1 |
280 |
jeremybenn |
/* Branch prediction routines for the GNU compiler.
|
2 |
|
|
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
8 |
|
|
the terms of the GNU General Public License as published by the Free
|
9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
10 |
|
|
version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
15 |
|
|
for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
/* References:
|
22 |
|
|
|
23 |
|
|
[1] "Branch Prediction for Free"
|
24 |
|
|
Ball and Larus; PLDI '93.
|
25 |
|
|
[2] "Static Branch Frequency and Program Profile Analysis"
|
26 |
|
|
Wu and Larus; MICRO-27.
|
27 |
|
|
[3] "Corpus-based Static Branch Prediction"
|
28 |
|
|
Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
|
29 |
|
|
|
30 |
|
|
|
31 |
|
|
#include "config.h"
|
32 |
|
|
#include "system.h"
|
33 |
|
|
#include "coretypes.h"
|
34 |
|
|
#include "tm.h"
|
35 |
|
|
#include "tree.h"
|
36 |
|
|
#include "rtl.h"
|
37 |
|
|
#include "tm_p.h"
|
38 |
|
|
#include "hard-reg-set.h"
|
39 |
|
|
#include "basic-block.h"
|
40 |
|
|
#include "insn-config.h"
|
41 |
|
|
#include "regs.h"
|
42 |
|
|
#include "flags.h"
|
43 |
|
|
#include "output.h"
|
44 |
|
|
#include "function.h"
|
45 |
|
|
#include "except.h"
|
46 |
|
|
#include "toplev.h"
|
47 |
|
|
#include "recog.h"
|
48 |
|
|
#include "expr.h"
|
49 |
|
|
#include "predict.h"
|
50 |
|
|
#include "coverage.h"
|
51 |
|
|
#include "sreal.h"
|
52 |
|
|
#include "params.h"
|
53 |
|
|
#include "target.h"
|
54 |
|
|
#include "cfgloop.h"
|
55 |
|
|
#include "tree-flow.h"
|
56 |
|
|
#include "ggc.h"
|
57 |
|
|
#include "tree-dump.h"
|
58 |
|
|
#include "tree-pass.h"
|
59 |
|
|
#include "timevar.h"
|
60 |
|
|
#include "tree-scalar-evolution.h"
|
61 |
|
|
#include "cfgloop.h"
|
62 |
|
|
#include "pointer-set.h"
|
63 |
|
|
|
64 |
|
|
/* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
|
65 |
|
|
1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
|
66 |
|
|
static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
|
67 |
|
|
real_inv_br_prob_base, real_one_half, real_bb_freq_max;
|
68 |
|
|
|
69 |
|
|
/* Random guesstimation given names.
|
70 |
|
|
PROV_VERY_UNLIKELY should be small enough so basic block predicted
|
71 |
|
|
by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
|
72 |
|
|
#define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
|
73 |
|
|
#define PROB_EVEN (REG_BR_PROB_BASE / 2)
|
74 |
|
|
#define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
|
75 |
|
|
#define PROB_ALWAYS (REG_BR_PROB_BASE)
|
76 |
|
|
|
77 |
|
|
static void combine_predictions_for_insn (rtx, basic_block);
|
78 |
|
|
static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
|
79 |
|
|
static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
|
80 |
|
|
static void choose_function_section (void);
|
81 |
|
|
static bool can_predict_insn_p (const_rtx);
|
82 |
|
|
|
83 |
|
|
/* Information we hold about each branch predictor.
|
84 |
|
|
Filled using information from predict.def. */
|
85 |
|
|
|
86 |
|
|
struct predictor_info
|
87 |
|
|
{
|
88 |
|
|
const char *const name; /* Name used in the debugging dumps. */
|
89 |
|
|
const int hitrate; /* Expected hitrate used by
|
90 |
|
|
predict_insn_def call. */
|
91 |
|
|
const int flags;
|
92 |
|
|
};
|
93 |
|
|
|
94 |
|
|
/* Use given predictor without Dempster-Shaffer theory if it matches
|
95 |
|
|
using first_match heuristics. */
|
96 |
|
|
#define PRED_FLAG_FIRST_MATCH 1
|
97 |
|
|
|
98 |
|
|
/* Recompute hitrate in percent to our representation. */
|
99 |
|
|
|
100 |
|
|
#define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
|
101 |
|
|
|
102 |
|
|
#define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
|
103 |
|
|
static const struct predictor_info predictor_info[]= {
|
104 |
|
|
#include "predict.def"
|
105 |
|
|
|
106 |
|
|
/* Upper bound on predictors. */
|
107 |
|
|
{NULL, 0, 0}
|
108 |
|
|
};
|
109 |
|
|
#undef DEF_PREDICTOR
|
110 |
|
|
|
111 |
|
|
/* Return TRUE if frequency FREQ is considered to be hot. */
|
112 |
|
|
|
113 |
|
|
static inline bool
|
114 |
|
|
maybe_hot_frequency_p (int freq)
|
115 |
|
|
{
|
116 |
|
|
if (!profile_info || !flag_branch_probabilities)
|
117 |
|
|
{
|
118 |
|
|
if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
|
119 |
|
|
return false;
|
120 |
|
|
if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
|
121 |
|
|
return true;
|
122 |
|
|
}
|
123 |
|
|
if (profile_status == PROFILE_ABSENT)
|
124 |
|
|
return true;
|
125 |
|
|
if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
|
126 |
|
|
return false;
|
127 |
|
|
return true;
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
/* Return TRUE if frequency FREQ is considered to be hot. */
|
131 |
|
|
|
132 |
|
|
static inline bool
|
133 |
|
|
maybe_hot_count_p (gcov_type count)
|
134 |
|
|
{
|
135 |
|
|
if (profile_status != PROFILE_READ)
|
136 |
|
|
return true;
|
137 |
|
|
/* Code executed at most once is not hot. */
|
138 |
|
|
if (profile_info->runs >= count)
|
139 |
|
|
return false;
|
140 |
|
|
return (count
|
141 |
|
|
> profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
/* Return true in case BB can be CPU intensive and should be optimized
|
145 |
|
|
for maximal performance. */
|
146 |
|
|
|
147 |
|
|
bool
|
148 |
|
|
maybe_hot_bb_p (const_basic_block bb)
|
149 |
|
|
{
|
150 |
|
|
if (profile_status == PROFILE_READ)
|
151 |
|
|
return maybe_hot_count_p (bb->count);
|
152 |
|
|
return maybe_hot_frequency_p (bb->frequency);
|
153 |
|
|
}
|
154 |
|
|
|
155 |
|
|
/* Return true if the call can be hot. */
|
156 |
|
|
|
157 |
|
|
bool
|
158 |
|
|
cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
|
159 |
|
|
{
|
160 |
|
|
if (profile_info && flag_branch_probabilities
|
161 |
|
|
&& (edge->count
|
162 |
|
|
<= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
|
163 |
|
|
return false;
|
164 |
|
|
if (lookup_attribute ("cold", DECL_ATTRIBUTES (edge->callee->decl))
|
165 |
|
|
|| lookup_attribute ("cold", DECL_ATTRIBUTES (edge->caller->decl)))
|
166 |
|
|
return false;
|
167 |
|
|
if (lookup_attribute ("hot", DECL_ATTRIBUTES (edge->caller->decl)))
|
168 |
|
|
return true;
|
169 |
|
|
if (flag_guess_branch_prob
|
170 |
|
|
&& edge->frequency <= (CGRAPH_FREQ_BASE
|
171 |
|
|
/ PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
|
172 |
|
|
return false;
|
173 |
|
|
return true;
|
174 |
|
|
}
|
175 |
|
|
|
176 |
|
|
/* Return true in case BB can be CPU intensive and should be optimized
|
177 |
|
|
for maximal performance. */
|
178 |
|
|
|
179 |
|
|
bool
|
180 |
|
|
maybe_hot_edge_p (edge e)
|
181 |
|
|
{
|
182 |
|
|
if (profile_status == PROFILE_READ)
|
183 |
|
|
return maybe_hot_count_p (e->count);
|
184 |
|
|
return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
|
185 |
|
|
}
|
186 |
|
|
|
187 |
|
|
/* Return true in case BB is probably never executed. */
|
188 |
|
|
bool
|
189 |
|
|
probably_never_executed_bb_p (const_basic_block bb)
|
190 |
|
|
{
|
191 |
|
|
if (profile_info && flag_branch_probabilities)
|
192 |
|
|
return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
|
193 |
|
|
if ((!profile_info || !flag_branch_probabilities)
|
194 |
|
|
&& cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
|
195 |
|
|
return true;
|
196 |
|
|
return false;
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
/* Return true when current function should always be optimized for size. */
|
200 |
|
|
|
201 |
|
|
bool
|
202 |
|
|
optimize_function_for_size_p (struct function *fun)
|
203 |
|
|
{
|
204 |
|
|
return (optimize_size
|
205 |
|
|
|| (fun && (fun->function_frequency
|
206 |
|
|
== FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)));
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
/* Return true when current function should always be optimized for speed. */
|
210 |
|
|
|
211 |
|
|
bool
|
212 |
|
|
optimize_function_for_speed_p (struct function *fun)
|
213 |
|
|
{
|
214 |
|
|
return !optimize_function_for_size_p (fun);
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
/* Return TRUE when BB should be optimized for size. */
|
218 |
|
|
|
219 |
|
|
bool
|
220 |
|
|
optimize_bb_for_size_p (const_basic_block bb)
|
221 |
|
|
{
|
222 |
|
|
return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
|
223 |
|
|
}
|
224 |
|
|
|
225 |
|
|
/* Return TRUE when BB should be optimized for speed. */
|
226 |
|
|
|
227 |
|
|
bool
|
228 |
|
|
optimize_bb_for_speed_p (const_basic_block bb)
|
229 |
|
|
{
|
230 |
|
|
return !optimize_bb_for_size_p (bb);
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* Return TRUE when BB should be optimized for size. */
|
234 |
|
|
|
235 |
|
|
bool
|
236 |
|
|
optimize_edge_for_size_p (edge e)
|
237 |
|
|
{
|
238 |
|
|
return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
|
239 |
|
|
}
|
240 |
|
|
|
241 |
|
|
/* Return TRUE when BB should be optimized for speed. */
|
242 |
|
|
|
243 |
|
|
bool
|
244 |
|
|
optimize_edge_for_speed_p (edge e)
|
245 |
|
|
{
|
246 |
|
|
return !optimize_edge_for_size_p (e);
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
/* Return TRUE when BB should be optimized for size. */
|
250 |
|
|
|
251 |
|
|
bool
|
252 |
|
|
optimize_insn_for_size_p (void)
|
253 |
|
|
{
|
254 |
|
|
return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
/* Return TRUE when BB should be optimized for speed. */
|
258 |
|
|
|
259 |
|
|
bool
|
260 |
|
|
optimize_insn_for_speed_p (void)
|
261 |
|
|
{
|
262 |
|
|
return !optimize_insn_for_size_p ();
|
263 |
|
|
}
|
264 |
|
|
|
265 |
|
|
/* Return TRUE when LOOP should be optimized for size. */
|
266 |
|
|
|
267 |
|
|
bool
|
268 |
|
|
optimize_loop_for_size_p (struct loop *loop)
|
269 |
|
|
{
|
270 |
|
|
return optimize_bb_for_size_p (loop->header);
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
/* Return TRUE when LOOP should be optimized for speed. */
|
274 |
|
|
|
275 |
|
|
bool
|
276 |
|
|
optimize_loop_for_speed_p (struct loop *loop)
|
277 |
|
|
{
|
278 |
|
|
return optimize_bb_for_speed_p (loop->header);
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
/* Return TRUE when LOOP nest should be optimized for speed. */
|
282 |
|
|
|
283 |
|
|
bool
|
284 |
|
|
optimize_loop_nest_for_speed_p (struct loop *loop)
|
285 |
|
|
{
|
286 |
|
|
struct loop *l = loop;
|
287 |
|
|
if (optimize_loop_for_speed_p (loop))
|
288 |
|
|
return true;
|
289 |
|
|
l = loop->inner;
|
290 |
|
|
while (l && l != loop)
|
291 |
|
|
{
|
292 |
|
|
if (optimize_loop_for_speed_p (l))
|
293 |
|
|
return true;
|
294 |
|
|
if (l->inner)
|
295 |
|
|
l = l->inner;
|
296 |
|
|
else if (l->next)
|
297 |
|
|
l = l->next;
|
298 |
|
|
else
|
299 |
|
|
{
|
300 |
|
|
while (l != loop && !l->next)
|
301 |
|
|
l = loop_outer (l);
|
302 |
|
|
if (l != loop)
|
303 |
|
|
l = l->next;
|
304 |
|
|
}
|
305 |
|
|
}
|
306 |
|
|
return false;
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
/* Return TRUE when LOOP nest should be optimized for size. */
|
310 |
|
|
|
311 |
|
|
bool
|
312 |
|
|
optimize_loop_nest_for_size_p (struct loop *loop)
|
313 |
|
|
{
|
314 |
|
|
return !optimize_loop_nest_for_speed_p (loop);
|
315 |
|
|
}
|
316 |
|
|
|
317 |
|
|
/* Return true when edge E is likely to be well predictable by branch
|
318 |
|
|
predictor. */
|
319 |
|
|
|
320 |
|
|
bool
|
321 |
|
|
predictable_edge_p (edge e)
|
322 |
|
|
{
|
323 |
|
|
if (profile_status == PROFILE_ABSENT)
|
324 |
|
|
return false;
|
325 |
|
|
if ((e->probability
|
326 |
|
|
<= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
|
327 |
|
|
|| (REG_BR_PROB_BASE - e->probability
|
328 |
|
|
<= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
|
329 |
|
|
return true;
|
330 |
|
|
return false;
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
/* Set RTL expansion for BB profile. */
|
335 |
|
|
|
336 |
|
|
void
|
337 |
|
|
rtl_profile_for_bb (basic_block bb)
|
338 |
|
|
{
|
339 |
|
|
crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
|
340 |
|
|
}
|
341 |
|
|
|
342 |
|
|
/* Set RTL expansion for edge profile. */
|
343 |
|
|
|
344 |
|
|
void
|
345 |
|
|
rtl_profile_for_edge (edge e)
|
346 |
|
|
{
|
347 |
|
|
crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
|
348 |
|
|
}
|
349 |
|
|
|
350 |
|
|
/* Set RTL expansion to default mode (i.e. when profile info is not known). */
|
351 |
|
|
void
|
352 |
|
|
default_rtl_profile (void)
|
353 |
|
|
{
|
354 |
|
|
crtl->maybe_hot_insn_p = true;
|
355 |
|
|
}
|
356 |
|
|
|
357 |
|
|
/* Return true if the one of outgoing edges is already predicted by
|
358 |
|
|
PREDICTOR. */
|
359 |
|
|
|
360 |
|
|
bool
|
361 |
|
|
rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
|
362 |
|
|
{
|
363 |
|
|
rtx note;
|
364 |
|
|
if (!INSN_P (BB_END (bb)))
|
365 |
|
|
return false;
|
366 |
|
|
for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
|
367 |
|
|
if (REG_NOTE_KIND (note) == REG_BR_PRED
|
368 |
|
|
&& INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
|
369 |
|
|
return true;
|
370 |
|
|
return false;
|
371 |
|
|
}
|
372 |
|
|
|
373 |
|
|
/* This map contains for a basic block the list of predictions for the
|
374 |
|
|
outgoing edges. */
|
375 |
|
|
|
376 |
|
|
static struct pointer_map_t *bb_predictions;
|
377 |
|
|
|
378 |
|
|
/* Return true if the one of outgoing edges is already predicted by
|
379 |
|
|
PREDICTOR. */
|
380 |
|
|
|
381 |
|
|
bool
|
382 |
|
|
gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
|
383 |
|
|
{
|
384 |
|
|
struct edge_prediction *i;
|
385 |
|
|
void **preds = pointer_map_contains (bb_predictions, bb);
|
386 |
|
|
|
387 |
|
|
if (!preds)
|
388 |
|
|
return false;
|
389 |
|
|
|
390 |
|
|
for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
|
391 |
|
|
if (i->ep_predictor == predictor)
|
392 |
|
|
return true;
|
393 |
|
|
return false;
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
/* Return true when the probability of edge is reliable.
|
397 |
|
|
|
398 |
|
|
The profile guessing code is good at predicting branch outcome (ie.
|
399 |
|
|
taken/not taken), that is predicted right slightly over 75% of time.
|
400 |
|
|
It is however notoriously poor on predicting the probability itself.
|
401 |
|
|
In general the profile appear a lot flatter (with probabilities closer
|
402 |
|
|
to 50%) than the reality so it is bad idea to use it to drive optimization
|
403 |
|
|
such as those disabling dynamic branch prediction for well predictable
|
404 |
|
|
branches.
|
405 |
|
|
|
406 |
|
|
There are two exceptions - edges leading to noreturn edges and edges
|
407 |
|
|
predicted by number of iterations heuristics are predicted well. This macro
|
408 |
|
|
should be able to distinguish those, but at the moment it simply check for
|
409 |
|
|
noreturn heuristic that is only one giving probability over 99% or bellow
|
410 |
|
|
1%. In future we might want to propagate reliability information across the
|
411 |
|
|
CFG if we find this information useful on multiple places. */
|
412 |
|
|
static bool
|
413 |
|
|
probability_reliable_p (int prob)
|
414 |
|
|
{
|
415 |
|
|
return (profile_status == PROFILE_READ
|
416 |
|
|
|| (profile_status == PROFILE_GUESSED
|
417 |
|
|
&& (prob <= HITRATE (1) || prob >= HITRATE (99))));
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
/* Same predicate as above, working on edges. */
|
421 |
|
|
bool
|
422 |
|
|
edge_probability_reliable_p (const_edge e)
|
423 |
|
|
{
|
424 |
|
|
return probability_reliable_p (e->probability);
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/* Same predicate as edge_probability_reliable_p, working on notes. */
|
428 |
|
|
bool
|
429 |
|
|
br_prob_note_reliable_p (const_rtx note)
|
430 |
|
|
{
|
431 |
|
|
gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
|
432 |
|
|
return probability_reliable_p (INTVAL (XEXP (note, 0)));
|
433 |
|
|
}
|
434 |
|
|
|
435 |
|
|
static void
|
436 |
|
|
predict_insn (rtx insn, enum br_predictor predictor, int probability)
|
437 |
|
|
{
|
438 |
|
|
gcc_assert (any_condjump_p (insn));
|
439 |
|
|
if (!flag_guess_branch_prob)
|
440 |
|
|
return;
|
441 |
|
|
|
442 |
|
|
add_reg_note (insn, REG_BR_PRED,
|
443 |
|
|
gen_rtx_CONCAT (VOIDmode,
|
444 |
|
|
GEN_INT ((int) predictor),
|
445 |
|
|
GEN_INT ((int) probability)));
|
446 |
|
|
}
|
447 |
|
|
|
448 |
|
|
/* Predict insn by given predictor. */
|
449 |
|
|
|
450 |
|
|
void
|
451 |
|
|
predict_insn_def (rtx insn, enum br_predictor predictor,
|
452 |
|
|
enum prediction taken)
|
453 |
|
|
{
|
454 |
|
|
int probability = predictor_info[(int) predictor].hitrate;
|
455 |
|
|
|
456 |
|
|
if (taken != TAKEN)
|
457 |
|
|
probability = REG_BR_PROB_BASE - probability;
|
458 |
|
|
|
459 |
|
|
predict_insn (insn, predictor, probability);
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
/* Predict edge E with given probability if possible. */
|
463 |
|
|
|
464 |
|
|
void
|
465 |
|
|
rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
|
466 |
|
|
{
|
467 |
|
|
rtx last_insn;
|
468 |
|
|
last_insn = BB_END (e->src);
|
469 |
|
|
|
470 |
|
|
/* We can store the branch prediction information only about
|
471 |
|
|
conditional jumps. */
|
472 |
|
|
if (!any_condjump_p (last_insn))
|
473 |
|
|
return;
|
474 |
|
|
|
475 |
|
|
/* We always store probability of branching. */
|
476 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
477 |
|
|
probability = REG_BR_PROB_BASE - probability;
|
478 |
|
|
|
479 |
|
|
predict_insn (last_insn, predictor, probability);
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
/* Predict edge E with the given PROBABILITY. */
|
483 |
|
|
void
|
484 |
|
|
gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
|
485 |
|
|
{
|
486 |
|
|
gcc_assert (profile_status != PROFILE_GUESSED);
|
487 |
|
|
if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
|
488 |
|
|
&& flag_guess_branch_prob && optimize)
|
489 |
|
|
{
|
490 |
|
|
struct edge_prediction *i = XNEW (struct edge_prediction);
|
491 |
|
|
void **preds = pointer_map_insert (bb_predictions, e->src);
|
492 |
|
|
|
493 |
|
|
i->ep_next = (struct edge_prediction *) *preds;
|
494 |
|
|
*preds = i;
|
495 |
|
|
i->ep_probability = probability;
|
496 |
|
|
i->ep_predictor = predictor;
|
497 |
|
|
i->ep_edge = e;
|
498 |
|
|
}
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
/* Remove all predictions on given basic block that are attached
|
502 |
|
|
to edge E. */
|
503 |
|
|
void
|
504 |
|
|
remove_predictions_associated_with_edge (edge e)
|
505 |
|
|
{
|
506 |
|
|
void **preds;
|
507 |
|
|
|
508 |
|
|
if (!bb_predictions)
|
509 |
|
|
return;
|
510 |
|
|
|
511 |
|
|
preds = pointer_map_contains (bb_predictions, e->src);
|
512 |
|
|
|
513 |
|
|
if (preds)
|
514 |
|
|
{
|
515 |
|
|
struct edge_prediction **prediction = (struct edge_prediction **) preds;
|
516 |
|
|
struct edge_prediction *next;
|
517 |
|
|
|
518 |
|
|
while (*prediction)
|
519 |
|
|
{
|
520 |
|
|
if ((*prediction)->ep_edge == e)
|
521 |
|
|
{
|
522 |
|
|
next = (*prediction)->ep_next;
|
523 |
|
|
free (*prediction);
|
524 |
|
|
*prediction = next;
|
525 |
|
|
}
|
526 |
|
|
else
|
527 |
|
|
prediction = &((*prediction)->ep_next);
|
528 |
|
|
}
|
529 |
|
|
}
|
530 |
|
|
}
|
531 |
|
|
|
532 |
|
|
/* Clears the list of predictions stored for BB. */
|
533 |
|
|
|
534 |
|
|
static void
|
535 |
|
|
clear_bb_predictions (basic_block bb)
|
536 |
|
|
{
|
537 |
|
|
void **preds = pointer_map_contains (bb_predictions, bb);
|
538 |
|
|
struct edge_prediction *pred, *next;
|
539 |
|
|
|
540 |
|
|
if (!preds)
|
541 |
|
|
return;
|
542 |
|
|
|
543 |
|
|
for (pred = (struct edge_prediction *) *preds; pred; pred = next)
|
544 |
|
|
{
|
545 |
|
|
next = pred->ep_next;
|
546 |
|
|
free (pred);
|
547 |
|
|
}
|
548 |
|
|
*preds = NULL;
|
549 |
|
|
}
|
550 |
|
|
|
551 |
|
|
/* Return true when we can store prediction on insn INSN.
|
552 |
|
|
At the moment we represent predictions only on conditional
|
553 |
|
|
jumps, not at computed jump or other complicated cases. */
|
554 |
|
|
static bool
|
555 |
|
|
can_predict_insn_p (const_rtx insn)
|
556 |
|
|
{
|
557 |
|
|
return (JUMP_P (insn)
|
558 |
|
|
&& any_condjump_p (insn)
|
559 |
|
|
&& EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
/* Predict edge E by given predictor if possible. */
|
563 |
|
|
|
564 |
|
|
void
|
565 |
|
|
predict_edge_def (edge e, enum br_predictor predictor,
|
566 |
|
|
enum prediction taken)
|
567 |
|
|
{
|
568 |
|
|
int probability = predictor_info[(int) predictor].hitrate;
|
569 |
|
|
|
570 |
|
|
if (taken != TAKEN)
|
571 |
|
|
probability = REG_BR_PROB_BASE - probability;
|
572 |
|
|
|
573 |
|
|
predict_edge (e, predictor, probability);
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/* Invert all branch predictions or probability notes in the INSN. This needs
|
577 |
|
|
to be done each time we invert the condition used by the jump. */
|
578 |
|
|
|
579 |
|
|
void
|
580 |
|
|
invert_br_probabilities (rtx insn)
|
581 |
|
|
{
|
582 |
|
|
rtx note;
|
583 |
|
|
|
584 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
585 |
|
|
if (REG_NOTE_KIND (note) == REG_BR_PROB)
|
586 |
|
|
XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
|
587 |
|
|
else if (REG_NOTE_KIND (note) == REG_BR_PRED)
|
588 |
|
|
XEXP (XEXP (note, 0), 1)
|
589 |
|
|
= GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
/* Dump information about the branch prediction to the output file. */
|
593 |
|
|
|
594 |
|
|
static void
|
595 |
|
|
dump_prediction (FILE *file, enum br_predictor predictor, int probability,
|
596 |
|
|
basic_block bb, int used)
|
597 |
|
|
{
|
598 |
|
|
edge e;
|
599 |
|
|
edge_iterator ei;
|
600 |
|
|
|
601 |
|
|
if (!file)
|
602 |
|
|
return;
|
603 |
|
|
|
604 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
605 |
|
|
if (! (e->flags & EDGE_FALLTHRU))
|
606 |
|
|
break;
|
607 |
|
|
|
608 |
|
|
fprintf (file, " %s heuristics%s: %.1f%%",
|
609 |
|
|
predictor_info[predictor].name,
|
610 |
|
|
used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
|
611 |
|
|
|
612 |
|
|
if (bb->count)
|
613 |
|
|
{
|
614 |
|
|
fprintf (file, " exec ");
|
615 |
|
|
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
|
616 |
|
|
if (e)
|
617 |
|
|
{
|
618 |
|
|
fprintf (file, " hit ");
|
619 |
|
|
fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
|
620 |
|
|
fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
|
621 |
|
|
}
|
622 |
|
|
}
|
623 |
|
|
|
624 |
|
|
fprintf (file, "\n");
|
625 |
|
|
}
|
626 |
|
|
|
627 |
|
|
/* We can not predict the probabilities of outgoing edges of bb. Set them
|
628 |
|
|
evenly and hope for the best. */
|
629 |
|
|
static void
|
630 |
|
|
set_even_probabilities (basic_block bb)
|
631 |
|
|
{
|
632 |
|
|
int nedges = 0;
|
633 |
|
|
edge e;
|
634 |
|
|
edge_iterator ei;
|
635 |
|
|
|
636 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
637 |
|
|
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
|
638 |
|
|
nedges ++;
|
639 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
640 |
|
|
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
|
641 |
|
|
e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
|
642 |
|
|
else
|
643 |
|
|
e->probability = 0;
|
644 |
|
|
}
|
645 |
|
|
|
646 |
|
|
/* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
|
647 |
|
|
note if not already present. Remove now useless REG_BR_PRED notes. */
|
648 |
|
|
|
649 |
|
|
static void
|
650 |
|
|
combine_predictions_for_insn (rtx insn, basic_block bb)
|
651 |
|
|
{
|
652 |
|
|
rtx prob_note;
|
653 |
|
|
rtx *pnote;
|
654 |
|
|
rtx note;
|
655 |
|
|
int best_probability = PROB_EVEN;
|
656 |
|
|
enum br_predictor best_predictor = END_PREDICTORS;
|
657 |
|
|
int combined_probability = REG_BR_PROB_BASE / 2;
|
658 |
|
|
int d;
|
659 |
|
|
bool first_match = false;
|
660 |
|
|
bool found = false;
|
661 |
|
|
|
662 |
|
|
if (!can_predict_insn_p (insn))
|
663 |
|
|
{
|
664 |
|
|
set_even_probabilities (bb);
|
665 |
|
|
return;
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
prob_note = find_reg_note (insn, REG_BR_PROB, 0);
|
669 |
|
|
pnote = ®_NOTES (insn);
|
670 |
|
|
if (dump_file)
|
671 |
|
|
fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
|
672 |
|
|
bb->index);
|
673 |
|
|
|
674 |
|
|
/* We implement "first match" heuristics and use probability guessed
|
675 |
|
|
by predictor with smallest index. */
|
676 |
|
|
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
677 |
|
|
if (REG_NOTE_KIND (note) == REG_BR_PRED)
|
678 |
|
|
{
|
679 |
|
|
enum br_predictor predictor = ((enum br_predictor)
|
680 |
|
|
INTVAL (XEXP (XEXP (note, 0), 0)));
|
681 |
|
|
int probability = INTVAL (XEXP (XEXP (note, 0), 1));
|
682 |
|
|
|
683 |
|
|
found = true;
|
684 |
|
|
if (best_predictor > predictor)
|
685 |
|
|
best_probability = probability, best_predictor = predictor;
|
686 |
|
|
|
687 |
|
|
d = (combined_probability * probability
|
688 |
|
|
+ (REG_BR_PROB_BASE - combined_probability)
|
689 |
|
|
* (REG_BR_PROB_BASE - probability));
|
690 |
|
|
|
691 |
|
|
/* Use FP math to avoid overflows of 32bit integers. */
|
692 |
|
|
if (d == 0)
|
693 |
|
|
/* If one probability is 0% and one 100%, avoid division by zero. */
|
694 |
|
|
combined_probability = REG_BR_PROB_BASE / 2;
|
695 |
|
|
else
|
696 |
|
|
combined_probability = (((double) combined_probability) * probability
|
697 |
|
|
* REG_BR_PROB_BASE / d + 0.5);
|
698 |
|
|
}
|
699 |
|
|
|
700 |
|
|
/* Decide which heuristic to use. In case we didn't match anything,
|
701 |
|
|
use no_prediction heuristic, in case we did match, use either
|
702 |
|
|
first match or Dempster-Shaffer theory depending on the flags. */
|
703 |
|
|
|
704 |
|
|
if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
|
705 |
|
|
first_match = true;
|
706 |
|
|
|
707 |
|
|
if (!found)
|
708 |
|
|
dump_prediction (dump_file, PRED_NO_PREDICTION,
|
709 |
|
|
combined_probability, bb, true);
|
710 |
|
|
else
|
711 |
|
|
{
|
712 |
|
|
dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
|
713 |
|
|
bb, !first_match);
|
714 |
|
|
dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
|
715 |
|
|
bb, first_match);
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
if (first_match)
|
719 |
|
|
combined_probability = best_probability;
|
720 |
|
|
dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
|
721 |
|
|
|
722 |
|
|
while (*pnote)
|
723 |
|
|
{
|
724 |
|
|
if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
|
725 |
|
|
{
|
726 |
|
|
enum br_predictor predictor = ((enum br_predictor)
|
727 |
|
|
INTVAL (XEXP (XEXP (*pnote, 0), 0)));
|
728 |
|
|
int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
|
729 |
|
|
|
730 |
|
|
dump_prediction (dump_file, predictor, probability, bb,
|
731 |
|
|
!first_match || best_predictor == predictor);
|
732 |
|
|
*pnote = XEXP (*pnote, 1);
|
733 |
|
|
}
|
734 |
|
|
else
|
735 |
|
|
pnote = &XEXP (*pnote, 1);
|
736 |
|
|
}
|
737 |
|
|
|
738 |
|
|
if (!prob_note)
|
739 |
|
|
{
|
740 |
|
|
add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
|
741 |
|
|
|
742 |
|
|
/* Save the prediction into CFG in case we are seeing non-degenerated
|
743 |
|
|
conditional jump. */
|
744 |
|
|
if (!single_succ_p (bb))
|
745 |
|
|
{
|
746 |
|
|
BRANCH_EDGE (bb)->probability = combined_probability;
|
747 |
|
|
FALLTHRU_EDGE (bb)->probability
|
748 |
|
|
= REG_BR_PROB_BASE - combined_probability;
|
749 |
|
|
}
|
750 |
|
|
}
|
751 |
|
|
else if (!single_succ_p (bb))
|
752 |
|
|
{
|
753 |
|
|
int prob = INTVAL (XEXP (prob_note, 0));
|
754 |
|
|
|
755 |
|
|
BRANCH_EDGE (bb)->probability = prob;
|
756 |
|
|
FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
|
757 |
|
|
}
|
758 |
|
|
else
|
759 |
|
|
single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
|
760 |
|
|
}
|
761 |
|
|
|
762 |
|
|
/* Combine predictions into single probability and store them into CFG.
|
763 |
|
|
Remove now useless prediction entries. */
|
764 |
|
|
|
765 |
|
|
static void
|
766 |
|
|
combine_predictions_for_bb (basic_block bb)
|
767 |
|
|
{
|
768 |
|
|
int best_probability = PROB_EVEN;
|
769 |
|
|
enum br_predictor best_predictor = END_PREDICTORS;
|
770 |
|
|
int combined_probability = REG_BR_PROB_BASE / 2;
|
771 |
|
|
int d;
|
772 |
|
|
bool first_match = false;
|
773 |
|
|
bool found = false;
|
774 |
|
|
struct edge_prediction *pred;
|
775 |
|
|
int nedges = 0;
|
776 |
|
|
edge e, first = NULL, second = NULL;
|
777 |
|
|
edge_iterator ei;
|
778 |
|
|
void **preds;
|
779 |
|
|
|
780 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
781 |
|
|
if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
|
782 |
|
|
{
|
783 |
|
|
nedges ++;
|
784 |
|
|
if (first && !second)
|
785 |
|
|
second = e;
|
786 |
|
|
if (!first)
|
787 |
|
|
first = e;
|
788 |
|
|
}
|
789 |
|
|
|
790 |
|
|
/* When there is no successor or only one choice, prediction is easy.
|
791 |
|
|
|
792 |
|
|
We are lazy for now and predict only basic blocks with two outgoing
|
793 |
|
|
edges. It is possible to predict generic case too, but we have to
|
794 |
|
|
ignore first match heuristics and do more involved combining. Implement
|
795 |
|
|
this later. */
|
796 |
|
|
if (nedges != 2)
|
797 |
|
|
{
|
798 |
|
|
if (!bb->count)
|
799 |
|
|
set_even_probabilities (bb);
|
800 |
|
|
clear_bb_predictions (bb);
|
801 |
|
|
if (dump_file)
|
802 |
|
|
fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
|
803 |
|
|
nedges, bb->index);
|
804 |
|
|
return;
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
if (dump_file)
|
808 |
|
|
fprintf (dump_file, "Predictions for bb %i\n", bb->index);
|
809 |
|
|
|
810 |
|
|
preds = pointer_map_contains (bb_predictions, bb);
|
811 |
|
|
if (preds)
|
812 |
|
|
{
|
813 |
|
|
/* We implement "first match" heuristics and use probability guessed
|
814 |
|
|
by predictor with smallest index. */
|
815 |
|
|
for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
|
816 |
|
|
{
|
817 |
|
|
enum br_predictor predictor = pred->ep_predictor;
|
818 |
|
|
int probability = pred->ep_probability;
|
819 |
|
|
|
820 |
|
|
if (pred->ep_edge != first)
|
821 |
|
|
probability = REG_BR_PROB_BASE - probability;
|
822 |
|
|
|
823 |
|
|
found = true;
|
824 |
|
|
/* First match heuristics would be widly confused if we predicted
|
825 |
|
|
both directions. */
|
826 |
|
|
if (best_predictor > predictor)
|
827 |
|
|
{
|
828 |
|
|
struct edge_prediction *pred2;
|
829 |
|
|
int prob = probability;
|
830 |
|
|
|
831 |
|
|
for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
|
832 |
|
|
if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
|
833 |
|
|
{
|
834 |
|
|
int probability2 = pred->ep_probability;
|
835 |
|
|
|
836 |
|
|
if (pred2->ep_edge != first)
|
837 |
|
|
probability2 = REG_BR_PROB_BASE - probability2;
|
838 |
|
|
|
839 |
|
|
if ((probability < REG_BR_PROB_BASE / 2) !=
|
840 |
|
|
(probability2 < REG_BR_PROB_BASE / 2))
|
841 |
|
|
break;
|
842 |
|
|
|
843 |
|
|
/* If the same predictor later gave better result, go for it! */
|
844 |
|
|
if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
|
845 |
|
|
|| (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
|
846 |
|
|
prob = probability2;
|
847 |
|
|
}
|
848 |
|
|
if (!pred2)
|
849 |
|
|
best_probability = prob, best_predictor = predictor;
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
d = (combined_probability * probability
|
853 |
|
|
+ (REG_BR_PROB_BASE - combined_probability)
|
854 |
|
|
* (REG_BR_PROB_BASE - probability));
|
855 |
|
|
|
856 |
|
|
/* Use FP math to avoid overflows of 32bit integers. */
|
857 |
|
|
if (d == 0)
|
858 |
|
|
/* If one probability is 0% and one 100%, avoid division by zero. */
|
859 |
|
|
combined_probability = REG_BR_PROB_BASE / 2;
|
860 |
|
|
else
|
861 |
|
|
combined_probability = (((double) combined_probability)
|
862 |
|
|
* probability
|
863 |
|
|
* REG_BR_PROB_BASE / d + 0.5);
|
864 |
|
|
}
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
/* Decide which heuristic to use. In case we didn't match anything,
|
868 |
|
|
use no_prediction heuristic, in case we did match, use either
|
869 |
|
|
first match or Dempster-Shaffer theory depending on the flags. */
|
870 |
|
|
|
871 |
|
|
if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
|
872 |
|
|
first_match = true;
|
873 |
|
|
|
874 |
|
|
if (!found)
|
875 |
|
|
dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
|
876 |
|
|
else
|
877 |
|
|
{
|
878 |
|
|
dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
|
879 |
|
|
!first_match);
|
880 |
|
|
dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
|
881 |
|
|
first_match);
|
882 |
|
|
}
|
883 |
|
|
|
884 |
|
|
if (first_match)
|
885 |
|
|
combined_probability = best_probability;
|
886 |
|
|
dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
|
887 |
|
|
|
888 |
|
|
if (preds)
|
889 |
|
|
{
|
890 |
|
|
for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
|
891 |
|
|
{
|
892 |
|
|
enum br_predictor predictor = pred->ep_predictor;
|
893 |
|
|
int probability = pred->ep_probability;
|
894 |
|
|
|
895 |
|
|
if (pred->ep_edge != EDGE_SUCC (bb, 0))
|
896 |
|
|
probability = REG_BR_PROB_BASE - probability;
|
897 |
|
|
dump_prediction (dump_file, predictor, probability, bb,
|
898 |
|
|
!first_match || best_predictor == predictor);
|
899 |
|
|
}
|
900 |
|
|
}
|
901 |
|
|
clear_bb_predictions (bb);
|
902 |
|
|
|
903 |
|
|
if (!bb->count)
|
904 |
|
|
{
|
905 |
|
|
first->probability = combined_probability;
|
906 |
|
|
second->probability = REG_BR_PROB_BASE - combined_probability;
|
907 |
|
|
}
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
/* Predict edge probabilities by exploiting loop structure. */
|
911 |
|
|
|
912 |
|
|
static void
|
913 |
|
|
predict_loops (void)
|
914 |
|
|
{
|
915 |
|
|
loop_iterator li;
|
916 |
|
|
struct loop *loop;
|
917 |
|
|
|
918 |
|
|
/* Try to predict out blocks in a loop that are not part of a
|
919 |
|
|
natural loop. */
|
920 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
921 |
|
|
{
|
922 |
|
|
basic_block bb, *bbs;
|
923 |
|
|
unsigned j, n_exits;
|
924 |
|
|
VEC (edge, heap) *exits;
|
925 |
|
|
struct tree_niter_desc niter_desc;
|
926 |
|
|
edge ex;
|
927 |
|
|
|
928 |
|
|
exits = get_loop_exit_edges (loop);
|
929 |
|
|
n_exits = VEC_length (edge, exits);
|
930 |
|
|
|
931 |
|
|
for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
|
932 |
|
|
{
|
933 |
|
|
tree niter = NULL;
|
934 |
|
|
HOST_WIDE_INT nitercst;
|
935 |
|
|
int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
|
936 |
|
|
int probability;
|
937 |
|
|
enum br_predictor predictor;
|
938 |
|
|
|
939 |
|
|
if (number_of_iterations_exit (loop, ex, &niter_desc, false))
|
940 |
|
|
niter = niter_desc.niter;
|
941 |
|
|
if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
|
942 |
|
|
niter = loop_niter_by_eval (loop, ex);
|
943 |
|
|
|
944 |
|
|
if (TREE_CODE (niter) == INTEGER_CST)
|
945 |
|
|
{
|
946 |
|
|
if (host_integerp (niter, 1)
|
947 |
|
|
&& compare_tree_int (niter, max-1) == -1)
|
948 |
|
|
nitercst = tree_low_cst (niter, 1) + 1;
|
949 |
|
|
else
|
950 |
|
|
nitercst = max;
|
951 |
|
|
predictor = PRED_LOOP_ITERATIONS;
|
952 |
|
|
}
|
953 |
|
|
/* If we have just one exit and we can derive some information about
|
954 |
|
|
the number of iterations of the loop from the statements inside
|
955 |
|
|
the loop, use it to predict this exit. */
|
956 |
|
|
else if (n_exits == 1)
|
957 |
|
|
{
|
958 |
|
|
nitercst = estimated_loop_iterations_int (loop, false);
|
959 |
|
|
if (nitercst < 0)
|
960 |
|
|
continue;
|
961 |
|
|
if (nitercst > max)
|
962 |
|
|
nitercst = max;
|
963 |
|
|
|
964 |
|
|
predictor = PRED_LOOP_ITERATIONS_GUESSED;
|
965 |
|
|
}
|
966 |
|
|
else
|
967 |
|
|
continue;
|
968 |
|
|
|
969 |
|
|
probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
|
970 |
|
|
predict_edge (ex, predictor, probability);
|
971 |
|
|
}
|
972 |
|
|
VEC_free (edge, heap, exits);
|
973 |
|
|
|
974 |
|
|
bbs = get_loop_body (loop);
|
975 |
|
|
|
976 |
|
|
for (j = 0; j < loop->num_nodes; j++)
|
977 |
|
|
{
|
978 |
|
|
int header_found = 0;
|
979 |
|
|
edge e;
|
980 |
|
|
edge_iterator ei;
|
981 |
|
|
|
982 |
|
|
bb = bbs[j];
|
983 |
|
|
|
984 |
|
|
/* Bypass loop heuristics on continue statement. These
|
985 |
|
|
statements construct loops via "non-loop" constructs
|
986 |
|
|
in the source language and are better to be handled
|
987 |
|
|
separately. */
|
988 |
|
|
if (predicted_by_p (bb, PRED_CONTINUE))
|
989 |
|
|
continue;
|
990 |
|
|
|
991 |
|
|
/* Loop branch heuristics - predict an edge back to a
|
992 |
|
|
loop's head as taken. */
|
993 |
|
|
if (bb == loop->latch)
|
994 |
|
|
{
|
995 |
|
|
e = find_edge (loop->latch, loop->header);
|
996 |
|
|
if (e)
|
997 |
|
|
{
|
998 |
|
|
header_found = 1;
|
999 |
|
|
predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
|
1000 |
|
|
}
|
1001 |
|
|
}
|
1002 |
|
|
|
1003 |
|
|
/* Loop exit heuristics - predict an edge exiting the loop if the
|
1004 |
|
|
conditional has no loop header successors as not taken. */
|
1005 |
|
|
if (!header_found
|
1006 |
|
|
/* If we already used more reliable loop exit predictors, do not
|
1007 |
|
|
bother with PRED_LOOP_EXIT. */
|
1008 |
|
|
&& !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
|
1009 |
|
|
&& !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
|
1010 |
|
|
{
|
1011 |
|
|
/* For loop with many exits we don't want to predict all exits
|
1012 |
|
|
with the pretty large probability, because if all exits are
|
1013 |
|
|
considered in row, the loop would be predicted to iterate
|
1014 |
|
|
almost never. The code to divide probability by number of
|
1015 |
|
|
exits is very rough. It should compute the number of exits
|
1016 |
|
|
taken in each patch through function (not the overall number
|
1017 |
|
|
of exits that might be a lot higher for loops with wide switch
|
1018 |
|
|
statements in them) and compute n-th square root.
|
1019 |
|
|
|
1020 |
|
|
We limit the minimal probability by 2% to avoid
|
1021 |
|
|
EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
|
1022 |
|
|
as this was causing regression in perl benchmark containing such
|
1023 |
|
|
a wide loop. */
|
1024 |
|
|
|
1025 |
|
|
int probability = ((REG_BR_PROB_BASE
|
1026 |
|
|
- predictor_info [(int) PRED_LOOP_EXIT].hitrate)
|
1027 |
|
|
/ n_exits);
|
1028 |
|
|
if (probability < HITRATE (2))
|
1029 |
|
|
probability = HITRATE (2);
|
1030 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1031 |
|
|
if (e->dest->index < NUM_FIXED_BLOCKS
|
1032 |
|
|
|| !flow_bb_inside_loop_p (loop, e->dest))
|
1033 |
|
|
predict_edge (e, PRED_LOOP_EXIT, probability);
|
1034 |
|
|
}
|
1035 |
|
|
}
|
1036 |
|
|
|
1037 |
|
|
/* Free basic blocks from get_loop_body. */
|
1038 |
|
|
free (bbs);
|
1039 |
|
|
}
|
1040 |
|
|
}
|
1041 |
|
|
|
1042 |
|
|
/* Attempt to predict probabilities of BB outgoing edges using local
|
1043 |
|
|
properties. */
|
1044 |
|
|
static void
|
1045 |
|
|
bb_estimate_probability_locally (basic_block bb)
|
1046 |
|
|
{
|
1047 |
|
|
rtx last_insn = BB_END (bb);
|
1048 |
|
|
rtx cond;
|
1049 |
|
|
|
1050 |
|
|
if (! can_predict_insn_p (last_insn))
|
1051 |
|
|
return;
|
1052 |
|
|
cond = get_condition (last_insn, NULL, false, false);
|
1053 |
|
|
if (! cond)
|
1054 |
|
|
return;
|
1055 |
|
|
|
1056 |
|
|
/* Try "pointer heuristic."
|
1057 |
|
|
A comparison ptr == 0 is predicted as false.
|
1058 |
|
|
Similarly, a comparison ptr1 == ptr2 is predicted as false. */
|
1059 |
|
|
if (COMPARISON_P (cond)
|
1060 |
|
|
&& ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
|
1061 |
|
|
|| (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
|
1062 |
|
|
{
|
1063 |
|
|
if (GET_CODE (cond) == EQ)
|
1064 |
|
|
predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
|
1065 |
|
|
else if (GET_CODE (cond) == NE)
|
1066 |
|
|
predict_insn_def (last_insn, PRED_POINTER, TAKEN);
|
1067 |
|
|
}
|
1068 |
|
|
else
|
1069 |
|
|
|
1070 |
|
|
/* Try "opcode heuristic."
|
1071 |
|
|
EQ tests are usually false and NE tests are usually true. Also,
|
1072 |
|
|
most quantities are positive, so we can make the appropriate guesses
|
1073 |
|
|
about signed comparisons against zero. */
|
1074 |
|
|
switch (GET_CODE (cond))
|
1075 |
|
|
{
|
1076 |
|
|
case CONST_INT:
|
1077 |
|
|
/* Unconditional branch. */
|
1078 |
|
|
predict_insn_def (last_insn, PRED_UNCONDITIONAL,
|
1079 |
|
|
cond == const0_rtx ? NOT_TAKEN : TAKEN);
|
1080 |
|
|
break;
|
1081 |
|
|
|
1082 |
|
|
case EQ:
|
1083 |
|
|
case UNEQ:
|
1084 |
|
|
/* Floating point comparisons appears to behave in a very
|
1085 |
|
|
unpredictable way because of special role of = tests in
|
1086 |
|
|
FP code. */
|
1087 |
|
|
if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
|
1088 |
|
|
;
|
1089 |
|
|
/* Comparisons with 0 are often used for booleans and there is
|
1090 |
|
|
nothing useful to predict about them. */
|
1091 |
|
|
else if (XEXP (cond, 1) == const0_rtx
|
1092 |
|
|
|| XEXP (cond, 0) == const0_rtx)
|
1093 |
|
|
;
|
1094 |
|
|
else
|
1095 |
|
|
predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
|
1096 |
|
|
break;
|
1097 |
|
|
|
1098 |
|
|
case NE:
|
1099 |
|
|
case LTGT:
|
1100 |
|
|
/* Floating point comparisons appears to behave in a very
|
1101 |
|
|
unpredictable way because of special role of = tests in
|
1102 |
|
|
FP code. */
|
1103 |
|
|
if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
|
1104 |
|
|
;
|
1105 |
|
|
/* Comparisons with 0 are often used for booleans and there is
|
1106 |
|
|
nothing useful to predict about them. */
|
1107 |
|
|
else if (XEXP (cond, 1) == const0_rtx
|
1108 |
|
|
|| XEXP (cond, 0) == const0_rtx)
|
1109 |
|
|
;
|
1110 |
|
|
else
|
1111 |
|
|
predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
|
1112 |
|
|
break;
|
1113 |
|
|
|
1114 |
|
|
case ORDERED:
|
1115 |
|
|
predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
|
1116 |
|
|
break;
|
1117 |
|
|
|
1118 |
|
|
case UNORDERED:
|
1119 |
|
|
predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
|
1120 |
|
|
break;
|
1121 |
|
|
|
1122 |
|
|
case LE:
|
1123 |
|
|
case LT:
|
1124 |
|
|
if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
|
1125 |
|
|
|| XEXP (cond, 1) == constm1_rtx)
|
1126 |
|
|
predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
|
1127 |
|
|
break;
|
1128 |
|
|
|
1129 |
|
|
case GE:
|
1130 |
|
|
case GT:
|
1131 |
|
|
if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
|
1132 |
|
|
|| XEXP (cond, 1) == constm1_rtx)
|
1133 |
|
|
predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
|
1134 |
|
|
break;
|
1135 |
|
|
|
1136 |
|
|
default:
|
1137 |
|
|
break;
|
1138 |
|
|
}
|
1139 |
|
|
}
|
1140 |
|
|
|
1141 |
|
|
/* Set edge->probability for each successor edge of BB. */
|
1142 |
|
|
void
|
1143 |
|
|
guess_outgoing_edge_probabilities (basic_block bb)
|
1144 |
|
|
{
|
1145 |
|
|
bb_estimate_probability_locally (bb);
|
1146 |
|
|
combine_predictions_for_insn (BB_END (bb), bb);
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
static tree expr_expected_value (tree, bitmap);
|
1150 |
|
|
|
1151 |
|
|
/* Helper function for expr_expected_value. */
|
1152 |
|
|
|
1153 |
|
|
static tree
|
1154 |
|
|
expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
|
1155 |
|
|
{
|
1156 |
|
|
gimple def;
|
1157 |
|
|
|
1158 |
|
|
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
|
1159 |
|
|
{
|
1160 |
|
|
if (TREE_CONSTANT (op0))
|
1161 |
|
|
return op0;
|
1162 |
|
|
|
1163 |
|
|
if (code != SSA_NAME)
|
1164 |
|
|
return NULL_TREE;
|
1165 |
|
|
|
1166 |
|
|
def = SSA_NAME_DEF_STMT (op0);
|
1167 |
|
|
|
1168 |
|
|
/* If we were already here, break the infinite cycle. */
|
1169 |
|
|
if (bitmap_bit_p (visited, SSA_NAME_VERSION (op0)))
|
1170 |
|
|
return NULL;
|
1171 |
|
|
bitmap_set_bit (visited, SSA_NAME_VERSION (op0));
|
1172 |
|
|
|
1173 |
|
|
if (gimple_code (def) == GIMPLE_PHI)
|
1174 |
|
|
{
|
1175 |
|
|
/* All the arguments of the PHI node must have the same constant
|
1176 |
|
|
length. */
|
1177 |
|
|
int i, n = gimple_phi_num_args (def);
|
1178 |
|
|
tree val = NULL, new_val;
|
1179 |
|
|
|
1180 |
|
|
for (i = 0; i < n; i++)
|
1181 |
|
|
{
|
1182 |
|
|
tree arg = PHI_ARG_DEF (def, i);
|
1183 |
|
|
|
1184 |
|
|
/* If this PHI has itself as an argument, we cannot
|
1185 |
|
|
determine the string length of this argument. However,
|
1186 |
|
|
if we can find an expected constant value for the other
|
1187 |
|
|
PHI args then we can still be sure that this is
|
1188 |
|
|
likely a constant. So be optimistic and just
|
1189 |
|
|
continue with the next argument. */
|
1190 |
|
|
if (arg == PHI_RESULT (def))
|
1191 |
|
|
continue;
|
1192 |
|
|
|
1193 |
|
|
new_val = expr_expected_value (arg, visited);
|
1194 |
|
|
if (!new_val)
|
1195 |
|
|
return NULL;
|
1196 |
|
|
if (!val)
|
1197 |
|
|
val = new_val;
|
1198 |
|
|
else if (!operand_equal_p (val, new_val, false))
|
1199 |
|
|
return NULL;
|
1200 |
|
|
}
|
1201 |
|
|
return val;
|
1202 |
|
|
}
|
1203 |
|
|
if (is_gimple_assign (def))
|
1204 |
|
|
{
|
1205 |
|
|
if (gimple_assign_lhs (def) != op0)
|
1206 |
|
|
return NULL;
|
1207 |
|
|
|
1208 |
|
|
return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
|
1209 |
|
|
gimple_assign_rhs1 (def),
|
1210 |
|
|
gimple_assign_rhs_code (def),
|
1211 |
|
|
gimple_assign_rhs2 (def),
|
1212 |
|
|
visited);
|
1213 |
|
|
}
|
1214 |
|
|
|
1215 |
|
|
if (is_gimple_call (def))
|
1216 |
|
|
{
|
1217 |
|
|
tree decl = gimple_call_fndecl (def);
|
1218 |
|
|
if (!decl)
|
1219 |
|
|
return NULL;
|
1220 |
|
|
if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
|
1221 |
|
|
&& DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
|
1222 |
|
|
{
|
1223 |
|
|
tree val;
|
1224 |
|
|
|
1225 |
|
|
if (gimple_call_num_args (def) != 2)
|
1226 |
|
|
return NULL;
|
1227 |
|
|
val = gimple_call_arg (def, 0);
|
1228 |
|
|
if (TREE_CONSTANT (val))
|
1229 |
|
|
return val;
|
1230 |
|
|
return gimple_call_arg (def, 1);
|
1231 |
|
|
}
|
1232 |
|
|
}
|
1233 |
|
|
|
1234 |
|
|
return NULL;
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
|
1238 |
|
|
{
|
1239 |
|
|
tree res;
|
1240 |
|
|
op0 = expr_expected_value (op0, visited);
|
1241 |
|
|
if (!op0)
|
1242 |
|
|
return NULL;
|
1243 |
|
|
op1 = expr_expected_value (op1, visited);
|
1244 |
|
|
if (!op1)
|
1245 |
|
|
return NULL;
|
1246 |
|
|
res = fold_build2 (code, type, op0, op1);
|
1247 |
|
|
if (TREE_CONSTANT (res))
|
1248 |
|
|
return res;
|
1249 |
|
|
return NULL;
|
1250 |
|
|
}
|
1251 |
|
|
if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
|
1252 |
|
|
{
|
1253 |
|
|
tree res;
|
1254 |
|
|
op0 = expr_expected_value (op0, visited);
|
1255 |
|
|
if (!op0)
|
1256 |
|
|
return NULL;
|
1257 |
|
|
res = fold_build1 (code, type, op0);
|
1258 |
|
|
if (TREE_CONSTANT (res))
|
1259 |
|
|
return res;
|
1260 |
|
|
return NULL;
|
1261 |
|
|
}
|
1262 |
|
|
return NULL;
|
1263 |
|
|
}
|
1264 |
|
|
|
1265 |
|
|
/* Return constant EXPR will likely have at execution time, NULL if unknown.
|
1266 |
|
|
The function is used by builtin_expect branch predictor so the evidence
|
1267 |
|
|
must come from this construct and additional possible constant folding.
|
1268 |
|
|
|
1269 |
|
|
We may want to implement more involved value guess (such as value range
|
1270 |
|
|
propagation based prediction), but such tricks shall go to new
|
1271 |
|
|
implementation. */
|
1272 |
|
|
|
1273 |
|
|
static tree
|
1274 |
|
|
expr_expected_value (tree expr, bitmap visited)
|
1275 |
|
|
{
|
1276 |
|
|
enum tree_code code;
|
1277 |
|
|
tree op0, op1;
|
1278 |
|
|
|
1279 |
|
|
if (TREE_CONSTANT (expr))
|
1280 |
|
|
return expr;
|
1281 |
|
|
|
1282 |
|
|
extract_ops_from_tree (expr, &code, &op0, &op1);
|
1283 |
|
|
return expr_expected_value_1 (TREE_TYPE (expr),
|
1284 |
|
|
op0, code, op1, visited);
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
|
1288 |
|
|
/* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
|
1289 |
|
|
we no longer need. */
|
1290 |
|
|
static unsigned int
|
1291 |
|
|
strip_predict_hints (void)
|
1292 |
|
|
{
|
1293 |
|
|
basic_block bb;
|
1294 |
|
|
gimple ass_stmt;
|
1295 |
|
|
tree var;
|
1296 |
|
|
|
1297 |
|
|
FOR_EACH_BB (bb)
|
1298 |
|
|
{
|
1299 |
|
|
gimple_stmt_iterator bi;
|
1300 |
|
|
for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
|
1301 |
|
|
{
|
1302 |
|
|
gimple stmt = gsi_stmt (bi);
|
1303 |
|
|
|
1304 |
|
|
if (gimple_code (stmt) == GIMPLE_PREDICT)
|
1305 |
|
|
{
|
1306 |
|
|
gsi_remove (&bi, true);
|
1307 |
|
|
continue;
|
1308 |
|
|
}
|
1309 |
|
|
else if (gimple_code (stmt) == GIMPLE_CALL)
|
1310 |
|
|
{
|
1311 |
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
1312 |
|
|
|
1313 |
|
|
if (fndecl
|
1314 |
|
|
&& DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
|
1315 |
|
|
&& DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
|
1316 |
|
|
&& gimple_call_num_args (stmt) == 2)
|
1317 |
|
|
{
|
1318 |
|
|
var = gimple_call_lhs (stmt);
|
1319 |
|
|
ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0));
|
1320 |
|
|
|
1321 |
|
|
gsi_replace (&bi, ass_stmt, true);
|
1322 |
|
|
}
|
1323 |
|
|
}
|
1324 |
|
|
gsi_next (&bi);
|
1325 |
|
|
}
|
1326 |
|
|
}
|
1327 |
|
|
return 0;
|
1328 |
|
|
}
|
1329 |
|
|
|
1330 |
|
|
/* Predict using opcode of the last statement in basic block. */
|
1331 |
|
|
static void
|
1332 |
|
|
tree_predict_by_opcode (basic_block bb)
|
1333 |
|
|
{
|
1334 |
|
|
gimple stmt = last_stmt (bb);
|
1335 |
|
|
edge then_edge;
|
1336 |
|
|
tree op0, op1;
|
1337 |
|
|
tree type;
|
1338 |
|
|
tree val;
|
1339 |
|
|
enum tree_code cmp;
|
1340 |
|
|
bitmap visited;
|
1341 |
|
|
edge_iterator ei;
|
1342 |
|
|
|
1343 |
|
|
if (!stmt || gimple_code (stmt) != GIMPLE_COND)
|
1344 |
|
|
return;
|
1345 |
|
|
FOR_EACH_EDGE (then_edge, ei, bb->succs)
|
1346 |
|
|
if (then_edge->flags & EDGE_TRUE_VALUE)
|
1347 |
|
|
break;
|
1348 |
|
|
op0 = gimple_cond_lhs (stmt);
|
1349 |
|
|
op1 = gimple_cond_rhs (stmt);
|
1350 |
|
|
cmp = gimple_cond_code (stmt);
|
1351 |
|
|
type = TREE_TYPE (op0);
|
1352 |
|
|
visited = BITMAP_ALLOC (NULL);
|
1353 |
|
|
val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
|
1354 |
|
|
BITMAP_FREE (visited);
|
1355 |
|
|
if (val)
|
1356 |
|
|
{
|
1357 |
|
|
if (integer_zerop (val))
|
1358 |
|
|
predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
|
1359 |
|
|
else
|
1360 |
|
|
predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
|
1361 |
|
|
return;
|
1362 |
|
|
}
|
1363 |
|
|
/* Try "pointer heuristic."
|
1364 |
|
|
A comparison ptr == 0 is predicted as false.
|
1365 |
|
|
Similarly, a comparison ptr1 == ptr2 is predicted as false. */
|
1366 |
|
|
if (POINTER_TYPE_P (type))
|
1367 |
|
|
{
|
1368 |
|
|
if (cmp == EQ_EXPR)
|
1369 |
|
|
predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
|
1370 |
|
|
else if (cmp == NE_EXPR)
|
1371 |
|
|
predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
|
1372 |
|
|
}
|
1373 |
|
|
else
|
1374 |
|
|
|
1375 |
|
|
/* Try "opcode heuristic."
|
1376 |
|
|
EQ tests are usually false and NE tests are usually true. Also,
|
1377 |
|
|
most quantities are positive, so we can make the appropriate guesses
|
1378 |
|
|
about signed comparisons against zero. */
|
1379 |
|
|
switch (cmp)
|
1380 |
|
|
{
|
1381 |
|
|
case EQ_EXPR:
|
1382 |
|
|
case UNEQ_EXPR:
|
1383 |
|
|
/* Floating point comparisons appears to behave in a very
|
1384 |
|
|
unpredictable way because of special role of = tests in
|
1385 |
|
|
FP code. */
|
1386 |
|
|
if (FLOAT_TYPE_P (type))
|
1387 |
|
|
;
|
1388 |
|
|
/* Comparisons with 0 are often used for booleans and there is
|
1389 |
|
|
nothing useful to predict about them. */
|
1390 |
|
|
else if (integer_zerop (op0) || integer_zerop (op1))
|
1391 |
|
|
;
|
1392 |
|
|
else
|
1393 |
|
|
predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
|
1394 |
|
|
break;
|
1395 |
|
|
|
1396 |
|
|
case NE_EXPR:
|
1397 |
|
|
case LTGT_EXPR:
|
1398 |
|
|
/* Floating point comparisons appears to behave in a very
|
1399 |
|
|
unpredictable way because of special role of = tests in
|
1400 |
|
|
FP code. */
|
1401 |
|
|
if (FLOAT_TYPE_P (type))
|
1402 |
|
|
;
|
1403 |
|
|
/* Comparisons with 0 are often used for booleans and there is
|
1404 |
|
|
nothing useful to predict about them. */
|
1405 |
|
|
else if (integer_zerop (op0)
|
1406 |
|
|
|| integer_zerop (op1))
|
1407 |
|
|
;
|
1408 |
|
|
else
|
1409 |
|
|
predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
|
1410 |
|
|
break;
|
1411 |
|
|
|
1412 |
|
|
case ORDERED_EXPR:
|
1413 |
|
|
predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
|
1414 |
|
|
break;
|
1415 |
|
|
|
1416 |
|
|
case UNORDERED_EXPR:
|
1417 |
|
|
predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
|
1418 |
|
|
break;
|
1419 |
|
|
|
1420 |
|
|
case LE_EXPR:
|
1421 |
|
|
case LT_EXPR:
|
1422 |
|
|
if (integer_zerop (op1)
|
1423 |
|
|
|| integer_onep (op1)
|
1424 |
|
|
|| integer_all_onesp (op1)
|
1425 |
|
|
|| real_zerop (op1)
|
1426 |
|
|
|| real_onep (op1)
|
1427 |
|
|
|| real_minus_onep (op1))
|
1428 |
|
|
predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
|
1429 |
|
|
break;
|
1430 |
|
|
|
1431 |
|
|
case GE_EXPR:
|
1432 |
|
|
case GT_EXPR:
|
1433 |
|
|
if (integer_zerop (op1)
|
1434 |
|
|
|| integer_onep (op1)
|
1435 |
|
|
|| integer_all_onesp (op1)
|
1436 |
|
|
|| real_zerop (op1)
|
1437 |
|
|
|| real_onep (op1)
|
1438 |
|
|
|| real_minus_onep (op1))
|
1439 |
|
|
predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
|
1440 |
|
|
break;
|
1441 |
|
|
|
1442 |
|
|
default:
|
1443 |
|
|
break;
|
1444 |
|
|
}
|
1445 |
|
|
}
|
1446 |
|
|
|
1447 |
|
|
/* Try to guess whether the value of return means error code. */
|
1448 |
|
|
|
1449 |
|
|
static enum br_predictor
|
1450 |
|
|
return_prediction (tree val, enum prediction *prediction)
|
1451 |
|
|
{
|
1452 |
|
|
/* VOID. */
|
1453 |
|
|
if (!val)
|
1454 |
|
|
return PRED_NO_PREDICTION;
|
1455 |
|
|
/* Different heuristics for pointers and scalars. */
|
1456 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (val)))
|
1457 |
|
|
{
|
1458 |
|
|
/* NULL is usually not returned. */
|
1459 |
|
|
if (integer_zerop (val))
|
1460 |
|
|
{
|
1461 |
|
|
*prediction = NOT_TAKEN;
|
1462 |
|
|
return PRED_NULL_RETURN;
|
1463 |
|
|
}
|
1464 |
|
|
}
|
1465 |
|
|
else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
|
1466 |
|
|
{
|
1467 |
|
|
/* Negative return values are often used to indicate
|
1468 |
|
|
errors. */
|
1469 |
|
|
if (TREE_CODE (val) == INTEGER_CST
|
1470 |
|
|
&& tree_int_cst_sgn (val) < 0)
|
1471 |
|
|
{
|
1472 |
|
|
*prediction = NOT_TAKEN;
|
1473 |
|
|
return PRED_NEGATIVE_RETURN;
|
1474 |
|
|
}
|
1475 |
|
|
/* Constant return values seems to be commonly taken.
|
1476 |
|
|
Zero/one often represent booleans so exclude them from the
|
1477 |
|
|
heuristics. */
|
1478 |
|
|
if (TREE_CONSTANT (val)
|
1479 |
|
|
&& (!integer_zerop (val) && !integer_onep (val)))
|
1480 |
|
|
{
|
1481 |
|
|
*prediction = TAKEN;
|
1482 |
|
|
return PRED_CONST_RETURN;
|
1483 |
|
|
}
|
1484 |
|
|
}
|
1485 |
|
|
return PRED_NO_PREDICTION;
|
1486 |
|
|
}
|
1487 |
|
|
|
1488 |
|
|
/* Find the basic block with return expression and look up for possible
|
1489 |
|
|
return value trying to apply RETURN_PREDICTION heuristics. */
|
1490 |
|
|
static void
|
1491 |
|
|
apply_return_prediction (void)
|
1492 |
|
|
{
|
1493 |
|
|
gimple return_stmt = NULL;
|
1494 |
|
|
tree return_val;
|
1495 |
|
|
edge e;
|
1496 |
|
|
gimple phi;
|
1497 |
|
|
int phi_num_args, i;
|
1498 |
|
|
enum br_predictor pred;
|
1499 |
|
|
enum prediction direction;
|
1500 |
|
|
edge_iterator ei;
|
1501 |
|
|
|
1502 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
1503 |
|
|
{
|
1504 |
|
|
return_stmt = last_stmt (e->src);
|
1505 |
|
|
if (return_stmt
|
1506 |
|
|
&& gimple_code (return_stmt) == GIMPLE_RETURN)
|
1507 |
|
|
break;
|
1508 |
|
|
}
|
1509 |
|
|
if (!e)
|
1510 |
|
|
return;
|
1511 |
|
|
return_val = gimple_return_retval (return_stmt);
|
1512 |
|
|
if (!return_val)
|
1513 |
|
|
return;
|
1514 |
|
|
if (TREE_CODE (return_val) != SSA_NAME
|
1515 |
|
|
|| !SSA_NAME_DEF_STMT (return_val)
|
1516 |
|
|
|| gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
|
1517 |
|
|
return;
|
1518 |
|
|
phi = SSA_NAME_DEF_STMT (return_val);
|
1519 |
|
|
phi_num_args = gimple_phi_num_args (phi);
|
1520 |
|
|
pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
|
1521 |
|
|
|
1522 |
|
|
/* Avoid the degenerate case where all return values form the function
|
1523 |
|
|
belongs to same category (ie they are all positive constants)
|
1524 |
|
|
so we can hardly say something about them. */
|
1525 |
|
|
for (i = 1; i < phi_num_args; i++)
|
1526 |
|
|
if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
|
1527 |
|
|
break;
|
1528 |
|
|
if (i != phi_num_args)
|
1529 |
|
|
for (i = 0; i < phi_num_args; i++)
|
1530 |
|
|
{
|
1531 |
|
|
pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
|
1532 |
|
|
if (pred != PRED_NO_PREDICTION)
|
1533 |
|
|
predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred,
|
1534 |
|
|
direction);
|
1535 |
|
|
}
|
1536 |
|
|
}
|
1537 |
|
|
|
1538 |
|
|
/* Look for basic block that contains unlikely to happen events
|
1539 |
|
|
(such as noreturn calls) and mark all paths leading to execution
|
1540 |
|
|
of this basic blocks as unlikely. */
|
1541 |
|
|
|
1542 |
|
|
static void
|
1543 |
|
|
tree_bb_level_predictions (void)
|
1544 |
|
|
{
|
1545 |
|
|
basic_block bb;
|
1546 |
|
|
bool has_return_edges = false;
|
1547 |
|
|
edge e;
|
1548 |
|
|
edge_iterator ei;
|
1549 |
|
|
|
1550 |
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
|
1551 |
|
|
if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
|
1552 |
|
|
{
|
1553 |
|
|
has_return_edges = true;
|
1554 |
|
|
break;
|
1555 |
|
|
}
|
1556 |
|
|
|
1557 |
|
|
apply_return_prediction ();
|
1558 |
|
|
|
1559 |
|
|
FOR_EACH_BB (bb)
|
1560 |
|
|
{
|
1561 |
|
|
gimple_stmt_iterator gsi;
|
1562 |
|
|
|
1563 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1564 |
|
|
{
|
1565 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1566 |
|
|
tree decl;
|
1567 |
|
|
|
1568 |
|
|
if (is_gimple_call (stmt))
|
1569 |
|
|
{
|
1570 |
|
|
if ((gimple_call_flags (stmt) & ECF_NORETURN)
|
1571 |
|
|
&& has_return_edges)
|
1572 |
|
|
predict_paths_leading_to (bb, PRED_NORETURN,
|
1573 |
|
|
NOT_TAKEN);
|
1574 |
|
|
decl = gimple_call_fndecl (stmt);
|
1575 |
|
|
if (decl
|
1576 |
|
|
&& lookup_attribute ("cold",
|
1577 |
|
|
DECL_ATTRIBUTES (decl)))
|
1578 |
|
|
predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
|
1579 |
|
|
NOT_TAKEN);
|
1580 |
|
|
}
|
1581 |
|
|
else if (gimple_code (stmt) == GIMPLE_PREDICT)
|
1582 |
|
|
{
|
1583 |
|
|
predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
|
1584 |
|
|
gimple_predict_outcome (stmt));
|
1585 |
|
|
/* Keep GIMPLE_PREDICT around so early inlining will propagate
|
1586 |
|
|
hints to callers. */
|
1587 |
|
|
}
|
1588 |
|
|
}
|
1589 |
|
|
}
|
1590 |
|
|
}
|
1591 |
|
|
|
1592 |
|
|
#ifdef ENABLE_CHECKING
|
1593 |
|
|
|
1594 |
|
|
/* Callback for pointer_map_traverse, asserts that the pointer map is
|
1595 |
|
|
empty. */
|
1596 |
|
|
|
1597 |
|
|
static bool
|
1598 |
|
|
assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
|
1599 |
|
|
void *data ATTRIBUTE_UNUSED)
|
1600 |
|
|
{
|
1601 |
|
|
gcc_assert (!*value);
|
1602 |
|
|
return false;
|
1603 |
|
|
}
|
1604 |
|
|
#endif
|
1605 |
|
|
|
1606 |
|
|
/* Predict branch probabilities and estimate profile for basic block BB. */
|
1607 |
|
|
|
1608 |
|
|
static void
|
1609 |
|
|
tree_estimate_probability_bb (basic_block bb)
|
1610 |
|
|
{
|
1611 |
|
|
edge e;
|
1612 |
|
|
edge_iterator ei;
|
1613 |
|
|
gimple last;
|
1614 |
|
|
|
1615 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1616 |
|
|
{
|
1617 |
|
|
/* Predict early returns to be probable, as we've already taken
|
1618 |
|
|
care for error returns and other cases are often used for
|
1619 |
|
|
fast paths through function.
|
1620 |
|
|
|
1621 |
|
|
Since we've already removed the return statements, we are
|
1622 |
|
|
looking for CFG like:
|
1623 |
|
|
|
1624 |
|
|
if (conditional)
|
1625 |
|
|
{
|
1626 |
|
|
..
|
1627 |
|
|
goto return_block
|
1628 |
|
|
}
|
1629 |
|
|
some other blocks
|
1630 |
|
|
return_block:
|
1631 |
|
|
return_stmt. */
|
1632 |
|
|
if (e->dest != bb->next_bb
|
1633 |
|
|
&& e->dest != EXIT_BLOCK_PTR
|
1634 |
|
|
&& single_succ_p (e->dest)
|
1635 |
|
|
&& single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
|
1636 |
|
|
&& (last = last_stmt (e->dest)) != NULL
|
1637 |
|
|
&& gimple_code (last) == GIMPLE_RETURN)
|
1638 |
|
|
{
|
1639 |
|
|
edge e1;
|
1640 |
|
|
edge_iterator ei1;
|
1641 |
|
|
|
1642 |
|
|
if (single_succ_p (bb))
|
1643 |
|
|
{
|
1644 |
|
|
FOR_EACH_EDGE (e1, ei1, bb->preds)
|
1645 |
|
|
if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
|
1646 |
|
|
&& !predicted_by_p (e1->src, PRED_CONST_RETURN)
|
1647 |
|
|
&& !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
|
1648 |
|
|
predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
|
1649 |
|
|
}
|
1650 |
|
|
else
|
1651 |
|
|
if (!predicted_by_p (e->src, PRED_NULL_RETURN)
|
1652 |
|
|
&& !predicted_by_p (e->src, PRED_CONST_RETURN)
|
1653 |
|
|
&& !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
|
1654 |
|
|
predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
|
1655 |
|
|
}
|
1656 |
|
|
|
1657 |
|
|
/* Look for block we are guarding (ie we dominate it,
|
1658 |
|
|
but it doesn't postdominate us). */
|
1659 |
|
|
if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
|
1660 |
|
|
&& dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
|
1661 |
|
|
&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
|
1662 |
|
|
{
|
1663 |
|
|
gimple_stmt_iterator bi;
|
1664 |
|
|
|
1665 |
|
|
/* The call heuristic claims that a guarded function call
|
1666 |
|
|
is improbable. This is because such calls are often used
|
1667 |
|
|
to signal exceptional situations such as printing error
|
1668 |
|
|
messages. */
|
1669 |
|
|
for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
|
1670 |
|
|
gsi_next (&bi))
|
1671 |
|
|
{
|
1672 |
|
|
gimple stmt = gsi_stmt (bi);
|
1673 |
|
|
if (is_gimple_call (stmt)
|
1674 |
|
|
/* Constant and pure calls are hardly used to signalize
|
1675 |
|
|
something exceptional. */
|
1676 |
|
|
&& gimple_has_side_effects (stmt))
|
1677 |
|
|
{
|
1678 |
|
|
predict_edge_def (e, PRED_CALL, NOT_TAKEN);
|
1679 |
|
|
break;
|
1680 |
|
|
}
|
1681 |
|
|
}
|
1682 |
|
|
}
|
1683 |
|
|
}
|
1684 |
|
|
tree_predict_by_opcode (bb);
|
1685 |
|
|
}
|
1686 |
|
|
|
1687 |
|
|
/* Predict branch probabilities and estimate profile of the tree CFG.
|
1688 |
|
|
This function can be called from the loop optimizers to recompute
|
1689 |
|
|
the profile information. */
|
1690 |
|
|
|
1691 |
|
|
void
|
1692 |
|
|
tree_estimate_probability (void)
|
1693 |
|
|
{
|
1694 |
|
|
basic_block bb;
|
1695 |
|
|
|
1696 |
|
|
add_noreturn_fake_exit_edges ();
|
1697 |
|
|
connect_infinite_loops_to_exit ();
|
1698 |
|
|
/* We use loop_niter_by_eval, which requires that the loops have
|
1699 |
|
|
preheaders. */
|
1700 |
|
|
create_preheaders (CP_SIMPLE_PREHEADERS);
|
1701 |
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
1702 |
|
|
|
1703 |
|
|
bb_predictions = pointer_map_create ();
|
1704 |
|
|
tree_bb_level_predictions ();
|
1705 |
|
|
record_loop_exits ();
|
1706 |
|
|
|
1707 |
|
|
if (number_of_loops () > 1)
|
1708 |
|
|
predict_loops ();
|
1709 |
|
|
|
1710 |
|
|
FOR_EACH_BB (bb)
|
1711 |
|
|
tree_estimate_probability_bb (bb);
|
1712 |
|
|
|
1713 |
|
|
FOR_EACH_BB (bb)
|
1714 |
|
|
combine_predictions_for_bb (bb);
|
1715 |
|
|
|
1716 |
|
|
#ifdef ENABLE_CHECKING
|
1717 |
|
|
pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
|
1718 |
|
|
#endif
|
1719 |
|
|
pointer_map_destroy (bb_predictions);
|
1720 |
|
|
bb_predictions = NULL;
|
1721 |
|
|
|
1722 |
|
|
estimate_bb_frequencies ();
|
1723 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
1724 |
|
|
remove_fake_exit_edges ();
|
1725 |
|
|
}
|
1726 |
|
|
|
1727 |
|
|
/* Predict branch probabilities and estimate profile of the tree CFG.
|
1728 |
|
|
This is the driver function for PASS_PROFILE. */
|
1729 |
|
|
|
1730 |
|
|
static unsigned int
|
1731 |
|
|
tree_estimate_probability_driver (void)
|
1732 |
|
|
{
|
1733 |
|
|
unsigned nb_loops;
|
1734 |
|
|
|
1735 |
|
|
loop_optimizer_init (0);
|
1736 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1737 |
|
|
flow_loops_dump (dump_file, NULL, 0);
|
1738 |
|
|
|
1739 |
|
|
mark_irreducible_loops ();
|
1740 |
|
|
|
1741 |
|
|
nb_loops = number_of_loops ();
|
1742 |
|
|
if (nb_loops > 1)
|
1743 |
|
|
scev_initialize ();
|
1744 |
|
|
|
1745 |
|
|
tree_estimate_probability ();
|
1746 |
|
|
|
1747 |
|
|
if (nb_loops > 1)
|
1748 |
|
|
scev_finalize ();
|
1749 |
|
|
|
1750 |
|
|
loop_optimizer_finalize ();
|
1751 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1752 |
|
|
gimple_dump_cfg (dump_file, dump_flags);
|
1753 |
|
|
if (profile_status == PROFILE_ABSENT)
|
1754 |
|
|
profile_status = PROFILE_GUESSED;
|
1755 |
|
|
return 0;
|
1756 |
|
|
}
|
1757 |
|
|
|
1758 |
|
|
/* Predict edges to successors of CUR whose sources are not postdominated by
|
1759 |
|
|
BB by PRED and recurse to all postdominators. */
|
1760 |
|
|
|
1761 |
|
|
static void
|
1762 |
|
|
predict_paths_for_bb (basic_block cur, basic_block bb,
|
1763 |
|
|
enum br_predictor pred,
|
1764 |
|
|
enum prediction taken)
|
1765 |
|
|
{
|
1766 |
|
|
edge e;
|
1767 |
|
|
edge_iterator ei;
|
1768 |
|
|
basic_block son;
|
1769 |
|
|
|
1770 |
|
|
/* We are looking for all edges forming edge cut induced by
|
1771 |
|
|
set of all blocks postdominated by BB. */
|
1772 |
|
|
FOR_EACH_EDGE (e, ei, cur->preds)
|
1773 |
|
|
if (e->src->index >= NUM_FIXED_BLOCKS
|
1774 |
|
|
&& !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
|
1775 |
|
|
{
|
1776 |
|
|
gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
|
1777 |
|
|
predict_edge_def (e, pred, taken);
|
1778 |
|
|
}
|
1779 |
|
|
for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
|
1780 |
|
|
son;
|
1781 |
|
|
son = next_dom_son (CDI_POST_DOMINATORS, son))
|
1782 |
|
|
predict_paths_for_bb (son, bb, pred, taken);
|
1783 |
|
|
}
|
1784 |
|
|
|
1785 |
|
|
/* Sets branch probabilities according to PREDiction and
|
1786 |
|
|
FLAGS. */
|
1787 |
|
|
|
1788 |
|
|
static void
|
1789 |
|
|
predict_paths_leading_to (basic_block bb, enum br_predictor pred,
|
1790 |
|
|
enum prediction taken)
|
1791 |
|
|
{
|
1792 |
|
|
predict_paths_for_bb (bb, bb, pred, taken);
|
1793 |
|
|
}
|
1794 |
|
|
|
1795 |
|
|
/* This is used to carry information about basic blocks. It is
|
1796 |
|
|
attached to the AUX field of the standard CFG block. */
|
1797 |
|
|
|
1798 |
|
|
typedef struct block_info_def
|
1799 |
|
|
{
|
1800 |
|
|
/* Estimated frequency of execution of basic_block. */
|
1801 |
|
|
sreal frequency;
|
1802 |
|
|
|
1803 |
|
|
/* To keep queue of basic blocks to process. */
|
1804 |
|
|
basic_block next;
|
1805 |
|
|
|
1806 |
|
|
/* Number of predecessors we need to visit first. */
|
1807 |
|
|
int npredecessors;
|
1808 |
|
|
} *block_info;
|
1809 |
|
|
|
1810 |
|
|
/* Similar information for edges. */
|
1811 |
|
|
typedef struct edge_info_def
|
1812 |
|
|
{
|
1813 |
|
|
/* In case edge is a loopback edge, the probability edge will be reached
|
1814 |
|
|
in case header is. Estimated number of iterations of the loop can be
|
1815 |
|
|
then computed as 1 / (1 - back_edge_prob). */
|
1816 |
|
|
sreal back_edge_prob;
|
1817 |
|
|
/* True if the edge is a loopback edge in the natural loop. */
|
1818 |
|
|
unsigned int back_edge:1;
|
1819 |
|
|
} *edge_info;
|
1820 |
|
|
|
1821 |
|
|
#define BLOCK_INFO(B) ((block_info) (B)->aux)
|
1822 |
|
|
#define EDGE_INFO(E) ((edge_info) (E)->aux)
|
1823 |
|
|
|
1824 |
|
|
/* Helper function for estimate_bb_frequencies.
|
1825 |
|
|
Propagate the frequencies in blocks marked in
|
1826 |
|
|
TOVISIT, starting in HEAD. */
|
1827 |
|
|
|
1828 |
|
|
static void
|
1829 |
|
|
propagate_freq (basic_block head, bitmap tovisit)
|
1830 |
|
|
{
|
1831 |
|
|
basic_block bb;
|
1832 |
|
|
basic_block last;
|
1833 |
|
|
unsigned i;
|
1834 |
|
|
edge e;
|
1835 |
|
|
basic_block nextbb;
|
1836 |
|
|
bitmap_iterator bi;
|
1837 |
|
|
|
1838 |
|
|
/* For each basic block we need to visit count number of his predecessors
|
1839 |
|
|
we need to visit first. */
|
1840 |
|
|
EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
|
1841 |
|
|
{
|
1842 |
|
|
edge_iterator ei;
|
1843 |
|
|
int count = 0;
|
1844 |
|
|
|
1845 |
|
|
/* The outermost "loop" includes the exit block, which we can not
|
1846 |
|
|
look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
|
1847 |
|
|
directly. Do the same for the entry block. */
|
1848 |
|
|
bb = BASIC_BLOCK (i);
|
1849 |
|
|
|
1850 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1851 |
|
|
{
|
1852 |
|
|
bool visit = bitmap_bit_p (tovisit, e->src->index);
|
1853 |
|
|
|
1854 |
|
|
if (visit && !(e->flags & EDGE_DFS_BACK))
|
1855 |
|
|
count++;
|
1856 |
|
|
else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
|
1857 |
|
|
fprintf (dump_file,
|
1858 |
|
|
"Irreducible region hit, ignoring edge to %i->%i\n",
|
1859 |
|
|
e->src->index, bb->index);
|
1860 |
|
|
}
|
1861 |
|
|
BLOCK_INFO (bb)->npredecessors = count;
|
1862 |
|
|
}
|
1863 |
|
|
|
1864 |
|
|
memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
|
1865 |
|
|
last = head;
|
1866 |
|
|
for (bb = head; bb; bb = nextbb)
|
1867 |
|
|
{
|
1868 |
|
|
edge_iterator ei;
|
1869 |
|
|
sreal cyclic_probability, frequency;
|
1870 |
|
|
|
1871 |
|
|
memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
|
1872 |
|
|
memcpy (&frequency, &real_zero, sizeof (real_zero));
|
1873 |
|
|
|
1874 |
|
|
nextbb = BLOCK_INFO (bb)->next;
|
1875 |
|
|
BLOCK_INFO (bb)->next = NULL;
|
1876 |
|
|
|
1877 |
|
|
/* Compute frequency of basic block. */
|
1878 |
|
|
if (bb != head)
|
1879 |
|
|
{
|
1880 |
|
|
#ifdef ENABLE_CHECKING
|
1881 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1882 |
|
|
gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
|
1883 |
|
|
|| (e->flags & EDGE_DFS_BACK));
|
1884 |
|
|
#endif
|
1885 |
|
|
|
1886 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1887 |
|
|
if (EDGE_INFO (e)->back_edge)
|
1888 |
|
|
{
|
1889 |
|
|
sreal_add (&cyclic_probability, &cyclic_probability,
|
1890 |
|
|
&EDGE_INFO (e)->back_edge_prob);
|
1891 |
|
|
}
|
1892 |
|
|
else if (!(e->flags & EDGE_DFS_BACK))
|
1893 |
|
|
{
|
1894 |
|
|
sreal tmp;
|
1895 |
|
|
|
1896 |
|
|
/* frequency += (e->probability
|
1897 |
|
|
* BLOCK_INFO (e->src)->frequency /
|
1898 |
|
|
REG_BR_PROB_BASE); */
|
1899 |
|
|
|
1900 |
|
|
sreal_init (&tmp, e->probability, 0);
|
1901 |
|
|
sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
|
1902 |
|
|
sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
|
1903 |
|
|
sreal_add (&frequency, &frequency, &tmp);
|
1904 |
|
|
}
|
1905 |
|
|
|
1906 |
|
|
if (sreal_compare (&cyclic_probability, &real_zero) == 0)
|
1907 |
|
|
{
|
1908 |
|
|
memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
|
1909 |
|
|
sizeof (frequency));
|
1910 |
|
|
}
|
1911 |
|
|
else
|
1912 |
|
|
{
|
1913 |
|
|
if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
|
1914 |
|
|
{
|
1915 |
|
|
memcpy (&cyclic_probability, &real_almost_one,
|
1916 |
|
|
sizeof (real_almost_one));
|
1917 |
|
|
}
|
1918 |
|
|
|
1919 |
|
|
/* BLOCK_INFO (bb)->frequency = frequency
|
1920 |
|
|
/ (1 - cyclic_probability) */
|
1921 |
|
|
|
1922 |
|
|
sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
|
1923 |
|
|
sreal_div (&BLOCK_INFO (bb)->frequency,
|
1924 |
|
|
&frequency, &cyclic_probability);
|
1925 |
|
|
}
|
1926 |
|
|
}
|
1927 |
|
|
|
1928 |
|
|
bitmap_clear_bit (tovisit, bb->index);
|
1929 |
|
|
|
1930 |
|
|
e = find_edge (bb, head);
|
1931 |
|
|
if (e)
|
1932 |
|
|
{
|
1933 |
|
|
sreal tmp;
|
1934 |
|
|
|
1935 |
|
|
/* EDGE_INFO (e)->back_edge_prob
|
1936 |
|
|
= ((e->probability * BLOCK_INFO (bb)->frequency)
|
1937 |
|
|
/ REG_BR_PROB_BASE); */
|
1938 |
|
|
|
1939 |
|
|
sreal_init (&tmp, e->probability, 0);
|
1940 |
|
|
sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
|
1941 |
|
|
sreal_mul (&EDGE_INFO (e)->back_edge_prob,
|
1942 |
|
|
&tmp, &real_inv_br_prob_base);
|
1943 |
|
|
}
|
1944 |
|
|
|
1945 |
|
|
/* Propagate to successor blocks. */
|
1946 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1947 |
|
|
if (!(e->flags & EDGE_DFS_BACK)
|
1948 |
|
|
&& BLOCK_INFO (e->dest)->npredecessors)
|
1949 |
|
|
{
|
1950 |
|
|
BLOCK_INFO (e->dest)->npredecessors--;
|
1951 |
|
|
if (!BLOCK_INFO (e->dest)->npredecessors)
|
1952 |
|
|
{
|
1953 |
|
|
if (!nextbb)
|
1954 |
|
|
nextbb = e->dest;
|
1955 |
|
|
else
|
1956 |
|
|
BLOCK_INFO (last)->next = e->dest;
|
1957 |
|
|
|
1958 |
|
|
last = e->dest;
|
1959 |
|
|
}
|
1960 |
|
|
}
|
1961 |
|
|
}
|
1962 |
|
|
}
|
1963 |
|
|
|
1964 |
|
|
/* Estimate probabilities of loopback edges in loops at same nest level. */
|
1965 |
|
|
|
1966 |
|
|
static void
|
1967 |
|
|
estimate_loops_at_level (struct loop *first_loop)
|
1968 |
|
|
{
|
1969 |
|
|
struct loop *loop;
|
1970 |
|
|
|
1971 |
|
|
for (loop = first_loop; loop; loop = loop->next)
|
1972 |
|
|
{
|
1973 |
|
|
edge e;
|
1974 |
|
|
basic_block *bbs;
|
1975 |
|
|
unsigned i;
|
1976 |
|
|
bitmap tovisit = BITMAP_ALLOC (NULL);
|
1977 |
|
|
|
1978 |
|
|
estimate_loops_at_level (loop->inner);
|
1979 |
|
|
|
1980 |
|
|
/* Find current loop back edge and mark it. */
|
1981 |
|
|
e = loop_latch_edge (loop);
|
1982 |
|
|
EDGE_INFO (e)->back_edge = 1;
|
1983 |
|
|
|
1984 |
|
|
bbs = get_loop_body (loop);
|
1985 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
1986 |
|
|
bitmap_set_bit (tovisit, bbs[i]->index);
|
1987 |
|
|
free (bbs);
|
1988 |
|
|
propagate_freq (loop->header, tovisit);
|
1989 |
|
|
BITMAP_FREE (tovisit);
|
1990 |
|
|
}
|
1991 |
|
|
}
|
1992 |
|
|
|
1993 |
|
|
/* Propagates frequencies through structure of loops. */
|
1994 |
|
|
|
1995 |
|
|
static void
|
1996 |
|
|
estimate_loops (void)
|
1997 |
|
|
{
|
1998 |
|
|
bitmap tovisit = BITMAP_ALLOC (NULL);
|
1999 |
|
|
basic_block bb;
|
2000 |
|
|
|
2001 |
|
|
/* Start by estimating the frequencies in the loops. */
|
2002 |
|
|
if (number_of_loops () > 1)
|
2003 |
|
|
estimate_loops_at_level (current_loops->tree_root->inner);
|
2004 |
|
|
|
2005 |
|
|
/* Now propagate the frequencies through all the blocks. */
|
2006 |
|
|
FOR_ALL_BB (bb)
|
2007 |
|
|
{
|
2008 |
|
|
bitmap_set_bit (tovisit, bb->index);
|
2009 |
|
|
}
|
2010 |
|
|
propagate_freq (ENTRY_BLOCK_PTR, tovisit);
|
2011 |
|
|
BITMAP_FREE (tovisit);
|
2012 |
|
|
}
|
2013 |
|
|
|
2014 |
|
|
/* Convert counts measured by profile driven feedback to frequencies.
|
2015 |
|
|
Return nonzero iff there was any nonzero execution count. */
|
2016 |
|
|
|
2017 |
|
|
int
|
2018 |
|
|
counts_to_freqs (void)
|
2019 |
|
|
{
|
2020 |
|
|
gcov_type count_max, true_count_max = 0;
|
2021 |
|
|
basic_block bb;
|
2022 |
|
|
|
2023 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
2024 |
|
|
true_count_max = MAX (bb->count, true_count_max);
|
2025 |
|
|
|
2026 |
|
|
count_max = MAX (true_count_max, 1);
|
2027 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
2028 |
|
|
bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
|
2029 |
|
|
|
2030 |
|
|
return true_count_max;
|
2031 |
|
|
}
|
2032 |
|
|
|
2033 |
|
|
/* Return true if function is likely to be expensive, so there is no point to
|
2034 |
|
|
optimize performance of prologue, epilogue or do inlining at the expense
|
2035 |
|
|
of code size growth. THRESHOLD is the limit of number of instructions
|
2036 |
|
|
function can execute at average to be still considered not expensive. */
|
2037 |
|
|
|
2038 |
|
|
bool
|
2039 |
|
|
expensive_function_p (int threshold)
|
2040 |
|
|
{
|
2041 |
|
|
unsigned int sum = 0;
|
2042 |
|
|
basic_block bb;
|
2043 |
|
|
unsigned int limit;
|
2044 |
|
|
|
2045 |
|
|
/* We can not compute accurately for large thresholds due to scaled
|
2046 |
|
|
frequencies. */
|
2047 |
|
|
gcc_assert (threshold <= BB_FREQ_MAX);
|
2048 |
|
|
|
2049 |
|
|
/* Frequencies are out of range. This either means that function contains
|
2050 |
|
|
internal loop executing more than BB_FREQ_MAX times or profile feedback
|
2051 |
|
|
is available and function has not been executed at all. */
|
2052 |
|
|
if (ENTRY_BLOCK_PTR->frequency == 0)
|
2053 |
|
|
return true;
|
2054 |
|
|
|
2055 |
|
|
/* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
|
2056 |
|
|
limit = ENTRY_BLOCK_PTR->frequency * threshold;
|
2057 |
|
|
FOR_EACH_BB (bb)
|
2058 |
|
|
{
|
2059 |
|
|
rtx insn;
|
2060 |
|
|
|
2061 |
|
|
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
|
2062 |
|
|
insn = NEXT_INSN (insn))
|
2063 |
|
|
if (active_insn_p (insn))
|
2064 |
|
|
{
|
2065 |
|
|
sum += bb->frequency;
|
2066 |
|
|
if (sum > limit)
|
2067 |
|
|
return true;
|
2068 |
|
|
}
|
2069 |
|
|
}
|
2070 |
|
|
|
2071 |
|
|
return false;
|
2072 |
|
|
}
|
2073 |
|
|
|
2074 |
|
|
/* Estimate basic blocks frequency by given branch probabilities. */
|
2075 |
|
|
|
2076 |
|
|
void
|
2077 |
|
|
estimate_bb_frequencies (void)
|
2078 |
|
|
{
|
2079 |
|
|
basic_block bb;
|
2080 |
|
|
sreal freq_max;
|
2081 |
|
|
|
2082 |
|
|
if (profile_status != PROFILE_READ || !counts_to_freqs ())
|
2083 |
|
|
{
|
2084 |
|
|
static int real_values_initialized = 0;
|
2085 |
|
|
|
2086 |
|
|
if (!real_values_initialized)
|
2087 |
|
|
{
|
2088 |
|
|
real_values_initialized = 1;
|
2089 |
|
|
sreal_init (&real_zero, 0, 0);
|
2090 |
|
|
sreal_init (&real_one, 1, 0);
|
2091 |
|
|
sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
|
2092 |
|
|
sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
|
2093 |
|
|
sreal_init (&real_one_half, 1, -1);
|
2094 |
|
|
sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
|
2095 |
|
|
sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
|
2096 |
|
|
}
|
2097 |
|
|
|
2098 |
|
|
mark_dfs_back_edges ();
|
2099 |
|
|
|
2100 |
|
|
single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
|
2101 |
|
|
|
2102 |
|
|
/* Set up block info for each basic block. */
|
2103 |
|
|
alloc_aux_for_blocks (sizeof (struct block_info_def));
|
2104 |
|
|
alloc_aux_for_edges (sizeof (struct edge_info_def));
|
2105 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
2106 |
|
|
{
|
2107 |
|
|
edge e;
|
2108 |
|
|
edge_iterator ei;
|
2109 |
|
|
|
2110 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
2111 |
|
|
{
|
2112 |
|
|
sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
|
2113 |
|
|
sreal_mul (&EDGE_INFO (e)->back_edge_prob,
|
2114 |
|
|
&EDGE_INFO (e)->back_edge_prob,
|
2115 |
|
|
&real_inv_br_prob_base);
|
2116 |
|
|
}
|
2117 |
|
|
}
|
2118 |
|
|
|
2119 |
|
|
/* First compute probabilities locally for each loop from innermost
|
2120 |
|
|
to outermost to examine probabilities for back edges. */
|
2121 |
|
|
estimate_loops ();
|
2122 |
|
|
|
2123 |
|
|
memcpy (&freq_max, &real_zero, sizeof (real_zero));
|
2124 |
|
|
FOR_EACH_BB (bb)
|
2125 |
|
|
if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
|
2126 |
|
|
memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
|
2127 |
|
|
|
2128 |
|
|
sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
|
2129 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
|
2130 |
|
|
{
|
2131 |
|
|
sreal tmp;
|
2132 |
|
|
|
2133 |
|
|
sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
|
2134 |
|
|
sreal_add (&tmp, &tmp, &real_one_half);
|
2135 |
|
|
bb->frequency = sreal_to_int (&tmp);
|
2136 |
|
|
}
|
2137 |
|
|
|
2138 |
|
|
free_aux_for_blocks ();
|
2139 |
|
|
free_aux_for_edges ();
|
2140 |
|
|
}
|
2141 |
|
|
compute_function_frequency ();
|
2142 |
|
|
if (flag_reorder_functions)
|
2143 |
|
|
choose_function_section ();
|
2144 |
|
|
}
|
2145 |
|
|
|
2146 |
|
|
/* Decide whether function is hot, cold or unlikely executed. */
|
2147 |
|
|
void
|
2148 |
|
|
compute_function_frequency (void)
|
2149 |
|
|
{
|
2150 |
|
|
basic_block bb;
|
2151 |
|
|
|
2152 |
|
|
if (!profile_info || !flag_branch_probabilities)
|
2153 |
|
|
{
|
2154 |
|
|
if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
|
2155 |
|
|
!= NULL)
|
2156 |
|
|
cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
|
2157 |
|
|
else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
|
2158 |
|
|
!= NULL)
|
2159 |
|
|
cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
|
2160 |
|
|
return;
|
2161 |
|
|
}
|
2162 |
|
|
cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
|
2163 |
|
|
FOR_EACH_BB (bb)
|
2164 |
|
|
{
|
2165 |
|
|
if (maybe_hot_bb_p (bb))
|
2166 |
|
|
{
|
2167 |
|
|
cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
|
2168 |
|
|
return;
|
2169 |
|
|
}
|
2170 |
|
|
if (!probably_never_executed_bb_p (bb))
|
2171 |
|
|
cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
|
2172 |
|
|
}
|
2173 |
|
|
}
|
2174 |
|
|
|
2175 |
|
|
/* Choose appropriate section for the function. */
|
2176 |
|
|
static void
|
2177 |
|
|
choose_function_section (void)
|
2178 |
|
|
{
|
2179 |
|
|
if (DECL_SECTION_NAME (current_function_decl)
|
2180 |
|
|
|| !targetm.have_named_sections
|
2181 |
|
|
/* Theoretically we can split the gnu.linkonce text section too,
|
2182 |
|
|
but this requires more work as the frequency needs to match
|
2183 |
|
|
for all generated objects so we need to merge the frequency
|
2184 |
|
|
of all instances. For now just never set frequency for these. */
|
2185 |
|
|
|| DECL_ONE_ONLY (current_function_decl))
|
2186 |
|
|
return;
|
2187 |
|
|
|
2188 |
|
|
/* If we are doing the partitioning optimization, let the optimization
|
2189 |
|
|
choose the correct section into which to put things. */
|
2190 |
|
|
|
2191 |
|
|
if (flag_reorder_blocks_and_partition)
|
2192 |
|
|
return;
|
2193 |
|
|
|
2194 |
|
|
if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
|
2195 |
|
|
DECL_SECTION_NAME (current_function_decl) =
|
2196 |
|
|
build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
|
2197 |
|
|
if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
|
2198 |
|
|
DECL_SECTION_NAME (current_function_decl) =
|
2199 |
|
|
build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
|
2200 |
|
|
UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
|
2201 |
|
|
}
|
2202 |
|
|
|
2203 |
|
|
static bool
|
2204 |
|
|
gate_estimate_probability (void)
|
2205 |
|
|
{
|
2206 |
|
|
return flag_guess_branch_prob;
|
2207 |
|
|
}
|
2208 |
|
|
|
2209 |
|
|
/* Build PREDICT_EXPR. */
|
2210 |
|
|
tree
|
2211 |
|
|
build_predict_expr (enum br_predictor predictor, enum prediction taken)
|
2212 |
|
|
{
|
2213 |
|
|
tree t = build1 (PREDICT_EXPR, void_type_node,
|
2214 |
|
|
build_int_cst (NULL, predictor));
|
2215 |
|
|
SET_PREDICT_EXPR_OUTCOME (t, taken);
|
2216 |
|
|
return t;
|
2217 |
|
|
}
|
2218 |
|
|
|
2219 |
|
|
const char *
|
2220 |
|
|
predictor_name (enum br_predictor predictor)
|
2221 |
|
|
{
|
2222 |
|
|
return predictor_info[predictor].name;
|
2223 |
|
|
}
|
2224 |
|
|
|
2225 |
|
|
struct gimple_opt_pass pass_profile =
|
2226 |
|
|
{
|
2227 |
|
|
{
|
2228 |
|
|
GIMPLE_PASS,
|
2229 |
|
|
"profile", /* name */
|
2230 |
|
|
gate_estimate_probability, /* gate */
|
2231 |
|
|
tree_estimate_probability_driver, /* execute */
|
2232 |
|
|
NULL, /* sub */
|
2233 |
|
|
NULL, /* next */
|
2234 |
|
|
0, /* static_pass_number */
|
2235 |
|
|
TV_BRANCH_PROB, /* tv_id */
|
2236 |
|
|
PROP_cfg, /* properties_required */
|
2237 |
|
|
0, /* properties_provided */
|
2238 |
|
|
0, /* properties_destroyed */
|
2239 |
|
|
0, /* todo_flags_start */
|
2240 |
|
|
TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
2241 |
|
|
}
|
2242 |
|
|
};
|
2243 |
|
|
|
2244 |
|
|
struct gimple_opt_pass pass_strip_predict_hints =
|
2245 |
|
|
{
|
2246 |
|
|
{
|
2247 |
|
|
GIMPLE_PASS,
|
2248 |
|
|
"*strip_predict_hints", /* name */
|
2249 |
|
|
NULL, /* gate */
|
2250 |
|
|
strip_predict_hints, /* execute */
|
2251 |
|
|
NULL, /* sub */
|
2252 |
|
|
NULL, /* next */
|
2253 |
|
|
0, /* static_pass_number */
|
2254 |
|
|
TV_BRANCH_PROB, /* tv_id */
|
2255 |
|
|
PROP_cfg, /* properties_required */
|
2256 |
|
|
0, /* properties_provided */
|
2257 |
|
|
0, /* properties_destroyed */
|
2258 |
|
|
0, /* todo_flags_start */
|
2259 |
|
|
TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
2260 |
|
|
}
|
2261 |
|
|
};
|