OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [real.h] - Blame information for rev 293

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 280 jeremybenn
/* Definitions of floating-point access for GNU compiler.
2
   Copyright (C) 1989, 1991, 1994, 1996, 1997, 1998, 1999,
3
   2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4
   Free Software Foundation, Inc.
5
 
6
   This file is part of GCC.
7
 
8
   GCC is free software; you can redistribute it and/or modify it under
9
   the terms of the GNU General Public License as published by the Free
10
   Software Foundation; either version 3, or (at your option) any later
11
   version.
12
 
13
   GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14
   WARRANTY; without even the implied warranty of MERCHANTABILITY or
15
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16
   for more details.
17
 
18
   You should have received a copy of the GNU General Public License
19
   along with GCC; see the file COPYING3.  If not see
20
   <http://www.gnu.org/licenses/>.  */
21
 
22
#ifndef GCC_REAL_H
23
#define GCC_REAL_H
24
 
25
#ifndef GENERATOR_FILE
26
#include <gmp.h>
27
#include <mpfr.h>
28
#include <mpc.h>
29
extern tree do_mpc_arg2 (tree, tree, tree, int, int (*)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t));
30
#endif
31
#include "machmode.h"
32
 
33
/* An expanded form of the represented number.  */
34
 
35
/* Enumerate the special cases of numbers that we encounter.  */
36
enum real_value_class {
37
  rvc_zero,
38
  rvc_normal,
39
  rvc_inf,
40
  rvc_nan
41
};
42
 
43
#define SIGNIFICAND_BITS        (128 + HOST_BITS_PER_LONG)
44
#define EXP_BITS                (32 - 6)
45
#define MAX_EXP                 ((1 << (EXP_BITS - 1)) - 1)
46
#define SIGSZ                   (SIGNIFICAND_BITS / HOST_BITS_PER_LONG)
47
#define SIG_MSB                 ((unsigned long)1 << (HOST_BITS_PER_LONG - 1))
48
 
49
struct GTY(()) real_value {
50
  /* Use the same underlying type for all bit-fields, so as to make
51
     sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will
52
     be miscomputed.  */
53
  unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2;
54
  unsigned int decimal : 1;
55
  unsigned int sign : 1;
56
  unsigned int signalling : 1;
57
  unsigned int canonical : 1;
58
  unsigned int uexp : EXP_BITS;
59
  unsigned long sig[SIGSZ];
60
};
61
 
62
#define REAL_EXP(REAL) \
63
  ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \
64
   - (1 << (EXP_BITS - 1)))
65
#define SET_REAL_EXP(REAL, EXP) \
66
  ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1)))
67
 
68
/* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it
69
   needs to be a macro.  We do need to continue to have a structure tag
70
   so that other headers can forward declare it.  */
71
#define REAL_VALUE_TYPE struct real_value
72
 
73
/* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in
74
   consecutive "w" slots.  Moreover, we've got to compute the number of "w"
75
   slots at preprocessor time, which means we can't use sizeof.  Guess.  */
76
 
77
#define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32)
78
#define REAL_WIDTH \
79
  (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \
80
   + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */
81
 
82
/* Verify the guess.  */
83
extern char test_real_width
84
  [sizeof(REAL_VALUE_TYPE) <= REAL_WIDTH*sizeof(HOST_WIDE_INT) ? 1 : -1];
85
 
86
/* Calculate the format for CONST_DOUBLE.  We need as many slots as
87
   are necessary to overlay a REAL_VALUE_TYPE on them.  This could be
88
   as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE).
89
 
90
   A number of places assume that there are always at least two 'w'
91
   slots in a CONST_DOUBLE, so we provide them even if one would suffice.  */
92
 
93
#if REAL_WIDTH == 1
94
# define CONST_DOUBLE_FORMAT     "ww"
95
#else
96
# if REAL_WIDTH == 2
97
#  define CONST_DOUBLE_FORMAT    "ww"
98
# else
99
#  if REAL_WIDTH == 3
100
#   define CONST_DOUBLE_FORMAT   "www"
101
#  else
102
#   if REAL_WIDTH == 4
103
#    define CONST_DOUBLE_FORMAT  "wwww"
104
#   else
105
#    if REAL_WIDTH == 5
106
#     define CONST_DOUBLE_FORMAT "wwwww"
107
#    else
108
#     if REAL_WIDTH == 6
109
#      define CONST_DOUBLE_FORMAT "wwwwww"
110
#     else
111
       #error "REAL_WIDTH > 6 not supported"
112
#     endif
113
#    endif
114
#   endif
115
#  endif
116
# endif
117
#endif
118
 
119
 
120
/* Describes the properties of the specific target format in use.  */
121
struct real_format
122
{
123
  /* Move to and from the target bytes.  */
124
  void (*encode) (const struct real_format *, long *,
125
                  const REAL_VALUE_TYPE *);
126
  void (*decode) (const struct real_format *, REAL_VALUE_TYPE *,
127
                  const long *);
128
 
129
  /* The radix of the exponent and digits of the significand.  */
130
  int b;
131
 
132
  /* Size of the significand in digits of radix B.  */
133
  int p;
134
 
135
  /* Size of the significant of a NaN, in digits of radix B.  */
136
  int pnan;
137
 
138
  /* The minimum negative integer, x, such that b**(x-1) is normalized.  */
139
  int emin;
140
 
141
  /* The maximum integer, x, such that b**(x-1) is representable.  */
142
  int emax;
143
 
144
  /* The bit position of the sign bit, for determining whether a value
145
     is positive/negative, or -1 for a complex encoding.  */
146
  int signbit_ro;
147
 
148
  /* The bit position of the sign bit, for changing the sign of a number,
149
     or -1 for a complex encoding.  */
150
  int signbit_rw;
151
 
152
  /* Default rounding mode for operations on this format.  */
153
  bool round_towards_zero;
154
  bool has_sign_dependent_rounding;
155
 
156
  /* Properties of the format.  */
157
  bool has_nans;
158
  bool has_inf;
159
  bool has_denorm;
160
  bool has_signed_zero;
161
  bool qnan_msb_set;
162
  bool canonical_nan_lsbs_set;
163
};
164
 
165
 
166
/* The target format used for each floating point mode.
167
   Float modes are followed by decimal float modes, with entries for
168
   float modes indexed by (MODE - first float mode), and entries for
169
   decimal float modes indexed by (MODE - first decimal float mode) +
170
   the number of float modes.  */
171
extern const struct real_format *
172
  real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1
173
                       + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1];
174
 
175
#define REAL_MODE_FORMAT(MODE)                                          \
176
  (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE)                     \
177
                        ? (((MODE) - MIN_MODE_DECIMAL_FLOAT)            \
178
                           + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1))     \
179
                        : ((MODE) - MIN_MODE_FLOAT)])
180
 
181
#define FLOAT_MODE_FORMAT(MODE) \
182
  (REAL_MODE_FORMAT (SCALAR_FLOAT_MODE_P (MODE)? (MODE) \
183
                                               : GET_MODE_INNER (MODE)))
184
 
185
/* The following macro determines whether the floating point format is
186
   composite, i.e. may contain non-consecutive mantissa bits, in which
187
   case compile-time FP overflow may not model run-time overflow.  */
188
#define MODE_COMPOSITE_P(MODE) \
189
  (FLOAT_MODE_P (MODE) \
190
   && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p)
191
 
192
/* Accessor macros for format properties.  */
193
#define MODE_HAS_NANS(MODE) \
194
  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans)
195
#define MODE_HAS_INFINITIES(MODE) \
196
  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf)
197
#define MODE_HAS_SIGNED_ZEROS(MODE) \
198
  (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero)
199
#define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \
200
  (FLOAT_MODE_P (MODE) \
201
   && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding)
202
 
203
/* True if the given mode has a NaN representation and the treatment of
204
   NaN operands is important.  Certain optimizations, such as folding
205
   x * 0 into 0, are not correct for NaN operands, and are normally
206
   disabled for modes with NaNs.  The user can ask for them to be
207
   done anyway using the -funsafe-math-optimizations switch.  */
208
#define HONOR_NANS(MODE) \
209
  (MODE_HAS_NANS (MODE) && !flag_finite_math_only)
210
 
211
/* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs).  */
212
#define HONOR_SNANS(MODE) (flag_signaling_nans && HONOR_NANS (MODE))
213
 
214
/* As for HONOR_NANS, but true if the mode can represent infinity and
215
   the treatment of infinite values is important.  */
216
#define HONOR_INFINITIES(MODE) \
217
  (MODE_HAS_INFINITIES (MODE) && !flag_finite_math_only)
218
 
219
/* Like HONOR_NANS, but true if the given mode distinguishes between
220
   positive and negative zero, and the sign of zero is important.  */
221
#define HONOR_SIGNED_ZEROS(MODE) \
222
  (MODE_HAS_SIGNED_ZEROS (MODE) && flag_signed_zeros)
223
 
224
/* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
225
   and the rounding mode is important.  */
226
#define HONOR_SIGN_DEPENDENT_ROUNDING(MODE) \
227
  (MODE_HAS_SIGN_DEPENDENT_ROUNDING (MODE) && flag_rounding_math)
228
 
229
/* Declare functions in real.c.  */
230
 
231
/* Binary or unary arithmetic on tree_code.  */
232
extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *,
233
                             const REAL_VALUE_TYPE *);
234
 
235
/* Compare reals by tree_code.  */
236
extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
237
 
238
/* Determine whether a floating-point value X is infinite.  */
239
extern bool real_isinf (const REAL_VALUE_TYPE *);
240
 
241
/* Determine whether a floating-point value X is a NaN.  */
242
extern bool real_isnan (const REAL_VALUE_TYPE *);
243
 
244
/* Determine whether a floating-point value X is finite.  */
245
extern bool real_isfinite (const REAL_VALUE_TYPE *);
246
 
247
/* Determine whether a floating-point value X is negative.  */
248
extern bool real_isneg (const REAL_VALUE_TYPE *);
249
 
250
/* Determine whether a floating-point value X is minus zero.  */
251
extern bool real_isnegzero (const REAL_VALUE_TYPE *);
252
 
253
/* Compare two floating-point objects for bitwise identity.  */
254
extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
255
 
256
/* Extend or truncate to a new mode.  */
257
extern void real_convert (REAL_VALUE_TYPE *, enum machine_mode,
258
                          const REAL_VALUE_TYPE *);
259
 
260
/* Return true if truncating to NEW is exact.  */
261
extern bool exact_real_truncate (enum machine_mode, const REAL_VALUE_TYPE *);
262
 
263
/* Render R as a decimal floating point constant.  */
264
extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t,
265
                             size_t, int);
266
 
267
/* Render R as a decimal floating point constant, rounded so as to be
268
   parsed back to the same value when interpreted in mode MODE.  */
269
extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t,
270
                                      size_t, int, enum machine_mode);
271
 
272
/* Render R as a hexadecimal floating point constant.  */
273
extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *,
274
                                 size_t, size_t, int);
275
 
276
/* Render R as an integer.  */
277
extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *);
278
extern void real_to_integer2 (HOST_WIDE_INT *, HOST_WIDE_INT *,
279
                              const REAL_VALUE_TYPE *);
280
 
281
/* Initialize R from a decimal or hexadecimal string.  Return -1 if
282
   the value underflows, +1 if overflows, and 0 otherwise.  */
283
extern int real_from_string (REAL_VALUE_TYPE *, const char *);
284
/* Wrapper to allow different internal representation for decimal floats. */
285
extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, enum machine_mode);
286
 
287
/* Initialize R from an integer pair HIGH/LOW.  */
288
extern void real_from_integer (REAL_VALUE_TYPE *, enum machine_mode,
289
                               unsigned HOST_WIDE_INT, HOST_WIDE_INT, int);
290
 
291
extern long real_to_target_fmt (long *, const REAL_VALUE_TYPE *,
292
                                const struct real_format *);
293
extern long real_to_target (long *, const REAL_VALUE_TYPE *, enum machine_mode);
294
 
295
extern void real_from_target_fmt (REAL_VALUE_TYPE *, const long *,
296
                                  const struct real_format *);
297
extern void real_from_target (REAL_VALUE_TYPE *, const long *,
298
                              enum machine_mode);
299
 
300
extern void real_inf (REAL_VALUE_TYPE *);
301
 
302
extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, enum machine_mode);
303
 
304
extern void real_maxval (REAL_VALUE_TYPE *, int, enum machine_mode);
305
 
306
extern void real_2expN (REAL_VALUE_TYPE *, int, enum machine_mode);
307
 
308
extern unsigned int real_hash (const REAL_VALUE_TYPE *);
309
 
310
 
311
/* Target formats defined in real.c.  */
312
extern const struct real_format ieee_single_format;
313
extern const struct real_format mips_single_format;
314
extern const struct real_format motorola_single_format;
315
extern const struct real_format spu_single_format;
316
extern const struct real_format ieee_double_format;
317
extern const struct real_format mips_double_format;
318
extern const struct real_format motorola_double_format;
319
extern const struct real_format ieee_extended_motorola_format;
320
extern const struct real_format ieee_extended_intel_96_format;
321
extern const struct real_format ieee_extended_intel_96_round_53_format;
322
extern const struct real_format ieee_extended_intel_128_format;
323
extern const struct real_format ibm_extended_format;
324
extern const struct real_format mips_extended_format;
325
extern const struct real_format ieee_quad_format;
326
extern const struct real_format mips_quad_format;
327
extern const struct real_format vax_f_format;
328
extern const struct real_format vax_d_format;
329
extern const struct real_format vax_g_format;
330
extern const struct real_format real_internal_format;
331
extern const struct real_format decimal_single_format;
332
extern const struct real_format decimal_double_format;
333
extern const struct real_format decimal_quad_format;
334
extern const struct real_format ieee_half_format;
335
extern const struct real_format arm_half_format;
336
 
337
 
338
/* ====================================================================== */
339
/* Crap.  */
340
 
341
#define REAL_ARITHMETIC(value, code, d1, d2) \
342
  real_arithmetic (&(value), code, &(d1), &(d2))
343
 
344
#define REAL_VALUES_IDENTICAL(x, y)     real_identical (&(x), &(y))
345
#define REAL_VALUES_EQUAL(x, y)         real_compare (EQ_EXPR, &(x), &(y))
346
#define REAL_VALUES_LESS(x, y)          real_compare (LT_EXPR, &(x), &(y))
347
 
348
/* Determine whether a floating-point value X is infinite.  */
349
#define REAL_VALUE_ISINF(x)             real_isinf (&(x))
350
 
351
/* Determine whether a floating-point value X is a NaN.  */
352
#define REAL_VALUE_ISNAN(x)             real_isnan (&(x))
353
 
354
/* Determine whether a floating-point value X is negative.  */
355
#define REAL_VALUE_NEGATIVE(x)          real_isneg (&(x))
356
 
357
/* Determine whether a floating-point value X is minus zero.  */
358
#define REAL_VALUE_MINUS_ZERO(x)        real_isnegzero (&(x))
359
 
360
/* IN is a REAL_VALUE_TYPE.  OUT is an array of longs.  */
361
#define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT)                       \
362
  real_to_target (OUT, &(IN),                                           \
363
                  mode_for_size (LONG_DOUBLE_TYPE_SIZE, MODE_FLOAT, 0))
364
 
365
#define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \
366
  real_to_target (OUT, &(IN), mode_for_size (64, MODE_FLOAT, 0))
367
 
368
/* IN is a REAL_VALUE_TYPE.  OUT is a long.  */
369
#define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \
370
  ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_FLOAT, 0)))
371
 
372
#define REAL_VALUE_FROM_INT(r, lo, hi, mode) \
373
  real_from_integer (&(r), mode, lo, hi, 0)
374
 
375
#define REAL_VALUE_FROM_UNSIGNED_INT(r, lo, hi, mode) \
376
  real_from_integer (&(r), mode, lo, hi, 1)
377
 
378
/* Real values to IEEE 754 decimal floats.  */
379
 
380
/* IN is a REAL_VALUE_TYPE.  OUT is an array of longs.  */
381
#define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \
382
  real_to_target (OUT, &(IN), mode_for_size (128, MODE_DECIMAL_FLOAT, 0))
383
 
384
#define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \
385
  real_to_target (OUT, &(IN), mode_for_size (64, MODE_DECIMAL_FLOAT, 0))
386
 
387
/* IN is a REAL_VALUE_TYPE.  OUT is a long.  */
388
#define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \
389
  ((OUT) = real_to_target (NULL, &(IN), mode_for_size (32, MODE_DECIMAL_FLOAT, 0)))
390
 
391
extern REAL_VALUE_TYPE real_value_truncate (enum machine_mode,
392
                                            REAL_VALUE_TYPE);
393
 
394
#define REAL_VALUE_TO_INT(plow, phigh, r) \
395
  real_to_integer2 (plow, phigh, &(r))
396
 
397
extern REAL_VALUE_TYPE real_arithmetic2 (int, const REAL_VALUE_TYPE *,
398
                                         const REAL_VALUE_TYPE *);
399
 
400
#define REAL_VALUE_NEGATE(X) \
401
  real_arithmetic2 (NEGATE_EXPR, &(X), NULL)
402
 
403
#define REAL_VALUE_ABS(X) \
404
  real_arithmetic2 (ABS_EXPR, &(X), NULL)
405
 
406
extern int significand_size (enum machine_mode);
407
 
408
extern REAL_VALUE_TYPE real_from_string2 (const char *, enum machine_mode);
409
 
410
#define REAL_VALUE_ATOF(s, m) \
411
  real_from_string2 (s, m)
412
 
413
#define CONST_DOUBLE_ATOF(s, m) \
414
  CONST_DOUBLE_FROM_REAL_VALUE (real_from_string2 (s, m), m)
415
 
416
#define REAL_VALUE_FIX(r) \
417
  real_to_integer (&(r))
418
 
419
/* ??? Not quite right.  */
420
#define REAL_VALUE_UNSIGNED_FIX(r) \
421
  real_to_integer (&(r))
422
 
423
/* ??? These were added for Paranoia support.  */
424
 
425
/* Return floor log2(R).  */
426
extern int real_exponent (const REAL_VALUE_TYPE *);
427
 
428
/* R = A * 2**EXP.  */
429
extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
430
 
431
/* **** End of software floating point emulator interface macros **** */
432
 
433
/* Constant real values 0, 1, 2, -1 and 0.5.  */
434
 
435
extern REAL_VALUE_TYPE dconst0;
436
extern REAL_VALUE_TYPE dconst1;
437
extern REAL_VALUE_TYPE dconst2;
438
extern REAL_VALUE_TYPE dconstm1;
439
extern REAL_VALUE_TYPE dconsthalf;
440
 
441
#define dconst_e()  (*dconst_e_ptr ())
442
#define dconst_third()  (*dconst_third_ptr ())
443
#define dconst_sqrt2()  (*dconst_sqrt2_ptr ())
444
 
445
/* Function to return the real value special constant 'e'.  */
446
extern const REAL_VALUE_TYPE * dconst_e_ptr (void);
447
 
448
/* Returns the special REAL_VALUE_TYPE corresponding to 1/3.  */
449
extern const REAL_VALUE_TYPE * dconst_third_ptr (void);
450
 
451
/* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2).  */
452
extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void);
453
 
454
/* Function to return a real value (not a tree node)
455
   from a given integer constant.  */
456
REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree);
457
 
458
/* Given a CONST_DOUBLE in FROM, store into TO the value it represents.  */
459
#define REAL_VALUE_FROM_CONST_DOUBLE(to, from) \
460
  ((to) = *CONST_DOUBLE_REAL_VALUE (from))
461
 
462
/* Return a CONST_DOUBLE with value R and mode M.  */
463
#define CONST_DOUBLE_FROM_REAL_VALUE(r, m) \
464
  const_double_from_real_value (r, m)
465
extern rtx const_double_from_real_value (REAL_VALUE_TYPE, enum machine_mode);
466
 
467
/* Replace R by 1/R in the given machine mode, if the result is exact.  */
468
extern bool exact_real_inverse (enum machine_mode, REAL_VALUE_TYPE *);
469
 
470
/* Return true if arithmetic on values in IMODE that were promoted
471
   from values in TMODE is equivalent to direct arithmetic on values
472
   in TMODE.  */
473
bool real_can_shorten_arithmetic (enum machine_mode, enum machine_mode);
474
 
475
/* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node.  */
476
extern tree build_real (tree, REAL_VALUE_TYPE);
477
 
478
/* Calculate R as the square root of X in the given machine mode.  */
479
extern bool real_sqrt (REAL_VALUE_TYPE *, enum machine_mode,
480
                       const REAL_VALUE_TYPE *);
481
 
482
/* Calculate R as X raised to the integer exponent N in mode MODE.  */
483
extern bool real_powi (REAL_VALUE_TYPE *, enum machine_mode,
484
                       const REAL_VALUE_TYPE *, HOST_WIDE_INT);
485
 
486
/* Standard round to integer value functions.  */
487
extern void real_trunc (REAL_VALUE_TYPE *, enum machine_mode,
488
                        const REAL_VALUE_TYPE *);
489
extern void real_floor (REAL_VALUE_TYPE *, enum machine_mode,
490
                        const REAL_VALUE_TYPE *);
491
extern void real_ceil (REAL_VALUE_TYPE *, enum machine_mode,
492
                       const REAL_VALUE_TYPE *);
493
extern void real_round (REAL_VALUE_TYPE *, enum machine_mode,
494
                        const REAL_VALUE_TYPE *);
495
 
496
/* Set the sign of R to the sign of X.  */
497
extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
498
 
499
#ifndef GENERATOR_FILE
500
/* Convert between MPFR and REAL_VALUE_TYPE.  The caller is
501
   responsible for initializing and clearing the MPFR parameter.  */
502
 
503
extern void real_from_mpfr (REAL_VALUE_TYPE *, mpfr_srcptr, tree, mp_rnd_t);
504
extern void mpfr_from_real (mpfr_ptr, const REAL_VALUE_TYPE *, mp_rnd_t);
505
#endif
506
 
507
/* Check whether the real constant value given is an integer.  */
508
extern bool real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode);
509
 
510
/* Write into BUF the maximum representable finite floating-point
511
   number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
512
   float string.  BUF must be large enough to contain the result.  */
513
extern void get_max_float (const struct real_format *, char *, size_t);
514
#endif /* ! GCC_REAL_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.