OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [real.c] - Blame information for rev 322

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* real.c - software floating point emulation.
2
   Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2002,
3
   2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
4
   Contributed by Stephen L. Moshier (moshier@world.std.com).
5
   Re-written by Richard Henderson <rth@redhat.com>
6
 
7
   This file is part of GCC.
8
 
9
   GCC is free software; you can redistribute it and/or modify it under
10
   the terms of the GNU General Public License as published by the Free
11
   Software Foundation; either version 3, or (at your option) any later
12
   version.
13
 
14
   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15
   WARRANTY; without even the implied warranty of MERCHANTABILITY or
16
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17
   for more details.
18
 
19
   You should have received a copy of the GNU General Public License
20
   along with GCC; see the file COPYING3.  If not see
21
   <http://www.gnu.org/licenses/>.  */
22
 
23
#include "config.h"
24
#include "system.h"
25
#include "coretypes.h"
26
#include "tm.h"
27
#include "tree.h"
28
#include "toplev.h"
29
#include "real.h"
30
#include "tm_p.h"
31
#include "dfp.h"
32
 
33
/* The floating point model used internally is not exactly IEEE 754
34
   compliant, and close to the description in the ISO C99 standard,
35
   section 5.2.4.2.2 Characteristics of floating types.
36
 
37
   Specifically
38
 
39
        x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
40
 
41
        where
42
                s = sign (+- 1)
43
                b = base or radix, here always 2
44
                e = exponent
45
                p = precision (the number of base-b digits in the significand)
46
                f_k = the digits of the significand.
47
 
48
   We differ from typical IEEE 754 encodings in that the entire
49
   significand is fractional.  Normalized significands are in the
50
   range [0.5, 1.0).
51
 
52
   A requirement of the model is that P be larger than the largest
53
   supported target floating-point type by at least 2 bits.  This gives
54
   us proper rounding when we truncate to the target type.  In addition,
55
   E must be large enough to hold the smallest supported denormal number
56
   in a normalized form.
57
 
58
   Both of these requirements are easily satisfied.  The largest target
59
   significand is 113 bits; we store at least 160.  The smallest
60
   denormal number fits in 17 exponent bits; we store 26.
61
 
62
   Note that the decimal string conversion routines are sensitive to
63
   rounding errors.  Since the raw arithmetic routines do not themselves
64
   have guard digits or rounding, the computation of 10**exp can
65
   accumulate more than a few digits of error.  The previous incarnation
66
   of real.c successfully used a 144-bit fraction; given the current
67
   layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.  */
68
 
69
 
70
/* Used to classify two numbers simultaneously.  */
71
#define CLASS2(A, B)  ((A) << 2 | (B))
72
 
73
#if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
74
 #error "Some constant folding done by hand to avoid shift count warnings"
75
#endif
76
 
77
static void get_zero (REAL_VALUE_TYPE *, int);
78
static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
79
static void get_canonical_snan (REAL_VALUE_TYPE *, int);
80
static void get_inf (REAL_VALUE_TYPE *, int);
81
static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
82
                                       const REAL_VALUE_TYPE *, unsigned int);
83
static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
84
                                unsigned int);
85
static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
86
                                unsigned int);
87
static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
88
static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
89
                              const REAL_VALUE_TYPE *);
90
static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91
                              const REAL_VALUE_TYPE *, int);
92
static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
93
static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
94
static int cmp_significand_0 (const REAL_VALUE_TYPE *);
95
static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
96
static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
97
static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
98
static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
99
static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
100
                              const REAL_VALUE_TYPE *);
101
static void normalize (REAL_VALUE_TYPE *);
102
 
103
static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
104
                    const REAL_VALUE_TYPE *, int);
105
static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
106
                         const REAL_VALUE_TYPE *);
107
static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
108
                       const REAL_VALUE_TYPE *);
109
static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
110
static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
111
 
112
static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
113
static void decimal_from_integer (REAL_VALUE_TYPE *);
114
static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
115
                                    size_t);
116
 
117
static const REAL_VALUE_TYPE * ten_to_ptwo (int);
118
static const REAL_VALUE_TYPE * ten_to_mptwo (int);
119
static const REAL_VALUE_TYPE * real_digit (int);
120
static void times_pten (REAL_VALUE_TYPE *, int);
121
 
122
static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
123
 
124
/* Initialize R with a positive zero.  */
125
 
126
static inline void
127
get_zero (REAL_VALUE_TYPE *r, int sign)
128
{
129
  memset (r, 0, sizeof (*r));
130
  r->sign = sign;
131
}
132
 
133
/* Initialize R with the canonical quiet NaN.  */
134
 
135
static inline void
136
get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
137
{
138
  memset (r, 0, sizeof (*r));
139
  r->cl = rvc_nan;
140
  r->sign = sign;
141
  r->canonical = 1;
142
}
143
 
144
static inline void
145
get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
146
{
147
  memset (r, 0, sizeof (*r));
148
  r->cl = rvc_nan;
149
  r->sign = sign;
150
  r->signalling = 1;
151
  r->canonical = 1;
152
}
153
 
154
static inline void
155
get_inf (REAL_VALUE_TYPE *r, int sign)
156
{
157
  memset (r, 0, sizeof (*r));
158
  r->cl = rvc_inf;
159
  r->sign = sign;
160
}
161
 
162
 
163
/* Right-shift the significand of A by N bits; put the result in the
164
   significand of R.  If any one bits are shifted out, return true.  */
165
 
166
static bool
167
sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
168
                           unsigned int n)
169
{
170
  unsigned long sticky = 0;
171
  unsigned int i, ofs = 0;
172
 
173
  if (n >= HOST_BITS_PER_LONG)
174
    {
175
      for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
176
        sticky |= a->sig[i];
177
      n &= HOST_BITS_PER_LONG - 1;
178
    }
179
 
180
  if (n != 0)
181
    {
182
      sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
183
      for (i = 0; i < SIGSZ; ++i)
184
        {
185
          r->sig[i]
186
            = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
187
               | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
188
                  << (HOST_BITS_PER_LONG - n)));
189
        }
190
    }
191
  else
192
    {
193
      for (i = 0; ofs + i < SIGSZ; ++i)
194
        r->sig[i] = a->sig[ofs + i];
195
      for (; i < SIGSZ; ++i)
196
        r->sig[i] = 0;
197
    }
198
 
199
  return sticky != 0;
200
}
201
 
202
/* Right-shift the significand of A by N bits; put the result in the
203
   significand of R.  */
204
 
205
static void
206
rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
207
                    unsigned int n)
208
{
209
  unsigned int i, ofs = n / HOST_BITS_PER_LONG;
210
 
211
  n &= HOST_BITS_PER_LONG - 1;
212
  if (n != 0)
213
    {
214
      for (i = 0; i < SIGSZ; ++i)
215
        {
216
          r->sig[i]
217
            = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
218
               | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
219
                  << (HOST_BITS_PER_LONG - n)));
220
        }
221
    }
222
  else
223
    {
224
      for (i = 0; ofs + i < SIGSZ; ++i)
225
        r->sig[i] = a->sig[ofs + i];
226
      for (; i < SIGSZ; ++i)
227
        r->sig[i] = 0;
228
    }
229
}
230
 
231
/* Left-shift the significand of A by N bits; put the result in the
232
   significand of R.  */
233
 
234
static void
235
lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
236
                    unsigned int n)
237
{
238
  unsigned int i, ofs = n / HOST_BITS_PER_LONG;
239
 
240
  n &= HOST_BITS_PER_LONG - 1;
241
  if (n == 0)
242
    {
243
      for (i = 0; ofs + i < SIGSZ; ++i)
244
        r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
245
      for (; i < SIGSZ; ++i)
246
        r->sig[SIGSZ-1-i] = 0;
247
    }
248
  else
249
    for (i = 0; i < SIGSZ; ++i)
250
      {
251
        r->sig[SIGSZ-1-i]
252
          = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
253
             | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
254
                >> (HOST_BITS_PER_LONG - n)));
255
      }
256
}
257
 
258
/* Likewise, but N is specialized to 1.  */
259
 
260
static inline void
261
lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
262
{
263
  unsigned int i;
264
 
265
  for (i = SIGSZ - 1; i > 0; --i)
266
    r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
267
  r->sig[0] = a->sig[0] << 1;
268
}
269
 
270
/* Add the significands of A and B, placing the result in R.  Return
271
   true if there was carry out of the most significant word.  */
272
 
273
static inline bool
274
add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
275
                  const REAL_VALUE_TYPE *b)
276
{
277
  bool carry = false;
278
  int i;
279
 
280
  for (i = 0; i < SIGSZ; ++i)
281
    {
282
      unsigned long ai = a->sig[i];
283
      unsigned long ri = ai + b->sig[i];
284
 
285
      if (carry)
286
        {
287
          carry = ri < ai;
288
          carry |= ++ri == 0;
289
        }
290
      else
291
        carry = ri < ai;
292
 
293
      r->sig[i] = ri;
294
    }
295
 
296
  return carry;
297
}
298
 
299
/* Subtract the significands of A and B, placing the result in R.  CARRY is
300
   true if there's a borrow incoming to the least significant word.
301
   Return true if there was borrow out of the most significant word.  */
302
 
303
static inline bool
304
sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
305
                  const REAL_VALUE_TYPE *b, int carry)
306
{
307
  int i;
308
 
309
  for (i = 0; i < SIGSZ; ++i)
310
    {
311
      unsigned long ai = a->sig[i];
312
      unsigned long ri = ai - b->sig[i];
313
 
314
      if (carry)
315
        {
316
          carry = ri > ai;
317
          carry |= ~--ri == 0;
318
        }
319
      else
320
        carry = ri > ai;
321
 
322
      r->sig[i] = ri;
323
    }
324
 
325
  return carry;
326
}
327
 
328
/* Negate the significand A, placing the result in R.  */
329
 
330
static inline void
331
neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
332
{
333
  bool carry = true;
334
  int i;
335
 
336
  for (i = 0; i < SIGSZ; ++i)
337
    {
338
      unsigned long ri, ai = a->sig[i];
339
 
340
      if (carry)
341
        {
342
          if (ai)
343
            {
344
              ri = -ai;
345
              carry = false;
346
            }
347
          else
348
            ri = ai;
349
        }
350
      else
351
        ri = ~ai;
352
 
353
      r->sig[i] = ri;
354
    }
355
}
356
 
357
/* Compare significands.  Return tri-state vs zero.  */
358
 
359
static inline int
360
cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
361
{
362
  int i;
363
 
364
  for (i = SIGSZ - 1; i >= 0; --i)
365
    {
366
      unsigned long ai = a->sig[i];
367
      unsigned long bi = b->sig[i];
368
 
369
      if (ai > bi)
370
        return 1;
371
      if (ai < bi)
372
        return -1;
373
    }
374
 
375
  return 0;
376
}
377
 
378
/* Return true if A is nonzero.  */
379
 
380
static inline int
381
cmp_significand_0 (const REAL_VALUE_TYPE *a)
382
{
383
  int i;
384
 
385
  for (i = SIGSZ - 1; i >= 0; --i)
386
    if (a->sig[i])
387
      return 1;
388
 
389
  return 0;
390
}
391
 
392
/* Set bit N of the significand of R.  */
393
 
394
static inline void
395
set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
396
{
397
  r->sig[n / HOST_BITS_PER_LONG]
398
    |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
399
}
400
 
401
/* Clear bit N of the significand of R.  */
402
 
403
static inline void
404
clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
405
{
406
  r->sig[n / HOST_BITS_PER_LONG]
407
    &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
408
}
409
 
410
/* Test bit N of the significand of R.  */
411
 
412
static inline bool
413
test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
414
{
415
  /* ??? Compiler bug here if we return this expression directly.
416
     The conversion to bool strips the "&1" and we wind up testing
417
     e.g. 2 != 0 -> true.  Seen in gcc version 3.2 20020520.  */
418
  int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
419
  return t;
420
}
421
 
422
/* Clear bits 0..N-1 of the significand of R.  */
423
 
424
static void
425
clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
426
{
427
  int i, w = n / HOST_BITS_PER_LONG;
428
 
429
  for (i = 0; i < w; ++i)
430
    r->sig[i] = 0;
431
 
432
  r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
433
}
434
 
435
/* Divide the significands of A and B, placing the result in R.  Return
436
   true if the division was inexact.  */
437
 
438
static inline bool
439
div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
440
                  const REAL_VALUE_TYPE *b)
441
{
442
  REAL_VALUE_TYPE u;
443
  int i, bit = SIGNIFICAND_BITS - 1;
444
  unsigned long msb, inexact;
445
 
446
  u = *a;
447
  memset (r->sig, 0, sizeof (r->sig));
448
 
449
  msb = 0;
450
  goto start;
451
  do
452
    {
453
      msb = u.sig[SIGSZ-1] & SIG_MSB;
454
      lshift_significand_1 (&u, &u);
455
    start:
456
      if (msb || cmp_significands (&u, b) >= 0)
457
        {
458
          sub_significands (&u, &u, b, 0);
459
          set_significand_bit (r, bit);
460
        }
461
    }
462
  while (--bit >= 0);
463
 
464
  for (i = 0, inexact = 0; i < SIGSZ; i++)
465
    inexact |= u.sig[i];
466
 
467
  return inexact != 0;
468
}
469
 
470
/* Adjust the exponent and significand of R such that the most
471
   significant bit is set.  We underflow to zero and overflow to
472
   infinity here, without denormals.  (The intermediate representation
473
   exponent is large enough to handle target denormals normalized.)  */
474
 
475
static void
476
normalize (REAL_VALUE_TYPE *r)
477
{
478
  int shift = 0, exp;
479
  int i, j;
480
 
481
  if (r->decimal)
482
    return;
483
 
484
  /* Find the first word that is nonzero.  */
485
  for (i = SIGSZ - 1; i >= 0; i--)
486
    if (r->sig[i] == 0)
487
      shift += HOST_BITS_PER_LONG;
488
    else
489
      break;
490
 
491
  /* Zero significand flushes to zero.  */
492
  if (i < 0)
493
    {
494
      r->cl = rvc_zero;
495
      SET_REAL_EXP (r, 0);
496
      return;
497
    }
498
 
499
  /* Find the first bit that is nonzero.  */
500
  for (j = 0; ; j++)
501
    if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
502
      break;
503
  shift += j;
504
 
505
  if (shift > 0)
506
    {
507
      exp = REAL_EXP (r) - shift;
508
      if (exp > MAX_EXP)
509
        get_inf (r, r->sign);
510
      else if (exp < -MAX_EXP)
511
        get_zero (r, r->sign);
512
      else
513
        {
514
          SET_REAL_EXP (r, exp);
515
          lshift_significand (r, r, shift);
516
        }
517
    }
518
}
519
 
520
/* Calculate R = A + (SUBTRACT_P ? -B : B).  Return true if the
521
   result may be inexact due to a loss of precision.  */
522
 
523
static bool
524
do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
525
        const REAL_VALUE_TYPE *b, int subtract_p)
526
{
527
  int dexp, sign, exp;
528
  REAL_VALUE_TYPE t;
529
  bool inexact = false;
530
 
531
  /* Determine if we need to add or subtract.  */
532
  sign = a->sign;
533
  subtract_p = (sign ^ b->sign) ^ subtract_p;
534
 
535
  switch (CLASS2 (a->cl, b->cl))
536
    {
537
    case CLASS2 (rvc_zero, rvc_zero):
538
      /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0.  */
539
      get_zero (r, sign & !subtract_p);
540
      return false;
541
 
542
    case CLASS2 (rvc_zero, rvc_normal):
543
    case CLASS2 (rvc_zero, rvc_inf):
544
    case CLASS2 (rvc_zero, rvc_nan):
545
      /* 0 + ANY = ANY.  */
546
    case CLASS2 (rvc_normal, rvc_nan):
547
    case CLASS2 (rvc_inf, rvc_nan):
548
    case CLASS2 (rvc_nan, rvc_nan):
549
      /* ANY + NaN = NaN.  */
550
    case CLASS2 (rvc_normal, rvc_inf):
551
      /* R + Inf = Inf.  */
552
      *r = *b;
553
      r->sign = sign ^ subtract_p;
554
      return false;
555
 
556
    case CLASS2 (rvc_normal, rvc_zero):
557
    case CLASS2 (rvc_inf, rvc_zero):
558
    case CLASS2 (rvc_nan, rvc_zero):
559
      /* ANY + 0 = ANY.  */
560
    case CLASS2 (rvc_nan, rvc_normal):
561
    case CLASS2 (rvc_nan, rvc_inf):
562
      /* NaN + ANY = NaN.  */
563
    case CLASS2 (rvc_inf, rvc_normal):
564
      /* Inf + R = Inf.  */
565
      *r = *a;
566
      return false;
567
 
568
    case CLASS2 (rvc_inf, rvc_inf):
569
      if (subtract_p)
570
        /* Inf - Inf = NaN.  */
571
        get_canonical_qnan (r, 0);
572
      else
573
        /* Inf + Inf = Inf.  */
574
        *r = *a;
575
      return false;
576
 
577
    case CLASS2 (rvc_normal, rvc_normal):
578
      break;
579
 
580
    default:
581
      gcc_unreachable ();
582
    }
583
 
584
  /* Swap the arguments such that A has the larger exponent.  */
585
  dexp = REAL_EXP (a) - REAL_EXP (b);
586
  if (dexp < 0)
587
    {
588
      const REAL_VALUE_TYPE *t;
589
      t = a, a = b, b = t;
590
      dexp = -dexp;
591
      sign ^= subtract_p;
592
    }
593
  exp = REAL_EXP (a);
594
 
595
  /* If the exponents are not identical, we need to shift the
596
     significand of B down.  */
597
  if (dexp > 0)
598
    {
599
      /* If the exponents are too far apart, the significands
600
         do not overlap, which makes the subtraction a noop.  */
601
      if (dexp >= SIGNIFICAND_BITS)
602
        {
603
          *r = *a;
604
          r->sign = sign;
605
          return true;
606
        }
607
 
608
      inexact |= sticky_rshift_significand (&t, b, dexp);
609
      b = &t;
610
    }
611
 
612
  if (subtract_p)
613
    {
614
      if (sub_significands (r, a, b, inexact))
615
        {
616
          /* We got a borrow out of the subtraction.  That means that
617
             A and B had the same exponent, and B had the larger
618
             significand.  We need to swap the sign and negate the
619
             significand.  */
620
          sign ^= 1;
621
          neg_significand (r, r);
622
        }
623
    }
624
  else
625
    {
626
      if (add_significands (r, a, b))
627
        {
628
          /* We got carry out of the addition.  This means we need to
629
             shift the significand back down one bit and increase the
630
             exponent.  */
631
          inexact |= sticky_rshift_significand (r, r, 1);
632
          r->sig[SIGSZ-1] |= SIG_MSB;
633
          if (++exp > MAX_EXP)
634
            {
635
              get_inf (r, sign);
636
              return true;
637
            }
638
        }
639
    }
640
 
641
  r->cl = rvc_normal;
642
  r->sign = sign;
643
  SET_REAL_EXP (r, exp);
644
  /* Zero out the remaining fields.  */
645
  r->signalling = 0;
646
  r->canonical = 0;
647
  r->decimal = 0;
648
 
649
  /* Re-normalize the result.  */
650
  normalize (r);
651
 
652
  /* Special case: if the subtraction results in zero, the result
653
     is positive.  */
654
  if (r->cl == rvc_zero)
655
    r->sign = 0;
656
  else
657
    r->sig[0] |= inexact;
658
 
659
  return inexact;
660
}
661
 
662
/* Calculate R = A * B.  Return true if the result may be inexact.  */
663
 
664
static bool
665
do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
666
             const REAL_VALUE_TYPE *b)
667
{
668
  REAL_VALUE_TYPE u, t, *rr;
669
  unsigned int i, j, k;
670
  int sign = a->sign ^ b->sign;
671
  bool inexact = false;
672
 
673
  switch (CLASS2 (a->cl, b->cl))
674
    {
675
    case CLASS2 (rvc_zero, rvc_zero):
676
    case CLASS2 (rvc_zero, rvc_normal):
677
    case CLASS2 (rvc_normal, rvc_zero):
678
      /* +-0 * ANY = 0 with appropriate sign.  */
679
      get_zero (r, sign);
680
      return false;
681
 
682
    case CLASS2 (rvc_zero, rvc_nan):
683
    case CLASS2 (rvc_normal, rvc_nan):
684
    case CLASS2 (rvc_inf, rvc_nan):
685
    case CLASS2 (rvc_nan, rvc_nan):
686
      /* ANY * NaN = NaN.  */
687
      *r = *b;
688
      r->sign = sign;
689
      return false;
690
 
691
    case CLASS2 (rvc_nan, rvc_zero):
692
    case CLASS2 (rvc_nan, rvc_normal):
693
    case CLASS2 (rvc_nan, rvc_inf):
694
      /* NaN * ANY = NaN.  */
695
      *r = *a;
696
      r->sign = sign;
697
      return false;
698
 
699
    case CLASS2 (rvc_zero, rvc_inf):
700
    case CLASS2 (rvc_inf, rvc_zero):
701
      /* 0 * Inf = NaN */
702
      get_canonical_qnan (r, sign);
703
      return false;
704
 
705
    case CLASS2 (rvc_inf, rvc_inf):
706
    case CLASS2 (rvc_normal, rvc_inf):
707
    case CLASS2 (rvc_inf, rvc_normal):
708
      /* Inf * Inf = Inf, R * Inf = Inf */
709
      get_inf (r, sign);
710
      return false;
711
 
712
    case CLASS2 (rvc_normal, rvc_normal):
713
      break;
714
 
715
    default:
716
      gcc_unreachable ();
717
    }
718
 
719
  if (r == a || r == b)
720
    rr = &t;
721
  else
722
    rr = r;
723
  get_zero (rr, 0);
724
 
725
  /* Collect all the partial products.  Since we don't have sure access
726
     to a widening multiply, we split each long into two half-words.
727
 
728
     Consider the long-hand form of a four half-word multiplication:
729
 
730
                 A  B  C  D
731
              *  E  F  G  H
732
             --------------
733
                DE DF DG DH
734
             CE CF CG CH
735
          BE BF BG BH
736
       AE AF AG AH
737
 
738
     We construct partial products of the widened half-word products
739
     that are known to not overlap, e.g. DF+DH.  Each such partial
740
     product is given its proper exponent, which allows us to sum them
741
     and obtain the finished product.  */
742
 
743
  for (i = 0; i < SIGSZ * 2; ++i)
744
    {
745
      unsigned long ai = a->sig[i / 2];
746
      if (i & 1)
747
        ai >>= HOST_BITS_PER_LONG / 2;
748
      else
749
        ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
750
 
751
      if (ai == 0)
752
        continue;
753
 
754
      for (j = 0; j < 2; ++j)
755
        {
756
          int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
757
                     + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
758
 
759
          if (exp > MAX_EXP)
760
            {
761
              get_inf (r, sign);
762
              return true;
763
            }
764
          if (exp < -MAX_EXP)
765
            {
766
              /* Would underflow to zero, which we shouldn't bother adding.  */
767
              inexact = true;
768
              continue;
769
            }
770
 
771
          memset (&u, 0, sizeof (u));
772
          u.cl = rvc_normal;
773
          SET_REAL_EXP (&u, exp);
774
 
775
          for (k = j; k < SIGSZ * 2; k += 2)
776
            {
777
              unsigned long bi = b->sig[k / 2];
778
              if (k & 1)
779
                bi >>= HOST_BITS_PER_LONG / 2;
780
              else
781
                bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
782
 
783
              u.sig[k / 2] = ai * bi;
784
            }
785
 
786
          normalize (&u);
787
          inexact |= do_add (rr, rr, &u, 0);
788
        }
789
    }
790
 
791
  rr->sign = sign;
792
  if (rr != r)
793
    *r = t;
794
 
795
  return inexact;
796
}
797
 
798
/* Calculate R = A / B.  Return true if the result may be inexact.  */
799
 
800
static bool
801
do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
802
           const REAL_VALUE_TYPE *b)
803
{
804
  int exp, sign = a->sign ^ b->sign;
805
  REAL_VALUE_TYPE t, *rr;
806
  bool inexact;
807
 
808
  switch (CLASS2 (a->cl, b->cl))
809
    {
810
    case CLASS2 (rvc_zero, rvc_zero):
811
      /* 0 / 0 = NaN.  */
812
    case CLASS2 (rvc_inf, rvc_inf):
813
      /* Inf / Inf = NaN.  */
814
      get_canonical_qnan (r, sign);
815
      return false;
816
 
817
    case CLASS2 (rvc_zero, rvc_normal):
818
    case CLASS2 (rvc_zero, rvc_inf):
819
      /* 0 / ANY = 0.  */
820
    case CLASS2 (rvc_normal, rvc_inf):
821
      /* R / Inf = 0.  */
822
      get_zero (r, sign);
823
      return false;
824
 
825
    case CLASS2 (rvc_normal, rvc_zero):
826
      /* R / 0 = Inf.  */
827
    case CLASS2 (rvc_inf, rvc_zero):
828
      /* Inf / 0 = Inf.  */
829
      get_inf (r, sign);
830
      return false;
831
 
832
    case CLASS2 (rvc_zero, rvc_nan):
833
    case CLASS2 (rvc_normal, rvc_nan):
834
    case CLASS2 (rvc_inf, rvc_nan):
835
    case CLASS2 (rvc_nan, rvc_nan):
836
      /* ANY / NaN = NaN.  */
837
      *r = *b;
838
      r->sign = sign;
839
      return false;
840
 
841
    case CLASS2 (rvc_nan, rvc_zero):
842
    case CLASS2 (rvc_nan, rvc_normal):
843
    case CLASS2 (rvc_nan, rvc_inf):
844
      /* NaN / ANY = NaN.  */
845
      *r = *a;
846
      r->sign = sign;
847
      return false;
848
 
849
    case CLASS2 (rvc_inf, rvc_normal):
850
      /* Inf / R = Inf.  */
851
      get_inf (r, sign);
852
      return false;
853
 
854
    case CLASS2 (rvc_normal, rvc_normal):
855
      break;
856
 
857
    default:
858
      gcc_unreachable ();
859
    }
860
 
861
  if (r == a || r == b)
862
    rr = &t;
863
  else
864
    rr = r;
865
 
866
  /* Make sure all fields in the result are initialized.  */
867
  get_zero (rr, 0);
868
  rr->cl = rvc_normal;
869
  rr->sign = sign;
870
 
871
  exp = REAL_EXP (a) - REAL_EXP (b) + 1;
872
  if (exp > MAX_EXP)
873
    {
874
      get_inf (r, sign);
875
      return true;
876
    }
877
  if (exp < -MAX_EXP)
878
    {
879
      get_zero (r, sign);
880
      return true;
881
    }
882
  SET_REAL_EXP (rr, exp);
883
 
884
  inexact = div_significands (rr, a, b);
885
 
886
  /* Re-normalize the result.  */
887
  normalize (rr);
888
  rr->sig[0] |= inexact;
889
 
890
  if (rr != r)
891
    *r = t;
892
 
893
  return inexact;
894
}
895
 
896
/* Return a tri-state comparison of A vs B.  Return NAN_RESULT if
897
   one of the two operands is a NaN.  */
898
 
899
static int
900
do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
901
            int nan_result)
902
{
903
  int ret;
904
 
905
  switch (CLASS2 (a->cl, b->cl))
906
    {
907
    case CLASS2 (rvc_zero, rvc_zero):
908
      /* Sign of zero doesn't matter for compares.  */
909
      return 0;
910
 
911
    case CLASS2 (rvc_normal, rvc_zero):
912
      /* Decimal float zero is special and uses rvc_normal, not rvc_zero.  */
913
      if (a->decimal)
914
        return decimal_do_compare (a, b, nan_result);
915
      /* Fall through.  */
916
    case CLASS2 (rvc_inf, rvc_zero):
917
    case CLASS2 (rvc_inf, rvc_normal):
918
      return (a->sign ? -1 : 1);
919
 
920
    case CLASS2 (rvc_inf, rvc_inf):
921
      return -a->sign - -b->sign;
922
 
923
    case CLASS2 (rvc_zero, rvc_normal):
924
      /* Decimal float zero is special and uses rvc_normal, not rvc_zero.  */
925
      if (b->decimal)
926
        return decimal_do_compare (a, b, nan_result);
927
      /* Fall through.  */
928
    case CLASS2 (rvc_zero, rvc_inf):
929
    case CLASS2 (rvc_normal, rvc_inf):
930
      return (b->sign ? 1 : -1);
931
 
932
    case CLASS2 (rvc_zero, rvc_nan):
933
    case CLASS2 (rvc_normal, rvc_nan):
934
    case CLASS2 (rvc_inf, rvc_nan):
935
    case CLASS2 (rvc_nan, rvc_nan):
936
    case CLASS2 (rvc_nan, rvc_zero):
937
    case CLASS2 (rvc_nan, rvc_normal):
938
    case CLASS2 (rvc_nan, rvc_inf):
939
      return nan_result;
940
 
941
    case CLASS2 (rvc_normal, rvc_normal):
942
      break;
943
 
944
    default:
945
      gcc_unreachable ();
946
    }
947
 
948
  if (a->sign != b->sign)
949
    return -a->sign - -b->sign;
950
 
951
  if (a->decimal || b->decimal)
952
    return decimal_do_compare (a, b, nan_result);
953
 
954
  if (REAL_EXP (a) > REAL_EXP (b))
955
    ret = 1;
956
  else if (REAL_EXP (a) < REAL_EXP (b))
957
    ret = -1;
958
  else
959
    ret = cmp_significands (a, b);
960
 
961
  return (a->sign ? -ret : ret);
962
}
963
 
964
/* Return A truncated to an integral value toward zero.  */
965
 
966
static void
967
do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
968
{
969
  *r = *a;
970
 
971
  switch (r->cl)
972
    {
973
    case rvc_zero:
974
    case rvc_inf:
975
    case rvc_nan:
976
      break;
977
 
978
    case rvc_normal:
979
      if (r->decimal)
980
        {
981
          decimal_do_fix_trunc (r, a);
982
          return;
983
        }
984
      if (REAL_EXP (r) <= 0)
985
        get_zero (r, r->sign);
986
      else if (REAL_EXP (r) < SIGNIFICAND_BITS)
987
        clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
988
      break;
989
 
990
    default:
991
      gcc_unreachable ();
992
    }
993
}
994
 
995
/* Perform the binary or unary operation described by CODE.
996
   For a unary operation, leave OP1 NULL.  This function returns
997
   true if the result may be inexact due to loss of precision.  */
998
 
999
bool
1000
real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
1001
                 const REAL_VALUE_TYPE *op1)
1002
{
1003
  enum tree_code code = (enum tree_code) icode;
1004
 
1005
  if (op0->decimal || (op1 && op1->decimal))
1006
    return decimal_real_arithmetic (r, code, op0, op1);
1007
 
1008
  switch (code)
1009
    {
1010
    case PLUS_EXPR:
1011
      return do_add (r, op0, op1, 0);
1012
 
1013
    case MINUS_EXPR:
1014
      return do_add (r, op0, op1, 1);
1015
 
1016
    case MULT_EXPR:
1017
      return do_multiply (r, op0, op1);
1018
 
1019
    case RDIV_EXPR:
1020
      return do_divide (r, op0, op1);
1021
 
1022
    case MIN_EXPR:
1023
      if (op1->cl == rvc_nan)
1024
        *r = *op1;
1025
      else if (do_compare (op0, op1, -1) < 0)
1026
        *r = *op0;
1027
      else
1028
        *r = *op1;
1029
      break;
1030
 
1031
    case MAX_EXPR:
1032
      if (op1->cl == rvc_nan)
1033
        *r = *op1;
1034
      else if (do_compare (op0, op1, 1) < 0)
1035
        *r = *op1;
1036
      else
1037
        *r = *op0;
1038
      break;
1039
 
1040
    case NEGATE_EXPR:
1041
      *r = *op0;
1042
      r->sign ^= 1;
1043
      break;
1044
 
1045
    case ABS_EXPR:
1046
      *r = *op0;
1047
      r->sign = 0;
1048
      break;
1049
 
1050
    case FIX_TRUNC_EXPR:
1051
      do_fix_trunc (r, op0);
1052
      break;
1053
 
1054
    default:
1055
      gcc_unreachable ();
1056
    }
1057
  return false;
1058
}
1059
 
1060
/* Legacy.  Similar, but return the result directly.  */
1061
 
1062
REAL_VALUE_TYPE
1063
real_arithmetic2 (int icode, const REAL_VALUE_TYPE *op0,
1064
                  const REAL_VALUE_TYPE *op1)
1065
{
1066
  REAL_VALUE_TYPE r;
1067
  real_arithmetic (&r, icode, op0, op1);
1068
  return r;
1069
}
1070
 
1071
bool
1072
real_compare (int icode, const REAL_VALUE_TYPE *op0,
1073
              const REAL_VALUE_TYPE *op1)
1074
{
1075
  enum tree_code code = (enum tree_code) icode;
1076
 
1077
  switch (code)
1078
    {
1079
    case LT_EXPR:
1080
      return do_compare (op0, op1, 1) < 0;
1081
    case LE_EXPR:
1082
      return do_compare (op0, op1, 1) <= 0;
1083
    case GT_EXPR:
1084
      return do_compare (op0, op1, -1) > 0;
1085
    case GE_EXPR:
1086
      return do_compare (op0, op1, -1) >= 0;
1087
    case EQ_EXPR:
1088
      return do_compare (op0, op1, -1) == 0;
1089
    case NE_EXPR:
1090
      return do_compare (op0, op1, -1) != 0;
1091
    case UNORDERED_EXPR:
1092
      return op0->cl == rvc_nan || op1->cl == rvc_nan;
1093
    case ORDERED_EXPR:
1094
      return op0->cl != rvc_nan && op1->cl != rvc_nan;
1095
    case UNLT_EXPR:
1096
      return do_compare (op0, op1, -1) < 0;
1097
    case UNLE_EXPR:
1098
      return do_compare (op0, op1, -1) <= 0;
1099
    case UNGT_EXPR:
1100
      return do_compare (op0, op1, 1) > 0;
1101
    case UNGE_EXPR:
1102
      return do_compare (op0, op1, 1) >= 0;
1103
    case UNEQ_EXPR:
1104
      return do_compare (op0, op1, 0) == 0;
1105
    case LTGT_EXPR:
1106
      return do_compare (op0, op1, 0) != 0;
1107
 
1108
    default:
1109
      gcc_unreachable ();
1110
    }
1111
}
1112
 
1113
/* Return floor log2(R).  */
1114
 
1115
int
1116
real_exponent (const REAL_VALUE_TYPE *r)
1117
{
1118
  switch (r->cl)
1119
    {
1120
    case rvc_zero:
1121
      return 0;
1122
    case rvc_inf:
1123
    case rvc_nan:
1124
      return (unsigned int)-1 >> 1;
1125
    case rvc_normal:
1126
      return REAL_EXP (r);
1127
    default:
1128
      gcc_unreachable ();
1129
    }
1130
}
1131
 
1132
/* R = OP0 * 2**EXP.  */
1133
 
1134
void
1135
real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1136
{
1137
  *r = *op0;
1138
  switch (r->cl)
1139
    {
1140
    case rvc_zero:
1141
    case rvc_inf:
1142
    case rvc_nan:
1143
      break;
1144
 
1145
    case rvc_normal:
1146
      exp += REAL_EXP (op0);
1147
      if (exp > MAX_EXP)
1148
        get_inf (r, r->sign);
1149
      else if (exp < -MAX_EXP)
1150
        get_zero (r, r->sign);
1151
      else
1152
        SET_REAL_EXP (r, exp);
1153
      break;
1154
 
1155
    default:
1156
      gcc_unreachable ();
1157
    }
1158
}
1159
 
1160
/* Determine whether a floating-point value X is infinite.  */
1161
 
1162
bool
1163
real_isinf (const REAL_VALUE_TYPE *r)
1164
{
1165
  return (r->cl == rvc_inf);
1166
}
1167
 
1168
/* Determine whether a floating-point value X is a NaN.  */
1169
 
1170
bool
1171
real_isnan (const REAL_VALUE_TYPE *r)
1172
{
1173
  return (r->cl == rvc_nan);
1174
}
1175
 
1176
/* Determine whether a floating-point value X is finite.  */
1177
 
1178
bool
1179
real_isfinite (const REAL_VALUE_TYPE *r)
1180
{
1181
  return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1182
}
1183
 
1184
/* Determine whether a floating-point value X is negative.  */
1185
 
1186
bool
1187
real_isneg (const REAL_VALUE_TYPE *r)
1188
{
1189
  return r->sign;
1190
}
1191
 
1192
/* Determine whether a floating-point value X is minus zero.  */
1193
 
1194
bool
1195
real_isnegzero (const REAL_VALUE_TYPE *r)
1196
{
1197
  return r->sign && r->cl == rvc_zero;
1198
}
1199
 
1200
/* Compare two floating-point objects for bitwise identity.  */
1201
 
1202
bool
1203
real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1204
{
1205
  int i;
1206
 
1207
  if (a->cl != b->cl)
1208
    return false;
1209
  if (a->sign != b->sign)
1210
    return false;
1211
 
1212
  switch (a->cl)
1213
    {
1214
    case rvc_zero:
1215
    case rvc_inf:
1216
      return true;
1217
 
1218
    case rvc_normal:
1219
      if (a->decimal != b->decimal)
1220
        return false;
1221
      if (REAL_EXP (a) != REAL_EXP (b))
1222
        return false;
1223
      break;
1224
 
1225
    case rvc_nan:
1226
      if (a->signalling != b->signalling)
1227
        return false;
1228
      /* The significand is ignored for canonical NaNs.  */
1229
      if (a->canonical || b->canonical)
1230
        return a->canonical == b->canonical;
1231
      break;
1232
 
1233
    default:
1234
      gcc_unreachable ();
1235
    }
1236
 
1237
  for (i = 0; i < SIGSZ; ++i)
1238
    if (a->sig[i] != b->sig[i])
1239
      return false;
1240
 
1241
  return true;
1242
}
1243
 
1244
/* Try to change R into its exact multiplicative inverse in machine
1245
   mode MODE.  Return true if successful.  */
1246
 
1247
bool
1248
exact_real_inverse (enum machine_mode mode, REAL_VALUE_TYPE *r)
1249
{
1250
  const REAL_VALUE_TYPE *one = real_digit (1);
1251
  REAL_VALUE_TYPE u;
1252
  int i;
1253
 
1254
  if (r->cl != rvc_normal)
1255
    return false;
1256
 
1257
  /* Check for a power of two: all significand bits zero except the MSB.  */
1258
  for (i = 0; i < SIGSZ-1; ++i)
1259
    if (r->sig[i] != 0)
1260
      return false;
1261
  if (r->sig[SIGSZ-1] != SIG_MSB)
1262
    return false;
1263
 
1264
  /* Find the inverse and truncate to the required mode.  */
1265
  do_divide (&u, one, r);
1266
  real_convert (&u, mode, &u);
1267
 
1268
  /* The rounding may have overflowed.  */
1269
  if (u.cl != rvc_normal)
1270
    return false;
1271
  for (i = 0; i < SIGSZ-1; ++i)
1272
    if (u.sig[i] != 0)
1273
      return false;
1274
  if (u.sig[SIGSZ-1] != SIG_MSB)
1275
    return false;
1276
 
1277
  *r = u;
1278
  return true;
1279
}
1280
 
1281
/* Return true if arithmetic on values in IMODE that were promoted
1282
   from values in TMODE is equivalent to direct arithmetic on values
1283
   in TMODE.  */
1284
 
1285
bool
1286
real_can_shorten_arithmetic (enum machine_mode imode, enum machine_mode tmode)
1287
{
1288
  const struct real_format *tfmt, *ifmt;
1289
  tfmt = REAL_MODE_FORMAT (tmode);
1290
  ifmt = REAL_MODE_FORMAT (imode);
1291
  /* These conditions are conservative rather than trying to catch the
1292
     exact boundary conditions; the main case to allow is IEEE float
1293
     and double.  */
1294
  return (ifmt->b == tfmt->b
1295
          && ifmt->p > 2 * tfmt->p
1296
          && ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
1297
          && ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
1298
          && ifmt->emax > 2 * tfmt->emax + 2
1299
          && ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
1300
          && ifmt->round_towards_zero == tfmt->round_towards_zero
1301
          && (ifmt->has_sign_dependent_rounding
1302
              == tfmt->has_sign_dependent_rounding)
1303
          && ifmt->has_nans >= tfmt->has_nans
1304
          && ifmt->has_inf >= tfmt->has_inf
1305
          && ifmt->has_signed_zero >= tfmt->has_signed_zero
1306
          && !MODE_COMPOSITE_P (tmode)
1307
          && !MODE_COMPOSITE_P (imode));
1308
}
1309
 
1310
/* Render R as an integer.  */
1311
 
1312
HOST_WIDE_INT
1313
real_to_integer (const REAL_VALUE_TYPE *r)
1314
{
1315
  unsigned HOST_WIDE_INT i;
1316
 
1317
  switch (r->cl)
1318
    {
1319
    case rvc_zero:
1320
    underflow:
1321
      return 0;
1322
 
1323
    case rvc_inf:
1324
    case rvc_nan:
1325
    overflow:
1326
      i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1327
      if (!r->sign)
1328
        i--;
1329
      return i;
1330
 
1331
    case rvc_normal:
1332
      if (r->decimal)
1333
        return decimal_real_to_integer (r);
1334
 
1335
      if (REAL_EXP (r) <= 0)
1336
        goto underflow;
1337
      /* Only force overflow for unsigned overflow.  Signed overflow is
1338
         undefined, so it doesn't matter what we return, and some callers
1339
         expect to be able to use this routine for both signed and
1340
         unsigned conversions.  */
1341
      if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1342
        goto overflow;
1343
 
1344
      if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1345
        i = r->sig[SIGSZ-1];
1346
      else
1347
        {
1348
          gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1349
          i = r->sig[SIGSZ-1];
1350
          i = i << (HOST_BITS_PER_LONG - 1) << 1;
1351
          i |= r->sig[SIGSZ-2];
1352
        }
1353
 
1354
      i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1355
 
1356
      if (r->sign)
1357
        i = -i;
1358
      return i;
1359
 
1360
    default:
1361
      gcc_unreachable ();
1362
    }
1363
}
1364
 
1365
/* Likewise, but to an integer pair, HI+LOW.  */
1366
 
1367
void
1368
real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
1369
                  const REAL_VALUE_TYPE *r)
1370
{
1371
  REAL_VALUE_TYPE t;
1372
  HOST_WIDE_INT low, high;
1373
  int exp;
1374
 
1375
  switch (r->cl)
1376
    {
1377
    case rvc_zero:
1378
    underflow:
1379
      low = high = 0;
1380
      break;
1381
 
1382
    case rvc_inf:
1383
    case rvc_nan:
1384
    overflow:
1385
      high = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1386
      if (r->sign)
1387
        low = 0;
1388
      else
1389
        {
1390
          high--;
1391
          low = -1;
1392
        }
1393
      break;
1394
 
1395
    case rvc_normal:
1396
      if (r->decimal)
1397
        {
1398
          decimal_real_to_integer2 (plow, phigh, r);
1399
          return;
1400
        }
1401
 
1402
      exp = REAL_EXP (r);
1403
      if (exp <= 0)
1404
        goto underflow;
1405
      /* Only force overflow for unsigned overflow.  Signed overflow is
1406
         undefined, so it doesn't matter what we return, and some callers
1407
         expect to be able to use this routine for both signed and
1408
         unsigned conversions.  */
1409
      if (exp > 2*HOST_BITS_PER_WIDE_INT)
1410
        goto overflow;
1411
 
1412
      rshift_significand (&t, r, 2*HOST_BITS_PER_WIDE_INT - exp);
1413
      if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1414
        {
1415
          high = t.sig[SIGSZ-1];
1416
          low = t.sig[SIGSZ-2];
1417
        }
1418
      else
1419
        {
1420
          gcc_assert (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG);
1421
          high = t.sig[SIGSZ-1];
1422
          high = high << (HOST_BITS_PER_LONG - 1) << 1;
1423
          high |= t.sig[SIGSZ-2];
1424
 
1425
          low = t.sig[SIGSZ-3];
1426
          low = low << (HOST_BITS_PER_LONG - 1) << 1;
1427
          low |= t.sig[SIGSZ-4];
1428
        }
1429
 
1430
      if (r->sign)
1431
        {
1432
          if (low == 0)
1433
            high = -high;
1434
          else
1435
            low = -low, high = ~high;
1436
        }
1437
      break;
1438
 
1439
    default:
1440
      gcc_unreachable ();
1441
    }
1442
 
1443
  *plow = low;
1444
  *phigh = high;
1445
}
1446
 
1447
/* A subroutine of real_to_decimal.  Compute the quotient and remainder
1448
   of NUM / DEN.  Return the quotient and place the remainder in NUM.
1449
   It is expected that NUM / DEN are close enough that the quotient is
1450
   small.  */
1451
 
1452
static unsigned long
1453
rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1454
{
1455
  unsigned long q, msb;
1456
  int expn = REAL_EXP (num), expd = REAL_EXP (den);
1457
 
1458
  if (expn < expd)
1459
    return 0;
1460
 
1461
  q = msb = 0;
1462
  goto start;
1463
  do
1464
    {
1465
      msb = num->sig[SIGSZ-1] & SIG_MSB;
1466
      q <<= 1;
1467
      lshift_significand_1 (num, num);
1468
    start:
1469
      if (msb || cmp_significands (num, den) >= 0)
1470
        {
1471
          sub_significands (num, num, den, 0);
1472
          q |= 1;
1473
        }
1474
    }
1475
  while (--expn >= expd);
1476
 
1477
  SET_REAL_EXP (num, expd);
1478
  normalize (num);
1479
 
1480
  return q;
1481
}
1482
 
1483
/* Render R as a decimal floating point constant.  Emit DIGITS significant
1484
   digits in the result, bounded by BUF_SIZE.  If DIGITS is 0, choose the
1485
   maximum for the representation.  If CROP_TRAILING_ZEROS, strip trailing
1486
   zeros.  If MODE is VOIDmode, round to nearest value.  Otherwise, round
1487
   to a string that, when parsed back in mode MODE, yields the same value.  */
1488
 
1489
#define M_LOG10_2       0.30102999566398119521
1490
 
1491
void
1492
real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
1493
                          size_t buf_size, size_t digits,
1494
                          int crop_trailing_zeros, enum machine_mode mode)
1495
{
1496
  const struct real_format *fmt = NULL;
1497
  const REAL_VALUE_TYPE *one, *ten;
1498
  REAL_VALUE_TYPE r, pten, u, v;
1499
  int dec_exp, cmp_one, digit;
1500
  size_t max_digits;
1501
  char *p, *first, *last;
1502
  bool sign;
1503
  bool round_up;
1504
 
1505
  if (mode != VOIDmode)
1506
   {
1507
     fmt = REAL_MODE_FORMAT (mode);
1508
     gcc_assert (fmt);
1509
   }
1510
 
1511
  r = *r_orig;
1512
  switch (r.cl)
1513
    {
1514
    case rvc_zero:
1515
      strcpy (str, (r.sign ? "-0.0" : "0.0"));
1516
      return;
1517
    case rvc_normal:
1518
      break;
1519
    case rvc_inf:
1520
      strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1521
      return;
1522
    case rvc_nan:
1523
      /* ??? Print the significand as well, if not canonical?  */
1524
      sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
1525
               (r_orig->signalling ? 'S' : 'Q'));
1526
      return;
1527
    default:
1528
      gcc_unreachable ();
1529
    }
1530
 
1531
  if (r.decimal)
1532
    {
1533
      decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1534
      return;
1535
    }
1536
 
1537
  /* Bound the number of digits printed by the size of the representation.  */
1538
  max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1539
  if (digits == 0 || digits > max_digits)
1540
    digits = max_digits;
1541
 
1542
  /* Estimate the decimal exponent, and compute the length of the string it
1543
     will print as.  Be conservative and add one to account for possible
1544
     overflow or rounding error.  */
1545
  dec_exp = REAL_EXP (&r) * M_LOG10_2;
1546
  for (max_digits = 1; dec_exp ; max_digits++)
1547
    dec_exp /= 10;
1548
 
1549
  /* Bound the number of digits printed by the size of the output buffer.  */
1550
  max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1551
  gcc_assert (max_digits <= buf_size);
1552
  if (digits > max_digits)
1553
    digits = max_digits;
1554
 
1555
  one = real_digit (1);
1556
  ten = ten_to_ptwo (0);
1557
 
1558
  sign = r.sign;
1559
  r.sign = 0;
1560
 
1561
  dec_exp = 0;
1562
  pten = *one;
1563
 
1564
  cmp_one = do_compare (&r, one, 0);
1565
  if (cmp_one > 0)
1566
    {
1567
      int m;
1568
 
1569
      /* Number is greater than one.  Convert significand to an integer
1570
         and strip trailing decimal zeros.  */
1571
 
1572
      u = r;
1573
      SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1574
 
1575
      /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS.  */
1576
      m = floor_log2 (max_digits);
1577
 
1578
      /* Iterate over the bits of the possible powers of 10 that might
1579
         be present in U and eliminate them.  That is, if we find that
1580
         10**2**M divides U evenly, keep the division and increase
1581
         DEC_EXP by 2**M.  */
1582
      do
1583
        {
1584
          REAL_VALUE_TYPE t;
1585
 
1586
          do_divide (&t, &u, ten_to_ptwo (m));
1587
          do_fix_trunc (&v, &t);
1588
          if (cmp_significands (&v, &t) == 0)
1589
            {
1590
              u = t;
1591
              dec_exp += 1 << m;
1592
            }
1593
        }
1594
      while (--m >= 0);
1595
 
1596
      /* Revert the scaling to integer that we performed earlier.  */
1597
      SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1598
                    - (SIGNIFICAND_BITS - 1));
1599
      r = u;
1600
 
1601
      /* Find power of 10.  Do this by dividing out 10**2**M when
1602
         this is larger than the current remainder.  Fill PTEN with
1603
         the power of 10 that we compute.  */
1604
      if (REAL_EXP (&r) > 0)
1605
        {
1606
          m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1607
          do
1608
            {
1609
              const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1610
              if (do_compare (&u, ptentwo, 0) >= 0)
1611
                {
1612
                  do_divide (&u, &u, ptentwo);
1613
                  do_multiply (&pten, &pten, ptentwo);
1614
                  dec_exp += 1 << m;
1615
                }
1616
            }
1617
          while (--m >= 0);
1618
        }
1619
      else
1620
        /* We managed to divide off enough tens in the above reduction
1621
           loop that we've now got a negative exponent.  Fall into the
1622
           less-than-one code to compute the proper value for PTEN.  */
1623
        cmp_one = -1;
1624
    }
1625
  if (cmp_one < 0)
1626
    {
1627
      int m;
1628
 
1629
      /* Number is less than one.  Pad significand with leading
1630
         decimal zeros.  */
1631
 
1632
      v = r;
1633
      while (1)
1634
        {
1635
          /* Stop if we'd shift bits off the bottom.  */
1636
          if (v.sig[0] & 7)
1637
            break;
1638
 
1639
          do_multiply (&u, &v, ten);
1640
 
1641
          /* Stop if we're now >= 1.  */
1642
          if (REAL_EXP (&u) > 0)
1643
            break;
1644
 
1645
          v = u;
1646
          dec_exp -= 1;
1647
        }
1648
      r = v;
1649
 
1650
      /* Find power of 10.  Do this by multiplying in P=10**2**M when
1651
         the current remainder is smaller than 1/P.  Fill PTEN with the
1652
         power of 10 that we compute.  */
1653
      m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1654
      do
1655
        {
1656
          const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1657
          const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1658
 
1659
          if (do_compare (&v, ptenmtwo, 0) <= 0)
1660
            {
1661
              do_multiply (&v, &v, ptentwo);
1662
              do_multiply (&pten, &pten, ptentwo);
1663
              dec_exp -= 1 << m;
1664
            }
1665
        }
1666
      while (--m >= 0);
1667
 
1668
      /* Invert the positive power of 10 that we've collected so far.  */
1669
      do_divide (&pten, one, &pten);
1670
    }
1671
 
1672
  p = str;
1673
  if (sign)
1674
    *p++ = '-';
1675
  first = p++;
1676
 
1677
  /* At this point, PTEN should contain the nearest power of 10 smaller
1678
     than R, such that this division produces the first digit.
1679
 
1680
     Using a divide-step primitive that returns the complete integral
1681
     remainder avoids the rounding error that would be produced if
1682
     we were to use do_divide here and then simply multiply by 10 for
1683
     each subsequent digit.  */
1684
 
1685
  digit = rtd_divmod (&r, &pten);
1686
 
1687
  /* Be prepared for error in that division via underflow ...  */
1688
  if (digit == 0 && cmp_significand_0 (&r))
1689
    {
1690
      /* Multiply by 10 and try again.  */
1691
      do_multiply (&r, &r, ten);
1692
      digit = rtd_divmod (&r, &pten);
1693
      dec_exp -= 1;
1694
      gcc_assert (digit != 0);
1695
    }
1696
 
1697
  /* ... or overflow.  */
1698
  if (digit == 10)
1699
    {
1700
      *p++ = '1';
1701
      if (--digits > 0)
1702
        *p++ = '0';
1703
      dec_exp += 1;
1704
    }
1705
  else
1706
    {
1707
      gcc_assert (digit <= 10);
1708
      *p++ = digit + '0';
1709
    }
1710
 
1711
  /* Generate subsequent digits.  */
1712
  while (--digits > 0)
1713
    {
1714
      do_multiply (&r, &r, ten);
1715
      digit = rtd_divmod (&r, &pten);
1716
      *p++ = digit + '0';
1717
    }
1718
  last = p;
1719
 
1720
  /* Generate one more digit with which to do rounding.  */
1721
  do_multiply (&r, &r, ten);
1722
  digit = rtd_divmod (&r, &pten);
1723
 
1724
  /* Round the result.  */
1725
  if (fmt && fmt->round_towards_zero)
1726
    {
1727
      /* If the format uses round towards zero when parsing the string
1728
         back in, we need to always round away from zero here.  */
1729
      if (cmp_significand_0 (&r))
1730
        digit++;
1731
      round_up = digit > 0;
1732
    }
1733
  else
1734
    {
1735
      if (digit == 5)
1736
        {
1737
          /* Round to nearest.  If R is nonzero there are additional
1738
             nonzero digits to be extracted.  */
1739
          if (cmp_significand_0 (&r))
1740
            digit++;
1741
          /* Round to even.  */
1742
          else if ((p[-1] - '0') & 1)
1743
            digit++;
1744
        }
1745
 
1746
      round_up = digit > 5;
1747
    }
1748
 
1749
  if (round_up)
1750
    {
1751
      while (p > first)
1752
        {
1753
          digit = *--p;
1754
          if (digit == '9')
1755
            *p = '0';
1756
          else
1757
            {
1758
              *p = digit + 1;
1759
              break;
1760
            }
1761
        }
1762
 
1763
      /* Carry out of the first digit.  This means we had all 9's and
1764
         now have all 0's.  "Prepend" a 1 by overwriting the first 0.  */
1765
      if (p == first)
1766
        {
1767
          first[1] = '1';
1768
          dec_exp++;
1769
        }
1770
    }
1771
 
1772
  /* Insert the decimal point.  */
1773
  first[0] = first[1];
1774
  first[1] = '.';
1775
 
1776
  /* If requested, drop trailing zeros.  Never crop past "1.0".  */
1777
  if (crop_trailing_zeros)
1778
    while (last > first + 3 && last[-1] == '0')
1779
      last--;
1780
 
1781
  /* Append the exponent.  */
1782
  sprintf (last, "e%+d", dec_exp);
1783
 
1784
#ifdef ENABLE_CHECKING
1785
  /* Verify that we can read the original value back in.  */
1786
  if (mode != VOIDmode)
1787
    {
1788
      real_from_string (&r, str);
1789
      real_convert (&r, mode, &r);
1790
      gcc_assert (real_identical (&r, r_orig));
1791
    }
1792
#endif
1793
}
1794
 
1795
/* Likewise, except always uses round-to-nearest.  */
1796
 
1797
void
1798
real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1799
                 size_t digits, int crop_trailing_zeros)
1800
{
1801
  real_to_decimal_for_mode (str, r_orig, buf_size,
1802
                            digits, crop_trailing_zeros, VOIDmode);
1803
}
1804
 
1805
/* Render R as a hexadecimal floating point constant.  Emit DIGITS
1806
   significant digits in the result, bounded by BUF_SIZE.  If DIGITS is 0,
1807
   choose the maximum for the representation.  If CROP_TRAILING_ZEROS,
1808
   strip trailing zeros.  */
1809
 
1810
void
1811
real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1812
                     size_t digits, int crop_trailing_zeros)
1813
{
1814
  int i, j, exp = REAL_EXP (r);
1815
  char *p, *first;
1816
  char exp_buf[16];
1817
  size_t max_digits;
1818
 
1819
  switch (r->cl)
1820
    {
1821
    case rvc_zero:
1822
      exp = 0;
1823
      break;
1824
    case rvc_normal:
1825
      break;
1826
    case rvc_inf:
1827
      strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1828
      return;
1829
    case rvc_nan:
1830
      /* ??? Print the significand as well, if not canonical?  */
1831
      sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
1832
               (r->signalling ? 'S' : 'Q'));
1833
      return;
1834
    default:
1835
      gcc_unreachable ();
1836
    }
1837
 
1838
  if (r->decimal)
1839
    {
1840
      /* Hexadecimal format for decimal floats is not interesting. */
1841
      strcpy (str, "N/A");
1842
      return;
1843
    }
1844
 
1845
  if (digits == 0)
1846
    digits = SIGNIFICAND_BITS / 4;
1847
 
1848
  /* Bound the number of digits printed by the size of the output buffer.  */
1849
 
1850
  sprintf (exp_buf, "p%+d", exp);
1851
  max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1852
  gcc_assert (max_digits <= buf_size);
1853
  if (digits > max_digits)
1854
    digits = max_digits;
1855
 
1856
  p = str;
1857
  if (r->sign)
1858
    *p++ = '-';
1859
  *p++ = '0';
1860
  *p++ = 'x';
1861
  *p++ = '0';
1862
  *p++ = '.';
1863
  first = p;
1864
 
1865
  for (i = SIGSZ - 1; i >= 0; --i)
1866
    for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1867
      {
1868
        *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1869
        if (--digits == 0)
1870
          goto out;
1871
      }
1872
 
1873
 out:
1874
  if (crop_trailing_zeros)
1875
    while (p > first + 1 && p[-1] == '0')
1876
      p--;
1877
 
1878
  sprintf (p, "p%+d", exp);
1879
}
1880
 
1881
/* Initialize R from a decimal or hexadecimal string.  The string is
1882
   assumed to have been syntax checked already.  Return -1 if the
1883
   value underflows, +1 if overflows, and 0 otherwise. */
1884
 
1885
int
1886
real_from_string (REAL_VALUE_TYPE *r, const char *str)
1887
{
1888
  int exp = 0;
1889
  bool sign = false;
1890
 
1891
  get_zero (r, 0);
1892
 
1893
  if (*str == '-')
1894
    {
1895
      sign = true;
1896
      str++;
1897
    }
1898
  else if (*str == '+')
1899
    str++;
1900
 
1901
  if (!strncmp (str, "QNaN", 4))
1902
    {
1903
      get_canonical_qnan (r, sign);
1904
      return 0;
1905
    }
1906
  else if (!strncmp (str, "SNaN", 4))
1907
    {
1908
      get_canonical_snan (r, sign);
1909
      return 0;
1910
    }
1911
  else if (!strncmp (str, "Inf", 3))
1912
    {
1913
      get_inf (r, sign);
1914
      return 0;
1915
    }
1916
 
1917
  if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1918
    {
1919
      /* Hexadecimal floating point.  */
1920
      int pos = SIGNIFICAND_BITS - 4, d;
1921
 
1922
      str += 2;
1923
 
1924
      while (*str == '0')
1925
        str++;
1926
      while (1)
1927
        {
1928
          d = hex_value (*str);
1929
          if (d == _hex_bad)
1930
            break;
1931
          if (pos >= 0)
1932
            {
1933
              r->sig[pos / HOST_BITS_PER_LONG]
1934
                |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1935
              pos -= 4;
1936
            }
1937
          else if (d)
1938
            /* Ensure correct rounding by setting last bit if there is
1939
               a subsequent nonzero digit.  */
1940
            r->sig[0] |= 1;
1941
          exp += 4;
1942
          str++;
1943
        }
1944
      if (*str == '.')
1945
        {
1946
          str++;
1947
          if (pos == SIGNIFICAND_BITS - 4)
1948
            {
1949
              while (*str == '0')
1950
                str++, exp -= 4;
1951
            }
1952
          while (1)
1953
            {
1954
              d = hex_value (*str);
1955
              if (d == _hex_bad)
1956
                break;
1957
              if (pos >= 0)
1958
                {
1959
                  r->sig[pos / HOST_BITS_PER_LONG]
1960
                    |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1961
                  pos -= 4;
1962
                }
1963
              else if (d)
1964
                /* Ensure correct rounding by setting last bit if there is
1965
                   a subsequent nonzero digit.  */
1966
                r->sig[0] |= 1;
1967
              str++;
1968
            }
1969
        }
1970
 
1971
      /* If the mantissa is zero, ignore the exponent.  */
1972
      if (!cmp_significand_0 (r))
1973
        goto is_a_zero;
1974
 
1975
      if (*str == 'p' || *str == 'P')
1976
        {
1977
          bool exp_neg = false;
1978
 
1979
          str++;
1980
          if (*str == '-')
1981
            {
1982
              exp_neg = true;
1983
              str++;
1984
            }
1985
          else if (*str == '+')
1986
            str++;
1987
 
1988
          d = 0;
1989
          while (ISDIGIT (*str))
1990
            {
1991
              d *= 10;
1992
              d += *str - '0';
1993
              if (d > MAX_EXP)
1994
                {
1995
                  /* Overflowed the exponent.  */
1996
                  if (exp_neg)
1997
                    goto underflow;
1998
                  else
1999
                    goto overflow;
2000
                }
2001
              str++;
2002
            }
2003
          if (exp_neg)
2004
            d = -d;
2005
 
2006
          exp += d;
2007
        }
2008
 
2009
      r->cl = rvc_normal;
2010
      SET_REAL_EXP (r, exp);
2011
 
2012
      normalize (r);
2013
    }
2014
  else
2015
    {
2016
      /* Decimal floating point.  */
2017
      const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);
2018
      int d;
2019
 
2020
      while (*str == '0')
2021
        str++;
2022
      while (ISDIGIT (*str))
2023
        {
2024
          d = *str++ - '0';
2025
          do_multiply (r, r, ten);
2026
          if (d)
2027
            do_add (r, r, real_digit (d), 0);
2028
        }
2029
      if (*str == '.')
2030
        {
2031
          str++;
2032
          if (r->cl == rvc_zero)
2033
            {
2034
              while (*str == '0')
2035
                str++, exp--;
2036
            }
2037
          while (ISDIGIT (*str))
2038
            {
2039
              d = *str++ - '0';
2040
              do_multiply (r, r, ten);
2041
              if (d)
2042
                do_add (r, r, real_digit (d), 0);
2043
              exp--;
2044
            }
2045
        }
2046
 
2047
      /* If the mantissa is zero, ignore the exponent.  */
2048
      if (r->cl == rvc_zero)
2049
        goto is_a_zero;
2050
 
2051
      if (*str == 'e' || *str == 'E')
2052
        {
2053
          bool exp_neg = false;
2054
 
2055
          str++;
2056
          if (*str == '-')
2057
            {
2058
              exp_neg = true;
2059
              str++;
2060
            }
2061
          else if (*str == '+')
2062
            str++;
2063
 
2064
          d = 0;
2065
          while (ISDIGIT (*str))
2066
            {
2067
              d *= 10;
2068
              d += *str - '0';
2069
              if (d > MAX_EXP)
2070
                {
2071
                  /* Overflowed the exponent.  */
2072
                  if (exp_neg)
2073
                    goto underflow;
2074
                  else
2075
                    goto overflow;
2076
                }
2077
              str++;
2078
            }
2079
          if (exp_neg)
2080
            d = -d;
2081
          exp += d;
2082
        }
2083
 
2084
      if (exp)
2085
        times_pten (r, exp);
2086
    }
2087
 
2088
  r->sign = sign;
2089
  return 0;
2090
 
2091
 is_a_zero:
2092
  get_zero (r, sign);
2093
  return 0;
2094
 
2095
 underflow:
2096
  get_zero (r, sign);
2097
  return -1;
2098
 
2099
 overflow:
2100
  get_inf (r, sign);
2101
  return 1;
2102
}
2103
 
2104
/* Legacy.  Similar, but return the result directly.  */
2105
 
2106
REAL_VALUE_TYPE
2107
real_from_string2 (const char *s, enum machine_mode mode)
2108
{
2109
  REAL_VALUE_TYPE r;
2110
 
2111
  real_from_string (&r, s);
2112
  if (mode != VOIDmode)
2113
    real_convert (&r, mode, &r);
2114
 
2115
  return r;
2116
}
2117
 
2118
/* Initialize R from string S and desired MODE. */
2119
 
2120
void
2121
real_from_string3 (REAL_VALUE_TYPE *r, const char *s, enum machine_mode mode)
2122
{
2123
  if (DECIMAL_FLOAT_MODE_P (mode))
2124
    decimal_real_from_string (r, s);
2125
  else
2126
    real_from_string (r, s);
2127
 
2128
  if (mode != VOIDmode)
2129
    real_convert (r, mode, r);
2130
}
2131
 
2132
/* Initialize R from the integer pair HIGH+LOW.  */
2133
 
2134
void
2135
real_from_integer (REAL_VALUE_TYPE *r, enum machine_mode mode,
2136
                   unsigned HOST_WIDE_INT low, HOST_WIDE_INT high,
2137
                   int unsigned_p)
2138
{
2139
  if (low == 0 && high == 0)
2140
    get_zero (r, 0);
2141
  else
2142
    {
2143
      memset (r, 0, sizeof (*r));
2144
      r->cl = rvc_normal;
2145
      r->sign = high < 0 && !unsigned_p;
2146
      SET_REAL_EXP (r, 2 * HOST_BITS_PER_WIDE_INT);
2147
 
2148
      if (r->sign)
2149
        {
2150
          high = ~high;
2151
          if (low == 0)
2152
            high += 1;
2153
          else
2154
            low = -low;
2155
        }
2156
 
2157
      if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2158
        {
2159
          r->sig[SIGSZ-1] = high;
2160
          r->sig[SIGSZ-2] = low;
2161
        }
2162
      else
2163
        {
2164
          gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2165
          r->sig[SIGSZ-1] = high >> (HOST_BITS_PER_LONG - 1) >> 1;
2166
          r->sig[SIGSZ-2] = high;
2167
          r->sig[SIGSZ-3] = low >> (HOST_BITS_PER_LONG - 1) >> 1;
2168
          r->sig[SIGSZ-4] = low;
2169
        }
2170
 
2171
      normalize (r);
2172
    }
2173
 
2174
  if (DECIMAL_FLOAT_MODE_P (mode))
2175
    decimal_from_integer (r);
2176
  else if (mode != VOIDmode)
2177
    real_convert (r, mode, r);
2178
}
2179
 
2180
/* Render R, an integral value, as a floating point constant with no
2181
   specified exponent.  */
2182
 
2183
static void
2184
decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
2185
                        size_t buf_size)
2186
{
2187
  int dec_exp, digit, digits;
2188
  REAL_VALUE_TYPE r, pten;
2189
  char *p;
2190
  bool sign;
2191
 
2192
  r = *r_orig;
2193
 
2194
  if (r.cl == rvc_zero)
2195
    {
2196
      strcpy (str, "0.");
2197
      return;
2198
    }
2199
 
2200
  sign = r.sign;
2201
  r.sign = 0;
2202
 
2203
  dec_exp = REAL_EXP (&r) * M_LOG10_2;
2204
  digits = dec_exp + 1;
2205
  gcc_assert ((digits + 2) < (int)buf_size);
2206
 
2207
  pten = *real_digit (1);
2208
  times_pten (&pten, dec_exp);
2209
 
2210
  p = str;
2211
  if (sign)
2212
    *p++ = '-';
2213
 
2214
  digit = rtd_divmod (&r, &pten);
2215
  gcc_assert (digit >= 0 && digit <= 9);
2216
  *p++ = digit + '0';
2217
  while (--digits > 0)
2218
    {
2219
      times_pten (&r, 1);
2220
      digit = rtd_divmod (&r, &pten);
2221
      *p++ = digit + '0';
2222
    }
2223
  *p++ = '.';
2224
  *p++ = '\0';
2225
}
2226
 
2227
/* Convert a real with an integral value to decimal float.  */
2228
 
2229
static void
2230
decimal_from_integer (REAL_VALUE_TYPE *r)
2231
{
2232
  char str[256];
2233
 
2234
  decimal_integer_string (str, r, sizeof (str) - 1);
2235
  decimal_real_from_string (r, str);
2236
}
2237
 
2238
/* Returns 10**2**N.  */
2239
 
2240
static const REAL_VALUE_TYPE *
2241
ten_to_ptwo (int n)
2242
{
2243
  static REAL_VALUE_TYPE tens[EXP_BITS];
2244
 
2245
  gcc_assert (n >= 0);
2246
  gcc_assert (n < EXP_BITS);
2247
 
2248
  if (tens[n].cl == rvc_zero)
2249
    {
2250
      if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2251
        {
2252
          HOST_WIDE_INT t = 10;
2253
          int i;
2254
 
2255
          for (i = 0; i < n; ++i)
2256
            t *= t;
2257
 
2258
          real_from_integer (&tens[n], VOIDmode, t, 0, 1);
2259
        }
2260
      else
2261
        {
2262
          const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2263
          do_multiply (&tens[n], t, t);
2264
        }
2265
    }
2266
 
2267
  return &tens[n];
2268
}
2269
 
2270
/* Returns 10**(-2**N).  */
2271
 
2272
static const REAL_VALUE_TYPE *
2273
ten_to_mptwo (int n)
2274
{
2275
  static REAL_VALUE_TYPE tens[EXP_BITS];
2276
 
2277
  gcc_assert (n >= 0);
2278
  gcc_assert (n < EXP_BITS);
2279
 
2280
  if (tens[n].cl == rvc_zero)
2281
    do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2282
 
2283
  return &tens[n];
2284
}
2285
 
2286
/* Returns N.  */
2287
 
2288
static const REAL_VALUE_TYPE *
2289
real_digit (int n)
2290
{
2291
  static REAL_VALUE_TYPE num[10];
2292
 
2293
  gcc_assert (n >= 0);
2294
  gcc_assert (n <= 9);
2295
 
2296
  if (n > 0 && num[n].cl == rvc_zero)
2297
    real_from_integer (&num[n], VOIDmode, n, 0, 1);
2298
 
2299
  return &num[n];
2300
}
2301
 
2302
/* Multiply R by 10**EXP.  */
2303
 
2304
static void
2305
times_pten (REAL_VALUE_TYPE *r, int exp)
2306
{
2307
  REAL_VALUE_TYPE pten, *rr;
2308
  bool negative = (exp < 0);
2309
  int i;
2310
 
2311
  if (negative)
2312
    {
2313
      exp = -exp;
2314
      pten = *real_digit (1);
2315
      rr = &pten;
2316
    }
2317
  else
2318
    rr = r;
2319
 
2320
  for (i = 0; exp > 0; ++i, exp >>= 1)
2321
    if (exp & 1)
2322
      do_multiply (rr, rr, ten_to_ptwo (i));
2323
 
2324
  if (negative)
2325
    do_divide (r, r, &pten);
2326
}
2327
 
2328
/* Returns the special REAL_VALUE_TYPE corresponding to 'e'.  */
2329
 
2330
const REAL_VALUE_TYPE *
2331
dconst_e_ptr (void)
2332
{
2333
  static REAL_VALUE_TYPE value;
2334
 
2335
  /* Initialize mathematical constants for constant folding builtins.
2336
     These constants need to be given to at least 160 bits precision.  */
2337
  if (value.cl == rvc_zero)
2338
    {
2339
      mpfr_t m;
2340
      mpfr_init2 (m, SIGNIFICAND_BITS);
2341
      mpfr_set_ui (m, 1, GMP_RNDN);
2342
      mpfr_exp (m, m, GMP_RNDN);
2343
      real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
2344
      mpfr_clear (m);
2345
 
2346
    }
2347
  return &value;
2348
}
2349
 
2350
/* Returns the special REAL_VALUE_TYPE corresponding to 1/3.  */
2351
 
2352
const REAL_VALUE_TYPE *
2353
dconst_third_ptr (void)
2354
{
2355
  static REAL_VALUE_TYPE value;
2356
 
2357
  /* Initialize mathematical constants for constant folding builtins.
2358
     These constants need to be given to at least 160 bits precision.  */
2359
  if (value.cl == rvc_zero)
2360
    {
2361
      real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (3));
2362
    }
2363
  return &value;
2364
}
2365
 
2366
/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2).  */
2367
 
2368
const REAL_VALUE_TYPE *
2369
dconst_sqrt2_ptr (void)
2370
{
2371
  static REAL_VALUE_TYPE value;
2372
 
2373
  /* Initialize mathematical constants for constant folding builtins.
2374
     These constants need to be given to at least 160 bits precision.  */
2375
  if (value.cl == rvc_zero)
2376
    {
2377
      mpfr_t m;
2378
      mpfr_init2 (m, SIGNIFICAND_BITS);
2379
      mpfr_sqrt_ui (m, 2, GMP_RNDN);
2380
      real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
2381
      mpfr_clear (m);
2382
    }
2383
  return &value;
2384
}
2385
 
2386
/* Fills R with +Inf.  */
2387
 
2388
void
2389
real_inf (REAL_VALUE_TYPE *r)
2390
{
2391
  get_inf (r, 0);
2392
}
2393
 
2394
/* Fills R with a NaN whose significand is described by STR.  If QUIET,
2395
   we force a QNaN, else we force an SNaN.  The string, if not empty,
2396
   is parsed as a number and placed in the significand.  Return true
2397
   if the string was successfully parsed.  */
2398
 
2399
bool
2400
real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2401
          enum machine_mode mode)
2402
{
2403
  const struct real_format *fmt;
2404
 
2405
  fmt = REAL_MODE_FORMAT (mode);
2406
  gcc_assert (fmt);
2407
 
2408
  if (*str == 0)
2409
    {
2410
      if (quiet)
2411
        get_canonical_qnan (r, 0);
2412
      else
2413
        get_canonical_snan (r, 0);
2414
    }
2415
  else
2416
    {
2417
      int base = 10, d;
2418
 
2419
      memset (r, 0, sizeof (*r));
2420
      r->cl = rvc_nan;
2421
 
2422
      /* Parse akin to strtol into the significand of R.  */
2423
 
2424
      while (ISSPACE (*str))
2425
        str++;
2426
      if (*str == '-')
2427
        str++;
2428
      else if (*str == '+')
2429
        str++;
2430
      if (*str == '0')
2431
        {
2432
          str++;
2433
          if (*str == 'x' || *str == 'X')
2434
            {
2435
              base = 16;
2436
              str++;
2437
            }
2438
          else
2439
            base = 8;
2440
        }
2441
 
2442
      while ((d = hex_value (*str)) < base)
2443
        {
2444
          REAL_VALUE_TYPE u;
2445
 
2446
          switch (base)
2447
            {
2448
            case 8:
2449
              lshift_significand (r, r, 3);
2450
              break;
2451
            case 16:
2452
              lshift_significand (r, r, 4);
2453
              break;
2454
            case 10:
2455
              lshift_significand_1 (&u, r);
2456
              lshift_significand (r, r, 3);
2457
              add_significands (r, r, &u);
2458
              break;
2459
            default:
2460
              gcc_unreachable ();
2461
            }
2462
 
2463
          get_zero (&u, 0);
2464
          u.sig[0] = d;
2465
          add_significands (r, r, &u);
2466
 
2467
          str++;
2468
        }
2469
 
2470
      /* Must have consumed the entire string for success.  */
2471
      if (*str != 0)
2472
        return false;
2473
 
2474
      /* Shift the significand into place such that the bits
2475
         are in the most significant bits for the format.  */
2476
      lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2477
 
2478
      /* Our MSB is always unset for NaNs.  */
2479
      r->sig[SIGSZ-1] &= ~SIG_MSB;
2480
 
2481
      /* Force quiet or signalling NaN.  */
2482
      r->signalling = !quiet;
2483
    }
2484
 
2485
  return true;
2486
}
2487
 
2488
/* Fills R with the largest finite value representable in mode MODE.
2489
   If SIGN is nonzero, R is set to the most negative finite value.  */
2490
 
2491
void
2492
real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
2493
{
2494
  const struct real_format *fmt;
2495
  int np2;
2496
 
2497
  fmt = REAL_MODE_FORMAT (mode);
2498
  gcc_assert (fmt);
2499
  memset (r, 0, sizeof (*r));
2500
 
2501
  if (fmt->b == 10)
2502
    decimal_real_maxval (r, sign, mode);
2503
  else
2504
    {
2505
      r->cl = rvc_normal;
2506
      r->sign = sign;
2507
      SET_REAL_EXP (r, fmt->emax);
2508
 
2509
      np2 = SIGNIFICAND_BITS - fmt->p;
2510
      memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2511
      clear_significand_below (r, np2);
2512
 
2513
      if (fmt->pnan < fmt->p)
2514
        /* This is an IBM extended double format made up of two IEEE
2515
           doubles.  The value of the long double is the sum of the
2516
           values of the two parts.  The most significant part is
2517
           required to be the value of the long double rounded to the
2518
           nearest double.  Rounding means we need a slightly smaller
2519
           value for LDBL_MAX.  */
2520
        clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
2521
    }
2522
}
2523
 
2524
/* Fills R with 2**N.  */
2525
 
2526
void
2527
real_2expN (REAL_VALUE_TYPE *r, int n, enum machine_mode fmode)
2528
{
2529
  memset (r, 0, sizeof (*r));
2530
 
2531
  n++;
2532
  if (n > MAX_EXP)
2533
    r->cl = rvc_inf;
2534
  else if (n < -MAX_EXP)
2535
    ;
2536
  else
2537
    {
2538
      r->cl = rvc_normal;
2539
      SET_REAL_EXP (r, n);
2540
      r->sig[SIGSZ-1] = SIG_MSB;
2541
    }
2542
  if (DECIMAL_FLOAT_MODE_P (fmode))
2543
    decimal_real_convert (r, fmode, r);
2544
}
2545
 
2546
 
2547
static void
2548
round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2549
{
2550
  int p2, np2, i, w;
2551
  int emin2m1, emax2;
2552
  bool round_up = false;
2553
 
2554
  if (r->decimal)
2555
    {
2556
      if (fmt->b == 10)
2557
        {
2558
          decimal_round_for_format (fmt, r);
2559
          return;
2560
        }
2561
      /* FIXME. We can come here via fp_easy_constant
2562
         (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2563
         investigated whether this convert needs to be here, or
2564
         something else is missing. */
2565
      decimal_real_convert (r, DFmode, r);
2566
    }
2567
 
2568
  p2 = fmt->p;
2569
  emin2m1 = fmt->emin - 1;
2570
  emax2 = fmt->emax;
2571
 
2572
  np2 = SIGNIFICAND_BITS - p2;
2573
  switch (r->cl)
2574
    {
2575
    underflow:
2576
      get_zero (r, r->sign);
2577
    case rvc_zero:
2578
      if (!fmt->has_signed_zero)
2579
        r->sign = 0;
2580
      return;
2581
 
2582
    overflow:
2583
      get_inf (r, r->sign);
2584
    case rvc_inf:
2585
      return;
2586
 
2587
    case rvc_nan:
2588
      clear_significand_below (r, np2);
2589
      return;
2590
 
2591
    case rvc_normal:
2592
      break;
2593
 
2594
    default:
2595
      gcc_unreachable ();
2596
    }
2597
 
2598
  /* Check the range of the exponent.  If we're out of range,
2599
     either underflow or overflow.  */
2600
  if (REAL_EXP (r) > emax2)
2601
    goto overflow;
2602
  else if (REAL_EXP (r) <= emin2m1)
2603
    {
2604
      int diff;
2605
 
2606
      if (!fmt->has_denorm)
2607
        {
2608
          /* Don't underflow completely until we've had a chance to round.  */
2609
          if (REAL_EXP (r) < emin2m1)
2610
            goto underflow;
2611
        }
2612
      else
2613
        {
2614
          diff = emin2m1 - REAL_EXP (r) + 1;
2615
          if (diff > p2)
2616
            goto underflow;
2617
 
2618
          /* De-normalize the significand.  */
2619
          r->sig[0] |= sticky_rshift_significand (r, r, diff);
2620
          SET_REAL_EXP (r, REAL_EXP (r) + diff);
2621
        }
2622
    }
2623
 
2624
  if (!fmt->round_towards_zero)
2625
    {
2626
      /* There are P2 true significand bits, followed by one guard bit,
2627
         followed by one sticky bit, followed by stuff.  Fold nonzero
2628
         stuff into the sticky bit.  */
2629
      unsigned long sticky;
2630
      bool guard, lsb;
2631
 
2632
      sticky = 0;
2633
      for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2634
        sticky |= r->sig[i];
2635
      sticky |= r->sig[w]
2636
                & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2637
 
2638
      guard = test_significand_bit (r, np2 - 1);
2639
      lsb = test_significand_bit (r, np2);
2640
 
2641
      /* Round to even.  */
2642
      round_up = guard && (sticky || lsb);
2643
    }
2644
 
2645
  if (round_up)
2646
    {
2647
      REAL_VALUE_TYPE u;
2648
      get_zero (&u, 0);
2649
      set_significand_bit (&u, np2);
2650
 
2651
      if (add_significands (r, r, &u))
2652
        {
2653
          /* Overflow.  Means the significand had been all ones, and
2654
             is now all zeros.  Need to increase the exponent, and
2655
             possibly re-normalize it.  */
2656
          SET_REAL_EXP (r, REAL_EXP (r) + 1);
2657
          if (REAL_EXP (r) > emax2)
2658
            goto overflow;
2659
          r->sig[SIGSZ-1] = SIG_MSB;
2660
        }
2661
    }
2662
 
2663
  /* Catch underflow that we deferred until after rounding.  */
2664
  if (REAL_EXP (r) <= emin2m1)
2665
    goto underflow;
2666
 
2667
  /* Clear out trailing garbage.  */
2668
  clear_significand_below (r, np2);
2669
}
2670
 
2671
/* Extend or truncate to a new mode.  */
2672
 
2673
void
2674
real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
2675
              const REAL_VALUE_TYPE *a)
2676
{
2677
  const struct real_format *fmt;
2678
 
2679
  fmt = REAL_MODE_FORMAT (mode);
2680
  gcc_assert (fmt);
2681
 
2682
  *r = *a;
2683
 
2684
  if (a->decimal || fmt->b == 10)
2685
    decimal_real_convert (r, mode, a);
2686
 
2687
  round_for_format (fmt, r);
2688
 
2689
  /* round_for_format de-normalizes denormals.  Undo just that part.  */
2690
  if (r->cl == rvc_normal)
2691
    normalize (r);
2692
}
2693
 
2694
/* Legacy.  Likewise, except return the struct directly.  */
2695
 
2696
REAL_VALUE_TYPE
2697
real_value_truncate (enum machine_mode mode, REAL_VALUE_TYPE a)
2698
{
2699
  REAL_VALUE_TYPE r;
2700
  real_convert (&r, mode, &a);
2701
  return r;
2702
}
2703
 
2704
/* Return true if truncating to MODE is exact.  */
2705
 
2706
bool
2707
exact_real_truncate (enum machine_mode mode, const REAL_VALUE_TYPE *a)
2708
{
2709
  const struct real_format *fmt;
2710
  REAL_VALUE_TYPE t;
2711
  int emin2m1;
2712
 
2713
  fmt = REAL_MODE_FORMAT (mode);
2714
  gcc_assert (fmt);
2715
 
2716
  /* Don't allow conversion to denormals.  */
2717
  emin2m1 = fmt->emin - 1;
2718
  if (REAL_EXP (a) <= emin2m1)
2719
    return false;
2720
 
2721
  /* After conversion to the new mode, the value must be identical.  */
2722
  real_convert (&t, mode, a);
2723
  return real_identical (&t, a);
2724
}
2725
 
2726
/* Write R to the given target format.  Place the words of the result
2727
   in target word order in BUF.  There are always 32 bits in each
2728
   long, no matter the size of the host long.
2729
 
2730
   Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE.  */
2731
 
2732
long
2733
real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
2734
                    const struct real_format *fmt)
2735
{
2736
  REAL_VALUE_TYPE r;
2737
  long buf1;
2738
 
2739
  r = *r_orig;
2740
  round_for_format (fmt, &r);
2741
 
2742
  if (!buf)
2743
    buf = &buf1;
2744
  (*fmt->encode) (fmt, buf, &r);
2745
 
2746
  return *buf;
2747
}
2748
 
2749
/* Similar, but look up the format from MODE.  */
2750
 
2751
long
2752
real_to_target (long *buf, const REAL_VALUE_TYPE *r, enum machine_mode mode)
2753
{
2754
  const struct real_format *fmt;
2755
 
2756
  fmt = REAL_MODE_FORMAT (mode);
2757
  gcc_assert (fmt);
2758
 
2759
  return real_to_target_fmt (buf, r, fmt);
2760
}
2761
 
2762
/* Read R from the given target format.  Read the words of the result
2763
   in target word order in BUF.  There are always 32 bits in each
2764
   long, no matter the size of the host long.  */
2765
 
2766
void
2767
real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
2768
                      const struct real_format *fmt)
2769
{
2770
  (*fmt->decode) (fmt, r, buf);
2771
}
2772
 
2773
/* Similar, but look up the format from MODE.  */
2774
 
2775
void
2776
real_from_target (REAL_VALUE_TYPE *r, const long *buf, enum machine_mode mode)
2777
{
2778
  const struct real_format *fmt;
2779
 
2780
  fmt = REAL_MODE_FORMAT (mode);
2781
  gcc_assert (fmt);
2782
 
2783
  (*fmt->decode) (fmt, r, buf);
2784
}
2785
 
2786
/* Return the number of bits of the largest binary value that the
2787
   significand of MODE will hold.  */
2788
/* ??? Legacy.  Should get access to real_format directly.  */
2789
 
2790
int
2791
significand_size (enum machine_mode mode)
2792
{
2793
  const struct real_format *fmt;
2794
 
2795
  fmt = REAL_MODE_FORMAT (mode);
2796
  if (fmt == NULL)
2797
    return 0;
2798
 
2799
  if (fmt->b == 10)
2800
    {
2801
      /* Return the size in bits of the largest binary value that can be
2802
         held by the decimal coefficient for this mode.  This is one more
2803
         than the number of bits required to hold the largest coefficient
2804
         of this mode.  */
2805
      double log2_10 = 3.3219281;
2806
      return fmt->p * log2_10;
2807
    }
2808
  return fmt->p;
2809
}
2810
 
2811
/* Return a hash value for the given real value.  */
2812
/* ??? The "unsigned int" return value is intended to be hashval_t,
2813
   but I didn't want to pull hashtab.h into real.h.  */
2814
 
2815
unsigned int
2816
real_hash (const REAL_VALUE_TYPE *r)
2817
{
2818
  unsigned int h;
2819
  size_t i;
2820
 
2821
  h = r->cl | (r->sign << 2);
2822
  switch (r->cl)
2823
    {
2824
    case rvc_zero:
2825
    case rvc_inf:
2826
      return h;
2827
 
2828
    case rvc_normal:
2829
      h |= REAL_EXP (r) << 3;
2830
      break;
2831
 
2832
    case rvc_nan:
2833
      if (r->signalling)
2834
        h ^= (unsigned int)-1;
2835
      if (r->canonical)
2836
        return h;
2837
      break;
2838
 
2839
    default:
2840
      gcc_unreachable ();
2841
    }
2842
 
2843
  if (sizeof(unsigned long) > sizeof(unsigned int))
2844
    for (i = 0; i < SIGSZ; ++i)
2845
      {
2846
        unsigned long s = r->sig[i];
2847
        h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2848
      }
2849
  else
2850
    for (i = 0; i < SIGSZ; ++i)
2851
      h ^= r->sig[i];
2852
 
2853
  return h;
2854
}
2855
 
2856
/* IEEE single-precision format.  */
2857
 
2858
static void encode_ieee_single (const struct real_format *fmt,
2859
                                long *, const REAL_VALUE_TYPE *);
2860
static void decode_ieee_single (const struct real_format *,
2861
                                REAL_VALUE_TYPE *, const long *);
2862
 
2863
static void
2864
encode_ieee_single (const struct real_format *fmt, long *buf,
2865
                    const REAL_VALUE_TYPE *r)
2866
{
2867
  unsigned long image, sig, exp;
2868
  unsigned long sign = r->sign;
2869
  bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2870
 
2871
  image = sign << 31;
2872
  sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2873
 
2874
  switch (r->cl)
2875
    {
2876
    case rvc_zero:
2877
      break;
2878
 
2879
    case rvc_inf:
2880
      if (fmt->has_inf)
2881
        image |= 255 << 23;
2882
      else
2883
        image |= 0x7fffffff;
2884
      break;
2885
 
2886
    case rvc_nan:
2887
      if (fmt->has_nans)
2888
        {
2889
          if (r->canonical)
2890
            sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
2891
          if (r->signalling == fmt->qnan_msb_set)
2892
            sig &= ~(1 << 22);
2893
          else
2894
            sig |= 1 << 22;
2895
          if (sig == 0)
2896
            sig = 1 << 21;
2897
 
2898
          image |= 255 << 23;
2899
          image |= sig;
2900
        }
2901
      else
2902
        image |= 0x7fffffff;
2903
      break;
2904
 
2905
    case rvc_normal:
2906
      /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2907
         whereas the intermediate representation is 0.F x 2**exp.
2908
         Which means we're off by one.  */
2909
      if (denormal)
2910
        exp = 0;
2911
      else
2912
      exp = REAL_EXP (r) + 127 - 1;
2913
      image |= exp << 23;
2914
      image |= sig;
2915
      break;
2916
 
2917
    default:
2918
      gcc_unreachable ();
2919
    }
2920
 
2921
  buf[0] = image;
2922
}
2923
 
2924
static void
2925
decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2926
                    const long *buf)
2927
{
2928
  unsigned long image = buf[0] & 0xffffffff;
2929
  bool sign = (image >> 31) & 1;
2930
  int exp = (image >> 23) & 0xff;
2931
 
2932
  memset (r, 0, sizeof (*r));
2933
  image <<= HOST_BITS_PER_LONG - 24;
2934
  image &= ~SIG_MSB;
2935
 
2936
  if (exp == 0)
2937
    {
2938
      if (image && fmt->has_denorm)
2939
        {
2940
          r->cl = rvc_normal;
2941
          r->sign = sign;
2942
          SET_REAL_EXP (r, -126);
2943
          r->sig[SIGSZ-1] = image << 1;
2944
          normalize (r);
2945
        }
2946
      else if (fmt->has_signed_zero)
2947
        r->sign = sign;
2948
    }
2949
  else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2950
    {
2951
      if (image)
2952
        {
2953
          r->cl = rvc_nan;
2954
          r->sign = sign;
2955
          r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2956
                           ^ fmt->qnan_msb_set);
2957
          r->sig[SIGSZ-1] = image;
2958
        }
2959
      else
2960
        {
2961
          r->cl = rvc_inf;
2962
          r->sign = sign;
2963
        }
2964
    }
2965
  else
2966
    {
2967
      r->cl = rvc_normal;
2968
      r->sign = sign;
2969
      SET_REAL_EXP (r, exp - 127 + 1);
2970
      r->sig[SIGSZ-1] = image | SIG_MSB;
2971
    }
2972
}
2973
 
2974
const struct real_format ieee_single_format =
2975
  {
2976
    encode_ieee_single,
2977
    decode_ieee_single,
2978
    2,
2979
    24,
2980
    24,
2981
    -125,
2982
    128,
2983
    31,
2984
    31,
2985
    false,
2986
    true,
2987
    true,
2988
    true,
2989
    true,
2990
    true,
2991
    true,
2992
    false
2993
  };
2994
 
2995
const struct real_format mips_single_format =
2996
  {
2997
    encode_ieee_single,
2998
    decode_ieee_single,
2999
    2,
3000
    24,
3001
    24,
3002
    -125,
3003
    128,
3004
    31,
3005
    31,
3006
    false,
3007
    true,
3008
    true,
3009
    true,
3010
    true,
3011
    true,
3012
    false,
3013
    true
3014
  };
3015
 
3016
const struct real_format motorola_single_format =
3017
  {
3018
    encode_ieee_single,
3019
    decode_ieee_single,
3020
    2,
3021
    24,
3022
    24,
3023
    -125,
3024
    128,
3025
    31,
3026
    31,
3027
    false,
3028
    true,
3029
    true,
3030
    true,
3031
    true,
3032
    true,
3033
    true,
3034
    true
3035
  };
3036
 
3037
/*  SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3038
    single precision with the following differences:
3039
      - Infinities are not supported.  Instead MAX_FLOAT or MIN_FLOAT
3040
        are generated.
3041
      - NaNs are not supported.
3042
      - The range of non-zero numbers in binary is
3043
        (001)[1.]000...000 to (255)[1.]111...111.
3044
      - Denormals can be represented, but are treated as +0.0 when
3045
        used as an operand and are never generated as a result.
3046
      - -0.0 can be represented, but a zero result is always +0.0.
3047
      - the only supported rounding mode is trunction (towards zero).  */
3048
const struct real_format spu_single_format =
3049
  {
3050
    encode_ieee_single,
3051
    decode_ieee_single,
3052
    2,
3053
    24,
3054
    24,
3055
    -125,
3056
    129,
3057
    31,
3058
    31,
3059
    true,
3060
    false,
3061
    false,
3062
    false,
3063
    true,
3064
    true,
3065
    false,
3066
    false
3067
  };
3068
 
3069
/* IEEE double-precision format.  */
3070
 
3071
static void encode_ieee_double (const struct real_format *fmt,
3072
                                long *, const REAL_VALUE_TYPE *);
3073
static void decode_ieee_double (const struct real_format *,
3074
                                REAL_VALUE_TYPE *, const long *);
3075
 
3076
static void
3077
encode_ieee_double (const struct real_format *fmt, long *buf,
3078
                    const REAL_VALUE_TYPE *r)
3079
{
3080
  unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
3081
  bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3082
 
3083
  image_hi = r->sign << 31;
3084
  image_lo = 0;
3085
 
3086
  if (HOST_BITS_PER_LONG == 64)
3087
    {
3088
      sig_hi = r->sig[SIGSZ-1];
3089
      sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
3090
      sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
3091
    }
3092
  else
3093
    {
3094
      sig_hi = r->sig[SIGSZ-1];
3095
      sig_lo = r->sig[SIGSZ-2];
3096
      sig_lo = (sig_hi << 21) | (sig_lo >> 11);
3097
      sig_hi = (sig_hi >> 11) & 0xfffff;
3098
    }
3099
 
3100
  switch (r->cl)
3101
    {
3102
    case rvc_zero:
3103
      break;
3104
 
3105
    case rvc_inf:
3106
      if (fmt->has_inf)
3107
        image_hi |= 2047 << 20;
3108
      else
3109
        {
3110
          image_hi |= 0x7fffffff;
3111
          image_lo = 0xffffffff;
3112
        }
3113
      break;
3114
 
3115
    case rvc_nan:
3116
      if (fmt->has_nans)
3117
        {
3118
          if (r->canonical)
3119
            {
3120
              if (fmt->canonical_nan_lsbs_set)
3121
                {
3122
                  sig_hi = (1 << 19) - 1;
3123
                  sig_lo = 0xffffffff;
3124
                }
3125
              else
3126
                {
3127
                  sig_hi = 0;
3128
                  sig_lo = 0;
3129
                }
3130
            }
3131
          if (r->signalling == fmt->qnan_msb_set)
3132
            sig_hi &= ~(1 << 19);
3133
          else
3134
            sig_hi |= 1 << 19;
3135
          if (sig_hi == 0 && sig_lo == 0)
3136
            sig_hi = 1 << 18;
3137
 
3138
          image_hi |= 2047 << 20;
3139
          image_hi |= sig_hi;
3140
          image_lo = sig_lo;
3141
        }
3142
      else
3143
        {
3144
          image_hi |= 0x7fffffff;
3145
          image_lo = 0xffffffff;
3146
        }
3147
      break;
3148
 
3149
    case rvc_normal:
3150
      /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3151
         whereas the intermediate representation is 0.F x 2**exp.
3152
         Which means we're off by one.  */
3153
      if (denormal)
3154
        exp = 0;
3155
      else
3156
        exp = REAL_EXP (r) + 1023 - 1;
3157
      image_hi |= exp << 20;
3158
      image_hi |= sig_hi;
3159
      image_lo = sig_lo;
3160
      break;
3161
 
3162
    default:
3163
      gcc_unreachable ();
3164
    }
3165
 
3166
  if (FLOAT_WORDS_BIG_ENDIAN)
3167
    buf[0] = image_hi, buf[1] = image_lo;
3168
  else
3169
    buf[0] = image_lo, buf[1] = image_hi;
3170
}
3171
 
3172
static void
3173
decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3174
                    const long *buf)
3175
{
3176
  unsigned long image_hi, image_lo;
3177
  bool sign;
3178
  int exp;
3179
 
3180
  if (FLOAT_WORDS_BIG_ENDIAN)
3181
    image_hi = buf[0], image_lo = buf[1];
3182
  else
3183
    image_lo = buf[0], image_hi = buf[1];
3184
  image_lo &= 0xffffffff;
3185
  image_hi &= 0xffffffff;
3186
 
3187
  sign = (image_hi >> 31) & 1;
3188
  exp = (image_hi >> 20) & 0x7ff;
3189
 
3190
  memset (r, 0, sizeof (*r));
3191
 
3192
  image_hi <<= 32 - 21;
3193
  image_hi |= image_lo >> 21;
3194
  image_hi &= 0x7fffffff;
3195
  image_lo <<= 32 - 21;
3196
 
3197
  if (exp == 0)
3198
    {
3199
      if ((image_hi || image_lo) && fmt->has_denorm)
3200
        {
3201
          r->cl = rvc_normal;
3202
          r->sign = sign;
3203
          SET_REAL_EXP (r, -1022);
3204
          if (HOST_BITS_PER_LONG == 32)
3205
            {
3206
              image_hi = (image_hi << 1) | (image_lo >> 31);
3207
              image_lo <<= 1;
3208
              r->sig[SIGSZ-1] = image_hi;
3209
              r->sig[SIGSZ-2] = image_lo;
3210
            }
3211
          else
3212
            {
3213
              image_hi = (image_hi << 31 << 2) | (image_lo << 1);
3214
              r->sig[SIGSZ-1] = image_hi;
3215
            }
3216
          normalize (r);
3217
        }
3218
      else if (fmt->has_signed_zero)
3219
        r->sign = sign;
3220
    }
3221
  else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
3222
    {
3223
      if (image_hi || image_lo)
3224
        {
3225
          r->cl = rvc_nan;
3226
          r->sign = sign;
3227
          r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3228
          if (HOST_BITS_PER_LONG == 32)
3229
            {
3230
              r->sig[SIGSZ-1] = image_hi;
3231
              r->sig[SIGSZ-2] = image_lo;
3232
            }
3233
          else
3234
            r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
3235
        }
3236
      else
3237
        {
3238
          r->cl = rvc_inf;
3239
          r->sign = sign;
3240
        }
3241
    }
3242
  else
3243
    {
3244
      r->cl = rvc_normal;
3245
      r->sign = sign;
3246
      SET_REAL_EXP (r, exp - 1023 + 1);
3247
      if (HOST_BITS_PER_LONG == 32)
3248
        {
3249
          r->sig[SIGSZ-1] = image_hi | SIG_MSB;
3250
          r->sig[SIGSZ-2] = image_lo;
3251
        }
3252
      else
3253
        r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
3254
    }
3255
}
3256
 
3257
const struct real_format ieee_double_format =
3258
  {
3259
    encode_ieee_double,
3260
    decode_ieee_double,
3261
    2,
3262
    53,
3263
    53,
3264
    -1021,
3265
    1024,
3266
    63,
3267
    63,
3268
    false,
3269
    true,
3270
    true,
3271
    true,
3272
    true,
3273
    true,
3274
    true,
3275
    false
3276
  };
3277
 
3278
const struct real_format mips_double_format =
3279
  {
3280
    encode_ieee_double,
3281
    decode_ieee_double,
3282
    2,
3283
    53,
3284
    53,
3285
    -1021,
3286
    1024,
3287
    63,
3288
    63,
3289
    false,
3290
    true,
3291
    true,
3292
    true,
3293
    true,
3294
    true,
3295
    false,
3296
    true
3297
  };
3298
 
3299
const struct real_format motorola_double_format =
3300
  {
3301
    encode_ieee_double,
3302
    decode_ieee_double,
3303
    2,
3304
    53,
3305
    53,
3306
    -1021,
3307
    1024,
3308
    63,
3309
    63,
3310
    false,
3311
    true,
3312
    true,
3313
    true,
3314
    true,
3315
    true,
3316
    true,
3317
    true
3318
  };
3319
 
3320
/* IEEE extended real format.  This comes in three flavors: Intel's as
3321
   a 12 byte image, Intel's as a 16 byte image, and Motorola's.  Intel
3322
   12- and 16-byte images may be big- or little endian; Motorola's is
3323
   always big endian.  */
3324
 
3325
/* Helper subroutine which converts from the internal format to the
3326
   12-byte little-endian Intel format.  Functions below adjust this
3327
   for the other possible formats.  */
3328
static void
3329
encode_ieee_extended (const struct real_format *fmt, long *buf,
3330
                      const REAL_VALUE_TYPE *r)
3331
{
3332
  unsigned long image_hi, sig_hi, sig_lo;
3333
  bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3334
 
3335
  image_hi = r->sign << 15;
3336
  sig_hi = sig_lo = 0;
3337
 
3338
  switch (r->cl)
3339
    {
3340
    case rvc_zero:
3341
      break;
3342
 
3343
    case rvc_inf:
3344
      if (fmt->has_inf)
3345
        {
3346
          image_hi |= 32767;
3347
 
3348
          /* Intel requires the explicit integer bit to be set, otherwise
3349
             it considers the value a "pseudo-infinity".  Motorola docs
3350
             say it doesn't care.  */
3351
          sig_hi = 0x80000000;
3352
        }
3353
      else
3354
        {
3355
          image_hi |= 32767;
3356
          sig_lo = sig_hi = 0xffffffff;
3357
        }
3358
      break;
3359
 
3360
    case rvc_nan:
3361
      if (fmt->has_nans)
3362
        {
3363
          image_hi |= 32767;
3364
          if (r->canonical)
3365
            {
3366
              if (fmt->canonical_nan_lsbs_set)
3367
                {
3368
                  sig_hi = (1 << 30) - 1;
3369
                  sig_lo = 0xffffffff;
3370
                }
3371
            }
3372
          else if (HOST_BITS_PER_LONG == 32)
3373
            {
3374
              sig_hi = r->sig[SIGSZ-1];
3375
              sig_lo = r->sig[SIGSZ-2];
3376
            }
3377
          else
3378
            {
3379
              sig_lo = r->sig[SIGSZ-1];
3380
              sig_hi = sig_lo >> 31 >> 1;
3381
              sig_lo &= 0xffffffff;
3382
            }
3383
          if (r->signalling == fmt->qnan_msb_set)
3384
            sig_hi &= ~(1 << 30);
3385
          else
3386
            sig_hi |= 1 << 30;
3387
          if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3388
            sig_hi = 1 << 29;
3389
 
3390
          /* Intel requires the explicit integer bit to be set, otherwise
3391
             it considers the value a "pseudo-nan".  Motorola docs say it
3392
             doesn't care.  */
3393
          sig_hi |= 0x80000000;
3394
        }
3395
      else
3396
        {
3397
          image_hi |= 32767;
3398
          sig_lo = sig_hi = 0xffffffff;
3399
        }
3400
      break;
3401
 
3402
    case rvc_normal:
3403
      {
3404
        int exp = REAL_EXP (r);
3405
 
3406
        /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3407
           whereas the intermediate representation is 0.F x 2**exp.
3408
           Which means we're off by one.
3409
 
3410
           Except for Motorola, which consider exp=0 and explicit
3411
           integer bit set to continue to be normalized.  In theory
3412
           this discrepancy has been taken care of by the difference
3413
           in fmt->emin in round_for_format.  */
3414
 
3415
        if (denormal)
3416
          exp = 0;
3417
        else
3418
          {
3419
            exp += 16383 - 1;
3420
            gcc_assert (exp >= 0);
3421
          }
3422
        image_hi |= exp;
3423
 
3424
        if (HOST_BITS_PER_LONG == 32)
3425
          {
3426
            sig_hi = r->sig[SIGSZ-1];
3427
            sig_lo = r->sig[SIGSZ-2];
3428
          }
3429
        else
3430
          {
3431
            sig_lo = r->sig[SIGSZ-1];
3432
            sig_hi = sig_lo >> 31 >> 1;
3433
            sig_lo &= 0xffffffff;
3434
          }
3435
      }
3436
      break;
3437
 
3438
    default:
3439
      gcc_unreachable ();
3440
    }
3441
 
3442
  buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3443
}
3444
 
3445
/* Convert from the internal format to the 12-byte Motorola format
3446
   for an IEEE extended real.  */
3447
static void
3448
encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3449
                               const REAL_VALUE_TYPE *r)
3450
{
3451
  long intermed[3];
3452
  encode_ieee_extended (fmt, intermed, r);
3453
 
3454
  /* Motorola chips are assumed always to be big-endian.  Also, the
3455
     padding in a Motorola extended real goes between the exponent and
3456
     the mantissa.  At this point the mantissa is entirely within
3457
     elements 0 and 1 of intermed, and the exponent entirely within
3458
     element 2, so all we have to do is swap the order around, and
3459
     shift element 2 left 16 bits.  */
3460
  buf[0] = intermed[2] << 16;
3461
  buf[1] = intermed[1];
3462
  buf[2] = intermed[0];
3463
}
3464
 
3465
/* Convert from the internal format to the 12-byte Intel format for
3466
   an IEEE extended real.  */
3467
static void
3468
encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3469
                               const REAL_VALUE_TYPE *r)
3470
{
3471
  if (FLOAT_WORDS_BIG_ENDIAN)
3472
    {
3473
      /* All the padding in an Intel-format extended real goes at the high
3474
         end, which in this case is after the mantissa, not the exponent.
3475
         Therefore we must shift everything down 16 bits.  */
3476
      long intermed[3];
3477
      encode_ieee_extended (fmt, intermed, r);
3478
      buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3479
      buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3480
      buf[2] =  (intermed[0] << 16);
3481
    }
3482
  else
3483
    /* encode_ieee_extended produces what we want directly.  */
3484
    encode_ieee_extended (fmt, buf, r);
3485
}
3486
 
3487
/* Convert from the internal format to the 16-byte Intel format for
3488
   an IEEE extended real.  */
3489
static void
3490
encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3491
                                const REAL_VALUE_TYPE *r)
3492
{
3493
  /* All the padding in an Intel-format extended real goes at the high end.  */
3494
  encode_ieee_extended_intel_96 (fmt, buf, r);
3495
  buf[3] = 0;
3496
}
3497
 
3498
/* As above, we have a helper function which converts from 12-byte
3499
   little-endian Intel format to internal format.  Functions below
3500
   adjust for the other possible formats.  */
3501
static void
3502
decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3503
                      const long *buf)
3504
{
3505
  unsigned long image_hi, sig_hi, sig_lo;
3506
  bool sign;
3507
  int exp;
3508
 
3509
  sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3510
  sig_lo &= 0xffffffff;
3511
  sig_hi &= 0xffffffff;
3512
  image_hi &= 0xffffffff;
3513
 
3514
  sign = (image_hi >> 15) & 1;
3515
  exp = image_hi & 0x7fff;
3516
 
3517
  memset (r, 0, sizeof (*r));
3518
 
3519
  if (exp == 0)
3520
    {
3521
      if ((sig_hi || sig_lo) && fmt->has_denorm)
3522
        {
3523
          r->cl = rvc_normal;
3524
          r->sign = sign;
3525
 
3526
          /* When the IEEE format contains a hidden bit, we know that
3527
             it's zero at this point, and so shift up the significand
3528
             and decrease the exponent to match.  In this case, Motorola
3529
             defines the explicit integer bit to be valid, so we don't
3530
             know whether the msb is set or not.  */
3531
          SET_REAL_EXP (r, fmt->emin);
3532
          if (HOST_BITS_PER_LONG == 32)
3533
            {
3534
              r->sig[SIGSZ-1] = sig_hi;
3535
              r->sig[SIGSZ-2] = sig_lo;
3536
            }
3537
          else
3538
            r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3539
 
3540
          normalize (r);
3541
        }
3542
      else if (fmt->has_signed_zero)
3543
        r->sign = sign;
3544
    }
3545
  else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3546
    {
3547
      /* See above re "pseudo-infinities" and "pseudo-nans".
3548
         Short summary is that the MSB will likely always be
3549
         set, and that we don't care about it.  */
3550
      sig_hi &= 0x7fffffff;
3551
 
3552
      if (sig_hi || sig_lo)
3553
        {
3554
          r->cl = rvc_nan;
3555
          r->sign = sign;
3556
          r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3557
          if (HOST_BITS_PER_LONG == 32)
3558
            {
3559
              r->sig[SIGSZ-1] = sig_hi;
3560
              r->sig[SIGSZ-2] = sig_lo;
3561
            }
3562
          else
3563
            r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3564
        }
3565
      else
3566
        {
3567
          r->cl = rvc_inf;
3568
          r->sign = sign;
3569
        }
3570
    }
3571
  else
3572
    {
3573
      r->cl = rvc_normal;
3574
      r->sign = sign;
3575
      SET_REAL_EXP (r, exp - 16383 + 1);
3576
      if (HOST_BITS_PER_LONG == 32)
3577
        {
3578
          r->sig[SIGSZ-1] = sig_hi;
3579
          r->sig[SIGSZ-2] = sig_lo;
3580
        }
3581
      else
3582
        r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3583
    }
3584
}
3585
 
3586
/* Convert from the internal format to the 12-byte Motorola format
3587
   for an IEEE extended real.  */
3588
static void
3589
decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3590
                               const long *buf)
3591
{
3592
  long intermed[3];
3593
 
3594
  /* Motorola chips are assumed always to be big-endian.  Also, the
3595
     padding in a Motorola extended real goes between the exponent and
3596
     the mantissa; remove it.  */
3597
  intermed[0] = buf[2];
3598
  intermed[1] = buf[1];
3599
  intermed[2] = (unsigned long)buf[0] >> 16;
3600
 
3601
  decode_ieee_extended (fmt, r, intermed);
3602
}
3603
 
3604
/* Convert from the internal format to the 12-byte Intel format for
3605
   an IEEE extended real.  */
3606
static void
3607
decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3608
                               const long *buf)
3609
{
3610
  if (FLOAT_WORDS_BIG_ENDIAN)
3611
    {
3612
      /* All the padding in an Intel-format extended real goes at the high
3613
         end, which in this case is after the mantissa, not the exponent.
3614
         Therefore we must shift everything up 16 bits.  */
3615
      long intermed[3];
3616
 
3617
      intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3618
      intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3619
      intermed[2] =  ((unsigned long)buf[0] >> 16);
3620
 
3621
      decode_ieee_extended (fmt, r, intermed);
3622
    }
3623
  else
3624
    /* decode_ieee_extended produces what we want directly.  */
3625
    decode_ieee_extended (fmt, r, buf);
3626
}
3627
 
3628
/* Convert from the internal format to the 16-byte Intel format for
3629
   an IEEE extended real.  */
3630
static void
3631
decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3632
                                const long *buf)
3633
{
3634
  /* All the padding in an Intel-format extended real goes at the high end.  */
3635
  decode_ieee_extended_intel_96 (fmt, r, buf);
3636
}
3637
 
3638
const struct real_format ieee_extended_motorola_format =
3639
  {
3640
    encode_ieee_extended_motorola,
3641
    decode_ieee_extended_motorola,
3642
    2,
3643
    64,
3644
    64,
3645
    -16382,
3646
    16384,
3647
    95,
3648
    95,
3649
    false,
3650
    true,
3651
    true,
3652
    true,
3653
    true,
3654
    true,
3655
    true,
3656
    true
3657
  };
3658
 
3659
const struct real_format ieee_extended_intel_96_format =
3660
  {
3661
    encode_ieee_extended_intel_96,
3662
    decode_ieee_extended_intel_96,
3663
    2,
3664
    64,
3665
    64,
3666
    -16381,
3667
    16384,
3668
    79,
3669
    79,
3670
    false,
3671
    true,
3672
    true,
3673
    true,
3674
    true,
3675
    true,
3676
    true,
3677
    false
3678
  };
3679
 
3680
const struct real_format ieee_extended_intel_128_format =
3681
  {
3682
    encode_ieee_extended_intel_128,
3683
    decode_ieee_extended_intel_128,
3684
    2,
3685
    64,
3686
    64,
3687
    -16381,
3688
    16384,
3689
    79,
3690
    79,
3691
    false,
3692
    true,
3693
    true,
3694
    true,
3695
    true,
3696
    true,
3697
    true,
3698
    false
3699
  };
3700
 
3701
/* The following caters to i386 systems that set the rounding precision
3702
   to 53 bits instead of 64, e.g. FreeBSD.  */
3703
const struct real_format ieee_extended_intel_96_round_53_format =
3704
  {
3705
    encode_ieee_extended_intel_96,
3706
    decode_ieee_extended_intel_96,
3707
    2,
3708
    53,
3709
    53,
3710
    -16381,
3711
    16384,
3712
    79,
3713
    79,
3714
    false,
3715
    true,
3716
    true,
3717
    true,
3718
    true,
3719
    true,
3720
    true,
3721
    false
3722
  };
3723
 
3724
/* IBM 128-bit extended precision format: a pair of IEEE double precision
3725
   numbers whose sum is equal to the extended precision value.  The number
3726
   with greater magnitude is first.  This format has the same magnitude
3727
   range as an IEEE double precision value, but effectively 106 bits of
3728
   significand precision.  Infinity and NaN are represented by their IEEE
3729
   double precision value stored in the first number, the second number is
3730
   +0.0 or -0.0 for Infinity and don't-care for NaN.  */
3731
 
3732
static void encode_ibm_extended (const struct real_format *fmt,
3733
                                 long *, const REAL_VALUE_TYPE *);
3734
static void decode_ibm_extended (const struct real_format *,
3735
                                 REAL_VALUE_TYPE *, const long *);
3736
 
3737
static void
3738
encode_ibm_extended (const struct real_format *fmt, long *buf,
3739
                     const REAL_VALUE_TYPE *r)
3740
{
3741
  REAL_VALUE_TYPE u, normr, v;
3742
  const struct real_format *base_fmt;
3743
 
3744
  base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3745
 
3746
  /* Renormalize R before doing any arithmetic on it.  */
3747
  normr = *r;
3748
  if (normr.cl == rvc_normal)
3749
    normalize (&normr);
3750
 
3751
  /* u = IEEE double precision portion of significand.  */
3752
  u = normr;
3753
  round_for_format (base_fmt, &u);
3754
  encode_ieee_double (base_fmt, &buf[0], &u);
3755
 
3756
  if (u.cl == rvc_normal)
3757
    {
3758
      do_add (&v, &normr, &u, 1);
3759
      /* Call round_for_format since we might need to denormalize.  */
3760
      round_for_format (base_fmt, &v);
3761
      encode_ieee_double (base_fmt, &buf[2], &v);
3762
    }
3763
  else
3764
    {
3765
      /* Inf, NaN, 0 are all representable as doubles, so the
3766
         least-significant part can be 0.0.  */
3767
      buf[2] = 0;
3768
      buf[3] = 0;
3769
    }
3770
}
3771
 
3772
static void
3773
decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3774
                     const long *buf)
3775
{
3776
  REAL_VALUE_TYPE u, v;
3777
  const struct real_format *base_fmt;
3778
 
3779
  base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3780
  decode_ieee_double (base_fmt, &u, &buf[0]);
3781
 
3782
  if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3783
    {
3784
      decode_ieee_double (base_fmt, &v, &buf[2]);
3785
      do_add (r, &u, &v, 0);
3786
    }
3787
  else
3788
    *r = u;
3789
}
3790
 
3791
const struct real_format ibm_extended_format =
3792
  {
3793
    encode_ibm_extended,
3794
    decode_ibm_extended,
3795
    2,
3796
    53 + 53,
3797
    53,
3798
    -1021 + 53,
3799
    1024,
3800
    127,
3801
    -1,
3802
    false,
3803
    true,
3804
    true,
3805
    true,
3806
    true,
3807
    true,
3808
    true,
3809
    false
3810
  };
3811
 
3812
const struct real_format mips_extended_format =
3813
  {
3814
    encode_ibm_extended,
3815
    decode_ibm_extended,
3816
    2,
3817
    53 + 53,
3818
    53,
3819
    -1021 + 53,
3820
    1024,
3821
    127,
3822
    -1,
3823
    false,
3824
    true,
3825
    true,
3826
    true,
3827
    true,
3828
    true,
3829
    false,
3830
    true
3831
  };
3832
 
3833
 
3834
/* IEEE quad precision format.  */
3835
 
3836
static void encode_ieee_quad (const struct real_format *fmt,
3837
                              long *, const REAL_VALUE_TYPE *);
3838
static void decode_ieee_quad (const struct real_format *,
3839
                              REAL_VALUE_TYPE *, const long *);
3840
 
3841
static void
3842
encode_ieee_quad (const struct real_format *fmt, long *buf,
3843
                  const REAL_VALUE_TYPE *r)
3844
{
3845
  unsigned long image3, image2, image1, image0, exp;
3846
  bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3847
  REAL_VALUE_TYPE u;
3848
 
3849
  image3 = r->sign << 31;
3850
  image2 = 0;
3851
  image1 = 0;
3852
  image0 = 0;
3853
 
3854
  rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3855
 
3856
  switch (r->cl)
3857
    {
3858
    case rvc_zero:
3859
      break;
3860
 
3861
    case rvc_inf:
3862
      if (fmt->has_inf)
3863
        image3 |= 32767 << 16;
3864
      else
3865
        {
3866
          image3 |= 0x7fffffff;
3867
          image2 = 0xffffffff;
3868
          image1 = 0xffffffff;
3869
          image0 = 0xffffffff;
3870
        }
3871
      break;
3872
 
3873
    case rvc_nan:
3874
      if (fmt->has_nans)
3875
        {
3876
          image3 |= 32767 << 16;
3877
 
3878
          if (r->canonical)
3879
            {
3880
              if (fmt->canonical_nan_lsbs_set)
3881
                {
3882
                  image3 |= 0x7fff;
3883
                  image2 = image1 = image0 = 0xffffffff;
3884
                }
3885
            }
3886
          else if (HOST_BITS_PER_LONG == 32)
3887
            {
3888
              image0 = u.sig[0];
3889
              image1 = u.sig[1];
3890
              image2 = u.sig[2];
3891
              image3 |= u.sig[3] & 0xffff;
3892
            }
3893
          else
3894
            {
3895
              image0 = u.sig[0];
3896
              image1 = image0 >> 31 >> 1;
3897
              image2 = u.sig[1];
3898
              image3 |= (image2 >> 31 >> 1) & 0xffff;
3899
              image0 &= 0xffffffff;
3900
              image2 &= 0xffffffff;
3901
            }
3902
          if (r->signalling == fmt->qnan_msb_set)
3903
            image3 &= ~0x8000;
3904
          else
3905
            image3 |= 0x8000;
3906
          if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3907
            image3 |= 0x4000;
3908
        }
3909
      else
3910
        {
3911
          image3 |= 0x7fffffff;
3912
          image2 = 0xffffffff;
3913
          image1 = 0xffffffff;
3914
          image0 = 0xffffffff;
3915
        }
3916
      break;
3917
 
3918
    case rvc_normal:
3919
      /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3920
         whereas the intermediate representation is 0.F x 2**exp.
3921
         Which means we're off by one.  */
3922
      if (denormal)
3923
        exp = 0;
3924
      else
3925
        exp = REAL_EXP (r) + 16383 - 1;
3926
      image3 |= exp << 16;
3927
 
3928
      if (HOST_BITS_PER_LONG == 32)
3929
        {
3930
          image0 = u.sig[0];
3931
          image1 = u.sig[1];
3932
          image2 = u.sig[2];
3933
          image3 |= u.sig[3] & 0xffff;
3934
        }
3935
      else
3936
        {
3937
          image0 = u.sig[0];
3938
          image1 = image0 >> 31 >> 1;
3939
          image2 = u.sig[1];
3940
          image3 |= (image2 >> 31 >> 1) & 0xffff;
3941
          image0 &= 0xffffffff;
3942
          image2 &= 0xffffffff;
3943
        }
3944
      break;
3945
 
3946
    default:
3947
      gcc_unreachable ();
3948
    }
3949
 
3950
  if (FLOAT_WORDS_BIG_ENDIAN)
3951
    {
3952
      buf[0] = image3;
3953
      buf[1] = image2;
3954
      buf[2] = image1;
3955
      buf[3] = image0;
3956
    }
3957
  else
3958
    {
3959
      buf[0] = image0;
3960
      buf[1] = image1;
3961
      buf[2] = image2;
3962
      buf[3] = image3;
3963
    }
3964
}
3965
 
3966
static void
3967
decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3968
                  const long *buf)
3969
{
3970
  unsigned long image3, image2, image1, image0;
3971
  bool sign;
3972
  int exp;
3973
 
3974
  if (FLOAT_WORDS_BIG_ENDIAN)
3975
    {
3976
      image3 = buf[0];
3977
      image2 = buf[1];
3978
      image1 = buf[2];
3979
      image0 = buf[3];
3980
    }
3981
  else
3982
    {
3983
      image0 = buf[0];
3984
      image1 = buf[1];
3985
      image2 = buf[2];
3986
      image3 = buf[3];
3987
    }
3988
  image0 &= 0xffffffff;
3989
  image1 &= 0xffffffff;
3990
  image2 &= 0xffffffff;
3991
 
3992
  sign = (image3 >> 31) & 1;
3993
  exp = (image3 >> 16) & 0x7fff;
3994
  image3 &= 0xffff;
3995
 
3996
  memset (r, 0, sizeof (*r));
3997
 
3998
  if (exp == 0)
3999
    {
4000
      if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
4001
        {
4002
          r->cl = rvc_normal;
4003
          r->sign = sign;
4004
 
4005
          SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
4006
          if (HOST_BITS_PER_LONG == 32)
4007
            {
4008
              r->sig[0] = image0;
4009
              r->sig[1] = image1;
4010
              r->sig[2] = image2;
4011
              r->sig[3] = image3;
4012
            }
4013
          else
4014
            {
4015
              r->sig[0] = (image1 << 31 << 1) | image0;
4016
              r->sig[1] = (image3 << 31 << 1) | image2;
4017
            }
4018
 
4019
          normalize (r);
4020
        }
4021
      else if (fmt->has_signed_zero)
4022
        r->sign = sign;
4023
    }
4024
  else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
4025
    {
4026
      if (image3 | image2 | image1 | image0)
4027
        {
4028
          r->cl = rvc_nan;
4029
          r->sign = sign;
4030
          r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
4031
 
4032
          if (HOST_BITS_PER_LONG == 32)
4033
            {
4034
              r->sig[0] = image0;
4035
              r->sig[1] = image1;
4036
              r->sig[2] = image2;
4037
              r->sig[3] = image3;
4038
            }
4039
          else
4040
            {
4041
              r->sig[0] = (image1 << 31 << 1) | image0;
4042
              r->sig[1] = (image3 << 31 << 1) | image2;
4043
            }
4044
          lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4045
        }
4046
      else
4047
        {
4048
          r->cl = rvc_inf;
4049
          r->sign = sign;
4050
        }
4051
    }
4052
  else
4053
    {
4054
      r->cl = rvc_normal;
4055
      r->sign = sign;
4056
      SET_REAL_EXP (r, exp - 16383 + 1);
4057
 
4058
      if (HOST_BITS_PER_LONG == 32)
4059
        {
4060
          r->sig[0] = image0;
4061
          r->sig[1] = image1;
4062
          r->sig[2] = image2;
4063
          r->sig[3] = image3;
4064
        }
4065
      else
4066
        {
4067
          r->sig[0] = (image1 << 31 << 1) | image0;
4068
          r->sig[1] = (image3 << 31 << 1) | image2;
4069
        }
4070
      lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4071
      r->sig[SIGSZ-1] |= SIG_MSB;
4072
    }
4073
}
4074
 
4075
const struct real_format ieee_quad_format =
4076
  {
4077
    encode_ieee_quad,
4078
    decode_ieee_quad,
4079
    2,
4080
    113,
4081
    113,
4082
    -16381,
4083
    16384,
4084
    127,
4085
    127,
4086
    false,
4087
    true,
4088
    true,
4089
    true,
4090
    true,
4091
    true,
4092
    true,
4093
    false
4094
  };
4095
 
4096
const struct real_format mips_quad_format =
4097
  {
4098
    encode_ieee_quad,
4099
    decode_ieee_quad,
4100
    2,
4101
    113,
4102
    113,
4103
    -16381,
4104
    16384,
4105
    127,
4106
    127,
4107
    false,
4108
    true,
4109
    true,
4110
    true,
4111
    true,
4112
    true,
4113
    false,
4114
    true
4115
  };
4116
 
4117
/* Descriptions of VAX floating point formats can be found beginning at
4118
 
4119
   http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4120
 
4121
   The thing to remember is that they're almost IEEE, except for word
4122
   order, exponent bias, and the lack of infinities, nans, and denormals.
4123
 
4124
   We don't implement the H_floating format here, simply because neither
4125
   the VAX or Alpha ports use it.  */
4126
 
4127
static void encode_vax_f (const struct real_format *fmt,
4128
                          long *, const REAL_VALUE_TYPE *);
4129
static void decode_vax_f (const struct real_format *,
4130
                          REAL_VALUE_TYPE *, const long *);
4131
static void encode_vax_d (const struct real_format *fmt,
4132
                          long *, const REAL_VALUE_TYPE *);
4133
static void decode_vax_d (const struct real_format *,
4134
                          REAL_VALUE_TYPE *, const long *);
4135
static void encode_vax_g (const struct real_format *fmt,
4136
                          long *, const REAL_VALUE_TYPE *);
4137
static void decode_vax_g (const struct real_format *,
4138
                          REAL_VALUE_TYPE *, const long *);
4139
 
4140
static void
4141
encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4142
              const REAL_VALUE_TYPE *r)
4143
{
4144
  unsigned long sign, exp, sig, image;
4145
 
4146
  sign = r->sign << 15;
4147
 
4148
  switch (r->cl)
4149
    {
4150
    case rvc_zero:
4151
      image = 0;
4152
      break;
4153
 
4154
    case rvc_inf:
4155
    case rvc_nan:
4156
      image = 0xffff7fff | sign;
4157
      break;
4158
 
4159
    case rvc_normal:
4160
      sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4161
      exp = REAL_EXP (r) + 128;
4162
 
4163
      image = (sig << 16) & 0xffff0000;
4164
      image |= sign;
4165
      image |= exp << 7;
4166
      image |= sig >> 16;
4167
      break;
4168
 
4169
    default:
4170
      gcc_unreachable ();
4171
    }
4172
 
4173
  buf[0] = image;
4174
}
4175
 
4176
static void
4177
decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
4178
              REAL_VALUE_TYPE *r, const long *buf)
4179
{
4180
  unsigned long image = buf[0] & 0xffffffff;
4181
  int exp = (image >> 7) & 0xff;
4182
 
4183
  memset (r, 0, sizeof (*r));
4184
 
4185
  if (exp != 0)
4186
    {
4187
      r->cl = rvc_normal;
4188
      r->sign = (image >> 15) & 1;
4189
      SET_REAL_EXP (r, exp - 128);
4190
 
4191
      image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
4192
      r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4193
    }
4194
}
4195
 
4196
static void
4197
encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4198
              const REAL_VALUE_TYPE *r)
4199
{
4200
  unsigned long image0, image1, sign = r->sign << 15;
4201
 
4202
  switch (r->cl)
4203
    {
4204
    case rvc_zero:
4205
      image0 = image1 = 0;
4206
      break;
4207
 
4208
    case rvc_inf:
4209
    case rvc_nan:
4210
      image0 = 0xffff7fff | sign;
4211
      image1 = 0xffffffff;
4212
      break;
4213
 
4214
    case rvc_normal:
4215
      /* Extract the significand into straight hi:lo.  */
4216
      if (HOST_BITS_PER_LONG == 64)
4217
        {
4218
          image0 = r->sig[SIGSZ-1];
4219
          image1 = (image0 >> (64 - 56)) & 0xffffffff;
4220
          image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
4221
        }
4222
      else
4223
        {
4224
          image0 = r->sig[SIGSZ-1];
4225
          image1 = r->sig[SIGSZ-2];
4226
          image1 = (image0 << 24) | (image1 >> 8);
4227
          image0 = (image0 >> 8) & 0xffffff;
4228
        }
4229
 
4230
      /* Rearrange the half-words of the significand to match the
4231
         external format.  */
4232
      image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
4233
      image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4234
 
4235
      /* Add the sign and exponent.  */
4236
      image0 |= sign;
4237
      image0 |= (REAL_EXP (r) + 128) << 7;
4238
      break;
4239
 
4240
    default:
4241
      gcc_unreachable ();
4242
    }
4243
 
4244
  if (FLOAT_WORDS_BIG_ENDIAN)
4245
    buf[0] = image1, buf[1] = image0;
4246
  else
4247
    buf[0] = image0, buf[1] = image1;
4248
}
4249
 
4250
static void
4251
decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
4252
              REAL_VALUE_TYPE *r, const long *buf)
4253
{
4254
  unsigned long image0, image1;
4255
  int exp;
4256
 
4257
  if (FLOAT_WORDS_BIG_ENDIAN)
4258
    image1 = buf[0], image0 = buf[1];
4259
  else
4260
    image0 = buf[0], image1 = buf[1];
4261
  image0 &= 0xffffffff;
4262
  image1 &= 0xffffffff;
4263
 
4264
  exp = (image0 >> 7) & 0xff;
4265
 
4266
  memset (r, 0, sizeof (*r));
4267
 
4268
  if (exp != 0)
4269
    {
4270
      r->cl = rvc_normal;
4271
      r->sign = (image0 >> 15) & 1;
4272
      SET_REAL_EXP (r, exp - 128);
4273
 
4274
      /* Rearrange the half-words of the external format into
4275
         proper ascending order.  */
4276
      image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
4277
      image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4278
 
4279
      if (HOST_BITS_PER_LONG == 64)
4280
        {
4281
          image0 = (image0 << 31 << 1) | image1;
4282
          image0 <<= 64 - 56;
4283
          image0 |= SIG_MSB;
4284
          r->sig[SIGSZ-1] = image0;
4285
        }
4286
      else
4287
        {
4288
          r->sig[SIGSZ-1] = image0;
4289
          r->sig[SIGSZ-2] = image1;
4290
          lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4291
          r->sig[SIGSZ-1] |= SIG_MSB;
4292
        }
4293
    }
4294
}
4295
 
4296
static void
4297
encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4298
              const REAL_VALUE_TYPE *r)
4299
{
4300
  unsigned long image0, image1, sign = r->sign << 15;
4301
 
4302
  switch (r->cl)
4303
    {
4304
    case rvc_zero:
4305
      image0 = image1 = 0;
4306
      break;
4307
 
4308
    case rvc_inf:
4309
    case rvc_nan:
4310
      image0 = 0xffff7fff | sign;
4311
      image1 = 0xffffffff;
4312
      break;
4313
 
4314
    case rvc_normal:
4315
      /* Extract the significand into straight hi:lo.  */
4316
      if (HOST_BITS_PER_LONG == 64)
4317
        {
4318
          image0 = r->sig[SIGSZ-1];
4319
          image1 = (image0 >> (64 - 53)) & 0xffffffff;
4320
          image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4321
        }
4322
      else
4323
        {
4324
          image0 = r->sig[SIGSZ-1];
4325
          image1 = r->sig[SIGSZ-2];
4326
          image1 = (image0 << 21) | (image1 >> 11);
4327
          image0 = (image0 >> 11) & 0xfffff;
4328
        }
4329
 
4330
      /* Rearrange the half-words of the significand to match the
4331
         external format.  */
4332
      image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4333
      image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4334
 
4335
      /* Add the sign and exponent.  */
4336
      image0 |= sign;
4337
      image0 |= (REAL_EXP (r) + 1024) << 4;
4338
      break;
4339
 
4340
    default:
4341
      gcc_unreachable ();
4342
    }
4343
 
4344
  if (FLOAT_WORDS_BIG_ENDIAN)
4345
    buf[0] = image1, buf[1] = image0;
4346
  else
4347
    buf[0] = image0, buf[1] = image1;
4348
}
4349
 
4350
static void
4351
decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4352
              REAL_VALUE_TYPE *r, const long *buf)
4353
{
4354
  unsigned long image0, image1;
4355
  int exp;
4356
 
4357
  if (FLOAT_WORDS_BIG_ENDIAN)
4358
    image1 = buf[0], image0 = buf[1];
4359
  else
4360
    image0 = buf[0], image1 = buf[1];
4361
  image0 &= 0xffffffff;
4362
  image1 &= 0xffffffff;
4363
 
4364
  exp = (image0 >> 4) & 0x7ff;
4365
 
4366
  memset (r, 0, sizeof (*r));
4367
 
4368
  if (exp != 0)
4369
    {
4370
      r->cl = rvc_normal;
4371
      r->sign = (image0 >> 15) & 1;
4372
      SET_REAL_EXP (r, exp - 1024);
4373
 
4374
      /* Rearrange the half-words of the external format into
4375
         proper ascending order.  */
4376
      image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4377
      image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4378
 
4379
      if (HOST_BITS_PER_LONG == 64)
4380
        {
4381
          image0 = (image0 << 31 << 1) | image1;
4382
          image0 <<= 64 - 53;
4383
          image0 |= SIG_MSB;
4384
          r->sig[SIGSZ-1] = image0;
4385
        }
4386
      else
4387
        {
4388
          r->sig[SIGSZ-1] = image0;
4389
          r->sig[SIGSZ-2] = image1;
4390
          lshift_significand (r, r, 64 - 53);
4391
          r->sig[SIGSZ-1] |= SIG_MSB;
4392
        }
4393
    }
4394
}
4395
 
4396
const struct real_format vax_f_format =
4397
  {
4398
    encode_vax_f,
4399
    decode_vax_f,
4400
    2,
4401
    24,
4402
    24,
4403
    -127,
4404
    127,
4405
    15,
4406
    15,
4407
    false,
4408
    false,
4409
    false,
4410
    false,
4411
    false,
4412
    false,
4413
    false,
4414
    false
4415
  };
4416
 
4417
const struct real_format vax_d_format =
4418
  {
4419
    encode_vax_d,
4420
    decode_vax_d,
4421
    2,
4422
    56,
4423
    56,
4424
    -127,
4425
    127,
4426
    15,
4427
    15,
4428
    false,
4429
    false,
4430
    false,
4431
    false,
4432
    false,
4433
    false,
4434
    false,
4435
    false
4436
  };
4437
 
4438
const struct real_format vax_g_format =
4439
  {
4440
    encode_vax_g,
4441
    decode_vax_g,
4442
    2,
4443
    53,
4444
    53,
4445
    -1023,
4446
    1023,
4447
    15,
4448
    15,
4449
    false,
4450
    false,
4451
    false,
4452
    false,
4453
    false,
4454
    false,
4455
    false,
4456
    false
4457
  };
4458
 
4459
/* Encode real R into a single precision DFP value in BUF.  */
4460
static void
4461
encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4462
                       long *buf ATTRIBUTE_UNUSED,
4463
                       const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4464
{
4465
  encode_decimal32 (fmt, buf, r);
4466
}
4467
 
4468
/* Decode a single precision DFP value in BUF into a real R.  */
4469
static void
4470
decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4471
                       REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4472
                       const long *buf ATTRIBUTE_UNUSED)
4473
{
4474
  decode_decimal32 (fmt, r, buf);
4475
}
4476
 
4477
/* Encode real R into a double precision DFP value in BUF.  */
4478
static void
4479
encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4480
                       long *buf ATTRIBUTE_UNUSED,
4481
                       const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4482
{
4483
  encode_decimal64 (fmt, buf, r);
4484
}
4485
 
4486
/* Decode a double precision DFP value in BUF into a real R.  */
4487
static void
4488
decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4489
                       REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4490
                       const long *buf ATTRIBUTE_UNUSED)
4491
{
4492
  decode_decimal64 (fmt, r, buf);
4493
}
4494
 
4495
/* Encode real R into a quad precision DFP value in BUF.  */
4496
static void
4497
encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4498
                     long *buf ATTRIBUTE_UNUSED,
4499
                     const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4500
{
4501
  encode_decimal128 (fmt, buf, r);
4502
}
4503
 
4504
/* Decode a quad precision DFP value in BUF into a real R.  */
4505
static void
4506
decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4507
                     REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4508
                     const long *buf ATTRIBUTE_UNUSED)
4509
{
4510
  decode_decimal128 (fmt, r, buf);
4511
}
4512
 
4513
/* Single precision decimal floating point (IEEE 754). */
4514
const struct real_format decimal_single_format =
4515
  {
4516
    encode_decimal_single,
4517
    decode_decimal_single,
4518
    10,
4519
    7,
4520
    7,
4521
    -94,
4522
    97,
4523
    31,
4524
    31,
4525
    false,
4526
    true,
4527
    true,
4528
    true,
4529
    true,
4530
    true,
4531
    true,
4532
    false
4533
  };
4534
 
4535
/* Double precision decimal floating point (IEEE 754). */
4536
const struct real_format decimal_double_format =
4537
  {
4538
    encode_decimal_double,
4539
    decode_decimal_double,
4540
    10,
4541
    16,
4542
    16,
4543
    -382,
4544
    385,
4545
    63,
4546
    63,
4547
    false,
4548
    true,
4549
    true,
4550
    true,
4551
    true,
4552
    true,
4553
    true,
4554
    false
4555
  };
4556
 
4557
/* Quad precision decimal floating point (IEEE 754). */
4558
const struct real_format decimal_quad_format =
4559
  {
4560
    encode_decimal_quad,
4561
    decode_decimal_quad,
4562
    10,
4563
    34,
4564
    34,
4565
    -6142,
4566
    6145,
4567
    127,
4568
    127,
4569
    false,
4570
    true,
4571
    true,
4572
    true,
4573
    true,
4574
    true,
4575
    true,
4576
    false
4577
  };
4578
 
4579
/* Encode half-precision floats.  This routine is used both for the IEEE
4580
   ARM alternative encodings.  */
4581
static void
4582
encode_ieee_half (const struct real_format *fmt, long *buf,
4583
                  const REAL_VALUE_TYPE *r)
4584
{
4585
  unsigned long image, sig, exp;
4586
  unsigned long sign = r->sign;
4587
  bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
4588
 
4589
  image = sign << 15;
4590
  sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
4591
 
4592
  switch (r->cl)
4593
    {
4594
    case rvc_zero:
4595
      break;
4596
 
4597
    case rvc_inf:
4598
      if (fmt->has_inf)
4599
        image |= 31 << 10;
4600
      else
4601
        image |= 0x7fff;
4602
      break;
4603
 
4604
    case rvc_nan:
4605
      if (fmt->has_nans)
4606
        {
4607
          if (r->canonical)
4608
            sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
4609
          if (r->signalling == fmt->qnan_msb_set)
4610
            sig &= ~(1 << 9);
4611
          else
4612
            sig |= 1 << 9;
4613
          if (sig == 0)
4614
            sig = 1 << 8;
4615
 
4616
          image |= 31 << 10;
4617
          image |= sig;
4618
        }
4619
      else
4620
        image |= 0x3ff;
4621
      break;
4622
 
4623
    case rvc_normal:
4624
      /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4625
         whereas the intermediate representation is 0.F x 2**exp.
4626
         Which means we're off by one.  */
4627
      if (denormal)
4628
        exp = 0;
4629
      else
4630
        exp = REAL_EXP (r) + 15 - 1;
4631
      image |= exp << 10;
4632
      image |= sig;
4633
      break;
4634
 
4635
    default:
4636
      gcc_unreachable ();
4637
    }
4638
 
4639
  buf[0] = image;
4640
}
4641
 
4642
/* Decode half-precision floats.  This routine is used both for the IEEE
4643
   ARM alternative encodings.  */
4644
static void
4645
decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4646
                  const long *buf)
4647
{
4648
  unsigned long image = buf[0] & 0xffff;
4649
  bool sign = (image >> 15) & 1;
4650
  int exp = (image >> 10) & 0x1f;
4651
 
4652
  memset (r, 0, sizeof (*r));
4653
  image <<= HOST_BITS_PER_LONG - 11;
4654
  image &= ~SIG_MSB;
4655
 
4656
  if (exp == 0)
4657
    {
4658
      if (image && fmt->has_denorm)
4659
        {
4660
          r->cl = rvc_normal;
4661
          r->sign = sign;
4662
          SET_REAL_EXP (r, -14);
4663
          r->sig[SIGSZ-1] = image << 1;
4664
          normalize (r);
4665
        }
4666
      else if (fmt->has_signed_zero)
4667
        r->sign = sign;
4668
    }
4669
  else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
4670
    {
4671
      if (image)
4672
        {
4673
          r->cl = rvc_nan;
4674
          r->sign = sign;
4675
          r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4676
                           ^ fmt->qnan_msb_set);
4677
          r->sig[SIGSZ-1] = image;
4678
        }
4679
      else
4680
        {
4681
          r->cl = rvc_inf;
4682
          r->sign = sign;
4683
        }
4684
    }
4685
  else
4686
    {
4687
      r->cl = rvc_normal;
4688
      r->sign = sign;
4689
      SET_REAL_EXP (r, exp - 15 + 1);
4690
      r->sig[SIGSZ-1] = image | SIG_MSB;
4691
    }
4692
}
4693
 
4694
/* Half-precision format, as specified in IEEE 754R.  */
4695
const struct real_format ieee_half_format =
4696
  {
4697
    encode_ieee_half,
4698
    decode_ieee_half,
4699
    2,
4700
    11,
4701
    11,
4702
    -13,
4703
    16,
4704
    15,
4705
    15,
4706
    false,
4707
    true,
4708
    true,
4709
    true,
4710
    true,
4711
    true,
4712
    true,
4713
    false
4714
  };
4715
 
4716
/* ARM's alternative half-precision format, similar to IEEE but with
4717
   no reserved exponent value for NaNs and infinities; rather, it just
4718
   extends the range of exponents by one.  */
4719
const struct real_format arm_half_format =
4720
  {
4721
    encode_ieee_half,
4722
    decode_ieee_half,
4723
    2,
4724
    11,
4725
    11,
4726
    -13,
4727
    17,
4728
    15,
4729
    15,
4730
    false,
4731
    true,
4732
    false,
4733
    false,
4734
    true,
4735
    true,
4736
    false,
4737
    false
4738
  };
4739
 
4740
/* A synthetic "format" for internal arithmetic.  It's the size of the
4741
   internal significand minus the two bits needed for proper rounding.
4742
   The encode and decode routines exist only to satisfy our paranoia
4743
   harness.  */
4744
 
4745
static void encode_internal (const struct real_format *fmt,
4746
                             long *, const REAL_VALUE_TYPE *);
4747
static void decode_internal (const struct real_format *,
4748
                             REAL_VALUE_TYPE *, const long *);
4749
 
4750
static void
4751
encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4752
                 const REAL_VALUE_TYPE *r)
4753
{
4754
  memcpy (buf, r, sizeof (*r));
4755
}
4756
 
4757
static void
4758
decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4759
                 REAL_VALUE_TYPE *r, const long *buf)
4760
{
4761
  memcpy (r, buf, sizeof (*r));
4762
}
4763
 
4764
const struct real_format real_internal_format =
4765
  {
4766
    encode_internal,
4767
    decode_internal,
4768
    2,
4769
    SIGNIFICAND_BITS - 2,
4770
    SIGNIFICAND_BITS - 2,
4771
    -MAX_EXP,
4772
    MAX_EXP,
4773
    -1,
4774
    -1,
4775
    false,
4776
    false,
4777
    true,
4778
    true,
4779
    false,
4780
    true,
4781
    true,
4782
    false
4783
  };
4784
 
4785
/* Calculate the square root of X in mode MODE, and store the result
4786
   in R.  Return TRUE if the operation does not raise an exception.
4787
   For details see "High Precision Division and Square Root",
4788
   Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4789
   1993.  http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf.  */
4790
 
4791
bool
4792
real_sqrt (REAL_VALUE_TYPE *r, enum machine_mode mode,
4793
           const REAL_VALUE_TYPE *x)
4794
{
4795
  static REAL_VALUE_TYPE halfthree;
4796
  static bool init = false;
4797
  REAL_VALUE_TYPE h, t, i;
4798
  int iter, exp;
4799
 
4800
  /* sqrt(-0.0) is -0.0.  */
4801
  if (real_isnegzero (x))
4802
    {
4803
      *r = *x;
4804
      return false;
4805
    }
4806
 
4807
  /* Negative arguments return NaN.  */
4808
  if (real_isneg (x))
4809
    {
4810
      get_canonical_qnan (r, 0);
4811
      return false;
4812
    }
4813
 
4814
  /* Infinity and NaN return themselves.  */
4815
  if (!real_isfinite (x))
4816
    {
4817
      *r = *x;
4818
      return false;
4819
    }
4820
 
4821
  if (!init)
4822
    {
4823
      do_add (&halfthree, &dconst1, &dconsthalf, 0);
4824
      init = true;
4825
    }
4826
 
4827
  /* Initial guess for reciprocal sqrt, i.  */
4828
  exp = real_exponent (x);
4829
  real_ldexp (&i, &dconst1, -exp/2);
4830
 
4831
  /* Newton's iteration for reciprocal sqrt, i.  */
4832
  for (iter = 0; iter < 16; iter++)
4833
    {
4834
      /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x).  */
4835
      do_multiply (&t, x, &i);
4836
      do_multiply (&h, &t, &i);
4837
      do_multiply (&t, &h, &dconsthalf);
4838
      do_add (&h, &halfthree, &t, 1);
4839
      do_multiply (&t, &i, &h);
4840
 
4841
      /* Check for early convergence.  */
4842
      if (iter >= 6 && real_identical (&i, &t))
4843
        break;
4844
 
4845
      /* ??? Unroll loop to avoid copying.  */
4846
      i = t;
4847
    }
4848
 
4849
  /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)).  */
4850
  do_multiply (&t, x, &i);
4851
  do_multiply (&h, &t, &i);
4852
  do_add (&i, &dconst1, &h, 1);
4853
  do_multiply (&h, &t, &i);
4854
  do_multiply (&i, &dconsthalf, &h);
4855
  do_add (&h, &t, &i, 0);
4856
 
4857
  /* ??? We need a Tuckerman test to get the last bit.  */
4858
 
4859
  real_convert (r, mode, &h);
4860
  return true;
4861
}
4862
 
4863
/* Calculate X raised to the integer exponent N in mode MODE and store
4864
   the result in R.  Return true if the result may be inexact due to
4865
   loss of precision.  The algorithm is the classic "left-to-right binary
4866
   method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4867
   Algorithms", "The Art of Computer Programming", Volume 2.  */
4868
 
4869
bool
4870
real_powi (REAL_VALUE_TYPE *r, enum machine_mode mode,
4871
           const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4872
{
4873
  unsigned HOST_WIDE_INT bit;
4874
  REAL_VALUE_TYPE t;
4875
  bool inexact = false;
4876
  bool init = false;
4877
  bool neg;
4878
  int i;
4879
 
4880
  if (n == 0)
4881
    {
4882
      *r = dconst1;
4883
      return false;
4884
    }
4885
  else if (n < 0)
4886
    {
4887
      /* Don't worry about overflow, from now on n is unsigned.  */
4888
      neg = true;
4889
      n = -n;
4890
    }
4891
  else
4892
    neg = false;
4893
 
4894
  t = *x;
4895
  bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4896
  for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4897
    {
4898
      if (init)
4899
        {
4900
          inexact |= do_multiply (&t, &t, &t);
4901
          if (n & bit)
4902
            inexact |= do_multiply (&t, &t, x);
4903
        }
4904
      else if (n & bit)
4905
        init = true;
4906
      bit >>= 1;
4907
    }
4908
 
4909
  if (neg)
4910
    inexact |= do_divide (&t, &dconst1, &t);
4911
 
4912
  real_convert (r, mode, &t);
4913
  return inexact;
4914
}
4915
 
4916
/* Round X to the nearest integer not larger in absolute value, i.e.
4917
   towards zero, placing the result in R in mode MODE.  */
4918
 
4919
void
4920
real_trunc (REAL_VALUE_TYPE *r, enum machine_mode mode,
4921
            const REAL_VALUE_TYPE *x)
4922
{
4923
  do_fix_trunc (r, x);
4924
  if (mode != VOIDmode)
4925
    real_convert (r, mode, r);
4926
}
4927
 
4928
/* Round X to the largest integer not greater in value, i.e. round
4929
   down, placing the result in R in mode MODE.  */
4930
 
4931
void
4932
real_floor (REAL_VALUE_TYPE *r, enum machine_mode mode,
4933
            const REAL_VALUE_TYPE *x)
4934
{
4935
  REAL_VALUE_TYPE t;
4936
 
4937
  do_fix_trunc (&t, x);
4938
  if (! real_identical (&t, x) && x->sign)
4939
    do_add (&t, &t, &dconstm1, 0);
4940
  if (mode != VOIDmode)
4941
    real_convert (r, mode, &t);
4942
  else
4943
    *r = t;
4944
}
4945
 
4946
/* Round X to the smallest integer not less then argument, i.e. round
4947
   up, placing the result in R in mode MODE.  */
4948
 
4949
void
4950
real_ceil (REAL_VALUE_TYPE *r, enum machine_mode mode,
4951
           const REAL_VALUE_TYPE *x)
4952
{
4953
  REAL_VALUE_TYPE t;
4954
 
4955
  do_fix_trunc (&t, x);
4956
  if (! real_identical (&t, x) && ! x->sign)
4957
    do_add (&t, &t, &dconst1, 0);
4958
  if (mode != VOIDmode)
4959
    real_convert (r, mode, &t);
4960
  else
4961
    *r = t;
4962
}
4963
 
4964
/* Round X to the nearest integer, but round halfway cases away from
4965
   zero.  */
4966
 
4967
void
4968
real_round (REAL_VALUE_TYPE *r, enum machine_mode mode,
4969
            const REAL_VALUE_TYPE *x)
4970
{
4971
  do_add (r, x, &dconsthalf, x->sign);
4972
  do_fix_trunc (r, r);
4973
  if (mode != VOIDmode)
4974
    real_convert (r, mode, r);
4975
}
4976
 
4977
/* Set the sign of R to the sign of X.  */
4978
 
4979
void
4980
real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
4981
{
4982
  r->sign = x->sign;
4983
}
4984
 
4985
/* Convert from REAL_VALUE_TYPE to MPFR.  The caller is responsible
4986
   for initializing and clearing the MPFR parameter.  */
4987
 
4988
void
4989
mpfr_from_real (mpfr_ptr m, const REAL_VALUE_TYPE *r, mp_rnd_t rndmode)
4990
{
4991
  /* We use a string as an intermediate type.  */
4992
  char buf[128];
4993
  int ret;
4994
 
4995
  /* Take care of Infinity and NaN.  */
4996
  if (r->cl == rvc_inf)
4997
    {
4998
      mpfr_set_inf (m, r->sign == 1 ? -1 : 1);
4999
      return;
5000
    }
5001
 
5002
  if (r->cl == rvc_nan)
5003
    {
5004
      mpfr_set_nan (m);
5005
      return;
5006
    }
5007
 
5008
  real_to_hexadecimal (buf, r, sizeof (buf), 0, 1);
5009
  /* mpfr_set_str() parses hexadecimal floats from strings in the same
5010
     format that GCC will output them.  Nothing extra is needed.  */
5011
  ret = mpfr_set_str (m, buf, 16, rndmode);
5012
  gcc_assert (ret == 0);
5013
}
5014
 
5015
/* Convert from MPFR to REAL_VALUE_TYPE, for a given type TYPE and rounding
5016
   mode RNDMODE.  TYPE is only relevant if M is a NaN.  */
5017
 
5018
void
5019
real_from_mpfr (REAL_VALUE_TYPE *r, mpfr_srcptr m, tree type, mp_rnd_t rndmode)
5020
{
5021
  /* We use a string as an intermediate type.  */
5022
  char buf[128], *rstr;
5023
  mp_exp_t exp;
5024
 
5025
  /* Take care of Infinity and NaN.  */
5026
  if (mpfr_inf_p (m))
5027
    {
5028
      real_inf (r);
5029
      if (mpfr_sgn (m) < 0)
5030
        *r = REAL_VALUE_NEGATE (*r);
5031
      return;
5032
    }
5033
 
5034
  if (mpfr_nan_p (m))
5035
    {
5036
      real_nan (r, "", 1, TYPE_MODE (type));
5037
      return;
5038
    }
5039
 
5040
  rstr = mpfr_get_str (NULL, &exp, 16, 0, m, rndmode);
5041
 
5042
  /* The additional 12 chars add space for the sprintf below.  This
5043
     leaves 6 digits for the exponent which is supposedly enough.  */
5044
  gcc_assert (rstr != NULL && strlen (rstr) < sizeof (buf) - 12);
5045
 
5046
  /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
5047
     mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
5048
     for that.  */
5049
  exp *= 4;
5050
 
5051
  if (rstr[0] == '-')
5052
    sprintf (buf, "-0x.%sp%d", &rstr[1], (int) exp);
5053
  else
5054
    sprintf (buf, "0x.%sp%d", rstr, (int) exp);
5055
 
5056
  mpfr_free_str (rstr);
5057
 
5058
  real_from_string (r, buf);
5059
}
5060
 
5061
/* Check whether the real constant value given is an integer.  */
5062
 
5063
bool
5064
real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode)
5065
{
5066
  REAL_VALUE_TYPE cint;
5067
 
5068
  real_trunc (&cint, mode, c);
5069
  return real_identical (c, &cint);
5070
}
5071
 
5072
/* Write into BUF the maximum representable finite floating-point
5073
   number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
5074
   float string.  LEN is the size of BUF, and the buffer must be large
5075
   enough to contain the resulting string.  */
5076
 
5077
void
5078
get_max_float (const struct real_format *fmt, char *buf, size_t len)
5079
{
5080
  int i, n;
5081
  char *p;
5082
 
5083
  strcpy (buf, "0x0.");
5084
  n = fmt->p;
5085
  for (i = 0, p = buf + 4; i + 3 < n; i += 4)
5086
    *p++ = 'f';
5087
  if (i < n)
5088
    *p++ = "08ce"[n - i];
5089
  sprintf (p, "p%d", fmt->emax);
5090
  if (fmt->pnan < fmt->p)
5091
    {
5092
      /* This is an IBM extended double format made up of two IEEE
5093
         doubles.  The value of the long double is the sum of the
5094
         values of the two parts.  The most significant part is
5095
         required to be the value of the long double rounded to the
5096
         nearest double.  Rounding means we need a slightly smaller
5097
         value for LDBL_MAX.  */
5098
      buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
5099
    }
5100
 
5101
  gcc_assert (strlen (buf) < len);
5102
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.