1 |
280 |
jeremybenn |
/* Set operations on pointers
|
2 |
|
|
Copyright (C) 2004, 2006, 2007 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GCC.
|
5 |
|
|
|
6 |
|
|
GCC is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
9 |
|
|
any later version.
|
10 |
|
|
|
11 |
|
|
GCC is distributed in the hope that it will be useful,
|
12 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
|
|
GNU General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GCC; see the file COPYING3. If not see
|
18 |
|
|
<http://www.gnu.org/licenses/>. */
|
19 |
|
|
|
20 |
|
|
#include "config.h"
|
21 |
|
|
#include "system.h"
|
22 |
|
|
#include "pointer-set.h"
|
23 |
|
|
|
24 |
|
|
/* A pointer set is represented as a simple open-addressing hash
|
25 |
|
|
table. Simplifications: The hash code is based on the value of the
|
26 |
|
|
pointer, not what it points to. The number of buckets is always a
|
27 |
|
|
power of 2. Null pointers are a reserved value. Deletion is not
|
28 |
|
|
supported (yet). There is no mechanism for user control of hash
|
29 |
|
|
function, equality comparison, initial size, or resizing policy. */
|
30 |
|
|
|
31 |
|
|
struct pointer_set_t
|
32 |
|
|
{
|
33 |
|
|
size_t log_slots;
|
34 |
|
|
size_t n_slots; /* n_slots = 2^log_slots */
|
35 |
|
|
size_t n_elements;
|
36 |
|
|
|
37 |
|
|
const void **slots;
|
38 |
|
|
};
|
39 |
|
|
|
40 |
|
|
/* Use the multiplicative method, as described in Knuth 6.4, to obtain
|
41 |
|
|
a hash code for P in the range [0, MAX). MAX == 2^LOGMAX.
|
42 |
|
|
|
43 |
|
|
Summary of this method: Multiply p by some number A that's
|
44 |
|
|
relatively prime to 2^sizeof(size_t). The result is two words.
|
45 |
|
|
Discard the most significant word, and return the most significant
|
46 |
|
|
N bits of the least significant word. As suggested by Knuth, our
|
47 |
|
|
choice for A is the integer part of (ULONG_MAX + 1.0) / phi, where phi
|
48 |
|
|
is the golden ratio.
|
49 |
|
|
|
50 |
|
|
We don't need to do anything special for full-width multiplication
|
51 |
|
|
because we're only interested in the least significant word of the
|
52 |
|
|
product, and unsigned arithmetic in C is modulo the word size. */
|
53 |
|
|
|
54 |
|
|
static inline size_t
|
55 |
|
|
hash1 (const void *p, unsigned long max, unsigned long logmax)
|
56 |
|
|
{
|
57 |
|
|
#if HOST_BITS_PER_LONG == 32
|
58 |
|
|
const unsigned long A = 0x9e3779b9u;
|
59 |
|
|
#elif HOST_BITS_PER_LONG == 64
|
60 |
|
|
const unsigned long A = 0x9e3779b97f4a7c16ul;
|
61 |
|
|
#else
|
62 |
|
|
const unsigned long A
|
63 |
|
|
= (ULONG_MAX + 1.0L) * 0.6180339887498948482045868343656381177203L;
|
64 |
|
|
#endif
|
65 |
|
|
const unsigned long shift = HOST_BITS_PER_LONG - logmax;
|
66 |
|
|
|
67 |
|
|
return ((A * (unsigned long) p) >> shift) & (max - 1);
|
68 |
|
|
}
|
69 |
|
|
|
70 |
|
|
/* Allocate an empty pointer set. */
|
71 |
|
|
struct pointer_set_t *
|
72 |
|
|
pointer_set_create (void)
|
73 |
|
|
{
|
74 |
|
|
struct pointer_set_t *result = XNEW (struct pointer_set_t);
|
75 |
|
|
|
76 |
|
|
result->n_elements = 0;
|
77 |
|
|
result->log_slots = 8;
|
78 |
|
|
result->n_slots = (size_t) 1 << result->log_slots;
|
79 |
|
|
|
80 |
|
|
result->slots = XCNEWVEC (const void *, result->n_slots);
|
81 |
|
|
return result;
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
/* Reclaims all memory associated with PSET. */
|
85 |
|
|
void
|
86 |
|
|
pointer_set_destroy (struct pointer_set_t *pset)
|
87 |
|
|
{
|
88 |
|
|
XDELETEVEC (pset->slots);
|
89 |
|
|
XDELETE (pset);
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
/* Returns nonzero if PSET contains P. P must be nonnull.
|
93 |
|
|
|
94 |
|
|
Collisions are resolved by linear probing. */
|
95 |
|
|
int
|
96 |
|
|
pointer_set_contains (const struct pointer_set_t *pset, const void *p)
|
97 |
|
|
{
|
98 |
|
|
size_t n = hash1 (p, pset->n_slots, pset->log_slots);
|
99 |
|
|
|
100 |
|
|
while (true)
|
101 |
|
|
{
|
102 |
|
|
if (pset->slots[n] == p)
|
103 |
|
|
return 1;
|
104 |
|
|
else if (pset->slots[n] == 0)
|
105 |
|
|
return 0;
|
106 |
|
|
else
|
107 |
|
|
{
|
108 |
|
|
++n;
|
109 |
|
|
if (n == pset->n_slots)
|
110 |
|
|
n = 0;
|
111 |
|
|
}
|
112 |
|
|
}
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
/* Subroutine of pointer_set_insert. Return the insertion slot for P into
|
116 |
|
|
an empty element of SLOTS, an array of length N_SLOTS. */
|
117 |
|
|
static inline size_t
|
118 |
|
|
insert_aux (const void *p, const void **slots, size_t n_slots, size_t log_slots)
|
119 |
|
|
{
|
120 |
|
|
size_t n = hash1 (p, n_slots, log_slots);
|
121 |
|
|
while (true)
|
122 |
|
|
{
|
123 |
|
|
if (slots[n] == p || slots[n] == 0)
|
124 |
|
|
return n;
|
125 |
|
|
else
|
126 |
|
|
{
|
127 |
|
|
++n;
|
128 |
|
|
if (n == n_slots)
|
129 |
|
|
n = 0;
|
130 |
|
|
}
|
131 |
|
|
}
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
/* Inserts P into PSET if it wasn't already there. Returns nonzero
|
135 |
|
|
if it was already there. P must be nonnull. */
|
136 |
|
|
int
|
137 |
|
|
pointer_set_insert (struct pointer_set_t *pset, const void *p)
|
138 |
|
|
{
|
139 |
|
|
size_t n;
|
140 |
|
|
|
141 |
|
|
/* For simplicity, expand the set even if P is already there. This can be
|
142 |
|
|
superfluous but can happen at most once. */
|
143 |
|
|
if (pset->n_elements > pset->n_slots / 4)
|
144 |
|
|
{
|
145 |
|
|
size_t new_log_slots = pset->log_slots + 1;
|
146 |
|
|
size_t new_n_slots = pset->n_slots * 2;
|
147 |
|
|
const void **new_slots = XCNEWVEC (const void *, new_n_slots);
|
148 |
|
|
size_t i;
|
149 |
|
|
|
150 |
|
|
for (i = 0; i < pset->n_slots; ++i)
|
151 |
|
|
{
|
152 |
|
|
const void *value = pset->slots[i];
|
153 |
|
|
n = insert_aux (value, new_slots, new_n_slots, new_log_slots);
|
154 |
|
|
new_slots[n] = value;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
XDELETEVEC (pset->slots);
|
158 |
|
|
pset->n_slots = new_n_slots;
|
159 |
|
|
pset->log_slots = new_log_slots;
|
160 |
|
|
pset->slots = new_slots;
|
161 |
|
|
}
|
162 |
|
|
|
163 |
|
|
n = insert_aux (p, pset->slots, pset->n_slots, pset->log_slots);
|
164 |
|
|
if (pset->slots[n])
|
165 |
|
|
return 1;
|
166 |
|
|
|
167 |
|
|
pset->slots[n] = p;
|
168 |
|
|
++pset->n_elements;
|
169 |
|
|
return 0;
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
/* Pass each pointer in PSET to the function in FN, together with the fixed
|
173 |
|
|
parameter DATA. If FN returns false, the iteration stops. */
|
174 |
|
|
|
175 |
|
|
void pointer_set_traverse (const struct pointer_set_t *pset,
|
176 |
|
|
bool (*fn) (const void *, void *), void *data)
|
177 |
|
|
{
|
178 |
|
|
size_t i;
|
179 |
|
|
for (i = 0; i < pset->n_slots; ++i)
|
180 |
|
|
if (pset->slots[i] && !fn (pset->slots[i], data))
|
181 |
|
|
break;
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
|
185 |
|
|
/* A pointer map is represented the same way as a pointer_set, so
|
186 |
|
|
the hash code is based on the address of the key, rather than
|
187 |
|
|
its contents. Null keys are a reserved value. Deletion is not
|
188 |
|
|
supported (yet). There is no mechanism for user control of hash
|
189 |
|
|
function, equality comparison, initial size, or resizing policy. */
|
190 |
|
|
|
191 |
|
|
struct pointer_map_t
|
192 |
|
|
{
|
193 |
|
|
size_t log_slots;
|
194 |
|
|
size_t n_slots; /* n_slots = 2^log_slots */
|
195 |
|
|
size_t n_elements;
|
196 |
|
|
|
197 |
|
|
const void **keys;
|
198 |
|
|
void **values;
|
199 |
|
|
};
|
200 |
|
|
|
201 |
|
|
/* Allocate an empty pointer map. */
|
202 |
|
|
struct pointer_map_t *
|
203 |
|
|
pointer_map_create (void)
|
204 |
|
|
{
|
205 |
|
|
struct pointer_map_t *result = XNEW (struct pointer_map_t);
|
206 |
|
|
|
207 |
|
|
result->n_elements = 0;
|
208 |
|
|
result->log_slots = 8;
|
209 |
|
|
result->n_slots = (size_t) 1 << result->log_slots;
|
210 |
|
|
|
211 |
|
|
result->keys = XCNEWVEC (const void *, result->n_slots);
|
212 |
|
|
result->values = XCNEWVEC (void *, result->n_slots);
|
213 |
|
|
return result;
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
/* Reclaims all memory associated with PMAP. */
|
217 |
|
|
void pointer_map_destroy (struct pointer_map_t *pmap)
|
218 |
|
|
{
|
219 |
|
|
XDELETEVEC (pmap->keys);
|
220 |
|
|
XDELETEVEC (pmap->values);
|
221 |
|
|
XDELETE (pmap);
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
/* Returns a pointer to the value to which P maps, if PMAP contains P. P
|
225 |
|
|
must be nonnull. Return NULL if PMAP does not contain P.
|
226 |
|
|
|
227 |
|
|
Collisions are resolved by linear probing. */
|
228 |
|
|
void **
|
229 |
|
|
pointer_map_contains (const struct pointer_map_t *pmap, const void *p)
|
230 |
|
|
{
|
231 |
|
|
size_t n = hash1 (p, pmap->n_slots, pmap->log_slots);
|
232 |
|
|
|
233 |
|
|
while (true)
|
234 |
|
|
{
|
235 |
|
|
if (pmap->keys[n] == p)
|
236 |
|
|
return &pmap->values[n];
|
237 |
|
|
else if (pmap->keys[n] == 0)
|
238 |
|
|
return NULL;
|
239 |
|
|
else
|
240 |
|
|
{
|
241 |
|
|
++n;
|
242 |
|
|
if (n == pmap->n_slots)
|
243 |
|
|
n = 0;
|
244 |
|
|
}
|
245 |
|
|
}
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
/* Inserts P into PMAP if it wasn't already there. Returns a pointer
|
249 |
|
|
to the value. P must be nonnull. */
|
250 |
|
|
void **
|
251 |
|
|
pointer_map_insert (struct pointer_map_t *pmap, const void *p)
|
252 |
|
|
{
|
253 |
|
|
size_t n;
|
254 |
|
|
|
255 |
|
|
/* For simplicity, expand the map even if P is already there. This can be
|
256 |
|
|
superfluous but can happen at most once. */
|
257 |
|
|
if (pmap->n_elements > pmap->n_slots / 4)
|
258 |
|
|
{
|
259 |
|
|
size_t new_log_slots = pmap->log_slots + 1;
|
260 |
|
|
size_t new_n_slots = pmap->n_slots * 2;
|
261 |
|
|
const void **new_keys = XCNEWVEC (const void *, new_n_slots);
|
262 |
|
|
void **new_values = XCNEWVEC (void *, new_n_slots);
|
263 |
|
|
size_t i;
|
264 |
|
|
|
265 |
|
|
for (i = 0; i < pmap->n_slots; ++i)
|
266 |
|
|
if (pmap->keys[i])
|
267 |
|
|
{
|
268 |
|
|
const void *key = pmap->keys[i];
|
269 |
|
|
n = insert_aux (key, new_keys, new_n_slots, new_log_slots);
|
270 |
|
|
new_keys[n] = key;
|
271 |
|
|
new_values[n] = pmap->values[i];
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
XDELETEVEC (pmap->keys);
|
275 |
|
|
XDELETEVEC (pmap->values);
|
276 |
|
|
pmap->n_slots = new_n_slots;
|
277 |
|
|
pmap->log_slots = new_log_slots;
|
278 |
|
|
pmap->keys = new_keys;
|
279 |
|
|
pmap->values = new_values;
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
n = insert_aux (p, pmap->keys, pmap->n_slots, pmap->log_slots);
|
283 |
|
|
if (!pmap->keys[n])
|
284 |
|
|
{
|
285 |
|
|
++pmap->n_elements;
|
286 |
|
|
pmap->keys[n] = p;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
return &pmap->values[n];
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
/* Pass each pointer in PMAP to the function in FN, together with the pointer
|
293 |
|
|
to the value and the fixed parameter DATA. If FN returns false, the
|
294 |
|
|
iteration stops. */
|
295 |
|
|
|
296 |
|
|
void pointer_map_traverse (const struct pointer_map_t *pmap,
|
297 |
|
|
bool (*fn) (const void *, void **, void *), void *data)
|
298 |
|
|
{
|
299 |
|
|
size_t i;
|
300 |
|
|
for (i = 0; i < pmap->n_slots; ++i)
|
301 |
|
|
if (pmap->keys[i] && !fn (pmap->keys[i], &pmap->values[i], data))
|
302 |
|
|
break;
|
303 |
|
|
}
|