1 |
280 |
jeremybenn |
/* Post reload partially redundant load elimination
|
2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "toplev.h"
|
26 |
|
|
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "tree.h"
|
29 |
|
|
#include "tm_p.h"
|
30 |
|
|
#include "regs.h"
|
31 |
|
|
#include "hard-reg-set.h"
|
32 |
|
|
#include "flags.h"
|
33 |
|
|
#include "real.h"
|
34 |
|
|
#include "insn-config.h"
|
35 |
|
|
#include "recog.h"
|
36 |
|
|
#include "basic-block.h"
|
37 |
|
|
#include "output.h"
|
38 |
|
|
#include "function.h"
|
39 |
|
|
#include "expr.h"
|
40 |
|
|
#include "except.h"
|
41 |
|
|
#include "intl.h"
|
42 |
|
|
#include "obstack.h"
|
43 |
|
|
#include "hashtab.h"
|
44 |
|
|
#include "params.h"
|
45 |
|
|
#include "target.h"
|
46 |
|
|
#include "timevar.h"
|
47 |
|
|
#include "tree-pass.h"
|
48 |
|
|
#include "dbgcnt.h"
|
49 |
|
|
|
50 |
|
|
/* The following code implements gcse after reload, the purpose of this
|
51 |
|
|
pass is to cleanup redundant loads generated by reload and other
|
52 |
|
|
optimizations that come after gcse. It searches for simple inter-block
|
53 |
|
|
redundancies and tries to eliminate them by adding moves and loads
|
54 |
|
|
in cold places.
|
55 |
|
|
|
56 |
|
|
Perform partially redundant load elimination, try to eliminate redundant
|
57 |
|
|
loads created by the reload pass. We try to look for full or partial
|
58 |
|
|
redundant loads fed by one or more loads/stores in predecessor BBs,
|
59 |
|
|
and try adding loads to make them fully redundant. We also check if
|
60 |
|
|
it's worth adding loads to be able to delete the redundant load.
|
61 |
|
|
|
62 |
|
|
Algorithm:
|
63 |
|
|
1. Build available expressions hash table:
|
64 |
|
|
For each load/store instruction, if the loaded/stored memory didn't
|
65 |
|
|
change until the end of the basic block add this memory expression to
|
66 |
|
|
the hash table.
|
67 |
|
|
2. Perform Redundancy elimination:
|
68 |
|
|
For each load instruction do the following:
|
69 |
|
|
perform partial redundancy elimination, check if it's worth adding
|
70 |
|
|
loads to make the load fully redundant. If so add loads and
|
71 |
|
|
register copies and delete the load.
|
72 |
|
|
3. Delete instructions made redundant in step 2.
|
73 |
|
|
|
74 |
|
|
Future enhancement:
|
75 |
|
|
If the loaded register is used/defined between load and some store,
|
76 |
|
|
look for some other free register between load and all its stores,
|
77 |
|
|
and replace the load with a copy from this register to the loaded
|
78 |
|
|
register.
|
79 |
|
|
*/
|
80 |
|
|
|
81 |
|
|
|
82 |
|
|
/* Keep statistics of this pass. */
|
83 |
|
|
static struct
|
84 |
|
|
{
|
85 |
|
|
int moves_inserted;
|
86 |
|
|
int copies_inserted;
|
87 |
|
|
int insns_deleted;
|
88 |
|
|
} stats;
|
89 |
|
|
|
90 |
|
|
/* We need to keep a hash table of expressions. The table entries are of
|
91 |
|
|
type 'struct expr', and for each expression there is a single linked
|
92 |
|
|
list of occurrences. */
|
93 |
|
|
|
94 |
|
|
/* The table itself. */
|
95 |
|
|
static htab_t expr_table;
|
96 |
|
|
|
97 |
|
|
/* Expression elements in the hash table. */
|
98 |
|
|
struct expr
|
99 |
|
|
{
|
100 |
|
|
/* The expression (SET_SRC for expressions, PATTERN for assignments). */
|
101 |
|
|
rtx expr;
|
102 |
|
|
|
103 |
|
|
/* The same hash for this entry. */
|
104 |
|
|
hashval_t hash;
|
105 |
|
|
|
106 |
|
|
/* List of available occurrence in basic blocks in the function. */
|
107 |
|
|
struct occr *avail_occr;
|
108 |
|
|
};
|
109 |
|
|
|
110 |
|
|
static struct obstack expr_obstack;
|
111 |
|
|
|
112 |
|
|
/* Occurrence of an expression.
|
113 |
|
|
There is at most one occurrence per basic block. If a pattern appears
|
114 |
|
|
more than once, the last appearance is used. */
|
115 |
|
|
|
116 |
|
|
struct occr
|
117 |
|
|
{
|
118 |
|
|
/* Next occurrence of this expression. */
|
119 |
|
|
struct occr *next;
|
120 |
|
|
/* The insn that computes the expression. */
|
121 |
|
|
rtx insn;
|
122 |
|
|
/* Nonzero if this [anticipatable] occurrence has been deleted. */
|
123 |
|
|
char deleted_p;
|
124 |
|
|
};
|
125 |
|
|
|
126 |
|
|
static struct obstack occr_obstack;
|
127 |
|
|
|
128 |
|
|
/* The following structure holds the information about the occurrences of
|
129 |
|
|
the redundant instructions. */
|
130 |
|
|
struct unoccr
|
131 |
|
|
{
|
132 |
|
|
struct unoccr *next;
|
133 |
|
|
edge pred;
|
134 |
|
|
rtx insn;
|
135 |
|
|
};
|
136 |
|
|
|
137 |
|
|
static struct obstack unoccr_obstack;
|
138 |
|
|
|
139 |
|
|
/* Array where each element is the CUID if the insn that last set the hard
|
140 |
|
|
register with the number of the element, since the start of the current
|
141 |
|
|
basic block.
|
142 |
|
|
|
143 |
|
|
This array is used during the building of the hash table (step 1) to
|
144 |
|
|
determine if a reg is killed before the end of a basic block.
|
145 |
|
|
|
146 |
|
|
It is also used when eliminating partial redundancies (step 2) to see
|
147 |
|
|
if a reg was modified since the start of a basic block. */
|
148 |
|
|
static int *reg_avail_info;
|
149 |
|
|
|
150 |
|
|
/* A list of insns that may modify memory within the current basic block. */
|
151 |
|
|
struct modifies_mem
|
152 |
|
|
{
|
153 |
|
|
rtx insn;
|
154 |
|
|
struct modifies_mem *next;
|
155 |
|
|
};
|
156 |
|
|
static struct modifies_mem *modifies_mem_list;
|
157 |
|
|
|
158 |
|
|
/* The modifies_mem structs also go on an obstack, only this obstack is
|
159 |
|
|
freed each time after completing the analysis or transformations on
|
160 |
|
|
a basic block. So we allocate a dummy modifies_mem_obstack_bottom
|
161 |
|
|
object on the obstack to keep track of the bottom of the obstack. */
|
162 |
|
|
static struct obstack modifies_mem_obstack;
|
163 |
|
|
static struct modifies_mem *modifies_mem_obstack_bottom;
|
164 |
|
|
|
165 |
|
|
/* Mapping of insn UIDs to CUIDs.
|
166 |
|
|
CUIDs are like UIDs except they increase monotonically in each basic
|
167 |
|
|
block, have no gaps, and only apply to real insns. */
|
168 |
|
|
static int *uid_cuid;
|
169 |
|
|
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
|
170 |
|
|
|
171 |
|
|
|
172 |
|
|
/* Helpers for memory allocation/freeing. */
|
173 |
|
|
static void alloc_mem (void);
|
174 |
|
|
static void free_mem (void);
|
175 |
|
|
|
176 |
|
|
/* Support for hash table construction and transformations. */
|
177 |
|
|
static bool oprs_unchanged_p (rtx, rtx, bool);
|
178 |
|
|
static void record_last_reg_set_info (rtx, rtx);
|
179 |
|
|
static void record_last_reg_set_info_regno (rtx, int);
|
180 |
|
|
static void record_last_mem_set_info (rtx);
|
181 |
|
|
static void record_last_set_info (rtx, const_rtx, void *);
|
182 |
|
|
static void record_opr_changes (rtx);
|
183 |
|
|
|
184 |
|
|
static void find_mem_conflicts (rtx, const_rtx, void *);
|
185 |
|
|
static int load_killed_in_block_p (int, rtx, bool);
|
186 |
|
|
static void reset_opr_set_tables (void);
|
187 |
|
|
|
188 |
|
|
/* Hash table support. */
|
189 |
|
|
static hashval_t hash_expr (rtx, int *);
|
190 |
|
|
static hashval_t hash_expr_for_htab (const void *);
|
191 |
|
|
static int expr_equiv_p (const void *, const void *);
|
192 |
|
|
static void insert_expr_in_table (rtx, rtx);
|
193 |
|
|
static struct expr *lookup_expr_in_table (rtx);
|
194 |
|
|
static int dump_hash_table_entry (void **, void *);
|
195 |
|
|
static void dump_hash_table (FILE *);
|
196 |
|
|
|
197 |
|
|
/* Helpers for eliminate_partially_redundant_load. */
|
198 |
|
|
static bool reg_killed_on_edge (rtx, edge);
|
199 |
|
|
static bool reg_used_on_edge (rtx, edge);
|
200 |
|
|
|
201 |
|
|
static rtx get_avail_load_store_reg (rtx);
|
202 |
|
|
|
203 |
|
|
static bool bb_has_well_behaved_predecessors (basic_block);
|
204 |
|
|
static struct occr* get_bb_avail_insn (basic_block, struct occr *);
|
205 |
|
|
static void hash_scan_set (rtx);
|
206 |
|
|
static void compute_hash_table (void);
|
207 |
|
|
|
208 |
|
|
/* The work horses of this pass. */
|
209 |
|
|
static void eliminate_partially_redundant_load (basic_block,
|
210 |
|
|
rtx,
|
211 |
|
|
struct expr *);
|
212 |
|
|
static void eliminate_partially_redundant_loads (void);
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
/* Allocate memory for the CUID mapping array and register/memory
|
216 |
|
|
tracking tables. */
|
217 |
|
|
|
218 |
|
|
static void
|
219 |
|
|
alloc_mem (void)
|
220 |
|
|
{
|
221 |
|
|
int i;
|
222 |
|
|
basic_block bb;
|
223 |
|
|
rtx insn;
|
224 |
|
|
|
225 |
|
|
/* Find the largest UID and create a mapping from UIDs to CUIDs. */
|
226 |
|
|
uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
|
227 |
|
|
i = 1;
|
228 |
|
|
FOR_EACH_BB (bb)
|
229 |
|
|
FOR_BB_INSNS (bb, insn)
|
230 |
|
|
{
|
231 |
|
|
if (INSN_P (insn))
|
232 |
|
|
uid_cuid[INSN_UID (insn)] = i++;
|
233 |
|
|
else
|
234 |
|
|
uid_cuid[INSN_UID (insn)] = i;
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
/* Allocate the available expressions hash table. We don't want to
|
238 |
|
|
make the hash table too small, but unnecessarily making it too large
|
239 |
|
|
also doesn't help. The i/4 is a gcse.c relic, and seems like a
|
240 |
|
|
reasonable choice. */
|
241 |
|
|
expr_table = htab_create (MAX (i / 4, 13),
|
242 |
|
|
hash_expr_for_htab, expr_equiv_p, NULL);
|
243 |
|
|
|
244 |
|
|
/* We allocate everything on obstacks because we often can roll back
|
245 |
|
|
the whole obstack to some point. Freeing obstacks is very fast. */
|
246 |
|
|
gcc_obstack_init (&expr_obstack);
|
247 |
|
|
gcc_obstack_init (&occr_obstack);
|
248 |
|
|
gcc_obstack_init (&unoccr_obstack);
|
249 |
|
|
gcc_obstack_init (&modifies_mem_obstack);
|
250 |
|
|
|
251 |
|
|
/* Working array used to track the last set for each register
|
252 |
|
|
in the current block. */
|
253 |
|
|
reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
|
254 |
|
|
|
255 |
|
|
/* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
|
256 |
|
|
can roll it back in reset_opr_set_tables. */
|
257 |
|
|
modifies_mem_obstack_bottom =
|
258 |
|
|
(struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
|
259 |
|
|
sizeof (struct modifies_mem));
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
/* Free memory allocated by alloc_mem. */
|
263 |
|
|
|
264 |
|
|
static void
|
265 |
|
|
free_mem (void)
|
266 |
|
|
{
|
267 |
|
|
free (uid_cuid);
|
268 |
|
|
|
269 |
|
|
htab_delete (expr_table);
|
270 |
|
|
|
271 |
|
|
obstack_free (&expr_obstack, NULL);
|
272 |
|
|
obstack_free (&occr_obstack, NULL);
|
273 |
|
|
obstack_free (&unoccr_obstack, NULL);
|
274 |
|
|
obstack_free (&modifies_mem_obstack, NULL);
|
275 |
|
|
|
276 |
|
|
free (reg_avail_info);
|
277 |
|
|
}
|
278 |
|
|
|
279 |
|
|
|
280 |
|
|
/* Hash expression X.
|
281 |
|
|
DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
|
282 |
|
|
or if the expression contains something we don't want to insert in the
|
283 |
|
|
table. */
|
284 |
|
|
|
285 |
|
|
static hashval_t
|
286 |
|
|
hash_expr (rtx x, int *do_not_record_p)
|
287 |
|
|
{
|
288 |
|
|
*do_not_record_p = 0;
|
289 |
|
|
return hash_rtx (x, GET_MODE (x), do_not_record_p,
|
290 |
|
|
NULL, /*have_reg_qty=*/false);
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
/* Callback for hashtab.
|
294 |
|
|
Return the hash value for expression EXP. We don't actually hash
|
295 |
|
|
here, we just return the cached hash value. */
|
296 |
|
|
|
297 |
|
|
static hashval_t
|
298 |
|
|
hash_expr_for_htab (const void *expp)
|
299 |
|
|
{
|
300 |
|
|
const struct expr *const exp = (const struct expr *) expp;
|
301 |
|
|
return exp->hash;
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
/* Callback for hashtab.
|
305 |
|
|
Return nonzero if exp1 is equivalent to exp2. */
|
306 |
|
|
|
307 |
|
|
static int
|
308 |
|
|
expr_equiv_p (const void *exp1p, const void *exp2p)
|
309 |
|
|
{
|
310 |
|
|
const struct expr *const exp1 = (const struct expr *) exp1p;
|
311 |
|
|
const struct expr *const exp2 = (const struct expr *) exp2p;
|
312 |
|
|
int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
|
313 |
|
|
|
314 |
|
|
gcc_assert (!equiv_p || exp1->hash == exp2->hash);
|
315 |
|
|
return equiv_p;
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
|
319 |
|
|
/* Insert expression X in INSN in the hash TABLE.
|
320 |
|
|
If it is already present, record it as the last occurrence in INSN's
|
321 |
|
|
basic block. */
|
322 |
|
|
|
323 |
|
|
static void
|
324 |
|
|
insert_expr_in_table (rtx x, rtx insn)
|
325 |
|
|
{
|
326 |
|
|
int do_not_record_p;
|
327 |
|
|
hashval_t hash;
|
328 |
|
|
struct expr *cur_expr, **slot;
|
329 |
|
|
struct occr *avail_occr, *last_occr = NULL;
|
330 |
|
|
|
331 |
|
|
hash = hash_expr (x, &do_not_record_p);
|
332 |
|
|
|
333 |
|
|
/* Do not insert expression in the table if it contains volatile operands,
|
334 |
|
|
or if hash_expr determines the expression is something we don't want
|
335 |
|
|
to or can't handle. */
|
336 |
|
|
if (do_not_record_p)
|
337 |
|
|
return;
|
338 |
|
|
|
339 |
|
|
/* We anticipate that redundant expressions are rare, so for convenience
|
340 |
|
|
allocate a new hash table element here already and set its fields.
|
341 |
|
|
If we don't do this, we need a hack with a static struct expr. Anyway,
|
342 |
|
|
obstack_free is really fast and one more obstack_alloc doesn't hurt if
|
343 |
|
|
we're going to see more expressions later on. */
|
344 |
|
|
cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
|
345 |
|
|
sizeof (struct expr));
|
346 |
|
|
cur_expr->expr = x;
|
347 |
|
|
cur_expr->hash = hash;
|
348 |
|
|
cur_expr->avail_occr = NULL;
|
349 |
|
|
|
350 |
|
|
slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
|
351 |
|
|
hash, INSERT);
|
352 |
|
|
|
353 |
|
|
if (! (*slot))
|
354 |
|
|
/* The expression isn't found, so insert it. */
|
355 |
|
|
*slot = cur_expr;
|
356 |
|
|
else
|
357 |
|
|
{
|
358 |
|
|
/* The expression is already in the table, so roll back the
|
359 |
|
|
obstack and use the existing table entry. */
|
360 |
|
|
obstack_free (&expr_obstack, cur_expr);
|
361 |
|
|
cur_expr = *slot;
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
/* Search for another occurrence in the same basic block. */
|
365 |
|
|
avail_occr = cur_expr->avail_occr;
|
366 |
|
|
while (avail_occr
|
367 |
|
|
&& BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
|
368 |
|
|
{
|
369 |
|
|
/* If an occurrence isn't found, save a pointer to the end of
|
370 |
|
|
the list. */
|
371 |
|
|
last_occr = avail_occr;
|
372 |
|
|
avail_occr = avail_occr->next;
|
373 |
|
|
}
|
374 |
|
|
|
375 |
|
|
if (avail_occr)
|
376 |
|
|
/* Found another instance of the expression in the same basic block.
|
377 |
|
|
Prefer this occurrence to the currently recorded one. We want
|
378 |
|
|
the last one in the block and the block is scanned from start
|
379 |
|
|
to end. */
|
380 |
|
|
avail_occr->insn = insn;
|
381 |
|
|
else
|
382 |
|
|
{
|
383 |
|
|
/* First occurrence of this expression in this basic block. */
|
384 |
|
|
avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
|
385 |
|
|
sizeof (struct occr));
|
386 |
|
|
|
387 |
|
|
/* First occurrence of this expression in any block? */
|
388 |
|
|
if (cur_expr->avail_occr == NULL)
|
389 |
|
|
cur_expr->avail_occr = avail_occr;
|
390 |
|
|
else
|
391 |
|
|
last_occr->next = avail_occr;
|
392 |
|
|
|
393 |
|
|
avail_occr->insn = insn;
|
394 |
|
|
avail_occr->next = NULL;
|
395 |
|
|
avail_occr->deleted_p = 0;
|
396 |
|
|
}
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
|
400 |
|
|
/* Lookup pattern PAT in the expression hash table.
|
401 |
|
|
The result is a pointer to the table entry, or NULL if not found. */
|
402 |
|
|
|
403 |
|
|
static struct expr *
|
404 |
|
|
lookup_expr_in_table (rtx pat)
|
405 |
|
|
{
|
406 |
|
|
int do_not_record_p;
|
407 |
|
|
struct expr **slot, *tmp_expr;
|
408 |
|
|
hashval_t hash = hash_expr (pat, &do_not_record_p);
|
409 |
|
|
|
410 |
|
|
if (do_not_record_p)
|
411 |
|
|
return NULL;
|
412 |
|
|
|
413 |
|
|
tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
|
414 |
|
|
sizeof (struct expr));
|
415 |
|
|
tmp_expr->expr = pat;
|
416 |
|
|
tmp_expr->hash = hash;
|
417 |
|
|
tmp_expr->avail_occr = NULL;
|
418 |
|
|
|
419 |
|
|
slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
|
420 |
|
|
hash, INSERT);
|
421 |
|
|
obstack_free (&expr_obstack, tmp_expr);
|
422 |
|
|
|
423 |
|
|
if (!slot)
|
424 |
|
|
return NULL;
|
425 |
|
|
else
|
426 |
|
|
return (*slot);
|
427 |
|
|
}
|
428 |
|
|
|
429 |
|
|
|
430 |
|
|
/* Dump all expressions and occurrences that are currently in the
|
431 |
|
|
expression hash table to FILE. */
|
432 |
|
|
|
433 |
|
|
/* This helper is called via htab_traverse. */
|
434 |
|
|
static int
|
435 |
|
|
dump_hash_table_entry (void **slot, void *filep)
|
436 |
|
|
{
|
437 |
|
|
struct expr *expr = (struct expr *) *slot;
|
438 |
|
|
FILE *file = (FILE *) filep;
|
439 |
|
|
struct occr *occr;
|
440 |
|
|
|
441 |
|
|
fprintf (file, "expr: ");
|
442 |
|
|
print_rtl (file, expr->expr);
|
443 |
|
|
fprintf (file,"\nhashcode: %u\n", expr->hash);
|
444 |
|
|
fprintf (file,"list of occurrences:\n");
|
445 |
|
|
occr = expr->avail_occr;
|
446 |
|
|
while (occr)
|
447 |
|
|
{
|
448 |
|
|
rtx insn = occr->insn;
|
449 |
|
|
print_rtl_single (file, insn);
|
450 |
|
|
fprintf (file, "\n");
|
451 |
|
|
occr = occr->next;
|
452 |
|
|
}
|
453 |
|
|
fprintf (file, "\n");
|
454 |
|
|
return 1;
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
static void
|
458 |
|
|
dump_hash_table (FILE *file)
|
459 |
|
|
{
|
460 |
|
|
fprintf (file, "\n\nexpression hash table\n");
|
461 |
|
|
fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
|
462 |
|
|
(long) htab_size (expr_table),
|
463 |
|
|
(long) htab_elements (expr_table),
|
464 |
|
|
htab_collisions (expr_table));
|
465 |
|
|
if (htab_elements (expr_table) > 0)
|
466 |
|
|
{
|
467 |
|
|
fprintf (file, "\n\ntable entries:\n");
|
468 |
|
|
htab_traverse (expr_table, dump_hash_table_entry, file);
|
469 |
|
|
}
|
470 |
|
|
fprintf (file, "\n");
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
/* Return true if register X is recorded as being set by an instruction
|
474 |
|
|
whose CUID is greater than the one given. */
|
475 |
|
|
|
476 |
|
|
static bool
|
477 |
|
|
reg_changed_after_insn_p (rtx x, int cuid)
|
478 |
|
|
{
|
479 |
|
|
unsigned int regno, end_regno;
|
480 |
|
|
|
481 |
|
|
regno = REGNO (x);
|
482 |
|
|
end_regno = END_HARD_REGNO (x);
|
483 |
|
|
do
|
484 |
|
|
if (reg_avail_info[regno] > cuid)
|
485 |
|
|
return true;
|
486 |
|
|
while (++regno < end_regno);
|
487 |
|
|
return false;
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
/* Return nonzero if the operands of expression X are unchanged
|
491 |
|
|
1) from the start of INSN's basic block up to but not including INSN
|
492 |
|
|
if AFTER_INSN is false, or
|
493 |
|
|
2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
|
494 |
|
|
|
495 |
|
|
static bool
|
496 |
|
|
oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
|
497 |
|
|
{
|
498 |
|
|
int i, j;
|
499 |
|
|
enum rtx_code code;
|
500 |
|
|
const char *fmt;
|
501 |
|
|
|
502 |
|
|
if (x == 0)
|
503 |
|
|
return 1;
|
504 |
|
|
|
505 |
|
|
code = GET_CODE (x);
|
506 |
|
|
switch (code)
|
507 |
|
|
{
|
508 |
|
|
case REG:
|
509 |
|
|
/* We are called after register allocation. */
|
510 |
|
|
gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
|
511 |
|
|
if (after_insn)
|
512 |
|
|
return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
|
513 |
|
|
else
|
514 |
|
|
return !reg_changed_after_insn_p (x, 0);
|
515 |
|
|
|
516 |
|
|
case MEM:
|
517 |
|
|
if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
|
518 |
|
|
return 0;
|
519 |
|
|
else
|
520 |
|
|
return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
|
521 |
|
|
|
522 |
|
|
case PC:
|
523 |
|
|
case CC0: /*FIXME*/
|
524 |
|
|
case CONST:
|
525 |
|
|
case CONST_INT:
|
526 |
|
|
case CONST_DOUBLE:
|
527 |
|
|
case CONST_FIXED:
|
528 |
|
|
case CONST_VECTOR:
|
529 |
|
|
case SYMBOL_REF:
|
530 |
|
|
case LABEL_REF:
|
531 |
|
|
case ADDR_VEC:
|
532 |
|
|
case ADDR_DIFF_VEC:
|
533 |
|
|
return 1;
|
534 |
|
|
|
535 |
|
|
case PRE_DEC:
|
536 |
|
|
case PRE_INC:
|
537 |
|
|
case POST_DEC:
|
538 |
|
|
case POST_INC:
|
539 |
|
|
case PRE_MODIFY:
|
540 |
|
|
case POST_MODIFY:
|
541 |
|
|
if (after_insn)
|
542 |
|
|
return 0;
|
543 |
|
|
break;
|
544 |
|
|
|
545 |
|
|
default:
|
546 |
|
|
break;
|
547 |
|
|
}
|
548 |
|
|
|
549 |
|
|
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
550 |
|
|
{
|
551 |
|
|
if (fmt[i] == 'e')
|
552 |
|
|
{
|
553 |
|
|
if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
|
554 |
|
|
return 0;
|
555 |
|
|
}
|
556 |
|
|
else if (fmt[i] == 'E')
|
557 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
558 |
|
|
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
|
559 |
|
|
return 0;
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
return 1;
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
|
566 |
|
|
/* Used for communication between find_mem_conflicts and
|
567 |
|
|
load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
|
568 |
|
|
conflict between two memory references.
|
569 |
|
|
This is a bit of a hack to work around the limitations of note_stores. */
|
570 |
|
|
static int mems_conflict_p;
|
571 |
|
|
|
572 |
|
|
/* DEST is the output of an instruction. If it is a memory reference, and
|
573 |
|
|
possibly conflicts with the load found in DATA, then set mems_conflict_p
|
574 |
|
|
to a nonzero value. */
|
575 |
|
|
|
576 |
|
|
static void
|
577 |
|
|
find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
|
578 |
|
|
void *data)
|
579 |
|
|
{
|
580 |
|
|
rtx mem_op = (rtx) data;
|
581 |
|
|
|
582 |
|
|
while (GET_CODE (dest) == SUBREG
|
583 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
584 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
585 |
|
|
dest = XEXP (dest, 0);
|
586 |
|
|
|
587 |
|
|
/* If DEST is not a MEM, then it will not conflict with the load. Note
|
588 |
|
|
that function calls are assumed to clobber memory, but are handled
|
589 |
|
|
elsewhere. */
|
590 |
|
|
if (! MEM_P (dest))
|
591 |
|
|
return;
|
592 |
|
|
|
593 |
|
|
if (true_dependence (dest, GET_MODE (dest), mem_op,
|
594 |
|
|
rtx_addr_varies_p))
|
595 |
|
|
mems_conflict_p = 1;
|
596 |
|
|
}
|
597 |
|
|
|
598 |
|
|
|
599 |
|
|
/* Return nonzero if the expression in X (a memory reference) is killed
|
600 |
|
|
in the current basic block before (if AFTER_INSN is false) or after
|
601 |
|
|
(if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
|
602 |
|
|
|
603 |
|
|
This function assumes that the modifies_mem table is flushed when
|
604 |
|
|
the hash table construction or redundancy elimination phases start
|
605 |
|
|
processing a new basic block. */
|
606 |
|
|
|
607 |
|
|
static int
|
608 |
|
|
load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
|
609 |
|
|
{
|
610 |
|
|
struct modifies_mem *list_entry = modifies_mem_list;
|
611 |
|
|
|
612 |
|
|
while (list_entry)
|
613 |
|
|
{
|
614 |
|
|
rtx setter = list_entry->insn;
|
615 |
|
|
|
616 |
|
|
/* Ignore entries in the list that do not apply. */
|
617 |
|
|
if ((after_insn
|
618 |
|
|
&& INSN_CUID (setter) < uid_limit)
|
619 |
|
|
|| (! after_insn
|
620 |
|
|
&& INSN_CUID (setter) > uid_limit))
|
621 |
|
|
{
|
622 |
|
|
list_entry = list_entry->next;
|
623 |
|
|
continue;
|
624 |
|
|
}
|
625 |
|
|
|
626 |
|
|
/* If SETTER is a call everything is clobbered. Note that calls
|
627 |
|
|
to pure functions are never put on the list, so we need not
|
628 |
|
|
worry about them. */
|
629 |
|
|
if (CALL_P (setter))
|
630 |
|
|
return 1;
|
631 |
|
|
|
632 |
|
|
/* SETTER must be an insn of some kind that sets memory. Call
|
633 |
|
|
note_stores to examine each hunk of memory that is modified.
|
634 |
|
|
It will set mems_conflict_p to nonzero if there may be a
|
635 |
|
|
conflict between X and SETTER. */
|
636 |
|
|
mems_conflict_p = 0;
|
637 |
|
|
note_stores (PATTERN (setter), find_mem_conflicts, x);
|
638 |
|
|
if (mems_conflict_p)
|
639 |
|
|
return 1;
|
640 |
|
|
|
641 |
|
|
list_entry = list_entry->next;
|
642 |
|
|
}
|
643 |
|
|
return 0;
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
|
647 |
|
|
/* Record register first/last/block set information for REGNO in INSN. */
|
648 |
|
|
|
649 |
|
|
static inline void
|
650 |
|
|
record_last_reg_set_info (rtx insn, rtx reg)
|
651 |
|
|
{
|
652 |
|
|
unsigned int regno, end_regno;
|
653 |
|
|
|
654 |
|
|
regno = REGNO (reg);
|
655 |
|
|
end_regno = END_HARD_REGNO (reg);
|
656 |
|
|
do
|
657 |
|
|
reg_avail_info[regno] = INSN_CUID (insn);
|
658 |
|
|
while (++regno < end_regno);
|
659 |
|
|
}
|
660 |
|
|
|
661 |
|
|
static inline void
|
662 |
|
|
record_last_reg_set_info_regno (rtx insn, int regno)
|
663 |
|
|
{
|
664 |
|
|
reg_avail_info[regno] = INSN_CUID (insn);
|
665 |
|
|
}
|
666 |
|
|
|
667 |
|
|
|
668 |
|
|
/* Record memory modification information for INSN. We do not actually care
|
669 |
|
|
about the memory location(s) that are set, or even how they are set (consider
|
670 |
|
|
a CALL_INSN). We merely need to record which insns modify memory. */
|
671 |
|
|
|
672 |
|
|
static void
|
673 |
|
|
record_last_mem_set_info (rtx insn)
|
674 |
|
|
{
|
675 |
|
|
struct modifies_mem *list_entry;
|
676 |
|
|
|
677 |
|
|
list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
|
678 |
|
|
sizeof (struct modifies_mem));
|
679 |
|
|
list_entry->insn = insn;
|
680 |
|
|
list_entry->next = modifies_mem_list;
|
681 |
|
|
modifies_mem_list = list_entry;
|
682 |
|
|
}
|
683 |
|
|
|
684 |
|
|
/* Called from compute_hash_table via note_stores to handle one
|
685 |
|
|
SET or CLOBBER in an insn. DATA is really the instruction in which
|
686 |
|
|
the SET is taking place. */
|
687 |
|
|
|
688 |
|
|
static void
|
689 |
|
|
record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
|
690 |
|
|
{
|
691 |
|
|
rtx last_set_insn = (rtx) data;
|
692 |
|
|
|
693 |
|
|
if (GET_CODE (dest) == SUBREG)
|
694 |
|
|
dest = SUBREG_REG (dest);
|
695 |
|
|
|
696 |
|
|
if (REG_P (dest))
|
697 |
|
|
record_last_reg_set_info (last_set_insn, dest);
|
698 |
|
|
else if (MEM_P (dest))
|
699 |
|
|
{
|
700 |
|
|
/* Ignore pushes, they don't clobber memory. They may still
|
701 |
|
|
clobber the stack pointer though. Some targets do argument
|
702 |
|
|
pushes without adding REG_INC notes. See e.g. PR25196,
|
703 |
|
|
where a pushsi2 on i386 doesn't have REG_INC notes. Note
|
704 |
|
|
such changes here too. */
|
705 |
|
|
if (! push_operand (dest, GET_MODE (dest)))
|
706 |
|
|
record_last_mem_set_info (last_set_insn);
|
707 |
|
|
else
|
708 |
|
|
record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
|
709 |
|
|
}
|
710 |
|
|
}
|
711 |
|
|
|
712 |
|
|
|
713 |
|
|
/* Reset tables used to keep track of what's still available since the
|
714 |
|
|
start of the block. */
|
715 |
|
|
|
716 |
|
|
static void
|
717 |
|
|
reset_opr_set_tables (void)
|
718 |
|
|
{
|
719 |
|
|
memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
|
720 |
|
|
obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
|
721 |
|
|
modifies_mem_list = NULL;
|
722 |
|
|
}
|
723 |
|
|
|
724 |
|
|
|
725 |
|
|
/* Record things set by INSN.
|
726 |
|
|
This data is used by oprs_unchanged_p. */
|
727 |
|
|
|
728 |
|
|
static void
|
729 |
|
|
record_opr_changes (rtx insn)
|
730 |
|
|
{
|
731 |
|
|
rtx note;
|
732 |
|
|
|
733 |
|
|
/* Find all stores and record them. */
|
734 |
|
|
note_stores (PATTERN (insn), record_last_set_info, insn);
|
735 |
|
|
|
736 |
|
|
/* Also record autoincremented REGs for this insn as changed. */
|
737 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
738 |
|
|
if (REG_NOTE_KIND (note) == REG_INC)
|
739 |
|
|
record_last_reg_set_info (insn, XEXP (note, 0));
|
740 |
|
|
|
741 |
|
|
/* Finally, if this is a call, record all call clobbers. */
|
742 |
|
|
if (CALL_P (insn))
|
743 |
|
|
{
|
744 |
|
|
unsigned int regno;
|
745 |
|
|
rtx link, x;
|
746 |
|
|
|
747 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
748 |
|
|
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
|
749 |
|
|
record_last_reg_set_info_regno (insn, regno);
|
750 |
|
|
|
751 |
|
|
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
|
752 |
|
|
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
|
753 |
|
|
{
|
754 |
|
|
x = XEXP (XEXP (link, 0), 0);
|
755 |
|
|
if (REG_P (x))
|
756 |
|
|
{
|
757 |
|
|
gcc_assert (HARD_REGISTER_P (x));
|
758 |
|
|
record_last_reg_set_info (insn, x);
|
759 |
|
|
}
|
760 |
|
|
}
|
761 |
|
|
|
762 |
|
|
if (! RTL_CONST_OR_PURE_CALL_P (insn))
|
763 |
|
|
record_last_mem_set_info (insn);
|
764 |
|
|
}
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
|
768 |
|
|
/* Scan the pattern of INSN and add an entry to the hash TABLE.
|
769 |
|
|
After reload we are interested in loads/stores only. */
|
770 |
|
|
|
771 |
|
|
static void
|
772 |
|
|
hash_scan_set (rtx insn)
|
773 |
|
|
{
|
774 |
|
|
rtx pat = PATTERN (insn);
|
775 |
|
|
rtx src = SET_SRC (pat);
|
776 |
|
|
rtx dest = SET_DEST (pat);
|
777 |
|
|
|
778 |
|
|
/* We are only interested in loads and stores. */
|
779 |
|
|
if (! MEM_P (src) && ! MEM_P (dest))
|
780 |
|
|
return;
|
781 |
|
|
|
782 |
|
|
/* Don't mess with jumps and nops. */
|
783 |
|
|
if (JUMP_P (insn) || set_noop_p (pat))
|
784 |
|
|
return;
|
785 |
|
|
|
786 |
|
|
if (REG_P (dest))
|
787 |
|
|
{
|
788 |
|
|
if (/* Don't CSE something if we can't do a reg/reg copy. */
|
789 |
|
|
can_copy_p (GET_MODE (dest))
|
790 |
|
|
/* Is SET_SRC something we want to gcse? */
|
791 |
|
|
&& general_operand (src, GET_MODE (src))
|
792 |
|
|
#ifdef STACK_REGS
|
793 |
|
|
/* Never consider insns touching the register stack. It may
|
794 |
|
|
create situations that reg-stack cannot handle (e.g. a stack
|
795 |
|
|
register live across an abnormal edge). */
|
796 |
|
|
&& (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
|
797 |
|
|
#endif
|
798 |
|
|
/* An expression is not available if its operands are
|
799 |
|
|
subsequently modified, including this insn. */
|
800 |
|
|
&& oprs_unchanged_p (src, insn, true))
|
801 |
|
|
{
|
802 |
|
|
insert_expr_in_table (src, insn);
|
803 |
|
|
}
|
804 |
|
|
}
|
805 |
|
|
else if (REG_P (src))
|
806 |
|
|
{
|
807 |
|
|
/* Only record sets of pseudo-regs in the hash table. */
|
808 |
|
|
if (/* Don't CSE something if we can't do a reg/reg copy. */
|
809 |
|
|
can_copy_p (GET_MODE (src))
|
810 |
|
|
/* Is SET_DEST something we want to gcse? */
|
811 |
|
|
&& general_operand (dest, GET_MODE (dest))
|
812 |
|
|
#ifdef STACK_REGS
|
813 |
|
|
/* As above for STACK_REGS. */
|
814 |
|
|
&& (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
|
815 |
|
|
#endif
|
816 |
|
|
&& ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
|
817 |
|
|
/* Check if the memory expression is killed after insn. */
|
818 |
|
|
&& ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
|
819 |
|
|
&& oprs_unchanged_p (XEXP (dest, 0), insn, true))
|
820 |
|
|
{
|
821 |
|
|
insert_expr_in_table (dest, insn);
|
822 |
|
|
}
|
823 |
|
|
}
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
|
827 |
|
|
/* Create hash table of memory expressions available at end of basic
|
828 |
|
|
blocks. Basically you should think of this hash table as the
|
829 |
|
|
representation of AVAIL_OUT. This is the set of expressions that
|
830 |
|
|
is generated in a basic block and not killed before the end of the
|
831 |
|
|
same basic block. Notice that this is really a local computation. */
|
832 |
|
|
|
833 |
|
|
static void
|
834 |
|
|
compute_hash_table (void)
|
835 |
|
|
{
|
836 |
|
|
basic_block bb;
|
837 |
|
|
|
838 |
|
|
FOR_EACH_BB (bb)
|
839 |
|
|
{
|
840 |
|
|
rtx insn;
|
841 |
|
|
|
842 |
|
|
/* First pass over the instructions records information used to
|
843 |
|
|
determine when registers and memory are last set.
|
844 |
|
|
Since we compute a "local" AVAIL_OUT, reset the tables that
|
845 |
|
|
help us keep track of what has been modified since the start
|
846 |
|
|
of the block. */
|
847 |
|
|
reset_opr_set_tables ();
|
848 |
|
|
FOR_BB_INSNS (bb, insn)
|
849 |
|
|
{
|
850 |
|
|
if (INSN_P (insn))
|
851 |
|
|
record_opr_changes (insn);
|
852 |
|
|
}
|
853 |
|
|
|
854 |
|
|
/* The next pass actually builds the hash table. */
|
855 |
|
|
FOR_BB_INSNS (bb, insn)
|
856 |
|
|
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
|
857 |
|
|
hash_scan_set (insn);
|
858 |
|
|
}
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
|
862 |
|
|
/* Check if register REG is killed in any insn waiting to be inserted on
|
863 |
|
|
edge E. This function is required to check that our data flow analysis
|
864 |
|
|
is still valid prior to commit_edge_insertions. */
|
865 |
|
|
|
866 |
|
|
static bool
|
867 |
|
|
reg_killed_on_edge (rtx reg, edge e)
|
868 |
|
|
{
|
869 |
|
|
rtx insn;
|
870 |
|
|
|
871 |
|
|
for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
|
872 |
|
|
if (INSN_P (insn) && reg_set_p (reg, insn))
|
873 |
|
|
return true;
|
874 |
|
|
|
875 |
|
|
return false;
|
876 |
|
|
}
|
877 |
|
|
|
878 |
|
|
/* Similar to above - check if register REG is used in any insn waiting
|
879 |
|
|
to be inserted on edge E.
|
880 |
|
|
Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
|
881 |
|
|
with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
|
882 |
|
|
|
883 |
|
|
static bool
|
884 |
|
|
reg_used_on_edge (rtx reg, edge e)
|
885 |
|
|
{
|
886 |
|
|
rtx insn;
|
887 |
|
|
|
888 |
|
|
for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
|
889 |
|
|
if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
|
890 |
|
|
return true;
|
891 |
|
|
|
892 |
|
|
return false;
|
893 |
|
|
}
|
894 |
|
|
|
895 |
|
|
/* Return the loaded/stored register of a load/store instruction. */
|
896 |
|
|
|
897 |
|
|
static rtx
|
898 |
|
|
get_avail_load_store_reg (rtx insn)
|
899 |
|
|
{
|
900 |
|
|
if (REG_P (SET_DEST (PATTERN (insn))))
|
901 |
|
|
/* A load. */
|
902 |
|
|
return SET_DEST(PATTERN(insn));
|
903 |
|
|
else
|
904 |
|
|
{
|
905 |
|
|
/* A store. */
|
906 |
|
|
gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
|
907 |
|
|
return SET_SRC (PATTERN (insn));
|
908 |
|
|
}
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/* Return nonzero if the predecessors of BB are "well behaved". */
|
912 |
|
|
|
913 |
|
|
static bool
|
914 |
|
|
bb_has_well_behaved_predecessors (basic_block bb)
|
915 |
|
|
{
|
916 |
|
|
edge pred;
|
917 |
|
|
edge_iterator ei;
|
918 |
|
|
|
919 |
|
|
if (EDGE_COUNT (bb->preds) == 0)
|
920 |
|
|
return false;
|
921 |
|
|
|
922 |
|
|
FOR_EACH_EDGE (pred, ei, bb->preds)
|
923 |
|
|
{
|
924 |
|
|
if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
|
925 |
|
|
return false;
|
926 |
|
|
|
927 |
|
|
if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
|
928 |
|
|
return false;
|
929 |
|
|
}
|
930 |
|
|
return true;
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
|
934 |
|
|
/* Search for the occurrences of expression in BB. */
|
935 |
|
|
|
936 |
|
|
static struct occr*
|
937 |
|
|
get_bb_avail_insn (basic_block bb, struct occr *occr)
|
938 |
|
|
{
|
939 |
|
|
for (; occr != NULL; occr = occr->next)
|
940 |
|
|
if (BLOCK_FOR_INSN (occr->insn) == bb)
|
941 |
|
|
return occr;
|
942 |
|
|
return NULL;
|
943 |
|
|
}
|
944 |
|
|
|
945 |
|
|
|
946 |
|
|
/* This handles the case where several stores feed a partially redundant
|
947 |
|
|
load. It checks if the redundancy elimination is possible and if it's
|
948 |
|
|
worth it.
|
949 |
|
|
|
950 |
|
|
Redundancy elimination is possible if,
|
951 |
|
|
1) None of the operands of an insn have been modified since the start
|
952 |
|
|
of the current basic block.
|
953 |
|
|
2) In any predecessor of the current basic block, the same expression
|
954 |
|
|
is generated.
|
955 |
|
|
|
956 |
|
|
See the function body for the heuristics that determine if eliminating
|
957 |
|
|
a redundancy is also worth doing, assuming it is possible. */
|
958 |
|
|
|
959 |
|
|
static void
|
960 |
|
|
eliminate_partially_redundant_load (basic_block bb, rtx insn,
|
961 |
|
|
struct expr *expr)
|
962 |
|
|
{
|
963 |
|
|
edge pred;
|
964 |
|
|
rtx avail_insn = NULL_RTX;
|
965 |
|
|
rtx avail_reg;
|
966 |
|
|
rtx dest, pat;
|
967 |
|
|
struct occr *a_occr;
|
968 |
|
|
struct unoccr *occr, *avail_occrs = NULL;
|
969 |
|
|
struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
|
970 |
|
|
int npred_ok = 0;
|
971 |
|
|
gcov_type ok_count = 0; /* Redundant load execution count. */
|
972 |
|
|
gcov_type critical_count = 0; /* Execution count of critical edges. */
|
973 |
|
|
edge_iterator ei;
|
974 |
|
|
bool critical_edge_split = false;
|
975 |
|
|
|
976 |
|
|
/* The execution count of the loads to be added to make the
|
977 |
|
|
load fully redundant. */
|
978 |
|
|
gcov_type not_ok_count = 0;
|
979 |
|
|
basic_block pred_bb;
|
980 |
|
|
|
981 |
|
|
pat = PATTERN (insn);
|
982 |
|
|
dest = SET_DEST (pat);
|
983 |
|
|
|
984 |
|
|
/* Check that the loaded register is not used, set, or killed from the
|
985 |
|
|
beginning of the block. */
|
986 |
|
|
if (reg_changed_after_insn_p (dest, 0)
|
987 |
|
|
|| reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
|
988 |
|
|
return;
|
989 |
|
|
|
990 |
|
|
/* Check potential for replacing load with copy for predecessors. */
|
991 |
|
|
FOR_EACH_EDGE (pred, ei, bb->preds)
|
992 |
|
|
{
|
993 |
|
|
rtx next_pred_bb_end;
|
994 |
|
|
|
995 |
|
|
avail_insn = NULL_RTX;
|
996 |
|
|
avail_reg = NULL_RTX;
|
997 |
|
|
pred_bb = pred->src;
|
998 |
|
|
next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
|
999 |
|
|
for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
|
1000 |
|
|
a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
|
1001 |
|
|
{
|
1002 |
|
|
/* Check if the loaded register is not used. */
|
1003 |
|
|
avail_insn = a_occr->insn;
|
1004 |
|
|
avail_reg = get_avail_load_store_reg (avail_insn);
|
1005 |
|
|
gcc_assert (avail_reg);
|
1006 |
|
|
|
1007 |
|
|
/* Make sure we can generate a move from register avail_reg to
|
1008 |
|
|
dest. */
|
1009 |
|
|
extract_insn (gen_move_insn (copy_rtx (dest),
|
1010 |
|
|
copy_rtx (avail_reg)));
|
1011 |
|
|
if (! constrain_operands (1)
|
1012 |
|
|
|| reg_killed_on_edge (avail_reg, pred)
|
1013 |
|
|
|| reg_used_on_edge (dest, pred))
|
1014 |
|
|
{
|
1015 |
|
|
avail_insn = NULL;
|
1016 |
|
|
continue;
|
1017 |
|
|
}
|
1018 |
|
|
if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
|
1019 |
|
|
/* AVAIL_INSN remains non-null. */
|
1020 |
|
|
break;
|
1021 |
|
|
else
|
1022 |
|
|
avail_insn = NULL;
|
1023 |
|
|
}
|
1024 |
|
|
|
1025 |
|
|
if (EDGE_CRITICAL_P (pred))
|
1026 |
|
|
critical_count += pred->count;
|
1027 |
|
|
|
1028 |
|
|
if (avail_insn != NULL_RTX)
|
1029 |
|
|
{
|
1030 |
|
|
npred_ok++;
|
1031 |
|
|
ok_count += pred->count;
|
1032 |
|
|
if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
|
1033 |
|
|
copy_rtx (avail_reg)))))
|
1034 |
|
|
{
|
1035 |
|
|
/* Check if there is going to be a split. */
|
1036 |
|
|
if (EDGE_CRITICAL_P (pred))
|
1037 |
|
|
critical_edge_split = true;
|
1038 |
|
|
}
|
1039 |
|
|
else /* Its a dead move no need to generate. */
|
1040 |
|
|
continue;
|
1041 |
|
|
occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
|
1042 |
|
|
sizeof (struct unoccr));
|
1043 |
|
|
occr->insn = avail_insn;
|
1044 |
|
|
occr->pred = pred;
|
1045 |
|
|
occr->next = avail_occrs;
|
1046 |
|
|
avail_occrs = occr;
|
1047 |
|
|
if (! rollback_unoccr)
|
1048 |
|
|
rollback_unoccr = occr;
|
1049 |
|
|
}
|
1050 |
|
|
else
|
1051 |
|
|
{
|
1052 |
|
|
/* Adding a load on a critical edge will cause a split. */
|
1053 |
|
|
if (EDGE_CRITICAL_P (pred))
|
1054 |
|
|
critical_edge_split = true;
|
1055 |
|
|
not_ok_count += pred->count;
|
1056 |
|
|
unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
|
1057 |
|
|
sizeof (struct unoccr));
|
1058 |
|
|
unoccr->insn = NULL_RTX;
|
1059 |
|
|
unoccr->pred = pred;
|
1060 |
|
|
unoccr->next = unavail_occrs;
|
1061 |
|
|
unavail_occrs = unoccr;
|
1062 |
|
|
if (! rollback_unoccr)
|
1063 |
|
|
rollback_unoccr = unoccr;
|
1064 |
|
|
}
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
if (/* No load can be replaced by copy. */
|
1068 |
|
|
npred_ok == 0
|
1069 |
|
|
/* Prevent exploding the code. */
|
1070 |
|
|
|| (optimize_bb_for_size_p (bb) && npred_ok > 1)
|
1071 |
|
|
/* If we don't have profile information we cannot tell if splitting
|
1072 |
|
|
a critical edge is profitable or not so don't do it. */
|
1073 |
|
|
|| ((! profile_info || ! flag_branch_probabilities
|
1074 |
|
|
|| targetm.cannot_modify_jumps_p ())
|
1075 |
|
|
&& critical_edge_split))
|
1076 |
|
|
goto cleanup;
|
1077 |
|
|
|
1078 |
|
|
/* Check if it's worth applying the partial redundancy elimination. */
|
1079 |
|
|
if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
|
1080 |
|
|
goto cleanup;
|
1081 |
|
|
if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
|
1082 |
|
|
goto cleanup;
|
1083 |
|
|
|
1084 |
|
|
/* Generate moves to the loaded register from where
|
1085 |
|
|
the memory is available. */
|
1086 |
|
|
for (occr = avail_occrs; occr; occr = occr->next)
|
1087 |
|
|
{
|
1088 |
|
|
avail_insn = occr->insn;
|
1089 |
|
|
pred = occr->pred;
|
1090 |
|
|
/* Set avail_reg to be the register having the value of the
|
1091 |
|
|
memory. */
|
1092 |
|
|
avail_reg = get_avail_load_store_reg (avail_insn);
|
1093 |
|
|
gcc_assert (avail_reg);
|
1094 |
|
|
|
1095 |
|
|
insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
|
1096 |
|
|
copy_rtx (avail_reg)),
|
1097 |
|
|
pred);
|
1098 |
|
|
stats.moves_inserted++;
|
1099 |
|
|
|
1100 |
|
|
if (dump_file)
|
1101 |
|
|
fprintf (dump_file,
|
1102 |
|
|
"generating move from %d to %d on edge from %d to %d\n",
|
1103 |
|
|
REGNO (avail_reg),
|
1104 |
|
|
REGNO (dest),
|
1105 |
|
|
pred->src->index,
|
1106 |
|
|
pred->dest->index);
|
1107 |
|
|
}
|
1108 |
|
|
|
1109 |
|
|
/* Regenerate loads where the memory is unavailable. */
|
1110 |
|
|
for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
|
1111 |
|
|
{
|
1112 |
|
|
pred = unoccr->pred;
|
1113 |
|
|
insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
|
1114 |
|
|
stats.copies_inserted++;
|
1115 |
|
|
|
1116 |
|
|
if (dump_file)
|
1117 |
|
|
{
|
1118 |
|
|
fprintf (dump_file,
|
1119 |
|
|
"generating on edge from %d to %d a copy of load: ",
|
1120 |
|
|
pred->src->index,
|
1121 |
|
|
pred->dest->index);
|
1122 |
|
|
print_rtl (dump_file, PATTERN (insn));
|
1123 |
|
|
fprintf (dump_file, "\n");
|
1124 |
|
|
}
|
1125 |
|
|
}
|
1126 |
|
|
|
1127 |
|
|
/* Delete the insn if it is not available in this block and mark it
|
1128 |
|
|
for deletion if it is available. If insn is available it may help
|
1129 |
|
|
discover additional redundancies, so mark it for later deletion. */
|
1130 |
|
|
for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
|
1131 |
|
|
a_occr && (a_occr->insn != insn);
|
1132 |
|
|
a_occr = get_bb_avail_insn (bb, a_occr->next));
|
1133 |
|
|
|
1134 |
|
|
if (!a_occr)
|
1135 |
|
|
{
|
1136 |
|
|
stats.insns_deleted++;
|
1137 |
|
|
|
1138 |
|
|
if (dump_file)
|
1139 |
|
|
{
|
1140 |
|
|
fprintf (dump_file, "deleting insn:\n");
|
1141 |
|
|
print_rtl_single (dump_file, insn);
|
1142 |
|
|
fprintf (dump_file, "\n");
|
1143 |
|
|
}
|
1144 |
|
|
delete_insn (insn);
|
1145 |
|
|
}
|
1146 |
|
|
else
|
1147 |
|
|
a_occr->deleted_p = 1;
|
1148 |
|
|
|
1149 |
|
|
cleanup:
|
1150 |
|
|
if (rollback_unoccr)
|
1151 |
|
|
obstack_free (&unoccr_obstack, rollback_unoccr);
|
1152 |
|
|
}
|
1153 |
|
|
|
1154 |
|
|
/* Performing the redundancy elimination as described before. */
|
1155 |
|
|
|
1156 |
|
|
static void
|
1157 |
|
|
eliminate_partially_redundant_loads (void)
|
1158 |
|
|
{
|
1159 |
|
|
rtx insn;
|
1160 |
|
|
basic_block bb;
|
1161 |
|
|
|
1162 |
|
|
/* Note we start at block 1. */
|
1163 |
|
|
|
1164 |
|
|
if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
|
1165 |
|
|
return;
|
1166 |
|
|
|
1167 |
|
|
FOR_BB_BETWEEN (bb,
|
1168 |
|
|
ENTRY_BLOCK_PTR->next_bb->next_bb,
|
1169 |
|
|
EXIT_BLOCK_PTR,
|
1170 |
|
|
next_bb)
|
1171 |
|
|
{
|
1172 |
|
|
/* Don't try anything on basic blocks with strange predecessors. */
|
1173 |
|
|
if (! bb_has_well_behaved_predecessors (bb))
|
1174 |
|
|
continue;
|
1175 |
|
|
|
1176 |
|
|
/* Do not try anything on cold basic blocks. */
|
1177 |
|
|
if (optimize_bb_for_size_p (bb))
|
1178 |
|
|
continue;
|
1179 |
|
|
|
1180 |
|
|
/* Reset the table of things changed since the start of the current
|
1181 |
|
|
basic block. */
|
1182 |
|
|
reset_opr_set_tables ();
|
1183 |
|
|
|
1184 |
|
|
/* Look at all insns in the current basic block and see if there are
|
1185 |
|
|
any loads in it that we can record. */
|
1186 |
|
|
FOR_BB_INSNS (bb, insn)
|
1187 |
|
|
{
|
1188 |
|
|
/* Is it a load - of the form (set (reg) (mem))? */
|
1189 |
|
|
if (NONJUMP_INSN_P (insn)
|
1190 |
|
|
&& GET_CODE (PATTERN (insn)) == SET
|
1191 |
|
|
&& REG_P (SET_DEST (PATTERN (insn)))
|
1192 |
|
|
&& MEM_P (SET_SRC (PATTERN (insn))))
|
1193 |
|
|
{
|
1194 |
|
|
rtx pat = PATTERN (insn);
|
1195 |
|
|
rtx src = SET_SRC (pat);
|
1196 |
|
|
struct expr *expr;
|
1197 |
|
|
|
1198 |
|
|
if (!MEM_VOLATILE_P (src)
|
1199 |
|
|
&& GET_MODE (src) != BLKmode
|
1200 |
|
|
&& general_operand (src, GET_MODE (src))
|
1201 |
|
|
/* Are the operands unchanged since the start of the
|
1202 |
|
|
block? */
|
1203 |
|
|
&& oprs_unchanged_p (src, insn, false)
|
1204 |
|
|
&& !(flag_non_call_exceptions && may_trap_p (src))
|
1205 |
|
|
&& !side_effects_p (src)
|
1206 |
|
|
/* Is the expression recorded? */
|
1207 |
|
|
&& (expr = lookup_expr_in_table (src)) != NULL)
|
1208 |
|
|
{
|
1209 |
|
|
/* We now have a load (insn) and an available memory at
|
1210 |
|
|
its BB start (expr). Try to remove the loads if it is
|
1211 |
|
|
redundant. */
|
1212 |
|
|
eliminate_partially_redundant_load (bb, insn, expr);
|
1213 |
|
|
}
|
1214 |
|
|
}
|
1215 |
|
|
|
1216 |
|
|
/* Keep track of everything modified by this insn, so that we
|
1217 |
|
|
know what has been modified since the start of the current
|
1218 |
|
|
basic block. */
|
1219 |
|
|
if (INSN_P (insn))
|
1220 |
|
|
record_opr_changes (insn);
|
1221 |
|
|
}
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
commit_edge_insertions ();
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
/* Go over the expression hash table and delete insns that were
|
1228 |
|
|
marked for later deletion. */
|
1229 |
|
|
|
1230 |
|
|
/* This helper is called via htab_traverse. */
|
1231 |
|
|
static int
|
1232 |
|
|
delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
|
1233 |
|
|
{
|
1234 |
|
|
struct expr *expr = (struct expr *) *slot;
|
1235 |
|
|
struct occr *occr;
|
1236 |
|
|
|
1237 |
|
|
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
|
1238 |
|
|
{
|
1239 |
|
|
if (occr->deleted_p && dbg_cnt (gcse2_delete))
|
1240 |
|
|
{
|
1241 |
|
|
delete_insn (occr->insn);
|
1242 |
|
|
stats.insns_deleted++;
|
1243 |
|
|
|
1244 |
|
|
if (dump_file)
|
1245 |
|
|
{
|
1246 |
|
|
fprintf (dump_file, "deleting insn:\n");
|
1247 |
|
|
print_rtl_single (dump_file, occr->insn);
|
1248 |
|
|
fprintf (dump_file, "\n");
|
1249 |
|
|
}
|
1250 |
|
|
}
|
1251 |
|
|
}
|
1252 |
|
|
|
1253 |
|
|
return 1;
|
1254 |
|
|
}
|
1255 |
|
|
|
1256 |
|
|
static void
|
1257 |
|
|
delete_redundant_insns (void)
|
1258 |
|
|
{
|
1259 |
|
|
htab_traverse (expr_table, delete_redundant_insns_1, NULL);
|
1260 |
|
|
if (dump_file)
|
1261 |
|
|
fprintf (dump_file, "\n");
|
1262 |
|
|
}
|
1263 |
|
|
|
1264 |
|
|
/* Main entry point of the GCSE after reload - clean some redundant loads
|
1265 |
|
|
due to spilling. */
|
1266 |
|
|
|
1267 |
|
|
static void
|
1268 |
|
|
gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
|
1269 |
|
|
{
|
1270 |
|
|
|
1271 |
|
|
memset (&stats, 0, sizeof (stats));
|
1272 |
|
|
|
1273 |
|
|
/* Allocate memory for this pass.
|
1274 |
|
|
Also computes and initializes the insns' CUIDs. */
|
1275 |
|
|
alloc_mem ();
|
1276 |
|
|
|
1277 |
|
|
/* We need alias analysis. */
|
1278 |
|
|
init_alias_analysis ();
|
1279 |
|
|
|
1280 |
|
|
compute_hash_table ();
|
1281 |
|
|
|
1282 |
|
|
if (dump_file)
|
1283 |
|
|
dump_hash_table (dump_file);
|
1284 |
|
|
|
1285 |
|
|
if (htab_elements (expr_table) > 0)
|
1286 |
|
|
{
|
1287 |
|
|
eliminate_partially_redundant_loads ();
|
1288 |
|
|
delete_redundant_insns ();
|
1289 |
|
|
|
1290 |
|
|
if (dump_file)
|
1291 |
|
|
{
|
1292 |
|
|
fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
|
1293 |
|
|
fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
|
1294 |
|
|
fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
|
1295 |
|
|
fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
|
1296 |
|
|
fprintf (dump_file, "\n\n");
|
1297 |
|
|
}
|
1298 |
|
|
}
|
1299 |
|
|
|
1300 |
|
|
/* We are finished with alias. */
|
1301 |
|
|
end_alias_analysis ();
|
1302 |
|
|
|
1303 |
|
|
free_mem ();
|
1304 |
|
|
}
|
1305 |
|
|
|
1306 |
|
|
|
1307 |
|
|
static bool
|
1308 |
|
|
gate_handle_gcse2 (void)
|
1309 |
|
|
{
|
1310 |
|
|
return (optimize > 0 && flag_gcse_after_reload
|
1311 |
|
|
&& optimize_function_for_speed_p (cfun));
|
1312 |
|
|
}
|
1313 |
|
|
|
1314 |
|
|
|
1315 |
|
|
static unsigned int
|
1316 |
|
|
rest_of_handle_gcse2 (void)
|
1317 |
|
|
{
|
1318 |
|
|
gcse_after_reload_main (get_insns ());
|
1319 |
|
|
rebuild_jump_labels (get_insns ());
|
1320 |
|
|
return 0;
|
1321 |
|
|
}
|
1322 |
|
|
|
1323 |
|
|
struct rtl_opt_pass pass_gcse2 =
|
1324 |
|
|
{
|
1325 |
|
|
{
|
1326 |
|
|
RTL_PASS,
|
1327 |
|
|
"gcse2", /* name */
|
1328 |
|
|
gate_handle_gcse2, /* gate */
|
1329 |
|
|
rest_of_handle_gcse2, /* execute */
|
1330 |
|
|
NULL, /* sub */
|
1331 |
|
|
NULL, /* next */
|
1332 |
|
|
0, /* static_pass_number */
|
1333 |
|
|
TV_GCSE_AFTER_RELOAD, /* tv_id */
|
1334 |
|
|
0, /* properties_required */
|
1335 |
|
|
0, /* properties_provided */
|
1336 |
|
|
0, /* properties_destroyed */
|
1337 |
|
|
0, /* todo_flags_start */
|
1338 |
|
|
TODO_dump_func | TODO_verify_rtl_sharing
|
1339 |
|
|
| TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
|
1340 |
|
|
}
|
1341 |
|
|
};
|
1342 |
|
|
|