct opt_info *analyze_insns_in_loop (struct loop *);
|
141 |
|
|
static void opt_info_start_duplication (struct opt_info *);
|
142 |
|
|
static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
|
143 |
|
|
static void free_opt_info (struct opt_info *);
|
144 |
|
|
static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
|
145 |
|
|
static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
|
146 |
|
|
static struct iv_to_split *analyze_iv_to_split_insn (rtx);
|
147 |
|
|
static void expand_var_during_unrolling (struct var_to_expand *, rtx);
|
148 |
|
|
static void insert_var_expansion_initialization (struct var_to_expand *,
|
149 |
|
|
basic_block);
|
150 |
|
|
static void combine_var_copies_in_loop_exit (struct var_to_expand *,
|
151 |
|
|
basic_block);
|
152 |
|
|
static rtx get_expansion (struct var_to_expand *);
|
153 |
|
|
|
154 |
|
|
/* Unroll and/or peel (depending on FLAGS) LOOPS. */
|
155 |
|
|
void
|
156 |
|
|
unroll_and_peel_loops (int flags)
|
157 |
|
|
{
|
158 |
|
|
struct loop *loop;
|
159 |
|
|
bool check;
|
160 |
|
|
loop_iterator li;
|
161 |
|
|
|
162 |
|
|
/* First perform complete loop peeling (it is almost surely a win,
|
163 |
|
|
and affects parameters for further decision a lot). */
|
164 |
|
|
peel_loops_completely (flags);
|
165 |
|
|
|
166 |
|
|
/* Now decide rest of unrolling and peeling. */
|
167 |
|
|
decide_unrolling_and_peeling (flags);
|
168 |
|
|
|
169 |
|
|
/* Scan the loops, inner ones first. */
|
170 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
171 |
|
|
{
|
172 |
|
|
check = true;
|
173 |
|
|
/* And perform the appropriate transformations. */
|
174 |
|
|
switch (loop->lpt_decision.decision)
|
175 |
|
|
{
|
176 |
|
|
case LPT_PEEL_COMPLETELY:
|
177 |
|
|
/* Already done. */
|
178 |
|
|
gcc_unreachable ();
|
179 |
|
|
case LPT_PEEL_SIMPLE:
|
180 |
|
|
peel_loop_simple (loop);
|
181 |
|
|
break;
|
182 |
|
|
case LPT_UNROLL_CONSTANT:
|
183 |
|
|
unroll_loop_constant_iterations (loop);
|
184 |
|
|
break;
|
185 |
|
|
case LPT_UNROLL_RUNTIME:
|
186 |
|
|
unroll_loop_runtime_iterations (loop);
|
187 |
|
|
break;
|
188 |
|
|
case LPT_UNROLL_STUPID:
|
189 |
|
|
unroll_loop_stupid (loop);
|
190 |
|
|
break;
|
191 |
|
|
case LPT_NONE:
|
192 |
|
|
check = false;
|
193 |
|
|
break;
|
194 |
|
|
default:
|
195 |
|
|
gcc_unreachable ();
|
196 |
|
|
}
|
197 |
|
|
if (check)
|
198 |
|
|
{
|
199 |
|
|
#ifdef ENABLE_CHECKING
|
200 |
|
|
verify_dominators (CDI_DOMINATORS);
|
201 |
|
|
verify_loop_structure ();
|
202 |
|
|
#endif
|
203 |
|
|
}
|
204 |
|
|
}
|
205 |
|
|
|
206 |
|
|
iv_analysis_done ();
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
/* Check whether exit of the LOOP is at the end of loop body. */
|
210 |
|
|
|
211 |
|
|
static bool
|
212 |
|
|
loop_exit_at_end_p (struct loop *loop)
|
213 |
|
|
{
|
214 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
215 |
|
|
rtx insn;
|
216 |
|
|
|
217 |
|
|
if (desc->in_edge->dest != loop->latch)
|
218 |
|
|
return false;
|
219 |
|
|
|
220 |
|
|
/* Check that the latch is empty. */
|
221 |
|
|
FOR_BB_INSNS (loop->latch, insn)
|
222 |
|
|
{
|
223 |
|
|
if (INSN_P (insn))
|
224 |
|
|
return false;
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
return true;
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/* Depending on FLAGS, check whether to peel loops completely and do so. */
|
231 |
|
|
static void
|
232 |
|
|
peel_loops_completely (int flags)
|
233 |
|
|
{
|
234 |
|
|
struct loop *loop;
|
235 |
|
|
loop_iterator li;
|
236 |
|
|
|
237 |
|
|
/* Scan the loops, the inner ones first. */
|
238 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
239 |
|
|
{
|
240 |
|
|
loop->lpt_decision.decision = LPT_NONE;
|
241 |
|
|
|
242 |
|
|
if (dump_file)
|
243 |
|
|
fprintf (dump_file,
|
244 |
|
|
"\n;; *** Considering loop %d for complete peeling ***\n",
|
245 |
|
|
loop->num);
|
246 |
|
|
|
247 |
|
|
loop->ninsns = num_loop_insns (loop);
|
248 |
|
|
|
249 |
|
|
decide_peel_once_rolling (loop, flags);
|
250 |
|
|
if (loop->lpt_decision.decision == LPT_NONE)
|
251 |
|
|
decide_peel_completely (loop, flags);
|
252 |
|
|
|
253 |
|
|
if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
|
254 |
|
|
{
|
255 |
|
|
peel_loop_completely (loop);
|
256 |
|
|
#ifdef ENABLE_CHECKING
|
257 |
|
|
verify_dominators (CDI_DOMINATORS);
|
258 |
|
|
verify_loop_structure ();
|
259 |
|
|
#endif
|
260 |
|
|
}
|
261 |
|
|
}
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
/* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
|
265 |
|
|
static void
|
266 |
|
|
decide_unrolling_and_peeling (int flags)
|
267 |
|
|
{
|
268 |
|
|
struct loop *loop;
|
269 |
|
|
loop_iterator li;
|
270 |
|
|
|
271 |
|
|
/* Scan the loops, inner ones first. */
|
272 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
273 |
|
|
{
|
274 |
|
|
loop->lpt_decision.decision = LPT_NONE;
|
275 |
|
|
|
276 |
|
|
if (dump_file)
|
277 |
|
|
fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
|
278 |
|
|
|
279 |
|
|
/* Do not peel cold areas. */
|
280 |
|
|
if (optimize_loop_for_size_p (loop))
|
281 |
|
|
{
|
282 |
|
|
if (dump_file)
|
283 |
|
|
fprintf (dump_file, ";; Not considering loop, cold area\n");
|
284 |
|
|
continue;
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
/* Can the loop be manipulated? */
|
288 |
|
|
if (!can_duplicate_loop_p (loop))
|
289 |
|
|
{
|
290 |
|
|
if (dump_file)
|
291 |
|
|
fprintf (dump_file,
|
292 |
|
|
";; Not considering loop, cannot duplicate\n");
|
293 |
|
|
continue;
|
294 |
|
|
}
|
295 |
|
|
|
296 |
|
|
/* Skip non-innermost loops. */
|
297 |
|
|
if (loop->inner)
|
298 |
|
|
{
|
299 |
|
|
if (dump_file)
|
300 |
|
|
fprintf (dump_file, ";; Not considering loop, is not innermost\n");
|
301 |
|
|
continue;
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
loop->ninsns = num_loop_insns (loop);
|
305 |
|
|
loop->av_ninsns = average_num_loop_insns (loop);
|
306 |
|
|
|
307 |
|
|
/* Try transformations one by one in decreasing order of
|
308 |
|
|
priority. */
|
309 |
|
|
|
310 |
|
|
decide_unroll_constant_iterations (loop, flags);
|
311 |
|
|
if (loop->lpt_decision.decision == LPT_NONE)
|
312 |
|
|
decide_unroll_runtime_iterations (loop, flags);
|
313 |
|
|
if (loop->lpt_decision.decision == LPT_NONE)
|
314 |
|
|
decide_unroll_stupid (loop, flags);
|
315 |
|
|
if (loop->lpt_decision.decision == LPT_NONE)
|
316 |
|
|
decide_peel_simple (loop, flags);
|
317 |
|
|
}
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
/* Decide whether the LOOP is once rolling and suitable for complete
|
321 |
|
|
peeling. */
|
322 |
|
|
static void
|
323 |
|
|
decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
|
324 |
|
|
{
|
325 |
|
|
struct niter_desc *desc;
|
326 |
|
|
|
327 |
|
|
if (dump_file)
|
328 |
|
|
fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
|
329 |
|
|
|
330 |
|
|
/* Is the loop small enough? */
|
331 |
|
|
if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
|
332 |
|
|
{
|
333 |
|
|
if (dump_file)
|
334 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
335 |
|
|
return;
|
336 |
|
|
}
|
337 |
|
|
|
338 |
|
|
/* Check for simple loops. */
|
339 |
|
|
desc = get_simple_loop_desc (loop);
|
340 |
|
|
|
341 |
|
|
/* Check number of iterations. */
|
342 |
|
|
if (!desc->simple_p
|
343 |
|
|
|| desc->assumptions
|
344 |
|
|
|| desc->infinite
|
345 |
|
|
|| !desc->const_iter
|
346 |
|
|
|| desc->niter != 0)
|
347 |
|
|
{
|
348 |
|
|
if (dump_file)
|
349 |
|
|
fprintf (dump_file,
|
350 |
|
|
";; Unable to prove that the loop rolls exactly once\n");
|
351 |
|
|
return;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
/* Success. */
|
355 |
|
|
if (dump_file)
|
356 |
|
|
fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
|
357 |
|
|
loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
/* Decide whether the LOOP is suitable for complete peeling. */
|
361 |
|
|
static void
|
362 |
|
|
decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
|
363 |
|
|
{
|
364 |
|
|
unsigned npeel;
|
365 |
|
|
struct niter_desc *desc;
|
366 |
|
|
|
367 |
|
|
if (dump_file)
|
368 |
|
|
fprintf (dump_file, "\n;; Considering peeling completely\n");
|
369 |
|
|
|
370 |
|
|
/* Skip non-innermost loops. */
|
371 |
|
|
if (loop->inner)
|
372 |
|
|
{
|
373 |
|
|
if (dump_file)
|
374 |
|
|
fprintf (dump_file, ";; Not considering loop, is not innermost\n");
|
375 |
|
|
return;
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
/* Do not peel cold areas. */
|
379 |
|
|
if (optimize_loop_for_size_p (loop))
|
380 |
|
|
{
|
381 |
|
|
if (dump_file)
|
382 |
|
|
fprintf (dump_file, ";; Not considering loop, cold area\n");
|
383 |
|
|
return;
|
384 |
|
|
}
|
385 |
|
|
|
386 |
|
|
/* Can the loop be manipulated? */
|
387 |
|
|
if (!can_duplicate_loop_p (loop))
|
388 |
|
|
{
|
389 |
|
|
if (dump_file)
|
390 |
|
|
fprintf (dump_file,
|
391 |
|
|
";; Not considering loop, cannot duplicate\n");
|
392 |
|
|
return;
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
/* npeel = number of iterations to peel. */
|
396 |
|
|
npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
|
397 |
|
|
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
|
398 |
|
|
npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
|
399 |
|
|
|
400 |
|
|
/* Is the loop small enough? */
|
401 |
|
|
if (!npeel)
|
402 |
|
|
{
|
403 |
|
|
if (dump_file)
|
404 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
405 |
|
|
return;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
/* Check for simple loops. */
|
409 |
|
|
desc = get_simple_loop_desc (loop);
|
410 |
|
|
|
411 |
|
|
/* Check number of iterations. */
|
412 |
|
|
if (!desc->simple_p
|
413 |
|
|
|| desc->assumptions
|
414 |
|
|
|| !desc->const_iter
|
415 |
|
|
|| desc->infinite)
|
416 |
|
|
{
|
417 |
|
|
if (dump_file)
|
418 |
|
|
fprintf (dump_file,
|
419 |
|
|
";; Unable to prove that the loop iterates constant times\n");
|
420 |
|
|
return;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
if (desc->niter > npeel - 1)
|
424 |
|
|
{
|
425 |
|
|
if (dump_file)
|
426 |
|
|
{
|
427 |
|
|
fprintf (dump_file,
|
428 |
|
|
";; Not peeling loop completely, rolls too much (");
|
429 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
|
430 |
|
|
fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
|
431 |
|
|
}
|
432 |
|
|
return;
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
/* Success. */
|
436 |
|
|
if (dump_file)
|
437 |
|
|
fprintf (dump_file, ";; Decided to peel loop completely\n");
|
438 |
|
|
loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
/* Peel all iterations of LOOP, remove exit edges and cancel the loop
|
442 |
|
|
completely. The transformation done:
|
443 |
|
|
|
444 |
|
|
for (i = 0; i < 4; i++)
|
445 |
|
|
body;
|
446 |
|
|
|
447 |
|
|
==>
|
448 |
|
|
|
449 |
|
|
i = 0;
|
450 |
|
|
body; i++;
|
451 |
|
|
body; i++;
|
452 |
|
|
body; i++;
|
453 |
|
|
body; i++;
|
454 |
|
|
*/
|
455 |
|
|
static void
|
456 |
|
|
peel_loop_completely (struct loop *loop)
|
457 |
|
|
{
|
458 |
|
|
sbitmap wont_exit;
|
459 |
|
|
unsigned HOST_WIDE_INT npeel;
|
460 |
|
|
unsigned i;
|
461 |
|
|
VEC (edge, heap) *remove_edges;
|
462 |
|
|
edge ein;
|
463 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
464 |
|
|
struct opt_info *opt_info = NULL;
|
465 |
|
|
|
466 |
|
|
npeel = desc->niter;
|
467 |
|
|
|
468 |
|
|
if (npeel)
|
469 |
|
|
{
|
470 |
|
|
bool ok;
|
471 |
|
|
|
472 |
|
|
wont_exit = sbitmap_alloc (npeel + 1);
|
473 |
|
|
sbitmap_ones (wont_exit);
|
474 |
|
|
RESET_BIT (wont_exit, 0);
|
475 |
|
|
if (desc->noloop_assumptions)
|
476 |
|
|
RESET_BIT (wont_exit, 1);
|
477 |
|
|
|
478 |
|
|
remove_edges = NULL;
|
479 |
|
|
|
480 |
|
|
if (flag_split_ivs_in_unroller)
|
481 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
482 |
|
|
|
483 |
|
|
opt_info_start_duplication (opt_info);
|
484 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
485 |
|
|
npeel,
|
486 |
|
|
wont_exit, desc->out_edge,
|
487 |
|
|
&remove_edges,
|
488 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
489 |
|
|
| DLTHE_FLAG_COMPLETTE_PEEL
|
490 |
|
|
| (opt_info
|
491 |
|
|
? DLTHE_RECORD_COPY_NUMBER : 0));
|
492 |
|
|
gcc_assert (ok);
|
493 |
|
|
|
494 |
|
|
free (wont_exit);
|
495 |
|
|
|
496 |
|
|
if (opt_info)
|
497 |
|
|
{
|
498 |
|
|
apply_opt_in_copies (opt_info, npeel, false, true);
|
499 |
|
|
free_opt_info (opt_info);
|
500 |
|
|
}
|
501 |
|
|
|
502 |
|
|
/* Remove the exit edges. */
|
503 |
|
|
for (i = 0; VEC_iterate (edge, remove_edges, i, ein); i++)
|
504 |
|
|
remove_path (ein);
|
505 |
|
|
VEC_free (edge, heap, remove_edges);
|
506 |
|
|
}
|
507 |
|
|
|
508 |
|
|
ein = desc->in_edge;
|
509 |
|
|
free_simple_loop_desc (loop);
|
510 |
|
|
|
511 |
|
|
/* Now remove the unreachable part of the last iteration and cancel
|
512 |
|
|
the loop. */
|
513 |
|
|
remove_path (ein);
|
514 |
|
|
|
515 |
|
|
if (dump_file)
|
516 |
|
|
fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
|
517 |
|
|
}
|
518 |
|
|
|
519 |
|
|
/* Decide whether to unroll LOOP iterating constant number of times
|
520 |
|
|
and how much. */
|
521 |
|
|
|
522 |
|
|
static void
|
523 |
|
|
decide_unroll_constant_iterations (struct loop *loop, int flags)
|
524 |
|
|
{
|
525 |
|
|
unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
|
526 |
|
|
struct niter_desc *desc;
|
527 |
|
|
|
528 |
|
|
if (!(flags & UAP_UNROLL))
|
529 |
|
|
{
|
530 |
|
|
/* We were not asked to, just return back silently. */
|
531 |
|
|
return;
|
532 |
|
|
}
|
533 |
|
|
|
534 |
|
|
if (dump_file)
|
535 |
|
|
fprintf (dump_file,
|
536 |
|
|
"\n;; Considering unrolling loop with constant "
|
537 |
|
|
"number of iterations\n");
|
538 |
|
|
|
539 |
|
|
/* nunroll = total number of copies of the original loop body in
|
540 |
|
|
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
|
541 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
|
542 |
|
|
nunroll_by_av
|
543 |
|
|
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
|
544 |
|
|
if (nunroll > nunroll_by_av)
|
545 |
|
|
nunroll = nunroll_by_av;
|
546 |
|
|
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
|
547 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
|
548 |
|
|
|
549 |
|
|
/* Skip big loops. */
|
550 |
|
|
if (nunroll <= 1)
|
551 |
|
|
{
|
552 |
|
|
if (dump_file)
|
553 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
554 |
|
|
return;
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
/* Check for simple loops. */
|
558 |
|
|
desc = get_simple_loop_desc (loop);
|
559 |
|
|
|
560 |
|
|
/* Check number of iterations. */
|
561 |
|
|
if (!desc->simple_p || !desc->const_iter || desc->assumptions)
|
562 |
|
|
{
|
563 |
|
|
if (dump_file)
|
564 |
|
|
fprintf (dump_file,
|
565 |
|
|
";; Unable to prove that the loop iterates constant times\n");
|
566 |
|
|
return;
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
/* Check whether the loop rolls enough to consider. */
|
570 |
|
|
if (desc->niter < 2 * nunroll)
|
571 |
|
|
{
|
572 |
|
|
if (dump_file)
|
573 |
|
|
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
|
574 |
|
|
return;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
/* Success; now compute number of iterations to unroll. We alter
|
578 |
|
|
nunroll so that as few as possible copies of loop body are
|
579 |
|
|
necessary, while still not decreasing the number of unrollings
|
580 |
|
|
too much (at most by 1). */
|
581 |
|
|
best_copies = 2 * nunroll + 10;
|
582 |
|
|
|
583 |
|
|
i = 2 * nunroll + 2;
|
584 |
|
|
if (i - 1 >= desc->niter)
|
585 |
|
|
i = desc->niter - 2;
|
586 |
|
|
|
587 |
|
|
for (; i >= nunroll - 1; i--)
|
588 |
|
|
{
|
589 |
|
|
unsigned exit_mod = desc->niter % (i + 1);
|
590 |
|
|
|
591 |
|
|
if (!loop_exit_at_end_p (loop))
|
592 |
|
|
n_copies = exit_mod + i + 1;
|
593 |
|
|
else if (exit_mod != (unsigned) i
|
594 |
|
|
|| desc->noloop_assumptions != NULL_RTX)
|
595 |
|
|
n_copies = exit_mod + i + 2;
|
596 |
|
|
else
|
597 |
|
|
n_copies = i + 1;
|
598 |
|
|
|
599 |
|
|
if (n_copies < best_copies)
|
600 |
|
|
{
|
601 |
|
|
best_copies = n_copies;
|
602 |
|
|
best_unroll = i;
|
603 |
|
|
}
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
if (dump_file)
|
607 |
|
|
fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
|
608 |
|
|
best_unroll + 1, best_copies, nunroll);
|
609 |
|
|
|
610 |
|
|
loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
|
611 |
|
|
loop->lpt_decision.times = best_unroll;
|
612 |
|
|
|
613 |
|
|
if (dump_file)
|
614 |
|
|
fprintf (dump_file,
|
615 |
|
|
";; Decided to unroll the constant times rolling loop, %d times.\n",
|
616 |
|
|
loop->lpt_decision.times);
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
|
620 |
|
|
times. The transformation does this:
|
621 |
|
|
|
622 |
|
|
for (i = 0; i < 102; i++)
|
623 |
|
|
body;
|
624 |
|
|
|
625 |
|
|
==>
|
626 |
|
|
|
627 |
|
|
i = 0;
|
628 |
|
|
body; i++;
|
629 |
|
|
body; i++;
|
630 |
|
|
while (i < 102)
|
631 |
|
|
{
|
632 |
|
|
body; i++;
|
633 |
|
|
body; i++;
|
634 |
|
|
body; i++;
|
635 |
|
|
body; i++;
|
636 |
|
|
}
|
637 |
|
|
*/
|
638 |
|
|
static void
|
639 |
|
|
unroll_loop_constant_iterations (struct loop *loop)
|
640 |
|
|
{
|
641 |
|
|
unsigned HOST_WIDE_INT niter;
|
642 |
|
|
unsigned exit_mod;
|
643 |
|
|
sbitmap wont_exit;
|
644 |
|
|
unsigned i;
|
645 |
|
|
VEC (edge, heap) *remove_edges;
|
646 |
|
|
edge e;
|
647 |
|
|
unsigned max_unroll = loop->lpt_decision.times;
|
648 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
649 |
|
|
bool exit_at_end = loop_exit_at_end_p (loop);
|
650 |
|
|
struct opt_info *opt_info = NULL;
|
651 |
|
|
bool ok;
|
652 |
|
|
|
653 |
|
|
niter = desc->niter;
|
654 |
|
|
|
655 |
|
|
/* Should not get here (such loop should be peeled instead). */
|
656 |
|
|
gcc_assert (niter > max_unroll + 1);
|
657 |
|
|
|
658 |
|
|
exit_mod = niter % (max_unroll + 1);
|
659 |
|
|
|
660 |
|
|
wont_exit = sbitmap_alloc (max_unroll + 1);
|
661 |
|
|
sbitmap_ones (wont_exit);
|
662 |
|
|
|
663 |
|
|
remove_edges = NULL;
|
664 |
|
|
if (flag_split_ivs_in_unroller
|
665 |
|
|
|| flag_variable_expansion_in_unroller)
|
666 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
667 |
|
|
|
668 |
|
|
if (!exit_at_end)
|
669 |
|
|
{
|
670 |
|
|
/* The exit is not at the end of the loop; leave exit test
|
671 |
|
|
in the first copy, so that the loops that start with test
|
672 |
|
|
of exit condition have continuous body after unrolling. */
|
673 |
|
|
|
674 |
|
|
if (dump_file)
|
675 |
|
|
fprintf (dump_file, ";; Condition on beginning of loop.\n");
|
676 |
|
|
|
677 |
|
|
/* Peel exit_mod iterations. */
|
678 |
|
|
RESET_BIT (wont_exit, 0);
|
679 |
|
|
if (desc->noloop_assumptions)
|
680 |
|
|
RESET_BIT (wont_exit, 1);
|
681 |
|
|
|
682 |
|
|
if (exit_mod)
|
683 |
|
|
{
|
684 |
|
|
opt_info_start_duplication (opt_info);
|
685 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
686 |
|
|
exit_mod,
|
687 |
|
|
wont_exit, desc->out_edge,
|
688 |
|
|
&remove_edges,
|
689 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
690 |
|
|
| (opt_info && exit_mod > 1
|
691 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
692 |
|
|
: 0));
|
693 |
|
|
gcc_assert (ok);
|
694 |
|
|
|
695 |
|
|
if (opt_info && exit_mod > 1)
|
696 |
|
|
apply_opt_in_copies (opt_info, exit_mod, false, false);
|
697 |
|
|
|
698 |
|
|
desc->noloop_assumptions = NULL_RTX;
|
699 |
|
|
desc->niter -= exit_mod;
|
700 |
|
|
desc->niter_max -= exit_mod;
|
701 |
|
|
}
|
702 |
|
|
|
703 |
|
|
SET_BIT (wont_exit, 1);
|
704 |
|
|
}
|
705 |
|
|
else
|
706 |
|
|
{
|
707 |
|
|
/* Leave exit test in last copy, for the same reason as above if
|
708 |
|
|
the loop tests the condition at the end of loop body. */
|
709 |
|
|
|
710 |
|
|
if (dump_file)
|
711 |
|
|
fprintf (dump_file, ";; Condition on end of loop.\n");
|
712 |
|
|
|
713 |
|
|
/* We know that niter >= max_unroll + 2; so we do not need to care of
|
714 |
|
|
case when we would exit before reaching the loop. So just peel
|
715 |
|
|
exit_mod + 1 iterations. */
|
716 |
|
|
if (exit_mod != max_unroll
|
717 |
|
|
|| desc->noloop_assumptions)
|
718 |
|
|
{
|
719 |
|
|
RESET_BIT (wont_exit, 0);
|
720 |
|
|
if (desc->noloop_assumptions)
|
721 |
|
|
RESET_BIT (wont_exit, 1);
|
722 |
|
|
|
723 |
|
|
opt_info_start_duplication (opt_info);
|
724 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
725 |
|
|
exit_mod + 1,
|
726 |
|
|
wont_exit, desc->out_edge,
|
727 |
|
|
&remove_edges,
|
728 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
729 |
|
|
| (opt_info && exit_mod > 0
|
730 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
731 |
|
|
: 0));
|
732 |
|
|
gcc_assert (ok);
|
733 |
|
|
|
734 |
|
|
if (opt_info && exit_mod > 0)
|
735 |
|
|
apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
|
736 |
|
|
|
737 |
|
|
desc->niter -= exit_mod + 1;
|
738 |
|
|
desc->niter_max -= exit_mod + 1;
|
739 |
|
|
desc->noloop_assumptions = NULL_RTX;
|
740 |
|
|
|
741 |
|
|
SET_BIT (wont_exit, 0);
|
742 |
|
|
SET_BIT (wont_exit, 1);
|
743 |
|
|
}
|
744 |
|
|
|
745 |
|
|
RESET_BIT (wont_exit, max_unroll);
|
746 |
|
|
}
|
747 |
|
|
|
748 |
|
|
/* Now unroll the loop. */
|
749 |
|
|
|
750 |
|
|
opt_info_start_duplication (opt_info);
|
751 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
|
752 |
|
|
max_unroll,
|
753 |
|
|
wont_exit, desc->out_edge,
|
754 |
|
|
&remove_edges,
|
755 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
756 |
|
|
| (opt_info
|
757 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
758 |
|
|
: 0));
|
759 |
|
|
gcc_assert (ok);
|
760 |
|
|
|
761 |
|
|
if (opt_info)
|
762 |
|
|
{
|
763 |
|
|
apply_opt_in_copies (opt_info, max_unroll, true, true);
|
764 |
|
|
free_opt_info (opt_info);
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
free (wont_exit);
|
768 |
|
|
|
769 |
|
|
if (exit_at_end)
|
770 |
|
|
{
|
771 |
|
|
basic_block exit_block = get_bb_copy (desc->in_edge->src);
|
772 |
|
|
/* Find a new in and out edge; they are in the last copy we have made. */
|
773 |
|
|
|
774 |
|
|
if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
|
775 |
|
|
{
|
776 |
|
|
desc->out_edge = EDGE_SUCC (exit_block, 0);
|
777 |
|
|
desc->in_edge = EDGE_SUCC (exit_block, 1);
|
778 |
|
|
}
|
779 |
|
|
else
|
780 |
|
|
{
|
781 |
|
|
desc->out_edge = EDGE_SUCC (exit_block, 1);
|
782 |
|
|
desc->in_edge = EDGE_SUCC (exit_block, 0);
|
783 |
|
|
}
|
784 |
|
|
}
|
785 |
|
|
|
786 |
|
|
desc->niter /= max_unroll + 1;
|
787 |
|
|
desc->niter_max /= max_unroll + 1;
|
788 |
|
|
desc->niter_expr = GEN_INT (desc->niter);
|
789 |
|
|
|
790 |
|
|
/* Remove the edges. */
|
791 |
|
|
for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
|
792 |
|
|
remove_path (e);
|
793 |
|
|
VEC_free (edge, heap, remove_edges);
|
794 |
|
|
|
795 |
|
|
if (dump_file)
|
796 |
|
|
fprintf (dump_file,
|
797 |
|
|
";; Unrolled loop %d times, constant # of iterations %i insns\n",
|
798 |
|
|
max_unroll, num_loop_insns (loop));
|
799 |
|
|
}
|
800 |
|
|
|
801 |
|
|
/* Decide whether to unroll LOOP iterating runtime computable number of times
|
802 |
|
|
and how much. */
|
803 |
|
|
static void
|
804 |
|
|
decide_unroll_runtime_iterations (struct loop *loop, int flags)
|
805 |
|
|
{
|
806 |
|
|
unsigned nunroll, nunroll_by_av, i;
|
807 |
|
|
struct niter_desc *desc;
|
808 |
|
|
|
809 |
|
|
if (!(flags & UAP_UNROLL))
|
810 |
|
|
{
|
811 |
|
|
/* We were not asked to, just return back silently. */
|
812 |
|
|
return;
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
if (dump_file)
|
816 |
|
|
fprintf (dump_file,
|
817 |
|
|
"\n;; Considering unrolling loop with runtime "
|
818 |
|
|
"computable number of iterations\n");
|
819 |
|
|
|
820 |
|
|
/* nunroll = total number of copies of the original loop body in
|
821 |
|
|
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
|
822 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
|
823 |
|
|
nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
|
824 |
|
|
if (nunroll > nunroll_by_av)
|
825 |
|
|
nunroll = nunroll_by_av;
|
826 |
|
|
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
|
827 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
|
828 |
|
|
|
829 |
|
|
/* Skip big loops. */
|
830 |
|
|
if (nunroll <= 1)
|
831 |
|
|
{
|
832 |
|
|
if (dump_file)
|
833 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
834 |
|
|
return;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Check for simple loops. */
|
838 |
|
|
desc = get_simple_loop_desc (loop);
|
839 |
|
|
|
840 |
|
|
/* Check simpleness. */
|
841 |
|
|
if (!desc->simple_p || desc->assumptions)
|
842 |
|
|
{
|
843 |
|
|
if (dump_file)
|
844 |
|
|
fprintf (dump_file,
|
845 |
|
|
";; Unable to prove that the number of iterations "
|
846 |
|
|
"can be counted in runtime\n");
|
847 |
|
|
return;
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
if (desc->const_iter)
|
851 |
|
|
{
|
852 |
|
|
if (dump_file)
|
853 |
|
|
fprintf (dump_file, ";; Loop iterates constant times\n");
|
854 |
|
|
return;
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
/* If we have profile feedback, check whether the loop rolls. */
|
858 |
|
|
if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
|
859 |
|
|
{
|
860 |
|
|
if (dump_file)
|
861 |
|
|
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
|
862 |
|
|
return;
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
/* Success; now force nunroll to be power of 2, as we are unable to
|
866 |
|
|
cope with overflows in computation of number of iterations. */
|
867 |
|
|
for (i = 1; 2 * i <= nunroll; i *= 2)
|
868 |
|
|
continue;
|
869 |
|
|
|
870 |
|
|
loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
|
871 |
|
|
loop->lpt_decision.times = i - 1;
|
872 |
|
|
|
873 |
|
|
if (dump_file)
|
874 |
|
|
fprintf (dump_file,
|
875 |
|
|
";; Decided to unroll the runtime computable "
|
876 |
|
|
"times rolling loop, %d times.\n",
|
877 |
|
|
loop->lpt_decision.times);
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
/* Splits edge E and inserts the sequence of instructions INSNS on it, and
|
881 |
|
|
returns the newly created block. If INSNS is NULL_RTX, nothing is changed
|
882 |
|
|
and NULL is returned instead. */
|
883 |
|
|
|
884 |
|
|
basic_block
|
885 |
|
|
split_edge_and_insert (edge e, rtx insns)
|
886 |
|
|
{
|
887 |
|
|
basic_block bb;
|
888 |
|
|
|
889 |
|
|
if (!insns)
|
890 |
|
|
return NULL;
|
891 |
|
|
bb = split_edge (e);
|
892 |
|
|
emit_insn_after (insns, BB_END (bb));
|
893 |
|
|
|
894 |
|
|
/* ??? We used to assume that INSNS can contain control flow insns, and
|
895 |
|
|
that we had to try to find sub basic blocks in BB to maintain a valid
|
896 |
|
|
CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
|
897 |
|
|
and call break_superblocks when going out of cfglayout mode. But it
|
898 |
|
|
turns out that this never happens; and that if it does ever happen,
|
899 |
|
|
the verify_flow_info call in loop_optimizer_finalize would fail.
|
900 |
|
|
|
901 |
|
|
There are two reasons why we expected we could have control flow insns
|
902 |
|
|
in INSNS. The first is when a comparison has to be done in parts, and
|
903 |
|
|
the second is when the number of iterations is computed for loops with
|
904 |
|
|
the number of iterations known at runtime. In both cases, test cases
|
905 |
|
|
to get control flow in INSNS appear to be impossible to construct:
|
906 |
|
|
|
907 |
|
|
* If do_compare_rtx_and_jump needs several branches to do comparison
|
908 |
|
|
in a mode that needs comparison by parts, we cannot analyze the
|
909 |
|
|
number of iterations of the loop, and we never get to unrolling it.
|
910 |
|
|
|
911 |
|
|
* The code in expand_divmod that was suspected to cause creation of
|
912 |
|
|
branching code seems to be only accessed for signed division. The
|
913 |
|
|
divisions used by # of iterations analysis are always unsigned.
|
914 |
|
|
Problems might arise on architectures that emits branching code
|
915 |
|
|
for some operations that may appear in the unroller (especially
|
916 |
|
|
for division), but we have no such architectures.
|
917 |
|
|
|
918 |
|
|
Considering all this, it was decided that we should for now assume
|
919 |
|
|
that INSNS can in theory contain control flow insns, but in practice
|
920 |
|
|
it never does. So we don't handle the theoretical case, and should
|
921 |
|
|
a real failure ever show up, we have a pretty good clue for how to
|
922 |
|
|
fix it. */
|
923 |
|
|
|
924 |
|
|
return bb;
|
925 |
|
|
}
|
926 |
|
|
|
927 |
|
|
/* Unroll LOOP for that we are able to count number of iterations in runtime
|
928 |
|
|
LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
|
929 |
|
|
extra care for case n < 0):
|
930 |
|
|
|
931 |
|
|
for (i = 0; i < n; i++)
|
932 |
|
|
body;
|
933 |
|
|
|
934 |
|
|
==>
|
935 |
|
|
|
936 |
|
|
i = 0;
|
937 |
|
|
mod = n % 4;
|
938 |
|
|
|
939 |
|
|
switch (mod)
|
940 |
|
|
{
|
941 |
|
|
case 3:
|
942 |
|
|
body; i++;
|
943 |
|
|
case 2:
|
944 |
|
|
body; i++;
|
945 |
|
|
case 1:
|
946 |
|
|
body; i++;
|
947 |
|
|
case 0: ;
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
while (i < n)
|
951 |
|
|
{
|
952 |
|
|
body; i++;
|
953 |
|
|
body; i++;
|
954 |
|
|
body; i++;
|
955 |
|
|
body; i++;
|
956 |
|
|
}
|
957 |
|
|
*/
|
958 |
|
|
static void
|
959 |
|
|
unroll_loop_runtime_iterations (struct loop *loop)
|
960 |
|
|
{
|
961 |
|
|
rtx old_niter, niter, init_code, branch_code, tmp;
|
962 |
|
|
unsigned i, j, p;
|
963 |
|
|
basic_block preheader, *body, swtch, ezc_swtch;
|
964 |
|
|
VEC (basic_block, heap) *dom_bbs;
|
965 |
|
|
sbitmap wont_exit;
|
966 |
|
|
int may_exit_copy;
|
967 |
|
|
unsigned n_peel;
|
968 |
|
|
VEC (edge, heap) *remove_edges;
|
969 |
|
|
edge e;
|
970 |
|
|
bool extra_zero_check, last_may_exit;
|
971 |
|
|
unsigned max_unroll = loop->lpt_decision.times;
|
972 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
973 |
|
|
bool exit_at_end = loop_exit_at_end_p (loop);
|
974 |
|
|
struct opt_info *opt_info = NULL;
|
975 |
|
|
bool ok;
|
976 |
|
|
|
977 |
|
|
if (flag_split_ivs_in_unroller
|
978 |
|
|
|| flag_variable_expansion_in_unroller)
|
979 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
980 |
|
|
|
981 |
|
|
/* Remember blocks whose dominators will have to be updated. */
|
982 |
|
|
dom_bbs = NULL;
|
983 |
|
|
|
984 |
|
|
body = get_loop_body (loop);
|
985 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
986 |
|
|
{
|
987 |
|
|
VEC (basic_block, heap) *ldom;
|
988 |
|
|
basic_block bb;
|
989 |
|
|
|
990 |
|
|
ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
|
991 |
|
|
for (j = 0; VEC_iterate (basic_block, ldom, j, bb); j++)
|
992 |
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
993 |
|
|
VEC_safe_push (basic_block, heap, dom_bbs, bb);
|
994 |
|
|
|
995 |
|
|
VEC_free (basic_block, heap, ldom);
|
996 |
|
|
}
|
997 |
|
|
free (body);
|
998 |
|
|
|
999 |
|
|
if (!exit_at_end)
|
1000 |
|
|
{
|
1001 |
|
|
/* Leave exit in first copy (for explanation why see comment in
|
1002 |
|
|
unroll_loop_constant_iterations). */
|
1003 |
|
|
may_exit_copy = 0;
|
1004 |
|
|
n_peel = max_unroll - 1;
|
1005 |
|
|
extra_zero_check = true;
|
1006 |
|
|
last_may_exit = false;
|
1007 |
|
|
}
|
1008 |
|
|
else
|
1009 |
|
|
{
|
1010 |
|
|
/* Leave exit in last copy (for explanation why see comment in
|
1011 |
|
|
unroll_loop_constant_iterations). */
|
1012 |
|
|
may_exit_copy = max_unroll;
|
1013 |
|
|
n_peel = max_unroll;
|
1014 |
|
|
extra_zero_check = false;
|
1015 |
|
|
last_may_exit = true;
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
/* Get expression for number of iterations. */
|
1019 |
|
|
start_sequence ();
|
1020 |
|
|
old_niter = niter = gen_reg_rtx (desc->mode);
|
1021 |
|
|
tmp = force_operand (copy_rtx (desc->niter_expr), niter);
|
1022 |
|
|
if (tmp != niter)
|
1023 |
|
|
emit_move_insn (niter, tmp);
|
1024 |
|
|
|
1025 |
|
|
/* Count modulo by ANDing it with max_unroll; we use the fact that
|
1026 |
|
|
the number of unrollings is a power of two, and thus this is correct
|
1027 |
|
|
even if there is overflow in the computation. */
|
1028 |
|
|
niter = expand_simple_binop (desc->mode, AND,
|
1029 |
|
|
niter,
|
1030 |
|
|
GEN_INT (max_unroll),
|
1031 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
1032 |
|
|
|
1033 |
|
|
init_code = get_insns ();
|
1034 |
|
|
end_sequence ();
|
1035 |
|
|
unshare_all_rtl_in_chain (init_code);
|
1036 |
|
|
|
1037 |
|
|
/* Precondition the loop. */
|
1038 |
|
|
split_edge_and_insert (loop_preheader_edge (loop), init_code);
|
1039 |
|
|
|
1040 |
|
|
remove_edges = NULL;
|
1041 |
|
|
|
1042 |
|
|
wont_exit = sbitmap_alloc (max_unroll + 2);
|
1043 |
|
|
|
1044 |
|
|
/* Peel the first copy of loop body (almost always we must leave exit test
|
1045 |
|
|
here; the only exception is when we have extra zero check and the number
|
1046 |
|
|
of iterations is reliable. Also record the place of (possible) extra
|
1047 |
|
|
zero check. */
|
1048 |
|
|
sbitmap_zero (wont_exit);
|
1049 |
|
|
if (extra_zero_check
|
1050 |
|
|
&& !desc->noloop_assumptions)
|
1051 |
|
|
SET_BIT (wont_exit, 1);
|
1052 |
|
|
ezc_swtch = loop_preheader_edge (loop)->src;
|
1053 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
1054 |
|
|
1, wont_exit, desc->out_edge,
|
1055 |
|
|
&remove_edges,
|
1056 |
|
|
DLTHE_FLAG_UPDATE_FREQ);
|
1057 |
|
|
gcc_assert (ok);
|
1058 |
|
|
|
1059 |
|
|
/* Record the place where switch will be built for preconditioning. */
|
1060 |
|
|
swtch = split_edge (loop_preheader_edge (loop));
|
1061 |
|
|
|
1062 |
|
|
for (i = 0; i < n_peel; i++)
|
1063 |
|
|
{
|
1064 |
|
|
/* Peel the copy. */
|
1065 |
|
|
sbitmap_zero (wont_exit);
|
1066 |
|
|
if (i != n_peel - 1 || !last_may_exit)
|
1067 |
|
|
SET_BIT (wont_exit, 1);
|
1068 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
1069 |
|
|
1, wont_exit, desc->out_edge,
|
1070 |
|
|
&remove_edges,
|
1071 |
|
|
DLTHE_FLAG_UPDATE_FREQ);
|
1072 |
|
|
gcc_assert (ok);
|
1073 |
|
|
|
1074 |
|
|
/* Create item for switch. */
|
1075 |
|
|
j = n_peel - i - (extra_zero_check ? 0 : 1);
|
1076 |
|
|
p = REG_BR_PROB_BASE / (i + 2);
|
1077 |
|
|
|
1078 |
|
|
preheader = split_edge (loop_preheader_edge (loop));
|
1079 |
|
|
branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
|
1080 |
|
|
block_label (preheader), p,
|
1081 |
|
|
NULL_RTX);
|
1082 |
|
|
|
1083 |
|
|
/* We rely on the fact that the compare and jump cannot be optimized out,
|
1084 |
|
|
and hence the cfg we create is correct. */
|
1085 |
|
|
gcc_assert (branch_code != NULL_RTX);
|
1086 |
|
|
|
1087 |
|
|
swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
|
1088 |
|
|
set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
|
1089 |
|
|
single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
|
1090 |
|
|
e = make_edge (swtch, preheader,
|
1091 |
|
|
single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
|
1092 |
|
|
e->probability = p;
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
if (extra_zero_check)
|
1096 |
|
|
{
|
1097 |
|
|
/* Add branch for zero iterations. */
|
1098 |
|
|
p = REG_BR_PROB_BASE / (max_unroll + 1);
|
1099 |
|
|
swtch = ezc_swtch;
|
1100 |
|
|
preheader = split_edge (loop_preheader_edge (loop));
|
1101 |
|
|
branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
|
1102 |
|
|
block_label (preheader), p,
|
1103 |
|
|
NULL_RTX);
|
1104 |
|
|
gcc_assert (branch_code != NULL_RTX);
|
1105 |
|
|
|
1106 |
|
|
swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
|
1107 |
|
|
set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
|
1108 |
|
|
single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
|
1109 |
|
|
e = make_edge (swtch, preheader,
|
1110 |
|
|
single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
|
1111 |
|
|
e->probability = p;
|
1112 |
|
|
}
|
1113 |
|
|
|
1114 |
|
|
/* Recount dominators for outer blocks. */
|
1115 |
|
|
iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
|
1116 |
|
|
|
1117 |
|
|
/* And unroll loop. */
|
1118 |
|
|
|
1119 |
|
|
sbitmap_ones (wont_exit);
|
1120 |
|
|
RESET_BIT (wont_exit, may_exit_copy);
|
1121 |
|
|
opt_info_start_duplication (opt_info);
|
1122 |
|
|
|
1123 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
|
1124 |
|
|
max_unroll,
|
1125 |
|
|
wont_exit, desc->out_edge,
|
1126 |
|
|
&remove_edges,
|
1127 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
1128 |
|
|
| (opt_info
|
1129 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
1130 |
|
|
: 0));
|
1131 |
|
|
gcc_assert (ok);
|
1132 |
|
|
|
1133 |
|
|
if (opt_info)
|
1134 |
|
|
{
|
1135 |
|
|
apply_opt_in_copies (opt_info, max_unroll, true, true);
|
1136 |
|
|
free_opt_info (opt_info);
|
1137 |
|
|
}
|
1138 |
|
|
|
1139 |
|
|
free (wont_exit);
|
1140 |
|
|
|
1141 |
|
|
if (exit_at_end)
|
1142 |
|
|
{
|
1143 |
|
|
basic_block exit_block = get_bb_copy (desc->in_edge->src);
|
1144 |
|
|
/* Find a new in and out edge; they are in the last copy we have
|
1145 |
|
|
made. */
|
1146 |
|
|
|
1147 |
|
|
if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
|
1148 |
|
|
{
|
1149 |
|
|
desc->out_edge = EDGE_SUCC (exit_block, 0);
|
1150 |
|
|
desc->in_edge = EDGE_SUCC (exit_block, 1);
|
1151 |
|
|
}
|
1152 |
|
|
else
|
1153 |
|
|
{
|
1154 |
|
|
desc->out_edge = EDGE_SUCC (exit_block, 1);
|
1155 |
|
|
desc->in_edge = EDGE_SUCC (exit_block, 0);
|
1156 |
|
|
}
|
1157 |
|
|
}
|
1158 |
|
|
|
1159 |
|
|
/* Remove the edges. */
|
1160 |
|
|
for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
|
1161 |
|
|
remove_path (e);
|
1162 |
|
|
VEC_free (edge, heap, remove_edges);
|
1163 |
|
|
|
1164 |
|
|
/* We must be careful when updating the number of iterations due to
|
1165 |
|
|
preconditioning and the fact that the value must be valid at entry
|
1166 |
|
|
of the loop. After passing through the above code, we see that
|
1167 |
|
|
the correct new number of iterations is this: */
|
1168 |
|
|
gcc_assert (!desc->const_iter);
|
1169 |
|
|
desc->niter_expr =
|
1170 |
|
|
simplify_gen_binary (UDIV, desc->mode, old_niter,
|
1171 |
|
|
GEN_INT (max_unroll + 1));
|
1172 |
|
|
desc->niter_max /= max_unroll + 1;
|
1173 |
|
|
if (exit_at_end)
|
1174 |
|
|
{
|
1175 |
|
|
desc->niter_expr =
|
1176 |
|
|
simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
|
1177 |
|
|
desc->noloop_assumptions = NULL_RTX;
|
1178 |
|
|
desc->niter_max--;
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
if (dump_file)
|
1182 |
|
|
fprintf (dump_file,
|
1183 |
|
|
";; Unrolled loop %d times, counting # of iterations "
|
1184 |
|
|
"in runtime, %i insns\n",
|
1185 |
|
|
max_unroll, num_loop_insns (loop));
|
1186 |
|
|
|
1187 |
|
|
VEC_free (basic_block, heap, dom_bbs);
|
1188 |
|
|
}
|
1189 |
|
|
|
1190 |
|
|
/* Decide whether to simply peel LOOP and how much. */
|
1191 |
|
|
static void
|
1192 |
|
|
decide_peel_simple (struct loop *loop, int flags)
|
1193 |
|
|
{
|
1194 |
|
|
unsigned npeel;
|
1195 |
|
|
struct niter_desc *desc;
|
1196 |
|
|
|
1197 |
|
|
if (!(flags & UAP_PEEL))
|
1198 |
|
|
{
|
1199 |
|
|
/* We were not asked to, just return back silently. */
|
1200 |
|
|
return;
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
if (dump_file)
|
1204 |
|
|
fprintf (dump_file, "\n;; Considering simply peeling loop\n");
|
1205 |
|
|
|
1206 |
|
|
/* npeel = number of iterations to peel. */
|
1207 |
|
|
npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
|
1208 |
|
|
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
|
1209 |
|
|
npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
|
1210 |
|
|
|
1211 |
|
|
/* Skip big loops. */
|
1212 |
|
|
if (!npeel)
|
1213 |
|
|
{
|
1214 |
|
|
if (dump_file)
|
1215 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
1216 |
|
|
return;
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
/* Check for simple loops. */
|
1220 |
|
|
desc = get_simple_loop_desc (loop);
|
1221 |
|
|
|
1222 |
|
|
/* Check number of iterations. */
|
1223 |
|
|
if (desc->simple_p && !desc->assumptions && desc->const_iter)
|
1224 |
|
|
{
|
1225 |
|
|
if (dump_file)
|
1226 |
|
|
fprintf (dump_file, ";; Loop iterates constant times\n");
|
1227 |
|
|
return;
|
1228 |
|
|
}
|
1229 |
|
|
|
1230 |
|
|
/* Do not simply peel loops with branches inside -- it increases number
|
1231 |
|
|
of mispredicts. */
|
1232 |
|
|
if (num_loop_branches (loop) > 1)
|
1233 |
|
|
{
|
1234 |
|
|
if (dump_file)
|
1235 |
|
|
fprintf (dump_file, ";; Not peeling, contains branches\n");
|
1236 |
|
|
return;
|
1237 |
|
|
}
|
1238 |
|
|
|
1239 |
|
|
if (loop->header->count)
|
1240 |
|
|
{
|
1241 |
|
|
unsigned niter = expected_loop_iterations (loop);
|
1242 |
|
|
if (niter + 1 > npeel)
|
1243 |
|
|
{
|
1244 |
|
|
if (dump_file)
|
1245 |
|
|
{
|
1246 |
|
|
fprintf (dump_file, ";; Not peeling loop, rolls too much (");
|
1247 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
1248 |
|
|
(HOST_WIDEST_INT) (niter + 1));
|
1249 |
|
|
fprintf (dump_file, " iterations > %d [maximum peelings])\n",
|
1250 |
|
|
npeel);
|
1251 |
|
|
}
|
1252 |
|
|
return;
|
1253 |
|
|
}
|
1254 |
|
|
npeel = niter + 1;
|
1255 |
|
|
}
|
1256 |
|
|
else
|
1257 |
|
|
{
|
1258 |
|
|
/* For now we have no good heuristics to decide whether loop peeling
|
1259 |
|
|
will be effective, so disable it. */
|
1260 |
|
|
if (dump_file)
|
1261 |
|
|
fprintf (dump_file,
|
1262 |
|
|
";; Not peeling loop, no evidence it will be profitable\n");
|
1263 |
|
|
return;
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
/* Success. */
|
1267 |
|
|
loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
|
1268 |
|
|
loop->lpt_decision.times = npeel;
|
1269 |
|
|
|
1270 |
|
|
if (dump_file)
|
1271 |
|
|
fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
|
1272 |
|
|
loop->lpt_decision.times);
|
1273 |
|
|
}
|
1274 |
|
|
|
1275 |
|
|
/* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
|
1276 |
|
|
while (cond)
|
1277 |
|
|
body;
|
1278 |
|
|
|
1279 |
|
|
==>
|
1280 |
|
|
|
1281 |
|
|
if (!cond) goto end;
|
1282 |
|
|
body;
|
1283 |
|
|
if (!cond) goto end;
|
1284 |
|
|
body;
|
1285 |
|
|
while (cond)
|
1286 |
|
|
body;
|
1287 |
|
|
end: ;
|
1288 |
|
|
*/
|
1289 |
|
|
static void
|
1290 |
|
|
peel_loop_simple (struct loop *loop)
|
1291 |
|
|
{
|
1292 |
|
|
sbitmap wont_exit;
|
1293 |
|
|
unsigned npeel = loop->lpt_decision.times;
|
1294 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
1295 |
|
|
struct opt_info *opt_info = NULL;
|
1296 |
|
|
bool ok;
|
1297 |
|
|
|
1298 |
|
|
if (flag_split_ivs_in_unroller && npeel > 1)
|
1299 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
1300 |
|
|
|
1301 |
|
|
wont_exit = sbitmap_alloc (npeel + 1);
|
1302 |
|
|
sbitmap_zero (wont_exit);
|
1303 |
|
|
|
1304 |
|
|
opt_info_start_duplication (opt_info);
|
1305 |
|
|
|
1306 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
1307 |
|
|
npeel, wont_exit, NULL,
|
1308 |
|
|
NULL, DLTHE_FLAG_UPDATE_FREQ
|
1309 |
|
|
| (opt_info
|
1310 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
1311 |
|
|
: 0));
|
1312 |
|
|
gcc_assert (ok);
|
1313 |
|
|
|
1314 |
|
|
free (wont_exit);
|
1315 |
|
|
|
1316 |
|
|
if (opt_info)
|
1317 |
|
|
{
|
1318 |
|
|
apply_opt_in_copies (opt_info, npeel, false, false);
|
1319 |
|
|
free_opt_info (opt_info);
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
if (desc->simple_p)
|
1323 |
|
|
{
|
1324 |
|
|
if (desc->const_iter)
|
1325 |
|
|
{
|
1326 |
|
|
desc->niter -= npeel;
|
1327 |
|
|
desc->niter_expr = GEN_INT (desc->niter);
|
1328 |
|
|
desc->noloop_assumptions = NULL_RTX;
|
1329 |
|
|
}
|
1330 |
|
|
else
|
1331 |
|
|
{
|
1332 |
|
|
/* We cannot just update niter_expr, as its value might be clobbered
|
1333 |
|
|
inside loop. We could handle this by counting the number into
|
1334 |
|
|
temporary just like we do in runtime unrolling, but it does not
|
1335 |
|
|
seem worthwhile. */
|
1336 |
|
|
free_simple_loop_desc (loop);
|
1337 |
|
|
}
|
1338 |
|
|
}
|
1339 |
|
|
if (dump_file)
|
1340 |
|
|
fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
/* Decide whether to unroll LOOP stupidly and how much. */
|
1344 |
|
|
static void
|
1345 |
|
|
decide_unroll_stupid (struct loop *loop, int flags)
|
1346 |
|
|
{
|
1347 |
|
|
unsigned nunroll, nunroll_by_av, i;
|
1348 |
|
|
struct niter_desc *desc;
|
1349 |
|
|
|
1350 |
|
|
if (!(flags & UAP_UNROLL_ALL))
|
1351 |
|
|
{
|
1352 |
|
|
/* We were not asked to, just return back silently. */
|
1353 |
|
|
return;
|
1354 |
|
|
}
|
1355 |
|
|
|
1356 |
|
|
if (dump_file)
|
1357 |
|
|
fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
|
1358 |
|
|
|
1359 |
|
|
/* nunroll = total number of copies of the original loop body in
|
1360 |
|
|
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
|
1361 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
|
1362 |
|
|
nunroll_by_av
|
1363 |
|
|
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
|
1364 |
|
|
if (nunroll > nunroll_by_av)
|
1365 |
|
|
nunroll = nunroll_by_av;
|
1366 |
|
|
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
|
1367 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
|
1368 |
|
|
|
1369 |
|
|
/* Skip big loops. */
|
1370 |
|
|
if (nunroll <= 1)
|
1371 |
|
|
{
|
1372 |
|
|
if (dump_file)
|
1373 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
1374 |
|
|
return;
|
1375 |
|
|
}
|
1376 |
|
|
|
1377 |
|
|
/* Check for simple loops. */
|
1378 |
|
|
desc = get_simple_loop_desc (loop);
|
1379 |
|
|
|
1380 |
|
|
/* Check simpleness. */
|
1381 |
|
|
if (desc->simple_p && !desc->assumptions)
|
1382 |
|
|
{
|
1383 |
|
|
if (dump_file)
|
1384 |
|
|
fprintf (dump_file, ";; The loop is simple\n");
|
1385 |
|
|
return;
|
1386 |
|
|
}
|
1387 |
|
|
|
1388 |
|
|
/* Do not unroll loops with branches inside -- it increases number
|
1389 |
|
|
of mispredicts. */
|
1390 |
|
|
if (num_loop_branches (loop) > 1)
|
1391 |
|
|
{
|
1392 |
|
|
if (dump_file)
|
1393 |
|
|
fprintf (dump_file, ";; Not unrolling, contains branches\n");
|
1394 |
|
|
return;
|
1395 |
|
|
}
|
1396 |
|
|
|
1397 |
|
|
/* If we have profile feedback, check whether the loop rolls. */
|
1398 |
|
|
if (loop->header->count
|
1399 |
|
|
&& expected_loop_iterations (loop) < 2 * nunroll)
|
1400 |
|
|
{
|
1401 |
|
|
if (dump_file)
|
1402 |
|
|
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
|
1403 |
|
|
return;
|
1404 |
|
|
}
|
1405 |
|
|
|
1406 |
|
|
/* Success. Now force nunroll to be power of 2, as it seems that this
|
1407 |
|
|
improves results (partially because of better alignments, partially
|
1408 |
|
|
because of some dark magic). */
|
1409 |
|
|
for (i = 1; 2 * i <= nunroll; i *= 2)
|
1410 |
|
|
continue;
|
1411 |
|
|
|
1412 |
|
|
loop->lpt_decision.decision = LPT_UNROLL_STUPID;
|
1413 |
|
|
loop->lpt_decision.times = i - 1;
|
1414 |
|
|
|
1415 |
|
|
if (dump_file)
|
1416 |
|
|
fprintf (dump_file,
|
1417 |
|
|
";; Decided to unroll the loop stupidly, %d times.\n",
|
1418 |
|
|
loop->lpt_decision.times);
|
1419 |
|
|
}
|
1420 |
|
|
|
1421 |
|
|
/* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
|
1422 |
|
|
while (cond)
|
1423 |
|
|
body;
|
1424 |
|
|
|
1425 |
|
|
==>
|
1426 |
|
|
|
1427 |
|
|
while (cond)
|
1428 |
|
|
{
|
1429 |
|
|
body;
|
1430 |
|
|
if (!cond) break;
|
1431 |
|
|
body;
|
1432 |
|
|
if (!cond) break;
|
1433 |
|
|
body;
|
1434 |
|
|
if (!cond) break;
|
1435 |
|
|
body;
|
1436 |
|
|
}
|
1437 |
|
|
*/
|
1438 |
|
|
static void
|
1439 |
|
|
unroll_loop_stupid (struct loop *loop)
|
1440 |
|
|
{
|
1441 |
|
|
sbitmap wont_exit;
|
1442 |
|
|
unsigned nunroll = loop->lpt_decision.times;
|
1443 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
1444 |
|
|
struct opt_info *opt_info = NULL;
|
1445 |
|
|
bool ok;
|
1446 |
|
|
|
1447 |
|
|
if (flag_split_ivs_in_unroller
|
1448 |
|
|
|| flag_variable_expansion_in_unroller)
|
1449 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
1450 |
|
|
|
1451 |
|
|
|
1452 |
|
|
wont_exit = sbitmap_alloc (nunroll + 1);
|
1453 |
|
|
sbitmap_zero (wont_exit);
|
1454 |
|
|
opt_info_start_duplication (opt_info);
|
1455 |
|
|
|
1456 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
|
1457 |
|
|
nunroll, wont_exit,
|
1458 |
|
|
NULL, NULL,
|
1459 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
1460 |
|
|
| (opt_info
|
1461 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
1462 |
|
|
: 0));
|
1463 |
|
|
gcc_assert (ok);
|
1464 |
|
|
|
1465 |
|
|
if (opt_info)
|
1466 |
|
|
{
|
1467 |
|
|
apply_opt_in_copies (opt_info, nunroll, true, true);
|
1468 |
|
|
free_opt_info (opt_info);
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
free (wont_exit);
|
1472 |
|
|
|
1473 |
|
|
if (desc->simple_p)
|
1474 |
|
|
{
|
1475 |
|
|
/* We indeed may get here provided that there are nontrivial assumptions
|
1476 |
|
|
for a loop to be really simple. We could update the counts, but the
|
1477 |
|
|
problem is that we are unable to decide which exit will be taken
|
1478 |
|
|
(not really true in case the number of iterations is constant,
|
1479 |
|
|
but noone will do anything with this information, so we do not
|
1480 |
|
|
worry about it). */
|
1481 |
|
|
desc->simple_p = false;
|
1482 |
|
|
}
|
1483 |
|
|
|
1484 |
|
|
if (dump_file)
|
1485 |
|
|
fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
|
1486 |
|
|
nunroll, num_loop_insns (loop));
|
1487 |
|
|
}
|
1488 |
|
|
|
1489 |
|
|
/* A hash function for information about insns to split. */
|
1490 |
|
|
|
1491 |
|
|
static hashval_t
|
1492 |
|
|
si_info_hash (const void *ivts)
|
1493 |
|
|
{
|
1494 |
|
|
return (hashval_t) INSN_UID (((const struct iv_to_split *) ivts)->insn);
|
1495 |
|
|
}
|
1496 |
|
|
|
1497 |
|
|
/* An equality functions for information about insns to split. */
|
1498 |
|
|
|
1499 |
|
|
static int
|
1500 |
|
|
si_info_eq (const void *ivts1, const void *ivts2)
|
1501 |
|
|
{
|
1502 |
|
|
const struct iv_to_split *const i1 = (const struct iv_to_split *) ivts1;
|
1503 |
|
|
const struct iv_to_split *const i2 = (const struct iv_to_split *) ivts2;
|
1504 |
|
|
|
1505 |
|
|
return i1->insn == i2->insn;
|
1506 |
|
|
}
|
1507 |
|
|
|
1508 |
|
|
/* Return a hash for VES, which is really a "var_to_expand *". */
|
1509 |
|
|
|
1510 |
|
|
static hashval_t
|
1511 |
|
|
ve_info_hash (const void *ves)
|
1512 |
|
|
{
|
1513 |
|
|
return (hashval_t) INSN_UID (((const struct var_to_expand *) ves)->insn);
|
1514 |
|
|
}
|
1515 |
|
|
|
1516 |
|
|
/* Return true if IVTS1 and IVTS2 (which are really both of type
|
1517 |
|
|
"var_to_expand *") refer to the same instruction. */
|
1518 |
|
|
|
1519 |
|
|
static int
|
1520 |
|
|
ve_info_eq (const void *ivts1, const void *ivts2)
|
1521 |
|
|
{
|
1522 |
|
|
const struct var_to_expand *const i1 = (const struct var_to_expand *) ivts1;
|
1523 |
|
|
const struct var_to_expand *const i2 = (const struct var_to_expand *) ivts2;
|
1524 |
|
|
|
1525 |
|
|
return i1->insn == i2->insn;
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
/* Returns true if REG is referenced in one nondebug insn in LOOP.
|
1529 |
|
|
Set *DEBUG_USES to the number of debug insns that reference the
|
1530 |
|
|
variable. */
|
1531 |
|
|
|
1532 |
|
|
bool
|
1533 |
|
|
referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
|
1534 |
|
|
int *debug_uses)
|
1535 |
|
|
{
|
1536 |
|
|
basic_block *body, bb;
|
1537 |
|
|
unsigned i;
|
1538 |
|
|
int count_ref = 0;
|
1539 |
|
|
rtx insn;
|
1540 |
|
|
|
1541 |
|
|
body = get_loop_body (loop);
|
1542 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1543 |
|
|
{
|
1544 |
|
|
bb = body[i];
|
1545 |
|
|
|
1546 |
|
|
FOR_BB_INSNS (bb, insn)
|
1547 |
|
|
if (!rtx_referenced_p (reg, insn))
|
1548 |
|
|
continue;
|
1549 |
|
|
else if (DEBUG_INSN_P (insn))
|
1550 |
|
|
++*debug_uses;
|
1551 |
|
|
else if (++count_ref > 1)
|
1552 |
|
|
break;
|
1553 |
|
|
}
|
1554 |
|
|
free (body);
|
1555 |
|
|
return (count_ref == 1);
|
1556 |
|
|
}
|
1557 |
|
|
|
1558 |
|
|
/* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
|
1559 |
|
|
|
1560 |
|
|
static void
|
1561 |
|
|
reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
|
1562 |
|
|
{
|
1563 |
|
|
basic_block *body, bb;
|
1564 |
|
|
unsigned i;
|
1565 |
|
|
rtx insn;
|
1566 |
|
|
|
1567 |
|
|
body = get_loop_body (loop);
|
1568 |
|
|
for (i = 0; debug_uses && i < loop->num_nodes; i++)
|
1569 |
|
|
{
|
1570 |
|
|
bb = body[i];
|
1571 |
|
|
|
1572 |
|
|
FOR_BB_INSNS (bb, insn)
|
1573 |
|
|
if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
|
1574 |
|
|
continue;
|
1575 |
|
|
else
|
1576 |
|
|
{
|
1577 |
|
|
validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
|
1578 |
|
|
gen_rtx_UNKNOWN_VAR_LOC (), 0);
|
1579 |
|
|
if (!--debug_uses)
|
1580 |
|
|
break;
|
1581 |
|
|
}
|
1582 |
|
|
}
|
1583 |
|
|
free (body);
|
1584 |
|
|
}
|
1585 |
|
|
|
1586 |
|
|
/* Determine whether INSN contains an accumulator
|
1587 |
|
|
which can be expanded into separate copies,
|
1588 |
|
|
one for each copy of the LOOP body.
|
1589 |
|
|
|
1590 |
|
|
for (i = 0 ; i < n; i++)
|
1591 |
|
|
sum += a[i];
|
1592 |
|
|
|
1593 |
|
|
==>
|
1594 |
|
|
|
1595 |
|
|
sum += a[i]
|
1596 |
|
|
....
|
1597 |
|
|
i = i+1;
|
1598 |
|
|
sum1 += a[i]
|
1599 |
|
|
....
|
1600 |
|
|
i = i+1
|
1601 |
|
|
sum2 += a[i];
|
1602 |
|
|
....
|
1603 |
|
|
|
1604 |
|
|
Return NULL if INSN contains no opportunity for expansion of accumulator.
|
1605 |
|
|
Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
|
1606 |
|
|
information and return a pointer to it.
|
1607 |
|
|
*/
|
1608 |
|
|
|
1609 |
|
|
static struct var_to_expand *
|
1610 |
|
|
analyze_insn_to_expand_var (struct loop *loop, rtx insn)
|
1611 |
|
|
{
|
1612 |
|
|
rtx set, dest, src, op1, op2, something;
|
1613 |
|
|
struct var_to_expand *ves;
|
1614 |
|
|
enum machine_mode mode1, mode2;
|
1615 |
|
|
unsigned accum_pos;
|
1616 |
|
|
int debug_uses = 0;
|
1617 |
|
|
|
1618 |
|
|
set = single_set (insn);
|
1619 |
|
|
if (!set)
|
1620 |
|
|
return NULL;
|
1621 |
|
|
|
1622 |
|
|
dest = SET_DEST (set);
|
1623 |
|
|
src = SET_SRC (set);
|
1624 |
|
|
|
1625 |
|
|
if (GET_CODE (src) != PLUS
|
1626 |
|
|
&& GET_CODE (src) != MINUS
|
1627 |
|
|
&& GET_CODE (src) != MULT)
|
1628 |
|
|
return NULL;
|
1629 |
|
|
|
1630 |
|
|
/* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
|
1631 |
|
|
in MD. But if there is no optab to generate the insn, we can not
|
1632 |
|
|
perform the variable expansion. This can happen if an MD provides
|
1633 |
|
|
an insn but not a named pattern to generate it, for example to avoid
|
1634 |
|
|
producing code that needs additional mode switches like for x87/mmx.
|
1635 |
|
|
|
1636 |
|
|
So we check have_insn_for which looks for an optab for the operation
|
1637 |
|
|
in SRC. If it doesn't exist, we can't perform the expansion even
|
1638 |
|
|
though INSN is valid. */
|
1639 |
|
|
if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
|
1640 |
|
|
return NULL;
|
1641 |
|
|
|
1642 |
|
|
op1 = XEXP (src, 0);
|
1643 |
|
|
op2 = XEXP (src, 1);
|
1644 |
|
|
|
1645 |
|
|
if (!REG_P (dest)
|
1646 |
|
|
&& !(GET_CODE (dest) == SUBREG
|
1647 |
|
|
&& REG_P (SUBREG_REG (dest))))
|
1648 |
|
|
return NULL;
|
1649 |
|
|
|
1650 |
|
|
if (rtx_equal_p (dest, op1))
|
1651 |
|
|
accum_pos = 0;
|
1652 |
|
|
else if (rtx_equal_p (dest, op2))
|
1653 |
|
|
accum_pos = 1;
|
1654 |
|
|
else
|
1655 |
|
|
return NULL;
|
1656 |
|
|
|
1657 |
|
|
/* The method of expansion that we are using; which includes
|
1658 |
|
|
the initialization of the expansions with zero and the summation of
|
1659 |
|
|
the expansions at the end of the computation will yield wrong results
|
1660 |
|
|
for (x = something - x) thus avoid using it in that case. */
|
1661 |
|
|
if (accum_pos == 1
|
1662 |
|
|
&& GET_CODE (src) == MINUS)
|
1663 |
|
|
return NULL;
|
1664 |
|
|
|
1665 |
|
|
something = (accum_pos == 0) ? op2 : op1;
|
1666 |
|
|
|
1667 |
|
|
if (rtx_referenced_p (dest, something))
|
1668 |
|
|
return NULL;
|
1669 |
|
|
|
1670 |
|
|
if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
|
1671 |
|
|
return NULL;
|
1672 |
|
|
|
1673 |
|
|
mode1 = GET_MODE (dest);
|
1674 |
|
|
mode2 = GET_MODE (something);
|
1675 |
|
|
if ((FLOAT_MODE_P (mode1)
|
1676 |
|
|
|| FLOAT_MODE_P (mode2))
|
1677 |
|
|
&& !flag_associative_math)
|
1678 |
|
|
return NULL;
|
1679 |
|
|
|
1680 |
|
|
if (dump_file)
|
1681 |
|
|
{
|
1682 |
|
|
fprintf (dump_file,
|
1683 |
|
|
"\n;; Expanding Accumulator ");
|
1684 |
|
|
print_rtl (dump_file, dest);
|
1685 |
|
|
fprintf (dump_file, "\n");
|
1686 |
|
|
}
|
1687 |
|
|
|
1688 |
|
|
if (debug_uses)
|
1689 |
|
|
/* Instead of resetting the debug insns, we could replace each
|
1690 |
|
|
debug use in the loop with the sum or product of all expanded
|
1691 |
|
|
accummulators. Since we'll only know of all expansions at the
|
1692 |
|
|
end, we'd have to keep track of which vars_to_expand a debug
|
1693 |
|
|
insn in the loop references, take note of each copy of the
|
1694 |
|
|
debug insn during unrolling, and when it's all done, compute
|
1695 |
|
|
the sum or product of each variable and adjust the original
|
1696 |
|
|
debug insn and each copy thereof. What a pain! */
|
1697 |
|
|
reset_debug_uses_in_loop (loop, dest, debug_uses);
|
1698 |
|
|
|
1699 |
|
|
/* Record the accumulator to expand. */
|
1700 |
|
|
ves = XNEW (struct var_to_expand);
|
1701 |
|
|
ves->insn = insn;
|
1702 |
|
|
ves->reg = copy_rtx (dest);
|
1703 |
|
|
ves->var_expansions = VEC_alloc (rtx, heap, 1);
|
1704 |
|
|
ves->next = NULL;
|
1705 |
|
|
ves->op = GET_CODE (src);
|
1706 |
|
|
ves->expansion_count = 0;
|
1707 |
|
|
ves->reuse_expansion = 0;
|
1708 |
|
|
ves->accum_pos = accum_pos;
|
1709 |
|
|
return ves;
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
/* Determine whether there is an induction variable in INSN that
|
1713 |
|
|
we would like to split during unrolling.
|
1714 |
|
|
|
1715 |
|
|
I.e. replace
|
1716 |
|
|
|
1717 |
|
|
i = i + 1;
|
1718 |
|
|
...
|
1719 |
|
|
i = i + 1;
|
1720 |
|
|
...
|
1721 |
|
|
i = i + 1;
|
1722 |
|
|
...
|
1723 |
|
|
|
1724 |
|
|
type chains by
|
1725 |
|
|
|
1726 |
|
|
i0 = i + 1
|
1727 |
|
|
...
|
1728 |
|
|
i = i0 + 1
|
1729 |
|
|
...
|
1730 |
|
|
i = i0 + 2
|
1731 |
|
|
...
|
1732 |
|
|
|
1733 |
|
|
Return NULL if INSN contains no interesting IVs. Otherwise, allocate
|
1734 |
|
|
an IV_TO_SPLIT structure, fill it with the relevant information and return a
|
1735 |
|
|
pointer to it. */
|
1736 |
|
|
|
1737 |
|
|
static struct iv_to_split *
|
1738 |
|
|
analyze_iv_to_split_insn (rtx insn)
|
1739 |
|
|
{
|
1740 |
|
|
rtx set, dest;
|
1741 |
|
|
struct rtx_iv iv;
|
1742 |
|
|
struct iv_to_split *ivts;
|
1743 |
|
|
bool ok;
|
1744 |
|
|
|
1745 |
|
|
/* For now we just split the basic induction variables. Later this may be
|
1746 |
|
|
extended for example by selecting also addresses of memory references. */
|
1747 |
|
|
set = single_set (insn);
|
1748 |
|
|
if (!set)
|
1749 |
|
|
return NULL;
|
1750 |
|
|
|
1751 |
|
|
dest = SET_DEST (set);
|
1752 |
|
|
if (!REG_P (dest))
|
1753 |
|
|
return NULL;
|
1754 |
|
|
|
1755 |
|
|
if (!biv_p (insn, dest))
|
1756 |
|
|
return NULL;
|
1757 |
|
|
|
1758 |
|
|
ok = iv_analyze_result (insn, dest, &iv);
|
1759 |
|
|
|
1760 |
|
|
/* This used to be an assert under the assumption that if biv_p returns
|
1761 |
|
|
true that iv_analyze_result must also return true. However, that
|
1762 |
|
|
assumption is not strictly correct as evidenced by pr25569.
|
1763 |
|
|
|
1764 |
|
|
Returning NULL when iv_analyze_result returns false is safe and
|
1765 |
|
|
avoids the problems in pr25569 until the iv_analyze_* routines
|
1766 |
|
|
can be fixed, which is apparently hard and time consuming
|
1767 |
|
|
according to their author. */
|
1768 |
|
|
if (! ok)
|
1769 |
|
|
return NULL;
|
1770 |
|
|
|
1771 |
|
|
if (iv.step == const0_rtx
|
1772 |
|
|
|| iv.mode != iv.extend_mode)
|
1773 |
|
|
return NULL;
|
1774 |
|
|
|
1775 |
|
|
/* Record the insn to split. */
|
1776 |
|
|
ivts = XNEW (struct iv_to_split);
|
1777 |
|
|
ivts->insn = insn;
|
1778 |
|
|
ivts->base_var = NULL_RTX;
|
1779 |
|
|
ivts->step = iv.step;
|
1780 |
|
|
ivts->next = NULL;
|
1781 |
|
|
ivts->n_loc = 1;
|
1782 |
|
|
ivts->loc[0] = 1;
|
1783 |
|
|
|
1784 |
|
|
return ivts;
|
1785 |
|
|
}
|
1786 |
|
|
|
1787 |
|
|
/* Determines which of insns in LOOP can be optimized.
|
1788 |
|
|
Return a OPT_INFO struct with the relevant hash tables filled
|
1789 |
|
|
with all insns to be optimized. The FIRST_NEW_BLOCK field
|
1790 |
|
|
is undefined for the return value. */
|
1791 |
|
|
|
1792 |
|
|
static struct opt_info *
|
1793 |
|
|
analyze_insns_in_loop (struct loop *loop)
|
1794 |
|
|
{
|
1795 |
|
|
basic_block *body, bb;
|
1796 |
|
|
unsigned i;
|
1797 |
|
|
struct opt_info *opt_info = XCNEW (struct opt_info);
|
1798 |
|
|
rtx insn;
|
1799 |
|
|
struct iv_to_split *ivts = NULL;
|
1800 |
|
|
struct var_to_expand *ves = NULL;
|
1801 |
|
|
PTR *slot1;
|
1802 |
|
|
PTR *slot2;
|
1803 |
|
|
VEC (edge, heap) *edges = get_loop_exit_edges (loop);
|
1804 |
|
|
edge exit;
|
1805 |
|
|
bool can_apply = false;
|
1806 |
|
|
|
1807 |
|
|
iv_analysis_loop_init (loop);
|
1808 |
|
|
|
1809 |
|
|
body = get_loop_body (loop);
|
1810 |
|
|
|
1811 |
|
|
if (flag_split_ivs_in_unroller)
|
1812 |
|
|
{
|
1813 |
|
|
opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
|
1814 |
|
|
si_info_hash, si_info_eq, free);
|
1815 |
|
|
opt_info->iv_to_split_head = NULL;
|
1816 |
|
|
opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
|
1817 |
|
|
}
|
1818 |
|
|
|
1819 |
|
|
/* Record the loop exit bb and loop preheader before the unrolling. */
|
1820 |
|
|
opt_info->loop_preheader = loop_preheader_edge (loop)->src;
|
1821 |
|
|
|
1822 |
|
|
if (VEC_length (edge, edges) == 1)
|
1823 |
|
|
{
|
1824 |
|
|
exit = VEC_index (edge, edges, 0);
|
1825 |
|
|
if (!(exit->flags & EDGE_COMPLEX))
|
1826 |
|
|
{
|
1827 |
|
|
opt_info->loop_exit = split_edge (exit);
|
1828 |
|
|
can_apply = true;
|
1829 |
|
|
}
|
1830 |
|
|
}
|
1831 |
|
|
|
1832 |
|
|
if (flag_variable_expansion_in_unroller
|
1833 |
|
|
&& can_apply)
|
1834 |
|
|
{
|
1835 |
|
|
opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
|
1836 |
|
|
ve_info_hash,
|
1837 |
|
|
ve_info_eq, free);
|
1838 |
|
|
opt_info->var_to_expand_head = NULL;
|
1839 |
|
|
opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
|
1840 |
|
|
}
|
1841 |
|
|
|
1842 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1843 |
|
|
{
|
1844 |
|
|
bb = body[i];
|
1845 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
|
1846 |
|
|
continue;
|
1847 |
|
|
|
1848 |
|
|
FOR_BB_INSNS (bb, insn)
|
1849 |
|
|
{
|
1850 |
|
|
if (!INSN_P (insn))
|
1851 |
|
|
continue;
|
1852 |
|
|
|
1853 |
|
|
if (opt_info->insns_to_split)
|
1854 |
|
|
ivts = analyze_iv_to_split_insn (insn);
|
1855 |
|
|
|
1856 |
|
|
if (ivts)
|
1857 |
|
|
{
|
1858 |
|
|
slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
|
1859 |
|
|
gcc_assert (*slot1 == NULL);
|
1860 |
|
|
*slot1 = ivts;
|
1861 |
|
|
*opt_info->iv_to_split_tail = ivts;
|
1862 |
|
|
opt_info->iv_to_split_tail = &ivts->next;
|
1863 |
|
|
continue;
|
1864 |
|
|
}
|
1865 |
|
|
|
1866 |
|
|
if (opt_info->insns_with_var_to_expand)
|
1867 |
|
|
ves = analyze_insn_to_expand_var (loop, insn);
|
1868 |
|
|
|
1869 |
|
|
if (ves)
|
1870 |
|
|
{
|
1871 |
|
|
slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
|
1872 |
|
|
gcc_assert (*slot2 == NULL);
|
1873 |
|
|
*slot2 = ves;
|
1874 |
|
|
*opt_info->var_to_expand_tail = ves;
|
1875 |
|
|
opt_info->var_to_expand_tail = &ves->next;
|
1876 |
|
|
}
|
1877 |
|
|
}
|
1878 |
|
|
}
|
1879 |
|
|
|
1880 |
|
|
VEC_free (edge, heap, edges);
|
1881 |
|
|
free (body);
|
1882 |
|
|
return opt_info;
|
1883 |
|
|
}
|
1884 |
|
|
|
1885 |
|
|
/* Called just before loop duplication. Records start of duplicated area
|
1886 |
|
|
to OPT_INFO. */
|
1887 |
|
|
|
1888 |
|
|
static void
|
1889 |
|
|
opt_info_start_duplication (struct opt_info *opt_info)
|
1890 |
|
|
{
|
1891 |
|
|
if (opt_info)
|
1892 |
|
|
opt_info->first_new_block = last_basic_block;
|
1893 |
|
|
}
|
1894 |
|
|
|
1895 |
|
|
/* Determine the number of iterations between initialization of the base
|
1896 |
|
|
variable and the current copy (N_COPY). N_COPIES is the total number
|
1897 |
|
|
of newly created copies. UNROLLING is true if we are unrolling
|
1898 |
|
|
(not peeling) the loop. */
|
1899 |
|
|
|
1900 |
|
|
static unsigned
|
1901 |
|
|
determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
|
1902 |
|
|
{
|
1903 |
|
|
if (unrolling)
|
1904 |
|
|
{
|
1905 |
|
|
/* If we are unrolling, initialization is done in the original loop
|
1906 |
|
|
body (number 0). */
|
1907 |
|
|
return n_copy;
|
1908 |
|
|
}
|
1909 |
|
|
else
|
1910 |
|
|
{
|
1911 |
|
|
/* If we are peeling, the copy in that the initialization occurs has
|
1912 |
|
|
number 1. The original loop (number 0) is the last. */
|
1913 |
|
|
if (n_copy)
|
1914 |
|
|
return n_copy - 1;
|
1915 |
|
|
else
|
1916 |
|
|
return n_copies;
|
1917 |
|
|
}
|
1918 |
|
|
}
|
1919 |
|
|
|
1920 |
|
|
/* Locate in EXPR the expression corresponding to the location recorded
|
1921 |
|
|
in IVTS, and return a pointer to the RTX for this location. */
|
1922 |
|
|
|
1923 |
|
|
static rtx *
|
1924 |
|
|
get_ivts_expr (rtx expr, struct iv_to_split *ivts)
|
1925 |
|
|
{
|
1926 |
|
|
unsigned i;
|
1927 |
|
|
rtx *ret = &expr;
|
1928 |
|
|
|
1929 |
|
|
for (i = 0; i < ivts->n_loc; i++)
|
1930 |
|
|
ret = &XEXP (*ret, ivts->loc[i]);
|
1931 |
|
|
|
1932 |
|
|
return ret;
|
1933 |
|
|
}
|
1934 |
|
|
|
1935 |
|
|
/* Allocate basic variable for the induction variable chain. */
|
1936 |
|
|
|
1937 |
|
|
static void
|
1938 |
|
|
allocate_basic_variable (struct iv_to_split *ivts)
|
1939 |
|
|
{
|
1940 |
|
|
rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
|
1941 |
|
|
|
1942 |
|
|
ivts->base_var = gen_reg_rtx (GET_MODE (expr));
|
1943 |
|
|
}
|
1944 |
|
|
|
1945 |
|
|
/* Insert initialization of basic variable of IVTS before INSN, taking
|
1946 |
|
|
the initial value from INSN. */
|
1947 |
|
|
|
1948 |
|
|
static void
|
1949 |
|
|
insert_base_initialization (struct iv_to_split *ivts, rtx insn)
|
1950 |
|
|
{
|
1951 |
|
|
rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
|
1952 |
|
|
rtx seq;
|
1953 |
|
|
|
1954 |
|
|
start_sequence ();
|
1955 |
|
|
expr = force_operand (expr, ivts->base_var);
|
1956 |
|
|
if (expr != ivts->base_var)
|
1957 |
|
|
emit_move_insn (ivts->base_var, expr);
|
1958 |
|
|
seq = get_insns ();
|
1959 |
|
|
end_sequence ();
|
1960 |
|
|
|
1961 |
|
|
emit_insn_before (seq, insn);
|
1962 |
|
|
}
|
1963 |
|
|
|
1964 |
|
|
/* Replace the use of induction variable described in IVTS in INSN
|
1965 |
|
|
by base variable + DELTA * step. */
|
1966 |
|
|
|
1967 |
|
|
static void
|
1968 |
|
|
split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
|
1969 |
|
|
{
|
1970 |
|
|
rtx expr, *loc, seq, incr, var;
|
1971 |
|
|
enum machine_mode mode = GET_MODE (ivts->base_var);
|
1972 |
|
|
rtx src, dest, set;
|
1973 |
|
|
|
1974 |
|
|
/* Construct base + DELTA * step. */
|
1975 |
|
|
if (!delta)
|
1976 |
|
|
expr = ivts->base_var;
|
1977 |
|
|
else
|
1978 |
|
|
{
|
1979 |
|
|
incr = simplify_gen_binary (MULT, mode,
|
1980 |
|
|
ivts->step, gen_int_mode (delta, mode));
|
1981 |
|
|
expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
|
1982 |
|
|
ivts->base_var, incr);
|
1983 |
|
|
}
|
1984 |
|
|
|
1985 |
|
|
/* Figure out where to do the replacement. */
|
1986 |
|
|
loc = get_ivts_expr (single_set (insn), ivts);
|
1987 |
|
|
|
1988 |
|
|
/* If we can make the replacement right away, we're done. */
|
1989 |
|
|
if (validate_change (insn, loc, expr, 0))
|
1990 |
|
|
return;
|
1991 |
|
|
|
1992 |
|
|
/* Otherwise, force EXPR into a register and try again. */
|
1993 |
|
|
start_sequence ();
|
1994 |
|
|
var = gen_reg_rtx (mode);
|
1995 |
|
|
expr = force_operand (expr, var);
|
1996 |
|
|
if (expr != var)
|
1997 |
|
|
emit_move_insn (var, expr);
|
1998 |
|
|
seq = get_insns ();
|
1999 |
|
|
end_sequence ();
|
2000 |
|
|
emit_insn_before (seq, insn);
|
2001 |
|
|
|
2002 |
|
|
if (validate_change (insn, loc, var, 0))
|
2003 |
|
|
return;
|
2004 |
|
|
|
2005 |
|
|
/* The last chance. Try recreating the assignment in insn
|
2006 |
|
|
completely from scratch. */
|
2007 |
|
|
set = single_set (insn);
|
2008 |
|
|
gcc_assert (set);
|
2009 |
|
|
|
2010 |
|
|
start_sequence ();
|
2011 |
|
|
*loc = var;
|
2012 |
|
|
src = copy_rtx (SET_SRC (set));
|
2013 |
|
|
dest = copy_rtx (SET_DEST (set));
|
2014 |
|
|
src = force_operand (src, dest);
|
2015 |
|
|
if (src != dest)
|
2016 |
|
|
emit_move_insn (dest, src);
|
2017 |
|
|
seq = get_insns ();
|
2018 |
|
|
end_sequence ();
|
2019 |
|
|
|
2020 |
|
|
emit_insn_before (seq, insn);
|
2021 |
|
|
delete_insn (insn);
|
2022 |
|
|
}
|
2023 |
|
|
|
2024 |
|
|
|
2025 |
|
|
/* Return one expansion of the accumulator recorded in struct VE. */
|
2026 |
|
|
|
2027 |
|
|
static rtx
|
2028 |
|
|
get_expansion (struct var_to_expand *ve)
|
2029 |
|
|
{
|
2030 |
|
|
rtx reg;
|
2031 |
|
|
|
2032 |
|
|
if (ve->reuse_expansion == 0)
|
2033 |
|
|
reg = ve->reg;
|
2034 |
|
|
else
|
2035 |
|
|
reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
|
2036 |
|
|
|
2037 |
|
|
if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
|
2038 |
|
|
ve->reuse_expansion = 0;
|
2039 |
|
|
else
|
2040 |
|
|
ve->reuse_expansion++;
|
2041 |
|
|
|
2042 |
|
|
return reg;
|
2043 |
|
|
}
|
2044 |
|
|
|
2045 |
|
|
|
2046 |
|
|
/* Given INSN replace the uses of the accumulator recorded in VE
|
2047 |
|
|
with a new register. */
|
2048 |
|
|
|
2049 |
|
|
static void
|
2050 |
|
|
expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
|
2051 |
|
|
{
|
2052 |
|
|
rtx new_reg, set;
|
2053 |
|
|
bool really_new_expansion = false;
|
2054 |
|
|
|
2055 |
|
|
set = single_set (insn);
|
2056 |
|
|
gcc_assert (set);
|
2057 |
|
|
|
2058 |
|
|
/* Generate a new register only if the expansion limit has not been
|
2059 |
|
|
reached. Else reuse an already existing expansion. */
|
2060 |
|
|
if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
|
2061 |
|
|
{
|
2062 |
|
|
really_new_expansion = true;
|
2063 |
|
|
new_reg = gen_reg_rtx (GET_MODE (ve->reg));
|
2064 |
|
|
}
|
2065 |
|
|
else
|
2066 |
|
|
new_reg = get_expansion (ve);
|
2067 |
|
|
|
2068 |
|
|
validate_change (insn, &SET_DEST (set), new_reg, 1);
|
2069 |
|
|
validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
|
2070 |
|
|
|
2071 |
|
|
if (apply_change_group ())
|
2072 |
|
|
if (really_new_expansion)
|
2073 |
|
|
{
|
2074 |
|
|
VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
|
2075 |
|
|
ve->expansion_count++;
|
2076 |
|
|
}
|
2077 |
|
|
}
|
2078 |
|
|
|
2079 |
|
|
/* Initialize the variable expansions in loop preheader. PLACE is the
|
2080 |
|
|
loop-preheader basic block where the initialization of the
|
2081 |
|
|
expansions should take place. The expansions are initialized with
|
2082 |
|
|
(-0) when the operation is plus or minus to honor sign zero. This
|
2083 |
|
|
way we can prevent cases where the sign of the final result is
|
2084 |
|
|
effected by the sign of the expansion. Here is an example to
|
2085 |
|
|
demonstrate this:
|
2086 |
|
|
|
2087 |
|
|
for (i = 0 ; i < n; i++)
|
2088 |
|
|
sum += something;
|
2089 |
|
|
|
2090 |
|
|
==>
|
2091 |
|
|
|
2092 |
|
|
sum += something
|
2093 |
|
|
....
|
2094 |
|
|
i = i+1;
|
2095 |
|
|
sum1 += something
|
2096 |
|
|
....
|
2097 |
|
|
i = i+1
|
2098 |
|
|
sum2 += something;
|
2099 |
|
|
....
|
2100 |
|
|
|
2101 |
|
|
When SUM is initialized with -zero and SOMETHING is also -zero; the
|
2102 |
|
|
final result of sum should be -zero thus the expansions sum1 and sum2
|
2103 |
|
|
should be initialized with -zero as well (otherwise we will get +zero
|
2104 |
|
|
as the final result). */
|
2105 |
|
|
|
2106 |
|
|
static void
|
2107 |
|
|
insert_var_expansion_initialization (struct var_to_expand *ve,
|
2108 |
|
|
basic_block place)
|
2109 |
|
|
{
|
2110 |
|
|
rtx seq, var, zero_init, insn;
|
2111 |
|
|
unsigned i;
|
2112 |
|
|
enum machine_mode mode = GET_MODE (ve->reg);
|
2113 |
|
|
bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
|
2114 |
|
|
|
2115 |
|
|
if (VEC_length (rtx, ve->var_expansions) == 0)
|
2116 |
|
|
return;
|
2117 |
|
|
|
2118 |
|
|
start_sequence ();
|
2119 |
|
|
if (ve->op == PLUS || ve->op == MINUS)
|
2120 |
|
|
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
|
2121 |
|
|
{
|
2122 |
|
|
if (honor_signed_zero_p)
|
2123 |
|
|
zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
|
2124 |
|
|
else
|
2125 |
|
|
zero_init = CONST0_RTX (mode);
|
2126 |
|
|
|
2127 |
|
|
emit_move_insn (var, zero_init);
|
2128 |
|
|
}
|
2129 |
|
|
else if (ve->op == MULT)
|
2130 |
|
|
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
|
2131 |
|
|
{
|
2132 |
|
|
zero_init = CONST1_RTX (GET_MODE (var));
|
2133 |
|
|
emit_move_insn (var, zero_init);
|
2134 |
|
|
}
|
2135 |
|
|
|
2136 |
|
|
seq = get_insns ();
|
2137 |
|
|
end_sequence ();
|
2138 |
|
|
|
2139 |
|
|
insn = BB_HEAD (place);
|
2140 |
|
|
while (!NOTE_INSN_BASIC_BLOCK_P (insn))
|
2141 |
|
|
insn = NEXT_INSN (insn);
|
2142 |
|
|
|
2143 |
|
|
emit_insn_after (seq, insn);
|
2144 |
|
|
}
|
2145 |
|
|
|
2146 |
|
|
/* Combine the variable expansions at the loop exit. PLACE is the
|
2147 |
|
|
loop exit basic block where the summation of the expansions should
|
2148 |
|
|
take place. */
|
2149 |
|
|
|
2150 |
|
|
static void
|
2151 |
|
|
combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
|
2152 |
|
|
{
|
2153 |
|
|
rtx sum = ve->reg;
|
2154 |
|
|
rtx expr, seq, var, insn;
|
2155 |
|
|
unsigned i;
|
2156 |
|
|
|
2157 |
|
|
if (VEC_length (rtx, ve->var_expansions) == 0)
|
2158 |
|
|
return;
|
2159 |
|
|
|
2160 |
|
|
start_sequence ();
|
2161 |
|
|
if (ve->op == PLUS || ve->op == MINUS)
|
2162 |
|
|
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
|
2163 |
|
|
{
|
2164 |
|
|
sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
|
2165 |
|
|
var, sum);
|
2166 |
|
|
}
|
2167 |
|
|
else if (ve->op == MULT)
|
2168 |
|
|
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
|
2169 |
|
|
{
|
2170 |
|
|
sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
|
2171 |
|
|
var, sum);
|
2172 |
|
|
}
|
2173 |
|
|
|
2174 |
|
|
expr = force_operand (sum, ve->reg);
|
2175 |
|
|
if (expr != ve->reg)
|
2176 |
|
|
emit_move_insn (ve->reg, expr);
|
2177 |
|
|
seq = get_insns ();
|
2178 |
|
|
end_sequence ();
|
2179 |
|
|
|
2180 |
|
|
insn = BB_HEAD (place);
|
2181 |
|
|
while (!NOTE_INSN_BASIC_BLOCK_P (insn))
|
2182 |
|
|
insn = NEXT_INSN (insn);
|
2183 |
|
|
|
2184 |
|
|
emit_insn_after (seq, insn);
|
2185 |
|
|
}
|
2186 |
|
|
|
2187 |
|
|
/* Apply loop optimizations in loop copies using the
|
2188 |
|
|
data which gathered during the unrolling. Structure
|
2189 |
|
|
OPT_INFO record that data.
|
2190 |
|
|
|
2191 |
|
|
UNROLLING is true if we unrolled (not peeled) the loop.
|
2192 |
|
|
REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
|
2193 |
|
|
the loop (as it should happen in complete unrolling, but not in ordinary
|
2194 |
|
|
peeling of the loop). */
|
2195 |
|
|
|
2196 |
|
|
static void
|
2197 |
|
|
apply_opt_in_copies (struct opt_info *opt_info,
|
2198 |
|
|
unsigned n_copies, bool unrolling,
|
2199 |
|
|
bool rewrite_original_loop)
|
2200 |
|
|
{
|
2201 |
|
|
unsigned i, delta;
|
2202 |
|
|
basic_block bb, orig_bb;
|
2203 |
|
|
rtx insn, orig_insn, next;
|
2204 |
|
|
struct iv_to_split ivts_templ, *ivts;
|
2205 |
|
|
struct var_to_expand ve_templ, *ves;
|
2206 |
|
|
|
2207 |
|
|
/* Sanity check -- we need to put initialization in the original loop
|
2208 |
|
|
body. */
|
2209 |
|
|
gcc_assert (!unrolling || rewrite_original_loop);
|
2210 |
|
|
|
2211 |
|
|
/* Allocate the basic variables (i0). */
|
2212 |
|
|
if (opt_info->insns_to_split)
|
2213 |
|
|
for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
|
2214 |
|
|
allocate_basic_variable (ivts);
|
2215 |
|
|
|
2216 |
|
|
for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
|
2217 |
|
|
{
|
2218 |
|
|
bb = BASIC_BLOCK (i);
|
2219 |
|
|
orig_bb = get_bb_original (bb);
|
2220 |
|
|
|
2221 |
|
|
/* bb->aux holds position in copy sequence initialized by
|
2222 |
|
|
duplicate_loop_to_header_edge. */
|
2223 |
|
|
delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
|
2224 |
|
|
unrolling);
|
2225 |
|
|
bb->aux = 0;
|
2226 |
|
|
orig_insn = BB_HEAD (orig_bb);
|
2227 |
|
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
|
2228 |
|
|
{
|
2229 |
|
|
next = NEXT_INSN (insn);
|
2230 |
|
|
if (!INSN_P (insn))
|
2231 |
|
|
continue;
|
2232 |
|
|
|
2233 |
|
|
while (!INSN_P (orig_insn))
|
2234 |
|
|
orig_insn = NEXT_INSN (orig_insn);
|
2235 |
|
|
|
2236 |
|
|
ivts_templ.insn = orig_insn;
|
2237 |
|
|
ve_templ.insn = orig_insn;
|
2238 |
|
|
|
2239 |
|
|
/* Apply splitting iv optimization. */
|
2240 |
|
|
if (opt_info->insns_to_split)
|
2241 |
|
|
{
|
2242 |
|
|
ivts = (struct iv_to_split *)
|
2243 |
|
|
htab_find (opt_info->insns_to_split, &ivts_templ);
|
2244 |
|
|
|
2245 |
|
|
if (ivts)
|
2246 |
|
|
{
|
2247 |
|
|
gcc_assert (GET_CODE (PATTERN (insn))
|
2248 |
|
|
== GET_CODE (PATTERN (orig_insn)));
|
2249 |
|
|
|
2250 |
|
|
if (!delta)
|
2251 |
|
|
insert_base_initialization (ivts, insn);
|
2252 |
|
|
split_iv (ivts, insn, delta);
|
2253 |
|
|
}
|
2254 |
|
|
}
|
2255 |
|
|
/* Apply variable expansion optimization. */
|
2256 |
|
|
if (unrolling && opt_info->insns_with_var_to_expand)
|
2257 |
|
|
{
|
2258 |
|
|
ves = (struct var_to_expand *)
|
2259 |
|
|
htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
|
2260 |
|
|
if (ves)
|
2261 |
|
|
{
|
2262 |
|
|
gcc_assert (GET_CODE (PATTERN (insn))
|
2263 |
|
|
== GET_CODE (PATTERN (orig_insn)));
|
2264 |
|
|
expand_var_during_unrolling (ves, insn);
|
2265 |
|
|
}
|
2266 |
|
|
}
|
2267 |
|
|
orig_insn = NEXT_INSN (orig_insn);
|
2268 |
|
|
}
|
2269 |
|
|
}
|
2270 |
|
|
|
2271 |
|
|
if (!rewrite_original_loop)
|
2272 |
|
|
return;
|
2273 |
|
|
|
2274 |
|
|
/* Initialize the variable expansions in the loop preheader
|
2275 |
|
|
and take care of combining them at the loop exit. */
|
2276 |
|
|
if (opt_info->insns_with_var_to_expand)
|
2277 |
|
|
{
|
2278 |
|
|
for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
|
2279 |
|
|
insert_var_expansion_initialization (ves, opt_info->loop_preheader);
|
2280 |
|
|
for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
|
2281 |
|
|
combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
|
2282 |
|
|
}
|
2283 |
|
|
|
2284 |
|
|
/* Rewrite also the original loop body. Find them as originals of the blocks
|
2285 |
|
|
in the last copied iteration, i.e. those that have
|
2286 |
|
|
get_bb_copy (get_bb_original (bb)) == bb. */
|
2287 |
|
|
for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
|
2288 |
|
|
{
|
2289 |
|
|
bb = BASIC_BLOCK (i);
|
2290 |
|
|
orig_bb = get_bb_original (bb);
|
2291 |
|
|
if (get_bb_copy (orig_bb) != bb)
|
2292 |
|
|
continue;
|
2293 |
|
|
|
2294 |
|
|
delta = determine_split_iv_delta (0, n_copies, unrolling);
|
2295 |
|
|
for (orig_insn = BB_HEAD (orig_bb);
|
2296 |
|
|
orig_insn != NEXT_INSN (BB_END (bb));
|
2297 |
|
|
orig_insn = next)
|
2298 |
|
|
{
|
2299 |
|
|
next = NEXT_INSN (orig_insn);
|
2300 |
|
|
|
2301 |
|
|
if (!INSN_P (orig_insn))
|
2302 |
|
|
continue;
|
2303 |
|
|
|
2304 |
|
|
ivts_templ.insn = orig_insn;
|
2305 |
|
|
if (opt_info->insns_to_split)
|
2306 |
|
|
{
|
2307 |
|
|
ivts = (struct iv_to_split *)
|
2308 |
|
|
htab_find (opt_info->insns_to_split, &ivts_templ);
|
2309 |
|
|
if (ivts)
|
2310 |
|
|
{
|
2311 |
|
|
if (!delta)
|
2312 |
|
|
insert_base_initialization (ivts, orig_insn);
|
2313 |
|
|
split_iv (ivts, orig_insn, delta);
|
2314 |
|
|
continue;
|
2315 |
|
|
}
|
2316 |
|
|
}
|
2317 |
|
|
|
2318 |
|
|
}
|
2319 |
|
|
}
|
2320 |
|
|
}
|
2321 |
|
|
|
2322 |
|
|
/* Release OPT_INFO. */
|
2323 |
|
|
|
2324 |
|
|
static void
|
2325 |
|
|
free_opt_info (struct opt_info *opt_info)
|
2326 |
|
|
{
|
2327 |
|
|
if (opt_info->insns_to_split)
|
2328 |
|
|
htab_delete (opt_info->insns_to_split);
|
2329 |
|
|
if (opt_info->insns_with_var_to_expand)
|
2330 |
|
|
{
|
2331 |
|
|
struct var_to_expand *ves;
|
2332 |
|
|
|
2333 |
|
|
for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
|
2334 |
|
|
VEC_free (rtx, heap, ves->var_expansions);
|
2335 |
|
|
htab_delete (opt_info->insns_with_var_to_expand);
|
2336 |
|
|
}
|
2337 |
|
|
free (opt_info);
|
2338 |
|
|
}
|