1 |
280 |
jeremybenn |
/* Routines to implement minimum-cost maximal flow algorithm used to smooth
|
2 |
|
|
basic block and edge frequency counts.
|
3 |
|
|
Copyright (C) 2008, 2009
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Paul Yuan (yingbo.com@gmail.com) and
|
6 |
|
|
Vinodha Ramasamy (vinodha@google.com).
|
7 |
|
|
|
8 |
|
|
This file is part of GCC.
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
/* References:
|
24 |
|
|
[1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles
|
25 |
|
|
from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen,
|
26 |
|
|
and Robert Hundt; GCC Summit 2008.
|
27 |
|
|
[2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost
|
28 |
|
|
Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber;
|
29 |
|
|
HiPEAC '08.
|
30 |
|
|
|
31 |
|
|
Algorithm to smooth basic block and edge counts:
|
32 |
|
|
1. create_fixup_graph: Create fixup graph by translating function CFG into
|
33 |
|
|
a graph that satisfies MCF algorithm requirements.
|
34 |
|
|
2. find_max_flow: Find maximal flow.
|
35 |
|
|
3. compute_residual_flow: Form residual network.
|
36 |
|
|
4. Repeat:
|
37 |
|
|
cancel_negative_cycle: While G contains a negative cost cycle C, reverse
|
38 |
|
|
the flow on the found cycle by the minimum residual capacity in that
|
39 |
|
|
cycle.
|
40 |
|
|
5. Form the minimal cost flow
|
41 |
|
|
f(u,v) = rf(v, u).
|
42 |
|
|
6. adjust_cfg_counts: Update initial edge weights with corrected weights.
|
43 |
|
|
delta(u.v) = f(u,v) -f(v,u).
|
44 |
|
|
w*(u,v) = w(u,v) + delta(u,v). */
|
45 |
|
|
|
46 |
|
|
#include "config.h"
|
47 |
|
|
#include "system.h"
|
48 |
|
|
#include "coretypes.h"
|
49 |
|
|
#include "tm.h"
|
50 |
|
|
#include "basic-block.h"
|
51 |
|
|
#include "output.h"
|
52 |
|
|
#include "langhooks.h"
|
53 |
|
|
#include "tree.h"
|
54 |
|
|
#include "gcov-io.h"
|
55 |
|
|
|
56 |
|
|
#include "profile.h"
|
57 |
|
|
|
58 |
|
|
/* CAP_INFINITY: Constant to represent infinite capacity. */
|
59 |
|
|
#define CAP_INFINITY INTTYPE_MAXIMUM (HOST_WIDEST_INT)
|
60 |
|
|
|
61 |
|
|
/* COST FUNCTION. */
|
62 |
|
|
#define K_POS(b) ((b))
|
63 |
|
|
#define K_NEG(b) (50 * (b))
|
64 |
|
|
#define COST(k, w) ((k) / mcf_ln ((w) + 2))
|
65 |
|
|
/* Limit the number of iterations for cancel_negative_cycles() to ensure
|
66 |
|
|
reasonable compile time. */
|
67 |
|
|
#define MAX_ITER(n, e) 10 + (1000000 / ((n) * (e)))
|
68 |
|
|
typedef enum
|
69 |
|
|
{
|
70 |
|
|
INVALID_EDGE,
|
71 |
|
|
VERTEX_SPLIT_EDGE, /* Edge to represent vertex with w(e) = w(v). */
|
72 |
|
|
REDIRECT_EDGE, /* Edge after vertex transformation. */
|
73 |
|
|
REVERSE_EDGE,
|
74 |
|
|
SOURCE_CONNECT_EDGE, /* Single edge connecting to single source. */
|
75 |
|
|
SINK_CONNECT_EDGE, /* Single edge connecting to single sink. */
|
76 |
|
|
BALANCE_EDGE, /* Edge connecting with source/sink: cp(e) = 0. */
|
77 |
|
|
REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge. */
|
78 |
|
|
REVERSE_NORMALIZED_EDGE /* Normalized edge for a reverse edge. */
|
79 |
|
|
} edge_type;
|
80 |
|
|
|
81 |
|
|
/* Structure to represent an edge in the fixup graph. */
|
82 |
|
|
typedef struct fixup_edge_d
|
83 |
|
|
{
|
84 |
|
|
int src;
|
85 |
|
|
int dest;
|
86 |
|
|
/* Flag denoting type of edge and attributes for the flow field. */
|
87 |
|
|
edge_type type;
|
88 |
|
|
bool is_rflow_valid;
|
89 |
|
|
/* Index to the normalization vertex added for this edge. */
|
90 |
|
|
int norm_vertex_index;
|
91 |
|
|
/* Flow for this edge. */
|
92 |
|
|
gcov_type flow;
|
93 |
|
|
/* Residual flow for this edge - used during negative cycle canceling. */
|
94 |
|
|
gcov_type rflow;
|
95 |
|
|
gcov_type weight;
|
96 |
|
|
gcov_type cost;
|
97 |
|
|
gcov_type max_capacity;
|
98 |
|
|
} fixup_edge_type;
|
99 |
|
|
|
100 |
|
|
typedef fixup_edge_type *fixup_edge_p;
|
101 |
|
|
|
102 |
|
|
DEF_VEC_P (fixup_edge_p);
|
103 |
|
|
DEF_VEC_ALLOC_P (fixup_edge_p, heap);
|
104 |
|
|
|
105 |
|
|
/* Structure to represent a vertex in the fixup graph. */
|
106 |
|
|
typedef struct fixup_vertex_d
|
107 |
|
|
{
|
108 |
|
|
VEC (fixup_edge_p, heap) *succ_edges;
|
109 |
|
|
} fixup_vertex_type;
|
110 |
|
|
|
111 |
|
|
typedef fixup_vertex_type *fixup_vertex_p;
|
112 |
|
|
|
113 |
|
|
/* Fixup graph used in the MCF algorithm. */
|
114 |
|
|
typedef struct fixup_graph_d
|
115 |
|
|
{
|
116 |
|
|
/* Current number of vertices for the graph. */
|
117 |
|
|
int num_vertices;
|
118 |
|
|
/* Current number of edges for the graph. */
|
119 |
|
|
int num_edges;
|
120 |
|
|
/* Index of new entry vertex. */
|
121 |
|
|
int new_entry_index;
|
122 |
|
|
/* Index of new exit vertex. */
|
123 |
|
|
int new_exit_index;
|
124 |
|
|
/* Fixup vertex list. Adjacency list for fixup graph. */
|
125 |
|
|
fixup_vertex_p vertex_list;
|
126 |
|
|
/* Fixup edge list. */
|
127 |
|
|
fixup_edge_p edge_list;
|
128 |
|
|
} fixup_graph_type;
|
129 |
|
|
|
130 |
|
|
typedef struct queue_d
|
131 |
|
|
{
|
132 |
|
|
int *queue;
|
133 |
|
|
int head;
|
134 |
|
|
int tail;
|
135 |
|
|
int size;
|
136 |
|
|
} queue_type;
|
137 |
|
|
|
138 |
|
|
/* Structure used in the maximal flow routines to find augmenting path. */
|
139 |
|
|
typedef struct augmenting_path_d
|
140 |
|
|
{
|
141 |
|
|
/* Queue used to hold vertex indices. */
|
142 |
|
|
queue_type queue_list;
|
143 |
|
|
/* Vector to hold chain of pred vertex indices in augmenting path. */
|
144 |
|
|
int *bb_pred;
|
145 |
|
|
/* Vector that indicates if basic block i has been visited. */
|
146 |
|
|
int *is_visited;
|
147 |
|
|
} augmenting_path_type;
|
148 |
|
|
|
149 |
|
|
|
150 |
|
|
/* Function definitions. */
|
151 |
|
|
|
152 |
|
|
/* Dump routines to aid debugging. */
|
153 |
|
|
|
154 |
|
|
/* Print basic block with index N for FIXUP_GRAPH in n' and n'' format. */
|
155 |
|
|
|
156 |
|
|
static void
|
157 |
|
|
print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n)
|
158 |
|
|
{
|
159 |
|
|
if (n == ENTRY_BLOCK)
|
160 |
|
|
fputs ("ENTRY", file);
|
161 |
|
|
else if (n == ENTRY_BLOCK + 1)
|
162 |
|
|
fputs ("ENTRY''", file);
|
163 |
|
|
else if (n == 2 * EXIT_BLOCK)
|
164 |
|
|
fputs ("EXIT", file);
|
165 |
|
|
else if (n == 2 * EXIT_BLOCK + 1)
|
166 |
|
|
fputs ("EXIT''", file);
|
167 |
|
|
else if (n == fixup_graph->new_exit_index)
|
168 |
|
|
fputs ("NEW_EXIT", file);
|
169 |
|
|
else if (n == fixup_graph->new_entry_index)
|
170 |
|
|
fputs ("NEW_ENTRY", file);
|
171 |
|
|
else
|
172 |
|
|
{
|
173 |
|
|
fprintf (file, "%d", n / 2);
|
174 |
|
|
if (n % 2)
|
175 |
|
|
fputs ("''", file);
|
176 |
|
|
else
|
177 |
|
|
fputs ("'", file);
|
178 |
|
|
}
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
|
182 |
|
|
/* Print edge S->D for given fixup_graph with n' and n'' format.
|
183 |
|
|
PARAMETERS:
|
184 |
|
|
S is the index of the source vertex of the edge (input) and
|
185 |
|
|
D is the index of the destination vertex of the edge (input) for the given
|
186 |
|
|
fixup_graph (input). */
|
187 |
|
|
|
188 |
|
|
static void
|
189 |
|
|
print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d)
|
190 |
|
|
{
|
191 |
|
|
print_basic_block (file, fixup_graph, s);
|
192 |
|
|
fputs ("->", file);
|
193 |
|
|
print_basic_block (file, fixup_graph, d);
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
|
197 |
|
|
/* Dump out the attributes of a given edge FEDGE in the fixup_graph to a
|
198 |
|
|
file. */
|
199 |
|
|
static void
|
200 |
|
|
dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge)
|
201 |
|
|
{
|
202 |
|
|
if (!fedge)
|
203 |
|
|
{
|
204 |
|
|
fputs ("NULL fixup graph edge.\n", file);
|
205 |
|
|
return;
|
206 |
|
|
}
|
207 |
|
|
|
208 |
|
|
print_edge (file, fixup_graph, fedge->src, fedge->dest);
|
209 |
|
|
fputs (": ", file);
|
210 |
|
|
|
211 |
|
|
if (fedge->type)
|
212 |
|
|
{
|
213 |
|
|
fprintf (file, "flow/capacity=" HOST_WIDEST_INT_PRINT_DEC "/",
|
214 |
|
|
fedge->flow);
|
215 |
|
|
if (fedge->max_capacity == CAP_INFINITY)
|
216 |
|
|
fputs ("+oo,", file);
|
217 |
|
|
else
|
218 |
|
|
fprintf (file, "" HOST_WIDEST_INT_PRINT_DEC ",", fedge->max_capacity);
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
if (fedge->is_rflow_valid)
|
222 |
|
|
{
|
223 |
|
|
if (fedge->rflow == CAP_INFINITY)
|
224 |
|
|
fputs (" rflow=+oo.", file);
|
225 |
|
|
else
|
226 |
|
|
fprintf (file, " rflow=" HOST_WIDEST_INT_PRINT_DEC ",", fedge->rflow);
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
fprintf (file, " cost=" HOST_WIDEST_INT_PRINT_DEC ".", fedge->cost);
|
230 |
|
|
|
231 |
|
|
fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest);
|
232 |
|
|
|
233 |
|
|
if (fedge->type)
|
234 |
|
|
{
|
235 |
|
|
switch (fedge->type)
|
236 |
|
|
{
|
237 |
|
|
case VERTEX_SPLIT_EDGE:
|
238 |
|
|
fputs (" @VERTEX_SPLIT_EDGE", file);
|
239 |
|
|
break;
|
240 |
|
|
|
241 |
|
|
case REDIRECT_EDGE:
|
242 |
|
|
fputs (" @REDIRECT_EDGE", file);
|
243 |
|
|
break;
|
244 |
|
|
|
245 |
|
|
case SOURCE_CONNECT_EDGE:
|
246 |
|
|
fputs (" @SOURCE_CONNECT_EDGE", file);
|
247 |
|
|
break;
|
248 |
|
|
|
249 |
|
|
case SINK_CONNECT_EDGE:
|
250 |
|
|
fputs (" @SINK_CONNECT_EDGE", file);
|
251 |
|
|
break;
|
252 |
|
|
|
253 |
|
|
case REVERSE_EDGE:
|
254 |
|
|
fputs (" @REVERSE_EDGE", file);
|
255 |
|
|
break;
|
256 |
|
|
|
257 |
|
|
case BALANCE_EDGE:
|
258 |
|
|
fputs (" @BALANCE_EDGE", file);
|
259 |
|
|
break;
|
260 |
|
|
|
261 |
|
|
case REDIRECT_NORMALIZED_EDGE:
|
262 |
|
|
case REVERSE_NORMALIZED_EDGE:
|
263 |
|
|
fputs (" @NORMALIZED_EDGE", file);
|
264 |
|
|
break;
|
265 |
|
|
|
266 |
|
|
default:
|
267 |
|
|
fputs (" @INVALID_EDGE", file);
|
268 |
|
|
break;
|
269 |
|
|
}
|
270 |
|
|
}
|
271 |
|
|
fputs ("\n", file);
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
/* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump
|
276 |
|
|
file. The input string MSG is printed out as a heading. */
|
277 |
|
|
|
278 |
|
|
static void
|
279 |
|
|
dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg)
|
280 |
|
|
{
|
281 |
|
|
int i, j;
|
282 |
|
|
int fnum_vertices, fnum_edges;
|
283 |
|
|
|
284 |
|
|
fixup_vertex_p fvertex_list, pfvertex;
|
285 |
|
|
fixup_edge_p pfedge;
|
286 |
|
|
|
287 |
|
|
gcc_assert (fixup_graph);
|
288 |
|
|
fvertex_list = fixup_graph->vertex_list;
|
289 |
|
|
fnum_vertices = fixup_graph->num_vertices;
|
290 |
|
|
fnum_edges = fixup_graph->num_edges;
|
291 |
|
|
|
292 |
|
|
fprintf (file, "\nDump fixup graph for %s(): %s.\n",
|
293 |
|
|
lang_hooks.decl_printable_name (current_function_decl, 2), msg);
|
294 |
|
|
fprintf (file,
|
295 |
|
|
"There are %d vertices and %d edges. new_exit_index is %d.\n\n",
|
296 |
|
|
fnum_vertices, fnum_edges, fixup_graph->new_exit_index);
|
297 |
|
|
|
298 |
|
|
for (i = 0; i < fnum_vertices; i++)
|
299 |
|
|
{
|
300 |
|
|
pfvertex = fvertex_list + i;
|
301 |
|
|
fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n",
|
302 |
|
|
i, VEC_length (fixup_edge_p, pfvertex->succ_edges));
|
303 |
|
|
|
304 |
|
|
for (j = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, j, pfedge);
|
305 |
|
|
j++)
|
306 |
|
|
{
|
307 |
|
|
/* Distinguish forward edges and backward edges in the residual flow
|
308 |
|
|
network. */
|
309 |
|
|
if (pfedge->type)
|
310 |
|
|
fputs ("(f) ", file);
|
311 |
|
|
else if (pfedge->is_rflow_valid)
|
312 |
|
|
fputs ("(b) ", file);
|
313 |
|
|
dump_fixup_edge (file, fixup_graph, pfedge);
|
314 |
|
|
}
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
fputs ("\n", file);
|
318 |
|
|
}
|
319 |
|
|
|
320 |
|
|
|
321 |
|
|
/* Utility routines. */
|
322 |
|
|
/* ln() implementation: approximate calculation. Returns ln of X. */
|
323 |
|
|
|
324 |
|
|
static double
|
325 |
|
|
mcf_ln (double x)
|
326 |
|
|
{
|
327 |
|
|
#define E 2.71828
|
328 |
|
|
int l = 1;
|
329 |
|
|
double m = E;
|
330 |
|
|
|
331 |
|
|
gcc_assert (x >= 0);
|
332 |
|
|
|
333 |
|
|
while (m < x)
|
334 |
|
|
{
|
335 |
|
|
m *= E;
|
336 |
|
|
l++;
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
return l;
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
|
343 |
|
|
/* sqrt() implementation: based on open source QUAKE3 code (magic sqrt
|
344 |
|
|
implementation) by John Carmack. Returns sqrt of X. */
|
345 |
|
|
|
346 |
|
|
static double
|
347 |
|
|
mcf_sqrt (double x)
|
348 |
|
|
{
|
349 |
|
|
#define MAGIC_CONST1 0x1fbcf800
|
350 |
|
|
#define MAGIC_CONST2 0x5f3759df
|
351 |
|
|
union {
|
352 |
|
|
int intPart;
|
353 |
|
|
float floatPart;
|
354 |
|
|
} convertor, convertor2;
|
355 |
|
|
|
356 |
|
|
gcc_assert (x >= 0);
|
357 |
|
|
|
358 |
|
|
convertor.floatPart = x;
|
359 |
|
|
convertor2.floatPart = x;
|
360 |
|
|
convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1);
|
361 |
|
|
convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1);
|
362 |
|
|
|
363 |
|
|
return 0.5f * (convertor.floatPart + (x * convertor2.floatPart));
|
364 |
|
|
}
|
365 |
|
|
|
366 |
|
|
|
367 |
|
|
/* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge
|
368 |
|
|
(SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge
|
369 |
|
|
added set to COST. */
|
370 |
|
|
|
371 |
|
|
static fixup_edge_p
|
372 |
|
|
add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost)
|
373 |
|
|
{
|
374 |
|
|
fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src;
|
375 |
|
|
fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges;
|
376 |
|
|
curr_edge->src = src;
|
377 |
|
|
curr_edge->dest = dest;
|
378 |
|
|
curr_edge->cost = cost;
|
379 |
|
|
fixup_graph->num_edges++;
|
380 |
|
|
if (dump_file)
|
381 |
|
|
dump_fixup_edge (dump_file, fixup_graph, curr_edge);
|
382 |
|
|
VEC_safe_push (fixup_edge_p, heap, curr_vertex->succ_edges, curr_edge);
|
383 |
|
|
return curr_edge;
|
384 |
|
|
}
|
385 |
|
|
|
386 |
|
|
|
387 |
|
|
/* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and
|
388 |
|
|
MAX_CAPACITY to the edge_list in the fixup graph. */
|
389 |
|
|
|
390 |
|
|
static void
|
391 |
|
|
add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
|
392 |
|
|
edge_type type, gcov_type weight, gcov_type cost,
|
393 |
|
|
gcov_type max_capacity)
|
394 |
|
|
{
|
395 |
|
|
fixup_edge_p curr_edge = add_edge(fixup_graph, src, dest, cost);
|
396 |
|
|
curr_edge->type = type;
|
397 |
|
|
curr_edge->weight = weight;
|
398 |
|
|
curr_edge->max_capacity = max_capacity;
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
|
402 |
|
|
/* Add a residual edge (SRC->DEST) with attributes RFLOW and COST
|
403 |
|
|
to the fixup graph. */
|
404 |
|
|
|
405 |
|
|
static void
|
406 |
|
|
add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest,
|
407 |
|
|
gcov_type rflow, gcov_type cost)
|
408 |
|
|
{
|
409 |
|
|
fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost);
|
410 |
|
|
curr_edge->rflow = rflow;
|
411 |
|
|
curr_edge->is_rflow_valid = true;
|
412 |
|
|
/* This edge is not a valid edge - merely used to hold residual flow. */
|
413 |
|
|
curr_edge->type = INVALID_EDGE;
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
|
417 |
|
|
/* Return the pointer to fixup edge SRC->DEST or NULL if edge does not
|
418 |
|
|
exist in the FIXUP_GRAPH. */
|
419 |
|
|
|
420 |
|
|
static fixup_edge_p
|
421 |
|
|
find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest)
|
422 |
|
|
{
|
423 |
|
|
int j;
|
424 |
|
|
fixup_edge_p pfedge;
|
425 |
|
|
fixup_vertex_p pfvertex;
|
426 |
|
|
|
427 |
|
|
gcc_assert (src < fixup_graph->num_vertices);
|
428 |
|
|
|
429 |
|
|
pfvertex = fixup_graph->vertex_list + src;
|
430 |
|
|
|
431 |
|
|
for (j = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, j, pfedge);
|
432 |
|
|
j++)
|
433 |
|
|
if (pfedge->dest == dest)
|
434 |
|
|
return pfedge;
|
435 |
|
|
|
436 |
|
|
return NULL;
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
|
440 |
|
|
/* Cleanup routine to free structures in FIXUP_GRAPH. */
|
441 |
|
|
|
442 |
|
|
static void
|
443 |
|
|
delete_fixup_graph (fixup_graph_type *fixup_graph)
|
444 |
|
|
{
|
445 |
|
|
int i;
|
446 |
|
|
int fnum_vertices = fixup_graph->num_vertices;
|
447 |
|
|
fixup_vertex_p pfvertex = fixup_graph->vertex_list;
|
448 |
|
|
|
449 |
|
|
for (i = 0; i < fnum_vertices; i++, pfvertex++)
|
450 |
|
|
VEC_free (fixup_edge_p, heap, pfvertex->succ_edges);
|
451 |
|
|
|
452 |
|
|
free (fixup_graph->vertex_list);
|
453 |
|
|
free (fixup_graph->edge_list);
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
|
457 |
|
|
/* Creates a fixup graph FIXUP_GRAPH from the function CFG. */
|
458 |
|
|
|
459 |
|
|
static void
|
460 |
|
|
create_fixup_graph (fixup_graph_type *fixup_graph)
|
461 |
|
|
{
|
462 |
|
|
double sqrt_avg_vertex_weight = 0;
|
463 |
|
|
double total_vertex_weight = 0;
|
464 |
|
|
double k_pos = 0;
|
465 |
|
|
double k_neg = 0;
|
466 |
|
|
/* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v). */
|
467 |
|
|
gcov_type *diff_out_in = NULL;
|
468 |
|
|
gcov_type supply_value = 1, demand_value = 0;
|
469 |
|
|
gcov_type fcost = 0;
|
470 |
|
|
int new_entry_index = 0, new_exit_index = 0;
|
471 |
|
|
int i = 0, j = 0;
|
472 |
|
|
int new_index = 0;
|
473 |
|
|
basic_block bb;
|
474 |
|
|
edge e;
|
475 |
|
|
edge_iterator ei;
|
476 |
|
|
fixup_edge_p pfedge, r_pfedge;
|
477 |
|
|
fixup_edge_p fedge_list;
|
478 |
|
|
int fnum_edges;
|
479 |
|
|
|
480 |
|
|
/* Each basic_block will be split into 2 during vertex transformation. */
|
481 |
|
|
int fnum_vertices_after_transform = 2 * n_basic_blocks;
|
482 |
|
|
int fnum_edges_after_transform = n_edges + n_basic_blocks;
|
483 |
|
|
|
484 |
|
|
/* Count the new SOURCE and EXIT vertices to be added. */
|
485 |
|
|
int fmax_num_vertices =
|
486 |
|
|
fnum_vertices_after_transform + n_edges + n_basic_blocks + 2;
|
487 |
|
|
|
488 |
|
|
/* In create_fixup_graph: Each basic block and edge can be split into 3
|
489 |
|
|
edges. Number of balance edges = n_basic_blocks. So after
|
490 |
|
|
create_fixup_graph:
|
491 |
|
|
max_edges = 4 * n_basic_blocks + 3 * n_edges
|
492 |
|
|
Accounting for residual flow edges
|
493 |
|
|
max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges)
|
494 |
|
|
= 8 * n_basic_blocks + 6 * n_edges
|
495 |
|
|
< 8 * n_basic_blocks + 8 * n_edges. */
|
496 |
|
|
int fmax_num_edges = 8 * (n_basic_blocks + n_edges);
|
497 |
|
|
|
498 |
|
|
/* Initial num of vertices in the fixup graph. */
|
499 |
|
|
fixup_graph->num_vertices = n_basic_blocks;
|
500 |
|
|
|
501 |
|
|
/* Fixup graph vertex list. */
|
502 |
|
|
fixup_graph->vertex_list =
|
503 |
|
|
(fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type));
|
504 |
|
|
|
505 |
|
|
/* Fixup graph edge list. */
|
506 |
|
|
fixup_graph->edge_list =
|
507 |
|
|
(fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type));
|
508 |
|
|
|
509 |
|
|
diff_out_in =
|
510 |
|
|
(gcov_type *) xcalloc (1 + fnum_vertices_after_transform,
|
511 |
|
|
sizeof (gcov_type));
|
512 |
|
|
|
513 |
|
|
/* Compute constants b, k_pos, k_neg used in the cost function calculation.
|
514 |
|
|
b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b. */
|
515 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
516 |
|
|
total_vertex_weight += bb->count;
|
517 |
|
|
|
518 |
|
|
sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight / n_basic_blocks);
|
519 |
|
|
|
520 |
|
|
k_pos = K_POS (sqrt_avg_vertex_weight);
|
521 |
|
|
k_neg = K_NEG (sqrt_avg_vertex_weight);
|
522 |
|
|
|
523 |
|
|
/* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'',
|
524 |
|
|
connected by an edge e from v' to v''. w(e) = w(v). */
|
525 |
|
|
|
526 |
|
|
if (dump_file)
|
527 |
|
|
fprintf (dump_file, "\nVertex transformation:\n");
|
528 |
|
|
|
529 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
530 |
|
|
{
|
531 |
|
|
/* v'->v'': index1->(index1+1). */
|
532 |
|
|
i = 2 * bb->index;
|
533 |
|
|
fcost = (gcov_type) COST (k_pos, bb->count);
|
534 |
|
|
add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb->count,
|
535 |
|
|
fcost, CAP_INFINITY);
|
536 |
|
|
fixup_graph->num_vertices++;
|
537 |
|
|
|
538 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
539 |
|
|
{
|
540 |
|
|
/* Edges with ignore attribute set should be treated like they don't
|
541 |
|
|
exist. */
|
542 |
|
|
if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
|
543 |
|
|
continue;
|
544 |
|
|
j = 2 * e->dest->index;
|
545 |
|
|
fcost = (gcov_type) COST (k_pos, e->count);
|
546 |
|
|
add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, e->count, fcost,
|
547 |
|
|
CAP_INFINITY);
|
548 |
|
|
}
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
/* After vertex transformation. */
|
552 |
|
|
gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform);
|
553 |
|
|
/* Redirect edges are not added for edges with ignore attribute. */
|
554 |
|
|
gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform);
|
555 |
|
|
|
556 |
|
|
fnum_edges_after_transform = fixup_graph->num_edges;
|
557 |
|
|
|
558 |
|
|
/* 2. Initialize D(v). */
|
559 |
|
|
for (i = 0; i < fnum_edges_after_transform; i++)
|
560 |
|
|
{
|
561 |
|
|
pfedge = fixup_graph->edge_list + i;
|
562 |
|
|
diff_out_in[pfedge->src] += pfedge->weight;
|
563 |
|
|
diff_out_in[pfedge->dest] -= pfedge->weight;
|
564 |
|
|
}
|
565 |
|
|
|
566 |
|
|
/* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3. */
|
567 |
|
|
for (i = 0; i <= 3; i++)
|
568 |
|
|
diff_out_in[i] = 0;
|
569 |
|
|
|
570 |
|
|
/* 3. Add reverse edges: needed to decrease counts during smoothing. */
|
571 |
|
|
if (dump_file)
|
572 |
|
|
fprintf (dump_file, "\nReverse edges:\n");
|
573 |
|
|
for (i = 0; i < fnum_edges_after_transform; i++)
|
574 |
|
|
{
|
575 |
|
|
pfedge = fixup_graph->edge_list + i;
|
576 |
|
|
if ((pfedge->src == 0) || (pfedge->src == 2))
|
577 |
|
|
continue;
|
578 |
|
|
r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
|
579 |
|
|
if (!r_pfedge && pfedge->weight)
|
580 |
|
|
{
|
581 |
|
|
/* Skip adding reverse edges for edges with w(e) = 0, as its maximum
|
582 |
|
|
capacity is 0. */
|
583 |
|
|
fcost = (gcov_type) COST (k_neg, pfedge->weight);
|
584 |
|
|
add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src,
|
585 |
|
|
REVERSE_EDGE, 0, fcost, pfedge->weight);
|
586 |
|
|
}
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
/* 4. Create single source and sink. Connect new source vertex s' to function
|
590 |
|
|
entry block. Connect sink vertex t' to function exit. */
|
591 |
|
|
if (dump_file)
|
592 |
|
|
fprintf (dump_file, "\ns'->S, T->t':\n");
|
593 |
|
|
|
594 |
|
|
new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices;
|
595 |
|
|
fixup_graph->num_vertices++;
|
596 |
|
|
/* Set supply_value to 1 to avoid zero count function ENTRY. */
|
597 |
|
|
add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE,
|
598 |
|
|
1 /* supply_value */, 0, 1 /* supply_value */);
|
599 |
|
|
|
600 |
|
|
/* Create new exit with EXIT_BLOCK as single pred. */
|
601 |
|
|
new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices;
|
602 |
|
|
fixup_graph->num_vertices++;
|
603 |
|
|
add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index,
|
604 |
|
|
SINK_CONNECT_EDGE,
|
605 |
|
|
|
606 |
|
|
|
607 |
|
|
/* Connect vertices with unbalanced D(v) to source/sink. */
|
608 |
|
|
if (dump_file)
|
609 |
|
|
fprintf (dump_file, "\nD(v) balance:\n");
|
610 |
|
|
/* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4.
|
611 |
|
|
diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2. */
|
612 |
|
|
for (i = 4; i < new_entry_index; i += 2)
|
613 |
|
|
{
|
614 |
|
|
if (diff_out_in[i] > 0)
|
615 |
|
|
{
|
616 |
|
|
add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0,
|
617 |
|
|
diff_out_in[i]);
|
618 |
|
|
demand_value += diff_out_in[i];
|
619 |
|
|
}
|
620 |
|
|
else if (diff_out_in[i] < 0)
|
621 |
|
|
{
|
622 |
|
|
add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0,
|
623 |
|
|
-diff_out_in[i]);
|
624 |
|
|
supply_value -= diff_out_in[i];
|
625 |
|
|
}
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
/* Set supply = demand. */
|
629 |
|
|
if (dump_file)
|
630 |
|
|
{
|
631 |
|
|
fprintf (dump_file, "\nAdjust supply and demand:\n");
|
632 |
|
|
fprintf (dump_file, "supply_value=" HOST_WIDEST_INT_PRINT_DEC "\n",
|
633 |
|
|
supply_value);
|
634 |
|
|
fprintf (dump_file, "demand_value=" HOST_WIDEST_INT_PRINT_DEC "\n",
|
635 |
|
|
demand_value);
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
if (demand_value > supply_value)
|
639 |
|
|
{
|
640 |
|
|
pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK);
|
641 |
|
|
pfedge->max_capacity += (demand_value - supply_value);
|
642 |
|
|
}
|
643 |
|
|
else
|
644 |
|
|
{
|
645 |
|
|
pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index);
|
646 |
|
|
pfedge->max_capacity += (supply_value - demand_value);
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
/* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are
|
650 |
|
|
created by the vertex transformation step from self-edges in the original
|
651 |
|
|
CFG and by the reverse edges added earlier. */
|
652 |
|
|
if (dump_file)
|
653 |
|
|
fprintf (dump_file, "\nNormalize edges:\n");
|
654 |
|
|
|
655 |
|
|
fnum_edges = fixup_graph->num_edges;
|
656 |
|
|
fedge_list = fixup_graph->edge_list;
|
657 |
|
|
|
658 |
|
|
for (i = 0; i < fnum_edges; i++)
|
659 |
|
|
{
|
660 |
|
|
pfedge = fedge_list + i;
|
661 |
|
|
r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src);
|
662 |
|
|
if (((pfedge->type == VERTEX_SPLIT_EDGE)
|
663 |
|
|
|| (pfedge->type == REDIRECT_EDGE)) && r_pfedge)
|
664 |
|
|
{
|
665 |
|
|
new_index = fixup_graph->num_vertices;
|
666 |
|
|
fixup_graph->num_vertices++;
|
667 |
|
|
|
668 |
|
|
if (dump_file)
|
669 |
|
|
{
|
670 |
|
|
fprintf (dump_file, "\nAnti-parallel edge:\n");
|
671 |
|
|
dump_fixup_edge (dump_file, fixup_graph, pfedge);
|
672 |
|
|
dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
|
673 |
|
|
fprintf (dump_file, "New vertex is %d.\n", new_index);
|
674 |
|
|
fprintf (dump_file, "------------------\n");
|
675 |
|
|
}
|
676 |
|
|
|
677 |
|
|
pfedge->cost /= 2;
|
678 |
|
|
pfedge->norm_vertex_index = new_index;
|
679 |
|
|
if (dump_file)
|
680 |
|
|
{
|
681 |
|
|
fprintf (dump_file, "After normalization:\n");
|
682 |
|
|
dump_fixup_edge (dump_file, fixup_graph, pfedge);
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
/* Add a new fixup edge: new_index->src. */
|
686 |
|
|
add_fixup_edge (fixup_graph, new_index, pfedge->src,
|
687 |
|
|
REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost,
|
688 |
|
|
r_pfedge->max_capacity);
|
689 |
|
|
gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices);
|
690 |
|
|
|
691 |
|
|
/* Edge: r_pfedge->src -> r_pfedge->dest
|
692 |
|
|
==> r_pfedge->src -> new_index. */
|
693 |
|
|
r_pfedge->dest = new_index;
|
694 |
|
|
r_pfedge->type = REVERSE_NORMALIZED_EDGE;
|
695 |
|
|
r_pfedge->cost = pfedge->cost;
|
696 |
|
|
r_pfedge->max_capacity = pfedge->max_capacity;
|
697 |
|
|
if (dump_file)
|
698 |
|
|
dump_fixup_edge (dump_file, fixup_graph, r_pfedge);
|
699 |
|
|
}
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
if (dump_file)
|
703 |
|
|
dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()");
|
704 |
|
|
|
705 |
|
|
/* Cleanup. */
|
706 |
|
|
free (diff_out_in);
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
|
710 |
|
|
/* Allocates space for the structures in AUGMENTING_PATH. The space needed is
|
711 |
|
|
proportional to the number of nodes in the graph, which is given by
|
712 |
|
|
GRAPH_SIZE. */
|
713 |
|
|
|
714 |
|
|
static void
|
715 |
|
|
init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size)
|
716 |
|
|
{
|
717 |
|
|
augmenting_path->queue_list.queue = (int *)
|
718 |
|
|
xcalloc (graph_size + 2, sizeof (int));
|
719 |
|
|
augmenting_path->queue_list.size = graph_size + 2;
|
720 |
|
|
augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int));
|
721 |
|
|
augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int));
|
722 |
|
|
}
|
723 |
|
|
|
724 |
|
|
/* Free the structures in AUGMENTING_PATH. */
|
725 |
|
|
static void
|
726 |
|
|
free_augmenting_path (augmenting_path_type *augmenting_path)
|
727 |
|
|
{
|
728 |
|
|
free (augmenting_path->queue_list.queue);
|
729 |
|
|
free (augmenting_path->bb_pred);
|
730 |
|
|
free (augmenting_path->is_visited);
|
731 |
|
|
}
|
732 |
|
|
|
733 |
|
|
|
734 |
|
|
/* Queue routines. Assumes queue will never overflow. */
|
735 |
|
|
|
736 |
|
|
static void
|
737 |
|
|
init_queue (queue_type *queue_list)
|
738 |
|
|
{
|
739 |
|
|
gcc_assert (queue_list);
|
740 |
|
|
queue_list->head = 0;
|
741 |
|
|
queue_list->tail = 0;
|
742 |
|
|
}
|
743 |
|
|
|
744 |
|
|
/* Return true if QUEUE_LIST is empty. */
|
745 |
|
|
static bool
|
746 |
|
|
is_empty (queue_type *queue_list)
|
747 |
|
|
{
|
748 |
|
|
return (queue_list->head == queue_list->tail);
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
/* Insert element X into QUEUE_LIST. */
|
752 |
|
|
static void
|
753 |
|
|
enqueue (queue_type *queue_list, int x)
|
754 |
|
|
{
|
755 |
|
|
gcc_assert (queue_list->tail < queue_list->size);
|
756 |
|
|
queue_list->queue[queue_list->tail] = x;
|
757 |
|
|
(queue_list->tail)++;
|
758 |
|
|
}
|
759 |
|
|
|
760 |
|
|
/* Return the first element in QUEUE_LIST. */
|
761 |
|
|
static int
|
762 |
|
|
dequeue (queue_type *queue_list)
|
763 |
|
|
{
|
764 |
|
|
int x;
|
765 |
|
|
gcc_assert (queue_list->head >= 0);
|
766 |
|
|
x = queue_list->queue[queue_list->head];
|
767 |
|
|
(queue_list->head)++;
|
768 |
|
|
return x;
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
|
772 |
|
|
/* Finds a negative cycle in the residual network using
|
773 |
|
|
the Bellman-Ford algorithm. The flow on the found cycle is reversed by the
|
774 |
|
|
minimum residual capacity of that cycle. ENTRY and EXIT vertices are not
|
775 |
|
|
considered.
|
776 |
|
|
|
777 |
|
|
Parameters:
|
778 |
|
|
FIXUP_GRAPH - Residual graph (input/output)
|
779 |
|
|
The following are allocated/freed by the caller:
|
780 |
|
|
PI - Vector to hold predecessors in path (pi = pred index)
|
781 |
|
|
D - D[I] holds minimum cost of path from i to sink
|
782 |
|
|
CYCLE - Vector to hold the minimum cost cycle
|
783 |
|
|
|
784 |
|
|
Return:
|
785 |
|
|
true if a negative cycle was found, false otherwise. */
|
786 |
|
|
|
787 |
|
|
static bool
|
788 |
|
|
cancel_negative_cycle (fixup_graph_type *fixup_graph,
|
789 |
|
|
int *pi, gcov_type *d, int *cycle)
|
790 |
|
|
{
|
791 |
|
|
int i, j, k;
|
792 |
|
|
int fnum_vertices, fnum_edges;
|
793 |
|
|
fixup_edge_p fedge_list, pfedge, r_pfedge;
|
794 |
|
|
bool found_cycle = false;
|
795 |
|
|
int cycle_start = 0, cycle_end = 0;
|
796 |
|
|
gcov_type sum_cost = 0, cycle_flow = 0;
|
797 |
|
|
int new_entry_index;
|
798 |
|
|
bool propagated = false;
|
799 |
|
|
|
800 |
|
|
gcc_assert (fixup_graph);
|
801 |
|
|
fnum_vertices = fixup_graph->num_vertices;
|
802 |
|
|
fnum_edges = fixup_graph->num_edges;
|
803 |
|
|
fedge_list = fixup_graph->edge_list;
|
804 |
|
|
new_entry_index = fixup_graph->new_entry_index;
|
805 |
|
|
|
806 |
|
|
/* Initialize. */
|
807 |
|
|
/* Skip ENTRY. */
|
808 |
|
|
for (i = 1; i < fnum_vertices; i++)
|
809 |
|
|
{
|
810 |
|
|
d[i] = CAP_INFINITY;
|
811 |
|
|
pi[i] = -1;
|
812 |
|
|
cycle[i] = -1;
|
813 |
|
|
}
|
814 |
|
|
d[ENTRY_BLOCK] = 0;
|
815 |
|
|
|
816 |
|
|
/* Relax. */
|
817 |
|
|
for (k = 1; k < fnum_vertices; k++)
|
818 |
|
|
{
|
819 |
|
|
propagated = false;
|
820 |
|
|
for (i = 0; i < fnum_edges; i++)
|
821 |
|
|
{
|
822 |
|
|
pfedge = fedge_list + i;
|
823 |
|
|
if (pfedge->src == new_entry_index)
|
824 |
|
|
continue;
|
825 |
|
|
if (pfedge->is_rflow_valid && pfedge->rflow
|
826 |
|
|
&& d[pfedge->src] != CAP_INFINITY
|
827 |
|
|
&& (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
|
828 |
|
|
{
|
829 |
|
|
d[pfedge->dest] = d[pfedge->src] + pfedge->cost;
|
830 |
|
|
pi[pfedge->dest] = pfedge->src;
|
831 |
|
|
propagated = true;
|
832 |
|
|
}
|
833 |
|
|
}
|
834 |
|
|
if (!propagated)
|
835 |
|
|
break;
|
836 |
|
|
}
|
837 |
|
|
|
838 |
|
|
if (!propagated)
|
839 |
|
|
/* No negative cycles exist. */
|
840 |
|
|
return 0;
|
841 |
|
|
|
842 |
|
|
/* Detect. */
|
843 |
|
|
for (i = 0; i < fnum_edges; i++)
|
844 |
|
|
{
|
845 |
|
|
pfedge = fedge_list + i;
|
846 |
|
|
if (pfedge->src == new_entry_index)
|
847 |
|
|
continue;
|
848 |
|
|
if (pfedge->is_rflow_valid && pfedge->rflow
|
849 |
|
|
&& d[pfedge->src] != CAP_INFINITY
|
850 |
|
|
&& (d[pfedge->dest] > d[pfedge->src] + pfedge->cost))
|
851 |
|
|
{
|
852 |
|
|
found_cycle = true;
|
853 |
|
|
break;
|
854 |
|
|
}
|
855 |
|
|
}
|
856 |
|
|
|
857 |
|
|
if (!found_cycle)
|
858 |
|
|
return 0;
|
859 |
|
|
|
860 |
|
|
/* Augment the cycle with the cycle's minimum residual capacity. */
|
861 |
|
|
found_cycle = false;
|
862 |
|
|
cycle[0] = pfedge->dest;
|
863 |
|
|
j = pfedge->dest;
|
864 |
|
|
|
865 |
|
|
for (i = 1; i < fnum_vertices; i++)
|
866 |
|
|
{
|
867 |
|
|
j = pi[j];
|
868 |
|
|
cycle[i] = j;
|
869 |
|
|
for (k = 0; k < i; k++)
|
870 |
|
|
{
|
871 |
|
|
if (cycle[k] == j)
|
872 |
|
|
{
|
873 |
|
|
/* cycle[k] -> ... -> cycle[i]. */
|
874 |
|
|
cycle_start = k;
|
875 |
|
|
cycle_end = i;
|
876 |
|
|
found_cycle = true;
|
877 |
|
|
break;
|
878 |
|
|
}
|
879 |
|
|
}
|
880 |
|
|
if (found_cycle)
|
881 |
|
|
break;
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
gcc_assert (cycle[cycle_start] == cycle[cycle_end]);
|
885 |
|
|
if (dump_file)
|
886 |
|
|
fprintf (dump_file, "\nNegative cycle length is %d:\n",
|
887 |
|
|
cycle_end - cycle_start);
|
888 |
|
|
|
889 |
|
|
sum_cost = 0;
|
890 |
|
|
cycle_flow = CAP_INFINITY;
|
891 |
|
|
for (k = cycle_start; k < cycle_end; k++)
|
892 |
|
|
{
|
893 |
|
|
pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
|
894 |
|
|
cycle_flow = MIN (cycle_flow, pfedge->rflow);
|
895 |
|
|
sum_cost += pfedge->cost;
|
896 |
|
|
if (dump_file)
|
897 |
|
|
fprintf (dump_file, "%d ", cycle[k]);
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
if (dump_file)
|
901 |
|
|
{
|
902 |
|
|
fprintf (dump_file, "%d", cycle[k]);
|
903 |
|
|
fprintf (dump_file,
|
904 |
|
|
": (" HOST_WIDEST_INT_PRINT_DEC ", " HOST_WIDEST_INT_PRINT_DEC
|
905 |
|
|
")\n", sum_cost, cycle_flow);
|
906 |
|
|
fprintf (dump_file,
|
907 |
|
|
"Augment cycle with " HOST_WIDEST_INT_PRINT_DEC "\n",
|
908 |
|
|
cycle_flow);
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
for (k = cycle_start; k < cycle_end; k++)
|
912 |
|
|
{
|
913 |
|
|
pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]);
|
914 |
|
|
r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]);
|
915 |
|
|
pfedge->rflow -= cycle_flow;
|
916 |
|
|
if (pfedge->type)
|
917 |
|
|
pfedge->flow += cycle_flow;
|
918 |
|
|
r_pfedge->rflow += cycle_flow;
|
919 |
|
|
if (r_pfedge->type)
|
920 |
|
|
r_pfedge->flow -= cycle_flow;
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
return true;
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
|
927 |
|
|
/* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of
|
928 |
|
|
the edges. ENTRY and EXIT vertices should not be considered. */
|
929 |
|
|
|
930 |
|
|
static void
|
931 |
|
|
compute_residual_flow (fixup_graph_type *fixup_graph)
|
932 |
|
|
{
|
933 |
|
|
int i;
|
934 |
|
|
int fnum_edges;
|
935 |
|
|
fixup_edge_p fedge_list, pfedge;
|
936 |
|
|
|
937 |
|
|
gcc_assert (fixup_graph);
|
938 |
|
|
|
939 |
|
|
if (dump_file)
|
940 |
|
|
fputs ("\ncompute_residual_flow():\n", dump_file);
|
941 |
|
|
|
942 |
|
|
fnum_edges = fixup_graph->num_edges;
|
943 |
|
|
fedge_list = fixup_graph->edge_list;
|
944 |
|
|
|
945 |
|
|
for (i = 0; i < fnum_edges; i++)
|
946 |
|
|
{
|
947 |
|
|
pfedge = fedge_list + i;
|
948 |
|
|
pfedge->rflow = pfedge->max_capacity - pfedge->flow;
|
949 |
|
|
pfedge->is_rflow_valid = true;
|
950 |
|
|
add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow,
|
951 |
|
|
-pfedge->cost);
|
952 |
|
|
}
|
953 |
|
|
}
|
954 |
|
|
|
955 |
|
|
|
956 |
|
|
/* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to
|
957 |
|
|
SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by
|
958 |
|
|
this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated
|
959 |
|
|
to reflect the path found.
|
960 |
|
|
Returns: 0 if no augmenting path is found, 1 otherwise. */
|
961 |
|
|
|
962 |
|
|
static int
|
963 |
|
|
find_augmenting_path (fixup_graph_type *fixup_graph,
|
964 |
|
|
augmenting_path_type *augmenting_path, int source,
|
965 |
|
|
int sink)
|
966 |
|
|
{
|
967 |
|
|
int u = 0;
|
968 |
|
|
int i;
|
969 |
|
|
fixup_vertex_p fvertex_list, pfvertex;
|
970 |
|
|
fixup_edge_p pfedge;
|
971 |
|
|
int *bb_pred, *is_visited;
|
972 |
|
|
queue_type *queue_list;
|
973 |
|
|
|
974 |
|
|
gcc_assert (augmenting_path);
|
975 |
|
|
bb_pred = augmenting_path->bb_pred;
|
976 |
|
|
gcc_assert (bb_pred);
|
977 |
|
|
is_visited = augmenting_path->is_visited;
|
978 |
|
|
gcc_assert (is_visited);
|
979 |
|
|
queue_list = &(augmenting_path->queue_list);
|
980 |
|
|
|
981 |
|
|
gcc_assert (fixup_graph);
|
982 |
|
|
|
983 |
|
|
fvertex_list = fixup_graph->vertex_list;
|
984 |
|
|
|
985 |
|
|
for (u = 0; u < fixup_graph->num_vertices; u++)
|
986 |
|
|
is_visited[u] = 0;
|
987 |
|
|
|
988 |
|
|
init_queue (queue_list);
|
989 |
|
|
enqueue (queue_list, source);
|
990 |
|
|
bb_pred[source] = -1;
|
991 |
|
|
|
992 |
|
|
while (!is_empty (queue_list))
|
993 |
|
|
{
|
994 |
|
|
u = dequeue (queue_list);
|
995 |
|
|
is_visited[u] = 1;
|
996 |
|
|
pfvertex = fvertex_list + u;
|
997 |
|
|
for (i = 0; VEC_iterate (fixup_edge_p, pfvertex->succ_edges, i, pfedge);
|
998 |
|
|
i++)
|
999 |
|
|
{
|
1000 |
|
|
int dest = pfedge->dest;
|
1001 |
|
|
if ((pfedge->rflow > 0) && (is_visited[dest] == 0))
|
1002 |
|
|
{
|
1003 |
|
|
enqueue (queue_list, dest);
|
1004 |
|
|
bb_pred[dest] = u;
|
1005 |
|
|
is_visited[dest] = 1;
|
1006 |
|
|
if (dest == sink)
|
1007 |
|
|
return 1;
|
1008 |
|
|
}
|
1009 |
|
|
}
|
1010 |
|
|
}
|
1011 |
|
|
|
1012 |
|
|
return 0;
|
1013 |
|
|
}
|
1014 |
|
|
|
1015 |
|
|
|
1016 |
|
|
/* Routine to find the maximal flow:
|
1017 |
|
|
Algorithm:
|
1018 |
|
|
1. Initialize flow to 0
|
1019 |
|
|
2. Find an augmenting path form source to sink.
|
1020 |
|
|
3. Send flow equal to the path's residual capacity along the edges of this path.
|
1021 |
|
|
4. Repeat steps 2 and 3 until no new augmenting path is found.
|
1022 |
|
|
|
1023 |
|
|
Parameters:
|
1024 |
|
|
SOURCE: index of source vertex (input)
|
1025 |
|
|
SINK: index of sink vertex (input)
|
1026 |
|
|
FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be
|
1027 |
|
|
set to have a valid maximal flow by this routine. (input)
|
1028 |
|
|
Return: Maximum flow possible. */
|
1029 |
|
|
|
1030 |
|
|
static gcov_type
|
1031 |
|
|
find_max_flow (fixup_graph_type *fixup_graph, int source, int sink)
|
1032 |
|
|
{
|
1033 |
|
|
int fnum_edges;
|
1034 |
|
|
augmenting_path_type augmenting_path;
|
1035 |
|
|
int *bb_pred;
|
1036 |
|
|
gcov_type max_flow = 0;
|
1037 |
|
|
int i, u;
|
1038 |
|
|
fixup_edge_p fedge_list, pfedge, r_pfedge;
|
1039 |
|
|
|
1040 |
|
|
gcc_assert (fixup_graph);
|
1041 |
|
|
|
1042 |
|
|
fnum_edges = fixup_graph->num_edges;
|
1043 |
|
|
fedge_list = fixup_graph->edge_list;
|
1044 |
|
|
|
1045 |
|
|
/* Initialize flow to 0. */
|
1046 |
|
|
for (i = 0; i < fnum_edges; i++)
|
1047 |
|
|
{
|
1048 |
|
|
pfedge = fedge_list + i;
|
1049 |
|
|
pfedge->flow = 0;
|
1050 |
|
|
}
|
1051 |
|
|
|
1052 |
|
|
compute_residual_flow (fixup_graph);
|
1053 |
|
|
|
1054 |
|
|
init_augmenting_path (&augmenting_path, fixup_graph->num_vertices);
|
1055 |
|
|
|
1056 |
|
|
bb_pred = augmenting_path.bb_pred;
|
1057 |
|
|
while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink))
|
1058 |
|
|
{
|
1059 |
|
|
/* Determine the amount by which we can increment the flow. */
|
1060 |
|
|
gcov_type increment = CAP_INFINITY;
|
1061 |
|
|
for (u = sink; u != source; u = bb_pred[u])
|
1062 |
|
|
{
|
1063 |
|
|
pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
|
1064 |
|
|
increment = MIN (increment, pfedge->rflow);
|
1065 |
|
|
}
|
1066 |
|
|
max_flow += increment;
|
1067 |
|
|
|
1068 |
|
|
/* Now increment the flow. EXIT vertex index is 1. */
|
1069 |
|
|
for (u = sink; u != source; u = bb_pred[u])
|
1070 |
|
|
{
|
1071 |
|
|
pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u);
|
1072 |
|
|
r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]);
|
1073 |
|
|
if (pfedge->type)
|
1074 |
|
|
{
|
1075 |
|
|
/* forward edge. */
|
1076 |
|
|
pfedge->flow += increment;
|
1077 |
|
|
pfedge->rflow -= increment;
|
1078 |
|
|
r_pfedge->rflow += increment;
|
1079 |
|
|
}
|
1080 |
|
|
else
|
1081 |
|
|
{
|
1082 |
|
|
/* backward edge. */
|
1083 |
|
|
gcc_assert (r_pfedge->type);
|
1084 |
|
|
r_pfedge->rflow += increment;
|
1085 |
|
|
r_pfedge->flow -= increment;
|
1086 |
|
|
pfedge->rflow -= increment;
|
1087 |
|
|
}
|
1088 |
|
|
}
|
1089 |
|
|
|
1090 |
|
|
if (dump_file)
|
1091 |
|
|
{
|
1092 |
|
|
fprintf (dump_file, "\nDump augmenting path:\n");
|
1093 |
|
|
for (u = sink; u != source; u = bb_pred[u])
|
1094 |
|
|
{
|
1095 |
|
|
print_basic_block (dump_file, fixup_graph, u);
|
1096 |
|
|
fprintf (dump_file, "<-");
|
1097 |
|
|
}
|
1098 |
|
|
fprintf (dump_file,
|
1099 |
|
|
"ENTRY (path_capacity=" HOST_WIDEST_INT_PRINT_DEC ")\n",
|
1100 |
|
|
increment);
|
1101 |
|
|
fprintf (dump_file,
|
1102 |
|
|
"Network flow is " HOST_WIDEST_INT_PRINT_DEC ".\n",
|
1103 |
|
|
max_flow);
|
1104 |
|
|
}
|
1105 |
|
|
}
|
1106 |
|
|
|
1107 |
|
|
free_augmenting_path (&augmenting_path);
|
1108 |
|
|
if (dump_file)
|
1109 |
|
|
dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()");
|
1110 |
|
|
return max_flow;
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
|
1114 |
|
|
/* Computes the corrected edge and basic block weights using FIXUP_GRAPH
|
1115 |
|
|
after applying the find_minimum_cost_flow() routine. */
|
1116 |
|
|
|
1117 |
|
|
static void
|
1118 |
|
|
adjust_cfg_counts (fixup_graph_type *fixup_graph)
|
1119 |
|
|
{
|
1120 |
|
|
basic_block bb;
|
1121 |
|
|
edge e;
|
1122 |
|
|
edge_iterator ei;
|
1123 |
|
|
int i, j;
|
1124 |
|
|
fixup_edge_p pfedge, pfedge_n;
|
1125 |
|
|
|
1126 |
|
|
gcc_assert (fixup_graph);
|
1127 |
|
|
|
1128 |
|
|
if (dump_file)
|
1129 |
|
|
fprintf (dump_file, "\nadjust_cfg_counts():\n");
|
1130 |
|
|
|
1131 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
1132 |
|
|
{
|
1133 |
|
|
i = 2 * bb->index;
|
1134 |
|
|
|
1135 |
|
|
/* Fixup BB. */
|
1136 |
|
|
if (dump_file)
|
1137 |
|
|
fprintf (dump_file,
|
1138 |
|
|
"BB%d: " HOST_WIDEST_INT_PRINT_DEC "", bb->index, bb->count);
|
1139 |
|
|
|
1140 |
|
|
pfedge = find_fixup_edge (fixup_graph, i, i + 1);
|
1141 |
|
|
if (pfedge->flow)
|
1142 |
|
|
{
|
1143 |
|
|
bb->count += pfedge->flow;
|
1144 |
|
|
if (dump_file)
|
1145 |
|
|
{
|
1146 |
|
|
fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
|
1147 |
|
|
pfedge->flow);
|
1148 |
|
|
print_edge (dump_file, fixup_graph, i, i + 1);
|
1149 |
|
|
fprintf (dump_file, ")");
|
1150 |
|
|
}
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
pfedge_n =
|
1154 |
|
|
find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
|
1155 |
|
|
/* Deduct flow from normalized reverse edge. */
|
1156 |
|
|
if (pfedge->norm_vertex_index && pfedge_n->flow)
|
1157 |
|
|
{
|
1158 |
|
|
bb->count -= pfedge_n->flow;
|
1159 |
|
|
if (dump_file)
|
1160 |
|
|
{
|
1161 |
|
|
fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(",
|
1162 |
|
|
pfedge_n->flow);
|
1163 |
|
|
print_edge (dump_file, fixup_graph, i + 1,
|
1164 |
|
|
pfedge->norm_vertex_index);
|
1165 |
|
|
fprintf (dump_file, ")");
|
1166 |
|
|
}
|
1167 |
|
|
}
|
1168 |
|
|
if (dump_file)
|
1169 |
|
|
fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\n", bb->count);
|
1170 |
|
|
|
1171 |
|
|
/* Fixup edge. */
|
1172 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1173 |
|
|
{
|
1174 |
|
|
/* Treat edges with ignore attribute set as if they don't exist. */
|
1175 |
|
|
if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
|
1176 |
|
|
continue;
|
1177 |
|
|
|
1178 |
|
|
j = 2 * e->dest->index;
|
1179 |
|
|
if (dump_file)
|
1180 |
|
|
fprintf (dump_file, "%d->%d: " HOST_WIDEST_INT_PRINT_DEC "",
|
1181 |
|
|
bb->index, e->dest->index, e->count);
|
1182 |
|
|
|
1183 |
|
|
pfedge = find_fixup_edge (fixup_graph, i + 1, j);
|
1184 |
|
|
|
1185 |
|
|
if (bb->index != e->dest->index)
|
1186 |
|
|
{
|
1187 |
|
|
/* Non-self edge. */
|
1188 |
|
|
if (pfedge->flow)
|
1189 |
|
|
{
|
1190 |
|
|
e->count += pfedge->flow;
|
1191 |
|
|
if (dump_file)
|
1192 |
|
|
{
|
1193 |
|
|
fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
|
1194 |
|
|
pfedge->flow);
|
1195 |
|
|
print_edge (dump_file, fixup_graph, i + 1, j);
|
1196 |
|
|
fprintf (dump_file, ")");
|
1197 |
|
|
}
|
1198 |
|
|
}
|
1199 |
|
|
|
1200 |
|
|
pfedge_n =
|
1201 |
|
|
find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index);
|
1202 |
|
|
/* Deduct flow from normalized reverse edge. */
|
1203 |
|
|
if (pfedge->norm_vertex_index && pfedge_n->flow)
|
1204 |
|
|
{
|
1205 |
|
|
e->count -= pfedge_n->flow;
|
1206 |
|
|
if (dump_file)
|
1207 |
|
|
{
|
1208 |
|
|
fprintf (dump_file, " - " HOST_WIDEST_INT_PRINT_DEC "(",
|
1209 |
|
|
pfedge_n->flow);
|
1210 |
|
|
print_edge (dump_file, fixup_graph, j,
|
1211 |
|
|
pfedge->norm_vertex_index);
|
1212 |
|
|
fprintf (dump_file, ")");
|
1213 |
|
|
}
|
1214 |
|
|
}
|
1215 |
|
|
}
|
1216 |
|
|
else
|
1217 |
|
|
{
|
1218 |
|
|
/* Handle self edges. Self edge is split with a normalization
|
1219 |
|
|
vertex. Here i=j. */
|
1220 |
|
|
pfedge = find_fixup_edge (fixup_graph, j, i + 1);
|
1221 |
|
|
pfedge_n =
|
1222 |
|
|
find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index);
|
1223 |
|
|
e->count += pfedge_n->flow;
|
1224 |
|
|
bb->count += pfedge_n->flow;
|
1225 |
|
|
if (dump_file)
|
1226 |
|
|
{
|
1227 |
|
|
fprintf (dump_file, "(self edge)");
|
1228 |
|
|
fprintf (dump_file, " + " HOST_WIDEST_INT_PRINT_DEC "(",
|
1229 |
|
|
pfedge_n->flow);
|
1230 |
|
|
print_edge (dump_file, fixup_graph, i + 1,
|
1231 |
|
|
pfedge->norm_vertex_index);
|
1232 |
|
|
fprintf (dump_file, ")");
|
1233 |
|
|
}
|
1234 |
|
|
}
|
1235 |
|
|
|
1236 |
|
|
if (bb->count)
|
1237 |
|
|
e->probability = REG_BR_PROB_BASE * e->count / bb->count;
|
1238 |
|
|
if (dump_file)
|
1239 |
|
|
fprintf (dump_file, " = " HOST_WIDEST_INT_PRINT_DEC "\t(%.1f%%)\n",
|
1240 |
|
|
e->count, e->probability * 100.0 / REG_BR_PROB_BASE);
|
1241 |
|
|
}
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
ENTRY_BLOCK_PTR->count = sum_edge_counts (ENTRY_BLOCK_PTR->succs);
|
1245 |
|
|
EXIT_BLOCK_PTR->count = sum_edge_counts (EXIT_BLOCK_PTR->preds);
|
1246 |
|
|
|
1247 |
|
|
/* Compute edge probabilities. */
|
1248 |
|
|
FOR_ALL_BB (bb)
|
1249 |
|
|
{
|
1250 |
|
|
if (bb->count)
|
1251 |
|
|
{
|
1252 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1253 |
|
|
e->probability = REG_BR_PROB_BASE * e->count / bb->count;
|
1254 |
|
|
}
|
1255 |
|
|
else
|
1256 |
|
|
{
|
1257 |
|
|
int total = 0;
|
1258 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1259 |
|
|
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
|
1260 |
|
|
total++;
|
1261 |
|
|
if (total)
|
1262 |
|
|
{
|
1263 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1264 |
|
|
{
|
1265 |
|
|
if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
|
1266 |
|
|
e->probability = REG_BR_PROB_BASE / total;
|
1267 |
|
|
else
|
1268 |
|
|
e->probability = 0;
|
1269 |
|
|
}
|
1270 |
|
|
}
|
1271 |
|
|
else
|
1272 |
|
|
{
|
1273 |
|
|
total += EDGE_COUNT (bb->succs);
|
1274 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1275 |
|
|
e->probability = REG_BR_PROB_BASE / total;
|
1276 |
|
|
}
|
1277 |
|
|
}
|
1278 |
|
|
}
|
1279 |
|
|
|
1280 |
|
|
if (dump_file)
|
1281 |
|
|
{
|
1282 |
|
|
fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n",
|
1283 |
|
|
lang_hooks.decl_printable_name (current_function_decl, 2));
|
1284 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
|
1285 |
|
|
{
|
1286 |
|
|
if ((bb->count != sum_edge_counts (bb->preds))
|
1287 |
|
|
|| (bb->count != sum_edge_counts (bb->succs)))
|
1288 |
|
|
{
|
1289 |
|
|
fprintf (dump_file,
|
1290 |
|
|
"BB%d(" HOST_WIDEST_INT_PRINT_DEC ") **INVALID**: ",
|
1291 |
|
|
bb->index, bb->count);
|
1292 |
|
|
fprintf (stderr,
|
1293 |
|
|
"******** BB%d(" HOST_WIDEST_INT_PRINT_DEC
|
1294 |
|
|
") **INVALID**: \n", bb->index, bb->count);
|
1295 |
|
|
fprintf (dump_file, "in_edges=" HOST_WIDEST_INT_PRINT_DEC " ",
|
1296 |
|
|
sum_edge_counts (bb->preds));
|
1297 |
|
|
fprintf (dump_file, "out_edges=" HOST_WIDEST_INT_PRINT_DEC "\n",
|
1298 |
|
|
sum_edge_counts (bb->succs));
|
1299 |
|
|
}
|
1300 |
|
|
}
|
1301 |
|
|
}
|
1302 |
|
|
}
|
1303 |
|
|
|
1304 |
|
|
|
1305 |
|
|
/* Implements the negative cycle canceling algorithm to compute a minimum cost
|
1306 |
|
|
flow.
|
1307 |
|
|
Algorithm:
|
1308 |
|
|
1. Find maximal flow.
|
1309 |
|
|
2. Form residual network
|
1310 |
|
|
3. Repeat:
|
1311 |
|
|
While G contains a negative cost cycle C, reverse the flow on the found cycle
|
1312 |
|
|
by the minimum residual capacity in that cycle.
|
1313 |
|
|
4. Form the minimal cost flow
|
1314 |
|
|
f(u,v) = rf(v, u)
|
1315 |
|
|
Input:
|
1316 |
|
|
FIXUP_GRAPH - Initial fixup graph.
|
1317 |
|
|
The flow field is modified to represent the minimum cost flow. */
|
1318 |
|
|
|
1319 |
|
|
static void
|
1320 |
|
|
find_minimum_cost_flow (fixup_graph_type *fixup_graph)
|
1321 |
|
|
{
|
1322 |
|
|
/* Holds the index of predecessor in path. */
|
1323 |
|
|
int *pred;
|
1324 |
|
|
/* Used to hold the minimum cost cycle. */
|
1325 |
|
|
int *cycle;
|
1326 |
|
|
/* Used to record the number of iterations of cancel_negative_cycle. */
|
1327 |
|
|
int iteration;
|
1328 |
|
|
/* Vector d[i] holds the minimum cost of path from i to sink. */
|
1329 |
|
|
gcov_type *d;
|
1330 |
|
|
int fnum_vertices;
|
1331 |
|
|
int new_exit_index;
|
1332 |
|
|
int new_entry_index;
|
1333 |
|
|
|
1334 |
|
|
gcc_assert (fixup_graph);
|
1335 |
|
|
fnum_vertices = fixup_graph->num_vertices;
|
1336 |
|
|
new_exit_index = fixup_graph->new_exit_index;
|
1337 |
|
|
new_entry_index = fixup_graph->new_entry_index;
|
1338 |
|
|
|
1339 |
|
|
find_max_flow (fixup_graph, new_entry_index, new_exit_index);
|
1340 |
|
|
|
1341 |
|
|
/* Initialize the structures for find_negative_cycle(). */
|
1342 |
|
|
pred = (int *) xcalloc (fnum_vertices, sizeof (int));
|
1343 |
|
|
d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type));
|
1344 |
|
|
cycle = (int *) xcalloc (fnum_vertices, sizeof (int));
|
1345 |
|
|
|
1346 |
|
|
/* Repeatedly find and cancel negative cost cycles, until
|
1347 |
|
|
no more negative cycles exist. This also updates the flow field
|
1348 |
|
|
to represent the minimum cost flow so far. */
|
1349 |
|
|
iteration = 0;
|
1350 |
|
|
while (cancel_negative_cycle (fixup_graph, pred, d, cycle))
|
1351 |
|
|
{
|
1352 |
|
|
iteration++;
|
1353 |
|
|
if (iteration > MAX_ITER (fixup_graph->num_vertices,
|
1354 |
|
|
fixup_graph->num_edges))
|
1355 |
|
|
break;
|
1356 |
|
|
}
|
1357 |
|
|
|
1358 |
|
|
if (dump_file)
|
1359 |
|
|
dump_fixup_graph (dump_file, fixup_graph,
|
1360 |
|
|
"After find_minimum_cost_flow()");
|
1361 |
|
|
|
1362 |
|
|
/* Cleanup structures. */
|
1363 |
|
|
free (pred);
|
1364 |
|
|
free (d);
|
1365 |
|
|
free (cycle);
|
1366 |
|
|
}
|
1367 |
|
|
|
1368 |
|
|
|
1369 |
|
|
/* Compute the sum of the edge counts in TO_EDGES. */
|
1370 |
|
|
|
1371 |
|
|
gcov_type
|
1372 |
|
|
sum_edge_counts (VEC (edge, gc) *to_edges)
|
1373 |
|
|
{
|
1374 |
|
|
gcov_type sum = 0;
|
1375 |
|
|
edge e;
|
1376 |
|
|
edge_iterator ei;
|
1377 |
|
|
|
1378 |
|
|
FOR_EACH_EDGE (e, ei, to_edges)
|
1379 |
|
|
{
|
1380 |
|
|
if (EDGE_INFO (e) && EDGE_INFO (e)->ignore)
|
1381 |
|
|
continue;
|
1382 |
|
|
sum += e->count;
|
1383 |
|
|
}
|
1384 |
|
|
return sum;
|
1385 |
|
|
}
|
1386 |
|
|
|
1387 |
|
|
|
1388 |
|
|
/* Main routine. Smoothes the intial assigned basic block and edge counts using
|
1389 |
|
|
a minimum cost flow algorithm, to ensure that the flow consistency rule is
|
1390 |
|
|
obeyed: sum of outgoing edges = sum of incoming edges for each basic
|
1391 |
|
|
block. */
|
1392 |
|
|
|
1393 |
|
|
void
|
1394 |
|
|
mcf_smooth_cfg (void)
|
1395 |
|
|
{
|
1396 |
|
|
fixup_graph_type fixup_graph;
|
1397 |
|
|
memset (&fixup_graph, 0, sizeof (fixup_graph));
|
1398 |
|
|
create_fixup_graph (&fixup_graph);
|
1399 |
|
|
find_minimum_cost_flow (&fixup_graph);
|
1400 |
|
|
adjust_cfg_counts (&fixup_graph);
|
1401 |
|
|
delete_fixup_graph (&fixup_graph);
|
1402 |
|
|
}
|