| 1 |
280 |
jeremybenn |
/* Loop unrolling and peeling.
|
| 2 |
|
|
Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "rtl.h"
|
| 26 |
|
|
#include "hard-reg-set.h"
|
| 27 |
|
|
#include "obstack.h"
|
| 28 |
|
|
#include "basic-block.h"
|
| 29 |
|
|
#include "cfgloop.h"
|
| 30 |
|
|
#include "cfglayout.h"
|
| 31 |
|
|
#include "params.h"
|
| 32 |
|
|
#include "output.h"
|
| 33 |
|
|
#include "expr.h"
|
| 34 |
|
|
#include "hashtab.h"
|
| 35 |
|
|
#include "recog.h"
|
| 36 |
|
|
|
| 37 |
|
|
/* This pass performs loop unrolling and peeling. We only perform these
|
| 38 |
|
|
optimizations on innermost loops (with single exception) because
|
| 39 |
|
|
the impact on performance is greatest here, and we want to avoid
|
| 40 |
|
|
unnecessary code size growth. The gain is caused by greater sequentiality
|
| 41 |
|
|
of code, better code to optimize for further passes and in some cases
|
| 42 |
|
|
by fewer testings of exit conditions. The main problem is code growth,
|
| 43 |
|
|
that impacts performance negatively due to effect of caches.
|
| 44 |
|
|
|
| 45 |
|
|
What we do:
|
| 46 |
|
|
|
| 47 |
|
|
-- complete peeling of once-rolling loops; this is the above mentioned
|
| 48 |
|
|
exception, as this causes loop to be cancelled completely and
|
| 49 |
|
|
does not cause code growth
|
| 50 |
|
|
-- complete peeling of loops that roll (small) constant times.
|
| 51 |
|
|
-- simple peeling of first iterations of loops that do not roll much
|
| 52 |
|
|
(according to profile feedback)
|
| 53 |
|
|
-- unrolling of loops that roll constant times; this is almost always
|
| 54 |
|
|
win, as we get rid of exit condition tests.
|
| 55 |
|
|
-- unrolling of loops that roll number of times that we can compute
|
| 56 |
|
|
in runtime; we also get rid of exit condition tests here, but there
|
| 57 |
|
|
is the extra expense for calculating the number of iterations
|
| 58 |
|
|
-- simple unrolling of remaining loops; this is performed only if we
|
| 59 |
|
|
are asked to, as the gain is questionable in this case and often
|
| 60 |
|
|
it may even slow down the code
|
| 61 |
|
|
For more detailed descriptions of each of those, see comments at
|
| 62 |
|
|
appropriate function below.
|
| 63 |
|
|
|
| 64 |
|
|
There is a lot of parameters (defined and described in params.def) that
|
| 65 |
|
|
control how much we unroll/peel.
|
| 66 |
|
|
|
| 67 |
|
|
??? A great problem is that we don't have a good way how to determine
|
| 68 |
|
|
how many times we should unroll the loop; the experiments I have made
|
| 69 |
|
|
showed that this choice may affect performance in order of several %.
|
| 70 |
|
|
*/
|
| 71 |
|
|
|
| 72 |
|
|
/* Information about induction variables to split. */
|
| 73 |
|
|
|
| 74 |
|
|
struct iv_to_split
|
| 75 |
|
|
{
|
| 76 |
|
|
rtx insn; /* The insn in that the induction variable occurs. */
|
| 77 |
|
|
rtx base_var; /* The variable on that the values in the further
|
| 78 |
|
|
iterations are based. */
|
| 79 |
|
|
rtx step; /* Step of the induction variable. */
|
| 80 |
|
|
struct iv_to_split *next; /* Next entry in walking order. */
|
| 81 |
|
|
unsigned n_loc;
|
| 82 |
|
|
unsigned loc[3]; /* Location where the definition of the induction
|
| 83 |
|
|
variable occurs in the insn. For example if
|
| 84 |
|
|
N_LOC is 2, the expression is located at
|
| 85 |
|
|
XEXP (XEXP (single_set, loc[0]), loc[1]). */
|
| 86 |
|
|
};
|
| 87 |
|
|
|
| 88 |
|
|
/* Information about accumulators to expand. */
|
| 89 |
|
|
|
| 90 |
|
|
struct var_to_expand
|
| 91 |
|
|
{
|
| 92 |
|
|
rtx insn; /* The insn in that the variable expansion occurs. */
|
| 93 |
|
|
rtx reg; /* The accumulator which is expanded. */
|
| 94 |
|
|
VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
|
| 95 |
|
|
struct var_to_expand *next; /* Next entry in walking order. */
|
| 96 |
|
|
enum rtx_code op; /* The type of the accumulation - addition, subtraction
|
| 97 |
|
|
or multiplication. */
|
| 98 |
|
|
int expansion_count; /* Count the number of expansions generated so far. */
|
| 99 |
|
|
int reuse_expansion; /* The expansion we intend to reuse to expand
|
| 100 |
|
|
the accumulator. If REUSE_EXPANSION is 0 reuse
|
| 101 |
|
|
the original accumulator. Else use
|
| 102 |
|
|
var_expansions[REUSE_EXPANSION - 1]. */
|
| 103 |
|
|
unsigned accum_pos; /* The position in which the accumulator is placed in
|
| 104 |
|
|
the insn src. For example in x = x + something
|
| 105 |
|
|
accum_pos is 0 while in x = something + x accum_pos
|
| 106 |
|
|
is 1. */
|
| 107 |
|
|
};
|
| 108 |
|
|
|
| 109 |
|
|
/* Information about optimization applied in
|
| 110 |
|
|
the unrolled loop. */
|
| 111 |
|
|
|
| 112 |
|
|
struct opt_info
|
| 113 |
|
|
{
|
| 114 |
|
|
htab_t insns_to_split; /* A hashtable of insns to split. */
|
| 115 |
|
|
struct iv_to_split *iv_to_split_head; /* The first iv to split. */
|
| 116 |
|
|
struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
|
| 117 |
|
|
htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
|
| 118 |
|
|
to expand. */
|
| 119 |
|
|
struct var_to_expand *var_to_expand_head; /* The first var to expand. */
|
| 120 |
|
|
struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
|
| 121 |
|
|
unsigned first_new_block; /* The first basic block that was
|
| 122 |
|
|
duplicated. */
|
| 123 |
|
|
basic_block loop_exit; /* The loop exit basic block. */
|
| 124 |
|
|
basic_block loop_preheader; /* The loop preheader basic block. */
|
| 125 |
|
|
};
|
| 126 |
|
|
|
| 127 |
|
|
static void decide_unrolling_and_peeling (int);
|
| 128 |
|
|
static void peel_loops_completely (int);
|
| 129 |
|
|
static void decide_peel_simple (struct loop *, int);
|
| 130 |
|
|
static void decide_peel_once_rolling (struct loop *, int);
|
| 131 |
|
|
static void decide_peel_completely (struct loop *, int);
|
| 132 |
|
|
static void decide_unroll_stupid (struct loop *, int);
|
| 133 |
|
|
static void decide_unroll_constant_iterations (struct loop *, int);
|
| 134 |
|
|
static void decide_unroll_runtime_iterations (struct loop *, int);
|
| 135 |
|
|
static void peel_loop_simple (struct loop *);
|
| 136 |
|
|
static void peel_loop_completely (struct loop *);
|
| 137 |
|
|
static void unroll_loop_stupid (struct loop *);
|
| 138 |
|
|
static void unroll_loop_constant_iterations (struct loop *);
|
| 139 |
|
|
static void unroll_loop_runtime_iterations (struct loop *);
|
| 140 |
|
|
static struct opt_info *analyze_insns_in_loop (struct loop *);
|
| 141 |
|
|
static void opt_info_start_duplication (struct opt_info *);
|
| 142 |
|
|
static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
|
| 143 |
|
|
static void free_opt_info (struct opt_info *);
|
| 144 |
|
|
static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
|
| 145 |
|
|
static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
|
| 146 |
|
|
static struct iv_to_split *analyze_iv_to_split_insn (rtx);
|
| 147 |
|
|
static void expand_var_during_unrolling (struct var_to_expand *, rtx);
|
| 148 |
|
|
static void insert_var_expansion_initialization (struct var_to_expand *,
|
| 149 |
|
|
basic_block);
|
| 150 |
|
|
static void combine_var_copies_in_loop_exit (struct var_to_expand *,
|
| 151 |
|
|
basic_block);
|
| 152 |
|
|
static rtx get_expansion (struct var_to_expand *);
|
| 153 |
|
|
|
| 154 |
|
|
/* Unroll and/or peel (depending on FLAGS) LOOPS. */
|
| 155 |
|
|
void
|
| 156 |
|
|
unroll_and_peel_loops (int flags)
|
| 157 |
|
|
{
|
| 158 |
|
|
struct loop *loop;
|
| 159 |
|
|
bool check;
|
| 160 |
|
|
loop_iterator li;
|
| 161 |
|
|
|
| 162 |
|
|
/* First perform complete loop peeling (it is almost surely a win,
|
| 163 |
|
|
and affects parameters for further decision a lot). */
|
| 164 |
|
|
peel_loops_completely (flags);
|
| 165 |
|
|
|
| 166 |
|
|
/* Now decide rest of unrolling and peeling. */
|
| 167 |
|
|
decide_unrolling_and_peeling (flags);
|
| 168 |
|
|
|
| 169 |
|
|
/* Scan the loops, inner ones first. */
|
| 170 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
| 171 |
|
|
{
|
| 172 |
|
|
check = true;
|
| 173 |
|
|
/* And perform the appropriate transformations. */
|
| 174 |
|
|
switch (loop->lpt_decision.decision)
|
| 175 |
|
|
{
|
| 176 |
|
|
case LPT_PEEL_COMPLETELY:
|
| 177 |
|
|
/* Already done. */
|
| 178 |
|
|
gcc_unreachable ();
|
| 179 |
|
|
case LPT_PEEL_SIMPLE:
|
| 180 |
|
|
peel_loop_simple (loop);
|
| 181 |
|
|
break;
|
| 182 |
|
|
case LPT_UNROLL_CONSTANT:
|
| 183 |
|
|
unroll_loop_constant_iterations (loop);
|
| 184 |
|
|
break;
|
| 185 |
|
|
case LPT_UNROLL_RUNTIME:
|
| 186 |
|
|
unroll_loop_runtime_iterations (loop);
|
| 187 |
|
|
break;
|
| 188 |
|
|
case LPT_UNROLL_STUPID:
|
| 189 |
|
|
unroll_loop_stupid (loop);
|
| 190 |
|
|
break;
|
| 191 |
|
|
case LPT_NONE:
|
| 192 |
|
|
check = false;
|
| 193 |
|
|
break;
|
| 194 |
|
|
default:
|
| 195 |
|
|
gcc_unreachable ();
|
| 196 |
|
|
}
|
| 197 |
|
|
if (check)
|
| 198 |
|
|
{
|
| 199 |
|
|
#ifdef ENABLE_CHECKING
|
| 200 |
|
|
verify_dominators (CDI_DOMINATORS);
|
| 201 |
|
|
verify_loop_structure ();
|
| 202 |
|
|
#endif
|
| 203 |
|
|
}
|
| 204 |
|
|
}
|
| 205 |
|
|
|
| 206 |
|
|
iv_analysis_done ();
|
| 207 |
|
|
}
|
| 208 |
|
|
|
| 209 |
|
|
/* Check whether exit of the LOOP is at the end of loop body. */
|
| 210 |
|
|
|
| 211 |
|
|
static bool
|
| 212 |
|
|
loop_exit_at_end_p (struct loop *loop)
|
| 213 |
|
|
{
|
| 214 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
| 215 |
|
|
rtx insn;
|
| 216 |
|
|
|
| 217 |
|
|
if (desc->in_edge->dest != loop->latch)
|
| 218 |
|
|
return false;
|
| 219 |
|
|
|
| 220 |
|
|
/* Check that the latch is empty. */
|
| 221 |
|
|
FOR_BB_INSNS (loop->latch, insn)
|
| 222 |
|
|
{
|
| 223 |
|
|
if (INSN_P (insn))
|
| 224 |
|
|
return false;
|
| 225 |
|
|
}
|
| 226 |
|
|
|
| 227 |
|
|
return true;
|
| 228 |
|
|
}
|
| 229 |
|
|
|
| 230 |
|
|
/* Depending on FLAGS, check whether to peel loops completely and do so. */
|
| 231 |
|
|
static void
|
| 232 |
|
|
peel_loops_completely (int flags)
|
| 233 |
|
|
{
|
| 234 |
|
|
struct loop *loop;
|
| 235 |
|
|
loop_iterator li;
|
| 236 |
|
|
|
| 237 |
|
|
/* Scan the loops, the inner ones first. */
|
| 238 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
| 239 |
|
|
{
|
| 240 |
|
|
loop->lpt_decision.decision = LPT_NONE;
|
| 241 |
|
|
|
| 242 |
|
|
if (dump_file)
|
| 243 |
|
|
fprintf (dump_file,
|
| 244 |
|
|
"\n;; *** Considering loop %d for complete peeling ***\n",
|
| 245 |
|
|
loop->num);
|
| 246 |
|
|
|
| 247 |
|
|
loop->ninsns = num_loop_insns (loop);
|
| 248 |
|
|
|
| 249 |
|
|
decide_peel_once_rolling (loop, flags);
|
| 250 |
|
|
if (loop->lpt_decision.decision == LPT_NONE)
|
| 251 |
|
|
decide_peel_completely (loop, flags);
|
| 252 |
|
|
|
| 253 |
|
|
if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
|
| 254 |
|
|
{
|
| 255 |
|
|
peel_loop_completely (loop);
|
| 256 |
|
|
#ifdef ENABLE_CHECKING
|
| 257 |
|
|
verify_dominators (CDI_DOMINATORS);
|
| 258 |
|
|
verify_loop_structure ();
|
| 259 |
|
|
#endif
|
| 260 |
|
|
}
|
| 261 |
|
|
}
|
| 262 |
|
|
}
|
| 263 |
|
|
|
| 264 |
|
|
/* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
|
| 265 |
|
|
static void
|
| 266 |
|
|
decide_unrolling_and_peeling (int flags)
|
| 267 |
|
|
{
|
| 268 |
|
|
struct loop *loop;
|
| 269 |
|
|
loop_iterator li;
|
| 270 |
|
|
|
| 271 |
|
|
/* Scan the loops, inner ones first. */
|
| 272 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
| 273 |
|
|
{
|
| 274 |
|
|
loop->lpt_decision.decision = LPT_NONE;
|
| 275 |
|
|
|
| 276 |
|
|
if (dump_file)
|
| 277 |
|
|
fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
|
| 278 |
|
|
|
| 279 |
|
|
/* Do not peel cold areas. */
|
| 280 |
|
|
if (optimize_loop_for_size_p (loop))
|
| 281 |
|
|
{
|
| 282 |
|
|
if (dump_file)
|
| 283 |
|
|
fprintf (dump_file, ";; Not considering loop, cold area\n");
|
| 284 |
|
|
continue;
|
| 285 |
|
|
}
|
| 286 |
|
|
|
| 287 |
|
|
/* Can the loop be manipulated? */
|
| 288 |
|
|
if (!can_duplicate_loop_p (loop))
|
| 289 |
|
|
{
|
| 290 |
|
|
if (dump_file)
|
| 291 |
|
|
fprintf (dump_file,
|
| 292 |
|
|
";; Not considering loop, cannot duplicate\n");
|
| 293 |
|
|
continue;
|
| 294 |
|
|
}
|
| 295 |
|
|
|
| 296 |
|
|
/* Skip non-innermost loops. */
|
| 297 |
|
|
if (loop->inner)
|
| 298 |
|
|
{
|
| 299 |
|
|
if (dump_file)
|
| 300 |
|
|
fprintf (dump_file, ";; Not considering loop, is not innermost\n");
|
| 301 |
|
|
continue;
|
| 302 |
|
|
}
|
| 303 |
|
|
|
| 304 |
|
|
loop->ninsns = num_loop_insns (loop);
|
| 305 |
|
|
loop->av_ninsns = average_num_loop_insns (loop);
|
| 306 |
|
|
|
| 307 |
|
|
/* Try transformations one by one in decreasing order of
|
| 308 |
|
|
priority. */
|
| 309 |
|
|
|
| 310 |
|
|
decide_unroll_constant_iterations (loop, flags);
|
| 311 |
|
|
if (loop->lpt_decision.decision == LPT_NONE)
|
| 312 |
|
|
decide_unroll_runtime_iterations (loop, flags);
|
| 313 |
|
|
if (loop->lpt_decision.decision == LPT_NONE)
|
| 314 |
|
|
decide_unroll_stupid (loop, flags);
|
| 315 |
|
|
if (loop->lpt_decision.decision == LPT_NONE)
|
| 316 |
|
|
decide_peel_simple (loop, flags);
|
| 317 |
|
|
}
|
| 318 |
|
|
}
|
| 319 |
|
|
|
| 320 |
|
|
/* Decide whether the LOOP is once rolling and suitable for complete
|
| 321 |
|
|
peeling. */
|
| 322 |
|
|
static void
|
| 323 |
|
|
decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
|
| 324 |
|
|
{
|
| 325 |
|
|
struct niter_desc *desc;
|
| 326 |
|
|
|
| 327 |
|
|
if (dump_file)
|
| 328 |
|
|
fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
|
| 329 |
|
|
|
| 330 |
|
|
/* Is the loop small enough? */
|
| 331 |
|
|
if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
|
| 332 |
|
|
{
|
| 333 |
|
|
if (dump_file)
|
| 334 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
| 335 |
|
|
return;
|
| 336 |
|
|
}
|
| 337 |
|
|
|
| 338 |
|
|
/* Check for simple loops. */
|
| 339 |
|
|
desc = get_simple_loop_desc (loop);
|
| 340 |
|
|
|
| 341 |
|
|
/* Check number of iterations. */
|
| 342 |
|
|
if (!desc->simple_p
|
| 343 |
|
|
|| desc->assumptions
|
| 344 |
|
|
|| desc->infinite
|
| 345 |
|
|
|| !desc->const_iter
|
| 346 |
|
|
|| desc->niter != 0)
|
| 347 |
|
|
{
|
| 348 |
|
|
if (dump_file)
|
| 349 |
|
|
fprintf (dump_file,
|
| 350 |
|
|
";; Unable to prove that the loop rolls exactly once\n");
|
| 351 |
|
|
return;
|
| 352 |
|
|
}
|
| 353 |
|
|
|
| 354 |
|
|
/* Success. */
|
| 355 |
|
|
if (dump_file)
|
| 356 |
|
|
fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
|
| 357 |
|
|
loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
|
| 358 |
|
|
}
|
| 359 |
|
|
|
| 360 |
|
|
/* Decide whether the LOOP is suitable for complete peeling. */
|
| 361 |
|
|
static void
|
| 362 |
|
|
decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
|
| 363 |
|
|
{
|
| 364 |
|
|
unsigned npeel;
|
| 365 |
|
|
struct niter_desc *desc;
|
| 366 |
|
|
|
| 367 |
|
|
if (dump_file)
|
| 368 |
|
|
fprintf (dump_file, "\n;; Considering peeling completely\n");
|
| 369 |
|
|
|
| 370 |
|
|
/* Skip non-innermost loops. */
|
| 371 |
|
|
if (loop->inner)
|
| 372 |
|
|
{
|
| 373 |
|
|
if (dump_file)
|
| 374 |
|
|
fprintf (dump_file, ";; Not considering loop, is not innermost\n");
|
| 375 |
|
|
return;
|
| 376 |
|
|
}
|
| 377 |
|
|
|
| 378 |
|
|
/* Do not peel cold areas. */
|
| 379 |
|
|
if (optimize_loop_for_size_p (loop))
|
| 380 |
|
|
{
|
| 381 |
|
|
if (dump_file)
|
| 382 |
|
|
fprintf (dump_file, ";; Not considering loop, cold area\n");
|
| 383 |
|
|
return;
|
| 384 |
|
|
}
|
| 385 |
|
|
|
| 386 |
|
|
/* Can the loop be manipulated? */
|
| 387 |
|
|
if (!can_duplicate_loop_p (loop))
|
| 388 |
|
|
{
|
| 389 |
|
|
if (dump_file)
|
| 390 |
|
|
fprintf (dump_file,
|
| 391 |
|
|
";; Not considering loop, cannot duplicate\n");
|
| 392 |
|
|
return;
|
| 393 |
|
|
}
|
| 394 |
|
|
|
| 395 |
|
|
/* npeel = number of iterations to peel. */
|
| 396 |
|
|
npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
|
| 397 |
|
|
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
|
| 398 |
|
|
npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
|
| 399 |
|
|
|
| 400 |
|
|
/* Is the loop small enough? */
|
| 401 |
|
|
if (!npeel)
|
| 402 |
|
|
{
|
| 403 |
|
|
if (dump_file)
|
| 404 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
| 405 |
|
|
return;
|
| 406 |
|
|
}
|
| 407 |
|
|
|
| 408 |
|
|
/* Check for simple loops. */
|
| 409 |
|
|
desc = get_simple_loop_desc (loop);
|
| 410 |
|
|
|
| 411 |
|
|
/* Check number of iterations. */
|
| 412 |
|
|
if (!desc->simple_p
|
| 413 |
|
|
|| desc->assumptions
|
| 414 |
|
|
|| !desc->const_iter
|
| 415 |
|
|
|| desc->infinite)
|
| 416 |
|
|
{
|
| 417 |
|
|
if (dump_file)
|
| 418 |
|
|
fprintf (dump_file,
|
| 419 |
|
|
";; Unable to prove that the loop iterates constant times\n");
|
| 420 |
|
|
return;
|
| 421 |
|
|
}
|
| 422 |
|
|
|
| 423 |
|
|
if (desc->niter > npeel - 1)
|
| 424 |
|
|
{
|
| 425 |
|
|
if (dump_file)
|
| 426 |
|
|
{
|
| 427 |
|
|
fprintf (dump_file,
|
| 428 |
|
|
";; Not peeling loop completely, rolls too much (");
|
| 429 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
|
| 430 |
|
|
fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
|
| 431 |
|
|
}
|
| 432 |
|
|
return;
|
| 433 |
|
|
}
|
| 434 |
|
|
|
| 435 |
|
|
/* Success. */
|
| 436 |
|
|
if (dump_file)
|
| 437 |
|
|
fprintf (dump_file, ";; Decided to peel loop completely\n");
|
| 438 |
|
|
loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
|
| 439 |
|
|
}
|
| 440 |
|
|
|
| 441 |
|
|
/* Peel all iterations of LOOP, remove exit edges and cancel the loop
|
| 442 |
|
|
completely. The transformation done:
|
| 443 |
|
|
|
| 444 |
|
|
for (i = 0; i < 4; i++)
|
| 445 |
|
|
body;
|
| 446 |
|
|
|
| 447 |
|
|
==>
|
| 448 |
|
|
|
| 449 |
|
|
i = 0;
|
| 450 |
|
|
body; i++;
|
| 451 |
|
|
body; i++;
|
| 452 |
|
|
body; i++;
|
| 453 |
|
|
body; i++;
|
| 454 |
|
|
*/
|
| 455 |
|
|
static void
|
| 456 |
|
|
peel_loop_completely (struct loop *loop)
|
| 457 |
|
|
{
|
| 458 |
|
|
sbitmap wont_exit;
|
| 459 |
|
|
unsigned HOST_WIDE_INT npeel;
|
| 460 |
|
|
unsigned i;
|
| 461 |
|
|
VEC (edge, heap) *remove_edges;
|
| 462 |
|
|
edge ein;
|
| 463 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
| 464 |
|
|
struct opt_info *opt_info = NULL;
|
| 465 |
|
|
|
| 466 |
|
|
npeel = desc->niter;
|
| 467 |
|
|
|
| 468 |
|
|
if (npeel)
|
| 469 |
|
|
{
|
| 470 |
|
|
bool ok;
|
| 471 |
|
|
|
| 472 |
|
|
wont_exit = sbitmap_alloc (npeel + 1);
|
| 473 |
|
|
sbitmap_ones (wont_exit);
|
| 474 |
|
|
RESET_BIT (wont_exit, 0);
|
| 475 |
|
|
if (desc->noloop_assumptions)
|
| 476 |
|
|
RESET_BIT (wont_exit, 1);
|
| 477 |
|
|
|
| 478 |
|
|
remove_edges = NULL;
|
| 479 |
|
|
|
| 480 |
|
|
if (flag_split_ivs_in_unroller)
|
| 481 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
| 482 |
|
|
|
| 483 |
|
|
opt_info_start_duplication (opt_info);
|
| 484 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
| 485 |
|
|
npeel,
|
| 486 |
|
|
wont_exit, desc->out_edge,
|
| 487 |
|
|
&remove_edges,
|
| 488 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
| 489 |
|
|
| DLTHE_FLAG_COMPLETTE_PEEL
|
| 490 |
|
|
| (opt_info
|
| 491 |
|
|
? DLTHE_RECORD_COPY_NUMBER : 0));
|
| 492 |
|
|
gcc_assert (ok);
|
| 493 |
|
|
|
| 494 |
|
|
free (wont_exit);
|
| 495 |
|
|
|
| 496 |
|
|
if (opt_info)
|
| 497 |
|
|
{
|
| 498 |
|
|
apply_opt_in_copies (opt_info, npeel, false, true);
|
| 499 |
|
|
free_opt_info (opt_info);
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
/* Remove the exit edges. */
|
| 503 |
|
|
for (i = 0; VEC_iterate (edge, remove_edges, i, ein); i++)
|
| 504 |
|
|
remove_path (ein);
|
| 505 |
|
|
VEC_free (edge, heap, remove_edges);
|
| 506 |
|
|
}
|
| 507 |
|
|
|
| 508 |
|
|
ein = desc->in_edge;
|
| 509 |
|
|
free_simple_loop_desc (loop);
|
| 510 |
|
|
|
| 511 |
|
|
/* Now remove the unreachable part of the last iteration and cancel
|
| 512 |
|
|
the loop. */
|
| 513 |
|
|
remove_path (ein);
|
| 514 |
|
|
|
| 515 |
|
|
if (dump_file)
|
| 516 |
|
|
fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
|
| 517 |
|
|
}
|
| 518 |
|
|
|
| 519 |
|
|
/* Decide whether to unroll LOOP iterating constant number of times
|
| 520 |
|
|
and how much. */
|
| 521 |
|
|
|
| 522 |
|
|
static void
|
| 523 |
|
|
decide_unroll_constant_iterations (struct loop *loop, int flags)
|
| 524 |
|
|
{
|
| 525 |
|
|
unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
|
| 526 |
|
|
struct niter_desc *desc;
|
| 527 |
|
|
|
| 528 |
|
|
if (!(flags & UAP_UNROLL))
|
| 529 |
|
|
{
|
| 530 |
|
|
/* We were not asked to, just return back silently. */
|
| 531 |
|
|
return;
|
| 532 |
|
|
}
|
| 533 |
|
|
|
| 534 |
|
|
if (dump_file)
|
| 535 |
|
|
fprintf (dump_file,
|
| 536 |
|
|
"\n;; Considering unrolling loop with constant "
|
| 537 |
|
|
"number of iterations\n");
|
| 538 |
|
|
|
| 539 |
|
|
/* nunroll = total number of copies of the original loop body in
|
| 540 |
|
|
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
|
| 541 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
|
| 542 |
|
|
nunroll_by_av
|
| 543 |
|
|
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
|
| 544 |
|
|
if (nunroll > nunroll_by_av)
|
| 545 |
|
|
nunroll = nunroll_by_av;
|
| 546 |
|
|
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
|
| 547 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
|
| 548 |
|
|
|
| 549 |
|
|
/* Skip big loops. */
|
| 550 |
|
|
if (nunroll <= 1)
|
| 551 |
|
|
{
|
| 552 |
|
|
if (dump_file)
|
| 553 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
| 554 |
|
|
return;
|
| 555 |
|
|
}
|
| 556 |
|
|
|
| 557 |
|
|
/* Check for simple loops. */
|
| 558 |
|
|
desc = get_simple_loop_desc (loop);
|
| 559 |
|
|
|
| 560 |
|
|
/* Check number of iterations. */
|
| 561 |
|
|
if (!desc->simple_p || !desc->const_iter || desc->assumptions)
|
| 562 |
|
|
{
|
| 563 |
|
|
if (dump_file)
|
| 564 |
|
|
fprintf (dump_file,
|
| 565 |
|
|
";; Unable to prove that the loop iterates constant times\n");
|
| 566 |
|
|
return;
|
| 567 |
|
|
}
|
| 568 |
|
|
|
| 569 |
|
|
/* Check whether the loop rolls enough to consider. */
|
| 570 |
|
|
if (desc->niter < 2 * nunroll)
|
| 571 |
|
|
{
|
| 572 |
|
|
if (dump_file)
|
| 573 |
|
|
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
|
| 574 |
|
|
return;
|
| 575 |
|
|
}
|
| 576 |
|
|
|
| 577 |
|
|
/* Success; now compute number of iterations to unroll. We alter
|
| 578 |
|
|
nunroll so that as few as possible copies of loop body are
|
| 579 |
|
|
necessary, while still not decreasing the number of unrollings
|
| 580 |
|
|
too much (at most by 1). */
|
| 581 |
|
|
best_copies = 2 * nunroll + 10;
|
| 582 |
|
|
|
| 583 |
|
|
i = 2 * nunroll + 2;
|
| 584 |
|
|
if (i - 1 >= desc->niter)
|
| 585 |
|
|
i = desc->niter - 2;
|
| 586 |
|
|
|
| 587 |
|
|
for (; i >= nunroll - 1; i--)
|
| 588 |
|
|
{
|
| 589 |
|
|
unsigned exit_mod = desc->niter % (i + 1);
|
| 590 |
|
|
|
| 591 |
|
|
if (!loop_exit_at_end_p (loop))
|
| 592 |
|
|
n_copies = exit_mod + i + 1;
|
| 593 |
|
|
else if (exit_mod != (unsigned) i
|
| 594 |
|
|
|| desc->noloop_assumptions != NULL_RTX)
|
| 595 |
|
|
n_copies = exit_mod + i + 2;
|
| 596 |
|
|
else
|
| 597 |
|
|
n_copies = i + 1;
|
| 598 |
|
|
|
| 599 |
|
|
if (n_copies < best_copies)
|
| 600 |
|
|
{
|
| 601 |
|
|
best_copies = n_copies;
|
| 602 |
|
|
best_unroll = i;
|
| 603 |
|
|
}
|
| 604 |
|
|
}
|
| 605 |
|
|
|
| 606 |
|
|
if (dump_file)
|
| 607 |
|
|
fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
|
| 608 |
|
|
best_unroll + 1, best_copies, nunroll);
|
| 609 |
|
|
|
| 610 |
|
|
loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
|
| 611 |
|
|
loop->lpt_decision.times = best_unroll;
|
| 612 |
|
|
|
| 613 |
|
|
if (dump_file)
|
| 614 |
|
|
fprintf (dump_file,
|
| 615 |
|
|
";; Decided to unroll the constant times rolling loop, %d times.\n",
|
| 616 |
|
|
loop->lpt_decision.times);
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
/* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
|
| 620 |
|
|
times. The transformation does this:
|
| 621 |
|
|
|
| 622 |
|
|
for (i = 0; i < 102; i++)
|
| 623 |
|
|
body;
|
| 624 |
|
|
|
| 625 |
|
|
==>
|
| 626 |
|
|
|
| 627 |
|
|
i = 0;
|
| 628 |
|
|
body; i++;
|
| 629 |
|
|
body; i++;
|
| 630 |
|
|
while (i < 102)
|
| 631 |
|
|
{
|
| 632 |
|
|
body; i++;
|
| 633 |
|
|
body; i++;
|
| 634 |
|
|
body; i++;
|
| 635 |
|
|
body; i++;
|
| 636 |
|
|
}
|
| 637 |
|
|
*/
|
| 638 |
|
|
static void
|
| 639 |
|
|
unroll_loop_constant_iterations (struct loop *loop)
|
| 640 |
|
|
{
|
| 641 |
|
|
unsigned HOST_WIDE_INT niter;
|
| 642 |
|
|
unsigned exit_mod;
|
| 643 |
|
|
sbitmap wont_exit;
|
| 644 |
|
|
unsigned i;
|
| 645 |
|
|
VEC (edge, heap) *remove_edges;
|
| 646 |
|
|
edge e;
|
| 647 |
|
|
unsigned max_unroll = loop->lpt_decision.times;
|
| 648 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
| 649 |
|
|
bool exit_at_end = loop_exit_at_end_p (loop);
|
| 650 |
|
|
struct opt_info *opt_info = NULL;
|
| 651 |
|
|
bool ok;
|
| 652 |
|
|
|
| 653 |
|
|
niter = desc->niter;
|
| 654 |
|
|
|
| 655 |
|
|
/* Should not get here (such loop should be peeled instead). */
|
| 656 |
|
|
gcc_assert (niter > max_unroll + 1);
|
| 657 |
|
|
|
| 658 |
|
|
exit_mod = niter % (max_unroll + 1);
|
| 659 |
|
|
|
| 660 |
|
|
wont_exit = sbitmap_alloc (max_unroll + 1);
|
| 661 |
|
|
sbitmap_ones (wont_exit);
|
| 662 |
|
|
|
| 663 |
|
|
remove_edges = NULL;
|
| 664 |
|
|
if (flag_split_ivs_in_unroller
|
| 665 |
|
|
|| flag_variable_expansion_in_unroller)
|
| 666 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
| 667 |
|
|
|
| 668 |
|
|
if (!exit_at_end)
|
| 669 |
|
|
{
|
| 670 |
|
|
/* The exit is not at the end of the loop; leave exit test
|
| 671 |
|
|
in the first copy, so that the loops that start with test
|
| 672 |
|
|
of exit condition have continuous body after unrolling. */
|
| 673 |
|
|
|
| 674 |
|
|
if (dump_file)
|
| 675 |
|
|
fprintf (dump_file, ";; Condition on beginning of loop.\n");
|
| 676 |
|
|
|
| 677 |
|
|
/* Peel exit_mod iterations. */
|
| 678 |
|
|
RESET_BIT (wont_exit, 0);
|
| 679 |
|
|
if (desc->noloop_assumptions)
|
| 680 |
|
|
RESET_BIT (wont_exit, 1);
|
| 681 |
|
|
|
| 682 |
|
|
if (exit_mod)
|
| 683 |
|
|
{
|
| 684 |
|
|
opt_info_start_duplication (opt_info);
|
| 685 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
| 686 |
|
|
exit_mod,
|
| 687 |
|
|
wont_exit, desc->out_edge,
|
| 688 |
|
|
&remove_edges,
|
| 689 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
| 690 |
|
|
| (opt_info && exit_mod > 1
|
| 691 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
| 692 |
|
|
: 0));
|
| 693 |
|
|
gcc_assert (ok);
|
| 694 |
|
|
|
| 695 |
|
|
if (opt_info && exit_mod > 1)
|
| 696 |
|
|
apply_opt_in_copies (opt_info, exit_mod, false, false);
|
| 697 |
|
|
|
| 698 |
|
|
desc->noloop_assumptions = NULL_RTX;
|
| 699 |
|
|
desc->niter -= exit_mod;
|
| 700 |
|
|
desc->niter_max -= exit_mod;
|
| 701 |
|
|
}
|
| 702 |
|
|
|
| 703 |
|
|
SET_BIT (wont_exit, 1);
|
| 704 |
|
|
}
|
| 705 |
|
|
else
|
| 706 |
|
|
{
|
| 707 |
|
|
/* Leave exit test in last copy, for the same reason as above if
|
| 708 |
|
|
the loop tests the condition at the end of loop body. */
|
| 709 |
|
|
|
| 710 |
|
|
if (dump_file)
|
| 711 |
|
|
fprintf (dump_file, ";; Condition on end of loop.\n");
|
| 712 |
|
|
|
| 713 |
|
|
/* We know that niter >= max_unroll + 2; so we do not need to care of
|
| 714 |
|
|
case when we would exit before reaching the loop. So just peel
|
| 715 |
|
|
exit_mod + 1 iterations. */
|
| 716 |
|
|
if (exit_mod != max_unroll
|
| 717 |
|
|
|| desc->noloop_assumptions)
|
| 718 |
|
|
{
|
| 719 |
|
|
RESET_BIT (wont_exit, 0);
|
| 720 |
|
|
if (desc->noloop_assumptions)
|
| 721 |
|
|
RESET_BIT (wont_exit, 1);
|
| 722 |
|
|
|
| 723 |
|
|
opt_info_start_duplication (opt_info);
|
| 724 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
| 725 |
|
|
exit_mod + 1,
|
| 726 |
|
|
wont_exit, desc->out_edge,
|
| 727 |
|
|
&remove_edges,
|
| 728 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
| 729 |
|
|
| (opt_info && exit_mod > 0
|
| 730 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
| 731 |
|
|
: 0));
|
| 732 |
|
|
gcc_assert (ok);
|
| 733 |
|
|
|
| 734 |
|
|
if (opt_info && exit_mod > 0)
|
| 735 |
|
|
apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
|
| 736 |
|
|
|
| 737 |
|
|
desc->niter -= exit_mod + 1;
|
| 738 |
|
|
desc->niter_max -= exit_mod + 1;
|
| 739 |
|
|
desc->noloop_assumptions = NULL_RTX;
|
| 740 |
|
|
|
| 741 |
|
|
SET_BIT (wont_exit, 0);
|
| 742 |
|
|
SET_BIT (wont_exit, 1);
|
| 743 |
|
|
}
|
| 744 |
|
|
|
| 745 |
|
|
RESET_BIT (wont_exit, max_unroll);
|
| 746 |
|
|
}
|
| 747 |
|
|
|
| 748 |
|
|
/* Now unroll the loop. */
|
| 749 |
|
|
|
| 750 |
|
|
opt_info_start_duplication (opt_info);
|
| 751 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
|
| 752 |
|
|
max_unroll,
|
| 753 |
|
|
wont_exit, desc->out_edge,
|
| 754 |
|
|
&remove_edges,
|
| 755 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
| 756 |
|
|
| (opt_info
|
| 757 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
| 758 |
|
|
: 0));
|
| 759 |
|
|
gcc_assert (ok);
|
| 760 |
|
|
|
| 761 |
|
|
if (opt_info)
|
| 762 |
|
|
{
|
| 763 |
|
|
apply_opt_in_copies (opt_info, max_unroll, true, true);
|
| 764 |
|
|
free_opt_info (opt_info);
|
| 765 |
|
|
}
|
| 766 |
|
|
|
| 767 |
|
|
free (wont_exit);
|
| 768 |
|
|
|
| 769 |
|
|
if (exit_at_end)
|
| 770 |
|
|
{
|
| 771 |
|
|
basic_block exit_block = get_bb_copy (desc->in_edge->src);
|
| 772 |
|
|
/* Find a new in and out edge; they are in the last copy we have made. */
|
| 773 |
|
|
|
| 774 |
|
|
if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
|
| 775 |
|
|
{
|
| 776 |
|
|
desc->out_edge = EDGE_SUCC (exit_block, 0);
|
| 777 |
|
|
desc->in_edge = EDGE_SUCC (exit_block, 1);
|
| 778 |
|
|
}
|
| 779 |
|
|
else
|
| 780 |
|
|
{
|
| 781 |
|
|
desc->out_edge = EDGE_SUCC (exit_block, 1);
|
| 782 |
|
|
desc->in_edge = EDGE_SUCC (exit_block, 0);
|
| 783 |
|
|
}
|
| 784 |
|
|
}
|
| 785 |
|
|
|
| 786 |
|
|
desc->niter /= max_unroll + 1;
|
| 787 |
|
|
desc->niter_max /= max_unroll + 1;
|
| 788 |
|
|
desc->niter_expr = GEN_INT (desc->niter);
|
| 789 |
|
|
|
| 790 |
|
|
/* Remove the edges. */
|
| 791 |
|
|
for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
|
| 792 |
|
|
remove_path (e);
|
| 793 |
|
|
VEC_free (edge, heap, remove_edges);
|
| 794 |
|
|
|
| 795 |
|
|
if (dump_file)
|
| 796 |
|
|
fprintf (dump_file,
|
| 797 |
|
|
";; Unrolled loop %d times, constant # of iterations %i insns\n",
|
| 798 |
|
|
max_unroll, num_loop_insns (loop));
|
| 799 |
|
|
}
|
| 800 |
|
|
|
| 801 |
|
|
/* Decide whether to unroll LOOP iterating runtime computable number of times
|
| 802 |
|
|
and how much. */
|
| 803 |
|
|
static void
|
| 804 |
|
|
decide_unroll_runtime_iterations (struct loop *loop, int flags)
|
| 805 |
|
|
{
|
| 806 |
|
|
unsigned nunroll, nunroll_by_av, i;
|
| 807 |
|
|
struct niter_desc *desc;
|
| 808 |
|
|
|
| 809 |
|
|
if (!(flags & UAP_UNROLL))
|
| 810 |
|
|
{
|
| 811 |
|
|
/* We were not asked to, just return back silently. */
|
| 812 |
|
|
return;
|
| 813 |
|
|
}
|
| 814 |
|
|
|
| 815 |
|
|
if (dump_file)
|
| 816 |
|
|
fprintf (dump_file,
|
| 817 |
|
|
"\n;; Considering unrolling loop with runtime "
|
| 818 |
|
|
"computable number of iterations\n");
|
| 819 |
|
|
|
| 820 |
|
|
/* nunroll = total number of copies of the original loop body in
|
| 821 |
|
|
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
|
| 822 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
|
| 823 |
|
|
nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
|
| 824 |
|
|
if (nunroll > nunroll_by_av)
|
| 825 |
|
|
nunroll = nunroll_by_av;
|
| 826 |
|
|
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
|
| 827 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
|
| 828 |
|
|
|
| 829 |
|
|
/* Skip big loops. */
|
| 830 |
|
|
if (nunroll <= 1)
|
| 831 |
|
|
{
|
| 832 |
|
|
if (dump_file)
|
| 833 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
| 834 |
|
|
return;
|
| 835 |
|
|
}
|
| 836 |
|
|
|
| 837 |
|
|
/* Check for simple loops. */
|
| 838 |
|
|
desc = get_simple_loop_desc (loop);
|
| 839 |
|
|
|
| 840 |
|
|
/* Check simpleness. */
|
| 841 |
|
|
if (!desc->simple_p || desc->assumptions)
|
| 842 |
|
|
{
|
| 843 |
|
|
if (dump_file)
|
| 844 |
|
|
fprintf (dump_file,
|
| 845 |
|
|
";; Unable to prove that the number of iterations "
|
| 846 |
|
|
"can be counted in runtime\n");
|
| 847 |
|
|
return;
|
| 848 |
|
|
}
|
| 849 |
|
|
|
| 850 |
|
|
if (desc->const_iter)
|
| 851 |
|
|
{
|
| 852 |
|
|
if (dump_file)
|
| 853 |
|
|
fprintf (dump_file, ";; Loop iterates constant times\n");
|
| 854 |
|
|
return;
|
| 855 |
|
|
}
|
| 856 |
|
|
|
| 857 |
|
|
/* If we have profile feedback, check whether the loop rolls. */
|
| 858 |
|
|
if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
|
| 859 |
|
|
{
|
| 860 |
|
|
if (dump_file)
|
| 861 |
|
|
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
|
| 862 |
|
|
return;
|
| 863 |
|
|
}
|
| 864 |
|
|
|
| 865 |
|
|
/* Success; now force nunroll to be power of 2, as we are unable to
|
| 866 |
|
|
cope with overflows in computation of number of iterations. */
|
| 867 |
|
|
for (i = 1; 2 * i <= nunroll; i *= 2)
|
| 868 |
|
|
continue;
|
| 869 |
|
|
|
| 870 |
|
|
loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
|
| 871 |
|
|
loop->lpt_decision.times = i - 1;
|
| 872 |
|
|
|
| 873 |
|
|
if (dump_file)
|
| 874 |
|
|
fprintf (dump_file,
|
| 875 |
|
|
";; Decided to unroll the runtime computable "
|
| 876 |
|
|
"times rolling loop, %d times.\n",
|
| 877 |
|
|
loop->lpt_decision.times);
|
| 878 |
|
|
}
|
| 879 |
|
|
|
| 880 |
|
|
/* Splits edge E and inserts the sequence of instructions INSNS on it, and
|
| 881 |
|
|
returns the newly created block. If INSNS is NULL_RTX, nothing is changed
|
| 882 |
|
|
and NULL is returned instead. */
|
| 883 |
|
|
|
| 884 |
|
|
basic_block
|
| 885 |
|
|
split_edge_and_insert (edge e, rtx insns)
|
| 886 |
|
|
{
|
| 887 |
|
|
basic_block bb;
|
| 888 |
|
|
|
| 889 |
|
|
if (!insns)
|
| 890 |
|
|
return NULL;
|
| 891 |
|
|
bb = split_edge (e);
|
| 892 |
|
|
emit_insn_after (insns, BB_END (bb));
|
| 893 |
|
|
|
| 894 |
|
|
/* ??? We used to assume that INSNS can contain control flow insns, and
|
| 895 |
|
|
that we had to try to find sub basic blocks in BB to maintain a valid
|
| 896 |
|
|
CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
|
| 897 |
|
|
and call break_superblocks when going out of cfglayout mode. But it
|
| 898 |
|
|
turns out that this never happens; and that if it does ever happen,
|
| 899 |
|
|
the verify_flow_info call in loop_optimizer_finalize would fail.
|
| 900 |
|
|
|
| 901 |
|
|
There are two reasons why we expected we could have control flow insns
|
| 902 |
|
|
in INSNS. The first is when a comparison has to be done in parts, and
|
| 903 |
|
|
the second is when the number of iterations is computed for loops with
|
| 904 |
|
|
the number of iterations known at runtime. In both cases, test cases
|
| 905 |
|
|
to get control flow in INSNS appear to be impossible to construct:
|
| 906 |
|
|
|
| 907 |
|
|
* If do_compare_rtx_and_jump needs several branches to do comparison
|
| 908 |
|
|
in a mode that needs comparison by parts, we cannot analyze the
|
| 909 |
|
|
number of iterations of the loop, and we never get to unrolling it.
|
| 910 |
|
|
|
| 911 |
|
|
* The code in expand_divmod that was suspected to cause creation of
|
| 912 |
|
|
branching code seems to be only accessed for signed division. The
|
| 913 |
|
|
divisions used by # of iterations analysis are always unsigned.
|
| 914 |
|
|
Problems might arise on architectures that emits branching code
|
| 915 |
|
|
for some operations that may appear in the unroller (especially
|
| 916 |
|
|
for division), but we have no such architectures.
|
| 917 |
|
|
|
| 918 |
|
|
Considering all this, it was decided that we should for now assume
|
| 919 |
|
|
that INSNS can in theory contain control flow insns, but in practice
|
| 920 |
|
|
it never does. So we don't handle the theoretical case, and should
|
| 921 |
|
|
a real failure ever show up, we have a pretty good clue for how to
|
| 922 |
|
|
fix it. */
|
| 923 |
|
|
|
| 924 |
|
|
return bb;
|
| 925 |
|
|
}
|
| 926 |
|
|
|
| 927 |
|
|
/* Unroll LOOP for that we are able to count number of iterations in runtime
|
| 928 |
|
|
LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
|
| 929 |
|
|
extra care for case n < 0):
|
| 930 |
|
|
|
| 931 |
|
|
for (i = 0; i < n; i++)
|
| 932 |
|
|
body;
|
| 933 |
|
|
|
| 934 |
|
|
==>
|
| 935 |
|
|
|
| 936 |
|
|
i = 0;
|
| 937 |
|
|
mod = n % 4;
|
| 938 |
|
|
|
| 939 |
|
|
switch (mod)
|
| 940 |
|
|
{
|
| 941 |
|
|
case 3:
|
| 942 |
|
|
body; i++;
|
| 943 |
|
|
case 2:
|
| 944 |
|
|
body; i++;
|
| 945 |
|
|
case 1:
|
| 946 |
|
|
body; i++;
|
| 947 |
|
|
case 0: ;
|
| 948 |
|
|
}
|
| 949 |
|
|
|
| 950 |
|
|
while (i < n)
|
| 951 |
|
|
{
|
| 952 |
|
|
body; i++;
|
| 953 |
|
|
body; i++;
|
| 954 |
|
|
body; i++;
|
| 955 |
|
|
body; i++;
|
| 956 |
|
|
}
|
| 957 |
|
|
*/
|
| 958 |
|
|
static void
|
| 959 |
|
|
unroll_loop_runtime_iterations (struct loop *loop)
|
| 960 |
|
|
{
|
| 961 |
|
|
rtx old_niter, niter, init_code, branch_code, tmp;
|
| 962 |
|
|
unsigned i, j, p;
|
| 963 |
|
|
basic_block preheader, *body, swtch, ezc_swtch;
|
| 964 |
|
|
VEC (basic_block, heap) *dom_bbs;
|
| 965 |
|
|
sbitmap wont_exit;
|
| 966 |
|
|
int may_exit_copy;
|
| 967 |
|
|
unsigned n_peel;
|
| 968 |
|
|
VEC (edge, heap) *remove_edges;
|
| 969 |
|
|
edge e;
|
| 970 |
|
|
bool extra_zero_check, last_may_exit;
|
| 971 |
|
|
unsigned max_unroll = loop->lpt_decision.times;
|
| 972 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
| 973 |
|
|
bool exit_at_end = loop_exit_at_end_p (loop);
|
| 974 |
|
|
struct opt_info *opt_info = NULL;
|
| 975 |
|
|
bool ok;
|
| 976 |
|
|
|
| 977 |
|
|
if (flag_split_ivs_in_unroller
|
| 978 |
|
|
|| flag_variable_expansion_in_unroller)
|
| 979 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
| 980 |
|
|
|
| 981 |
|
|
/* Remember blocks whose dominators will have to be updated. */
|
| 982 |
|
|
dom_bbs = NULL;
|
| 983 |
|
|
|
| 984 |
|
|
body = get_loop_body (loop);
|
| 985 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 986 |
|
|
{
|
| 987 |
|
|
VEC (basic_block, heap) *ldom;
|
| 988 |
|
|
basic_block bb;
|
| 989 |
|
|
|
| 990 |
|
|
ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
|
| 991 |
|
|
for (j = 0; VEC_iterate (basic_block, ldom, j, bb); j++)
|
| 992 |
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
| 993 |
|
|
VEC_safe_push (basic_block, heap, dom_bbs, bb);
|
| 994 |
|
|
|
| 995 |
|
|
VEC_free (basic_block, heap, ldom);
|
| 996 |
|
|
}
|
| 997 |
|
|
free (body);
|
| 998 |
|
|
|
| 999 |
|
|
if (!exit_at_end)
|
| 1000 |
|
|
{
|
| 1001 |
|
|
/* Leave exit in first copy (for explanation why see comment in
|
| 1002 |
|
|
unroll_loop_constant_iterations). */
|
| 1003 |
|
|
may_exit_copy = 0;
|
| 1004 |
|
|
n_peel = max_unroll - 1;
|
| 1005 |
|
|
extra_zero_check = true;
|
| 1006 |
|
|
last_may_exit = false;
|
| 1007 |
|
|
}
|
| 1008 |
|
|
else
|
| 1009 |
|
|
{
|
| 1010 |
|
|
/* Leave exit in last copy (for explanation why see comment in
|
| 1011 |
|
|
unroll_loop_constant_iterations). */
|
| 1012 |
|
|
may_exit_copy = max_unroll;
|
| 1013 |
|
|
n_peel = max_unroll;
|
| 1014 |
|
|
extra_zero_check = false;
|
| 1015 |
|
|
last_may_exit = true;
|
| 1016 |
|
|
}
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Get expression for number of iterations. */
|
| 1019 |
|
|
start_sequence ();
|
| 1020 |
|
|
old_niter = niter = gen_reg_rtx (desc->mode);
|
| 1021 |
|
|
tmp = force_operand (copy_rtx (desc->niter_expr), niter);
|
| 1022 |
|
|
if (tmp != niter)
|
| 1023 |
|
|
emit_move_insn (niter, tmp);
|
| 1024 |
|
|
|
| 1025 |
|
|
/* Count modulo by ANDing it with max_unroll; we use the fact that
|
| 1026 |
|
|
the number of unrollings is a power of two, and thus this is correct
|
| 1027 |
|
|
even if there is overflow in the computation. */
|
| 1028 |
|
|
niter = expand_simple_binop (desc->mode, AND,
|
| 1029 |
|
|
niter,
|
| 1030 |
|
|
GEN_INT (max_unroll),
|
| 1031 |
|
|
NULL_RTX, 0, OPTAB_LIB_WIDEN);
|
| 1032 |
|
|
|
| 1033 |
|
|
init_code = get_insns ();
|
| 1034 |
|
|
end_sequence ();
|
| 1035 |
|
|
unshare_all_rtl_in_chain (init_code);
|
| 1036 |
|
|
|
| 1037 |
|
|
/* Precondition the loop. */
|
| 1038 |
|
|
split_edge_and_insert (loop_preheader_edge (loop), init_code);
|
| 1039 |
|
|
|
| 1040 |
|
|
remove_edges = NULL;
|
| 1041 |
|
|
|
| 1042 |
|
|
wont_exit = sbitmap_alloc (max_unroll + 2);
|
| 1043 |
|
|
|
| 1044 |
|
|
/* Peel the first copy of loop body (almost always we must leave exit test
|
| 1045 |
|
|
here; the only exception is when we have extra zero check and the number
|
| 1046 |
|
|
of iterations is reliable. Also record the place of (possible) extra
|
| 1047 |
|
|
zero check. */
|
| 1048 |
|
|
sbitmap_zero (wont_exit);
|
| 1049 |
|
|
if (extra_zero_check
|
| 1050 |
|
|
&& !desc->noloop_assumptions)
|
| 1051 |
|
|
SET_BIT (wont_exit, 1);
|
| 1052 |
|
|
ezc_swtch = loop_preheader_edge (loop)->src;
|
| 1053 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
| 1054 |
|
|
1, wont_exit, desc->out_edge,
|
| 1055 |
|
|
&remove_edges,
|
| 1056 |
|
|
DLTHE_FLAG_UPDATE_FREQ);
|
| 1057 |
|
|
gcc_assert (ok);
|
| 1058 |
|
|
|
| 1059 |
|
|
/* Record the place where switch will be built for preconditioning. */
|
| 1060 |
|
|
swtch = split_edge (loop_preheader_edge (loop));
|
| 1061 |
|
|
|
| 1062 |
|
|
for (i = 0; i < n_peel; i++)
|
| 1063 |
|
|
{
|
| 1064 |
|
|
/* Peel the copy. */
|
| 1065 |
|
|
sbitmap_zero (wont_exit);
|
| 1066 |
|
|
if (i != n_peel - 1 || !last_may_exit)
|
| 1067 |
|
|
SET_BIT (wont_exit, 1);
|
| 1068 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
| 1069 |
|
|
1, wont_exit, desc->out_edge,
|
| 1070 |
|
|
&remove_edges,
|
| 1071 |
|
|
DLTHE_FLAG_UPDATE_FREQ);
|
| 1072 |
|
|
gcc_assert (ok);
|
| 1073 |
|
|
|
| 1074 |
|
|
/* Create item for switch. */
|
| 1075 |
|
|
j = n_peel - i - (extra_zero_check ? 0 : 1);
|
| 1076 |
|
|
p = REG_BR_PROB_BASE / (i + 2);
|
| 1077 |
|
|
|
| 1078 |
|
|
preheader = split_edge (loop_preheader_edge (loop));
|
| 1079 |
|
|
branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
|
| 1080 |
|
|
block_label (preheader), p,
|
| 1081 |
|
|
NULL_RTX);
|
| 1082 |
|
|
|
| 1083 |
|
|
/* We rely on the fact that the compare and jump cannot be optimized out,
|
| 1084 |
|
|
and hence the cfg we create is correct. */
|
| 1085 |
|
|
gcc_assert (branch_code != NULL_RTX);
|
| 1086 |
|
|
|
| 1087 |
|
|
swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
|
| 1088 |
|
|
set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
|
| 1089 |
|
|
single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
|
| 1090 |
|
|
e = make_edge (swtch, preheader,
|
| 1091 |
|
|
single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
|
| 1092 |
|
|
e->probability = p;
|
| 1093 |
|
|
}
|
| 1094 |
|
|
|
| 1095 |
|
|
if (extra_zero_check)
|
| 1096 |
|
|
{
|
| 1097 |
|
|
/* Add branch for zero iterations. */
|
| 1098 |
|
|
p = REG_BR_PROB_BASE / (max_unroll + 1);
|
| 1099 |
|
|
swtch = ezc_swtch;
|
| 1100 |
|
|
preheader = split_edge (loop_preheader_edge (loop));
|
| 1101 |
|
|
branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
|
| 1102 |
|
|
block_label (preheader), p,
|
| 1103 |
|
|
NULL_RTX);
|
| 1104 |
|
|
gcc_assert (branch_code != NULL_RTX);
|
| 1105 |
|
|
|
| 1106 |
|
|
swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
|
| 1107 |
|
|
set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
|
| 1108 |
|
|
single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
|
| 1109 |
|
|
e = make_edge (swtch, preheader,
|
| 1110 |
|
|
single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
|
| 1111 |
|
|
e->probability = p;
|
| 1112 |
|
|
}
|
| 1113 |
|
|
|
| 1114 |
|
|
/* Recount dominators for outer blocks. */
|
| 1115 |
|
|
iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
|
| 1116 |
|
|
|
| 1117 |
|
|
/* And unroll loop. */
|
| 1118 |
|
|
|
| 1119 |
|
|
sbitmap_ones (wont_exit);
|
| 1120 |
|
|
RESET_BIT (wont_exit, may_exit_copy);
|
| 1121 |
|
|
opt_info_start_duplication (opt_info);
|
| 1122 |
|
|
|
| 1123 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
|
| 1124 |
|
|
max_unroll,
|
| 1125 |
|
|
wont_exit, desc->out_edge,
|
| 1126 |
|
|
&remove_edges,
|
| 1127 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
| 1128 |
|
|
| (opt_info
|
| 1129 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
| 1130 |
|
|
: 0));
|
| 1131 |
|
|
gcc_assert (ok);
|
| 1132 |
|
|
|
| 1133 |
|
|
if (opt_info)
|
| 1134 |
|
|
{
|
| 1135 |
|
|
apply_opt_in_copies (opt_info, max_unroll, true, true);
|
| 1136 |
|
|
free_opt_info (opt_info);
|
| 1137 |
|
|
}
|
| 1138 |
|
|
|
| 1139 |
|
|
free (wont_exit);
|
| 1140 |
|
|
|
| 1141 |
|
|
if (exit_at_end)
|
| 1142 |
|
|
{
|
| 1143 |
|
|
basic_block exit_block = get_bb_copy (desc->in_edge->src);
|
| 1144 |
|
|
/* Find a new in and out edge; they are in the last copy we have
|
| 1145 |
|
|
made. */
|
| 1146 |
|
|
|
| 1147 |
|
|
if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
|
| 1148 |
|
|
{
|
| 1149 |
|
|
desc->out_edge = EDGE_SUCC (exit_block, 0);
|
| 1150 |
|
|
desc->in_edge = EDGE_SUCC (exit_block, 1);
|
| 1151 |
|
|
}
|
| 1152 |
|
|
else
|
| 1153 |
|
|
{
|
| 1154 |
|
|
desc->out_edge = EDGE_SUCC (exit_block, 1);
|
| 1155 |
|
|
desc->in_edge = EDGE_SUCC (exit_block, 0);
|
| 1156 |
|
|
}
|
| 1157 |
|
|
}
|
| 1158 |
|
|
|
| 1159 |
|
|
/* Remove the edges. */
|
| 1160 |
|
|
for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
|
| 1161 |
|
|
remove_path (e);
|
| 1162 |
|
|
VEC_free (edge, heap, remove_edges);
|
| 1163 |
|
|
|
| 1164 |
|
|
/* We must be careful when updating the number of iterations due to
|
| 1165 |
|
|
preconditioning and the fact that the value must be valid at entry
|
| 1166 |
|
|
of the loop. After passing through the above code, we see that
|
| 1167 |
|
|
the correct new number of iterations is this: */
|
| 1168 |
|
|
gcc_assert (!desc->const_iter);
|
| 1169 |
|
|
desc->niter_expr =
|
| 1170 |
|
|
simplify_gen_binary (UDIV, desc->mode, old_niter,
|
| 1171 |
|
|
GEN_INT (max_unroll + 1));
|
| 1172 |
|
|
desc->niter_max /= max_unroll + 1;
|
| 1173 |
|
|
if (exit_at_end)
|
| 1174 |
|
|
{
|
| 1175 |
|
|
desc->niter_expr =
|
| 1176 |
|
|
simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
|
| 1177 |
|
|
desc->noloop_assumptions = NULL_RTX;
|
| 1178 |
|
|
desc->niter_max--;
|
| 1179 |
|
|
}
|
| 1180 |
|
|
|
| 1181 |
|
|
if (dump_file)
|
| 1182 |
|
|
fprintf (dump_file,
|
| 1183 |
|
|
";; Unrolled loop %d times, counting # of iterations "
|
| 1184 |
|
|
"in runtime, %i insns\n",
|
| 1185 |
|
|
max_unroll, num_loop_insns (loop));
|
| 1186 |
|
|
|
| 1187 |
|
|
VEC_free (basic_block, heap, dom_bbs);
|
| 1188 |
|
|
}
|
| 1189 |
|
|
|
| 1190 |
|
|
/* Decide whether to simply peel LOOP and how much. */
|
| 1191 |
|
|
static void
|
| 1192 |
|
|
decide_peel_simple (struct loop *loop, int flags)
|
| 1193 |
|
|
{
|
| 1194 |
|
|
unsigned npeel;
|
| 1195 |
|
|
struct niter_desc *desc;
|
| 1196 |
|
|
|
| 1197 |
|
|
if (!(flags & UAP_PEEL))
|
| 1198 |
|
|
{
|
| 1199 |
|
|
/* We were not asked to, just return back silently. */
|
| 1200 |
|
|
return;
|
| 1201 |
|
|
}
|
| 1202 |
|
|
|
| 1203 |
|
|
if (dump_file)
|
| 1204 |
|
|
fprintf (dump_file, "\n;; Considering simply peeling loop\n");
|
| 1205 |
|
|
|
| 1206 |
|
|
/* npeel = number of iterations to peel. */
|
| 1207 |
|
|
npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
|
| 1208 |
|
|
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
|
| 1209 |
|
|
npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
|
| 1210 |
|
|
|
| 1211 |
|
|
/* Skip big loops. */
|
| 1212 |
|
|
if (!npeel)
|
| 1213 |
|
|
{
|
| 1214 |
|
|
if (dump_file)
|
| 1215 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
| 1216 |
|
|
return;
|
| 1217 |
|
|
}
|
| 1218 |
|
|
|
| 1219 |
|
|
/* Check for simple loops. */
|
| 1220 |
|
|
desc = get_simple_loop_desc (loop);
|
| 1221 |
|
|
|
| 1222 |
|
|
/* Check number of iterations. */
|
| 1223 |
|
|
if (desc->simple_p && !desc->assumptions && desc->const_iter)
|
| 1224 |
|
|
{
|
| 1225 |
|
|
if (dump_file)
|
| 1226 |
|
|
fprintf (dump_file, ";; Loop iterates constant times\n");
|
| 1227 |
|
|
return;
|
| 1228 |
|
|
}
|
| 1229 |
|
|
|
| 1230 |
|
|
/* Do not simply peel loops with branches inside -- it increases number
|
| 1231 |
|
|
of mispredicts. */
|
| 1232 |
|
|
if (num_loop_branches (loop) > 1)
|
| 1233 |
|
|
{
|
| 1234 |
|
|
if (dump_file)
|
| 1235 |
|
|
fprintf (dump_file, ";; Not peeling, contains branches\n");
|
| 1236 |
|
|
return;
|
| 1237 |
|
|
}
|
| 1238 |
|
|
|
| 1239 |
|
|
if (loop->header->count)
|
| 1240 |
|
|
{
|
| 1241 |
|
|
unsigned niter = expected_loop_iterations (loop);
|
| 1242 |
|
|
if (niter + 1 > npeel)
|
| 1243 |
|
|
{
|
| 1244 |
|
|
if (dump_file)
|
| 1245 |
|
|
{
|
| 1246 |
|
|
fprintf (dump_file, ";; Not peeling loop, rolls too much (");
|
| 1247 |
|
|
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
|
| 1248 |
|
|
(HOST_WIDEST_INT) (niter + 1));
|
| 1249 |
|
|
fprintf (dump_file, " iterations > %d [maximum peelings])\n",
|
| 1250 |
|
|
npeel);
|
| 1251 |
|
|
}
|
| 1252 |
|
|
return;
|
| 1253 |
|
|
}
|
| 1254 |
|
|
npeel = niter + 1;
|
| 1255 |
|
|
}
|
| 1256 |
|
|
else
|
| 1257 |
|
|
{
|
| 1258 |
|
|
/* For now we have no good heuristics to decide whether loop peeling
|
| 1259 |
|
|
will be effective, so disable it. */
|
| 1260 |
|
|
if (dump_file)
|
| 1261 |
|
|
fprintf (dump_file,
|
| 1262 |
|
|
";; Not peeling loop, no evidence it will be profitable\n");
|
| 1263 |
|
|
return;
|
| 1264 |
|
|
}
|
| 1265 |
|
|
|
| 1266 |
|
|
/* Success. */
|
| 1267 |
|
|
loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
|
| 1268 |
|
|
loop->lpt_decision.times = npeel;
|
| 1269 |
|
|
|
| 1270 |
|
|
if (dump_file)
|
| 1271 |
|
|
fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
|
| 1272 |
|
|
loop->lpt_decision.times);
|
| 1273 |
|
|
}
|
| 1274 |
|
|
|
| 1275 |
|
|
/* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
|
| 1276 |
|
|
while (cond)
|
| 1277 |
|
|
body;
|
| 1278 |
|
|
|
| 1279 |
|
|
==>
|
| 1280 |
|
|
|
| 1281 |
|
|
if (!cond) goto end;
|
| 1282 |
|
|
body;
|
| 1283 |
|
|
if (!cond) goto end;
|
| 1284 |
|
|
body;
|
| 1285 |
|
|
while (cond)
|
| 1286 |
|
|
body;
|
| 1287 |
|
|
end: ;
|
| 1288 |
|
|
*/
|
| 1289 |
|
|
static void
|
| 1290 |
|
|
peel_loop_simple (struct loop *loop)
|
| 1291 |
|
|
{
|
| 1292 |
|
|
sbitmap wont_exit;
|
| 1293 |
|
|
unsigned npeel = loop->lpt_decision.times;
|
| 1294 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
| 1295 |
|
|
struct opt_info *opt_info = NULL;
|
| 1296 |
|
|
bool ok;
|
| 1297 |
|
|
|
| 1298 |
|
|
if (flag_split_ivs_in_unroller && npeel > 1)
|
| 1299 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
| 1300 |
|
|
|
| 1301 |
|
|
wont_exit = sbitmap_alloc (npeel + 1);
|
| 1302 |
|
|
sbitmap_zero (wont_exit);
|
| 1303 |
|
|
|
| 1304 |
|
|
opt_info_start_duplication (opt_info);
|
| 1305 |
|
|
|
| 1306 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
|
| 1307 |
|
|
npeel, wont_exit, NULL,
|
| 1308 |
|
|
NULL, DLTHE_FLAG_UPDATE_FREQ
|
| 1309 |
|
|
| (opt_info
|
| 1310 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
| 1311 |
|
|
: 0));
|
| 1312 |
|
|
gcc_assert (ok);
|
| 1313 |
|
|
|
| 1314 |
|
|
free (wont_exit);
|
| 1315 |
|
|
|
| 1316 |
|
|
if (opt_info)
|
| 1317 |
|
|
{
|
| 1318 |
|
|
apply_opt_in_copies (opt_info, npeel, false, false);
|
| 1319 |
|
|
free_opt_info (opt_info);
|
| 1320 |
|
|
}
|
| 1321 |
|
|
|
| 1322 |
|
|
if (desc->simple_p)
|
| 1323 |
|
|
{
|
| 1324 |
|
|
if (desc->const_iter)
|
| 1325 |
|
|
{
|
| 1326 |
|
|
desc->niter -= npeel;
|
| 1327 |
|
|
desc->niter_expr = GEN_INT (desc->niter);
|
| 1328 |
|
|
desc->noloop_assumptions = NULL_RTX;
|
| 1329 |
|
|
}
|
| 1330 |
|
|
else
|
| 1331 |
|
|
{
|
| 1332 |
|
|
/* We cannot just update niter_expr, as its value might be clobbered
|
| 1333 |
|
|
inside loop. We could handle this by counting the number into
|
| 1334 |
|
|
temporary just like we do in runtime unrolling, but it does not
|
| 1335 |
|
|
seem worthwhile. */
|
| 1336 |
|
|
free_simple_loop_desc (loop);
|
| 1337 |
|
|
}
|
| 1338 |
|
|
}
|
| 1339 |
|
|
if (dump_file)
|
| 1340 |
|
|
fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
|
| 1341 |
|
|
}
|
| 1342 |
|
|
|
| 1343 |
|
|
/* Decide whether to unroll LOOP stupidly and how much. */
|
| 1344 |
|
|
static void
|
| 1345 |
|
|
decide_unroll_stupid (struct loop *loop, int flags)
|
| 1346 |
|
|
{
|
| 1347 |
|
|
unsigned nunroll, nunroll_by_av, i;
|
| 1348 |
|
|
struct niter_desc *desc;
|
| 1349 |
|
|
|
| 1350 |
|
|
if (!(flags & UAP_UNROLL_ALL))
|
| 1351 |
|
|
{
|
| 1352 |
|
|
/* We were not asked to, just return back silently. */
|
| 1353 |
|
|
return;
|
| 1354 |
|
|
}
|
| 1355 |
|
|
|
| 1356 |
|
|
if (dump_file)
|
| 1357 |
|
|
fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
|
| 1358 |
|
|
|
| 1359 |
|
|
/* nunroll = total number of copies of the original loop body in
|
| 1360 |
|
|
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
|
| 1361 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
|
| 1362 |
|
|
nunroll_by_av
|
| 1363 |
|
|
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
|
| 1364 |
|
|
if (nunroll > nunroll_by_av)
|
| 1365 |
|
|
nunroll = nunroll_by_av;
|
| 1366 |
|
|
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
|
| 1367 |
|
|
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
|
| 1368 |
|
|
|
| 1369 |
|
|
/* Skip big loops. */
|
| 1370 |
|
|
if (nunroll <= 1)
|
| 1371 |
|
|
{
|
| 1372 |
|
|
if (dump_file)
|
| 1373 |
|
|
fprintf (dump_file, ";; Not considering loop, is too big\n");
|
| 1374 |
|
|
return;
|
| 1375 |
|
|
}
|
| 1376 |
|
|
|
| 1377 |
|
|
/* Check for simple loops. */
|
| 1378 |
|
|
desc = get_simple_loop_desc (loop);
|
| 1379 |
|
|
|
| 1380 |
|
|
/* Check simpleness. */
|
| 1381 |
|
|
if (desc->simple_p && !desc->assumptions)
|
| 1382 |
|
|
{
|
| 1383 |
|
|
if (dump_file)
|
| 1384 |
|
|
fprintf (dump_file, ";; The loop is simple\n");
|
| 1385 |
|
|
return;
|
| 1386 |
|
|
}
|
| 1387 |
|
|
|
| 1388 |
|
|
/* Do not unroll loops with branches inside -- it increases number
|
| 1389 |
|
|
of mispredicts. */
|
| 1390 |
|
|
if (num_loop_branches (loop) > 1)
|
| 1391 |
|
|
{
|
| 1392 |
|
|
if (dump_file)
|
| 1393 |
|
|
fprintf (dump_file, ";; Not unrolling, contains branches\n");
|
| 1394 |
|
|
return;
|
| 1395 |
|
|
}
|
| 1396 |
|
|
|
| 1397 |
|
|
/* If we have profile feedback, check whether the loop rolls. */
|
| 1398 |
|
|
if (loop->header->count
|
| 1399 |
|
|
&& expected_loop_iterations (loop) < 2 * nunroll)
|
| 1400 |
|
|
{
|
| 1401 |
|
|
if (dump_file)
|
| 1402 |
|
|
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
|
| 1403 |
|
|
return;
|
| 1404 |
|
|
}
|
| 1405 |
|
|
|
| 1406 |
|
|
/* Success. Now force nunroll to be power of 2, as it seems that this
|
| 1407 |
|
|
improves results (partially because of better alignments, partially
|
| 1408 |
|
|
because of some dark magic). */
|
| 1409 |
|
|
for (i = 1; 2 * i <= nunroll; i *= 2)
|
| 1410 |
|
|
continue;
|
| 1411 |
|
|
|
| 1412 |
|
|
loop->lpt_decision.decision = LPT_UNROLL_STUPID;
|
| 1413 |
|
|
loop->lpt_decision.times = i - 1;
|
| 1414 |
|
|
|
| 1415 |
|
|
if (dump_file)
|
| 1416 |
|
|
fprintf (dump_file,
|
| 1417 |
|
|
";; Decided to unroll the loop stupidly, %d times.\n",
|
| 1418 |
|
|
loop->lpt_decision.times);
|
| 1419 |
|
|
}
|
| 1420 |
|
|
|
| 1421 |
|
|
/* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
|
| 1422 |
|
|
while (cond)
|
| 1423 |
|
|
body;
|
| 1424 |
|
|
|
| 1425 |
|
|
==>
|
| 1426 |
|
|
|
| 1427 |
|
|
while (cond)
|
| 1428 |
|
|
{
|
| 1429 |
|
|
body;
|
| 1430 |
|
|
if (!cond) break;
|
| 1431 |
|
|
body;
|
| 1432 |
|
|
if (!cond) break;
|
| 1433 |
|
|
body;
|
| 1434 |
|
|
if (!cond) break;
|
| 1435 |
|
|
body;
|
| 1436 |
|
|
}
|
| 1437 |
|
|
*/
|
| 1438 |
|
|
static void
|
| 1439 |
|
|
unroll_loop_stupid (struct loop *loop)
|
| 1440 |
|
|
{
|
| 1441 |
|
|
sbitmap wont_exit;
|
| 1442 |
|
|
unsigned nunroll = loop->lpt_decision.times;
|
| 1443 |
|
|
struct niter_desc *desc = get_simple_loop_desc (loop);
|
| 1444 |
|
|
struct opt_info *opt_info = NULL;
|
| 1445 |
|
|
bool ok;
|
| 1446 |
|
|
|
| 1447 |
|
|
if (flag_split_ivs_in_unroller
|
| 1448 |
|
|
|| flag_variable_expansion_in_unroller)
|
| 1449 |
|
|
opt_info = analyze_insns_in_loop (loop);
|
| 1450 |
|
|
|
| 1451 |
|
|
|
| 1452 |
|
|
wont_exit = sbitmap_alloc (nunroll + 1);
|
| 1453 |
|
|
sbitmap_zero (wont_exit);
|
| 1454 |
|
|
opt_info_start_duplication (opt_info);
|
| 1455 |
|
|
|
| 1456 |
|
|
ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
|
| 1457 |
|
|
nunroll, wont_exit,
|
| 1458 |
|
|
NULL, NULL,
|
| 1459 |
|
|
DLTHE_FLAG_UPDATE_FREQ
|
| 1460 |
|
|
| (opt_info
|
| 1461 |
|
|
? DLTHE_RECORD_COPY_NUMBER
|
| 1462 |
|
|
: 0));
|
| 1463 |
|
|
gcc_assert (ok);
|
| 1464 |
|
|
|
| 1465 |
|
|
if (opt_info)
|
| 1466 |
|
|
{
|
| 1467 |
|
|
apply_opt_in_copies (opt_info, nunroll, true, true);
|
| 1468 |
|
|
free_opt_info (opt_info);
|
| 1469 |
|
|
}
|
| 1470 |
|
|
|
| 1471 |
|
|
free (wont_exit);
|
| 1472 |
|
|
|
| 1473 |
|
|
if (desc->simple_p)
|
| 1474 |
|
|
{
|
| 1475 |
|
|
/* We indeed may get here provided that there are nontrivial assumptions
|
| 1476 |
|
|
for a loop to be really simple. We could update the counts, but the
|
| 1477 |
|
|
problem is that we are unable to decide which exit will be taken
|
| 1478 |
|
|
(not really true in case the number of iterations is constant,
|
| 1479 |
|
|
but noone will do anything with this information, so we do not
|
| 1480 |
|
|
worry about it). */
|
| 1481 |
|
|
desc->simple_p = false;
|
| 1482 |
|
|
}
|
| 1483 |
|
|
|
| 1484 |
|
|
if (dump_file)
|
| 1485 |
|
|
fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
|
| 1486 |
|
|
nunroll, num_loop_insns (loop));
|
| 1487 |
|
|
}
|
| 1488 |
|
|
|
| 1489 |
|
|
/* A hash function for information about insns to split. */
|
| 1490 |
|
|
|
| 1491 |
|
|
static hashval_t
|
| 1492 |
|
|
si_info_hash (const void *ivts)
|
| 1493 |
|
|
{
|
| 1494 |
|
|
return (hashval_t) INSN_UID (((const struct iv_to_split *) ivts)->insn);
|
| 1495 |
|
|
}
|
| 1496 |
|
|
|
| 1497 |
|
|
/* An equality functions for information about insns to split. */
|
| 1498 |
|
|
|
| 1499 |
|
|
static int
|
| 1500 |
|
|
si_info_eq (const void *ivts1, const void *ivts2)
|
| 1501 |
|
|
{
|
| 1502 |
|
|
const struct iv_to_split *const i1 = (const struct iv_to_split *) ivts1;
|
| 1503 |
|
|
const struct iv_to_split *const i2 = (const struct iv_to_split *) ivts2;
|
| 1504 |
|
|
|
| 1505 |
|
|
return i1->insn == i2->insn;
|
| 1506 |
|
|
}
|
| 1507 |
|
|
|
| 1508 |
|
|
/* Return a hash for VES, which is really a "var_to_expand *". */
|
| 1509 |
|
|
|
| 1510 |
|
|
static hashval_t
|
| 1511 |
|
|
ve_info_hash (const void *ves)
|
| 1512 |
|
|
{
|
| 1513 |
|
|
return (hashval_t) INSN_UID (((const struct var_to_expand *) ves)->insn);
|
| 1514 |
|
|
}
|
| 1515 |
|
|
|
| 1516 |
|
|
/* Return true if IVTS1 and IVTS2 (which are really both of type
|
| 1517 |
|
|
"var_to_expand *") refer to the same instruction. */
|
| 1518 |
|
|
|
| 1519 |
|
|
static int
|
| 1520 |
|
|
ve_info_eq (const void *ivts1, const void *ivts2)
|
| 1521 |
|
|
{
|
| 1522 |
|
|
const struct var_to_expand *const i1 = (const struct var_to_expand *) ivts1;
|
| 1523 |
|
|
const struct var_to_expand *const i2 = (const struct var_to_expand *) ivts2;
|
| 1524 |
|
|
|
| 1525 |
|
|
return i1->insn == i2->insn;
|
| 1526 |
|
|
}
|
| 1527 |
|
|
|
| 1528 |
|
|
/* Returns true if REG is referenced in one nondebug insn in LOOP.
|
| 1529 |
|
|
Set *DEBUG_USES to the number of debug insns that reference the
|
| 1530 |
|
|
variable. */
|
| 1531 |
|
|
|
| 1532 |
|
|
bool
|
| 1533 |
|
|
referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
|
| 1534 |
|
|
int *debug_uses)
|
| 1535 |
|
|
{
|
| 1536 |
|
|
basic_block *body, bb;
|
| 1537 |
|
|
unsigned i;
|
| 1538 |
|
|
int count_ref = 0;
|
| 1539 |
|
|
rtx insn;
|
| 1540 |
|
|
|
| 1541 |
|
|
body = get_loop_body (loop);
|
| 1542 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 1543 |
|
|
{
|
| 1544 |
|
|
bb = body[i];
|
| 1545 |
|
|
|
| 1546 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 1547 |
|
|
if (!rtx_referenced_p (reg, insn))
|
| 1548 |
|
|
continue;
|
| 1549 |
|
|
else if (DEBUG_INSN_P (insn))
|
| 1550 |
|
|
++*debug_uses;
|
| 1551 |
|
|
else if (++count_ref > 1)
|
| 1552 |
|
|
break;
|
| 1553 |
|
|
}
|
| 1554 |
|
|
free (body);
|
| 1555 |
|
|
return (count_ref == 1);
|
| 1556 |
|
|
}
|
| 1557 |
|
|
|
| 1558 |
|
|
/* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
|
| 1559 |
|
|
|
| 1560 |
|
|
static void
|
| 1561 |
|
|
reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
|
| 1562 |
|
|
{
|
| 1563 |
|
|
basic_block *body, bb;
|
| 1564 |
|
|
unsigned i;
|
| 1565 |
|
|
rtx insn;
|
| 1566 |
|
|
|
| 1567 |
|
|
body = get_loop_body (loop);
|
| 1568 |
|
|
for (i = 0; debug_uses && i < loop->num_nodes; i++)
|
| 1569 |
|
|
{
|
| 1570 |
|
|
bb = body[i];
|
| 1571 |
|
|
|
| 1572 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 1573 |
|
|
if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
|
| 1574 |
|
|
continue;
|
| 1575 |
|
|
else
|
| 1576 |
|
|
{
|
| 1577 |
|
|
validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
|
| 1578 |
|
|
gen_rtx_UNKNOWN_VAR_LOC (), 0);
|
| 1579 |
|
|
if (!--debug_uses)
|
| 1580 |
|
|
break;
|
| 1581 |
|
|
}
|
| 1582 |
|
|
}
|
| 1583 |
|
|
free (body);
|
| 1584 |
|
|
}
|
| 1585 |
|
|
|
| 1586 |
|
|
/* Determine whether INSN contains an accumulator
|
| 1587 |
|
|
which can be expanded into separate copies,
|
| 1588 |
|
|
one for each copy of the LOOP body.
|
| 1589 |
|
|
|
| 1590 |
|
|
for (i = 0 ; i < n; i++)
|
| 1591 |
|
|
sum += a[i];
|
| 1592 |
|
|
|
| 1593 |
|
|
==>
|
| 1594 |
|
|
|
| 1595 |
|
|
sum += a[i]
|
| 1596 |
|
|
....
|
| 1597 |
|
|
i = i+1;
|
| 1598 |
|
|
sum1 += a[i]
|
| 1599 |
|
|
....
|
| 1600 |
|
|
i = i+1
|
| 1601 |
|
|
sum2 += a[i];
|
| 1602 |
|
|
....
|
| 1603 |
|
|
|
| 1604 |
|
|
Return NULL if INSN contains no opportunity for expansion of accumulator.
|
| 1605 |
|
|
Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
|
| 1606 |
|
|
information and return a pointer to it.
|
| 1607 |
|
|
*/
|
| 1608 |
|
|
|
| 1609 |
|
|
static struct var_to_expand *
|
| 1610 |
|
|
analyze_insn_to_expand_var (struct loop *loop, rtx insn)
|
| 1611 |
|
|
{
|
| 1612 |
|
|
rtx set, dest, src, op1, op2, something;
|
| 1613 |
|
|
struct var_to_expand *ves;
|
| 1614 |
|
|
enum machine_mode mode1, mode2;
|
| 1615 |
|
|
unsigned accum_pos;
|
| 1616 |
|
|
int debug_uses = 0;
|
| 1617 |
|
|
|
| 1618 |
|
|
set = single_set (insn);
|
| 1619 |
|
|
if (!set)
|
| 1620 |
|
|
return NULL;
|
| 1621 |
|
|
|
| 1622 |
|
|
dest = SET_DEST (set);
|
| 1623 |
|
|
src = SET_SRC (set);
|
| 1624 |
|
|
|
| 1625 |
|
|
if (GET_CODE (src) != PLUS
|
| 1626 |
|
|
&& GET_CODE (src) != MINUS
|
| 1627 |
|
|
&& GET_CODE (src) != MULT)
|
| 1628 |
|
|
return NULL;
|
| 1629 |
|
|
|
| 1630 |
|
|
/* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
|
| 1631 |
|
|
in MD. But if there is no optab to generate the insn, we can not
|
| 1632 |
|
|
perform the variable expansion. This can happen if an MD provides
|
| 1633 |
|
|
an insn but not a named pattern to generate it, for example to avoid
|
| 1634 |
|
|
producing code that needs additional mode switches like for x87/mmx.
|
| 1635 |
|
|
|
| 1636 |
|
|
So we check have_insn_for which looks for an optab for the operation
|
| 1637 |
|
|
in SRC. If it doesn't exist, we can't perform the expansion even
|
| 1638 |
|
|
though INSN is valid. */
|
| 1639 |
|
|
if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
|
| 1640 |
|
|
return NULL;
|
| 1641 |
|
|
|
| 1642 |
|
|
op1 = XEXP (src, 0);
|
| 1643 |
|
|
op2 = XEXP (src, 1);
|
| 1644 |
|
|
|
| 1645 |
|
|
if (!REG_P (dest)
|
| 1646 |
|
|
&& !(GET_CODE (dest) == SUBREG
|
| 1647 |
|
|
&& REG_P (SUBREG_REG (dest))))
|
| 1648 |
|
|
return NULL;
|
| 1649 |
|
|
|
| 1650 |
|
|
if (rtx_equal_p (dest, op1))
|
| 1651 |
|
|
accum_pos = 0;
|
| 1652 |
|
|
else if (rtx_equal_p (dest, op2))
|
| 1653 |
|
|
accum_pos = 1;
|
| 1654 |
|
|
else
|
| 1655 |
|
|
return NULL;
|
| 1656 |
|
|
|
| 1657 |
|
|
/* The method of expansion that we are using; which includes
|
| 1658 |
|
|
the initialization of the expansions with zero and the summation of
|
| 1659 |
|
|
the expansions at the end of the computation will yield wrong results
|
| 1660 |
|
|
for (x = something - x) thus avoid using it in that case. */
|
| 1661 |
|
|
if (accum_pos == 1
|
| 1662 |
|
|
&& GET_CODE (src) == MINUS)
|
| 1663 |
|
|
return NULL;
|
| 1664 |
|
|
|
| 1665 |
|
|
something = (accum_pos == 0) ? op2 : op1;
|
| 1666 |
|
|
|
| 1667 |
|
|
if (rtx_referenced_p (dest, something))
|
| 1668 |
|
|
return NULL;
|
| 1669 |
|
|
|
| 1670 |
|
|
if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
|
| 1671 |
|
|
return NULL;
|
| 1672 |
|
|
|
| 1673 |
|
|
mode1 = GET_MODE (dest);
|
| 1674 |
|
|
mode2 = GET_MODE (something);
|
| 1675 |
|
|
if ((FLOAT_MODE_P (mode1)
|
| 1676 |
|
|
|| FLOAT_MODE_P (mode2))
|
| 1677 |
|
|
&& !flag_associative_math)
|
| 1678 |
|
|
return NULL;
|
| 1679 |
|
|
|
| 1680 |
|
|
if (dump_file)
|
| 1681 |
|
|
{
|
| 1682 |
|
|
fprintf (dump_file,
|
| 1683 |
|
|
"\n;; Expanding Accumulator ");
|
| 1684 |
|
|
print_rtl (dump_file, dest);
|
| 1685 |
|
|
fprintf (dump_file, "\n");
|
| 1686 |
|
|
}
|
| 1687 |
|
|
|
| 1688 |
|
|
if (debug_uses)
|
| 1689 |
|
|
/* Instead of resetting the debug insns, we could replace each
|
| 1690 |
|
|
debug use in the loop with the sum or product of all expanded
|
| 1691 |
|
|
accummulators. Since we'll only know of all expansions at the
|
| 1692 |
|
|
end, we'd have to keep track of which vars_to_expand a debug
|
| 1693 |
|
|
insn in the loop references, take note of each copy of the
|
| 1694 |
|
|
debug insn during unrolling, and when it's all done, compute
|
| 1695 |
|
|
the sum or product of each variable and adjust the original
|
| 1696 |
|
|
debug insn and each copy thereof. What a pain! */
|
| 1697 |
|
|
reset_debug_uses_in_loop (loop, dest, debug_uses);
|
| 1698 |
|
|
|
| 1699 |
|
|
/* Record the accumulator to expand. */
|
| 1700 |
|
|
ves = XNEW (struct var_to_expand);
|
| 1701 |
|
|
ves->insn = insn;
|
| 1702 |
|
|
ves->reg = copy_rtx (dest);
|
| 1703 |
|
|
ves->var_expansions = VEC_alloc (rtx, heap, 1);
|
| 1704 |
|
|
ves->next = NULL;
|
| 1705 |
|
|
ves->op = GET_CODE (src);
|
| 1706 |
|
|
ves->expansion_count = 0;
|
| 1707 |
|
|
ves->reuse_expansion = 0;
|
| 1708 |
|
|
ves->accum_pos = accum_pos;
|
| 1709 |
|
|
return ves;
|
| 1710 |
|
|
}
|
| 1711 |
|
|
|
| 1712 |
|
|
/* Determine whether there is an induction variable in INSN that
|
| 1713 |
|
|
we would like to split during unrolling.
|
| 1714 |
|
|
|
| 1715 |
|
|
I.e. replace
|
| 1716 |
|
|
|
| 1717 |
|
|
i = i + 1;
|
| 1718 |
|
|
...
|
| 1719 |
|
|
i = i + 1;
|
| 1720 |
|
|
...
|
| 1721 |
|
|
i = i + 1;
|
| 1722 |
|
|
...
|
| 1723 |
|
|
|
| 1724 |
|
|
type chains by
|
| 1725 |
|
|
|
| 1726 |
|
|
i0 = i + 1
|
| 1727 |
|
|
...
|
| 1728 |
|
|
i = i0 + 1
|
| 1729 |
|
|
...
|
| 1730 |
|
|
i = i0 + 2
|
| 1731 |
|
|
...
|
| 1732 |
|
|
|
| 1733 |
|
|
Return NULL if INSN contains no interesting IVs. Otherwise, allocate
|
| 1734 |
|
|
an IV_TO_SPLIT structure, fill it with the relevant information and return a
|
| 1735 |
|
|
pointer to it. */
|
| 1736 |
|
|
|
| 1737 |
|
|
static struct iv_to_split *
|
| 1738 |
|
|
analyze_iv_to_split_insn (rtx insn)
|
| 1739 |
|
|
{
|
| 1740 |
|
|
rtx set, dest;
|
| 1741 |
|
|
struct rtx_iv iv;
|
| 1742 |
|
|
struct iv_to_split *ivts;
|
| 1743 |
|
|
bool ok;
|
| 1744 |
|
|
|
| 1745 |
|
|
/* For now we just split the basic induction variables. Later this may be
|
| 1746 |
|
|
extended for example by selecting also addresses of memory references. */
|
| 1747 |
|
|
set = single_set (insn);
|
| 1748 |
|
|
if (!set)
|
| 1749 |
|
|
return NULL;
|
| 1750 |
|
|
|
| 1751 |
|
|
dest = SET_DEST (set);
|
| 1752 |
|
|
if (!REG_P (dest))
|
| 1753 |
|
|
return NULL;
|
| 1754 |
|
|
|
| 1755 |
|
|
if (!biv_p (insn, dest))
|
| 1756 |
|
|
return NULL;
|
| 1757 |
|
|
|
| 1758 |
|
|
ok = iv_analyze_result (insn, dest, &iv);
|
| 1759 |
|
|
|
| 1760 |
|
|
/* This used to be an assert under the assumption that if biv_p returns
|
| 1761 |
|
|
true that iv_analyze_result must also return true. However, that
|
| 1762 |
|
|
assumption is not strictly correct as evidenced by pr25569.
|
| 1763 |
|
|
|
| 1764 |
|
|
Returning NULL when iv_analyze_result returns false is safe and
|
| 1765 |
|
|
avoids the problems in pr25569 until the iv_analyze_* routines
|
| 1766 |
|
|
can be fixed, which is apparently hard and time consuming
|
| 1767 |
|
|
according to their author. */
|
| 1768 |
|
|
if (! ok)
|
| 1769 |
|
|
return NULL;
|
| 1770 |
|
|
|
| 1771 |
|
|
if (iv.step == const0_rtx
|
| 1772 |
|
|
|| iv.mode != iv.extend_mode)
|
| 1773 |
|
|
return NULL;
|
| 1774 |
|
|
|
| 1775 |
|
|
/* Record the insn to split. */
|
| 1776 |
|
|
ivts = XNEW (struct iv_to_split);
|
| 1777 |
|
|
ivts->insn = insn;
|
| 1778 |
|
|
ivts->base_var = NULL_RTX;
|
| 1779 |
|
|
ivts->step = iv.step;
|
| 1780 |
|
|
ivts->next = NULL;
|
| 1781 |
|
|
ivts->n_loc = 1;
|
| 1782 |
|
|
ivts->loc[0] = 1;
|
| 1783 |
|
|
|
| 1784 |
|
|
return ivts;
|
| 1785 |
|
|
}
|
| 1786 |
|
|
|
| 1787 |
|
|
/* Determines which of insns in LOOP can be optimized.
|
| 1788 |
|
|
Return a OPT_INFO struct with the relevant hash tables filled
|
| 1789 |
|
|
with all insns to be optimized. The FIRST_NEW_BLOCK field
|
| 1790 |
|
|
is undefined for the return value. */
|
| 1791 |
|
|
|
| 1792 |
|
|
static struct opt_info *
|
| 1793 |
|
|
analyze_insns_in_loop (struct loop *loop)
|
| 1794 |
|
|
{
|
| 1795 |
|
|
basic_block *body, bb;
|
| 1796 |
|
|
unsigned i;
|
| 1797 |
|
|
struct opt_info *opt_info = XCNEW (struct opt_info);
|
| 1798 |
|
|
rtx insn;
|
| 1799 |
|
|
struct iv_to_split *ivts = NULL;
|
| 1800 |
|
|
struct var_to_expand *ves = NULL;
|
| 1801 |
|
|
PTR *slot1;
|
| 1802 |
|
|
PTR *slot2;
|
| 1803 |
|
|
VEC (edge, heap) *edges = get_loop_exit_edges (loop);
|
| 1804 |
|
|
edge exit;
|
| 1805 |
|
|
bool can_apply = false;
|
| 1806 |
|
|
|
| 1807 |
|
|
iv_analysis_loop_init (loop);
|
| 1808 |
|
|
|
| 1809 |
|
|
body = get_loop_body (loop);
|
| 1810 |
|
|
|
| 1811 |
|
|
if (flag_split_ivs_in_unroller)
|
| 1812 |
|
|
{
|
| 1813 |
|
|
opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
|
| 1814 |
|
|
si_info_hash, si_info_eq, free);
|
| 1815 |
|
|
opt_info->iv_to_split_head = NULL;
|
| 1816 |
|
|
opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
|
| 1817 |
|
|
}
|
| 1818 |
|
|
|
| 1819 |
|
|
/* Record the loop exit bb and loop preheader before the unrolling. */
|
| 1820 |
|
|
opt_info->loop_preheader = loop_preheader_edge (loop)->src;
|
| 1821 |
|
|
|
| 1822 |
|
|
if (VEC_length (edge, edges) == 1)
|
| 1823 |
|
|
{
|
| 1824 |
|
|
exit = VEC_index (edge, edges, 0);
|
| 1825 |
|
|
if (!(exit->flags & EDGE_COMPLEX))
|
| 1826 |
|
|
{
|
| 1827 |
|
|
opt_info->loop_exit = split_edge (exit);
|
| 1828 |
|
|
can_apply = true;
|
| 1829 |
|
|
}
|
| 1830 |
|
|
}
|
| 1831 |
|
|
|
| 1832 |
|
|
if (flag_variable_expansion_in_unroller
|
| 1833 |
|
|
&& can_apply)
|
| 1834 |
|
|
{
|
| 1835 |
|
|
opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
|
| 1836 |
|
|
ve_info_hash,
|
| 1837 |
|
|
ve_info_eq, free);
|
| 1838 |
|
|
opt_info->var_to_expand_head = NULL;
|
| 1839 |
|
|
opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
|
| 1840 |
|
|
}
|
| 1841 |
|
|
|
| 1842 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 1843 |
|
|
{
|
| 1844 |
|
|
bb = body[i];
|
| 1845 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
|
| 1846 |
|
|
continue;
|
| 1847 |
|
|
|
| 1848 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 1849 |
|
|
{
|
| 1850 |
|
|
if (!INSN_P (insn))
|
| 1851 |
|
|
continue;
|
| 1852 |
|
|
|
| 1853 |
|
|
if (opt_info->insns_to_split)
|
| 1854 |
|
|
ivts = analyze_iv_to_split_insn (insn);
|
| 1855 |
|
|
|
| 1856 |
|
|
if (ivts)
|
| 1857 |
|
|
{
|
| 1858 |
|
|
slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
|
| 1859 |
|
|
gcc_assert (*slot1 == NULL);
|
| 1860 |
|
|
*slot1 = ivts;
|
| 1861 |
|
|
*opt_info->iv_to_split_tail = ivts;
|
| 1862 |
|
|
opt_info->iv_to_split_tail = &ivts->next;
|
| 1863 |
|
|
continue;
|
| 1864 |
|
|
}
|
| 1865 |
|
|
|
| 1866 |
|
|
if (opt_info->insns_with_var_to_expand)
|
| 1867 |
|
|
ves = analyze_insn_to_expand_var (loop, insn);
|
| 1868 |
|
|
|
| 1869 |
|
|
if (ves)
|
| 1870 |
|
|
{
|
| 1871 |
|
|
slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
|
| 1872 |
|
|
gcc_assert (*slot2 == NULL);
|
| 1873 |
|
|
*slot2 = ves;
|
| 1874 |
|
|
*opt_info->var_to_expand_tail = ves;
|
| 1875 |
|
|
opt_info->var_to_expand_tail = &ves->next;
|
| 1876 |
|
|
}
|
| 1877 |
|
|
}
|
| 1878 |
|
|
}
|
| 1879 |
|
|
|
| 1880 |
|
|
VEC_free (edge, heap, edges);
|
| 1881 |
|
|
free (body);
|
| 1882 |
|
|
return opt_info;
|
| 1883 |
|
|
}
|
| 1884 |
|
|
|
| 1885 |
|
|
/* Called just before loop duplication. Records start of duplicated area
|
| 1886 |
|
|
to OPT_INFO. */
|
| 1887 |
|
|
|
| 1888 |
|
|
static void
|
| 1889 |
|
|
opt_info_start_duplication (struct opt_info *opt_info)
|
| 1890 |
|
|
{
|
| 1891 |
|
|
if (opt_info)
|
| 1892 |
|
|
opt_info->first_new_block = last_basic_block;
|
| 1893 |
|
|
}
|
| 1894 |
|
|
|
| 1895 |
|
|
/* Determine the number of iterations between initialization of the base
|
| 1896 |
|
|
variable and the current copy (N_COPY). N_COPIES is the total number
|
| 1897 |
|
|
of newly created copies. UNROLLING is true if we are unrolling
|
| 1898 |
|
|
(not peeling) the loop. */
|
| 1899 |
|
|
|
| 1900 |
|
|
static unsigned
|
| 1901 |
|
|
determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
|
| 1902 |
|
|
{
|
| 1903 |
|
|
if (unrolling)
|
| 1904 |
|
|
{
|
| 1905 |
|
|
/* If we are unrolling, initialization is done in the original loop
|
| 1906 |
|
|
body (number 0). */
|
| 1907 |
|
|
return n_copy;
|
| 1908 |
|
|
}
|
| 1909 |
|
|
else
|
| 1910 |
|
|
{
|
| 1911 |
|
|
/* If we are peeling, the copy in that the initialization occurs has
|
| 1912 |
|
|
number 1. The original loop (number 0) is the last. */
|
| 1913 |
|
|
if (n_copy)
|
| 1914 |
|
|
return n_copy - 1;
|
| 1915 |
|
|
else
|
| 1916 |
|
|
return n_copies;
|
| 1917 |
|
|
}
|
| 1918 |
|
|
}
|
| 1919 |
|
|
|
| 1920 |
|
|
/* Locate in EXPR the expression corresponding to the location recorded
|
| 1921 |
|
|
in IVTS, and return a pointer to the RTX for this location. */
|
| 1922 |
|
|
|
| 1923 |
|
|
static rtx *
|
| 1924 |
|
|
get_ivts_expr (rtx expr, struct iv_to_split *ivts)
|
| 1925 |
|
|
{
|
| 1926 |
|
|
unsigned i;
|
| 1927 |
|
|
rtx *ret = &expr;
|
| 1928 |
|
|
|
| 1929 |
|
|
for (i = 0; i < ivts->n_loc; i++)
|
| 1930 |
|
|
ret = &XEXP (*ret, ivts->loc[i]);
|
| 1931 |
|
|
|
| 1932 |
|
|
return ret;
|
| 1933 |
|
|
}
|
| 1934 |
|
|
|
| 1935 |
|
|
/* Allocate basic variable for the induction variable chain. */
|
| 1936 |
|
|
|
| 1937 |
|
|
static void
|
| 1938 |
|
|
allocate_basic_variable (struct iv_to_split *ivts)
|
| 1939 |
|
|
{
|
| 1940 |
|
|
rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
|
| 1941 |
|
|
|
| 1942 |
|
|
ivts->base_var = gen_reg_rtx (GET_MODE (expr));
|
| 1943 |
|
|
}
|
| 1944 |
|
|
|
| 1945 |
|
|
/* Insert initialization of basic variable of IVTS before INSN, taking
|
| 1946 |
|
|
the initial value from INSN. */
|
| 1947 |
|
|
|
| 1948 |
|
|
static void
|
| 1949 |
|
|
insert_base_initialization (struct iv_to_split *ivts, rtx insn)
|
| 1950 |
|
|
{
|
| 1951 |
|
|
rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
|
| 1952 |
|
|
rtx seq;
|
| 1953 |
|
|
|
| 1954 |
|
|
start_sequence ();
|
| 1955 |
|
|
expr = force_operand (expr, ivts->base_var);
|
| 1956 |
|
|
if (expr != ivts->base_var)
|
| 1957 |
|
|
emit_move_insn (ivts->base_var, expr);
|
| 1958 |
|
|
seq = get_insns ();
|
| 1959 |
|
|
end_sequence ();
|
| 1960 |
|
|
|
| 1961 |
|
|
emit_insn_before (seq, insn);
|
| 1962 |
|
|
}
|
| 1963 |
|
|
|
| 1964 |
|
|
/* Replace the use of induction variable described in IVTS in INSN
|
| 1965 |
|
|
by base variable + DELTA * step. */
|
| 1966 |
|
|
|
| 1967 |
|
|
static void
|
| 1968 |
|
|
split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
|
| 1969 |
|
|
{
|
| 1970 |
|
|
rtx expr, *loc, seq, incr, var;
|
| 1971 |
|
|
enum machine_mode mode = GET_MODE (ivts->base_var);
|
| 1972 |
|
|
rtx src, dest, set;
|
| 1973 |
|
|
|
| 1974 |
|
|
/* Construct base + DELTA * step. */
|
| 1975 |
|
|
if (!delta)
|
| 1976 |
|
|
expr = ivts->base_var;
|
| 1977 |
|
|
else
|
| 1978 |
|
|
{
|
| 1979 |
|
|
incr = simplify_gen_binary (MULT, mode,
|
| 1980 |
|
|
ivts->step, gen_int_mode (delta, mode));
|
| 1981 |
|
|
expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
|
| 1982 |
|
|
ivts->base_var, incr);
|
| 1983 |
|
|
}
|
| 1984 |
|
|
|
| 1985 |
|
|
/* Figure out where to do the replacement. */
|
| 1986 |
|
|
loc = get_ivts_expr (single_set (insn), ivts);
|
| 1987 |
|
|
|
| 1988 |
|
|
/* If we can make the replacement right away, we're done. */
|
| 1989 |
|
|
if (validate_change (insn, loc, expr, 0))
|
| 1990 |
|
|
return;
|
| 1991 |
|
|
|
| 1992 |
|
|
/* Otherwise, force EXPR into a register and try again. */
|
| 1993 |
|
|
start_sequence ();
|
| 1994 |
|
|
var = gen_reg_rtx (mode);
|
| 1995 |
|
|
expr = force_operand (expr, var);
|
| 1996 |
|
|
if (expr != var)
|
| 1997 |
|
|
emit_move_insn (var, expr);
|
| 1998 |
|
|
seq = get_insns ();
|
| 1999 |
|
|
end_sequence ();
|
| 2000 |
|
|
emit_insn_before (seq, insn);
|
| 2001 |
|
|
|
| 2002 |
|
|
if (validate_change (insn, loc, var, 0))
|
| 2003 |
|
|
return;
|
| 2004 |
|
|
|
| 2005 |
|
|
/* The last chance. Try recreating the assignment in insn
|
| 2006 |
|
|
completely from scratch. */
|
| 2007 |
|
|
set = single_set (insn);
|
| 2008 |
|
|
gcc_assert (set);
|
| 2009 |
|
|
|
| 2010 |
|
|
start_sequence ();
|
| 2011 |
|
|
*loc = var;
|
| 2012 |
|
|
src = copy_rtx (SET_SRC (set));
|
| 2013 |
|
|
dest = copy_rtx (SET_DEST (set));
|
| 2014 |
|
|
src = force_operand (src, dest);
|
| 2015 |
|
|
if (src != dest)
|
| 2016 |
|
|
emit_move_insn (dest, src);
|
| 2017 |
|
|
seq = get_insns ();
|
| 2018 |
|
|
end_sequence ();
|
| 2019 |
|
|
|
| 2020 |
|
|
emit_insn_before (seq, insn);
|
| 2021 |
|
|
delete_insn (insn);
|
| 2022 |
|
|
}
|
| 2023 |
|
|
|
| 2024 |
|
|
|
| 2025 |
|
|
/* Return one expansion of the accumulator recorded in struct VE. */
|
| 2026 |
|
|
|
| 2027 |
|
|
static rtx
|
| 2028 |
|
|
get_expansion (struct var_to_expand *ve)
|
| 2029 |
|
|
{
|
| 2030 |
|
|
rtx reg;
|
| 2031 |
|
|
|
| 2032 |
|
|
if (ve->reuse_expansion == 0)
|
| 2033 |
|
|
reg = ve->reg;
|
| 2034 |
|
|
else
|
| 2035 |
|
|
reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
|
| 2036 |
|
|
|
| 2037 |
|
|
if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
|
| 2038 |
|
|
ve->reuse_expansion = 0;
|
| 2039 |
|
|
else
|
| 2040 |
|
|
ve->reuse_expansion++;
|
| 2041 |
|
|
|
| 2042 |
|
|
return reg;
|
| 2043 |
|
|
}
|
| 2044 |
|
|
|
| 2045 |
|
|
|
| 2046 |
|
|
/* Given INSN replace the uses of the accumulator recorded in VE
|
| 2047 |
|
|
with a new register. */
|
| 2048 |
|
|
|
| 2049 |
|
|
static void
|
| 2050 |
|
|
expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
|
| 2051 |
|
|
{
|
| 2052 |
|
|
rtx new_reg, set;
|
| 2053 |
|
|
bool really_new_expansion = false;
|
| 2054 |
|
|
|
| 2055 |
|
|
set = single_set (insn);
|
| 2056 |
|
|
gcc_assert (set);
|
| 2057 |
|
|
|
| 2058 |
|
|
/* Generate a new register only if the expansion limit has not been
|
| 2059 |
|
|
reached. Else reuse an already existing expansion. */
|
| 2060 |
|
|
if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
|
| 2061 |
|
|
{
|
| 2062 |
|
|
really_new_expansion = true;
|
| 2063 |
|
|
new_reg = gen_reg_rtx (GET_MODE (ve->reg));
|
| 2064 |
|
|
}
|
| 2065 |
|
|
else
|
| 2066 |
|
|
new_reg = get_expansion (ve);
|
| 2067 |
|
|
|
| 2068 |
|
|
validate_change (insn, &SET_DEST (set), new_reg, 1);
|
| 2069 |
|
|
validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
|
| 2070 |
|
|
|
| 2071 |
|
|
if (apply_change_group ())
|
| 2072 |
|
|
if (really_new_expansion)
|
| 2073 |
|
|
{
|
| 2074 |
|
|
VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
|
| 2075 |
|
|
ve->expansion_count++;
|
| 2076 |
|
|
}
|
| 2077 |
|
|
}
|
| 2078 |
|
|
|
| 2079 |
|
|
/* Initialize the variable expansions in loop preheader. PLACE is the
|
| 2080 |
|
|
loop-preheader basic block where the initialization of the
|
| 2081 |
|
|
expansions should take place. The expansions are initialized with
|
| 2082 |
|
|
(-0) when the operation is plus or minus to honor sign zero. This
|
| 2083 |
|
|
way we can prevent cases where the sign of the final result is
|
| 2084 |
|
|
effected by the sign of the expansion. Here is an example to
|
| 2085 |
|
|
demonstrate this:
|
| 2086 |
|
|
|
| 2087 |
|
|
for (i = 0 ; i < n; i++)
|
| 2088 |
|
|
sum += something;
|
| 2089 |
|
|
|
| 2090 |
|
|
==>
|
| 2091 |
|
|
|
| 2092 |
|
|
sum += something
|
| 2093 |
|
|
....
|
| 2094 |
|
|
i = i+1;
|
| 2095 |
|
|
sum1 += something
|
| 2096 |
|
|
....
|
| 2097 |
|
|
i = i+1
|
| 2098 |
|
|
sum2 += something;
|
| 2099 |
|
|
....
|
| 2100 |
|
|
|
| 2101 |
|
|
When SUM is initialized with -zero and SOMETHING is also -zero; the
|
| 2102 |
|
|
final result of sum should be -zero thus the expansions sum1 and sum2
|
| 2103 |
|
|
should be initialized with -zero as well (otherwise we will get +zero
|
| 2104 |
|
|
as the final result). */
|
| 2105 |
|
|
|
| 2106 |
|
|
static void
|
| 2107 |
|
|
insert_var_expansion_initialization (struct var_to_expand *ve,
|
| 2108 |
|
|
basic_block place)
|
| 2109 |
|
|
{
|
| 2110 |
|
|
rtx seq, var, zero_init, insn;
|
| 2111 |
|
|
unsigned i;
|
| 2112 |
|
|
enum machine_mode mode = GET_MODE (ve->reg);
|
| 2113 |
|
|
bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
|
| 2114 |
|
|
|
| 2115 |
|
|
if (VEC_length (rtx, ve->var_expansions) == 0)
|
| 2116 |
|
|
return;
|
| 2117 |
|
|
|
| 2118 |
|
|
start_sequence ();
|
| 2119 |
|
|
if (ve->op == PLUS || ve->op == MINUS)
|
| 2120 |
|
|
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
|
| 2121 |
|
|
{
|
| 2122 |
|
|
if (honor_signed_zero_p)
|
| 2123 |
|
|
zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
|
| 2124 |
|
|
else
|
| 2125 |
|
|
zero_init = CONST0_RTX (mode);
|
| 2126 |
|
|
|
| 2127 |
|
|
emit_move_insn (var, zero_init);
|
| 2128 |
|
|
}
|
| 2129 |
|
|
else if (ve->op == MULT)
|
| 2130 |
|
|
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
|
| 2131 |
|
|
{
|
| 2132 |
|
|
zero_init = CONST1_RTX (GET_MODE (var));
|
| 2133 |
|
|
emit_move_insn (var, zero_init);
|
| 2134 |
|
|
}
|
| 2135 |
|
|
|
| 2136 |
|
|
seq = get_insns ();
|
| 2137 |
|
|
end_sequence ();
|
| 2138 |
|
|
|
| 2139 |
|
|
insn = BB_HEAD (place);
|
| 2140 |
|
|
while (!NOTE_INSN_BASIC_BLOCK_P (insn))
|
| 2141 |
|
|
insn = NEXT_INSN (insn);
|
| 2142 |
|
|
|
| 2143 |
|
|
emit_insn_after (seq, insn);
|
| 2144 |
|
|
}
|
| 2145 |
|
|
|
| 2146 |
|
|
/* Combine the variable expansions at the loop exit. PLACE is the
|
| 2147 |
|
|
loop exit basic block where the summation of the expansions should
|
| 2148 |
|
|
take place. */
|
| 2149 |
|
|
|
| 2150 |
|
|
static void
|
| 2151 |
|
|
combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
|
| 2152 |
|
|
{
|
| 2153 |
|
|
rtx sum = ve->reg;
|
| 2154 |
|
|
rtx expr, seq, var, insn;
|
| 2155 |
|
|
unsigned i;
|
| 2156 |
|
|
|
| 2157 |
|
|
if (VEC_length (rtx, ve->var_expansions) == 0)
|
| 2158 |
|
|
return;
|
| 2159 |
|
|
|
| 2160 |
|
|
start_sequence ();
|
| 2161 |
|
|
if (ve->op == PLUS || ve->op == MINUS)
|
| 2162 |
|
|
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
|
| 2163 |
|
|
{
|
| 2164 |
|
|
sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
|
| 2165 |
|
|
var, sum);
|
| 2166 |
|
|
}
|
| 2167 |
|
|
else if (ve->op == MULT)
|
| 2168 |
|
|
for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
|
| 2169 |
|
|
{
|
| 2170 |
|
|
sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
|
| 2171 |
|
|
var, sum);
|
| 2172 |
|
|
}
|
| 2173 |
|
|
|
| 2174 |
|
|
expr = force_operand (sum, ve->reg);
|
| 2175 |
|
|
if (expr != ve->reg)
|
| 2176 |
|
|
emit_move_insn (ve->reg, expr);
|
| 2177 |
|
|
seq = get_insns ();
|
| 2178 |
|
|
end_sequence ();
|
| 2179 |
|
|
|
| 2180 |
|
|
insn = BB_HEAD (place);
|
| 2181 |
|
|
while (!NOTE_INSN_BASIC_BLOCK_P (insn))
|
| 2182 |
|
|
insn = NEXT_INSN (insn);
|
| 2183 |
|
|
|
| 2184 |
|
|
emit_insn_after (seq, insn);
|
| 2185 |
|
|
}
|
| 2186 |
|
|
|
| 2187 |
|
|
/* Apply loop optimizations in loop copies using the
|
| 2188 |
|
|
data which gathered during the unrolling. Structure
|
| 2189 |
|
|
OPT_INFO record that data.
|
| 2190 |
|
|
|
| 2191 |
|
|
UNROLLING is true if we unrolled (not peeled) the loop.
|
| 2192 |
|
|
REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
|
| 2193 |
|
|
the loop (as it should happen in complete unrolling, but not in ordinary
|
| 2194 |
|
|
peeling of the loop). */
|
| 2195 |
|
|
|
| 2196 |
|
|
static void
|
| 2197 |
|
|
apply_opt_in_copies (struct opt_info *opt_info,
|
| 2198 |
|
|
unsigned n_copies, bool unrolling,
|
| 2199 |
|
|
bool rewrite_original_loop)
|
| 2200 |
|
|
{
|
| 2201 |
|
|
unsigned i, delta;
|
| 2202 |
|
|
basic_block bb, orig_bb;
|
| 2203 |
|
|
rtx insn, orig_insn, next;
|
| 2204 |
|
|
struct iv_to_split ivts_templ, *ivts;
|
| 2205 |
|
|
struct var_to_expand ve_templ, *ves;
|
| 2206 |
|
|
|
| 2207 |
|
|
/* Sanity check -- we need to put initialization in the original loop
|
| 2208 |
|
|
body. */
|
| 2209 |
|
|
gcc_assert (!unrolling || rewrite_original_loop);
|
| 2210 |
|
|
|
| 2211 |
|
|
/* Allocate the basic variables (i0). */
|
| 2212 |
|
|
if (opt_info->insns_to_split)
|
| 2213 |
|
|
for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
|
| 2214 |
|
|
allocate_basic_variable (ivts);
|
| 2215 |
|
|
|
| 2216 |
|
|
for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
|
| 2217 |
|
|
{
|
| 2218 |
|
|
bb = BASIC_BLOCK (i);
|
| 2219 |
|
|
orig_bb = get_bb_original (bb);
|
| 2220 |
|
|
|
| 2221 |
|
|
/* bb->aux holds position in copy sequence initialized by
|
| 2222 |
|
|
duplicate_loop_to_header_edge. */
|
| 2223 |
|
|
delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
|
| 2224 |
|
|
unrolling);
|
| 2225 |
|
|
bb->aux = 0;
|
| 2226 |
|
|
orig_insn = BB_HEAD (orig_bb);
|
| 2227 |
|
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
|
| 2228 |
|
|
{
|
| 2229 |
|
|
next = NEXT_INSN (insn);
|
| 2230 |
|
|
if (!INSN_P (insn))
|
| 2231 |
|
|
continue;
|
| 2232 |
|
|
|
| 2233 |
|
|
while (!INSN_P (orig_insn))
|
| 2234 |
|
|
orig_insn = NEXT_INSN (orig_insn);
|
| 2235 |
|
|
|
| 2236 |
|
|
ivts_templ.insn = orig_insn;
|
| 2237 |
|
|
ve_templ.insn = orig_insn;
|
| 2238 |
|
|
|
| 2239 |
|
|
/* Apply splitting iv optimization. */
|
| 2240 |
|
|
if (opt_info->insns_to_split)
|
| 2241 |
|
|
{
|
| 2242 |
|
|
ivts = (struct iv_to_split *)
|
| 2243 |
|
|
htab_find (opt_info->insns_to_split, &ivts_templ);
|
| 2244 |
|
|
|
| 2245 |
|
|
if (ivts)
|
| 2246 |
|
|
{
|
| 2247 |
|
|
gcc_assert (GET_CODE (PATTERN (insn))
|
| 2248 |
|
|
== GET_CODE (PATTERN (orig_insn)));
|
| 2249 |
|
|
|
| 2250 |
|
|
if (!delta)
|
| 2251 |
|
|
insert_base_initialization (ivts, insn);
|
| 2252 |
|
|
split_iv (ivts, insn, delta);
|
| 2253 |
|
|
}
|
| 2254 |
|
|
}
|
| 2255 |
|
|
/* Apply variable expansion optimization. */
|
| 2256 |
|
|
if (unrolling && opt_info->insns_with_var_to_expand)
|
| 2257 |
|
|
{
|
| 2258 |
|
|
ves = (struct var_to_expand *)
|
| 2259 |
|
|
htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
|
| 2260 |
|
|
if (ves)
|
| 2261 |
|
|
{
|
| 2262 |
|
|
gcc_assert (GET_CODE (PATTERN (insn))
|
| 2263 |
|
|
== GET_CODE (PATTERN (orig_insn)));
|
| 2264 |
|
|
expand_var_during_unrolling (ves, insn);
|
| 2265 |
|
|
}
|
| 2266 |
|
|
}
|
| 2267 |
|
|
orig_insn = NEXT_INSN (orig_insn);
|
| 2268 |
|
|
}
|
| 2269 |
|
|
}
|
| 2270 |
|
|
|
| 2271 |
|
|
if (!rewrite_original_loop)
|
| 2272 |
|
|
return;
|
| 2273 |
|
|
|
| 2274 |
|
|
/* Initialize the variable expansions in the loop preheader
|
| 2275 |
|
|
and take care of combining them at the loop exit. */
|
| 2276 |
|
|
if (opt_info->insns_with_var_to_expand)
|
| 2277 |
|
|
{
|
| 2278 |
|
|
for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
|
| 2279 |
|
|
insert_var_expansion_initialization (ves, opt_info->loop_preheader);
|
| 2280 |
|
|
for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
|
| 2281 |
|
|
combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
|
| 2282 |
|
|
}
|
| 2283 |
|
|
|
| 2284 |
|
|
/* Rewrite also the original loop body. Find them as originals of the blocks
|
| 2285 |
|
|
in the last copied iteration, i.e. those that have
|
| 2286 |
|
|
get_bb_copy (get_bb_original (bb)) == bb. */
|
| 2287 |
|
|
for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
|
| 2288 |
|
|
{
|
| 2289 |
|
|
bb = BASIC_BLOCK (i);
|
| 2290 |
|
|
orig_bb = get_bb_original (bb);
|
| 2291 |
|
|
if (get_bb_copy (orig_bb) != bb)
|
| 2292 |
|
|
continue;
|
| 2293 |
|
|
|
| 2294 |
|
|
delta = determine_split_iv_delta (0, n_copies, unrolling);
|
| 2295 |
|
|
for (orig_insn = BB_HEAD (orig_bb);
|
| 2296 |
|
|
orig_insn != NEXT_INSN (BB_END (bb));
|
| 2297 |
|
|
orig_insn = next)
|
| 2298 |
|
|
{
|
| 2299 |
|
|
next = NEXT_INSN (orig_insn);
|
| 2300 |
|
|
|
| 2301 |
|
|
if (!INSN_P (orig_insn))
|
| 2302 |
|
|
continue;
|
| 2303 |
|
|
|
| 2304 |
|
|
ivts_templ.insn = orig_insn;
|
| 2305 |
|
|
if (opt_info->insns_to_split)
|
| 2306 |
|
|
{
|
| 2307 |
|
|
ivts = (struct iv_to_split *)
|
| 2308 |
|
|
htab_find (opt_info->insns_to_split, &ivts_templ);
|
| 2309 |
|
|
if (ivts)
|
| 2310 |
|
|
{
|
| 2311 |
|
|
if (!delta)
|
| 2312 |
|
|
insert_base_initialization (ivts, orig_insn);
|
| 2313 |
|
|
split_iv (ivts, orig_insn, delta);
|
| 2314 |
|
|
continue;
|
| 2315 |
|
|
}
|
| 2316 |
|
|
}
|
| 2317 |
|
|
|
| 2318 |
|
|
}
|
| 2319 |
|
|
}
|
| 2320 |
|
|
}
|
| 2321 |
|
|
|
| 2322 |
|
|
/* Release OPT_INFO. */
|
| 2323 |
|
|
|
| 2324 |
|
|
static void
|
| 2325 |
|
|
free_opt_info (struct opt_info *opt_info)
|
| 2326 |
|
|
{
|
| 2327 |
|
|
if (opt_info->insns_to_split)
|
| 2328 |
|
|
htab_delete (opt_info->insns_to_split);
|
| 2329 |
|
|
if (opt_info->insns_with_var_to_expand)
|
| 2330 |
|
|
{
|
| 2331 |
|
|
struct var_to_expand *ves;
|
| 2332 |
|
|
|
| 2333 |
|
|
for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
|
| 2334 |
|
|
VEC_free (rtx, heap, ves->var_expansions);
|
| 2335 |
|
|
htab_delete (opt_info->insns_with_var_to_expand);
|
| 2336 |
|
|
}
|
| 2337 |
|
|
free (opt_info);
|
| 2338 |
|
|
}
|