1 |
280 |
jeremybenn |
/* Miscellaneous utilities for GIMPLE streaming. Things that are used
|
2 |
|
|
in both input and output are here.
|
3 |
|
|
|
4 |
|
|
Copyright 2009, 2010 Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Doug Kwan <dougkwan@google.com>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "toplev.h"
|
28 |
|
|
#include "flags.h"
|
29 |
|
|
#include "tree.h"
|
30 |
|
|
#include "gimple.h"
|
31 |
|
|
#include "tree-flow.h"
|
32 |
|
|
#include "diagnostic.h"
|
33 |
|
|
#include "bitmap.h"
|
34 |
|
|
#include "vec.h"
|
35 |
|
|
#include "lto-streamer.h"
|
36 |
|
|
|
37 |
|
|
/* Statistics gathered during LTO, WPA and LTRANS. */
|
38 |
|
|
struct lto_stats_d lto_stats;
|
39 |
|
|
|
40 |
|
|
/* LTO uses bitmaps with different life-times. So use a seperate
|
41 |
|
|
obstack for all LTO bitmaps. */
|
42 |
|
|
static bitmap_obstack lto_obstack;
|
43 |
|
|
static bool lto_obstack_initialized;
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
/* Return a string representing LTO tag TAG. */
|
47 |
|
|
|
48 |
|
|
const char *
|
49 |
|
|
lto_tag_name (enum LTO_tags tag)
|
50 |
|
|
{
|
51 |
|
|
if (lto_tag_is_tree_code_p (tag))
|
52 |
|
|
{
|
53 |
|
|
/* For tags representing tree nodes, return the name of the
|
54 |
|
|
associated tree code. */
|
55 |
|
|
return tree_code_name[lto_tag_to_tree_code (tag)];
|
56 |
|
|
}
|
57 |
|
|
|
58 |
|
|
if (lto_tag_is_gimple_code_p (tag))
|
59 |
|
|
{
|
60 |
|
|
/* For tags representing gimple statements, return the name of
|
61 |
|
|
the associated gimple code. */
|
62 |
|
|
return gimple_code_name[lto_tag_to_gimple_code (tag)];
|
63 |
|
|
}
|
64 |
|
|
|
65 |
|
|
switch (tag)
|
66 |
|
|
{
|
67 |
|
|
case LTO_null:
|
68 |
|
|
return "LTO_null";
|
69 |
|
|
case LTO_bb0:
|
70 |
|
|
return "LTO_bb0";
|
71 |
|
|
case LTO_bb1:
|
72 |
|
|
return "LTO_bb1";
|
73 |
|
|
case LTO_eh_region:
|
74 |
|
|
return "LTO_eh_region";
|
75 |
|
|
case LTO_function:
|
76 |
|
|
return "LTO_function";
|
77 |
|
|
case LTO_eh_table:
|
78 |
|
|
return "LTO_eh_table";
|
79 |
|
|
case LTO_ert_cleanup:
|
80 |
|
|
return "LTO_ert_cleanup";
|
81 |
|
|
case LTO_ert_try:
|
82 |
|
|
return "LTO_ert_try";
|
83 |
|
|
case LTO_ert_allowed_exceptions:
|
84 |
|
|
return "LTO_ert_allowed_exceptions";
|
85 |
|
|
case LTO_ert_must_not_throw:
|
86 |
|
|
return "LTO_ert_must_not_throw";
|
87 |
|
|
case LTO_tree_pickle_reference:
|
88 |
|
|
return "LTO_tree_pickle_reference";
|
89 |
|
|
case LTO_field_decl_ref:
|
90 |
|
|
return "LTO_field_decl_ref";
|
91 |
|
|
case LTO_function_decl_ref:
|
92 |
|
|
return "LTO_function_decl_ref";
|
93 |
|
|
case LTO_label_decl_ref:
|
94 |
|
|
return "LTO_label_decl_ref";
|
95 |
|
|
case LTO_namespace_decl_ref:
|
96 |
|
|
return "LTO_namespace_decl_ref";
|
97 |
|
|
case LTO_result_decl_ref:
|
98 |
|
|
return "LTO_result_decl_ref";
|
99 |
|
|
case LTO_ssa_name_ref:
|
100 |
|
|
return "LTO_ssa_name_ref";
|
101 |
|
|
case LTO_type_decl_ref:
|
102 |
|
|
return "LTO_type_decl_ref";
|
103 |
|
|
case LTO_type_ref:
|
104 |
|
|
return "LTO_type_ref";
|
105 |
|
|
case LTO_global_decl_ref:
|
106 |
|
|
return "LTO_global_decl_ref";
|
107 |
|
|
default:
|
108 |
|
|
return "LTO_UNKNOWN";
|
109 |
|
|
}
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
|
113 |
|
|
/* Allocate a bitmap from heap. Initializes the LTO obstack if necessary. */
|
114 |
|
|
|
115 |
|
|
bitmap
|
116 |
|
|
lto_bitmap_alloc (void)
|
117 |
|
|
{
|
118 |
|
|
if (!lto_obstack_initialized)
|
119 |
|
|
{
|
120 |
|
|
bitmap_obstack_initialize (<o_obstack);
|
121 |
|
|
lto_obstack_initialized = true;
|
122 |
|
|
}
|
123 |
|
|
return BITMAP_ALLOC (<o_obstack);
|
124 |
|
|
}
|
125 |
|
|
|
126 |
|
|
/* Free bitmap B. */
|
127 |
|
|
|
128 |
|
|
void
|
129 |
|
|
lto_bitmap_free (bitmap b)
|
130 |
|
|
{
|
131 |
|
|
BITMAP_FREE (b);
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
|
135 |
|
|
/* Get a section name for a particular type or name. The NAME field
|
136 |
|
|
is only used if SECTION_TYPE is LTO_section_function_body or
|
137 |
|
|
LTO_static_initializer. For all others it is ignored. The callee
|
138 |
|
|
of this function is responcible to free the returned name. */
|
139 |
|
|
|
140 |
|
|
char *
|
141 |
|
|
lto_get_section_name (int section_type, const char *name)
|
142 |
|
|
{
|
143 |
|
|
switch (section_type)
|
144 |
|
|
{
|
145 |
|
|
case LTO_section_function_body:
|
146 |
|
|
gcc_assert (name != NULL);
|
147 |
|
|
if (name[0] == '*')
|
148 |
|
|
name++;
|
149 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, name, NULL);
|
150 |
|
|
|
151 |
|
|
case LTO_section_static_initializer:
|
152 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".statics", NULL);
|
153 |
|
|
|
154 |
|
|
case LTO_section_symtab:
|
155 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".symtab", NULL);
|
156 |
|
|
|
157 |
|
|
case LTO_section_decls:
|
158 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".decls", NULL);
|
159 |
|
|
|
160 |
|
|
case LTO_section_cgraph:
|
161 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".cgraph", NULL);
|
162 |
|
|
|
163 |
|
|
case LTO_section_jump_functions:
|
164 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".jmpfuncs", NULL);
|
165 |
|
|
|
166 |
|
|
case LTO_section_ipa_pure_const:
|
167 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".pureconst", NULL);
|
168 |
|
|
|
169 |
|
|
case LTO_section_ipa_reference:
|
170 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".reference", NULL);
|
171 |
|
|
|
172 |
|
|
case LTO_section_wpa_fixup:
|
173 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".wpa_fixup", NULL);
|
174 |
|
|
|
175 |
|
|
case LTO_section_opts:
|
176 |
|
|
return concat (LTO_SECTION_NAME_PREFIX, ".opts", NULL);
|
177 |
|
|
|
178 |
|
|
default:
|
179 |
|
|
internal_error ("bytecode stream: unexpected LTO section %s", name);
|
180 |
|
|
}
|
181 |
|
|
}
|
182 |
|
|
|
183 |
|
|
|
184 |
|
|
/* Show various memory usage statistics related to LTO. */
|
185 |
|
|
|
186 |
|
|
void
|
187 |
|
|
print_lto_report (void)
|
188 |
|
|
{
|
189 |
|
|
const char *s = (flag_lto) ? "LTO" : (flag_wpa) ? "WPA" : "LTRANS";
|
190 |
|
|
unsigned i;
|
191 |
|
|
|
192 |
|
|
fprintf (stderr, "%s statistics\n", s);
|
193 |
|
|
fprintf (stderr, "[%s] # of input files: "
|
194 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED "\n", s, lto_stats.num_input_files);
|
195 |
|
|
|
196 |
|
|
fprintf (stderr, "[%s] # of input cgraph nodes: "
|
197 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
|
198 |
|
|
lto_stats.num_input_cgraph_nodes);
|
199 |
|
|
|
200 |
|
|
fprintf (stderr, "[%s] # of function bodies: "
|
201 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
|
202 |
|
|
lto_stats.num_function_bodies);
|
203 |
|
|
|
204 |
|
|
fprintf (stderr, "[%s] ", s);
|
205 |
|
|
print_gimple_types_stats ();
|
206 |
|
|
|
207 |
|
|
for (i = 0; i < NUM_TREE_CODES; i++)
|
208 |
|
|
if (lto_stats.num_trees[i])
|
209 |
|
|
fprintf (stderr, "[%s] # of '%s' objects read: "
|
210 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
|
211 |
|
|
tree_code_name[i], lto_stats.num_trees[i]);
|
212 |
|
|
|
213 |
|
|
if (flag_lto)
|
214 |
|
|
{
|
215 |
|
|
fprintf (stderr, "[%s] Compression: "
|
216 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED " output bytes, "
|
217 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED " compressed bytes", s,
|
218 |
|
|
lto_stats.num_output_il_bytes,
|
219 |
|
|
lto_stats.num_compressed_il_bytes);
|
220 |
|
|
if (lto_stats.num_output_il_bytes > 0)
|
221 |
|
|
{
|
222 |
|
|
const float dividend = (float) lto_stats.num_compressed_il_bytes;
|
223 |
|
|
const float divisor = (float) lto_stats.num_output_il_bytes;
|
224 |
|
|
fprintf (stderr, " (ratio: %f)", dividend / divisor);
|
225 |
|
|
}
|
226 |
|
|
fprintf (stderr, "\n");
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
if (flag_wpa)
|
230 |
|
|
{
|
231 |
|
|
fprintf (stderr, "[%s] # of output files: "
|
232 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
|
233 |
|
|
lto_stats.num_output_files);
|
234 |
|
|
|
235 |
|
|
fprintf (stderr, "[%s] # of output cgraph nodes: "
|
236 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
|
237 |
|
|
lto_stats.num_output_cgraph_nodes);
|
238 |
|
|
|
239 |
|
|
fprintf (stderr, "[%s] # callgraph partitions: "
|
240 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED "\n", s,
|
241 |
|
|
lto_stats.num_cgraph_partitions);
|
242 |
|
|
|
243 |
|
|
fprintf (stderr, "[%s] Compression: "
|
244 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED " input bytes, "
|
245 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED " uncompressed bytes", s,
|
246 |
|
|
lto_stats.num_input_il_bytes,
|
247 |
|
|
lto_stats.num_uncompressed_il_bytes);
|
248 |
|
|
if (lto_stats.num_input_il_bytes > 0)
|
249 |
|
|
{
|
250 |
|
|
const float dividend = (float) lto_stats.num_uncompressed_il_bytes;
|
251 |
|
|
const float divisor = (float) lto_stats.num_input_il_bytes;
|
252 |
|
|
fprintf (stderr, " (ratio: %f)", dividend / divisor);
|
253 |
|
|
}
|
254 |
|
|
fprintf (stderr, "\n");
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
for (i = 0; i < LTO_N_SECTION_TYPES; i++)
|
258 |
|
|
fprintf (stderr, "[%s] Size of mmap'd section %s: "
|
259 |
|
|
HOST_WIDE_INT_PRINT_UNSIGNED " bytes\n", s,
|
260 |
|
|
lto_section_name[i], lto_stats.section_size[i]);
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
/* Create a new bitpack. */
|
265 |
|
|
|
266 |
|
|
struct bitpack_d *
|
267 |
|
|
bitpack_create (void)
|
268 |
|
|
{
|
269 |
|
|
return XCNEW (struct bitpack_d);
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
|
273 |
|
|
/* Free the memory used by bitpack BP. */
|
274 |
|
|
|
275 |
|
|
void
|
276 |
|
|
bitpack_delete (struct bitpack_d *bp)
|
277 |
|
|
{
|
278 |
|
|
VEC_free (bitpack_word_t, heap, bp->values);
|
279 |
|
|
free (bp);
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
|
283 |
|
|
/* Return an index to the word in bitpack BP that contains the
|
284 |
|
|
next NBITS. */
|
285 |
|
|
|
286 |
|
|
static inline unsigned
|
287 |
|
|
bp_get_next_word (struct bitpack_d *bp, unsigned nbits)
|
288 |
|
|
{
|
289 |
|
|
unsigned last, ix;
|
290 |
|
|
|
291 |
|
|
/* In principle, the next word to use is determined by the
|
292 |
|
|
number of bits already processed in BP. */
|
293 |
|
|
ix = bp->num_bits / BITS_PER_BITPACK_WORD;
|
294 |
|
|
|
295 |
|
|
/* All the encoded bit patterns in BP are contiguous, therefore if
|
296 |
|
|
the next NBITS would straddle over two different words, move the
|
297 |
|
|
index to the next word and update the number of encoded bits
|
298 |
|
|
by adding up the hole of unused bits created by this move. */
|
299 |
|
|
bp->first_unused_bit %= BITS_PER_BITPACK_WORD;
|
300 |
|
|
last = bp->first_unused_bit + nbits - 1;
|
301 |
|
|
if (last >= BITS_PER_BITPACK_WORD)
|
302 |
|
|
{
|
303 |
|
|
ix++;
|
304 |
|
|
bp->num_bits += (BITS_PER_BITPACK_WORD - bp->first_unused_bit);
|
305 |
|
|
bp->first_unused_bit = 0;
|
306 |
|
|
}
|
307 |
|
|
|
308 |
|
|
return ix;
|
309 |
|
|
}
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
/* Pack NBITS of value VAL into bitpack BP. */
|
313 |
|
|
|
314 |
|
|
void
|
315 |
|
|
bp_pack_value (struct bitpack_d *bp, bitpack_word_t val, unsigned nbits)
|
316 |
|
|
{
|
317 |
|
|
unsigned ix;
|
318 |
|
|
bitpack_word_t word;
|
319 |
|
|
|
320 |
|
|
/* We cannot encode more bits than BITS_PER_BITPACK_WORD. */
|
321 |
|
|
gcc_assert (nbits > 0 && nbits <= BITS_PER_BITPACK_WORD);
|
322 |
|
|
|
323 |
|
|
/* Compute which word will contain the next NBITS. */
|
324 |
|
|
ix = bp_get_next_word (bp, nbits);
|
325 |
|
|
if (ix >= VEC_length (bitpack_word_t, bp->values))
|
326 |
|
|
{
|
327 |
|
|
/* If there is no room left in the last word of the values
|
328 |
|
|
array, add a new word. Additionally, we should only
|
329 |
|
|
need to add a single word, since every pack operation cannot
|
330 |
|
|
use more bits than fit in a single word. */
|
331 |
|
|
gcc_assert (ix < VEC_length (bitpack_word_t, bp->values) + 1);
|
332 |
|
|
VEC_safe_push (bitpack_word_t, heap, bp->values, 0);
|
333 |
|
|
}
|
334 |
|
|
|
335 |
|
|
/* Grab the last word to pack VAL into. */
|
336 |
|
|
word = VEC_index (bitpack_word_t, bp->values, ix);
|
337 |
|
|
|
338 |
|
|
/* To fit VAL in WORD, we need to shift VAL to the left to
|
339 |
|
|
skip the bottom BP->FIRST_UNUSED_BIT bits. */
|
340 |
|
|
gcc_assert (BITS_PER_BITPACK_WORD >= bp->first_unused_bit + nbits);
|
341 |
|
|
val <<= bp->first_unused_bit;
|
342 |
|
|
|
343 |
|
|
/* Update WORD with VAL. */
|
344 |
|
|
word |= val;
|
345 |
|
|
|
346 |
|
|
/* Update BP. */
|
347 |
|
|
VEC_replace (bitpack_word_t, bp->values, ix, word);
|
348 |
|
|
bp->num_bits += nbits;
|
349 |
|
|
bp->first_unused_bit += nbits;
|
350 |
|
|
}
|
351 |
|
|
|
352 |
|
|
|
353 |
|
|
/* Unpack the next NBITS from bitpack BP. */
|
354 |
|
|
|
355 |
|
|
bitpack_word_t
|
356 |
|
|
bp_unpack_value (struct bitpack_d *bp, unsigned nbits)
|
357 |
|
|
{
|
358 |
|
|
bitpack_word_t val, word, mask;
|
359 |
|
|
unsigned ix;
|
360 |
|
|
|
361 |
|
|
/* We cannot decode more bits than BITS_PER_BITPACK_WORD. */
|
362 |
|
|
gcc_assert (nbits > 0 && nbits <= BITS_PER_BITPACK_WORD);
|
363 |
|
|
|
364 |
|
|
/* Compute which word contains the next NBITS. */
|
365 |
|
|
ix = bp_get_next_word (bp, nbits);
|
366 |
|
|
word = VEC_index (bitpack_word_t, bp->values, ix);
|
367 |
|
|
|
368 |
|
|
/* Compute the mask to get NBITS from WORD. */
|
369 |
|
|
mask = (nbits == BITS_PER_BITPACK_WORD)
|
370 |
|
|
? (bitpack_word_t) -1
|
371 |
|
|
: ((bitpack_word_t) 1 << nbits) - 1;
|
372 |
|
|
|
373 |
|
|
/* Shift WORD to the right to skip over the bits already decoded
|
374 |
|
|
in word. */
|
375 |
|
|
word >>= bp->first_unused_bit;
|
376 |
|
|
|
377 |
|
|
/* Apply the mask to obtain the requested value. */
|
378 |
|
|
val = word & mask;
|
379 |
|
|
|
380 |
|
|
/* Update BP->NUM_BITS for the next unpack operation. */
|
381 |
|
|
bp->num_bits += nbits;
|
382 |
|
|
bp->first_unused_bit += nbits;
|
383 |
|
|
|
384 |
|
|
return val;
|
385 |
|
|
}
|
386 |
|
|
|
387 |
|
|
|
388 |
|
|
/* Check that all the TS_* structures handled by the lto_output_* and
|
389 |
|
|
lto_input_* routines are exactly ALL the structures defined in
|
390 |
|
|
treestruct.def. */
|
391 |
|
|
|
392 |
|
|
static void
|
393 |
|
|
check_handled_ts_structures (void)
|
394 |
|
|
{
|
395 |
|
|
bool handled_p[LAST_TS_ENUM];
|
396 |
|
|
unsigned i;
|
397 |
|
|
|
398 |
|
|
memset (&handled_p, 0, sizeof (handled_p));
|
399 |
|
|
|
400 |
|
|
/* These are the TS_* structures that are either handled or
|
401 |
|
|
explicitly ignored by the streamer routines. */
|
402 |
|
|
handled_p[TS_BASE] = true;
|
403 |
|
|
handled_p[TS_COMMON] = true;
|
404 |
|
|
handled_p[TS_INT_CST] = true;
|
405 |
|
|
handled_p[TS_REAL_CST] = true;
|
406 |
|
|
handled_p[TS_FIXED_CST] = true;
|
407 |
|
|
handled_p[TS_VECTOR] = true;
|
408 |
|
|
handled_p[TS_STRING] = true;
|
409 |
|
|
handled_p[TS_COMPLEX] = true;
|
410 |
|
|
handled_p[TS_IDENTIFIER] = true;
|
411 |
|
|
handled_p[TS_DECL_MINIMAL] = true;
|
412 |
|
|
handled_p[TS_DECL_COMMON] = true;
|
413 |
|
|
handled_p[TS_DECL_WRTL] = true;
|
414 |
|
|
handled_p[TS_DECL_NON_COMMON] = true;
|
415 |
|
|
handled_p[TS_DECL_WITH_VIS] = true;
|
416 |
|
|
handled_p[TS_FIELD_DECL] = true;
|
417 |
|
|
handled_p[TS_VAR_DECL] = true;
|
418 |
|
|
handled_p[TS_PARM_DECL] = true;
|
419 |
|
|
handled_p[TS_LABEL_DECL] = true;
|
420 |
|
|
handled_p[TS_RESULT_DECL] = true;
|
421 |
|
|
handled_p[TS_CONST_DECL] = true;
|
422 |
|
|
handled_p[TS_TYPE_DECL] = true;
|
423 |
|
|
handled_p[TS_FUNCTION_DECL] = true;
|
424 |
|
|
handled_p[TS_TYPE] = true;
|
425 |
|
|
handled_p[TS_LIST] = true;
|
426 |
|
|
handled_p[TS_VEC] = true;
|
427 |
|
|
handled_p[TS_EXP] = true;
|
428 |
|
|
handled_p[TS_SSA_NAME] = true;
|
429 |
|
|
handled_p[TS_BLOCK] = true;
|
430 |
|
|
handled_p[TS_BINFO] = true;
|
431 |
|
|
handled_p[TS_STATEMENT_LIST] = true;
|
432 |
|
|
handled_p[TS_CONSTRUCTOR] = true;
|
433 |
|
|
handled_p[TS_OMP_CLAUSE] = true;
|
434 |
|
|
handled_p[TS_OPTIMIZATION] = true;
|
435 |
|
|
handled_p[TS_TARGET_OPTION] = true;
|
436 |
|
|
|
437 |
|
|
/* Anything not marked above will trigger the following assertion.
|
438 |
|
|
If this assertion triggers, it means that there is a new TS_*
|
439 |
|
|
structure that should be handled by the streamer. */
|
440 |
|
|
for (i = 0; i < LAST_TS_ENUM; i++)
|
441 |
|
|
gcc_assert (handled_p[i]);
|
442 |
|
|
}
|
443 |
|
|
|
444 |
|
|
|
445 |
|
|
/* Helper for lto_streamer_cache_insert_1. Add T to CACHE->NODES at
|
446 |
|
|
slot IX. Add OFFSET to CACHE->OFFSETS at slot IX. */
|
447 |
|
|
|
448 |
|
|
static void
|
449 |
|
|
lto_streamer_cache_add_to_node_array (struct lto_streamer_cache_d *cache,
|
450 |
|
|
int ix, tree t, unsigned offset)
|
451 |
|
|
{
|
452 |
|
|
gcc_assert (ix >= 0);
|
453 |
|
|
|
454 |
|
|
/* Grow the array of nodes and offsets to accomodate T at IX. */
|
455 |
|
|
if (ix >= (int) VEC_length (tree, cache->nodes))
|
456 |
|
|
{
|
457 |
|
|
size_t sz = ix + (20 + ix) / 4;
|
458 |
|
|
VEC_safe_grow_cleared (tree, gc, cache->nodes, sz);
|
459 |
|
|
VEC_safe_grow_cleared (unsigned, heap, cache->offsets, sz);
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
VEC_replace (tree, cache->nodes, ix, t);
|
463 |
|
|
VEC_replace (unsigned, cache->offsets, ix, offset);
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
|
467 |
|
|
/* Helper for lto_streamer_cache_insert and lto_streamer_cache_insert_at.
|
468 |
|
|
CACHE, T, IX_P and OFFSET_P are as in lto_streamer_cache_insert.
|
469 |
|
|
|
470 |
|
|
If INSERT_AT_NEXT_SLOT_P is true, T is inserted at the next available
|
471 |
|
|
slot in the cache. Otherwise, T is inserted at the position indicated
|
472 |
|
|
in *IX_P.
|
473 |
|
|
|
474 |
|
|
If T already existed in CACHE, return true. Otherwise,
|
475 |
|
|
return false. */
|
476 |
|
|
|
477 |
|
|
static bool
|
478 |
|
|
lto_streamer_cache_insert_1 (struct lto_streamer_cache_d *cache,
|
479 |
|
|
tree t, int *ix_p, unsigned *offset_p,
|
480 |
|
|
bool insert_at_next_slot_p)
|
481 |
|
|
{
|
482 |
|
|
void **slot;
|
483 |
|
|
struct tree_int_map d_entry, *entry;
|
484 |
|
|
int ix;
|
485 |
|
|
unsigned offset;
|
486 |
|
|
bool existed_p;
|
487 |
|
|
|
488 |
|
|
gcc_assert (t);
|
489 |
|
|
|
490 |
|
|
d_entry.base.from = t;
|
491 |
|
|
slot = htab_find_slot (cache->node_map, &d_entry, INSERT);
|
492 |
|
|
if (*slot == NULL)
|
493 |
|
|
{
|
494 |
|
|
/* Determine the next slot to use in the cache. */
|
495 |
|
|
if (insert_at_next_slot_p)
|
496 |
|
|
ix = cache->next_slot++;
|
497 |
|
|
else
|
498 |
|
|
ix = *ix_p;
|
499 |
|
|
|
500 |
|
|
entry = XCNEW (struct tree_int_map);
|
501 |
|
|
entry->base.from = t;
|
502 |
|
|
entry->to = (unsigned) ix;
|
503 |
|
|
*slot = entry;
|
504 |
|
|
|
505 |
|
|
/* If no offset was given, store the invalid offset -1. */
|
506 |
|
|
offset = (offset_p) ? *offset_p : (unsigned) -1;
|
507 |
|
|
|
508 |
|
|
lto_streamer_cache_add_to_node_array (cache, ix, t, offset);
|
509 |
|
|
|
510 |
|
|
/* Indicate that the item was not present in the cache. */
|
511 |
|
|
existed_p = false;
|
512 |
|
|
}
|
513 |
|
|
else
|
514 |
|
|
{
|
515 |
|
|
entry = (struct tree_int_map *) *slot;
|
516 |
|
|
ix = (int) entry->to;
|
517 |
|
|
offset = VEC_index (unsigned, cache->offsets, ix);
|
518 |
|
|
|
519 |
|
|
if (!insert_at_next_slot_p && ix != *ix_p)
|
520 |
|
|
{
|
521 |
|
|
/* If the caller wants to insert T at a specific slot
|
522 |
|
|
location, and ENTRY->TO does not match *IX_P, add T to
|
523 |
|
|
the requested location slot. This situation arises when
|
524 |
|
|
streaming builtin functions.
|
525 |
|
|
|
526 |
|
|
For instance, on the writer side we could have two
|
527 |
|
|
FUNCTION_DECLS T1 and T2 that are represented by the same
|
528 |
|
|
builtin function. The reader will only instantiate the
|
529 |
|
|
canonical builtin, but since T1 and T2 had been
|
530 |
|
|
originally stored in different cache slots (S1 and S2),
|
531 |
|
|
the reader must be able to find the canonical builtin
|
532 |
|
|
function at slots S1 and S2. */
|
533 |
|
|
gcc_assert (lto_stream_as_builtin_p (t));
|
534 |
|
|
ix = *ix_p;
|
535 |
|
|
|
536 |
|
|
/* Since we are storing a builtin, the offset into the
|
537 |
|
|
stream is not necessary as we will not need to read
|
538 |
|
|
forward in the stream. */
|
539 |
|
|
lto_streamer_cache_add_to_node_array (cache, ix, t, -1);
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
/* Indicate that T was already in the cache. */
|
543 |
|
|
existed_p = true;
|
544 |
|
|
}
|
545 |
|
|
|
546 |
|
|
if (ix_p)
|
547 |
|
|
*ix_p = ix;
|
548 |
|
|
|
549 |
|
|
if (offset_p)
|
550 |
|
|
*offset_p = offset;
|
551 |
|
|
|
552 |
|
|
return existed_p;
|
553 |
|
|
}
|
554 |
|
|
|
555 |
|
|
|
556 |
|
|
/* Insert tree node T in CACHE. If T already existed in the cache
|
557 |
|
|
return true. Otherwise, return false.
|
558 |
|
|
|
559 |
|
|
If IX_P is non-null, update it with the index into the cache where
|
560 |
|
|
T has been stored.
|
561 |
|
|
|
562 |
|
|
*OFFSET_P represents the offset in the stream where T is physically
|
563 |
|
|
written out. The first time T is added to the cache, *OFFSET_P is
|
564 |
|
|
recorded in the cache together with T. But if T already existed
|
565 |
|
|
in the cache, *OFFSET_P is updated with the value that was recorded
|
566 |
|
|
the first time T was added to the cache.
|
567 |
|
|
|
568 |
|
|
If OFFSET_P is NULL, it is ignored. */
|
569 |
|
|
|
570 |
|
|
bool
|
571 |
|
|
lto_streamer_cache_insert (struct lto_streamer_cache_d *cache, tree t,
|
572 |
|
|
int *ix_p, unsigned *offset_p)
|
573 |
|
|
{
|
574 |
|
|
return lto_streamer_cache_insert_1 (cache, t, ix_p, offset_p, true);
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
|
578 |
|
|
/* Insert tree node T in CACHE at slot IX. If T already
|
579 |
|
|
existed in the cache return true. Otherwise, return false. */
|
580 |
|
|
|
581 |
|
|
bool
|
582 |
|
|
lto_streamer_cache_insert_at (struct lto_streamer_cache_d *cache,
|
583 |
|
|
tree t, int ix)
|
584 |
|
|
{
|
585 |
|
|
return lto_streamer_cache_insert_1 (cache, t, &ix, NULL, false);
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
|
589 |
|
|
/* Return true if tree node T exists in CACHE. If IX_P is
|
590 |
|
|
not NULL, write to *IX_P the index into the cache where T is stored
|
591 |
|
|
(-1 if T is not found). */
|
592 |
|
|
|
593 |
|
|
bool
|
594 |
|
|
lto_streamer_cache_lookup (struct lto_streamer_cache_d *cache, tree t,
|
595 |
|
|
int *ix_p)
|
596 |
|
|
{
|
597 |
|
|
void **slot;
|
598 |
|
|
struct tree_int_map d_slot;
|
599 |
|
|
bool retval;
|
600 |
|
|
int ix;
|
601 |
|
|
|
602 |
|
|
gcc_assert (t);
|
603 |
|
|
|
604 |
|
|
d_slot.base.from = t;
|
605 |
|
|
slot = htab_find_slot (cache->node_map, &d_slot, NO_INSERT);
|
606 |
|
|
if (slot == NULL)
|
607 |
|
|
{
|
608 |
|
|
retval = false;
|
609 |
|
|
ix = -1;
|
610 |
|
|
}
|
611 |
|
|
else
|
612 |
|
|
{
|
613 |
|
|
retval = true;
|
614 |
|
|
ix = (int) ((struct tree_int_map *) *slot)->to;
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
if (ix_p)
|
618 |
|
|
*ix_p = ix;
|
619 |
|
|
|
620 |
|
|
return retval;
|
621 |
|
|
}
|
622 |
|
|
|
623 |
|
|
|
624 |
|
|
/* Return the tree node at slot IX in CACHE. */
|
625 |
|
|
|
626 |
|
|
tree
|
627 |
|
|
lto_streamer_cache_get (struct lto_streamer_cache_d *cache, int ix)
|
628 |
|
|
{
|
629 |
|
|
gcc_assert (cache);
|
630 |
|
|
|
631 |
|
|
/* If the reader is requesting an index beyond the length of the
|
632 |
|
|
cache, it will need to read ahead. Return NULL_TREE to indicate
|
633 |
|
|
that. */
|
634 |
|
|
if ((unsigned) ix >= VEC_length (tree, cache->nodes))
|
635 |
|
|
return NULL_TREE;
|
636 |
|
|
|
637 |
|
|
return VEC_index (tree, cache->nodes, (unsigned) ix);
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
|
641 |
|
|
/* Record NODE in COMMON_NODES if it is not NULL and is not already in
|
642 |
|
|
SEEN_NODES. */
|
643 |
|
|
|
644 |
|
|
static void
|
645 |
|
|
lto_record_common_node (tree *nodep, VEC(tree, heap) **common_nodes,
|
646 |
|
|
struct pointer_set_t *seen_nodes)
|
647 |
|
|
{
|
648 |
|
|
tree node = *nodep;
|
649 |
|
|
|
650 |
|
|
if (node == NULL_TREE)
|
651 |
|
|
return;
|
652 |
|
|
|
653 |
|
|
if (TYPE_P (node))
|
654 |
|
|
*nodep = node = gimple_register_type (node);
|
655 |
|
|
|
656 |
|
|
/* Return if node is already seen. */
|
657 |
|
|
if (pointer_set_insert (seen_nodes, node))
|
658 |
|
|
return;
|
659 |
|
|
|
660 |
|
|
VEC_safe_push (tree, heap, *common_nodes, node);
|
661 |
|
|
|
662 |
|
|
if (tree_node_can_be_shared (node))
|
663 |
|
|
{
|
664 |
|
|
if (POINTER_TYPE_P (node)
|
665 |
|
|
|| TREE_CODE (node) == COMPLEX_TYPE
|
666 |
|
|
|| TREE_CODE (node) == ARRAY_TYPE)
|
667 |
|
|
lto_record_common_node (&TREE_TYPE (node), common_nodes, seen_nodes);
|
668 |
|
|
}
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
|
672 |
|
|
/* Generate a vector of common nodes and make sure they are merged
|
673 |
|
|
properly according to the the gimple type table. */
|
674 |
|
|
|
675 |
|
|
static VEC(tree,heap) *
|
676 |
|
|
lto_get_common_nodes (void)
|
677 |
|
|
{
|
678 |
|
|
unsigned i;
|
679 |
|
|
VEC(tree,heap) *common_nodes = NULL;
|
680 |
|
|
struct pointer_set_t *seen_nodes;
|
681 |
|
|
|
682 |
|
|
/* The MAIN_IDENTIFIER_NODE is normally set up by the front-end, but the
|
683 |
|
|
LTO back-end must agree. Currently, the only languages that set this
|
684 |
|
|
use the name "main". */
|
685 |
|
|
if (main_identifier_node)
|
686 |
|
|
{
|
687 |
|
|
const char *main_name = IDENTIFIER_POINTER (main_identifier_node);
|
688 |
|
|
gcc_assert (strcmp (main_name, "main") == 0);
|
689 |
|
|
}
|
690 |
|
|
else
|
691 |
|
|
main_identifier_node = get_identifier ("main");
|
692 |
|
|
|
693 |
|
|
gcc_assert (ptrdiff_type_node == integer_type_node);
|
694 |
|
|
|
695 |
|
|
/* FIXME lto. In the C++ front-end, fileptr_type_node is defined as a
|
696 |
|
|
variant copy of of ptr_type_node, rather than ptr_node itself. The
|
697 |
|
|
distinction should only be relevant to the front-end, so we always
|
698 |
|
|
use the C definition here in lto1.
|
699 |
|
|
|
700 |
|
|
These should be assured in pass_ipa_free_lang_data. */
|
701 |
|
|
gcc_assert (fileptr_type_node == ptr_type_node);
|
702 |
|
|
gcc_assert (TYPE_MAIN_VARIANT (fileptr_type_node) == ptr_type_node);
|
703 |
|
|
|
704 |
|
|
seen_nodes = pointer_set_create ();
|
705 |
|
|
|
706 |
|
|
/* Skip itk_char. char_type_node is shared with the appropriately
|
707 |
|
|
signed variant. */
|
708 |
|
|
for (i = itk_signed_char; i < itk_none; i++)
|
709 |
|
|
lto_record_common_node (&integer_types[i], &common_nodes, seen_nodes);
|
710 |
|
|
|
711 |
|
|
for (i = 0; i < TYPE_KIND_LAST; i++)
|
712 |
|
|
lto_record_common_node (&sizetype_tab[i], &common_nodes, seen_nodes);
|
713 |
|
|
|
714 |
|
|
for (i = 0; i < TI_MAX; i++)
|
715 |
|
|
lto_record_common_node (&global_trees[i], &common_nodes, seen_nodes);
|
716 |
|
|
|
717 |
|
|
pointer_set_destroy (seen_nodes);
|
718 |
|
|
|
719 |
|
|
return common_nodes;
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
|
723 |
|
|
/* Assign an index to tree node T and enter it in the streamer cache
|
724 |
|
|
CACHE. */
|
725 |
|
|
|
726 |
|
|
static void
|
727 |
|
|
preload_common_node (struct lto_streamer_cache_d *cache, tree t)
|
728 |
|
|
{
|
729 |
|
|
gcc_assert (t);
|
730 |
|
|
|
731 |
|
|
lto_streamer_cache_insert (cache, t, NULL, NULL);
|
732 |
|
|
|
733 |
|
|
/* The FIELD_DECLs of structures should be shared, so that every
|
734 |
|
|
COMPONENT_REF uses the same tree node when referencing a field.
|
735 |
|
|
Pointer equality between FIELD_DECLs is used by the alias
|
736 |
|
|
machinery to compute overlapping memory references (See
|
737 |
|
|
nonoverlapping_component_refs_p). */
|
738 |
|
|
if (TREE_CODE (t) == RECORD_TYPE)
|
739 |
|
|
{
|
740 |
|
|
tree f;
|
741 |
|
|
|
742 |
|
|
for (f = TYPE_FIELDS (t); f; f = TREE_CHAIN (f))
|
743 |
|
|
preload_common_node (cache, f);
|
744 |
|
|
}
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
|
748 |
|
|
/* Create a cache of pickled nodes. */
|
749 |
|
|
|
750 |
|
|
struct lto_streamer_cache_d *
|
751 |
|
|
lto_streamer_cache_create (void)
|
752 |
|
|
{
|
753 |
|
|
struct lto_streamer_cache_d *cache;
|
754 |
|
|
VEC(tree, heap) *common_nodes;
|
755 |
|
|
unsigned i;
|
756 |
|
|
tree node;
|
757 |
|
|
|
758 |
|
|
cache = XCNEW (struct lto_streamer_cache_d);
|
759 |
|
|
|
760 |
|
|
cache->node_map = htab_create (101, tree_int_map_hash, tree_int_map_eq, NULL);
|
761 |
|
|
|
762 |
|
|
/* Load all the well-known tree nodes that are always created by
|
763 |
|
|
the compiler on startup. This prevents writing them out
|
764 |
|
|
unnecessarily. */
|
765 |
|
|
common_nodes = lto_get_common_nodes ();
|
766 |
|
|
|
767 |
|
|
for (i = 0; VEC_iterate (tree, common_nodes, i, node); i++)
|
768 |
|
|
preload_common_node (cache, node);
|
769 |
|
|
|
770 |
|
|
VEC_free(tree, heap, common_nodes);
|
771 |
|
|
|
772 |
|
|
return cache;
|
773 |
|
|
}
|
774 |
|
|
|
775 |
|
|
|
776 |
|
|
/* Delete the streamer cache C. */
|
777 |
|
|
|
778 |
|
|
void
|
779 |
|
|
lto_streamer_cache_delete (struct lto_streamer_cache_d *c)
|
780 |
|
|
{
|
781 |
|
|
if (c == NULL)
|
782 |
|
|
return;
|
783 |
|
|
|
784 |
|
|
htab_delete (c->node_map);
|
785 |
|
|
VEC_free (tree, gc, c->nodes);
|
786 |
|
|
VEC_free (unsigned, heap, c->offsets);
|
787 |
|
|
free (c);
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
|
791 |
|
|
#ifdef LTO_STREAMER_DEBUG
|
792 |
|
|
static htab_t tree_htab;
|
793 |
|
|
|
794 |
|
|
struct tree_hash_entry
|
795 |
|
|
{
|
796 |
|
|
tree key;
|
797 |
|
|
intptr_t value;
|
798 |
|
|
};
|
799 |
|
|
|
800 |
|
|
static hashval_t
|
801 |
|
|
hash_tree (const void *p)
|
802 |
|
|
{
|
803 |
|
|
const struct tree_hash_entry *e = (const struct tree_hash_entry *) p;
|
804 |
|
|
return htab_hash_pointer (e->key);
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
static int
|
808 |
|
|
eq_tree (const void *p1, const void *p2)
|
809 |
|
|
{
|
810 |
|
|
const struct tree_hash_entry *e1 = (const struct tree_hash_entry *) p1;
|
811 |
|
|
const struct tree_hash_entry *e2 = (const struct tree_hash_entry *) p2;
|
812 |
|
|
return (e1->key == e2->key);
|
813 |
|
|
}
|
814 |
|
|
#endif
|
815 |
|
|
|
816 |
|
|
/* Initialization common to the LTO reader and writer. */
|
817 |
|
|
|
818 |
|
|
void
|
819 |
|
|
lto_streamer_init (void)
|
820 |
|
|
{
|
821 |
|
|
/* Check that all the TS_* handled by the reader and writer routines
|
822 |
|
|
match exactly the structures defined in treestruct.def. When a
|
823 |
|
|
new TS_* astructure is added, the streamer should be updated to
|
824 |
|
|
handle it. */
|
825 |
|
|
check_handled_ts_structures ();
|
826 |
|
|
|
827 |
|
|
#ifdef LTO_STREAMER_DEBUG
|
828 |
|
|
tree_htab = htab_create (31, hash_tree, eq_tree, NULL);
|
829 |
|
|
#endif
|
830 |
|
|
}
|
831 |
|
|
|
832 |
|
|
|
833 |
|
|
/* Gate function for all LTO streaming passes. */
|
834 |
|
|
|
835 |
|
|
bool
|
836 |
|
|
gate_lto_out (void)
|
837 |
|
|
{
|
838 |
|
|
return ((flag_generate_lto || in_lto_p)
|
839 |
|
|
/* Don't bother doing anything if the program has errors. */
|
840 |
|
|
&& !(errorcount || sorrycount));
|
841 |
|
|
}
|
842 |
|
|
|
843 |
|
|
|
844 |
|
|
#ifdef LTO_STREAMER_DEBUG
|
845 |
|
|
/* Add a mapping between T and ORIG_T, which is the numeric value of
|
846 |
|
|
the original address of T as it was seen by the LTO writer. This
|
847 |
|
|
mapping is useful when debugging streaming problems. A debugging
|
848 |
|
|
session can be started on both reader and writer using ORIG_T
|
849 |
|
|
as a breakpoint value in both sessions.
|
850 |
|
|
|
851 |
|
|
Note that this mapping is transient and only valid while T is
|
852 |
|
|
being reconstructed. Once T is fully built, the mapping is
|
853 |
|
|
removed. */
|
854 |
|
|
|
855 |
|
|
void
|
856 |
|
|
lto_orig_address_map (tree t, intptr_t orig_t)
|
857 |
|
|
{
|
858 |
|
|
struct tree_hash_entry ent;
|
859 |
|
|
struct tree_hash_entry **slot;
|
860 |
|
|
|
861 |
|
|
ent.key = t;
|
862 |
|
|
ent.value = orig_t;
|
863 |
|
|
slot
|
864 |
|
|
= (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, INSERT);
|
865 |
|
|
gcc_assert (!*slot);
|
866 |
|
|
*slot = XNEW (struct tree_hash_entry);
|
867 |
|
|
**slot = ent;
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
|
871 |
|
|
/* Get the original address of T as it was seen by the writer. This
|
872 |
|
|
is only valid while T is being reconstructed. */
|
873 |
|
|
|
874 |
|
|
intptr_t
|
875 |
|
|
lto_orig_address_get (tree t)
|
876 |
|
|
{
|
877 |
|
|
struct tree_hash_entry ent;
|
878 |
|
|
struct tree_hash_entry **slot;
|
879 |
|
|
|
880 |
|
|
ent.key = t;
|
881 |
|
|
slot
|
882 |
|
|
= (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, NO_INSERT);
|
883 |
|
|
return (slot ? (*slot)->value : 0);
|
884 |
|
|
}
|
885 |
|
|
|
886 |
|
|
|
887 |
|
|
/* Clear the mapping of T to its original address. */
|
888 |
|
|
|
889 |
|
|
void
|
890 |
|
|
lto_orig_address_remove (tree t)
|
891 |
|
|
{
|
892 |
|
|
struct tree_hash_entry ent;
|
893 |
|
|
struct tree_hash_entry **slot;
|
894 |
|
|
|
895 |
|
|
ent.key = t;
|
896 |
|
|
slot
|
897 |
|
|
= (struct tree_hash_entry **) htab_find_slot (tree_htab, &ent, NO_INSERT);
|
898 |
|
|
gcc_assert (slot);
|
899 |
|
|
free (*slot);
|
900 |
|
|
htab_clear_slot (tree_htab, (PTR *)slot);
|
901 |
|
|
}
|
902 |
|
|
#endif
|
903 |
|
|
|
904 |
|
|
|
905 |
|
|
/* Check that the version MAJOR.MINOR is the correct version number. */
|
906 |
|
|
|
907 |
|
|
void
|
908 |
|
|
lto_check_version (int major, int minor)
|
909 |
|
|
{
|
910 |
|
|
if (major != LTO_major_version || minor != LTO_minor_version)
|
911 |
|
|
fatal_error ("bytecode stream generated with LTO version %d.%d instead "
|
912 |
|
|
"of the expected %d.%d",
|
913 |
|
|
major, minor,
|
914 |
|
|
LTO_major_version, LTO_minor_version);
|
915 |
|
|
}
|