1 |
280 |
jeremybenn |
/* Compute different info about registers.
|
2 |
|
|
Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
|
3 |
|
|
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
|
4 |
|
|
2009 Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
/* This file contains regscan pass of the compiler and passes for
|
24 |
|
|
dealing with info about modes of pseudo-registers inside
|
25 |
|
|
subregisters. It also defines some tables of information about the
|
26 |
|
|
hardware registers, function init_reg_sets to initialize the
|
27 |
|
|
tables, and other auxiliary functions to deal with info about
|
28 |
|
|
registers and their classes. */
|
29 |
|
|
|
30 |
|
|
#include "config.h"
|
31 |
|
|
#include "system.h"
|
32 |
|
|
#include "coretypes.h"
|
33 |
|
|
#include "tm.h"
|
34 |
|
|
#include "hard-reg-set.h"
|
35 |
|
|
#include "rtl.h"
|
36 |
|
|
#include "expr.h"
|
37 |
|
|
#include "tm_p.h"
|
38 |
|
|
#include "flags.h"
|
39 |
|
|
#include "basic-block.h"
|
40 |
|
|
#include "regs.h"
|
41 |
|
|
#include "addresses.h"
|
42 |
|
|
#include "function.h"
|
43 |
|
|
#include "insn-config.h"
|
44 |
|
|
#include "recog.h"
|
45 |
|
|
#include "reload.h"
|
46 |
|
|
#include "real.h"
|
47 |
|
|
#include "toplev.h"
|
48 |
|
|
#include "output.h"
|
49 |
|
|
#include "ggc.h"
|
50 |
|
|
#include "timevar.h"
|
51 |
|
|
#include "hashtab.h"
|
52 |
|
|
#include "target.h"
|
53 |
|
|
#include "tree-pass.h"
|
54 |
|
|
#include "df.h"
|
55 |
|
|
#include "ira.h"
|
56 |
|
|
|
57 |
|
|
/* Maximum register number used in this function, plus one. */
|
58 |
|
|
|
59 |
|
|
int max_regno;
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
/* Register tables used by many passes. */
|
63 |
|
|
|
64 |
|
|
/* Indexed by hard register number, contains 1 for registers
|
65 |
|
|
that are fixed use (stack pointer, pc, frame pointer, etc.).
|
66 |
|
|
These are the registers that cannot be used to allocate
|
67 |
|
|
a pseudo reg for general use. */
|
68 |
|
|
char fixed_regs[FIRST_PSEUDO_REGISTER];
|
69 |
|
|
|
70 |
|
|
/* Same info as a HARD_REG_SET. */
|
71 |
|
|
HARD_REG_SET fixed_reg_set;
|
72 |
|
|
|
73 |
|
|
/* Data for initializing the above. */
|
74 |
|
|
static const char initial_fixed_regs[] = FIXED_REGISTERS;
|
75 |
|
|
|
76 |
|
|
/* Indexed by hard register number, contains 1 for registers
|
77 |
|
|
that are fixed use or are clobbered by function calls.
|
78 |
|
|
These are the registers that cannot be used to allocate
|
79 |
|
|
a pseudo reg whose life crosses calls unless we are able
|
80 |
|
|
to save/restore them across the calls. */
|
81 |
|
|
char call_used_regs[FIRST_PSEUDO_REGISTER];
|
82 |
|
|
|
83 |
|
|
/* Same info as a HARD_REG_SET. */
|
84 |
|
|
HARD_REG_SET call_used_reg_set;
|
85 |
|
|
|
86 |
|
|
/* Data for initializing the above. */
|
87 |
|
|
static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
|
88 |
|
|
|
89 |
|
|
/* This is much like call_used_regs, except it doesn't have to
|
90 |
|
|
be a superset of FIXED_REGISTERS. This vector indicates
|
91 |
|
|
what is really call clobbered, and is used when defining
|
92 |
|
|
regs_invalidated_by_call. */
|
93 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
94 |
|
|
char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
|
95 |
|
|
#endif
|
96 |
|
|
|
97 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
98 |
|
|
#define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
|
99 |
|
|
#else
|
100 |
|
|
#define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
|
101 |
|
|
#endif
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
/* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
|
105 |
|
|
a function value return register or TARGET_STRUCT_VALUE_RTX or
|
106 |
|
|
STATIC_CHAIN_REGNUM. These are the registers that cannot hold quantities
|
107 |
|
|
across calls even if we are willing to save and restore them. */
|
108 |
|
|
|
109 |
|
|
HARD_REG_SET call_fixed_reg_set;
|
110 |
|
|
|
111 |
|
|
/* Indexed by hard register number, contains 1 for registers
|
112 |
|
|
that are being used for global register decls.
|
113 |
|
|
These must be exempt from ordinary flow analysis
|
114 |
|
|
and are also considered fixed. */
|
115 |
|
|
char global_regs[FIRST_PSEUDO_REGISTER];
|
116 |
|
|
|
117 |
|
|
/* Contains 1 for registers that are set or clobbered by calls. */
|
118 |
|
|
/* ??? Ideally, this would be just call_used_regs plus global_regs, but
|
119 |
|
|
for someone's bright idea to have call_used_regs strictly include
|
120 |
|
|
fixed_regs. Which leaves us guessing as to the set of fixed_regs
|
121 |
|
|
that are actually preserved. We know for sure that those associated
|
122 |
|
|
with the local stack frame are safe, but scant others. */
|
123 |
|
|
HARD_REG_SET regs_invalidated_by_call;
|
124 |
|
|
|
125 |
|
|
/* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
|
126 |
|
|
in dataflow more conveniently. */
|
127 |
|
|
regset regs_invalidated_by_call_regset;
|
128 |
|
|
|
129 |
|
|
/* The bitmap_obstack is used to hold some static variables that
|
130 |
|
|
should not be reset after each function is compiled. */
|
131 |
|
|
static bitmap_obstack persistent_obstack;
|
132 |
|
|
|
133 |
|
|
/* Table of register numbers in the order in which to try to use them. */
|
134 |
|
|
#ifdef REG_ALLOC_ORDER
|
135 |
|
|
int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
|
136 |
|
|
|
137 |
|
|
/* The inverse of reg_alloc_order. */
|
138 |
|
|
int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
|
139 |
|
|
#endif
|
140 |
|
|
|
141 |
|
|
/* For each reg class, a HARD_REG_SET saying which registers are in it. */
|
142 |
|
|
HARD_REG_SET reg_class_contents[N_REG_CLASSES];
|
143 |
|
|
|
144 |
|
|
/* The same information, but as an array of unsigned ints. We copy from
|
145 |
|
|
these unsigned ints to the table above. We do this so the tm.h files
|
146 |
|
|
do not have to be aware of the wordsize for machines with <= 64 regs.
|
147 |
|
|
Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
|
148 |
|
|
#define N_REG_INTS \
|
149 |
|
|
((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
|
150 |
|
|
|
151 |
|
|
static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
|
152 |
|
|
= REG_CLASS_CONTENTS;
|
153 |
|
|
|
154 |
|
|
/* For each reg class, number of regs it contains. */
|
155 |
|
|
unsigned int reg_class_size[N_REG_CLASSES];
|
156 |
|
|
|
157 |
|
|
/* For each reg class, table listing all the classes contained in it. */
|
158 |
|
|
enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
|
159 |
|
|
|
160 |
|
|
/* For each pair of reg classes,
|
161 |
|
|
a largest reg class contained in their union. */
|
162 |
|
|
enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
|
163 |
|
|
|
164 |
|
|
/* For each pair of reg classes,
|
165 |
|
|
the smallest reg class containing their union. */
|
166 |
|
|
enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
|
167 |
|
|
|
168 |
|
|
/* Array containing all of the register names. */
|
169 |
|
|
const char * reg_names[] = REGISTER_NAMES;
|
170 |
|
|
|
171 |
|
|
/* Array containing all of the register class names. */
|
172 |
|
|
const char * reg_class_names[] = REG_CLASS_NAMES;
|
173 |
|
|
|
174 |
|
|
/* For each hard register, the widest mode object that it can contain.
|
175 |
|
|
This will be a MODE_INT mode if the register can hold integers. Otherwise
|
176 |
|
|
it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
|
177 |
|
|
register. */
|
178 |
|
|
enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
|
179 |
|
|
|
180 |
|
|
/* 1 if there is a register of given mode. */
|
181 |
|
|
bool have_regs_of_mode [MAX_MACHINE_MODE];
|
182 |
|
|
|
183 |
|
|
/* 1 if class does contain register of given mode. */
|
184 |
|
|
char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
|
185 |
|
|
|
186 |
|
|
/* Maximum cost of moving from a register in one class to a register in
|
187 |
|
|
another class. Based on REGISTER_MOVE_COST. */
|
188 |
|
|
move_table *move_cost[MAX_MACHINE_MODE];
|
189 |
|
|
|
190 |
|
|
/* Similar, but here we don't have to move if the first index is a subset
|
191 |
|
|
of the second so in that case the cost is zero. */
|
192 |
|
|
move_table *may_move_in_cost[MAX_MACHINE_MODE];
|
193 |
|
|
|
194 |
|
|
/* Similar, but here we don't have to move if the first index is a superset
|
195 |
|
|
of the second so in that case the cost is zero. */
|
196 |
|
|
move_table *may_move_out_cost[MAX_MACHINE_MODE];
|
197 |
|
|
|
198 |
|
|
/* Keep track of the last mode we initialized move costs for. */
|
199 |
|
|
static int last_mode_for_init_move_cost;
|
200 |
|
|
|
201 |
|
|
/* Sample MEM values for use by memory_move_secondary_cost. */
|
202 |
|
|
static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
|
203 |
|
|
|
204 |
|
|
/* No more global register variables may be declared; true once
|
205 |
|
|
reginfo has been initialized. */
|
206 |
|
|
static int no_global_reg_vars = 0;
|
207 |
|
|
|
208 |
|
|
/* Specify number of hard registers given machine mode occupy. */
|
209 |
|
|
unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
|
210 |
|
|
|
211 |
|
|
/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
|
212 |
|
|
correspond to the hard registers, if any, set in that map. This
|
213 |
|
|
could be done far more efficiently by having all sorts of special-cases
|
214 |
|
|
with moving single words, but probably isn't worth the trouble. */
|
215 |
|
|
void
|
216 |
|
|
reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
|
217 |
|
|
{
|
218 |
|
|
unsigned i;
|
219 |
|
|
bitmap_iterator bi;
|
220 |
|
|
|
221 |
|
|
EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
|
222 |
|
|
{
|
223 |
|
|
if (i >= FIRST_PSEUDO_REGISTER)
|
224 |
|
|
return;
|
225 |
|
|
SET_HARD_REG_BIT (*to, i);
|
226 |
|
|
}
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
/* Function called only once to initialize the above data on reg usage.
|
230 |
|
|
Once this is done, various switches may override. */
|
231 |
|
|
void
|
232 |
|
|
init_reg_sets (void)
|
233 |
|
|
{
|
234 |
|
|
int i, j;
|
235 |
|
|
|
236 |
|
|
/* First copy the register information from the initial int form into
|
237 |
|
|
the regsets. */
|
238 |
|
|
|
239 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
240 |
|
|
{
|
241 |
|
|
CLEAR_HARD_REG_SET (reg_class_contents[i]);
|
242 |
|
|
|
243 |
|
|
/* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
|
244 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
245 |
|
|
if (int_reg_class_contents[i][j / 32]
|
246 |
|
|
& ((unsigned) 1 << (j % 32)))
|
247 |
|
|
SET_HARD_REG_BIT (reg_class_contents[i], j);
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
/* Sanity check: make sure the target macros FIXED_REGISTERS and
|
251 |
|
|
CALL_USED_REGISTERS had the right number of initializers. */
|
252 |
|
|
gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
|
253 |
|
|
gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
|
254 |
|
|
|
255 |
|
|
memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
|
256 |
|
|
memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
|
257 |
|
|
memset (global_regs, 0, sizeof global_regs);
|
258 |
|
|
}
|
259 |
|
|
|
260 |
|
|
/* Initialize may_move_cost and friends for mode M. */
|
261 |
|
|
void
|
262 |
|
|
init_move_cost (enum machine_mode m)
|
263 |
|
|
{
|
264 |
|
|
static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
|
265 |
|
|
bool all_match = true;
|
266 |
|
|
unsigned int i, j;
|
267 |
|
|
|
268 |
|
|
gcc_assert (have_regs_of_mode[m]);
|
269 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
270 |
|
|
if (contains_reg_of_mode[i][m])
|
271 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
272 |
|
|
{
|
273 |
|
|
int cost;
|
274 |
|
|
if (!contains_reg_of_mode[j][m])
|
275 |
|
|
cost = 65535;
|
276 |
|
|
else
|
277 |
|
|
{
|
278 |
|
|
cost = REGISTER_MOVE_COST (m, (enum reg_class) i,
|
279 |
|
|
(enum reg_class) j);
|
280 |
|
|
gcc_assert (cost < 65535);
|
281 |
|
|
}
|
282 |
|
|
all_match &= (last_move_cost[i][j] == cost);
|
283 |
|
|
last_move_cost[i][j] = cost;
|
284 |
|
|
}
|
285 |
|
|
if (all_match && last_mode_for_init_move_cost != -1)
|
286 |
|
|
{
|
287 |
|
|
move_cost[m] = move_cost[last_mode_for_init_move_cost];
|
288 |
|
|
may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
|
289 |
|
|
may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
|
290 |
|
|
return;
|
291 |
|
|
}
|
292 |
|
|
last_mode_for_init_move_cost = m;
|
293 |
|
|
move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
|
294 |
|
|
* N_REG_CLASSES);
|
295 |
|
|
may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
|
296 |
|
|
* N_REG_CLASSES);
|
297 |
|
|
may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
|
298 |
|
|
* N_REG_CLASSES);
|
299 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
300 |
|
|
if (contains_reg_of_mode[i][m])
|
301 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
302 |
|
|
{
|
303 |
|
|
int cost;
|
304 |
|
|
enum reg_class *p1, *p2;
|
305 |
|
|
|
306 |
|
|
if (last_move_cost[i][j] == 65535)
|
307 |
|
|
{
|
308 |
|
|
move_cost[m][i][j] = 65535;
|
309 |
|
|
may_move_in_cost[m][i][j] = 65535;
|
310 |
|
|
may_move_out_cost[m][i][j] = 65535;
|
311 |
|
|
}
|
312 |
|
|
else
|
313 |
|
|
{
|
314 |
|
|
cost = last_move_cost[i][j];
|
315 |
|
|
|
316 |
|
|
for (p2 = ®_class_subclasses[j][0];
|
317 |
|
|
*p2 != LIM_REG_CLASSES; p2++)
|
318 |
|
|
if (*p2 != i && contains_reg_of_mode[*p2][m])
|
319 |
|
|
cost = MAX (cost, move_cost[m][i][*p2]);
|
320 |
|
|
|
321 |
|
|
for (p1 = ®_class_subclasses[i][0];
|
322 |
|
|
*p1 != LIM_REG_CLASSES; p1++)
|
323 |
|
|
if (*p1 != j && contains_reg_of_mode[*p1][m])
|
324 |
|
|
cost = MAX (cost, move_cost[m][*p1][j]);
|
325 |
|
|
|
326 |
|
|
gcc_assert (cost <= 65535);
|
327 |
|
|
move_cost[m][i][j] = cost;
|
328 |
|
|
|
329 |
|
|
if (reg_class_subset_p ((enum reg_class) i, (enum reg_class) j))
|
330 |
|
|
may_move_in_cost[m][i][j] = 0;
|
331 |
|
|
else
|
332 |
|
|
may_move_in_cost[m][i][j] = cost;
|
333 |
|
|
|
334 |
|
|
if (reg_class_subset_p ((enum reg_class) j, (enum reg_class) i))
|
335 |
|
|
may_move_out_cost[m][i][j] = 0;
|
336 |
|
|
else
|
337 |
|
|
may_move_out_cost[m][i][j] = cost;
|
338 |
|
|
}
|
339 |
|
|
}
|
340 |
|
|
else
|
341 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
342 |
|
|
{
|
343 |
|
|
move_cost[m][i][j] = 65535;
|
344 |
|
|
may_move_in_cost[m][i][j] = 65535;
|
345 |
|
|
may_move_out_cost[m][i][j] = 65535;
|
346 |
|
|
}
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
/* We need to save copies of some of the register information which
|
350 |
|
|
can be munged by command-line switches so we can restore it during
|
351 |
|
|
subsequent back-end reinitialization. */
|
352 |
|
|
static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
|
353 |
|
|
static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
|
354 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
355 |
|
|
static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
|
356 |
|
|
#endif
|
357 |
|
|
static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
|
358 |
|
|
|
359 |
|
|
/* Save the register information. */
|
360 |
|
|
void
|
361 |
|
|
save_register_info (void)
|
362 |
|
|
{
|
363 |
|
|
/* Sanity check: make sure the target macros FIXED_REGISTERS and
|
364 |
|
|
CALL_USED_REGISTERS had the right number of initializers. */
|
365 |
|
|
gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
|
366 |
|
|
gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
|
367 |
|
|
memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
|
368 |
|
|
memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
|
369 |
|
|
|
370 |
|
|
/* Likewise for call_really_used_regs. */
|
371 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
372 |
|
|
gcc_assert (sizeof call_really_used_regs
|
373 |
|
|
== sizeof saved_call_really_used_regs);
|
374 |
|
|
memcpy (saved_call_really_used_regs, call_really_used_regs,
|
375 |
|
|
sizeof call_really_used_regs);
|
376 |
|
|
#endif
|
377 |
|
|
|
378 |
|
|
/* And similarly for reg_names. */
|
379 |
|
|
gcc_assert (sizeof reg_names == sizeof saved_reg_names);
|
380 |
|
|
memcpy (saved_reg_names, reg_names, sizeof reg_names);
|
381 |
|
|
}
|
382 |
|
|
|
383 |
|
|
/* Restore the register information. */
|
384 |
|
|
static void
|
385 |
|
|
restore_register_info (void)
|
386 |
|
|
{
|
387 |
|
|
memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
|
388 |
|
|
memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
|
389 |
|
|
|
390 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
391 |
|
|
memcpy (call_really_used_regs, saved_call_really_used_regs,
|
392 |
|
|
sizeof call_really_used_regs);
|
393 |
|
|
#endif
|
394 |
|
|
|
395 |
|
|
memcpy (reg_names, saved_reg_names, sizeof reg_names);
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
/* After switches have been processed, which perhaps alter
|
399 |
|
|
`fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
|
400 |
|
|
static void
|
401 |
|
|
init_reg_sets_1 (void)
|
402 |
|
|
{
|
403 |
|
|
unsigned int i, j;
|
404 |
|
|
unsigned int /* enum machine_mode */ m;
|
405 |
|
|
|
406 |
|
|
restore_register_info ();
|
407 |
|
|
|
408 |
|
|
#ifdef REG_ALLOC_ORDER
|
409 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
410 |
|
|
inv_reg_alloc_order[reg_alloc_order[i]] = i;
|
411 |
|
|
#endif
|
412 |
|
|
|
413 |
|
|
/* This macro allows the fixed or call-used registers
|
414 |
|
|
and the register classes to depend on target flags. */
|
415 |
|
|
|
416 |
|
|
#ifdef CONDITIONAL_REGISTER_USAGE
|
417 |
|
|
CONDITIONAL_REGISTER_USAGE;
|
418 |
|
|
#endif
|
419 |
|
|
|
420 |
|
|
/* Compute number of hard regs in each class. */
|
421 |
|
|
|
422 |
|
|
memset (reg_class_size, 0, sizeof reg_class_size);
|
423 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
424 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
425 |
|
|
if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
|
426 |
|
|
reg_class_size[i]++;
|
427 |
|
|
|
428 |
|
|
/* Initialize the table of subunions.
|
429 |
|
|
reg_class_subunion[I][J] gets the largest-numbered reg-class
|
430 |
|
|
that is contained in the union of classes I and J. */
|
431 |
|
|
|
432 |
|
|
memset (reg_class_subunion, 0, sizeof reg_class_subunion);
|
433 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
434 |
|
|
{
|
435 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
436 |
|
|
{
|
437 |
|
|
HARD_REG_SET c;
|
438 |
|
|
int k;
|
439 |
|
|
|
440 |
|
|
COPY_HARD_REG_SET (c, reg_class_contents[i]);
|
441 |
|
|
IOR_HARD_REG_SET (c, reg_class_contents[j]);
|
442 |
|
|
for (k = 0; k < N_REG_CLASSES; k++)
|
443 |
|
|
if (hard_reg_set_subset_p (reg_class_contents[k], c)
|
444 |
|
|
&& !hard_reg_set_subset_p (reg_class_contents[k],
|
445 |
|
|
reg_class_contents
|
446 |
|
|
[(int) reg_class_subunion[i][j]]))
|
447 |
|
|
reg_class_subunion[i][j] = (enum reg_class) k;
|
448 |
|
|
}
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
/* Initialize the table of superunions.
|
452 |
|
|
reg_class_superunion[I][J] gets the smallest-numbered reg-class
|
453 |
|
|
containing the union of classes I and J. */
|
454 |
|
|
|
455 |
|
|
memset (reg_class_superunion, 0, sizeof reg_class_superunion);
|
456 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
457 |
|
|
{
|
458 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
459 |
|
|
{
|
460 |
|
|
HARD_REG_SET c;
|
461 |
|
|
int k;
|
462 |
|
|
|
463 |
|
|
COPY_HARD_REG_SET (c, reg_class_contents[i]);
|
464 |
|
|
IOR_HARD_REG_SET (c, reg_class_contents[j]);
|
465 |
|
|
for (k = 0; k < N_REG_CLASSES; k++)
|
466 |
|
|
if (hard_reg_set_subset_p (c, reg_class_contents[k]))
|
467 |
|
|
break;
|
468 |
|
|
|
469 |
|
|
reg_class_superunion[i][j] = (enum reg_class) k;
|
470 |
|
|
}
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
/* Initialize the tables of subclasses and superclasses of each reg class.
|
474 |
|
|
First clear the whole table, then add the elements as they are found. */
|
475 |
|
|
|
476 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
477 |
|
|
{
|
478 |
|
|
for (j = 0; j < N_REG_CLASSES; j++)
|
479 |
|
|
reg_class_subclasses[i][j] = LIM_REG_CLASSES;
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
483 |
|
|
{
|
484 |
|
|
if (i == (int) NO_REGS)
|
485 |
|
|
continue;
|
486 |
|
|
|
487 |
|
|
for (j = i + 1; j < N_REG_CLASSES; j++)
|
488 |
|
|
if (hard_reg_set_subset_p (reg_class_contents[i],
|
489 |
|
|
reg_class_contents[j]))
|
490 |
|
|
{
|
491 |
|
|
/* Reg class I is a subclass of J.
|
492 |
|
|
Add J to the table of superclasses of I. */
|
493 |
|
|
enum reg_class *p;
|
494 |
|
|
|
495 |
|
|
/* Add I to the table of superclasses of J. */
|
496 |
|
|
p = ®_class_subclasses[j][0];
|
497 |
|
|
while (*p != LIM_REG_CLASSES) p++;
|
498 |
|
|
*p = (enum reg_class) i;
|
499 |
|
|
}
|
500 |
|
|
}
|
501 |
|
|
|
502 |
|
|
/* Initialize "constant" tables. */
|
503 |
|
|
|
504 |
|
|
CLEAR_HARD_REG_SET (fixed_reg_set);
|
505 |
|
|
CLEAR_HARD_REG_SET (call_used_reg_set);
|
506 |
|
|
CLEAR_HARD_REG_SET (call_fixed_reg_set);
|
507 |
|
|
CLEAR_HARD_REG_SET (regs_invalidated_by_call);
|
508 |
|
|
if (!regs_invalidated_by_call_regset)
|
509 |
|
|
{
|
510 |
|
|
bitmap_obstack_initialize (&persistent_obstack);
|
511 |
|
|
regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
|
512 |
|
|
}
|
513 |
|
|
else
|
514 |
|
|
CLEAR_REG_SET (regs_invalidated_by_call_regset);
|
515 |
|
|
|
516 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
517 |
|
|
{
|
518 |
|
|
/* call_used_regs must include fixed_regs. */
|
519 |
|
|
gcc_assert (!fixed_regs[i] || call_used_regs[i]);
|
520 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
521 |
|
|
/* call_used_regs must include call_really_used_regs. */
|
522 |
|
|
gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
|
523 |
|
|
#endif
|
524 |
|
|
|
525 |
|
|
if (fixed_regs[i])
|
526 |
|
|
SET_HARD_REG_BIT (fixed_reg_set, i);
|
527 |
|
|
|
528 |
|
|
if (call_used_regs[i])
|
529 |
|
|
SET_HARD_REG_BIT (call_used_reg_set, i);
|
530 |
|
|
|
531 |
|
|
/* There are a couple of fixed registers that we know are safe to
|
532 |
|
|
exclude from being clobbered by calls:
|
533 |
|
|
|
534 |
|
|
The frame pointer is always preserved across calls. The arg pointer
|
535 |
|
|
is if it is fixed. The stack pointer usually is, unless
|
536 |
|
|
RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
|
537 |
|
|
If we are generating PIC code, the PIC offset table register is
|
538 |
|
|
preserved across calls, though the target can override that. */
|
539 |
|
|
|
540 |
|
|
if (i == STACK_POINTER_REGNUM)
|
541 |
|
|
;
|
542 |
|
|
else if (global_regs[i])
|
543 |
|
|
{
|
544 |
|
|
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
545 |
|
|
SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
|
546 |
|
|
}
|
547 |
|
|
else if (i == FRAME_POINTER_REGNUM)
|
548 |
|
|
;
|
549 |
|
|
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
550 |
|
|
else if (i == HARD_FRAME_POINTER_REGNUM)
|
551 |
|
|
;
|
552 |
|
|
#endif
|
553 |
|
|
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
|
554 |
|
|
else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
|
555 |
|
|
;
|
556 |
|
|
#endif
|
557 |
|
|
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|
558 |
|
|
else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
|
559 |
|
|
;
|
560 |
|
|
#endif
|
561 |
|
|
else if (CALL_REALLY_USED_REGNO_P (i))
|
562 |
|
|
{
|
563 |
|
|
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
564 |
|
|
SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
|
565 |
|
|
}
|
566 |
|
|
}
|
567 |
|
|
|
568 |
|
|
COPY_HARD_REG_SET(call_fixed_reg_set, fixed_reg_set);
|
569 |
|
|
|
570 |
|
|
/* Preserve global registers if called more than once. */
|
571 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
572 |
|
|
{
|
573 |
|
|
if (global_regs[i])
|
574 |
|
|
{
|
575 |
|
|
fixed_regs[i] = call_used_regs[i] = 1;
|
576 |
|
|
SET_HARD_REG_BIT (fixed_reg_set, i);
|
577 |
|
|
SET_HARD_REG_BIT (call_used_reg_set, i);
|
578 |
|
|
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
579 |
|
|
}
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
|
583 |
|
|
memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
|
584 |
|
|
for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
|
585 |
|
|
{
|
586 |
|
|
HARD_REG_SET ok_regs;
|
587 |
|
|
CLEAR_HARD_REG_SET (ok_regs);
|
588 |
|
|
for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
|
589 |
|
|
if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (enum machine_mode) m))
|
590 |
|
|
SET_HARD_REG_BIT (ok_regs, j);
|
591 |
|
|
|
592 |
|
|
for (i = 0; i < N_REG_CLASSES; i++)
|
593 |
|
|
if (((unsigned) CLASS_MAX_NREGS ((enum reg_class) i,
|
594 |
|
|
(enum machine_mode) m)
|
595 |
|
|
<= reg_class_size[i])
|
596 |
|
|
&& hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
|
597 |
|
|
{
|
598 |
|
|
contains_reg_of_mode [i][m] = 1;
|
599 |
|
|
have_regs_of_mode [m] = 1;
|
600 |
|
|
}
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
/* Reset move_cost and friends, making sure we only free shared
|
604 |
|
|
table entries once. */
|
605 |
|
|
for (i = 0; i < MAX_MACHINE_MODE; i++)
|
606 |
|
|
if (move_cost[i])
|
607 |
|
|
{
|
608 |
|
|
for (j = 0; j < i && move_cost[i] != move_cost[j]; j++)
|
609 |
|
|
;
|
610 |
|
|
if (i == j)
|
611 |
|
|
{
|
612 |
|
|
free (move_cost[i]);
|
613 |
|
|
free (may_move_in_cost[i]);
|
614 |
|
|
free (may_move_out_cost[i]);
|
615 |
|
|
}
|
616 |
|
|
}
|
617 |
|
|
memset (move_cost, 0, sizeof move_cost);
|
618 |
|
|
memset (may_move_in_cost, 0, sizeof may_move_in_cost);
|
619 |
|
|
memset (may_move_out_cost, 0, sizeof may_move_out_cost);
|
620 |
|
|
last_mode_for_init_move_cost = -1;
|
621 |
|
|
}
|
622 |
|
|
|
623 |
|
|
/* Compute the table of register modes.
|
624 |
|
|
These values are used to record death information for individual registers
|
625 |
|
|
(as opposed to a multi-register mode).
|
626 |
|
|
This function might be invoked more than once, if the target has support
|
627 |
|
|
for changing register usage conventions on a per-function basis.
|
628 |
|
|
*/
|
629 |
|
|
void
|
630 |
|
|
init_reg_modes_target (void)
|
631 |
|
|
{
|
632 |
|
|
int i, j;
|
633 |
|
|
|
634 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
635 |
|
|
for (j = 0; j < MAX_MACHINE_MODE; j++)
|
636 |
|
|
hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
|
637 |
|
|
|
638 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
639 |
|
|
{
|
640 |
|
|
reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
|
641 |
|
|
|
642 |
|
|
/* If we couldn't find a valid mode, just use the previous mode.
|
643 |
|
|
??? One situation in which we need to do this is on the mips where
|
644 |
|
|
HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
|
645 |
|
|
to use DF mode for the even registers and VOIDmode for the odd
|
646 |
|
|
(for the cpu models where the odd ones are inaccessible). */
|
647 |
|
|
if (reg_raw_mode[i] == VOIDmode)
|
648 |
|
|
reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
|
649 |
|
|
}
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
/* Finish initializing the register sets and initialize the register modes.
|
653 |
|
|
This function might be invoked more than once, if the target has support
|
654 |
|
|
for changing register usage conventions on a per-function basis.
|
655 |
|
|
*/
|
656 |
|
|
void
|
657 |
|
|
init_regs (void)
|
658 |
|
|
{
|
659 |
|
|
/* This finishes what was started by init_reg_sets, but couldn't be done
|
660 |
|
|
until after register usage was specified. */
|
661 |
|
|
init_reg_sets_1 ();
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
/* The same as previous function plus initializing IRA. */
|
665 |
|
|
void
|
666 |
|
|
reinit_regs (void)
|
667 |
|
|
{
|
668 |
|
|
init_regs ();
|
669 |
|
|
/* caller_save needs to be re-initialized. */
|
670 |
|
|
caller_save_initialized_p = false;
|
671 |
|
|
ira_init ();
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
/* Initialize some fake stack-frame MEM references for use in
|
675 |
|
|
memory_move_secondary_cost. */
|
676 |
|
|
void
|
677 |
|
|
init_fake_stack_mems (void)
|
678 |
|
|
{
|
679 |
|
|
int i;
|
680 |
|
|
|
681 |
|
|
for (i = 0; i < MAX_MACHINE_MODE; i++)
|
682 |
|
|
top_of_stack[i] = gen_rtx_MEM ((enum machine_mode) i, stack_pointer_rtx);
|
683 |
|
|
}
|
684 |
|
|
|
685 |
|
|
|
686 |
|
|
/* Compute extra cost of moving registers to/from memory due to reloads.
|
687 |
|
|
Only needed if secondary reloads are required for memory moves. */
|
688 |
|
|
int
|
689 |
|
|
memory_move_secondary_cost (enum machine_mode mode, enum reg_class rclass,
|
690 |
|
|
int in)
|
691 |
|
|
{
|
692 |
|
|
enum reg_class altclass;
|
693 |
|
|
int partial_cost = 0;
|
694 |
|
|
/* We need a memory reference to feed to SECONDARY... macros. */
|
695 |
|
|
/* mem may be unused even if the SECONDARY_ macros are defined. */
|
696 |
|
|
rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
|
697 |
|
|
|
698 |
|
|
altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
|
699 |
|
|
|
700 |
|
|
if (altclass == NO_REGS)
|
701 |
|
|
return 0;
|
702 |
|
|
|
703 |
|
|
if (in)
|
704 |
|
|
partial_cost = REGISTER_MOVE_COST (mode, altclass, rclass);
|
705 |
|
|
else
|
706 |
|
|
partial_cost = REGISTER_MOVE_COST (mode, rclass, altclass);
|
707 |
|
|
|
708 |
|
|
if (rclass == altclass)
|
709 |
|
|
/* This isn't simply a copy-to-temporary situation. Can't guess
|
710 |
|
|
what it is, so MEMORY_MOVE_COST really ought not to be calling
|
711 |
|
|
here in that case.
|
712 |
|
|
|
713 |
|
|
I'm tempted to put in an assert here, but returning this will
|
714 |
|
|
probably only give poor estimates, which is what we would've
|
715 |
|
|
had before this code anyways. */
|
716 |
|
|
return partial_cost;
|
717 |
|
|
|
718 |
|
|
/* Check if the secondary reload register will also need a
|
719 |
|
|
secondary reload. */
|
720 |
|
|
return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
|
721 |
|
|
}
|
722 |
|
|
|
723 |
|
|
/* Return a machine mode that is legitimate for hard reg REGNO and large
|
724 |
|
|
enough to save nregs. If we can't find one, return VOIDmode.
|
725 |
|
|
If CALL_SAVED is true, only consider modes that are call saved. */
|
726 |
|
|
enum machine_mode
|
727 |
|
|
choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
|
728 |
|
|
unsigned int nregs, bool call_saved)
|
729 |
|
|
{
|
730 |
|
|
unsigned int /* enum machine_mode */ m;
|
731 |
|
|
enum machine_mode found_mode = VOIDmode, mode;
|
732 |
|
|
|
733 |
|
|
/* We first look for the largest integer mode that can be validly
|
734 |
|
|
held in REGNO. If none, we look for the largest floating-point mode.
|
735 |
|
|
If we still didn't find a valid mode, try CCmode. */
|
736 |
|
|
|
737 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
|
738 |
|
|
mode != VOIDmode;
|
739 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
740 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
741 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
742 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
743 |
|
|
found_mode = mode;
|
744 |
|
|
|
745 |
|
|
if (found_mode != VOIDmode)
|
746 |
|
|
return found_mode;
|
747 |
|
|
|
748 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
|
749 |
|
|
mode != VOIDmode;
|
750 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
751 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
752 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
753 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
754 |
|
|
found_mode = mode;
|
755 |
|
|
|
756 |
|
|
if (found_mode != VOIDmode)
|
757 |
|
|
return found_mode;
|
758 |
|
|
|
759 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
|
760 |
|
|
mode != VOIDmode;
|
761 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
762 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
763 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
764 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
765 |
|
|
found_mode = mode;
|
766 |
|
|
|
767 |
|
|
if (found_mode != VOIDmode)
|
768 |
|
|
return found_mode;
|
769 |
|
|
|
770 |
|
|
for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
|
771 |
|
|
mode != VOIDmode;
|
772 |
|
|
mode = GET_MODE_WIDER_MODE (mode))
|
773 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
774 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
775 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
776 |
|
|
found_mode = mode;
|
777 |
|
|
|
778 |
|
|
if (found_mode != VOIDmode)
|
779 |
|
|
return found_mode;
|
780 |
|
|
|
781 |
|
|
/* Iterate over all of the CCmodes. */
|
782 |
|
|
for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
|
783 |
|
|
{
|
784 |
|
|
mode = (enum machine_mode) m;
|
785 |
|
|
if ((unsigned) hard_regno_nregs[regno][mode] == nregs
|
786 |
|
|
&& HARD_REGNO_MODE_OK (regno, mode)
|
787 |
|
|
&& (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
|
788 |
|
|
return mode;
|
789 |
|
|
}
|
790 |
|
|
|
791 |
|
|
/* We can't find a mode valid for this register. */
|
792 |
|
|
return VOIDmode;
|
793 |
|
|
}
|
794 |
|
|
|
795 |
|
|
/* Specify the usage characteristics of the register named NAME.
|
796 |
|
|
It should be a fixed register if FIXED and a
|
797 |
|
|
call-used register if CALL_USED. */
|
798 |
|
|
void
|
799 |
|
|
fix_register (const char *name, int fixed, int call_used)
|
800 |
|
|
{
|
801 |
|
|
int i;
|
802 |
|
|
|
803 |
|
|
/* Decode the name and update the primary form of
|
804 |
|
|
the register info. */
|
805 |
|
|
|
806 |
|
|
if ((i = decode_reg_name (name)) >= 0)
|
807 |
|
|
{
|
808 |
|
|
if ((i == STACK_POINTER_REGNUM
|
809 |
|
|
#ifdef HARD_FRAME_POINTER_REGNUM
|
810 |
|
|
|| i == HARD_FRAME_POINTER_REGNUM
|
811 |
|
|
#else
|
812 |
|
|
|| i == FRAME_POINTER_REGNUM
|
813 |
|
|
#endif
|
814 |
|
|
)
|
815 |
|
|
&& (fixed == 0 || call_used == 0))
|
816 |
|
|
{
|
817 |
|
|
static const char * const what_option[2][2] = {
|
818 |
|
|
{ "call-saved", "call-used" },
|
819 |
|
|
{ "no-such-option", "fixed" }};
|
820 |
|
|
|
821 |
|
|
error ("can't use '%s' as a %s register", name,
|
822 |
|
|
what_option[fixed][call_used]);
|
823 |
|
|
}
|
824 |
|
|
else
|
825 |
|
|
{
|
826 |
|
|
fixed_regs[i] = fixed;
|
827 |
|
|
call_used_regs[i] = call_used;
|
828 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
829 |
|
|
if (fixed == 0)
|
830 |
|
|
call_really_used_regs[i] = call_used;
|
831 |
|
|
#endif
|
832 |
|
|
}
|
833 |
|
|
}
|
834 |
|
|
else
|
835 |
|
|
{
|
836 |
|
|
warning (0, "unknown register name: %s", name);
|
837 |
|
|
}
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
/* Mark register number I as global. */
|
841 |
|
|
void
|
842 |
|
|
globalize_reg (int i)
|
843 |
|
|
{
|
844 |
378 |
julius |
#ifdef STACK_REGS
|
845 |
|
|
if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
|
846 |
|
|
{
|
847 |
|
|
error ("stack register used for global register variable");
|
848 |
|
|
return;
|
849 |
|
|
}
|
850 |
|
|
#endif
|
851 |
|
|
|
852 |
280 |
jeremybenn |
if (fixed_regs[i] == 0 && no_global_reg_vars)
|
853 |
|
|
error ("global register variable follows a function definition");
|
854 |
|
|
|
855 |
|
|
if (global_regs[i])
|
856 |
|
|
{
|
857 |
|
|
warning (0, "register used for two global register variables");
|
858 |
|
|
return;
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
if (call_used_regs[i] && ! fixed_regs[i])
|
862 |
|
|
warning (0, "call-clobbered register used for global register variable");
|
863 |
|
|
|
864 |
|
|
global_regs[i] = 1;
|
865 |
|
|
|
866 |
|
|
/* If we're globalizing the frame pointer, we need to set the
|
867 |
|
|
appropriate regs_invalidated_by_call bit, even if it's already
|
868 |
|
|
set in fixed_regs. */
|
869 |
|
|
if (i != STACK_POINTER_REGNUM)
|
870 |
|
|
{
|
871 |
|
|
SET_HARD_REG_BIT (regs_invalidated_by_call, i);
|
872 |
|
|
SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
|
873 |
|
|
}
|
874 |
|
|
|
875 |
|
|
/* If already fixed, nothing else to do. */
|
876 |
|
|
if (fixed_regs[i])
|
877 |
|
|
return;
|
878 |
|
|
|
879 |
|
|
fixed_regs[i] = call_used_regs[i] = 1;
|
880 |
|
|
#ifdef CALL_REALLY_USED_REGISTERS
|
881 |
|
|
call_really_used_regs[i] = 1;
|
882 |
|
|
#endif
|
883 |
|
|
|
884 |
|
|
SET_HARD_REG_BIT (fixed_reg_set, i);
|
885 |
|
|
SET_HARD_REG_BIT (call_used_reg_set, i);
|
886 |
|
|
SET_HARD_REG_BIT (call_fixed_reg_set, i);
|
887 |
|
|
|
888 |
|
|
reinit_regs ();
|
889 |
|
|
}
|
890 |
|
|
|
891 |
|
|
|
892 |
|
|
/* Structure used to record preferences of given pseudo. */
|
893 |
|
|
struct reg_pref
|
894 |
|
|
{
|
895 |
|
|
/* (enum reg_class) prefclass is the preferred class. May be
|
896 |
|
|
NO_REGS if no class is better than memory. */
|
897 |
|
|
char prefclass;
|
898 |
|
|
|
899 |
|
|
/* altclass is a register class that we should use for allocating
|
900 |
|
|
pseudo if no register in the preferred class is available.
|
901 |
|
|
If no register in this class is available, memory is preferred.
|
902 |
|
|
|
903 |
|
|
It might appear to be more general to have a bitmask of classes here,
|
904 |
|
|
but since it is recommended that there be a class corresponding to the
|
905 |
|
|
union of most major pair of classes, that generality is not required. */
|
906 |
|
|
char altclass;
|
907 |
|
|
|
908 |
|
|
/* coverclass is a register class that IRA uses for allocating
|
909 |
|
|
the pseudo. */
|
910 |
|
|
char coverclass;
|
911 |
|
|
};
|
912 |
|
|
|
913 |
|
|
/* Record preferences of each pseudo. This is available after RA is
|
914 |
|
|
run. */
|
915 |
|
|
static struct reg_pref *reg_pref;
|
916 |
|
|
|
917 |
|
|
/* Current size of reg_info. */
|
918 |
|
|
static int reg_info_size;
|
919 |
|
|
|
920 |
|
|
/* Return the reg_class in which pseudo reg number REGNO is best allocated.
|
921 |
|
|
This function is sometimes called before the info has been computed.
|
922 |
|
|
When that happens, just return GENERAL_REGS, which is innocuous. */
|
923 |
|
|
enum reg_class
|
924 |
|
|
reg_preferred_class (int regno)
|
925 |
|
|
{
|
926 |
|
|
if (reg_pref == 0)
|
927 |
|
|
return GENERAL_REGS;
|
928 |
|
|
|
929 |
|
|
return (enum reg_class) reg_pref[regno].prefclass;
|
930 |
|
|
}
|
931 |
|
|
|
932 |
|
|
enum reg_class
|
933 |
|
|
reg_alternate_class (int regno)
|
934 |
|
|
{
|
935 |
|
|
if (reg_pref == 0)
|
936 |
|
|
return ALL_REGS;
|
937 |
|
|
|
938 |
|
|
return (enum reg_class) reg_pref[regno].altclass;
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
/* Return the reg_class which is used by IRA for its allocation. */
|
942 |
|
|
enum reg_class
|
943 |
|
|
reg_cover_class (int regno)
|
944 |
|
|
{
|
945 |
|
|
if (reg_pref == 0)
|
946 |
|
|
return NO_REGS;
|
947 |
|
|
|
948 |
|
|
return (enum reg_class) reg_pref[regno].coverclass;
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
|
952 |
|
|
|
953 |
|
|
/* Allocate space for reg info. */
|
954 |
|
|
static void
|
955 |
|
|
allocate_reg_info (void)
|
956 |
|
|
{
|
957 |
|
|
reg_info_size = max_reg_num ();
|
958 |
|
|
gcc_assert (! reg_pref && ! reg_renumber);
|
959 |
|
|
reg_renumber = XNEWVEC (short, reg_info_size);
|
960 |
|
|
reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
|
961 |
|
|
memset (reg_renumber, -1, reg_info_size * sizeof (short));
|
962 |
|
|
}
|
963 |
|
|
|
964 |
|
|
|
965 |
|
|
/* Resize reg info. The new elements will be uninitialized. Return
|
966 |
|
|
TRUE if new elements (for new pseudos) were added. */
|
967 |
|
|
bool
|
968 |
|
|
resize_reg_info (void)
|
969 |
|
|
{
|
970 |
|
|
int old;
|
971 |
|
|
|
972 |
|
|
if (reg_pref == NULL)
|
973 |
|
|
{
|
974 |
|
|
allocate_reg_info ();
|
975 |
|
|
return true;
|
976 |
|
|
}
|
977 |
|
|
if (reg_info_size == max_reg_num ())
|
978 |
|
|
return false;
|
979 |
|
|
old = reg_info_size;
|
980 |
|
|
reg_info_size = max_reg_num ();
|
981 |
|
|
gcc_assert (reg_pref && reg_renumber);
|
982 |
|
|
reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
|
983 |
|
|
reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
|
984 |
|
|
memset (reg_pref + old, -1,
|
985 |
|
|
(reg_info_size - old) * sizeof (struct reg_pref));
|
986 |
|
|
memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
|
987 |
|
|
return true;
|
988 |
|
|
}
|
989 |
|
|
|
990 |
|
|
|
991 |
|
|
/* Free up the space allocated by allocate_reg_info. */
|
992 |
|
|
void
|
993 |
|
|
free_reg_info (void)
|
994 |
|
|
{
|
995 |
|
|
if (reg_pref)
|
996 |
|
|
{
|
997 |
|
|
free (reg_pref);
|
998 |
|
|
reg_pref = NULL;
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
if (reg_renumber)
|
1002 |
|
|
{
|
1003 |
|
|
free (reg_renumber);
|
1004 |
|
|
reg_renumber = NULL;
|
1005 |
|
|
}
|
1006 |
|
|
}
|
1007 |
|
|
|
1008 |
|
|
/* Initialize some global data for this pass. */
|
1009 |
|
|
static unsigned int
|
1010 |
|
|
reginfo_init (void)
|
1011 |
|
|
{
|
1012 |
|
|
if (df)
|
1013 |
|
|
df_compute_regs_ever_live (true);
|
1014 |
|
|
|
1015 |
|
|
/* This prevents dump_flow_info from losing if called
|
1016 |
|
|
before reginfo is run. */
|
1017 |
|
|
reg_pref = NULL;
|
1018 |
|
|
/* No more global register variables may be declared. */
|
1019 |
|
|
no_global_reg_vars = 1;
|
1020 |
|
|
return 1;
|
1021 |
|
|
}
|
1022 |
|
|
|
1023 |
|
|
struct rtl_opt_pass pass_reginfo_init =
|
1024 |
|
|
{
|
1025 |
|
|
{
|
1026 |
|
|
RTL_PASS,
|
1027 |
|
|
"reginfo", /* name */
|
1028 |
|
|
NULL, /* gate */
|
1029 |
|
|
reginfo_init, /* execute */
|
1030 |
|
|
NULL, /* sub */
|
1031 |
|
|
NULL, /* next */
|
1032 |
|
|
0, /* static_pass_number */
|
1033 |
|
|
TV_NONE, /* tv_id */
|
1034 |
|
|
0, /* properties_required */
|
1035 |
|
|
0, /* properties_provided */
|
1036 |
|
|
0, /* properties_destroyed */
|
1037 |
|
|
0, /* todo_flags_start */
|
1038 |
|
|
|
1039 |
|
|
}
|
1040 |
|
|
};
|
1041 |
|
|
|
1042 |
|
|
|
1043 |
|
|
|
1044 |
|
|
/* Set up preferred, alternate, and cover classes for REGNO as
|
1045 |
|
|
PREFCLASS, ALTCLASS, and COVERCLASS. */
|
1046 |
|
|
void
|
1047 |
|
|
setup_reg_classes (int regno,
|
1048 |
|
|
enum reg_class prefclass, enum reg_class altclass,
|
1049 |
|
|
enum reg_class coverclass)
|
1050 |
|
|
{
|
1051 |
|
|
if (reg_pref == NULL)
|
1052 |
|
|
return;
|
1053 |
|
|
gcc_assert (reg_info_size == max_reg_num ());
|
1054 |
|
|
reg_pref[regno].prefclass = prefclass;
|
1055 |
|
|
reg_pref[regno].altclass = altclass;
|
1056 |
|
|
reg_pref[regno].coverclass = coverclass;
|
1057 |
|
|
}
|
1058 |
|
|
|
1059 |
|
|
|
1060 |
|
|
/* This is the `regscan' pass of the compiler, run just before cse and
|
1061 |
|
|
again just before loop. It finds the first and last use of each
|
1062 |
|
|
pseudo-register. */
|
1063 |
|
|
|
1064 |
|
|
static void reg_scan_mark_refs (rtx, rtx);
|
1065 |
|
|
|
1066 |
|
|
void
|
1067 |
|
|
reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
|
1068 |
|
|
{
|
1069 |
|
|
rtx insn;
|
1070 |
|
|
|
1071 |
|
|
timevar_push (TV_REG_SCAN);
|
1072 |
|
|
|
1073 |
|
|
for (insn = f; insn; insn = NEXT_INSN (insn))
|
1074 |
|
|
if (INSN_P (insn))
|
1075 |
|
|
{
|
1076 |
|
|
reg_scan_mark_refs (PATTERN (insn), insn);
|
1077 |
|
|
if (REG_NOTES (insn))
|
1078 |
|
|
reg_scan_mark_refs (REG_NOTES (insn), insn);
|
1079 |
|
|
}
|
1080 |
|
|
|
1081 |
|
|
timevar_pop (TV_REG_SCAN);
|
1082 |
|
|
}
|
1083 |
|
|
|
1084 |
|
|
|
1085 |
|
|
/* X is the expression to scan. INSN is the insn it appears in.
|
1086 |
|
|
NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
|
1087 |
|
|
We should only record information for REGs with numbers
|
1088 |
|
|
greater than or equal to MIN_REGNO. */
|
1089 |
|
|
static void
|
1090 |
|
|
reg_scan_mark_refs (rtx x, rtx insn)
|
1091 |
|
|
{
|
1092 |
|
|
enum rtx_code code;
|
1093 |
|
|
rtx dest;
|
1094 |
|
|
rtx note;
|
1095 |
|
|
|
1096 |
|
|
if (!x)
|
1097 |
|
|
return;
|
1098 |
|
|
code = GET_CODE (x);
|
1099 |
|
|
switch (code)
|
1100 |
|
|
{
|
1101 |
|
|
case CONST:
|
1102 |
|
|
case CONST_INT:
|
1103 |
|
|
case CONST_DOUBLE:
|
1104 |
|
|
case CONST_FIXED:
|
1105 |
|
|
case CONST_VECTOR:
|
1106 |
|
|
case CC0:
|
1107 |
|
|
case PC:
|
1108 |
|
|
case SYMBOL_REF:
|
1109 |
|
|
case LABEL_REF:
|
1110 |
|
|
case ADDR_VEC:
|
1111 |
|
|
case ADDR_DIFF_VEC:
|
1112 |
|
|
case REG:
|
1113 |
|
|
return;
|
1114 |
|
|
|
1115 |
|
|
case EXPR_LIST:
|
1116 |
|
|
if (XEXP (x, 0))
|
1117 |
|
|
reg_scan_mark_refs (XEXP (x, 0), insn);
|
1118 |
|
|
if (XEXP (x, 1))
|
1119 |
|
|
reg_scan_mark_refs (XEXP (x, 1), insn);
|
1120 |
|
|
break;
|
1121 |
|
|
|
1122 |
|
|
case INSN_LIST:
|
1123 |
|
|
if (XEXP (x, 1))
|
1124 |
|
|
reg_scan_mark_refs (XEXP (x, 1), insn);
|
1125 |
|
|
break;
|
1126 |
|
|
|
1127 |
|
|
case CLOBBER:
|
1128 |
|
|
if (MEM_P (XEXP (x, 0)))
|
1129 |
|
|
reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
|
1130 |
|
|
break;
|
1131 |
|
|
|
1132 |
|
|
case SET:
|
1133 |
|
|
/* Count a set of the destination if it is a register. */
|
1134 |
|
|
for (dest = SET_DEST (x);
|
1135 |
|
|
GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
|
1136 |
|
|
|| GET_CODE (dest) == ZERO_EXTEND;
|
1137 |
|
|
dest = XEXP (dest, 0))
|
1138 |
|
|
;
|
1139 |
|
|
|
1140 |
|
|
/* If this is setting a pseudo from another pseudo or the sum of a
|
1141 |
|
|
pseudo and a constant integer and the other pseudo is known to be
|
1142 |
|
|
a pointer, set the destination to be a pointer as well.
|
1143 |
|
|
|
1144 |
|
|
Likewise if it is setting the destination from an address or from a
|
1145 |
|
|
value equivalent to an address or to the sum of an address and
|
1146 |
|
|
something else.
|
1147 |
|
|
|
1148 |
|
|
But don't do any of this if the pseudo corresponds to a user
|
1149 |
|
|
variable since it should have already been set as a pointer based
|
1150 |
|
|
on the type. */
|
1151 |
|
|
|
1152 |
|
|
if (REG_P (SET_DEST (x))
|
1153 |
|
|
&& REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
|
1154 |
|
|
/* If the destination pseudo is set more than once, then other
|
1155 |
|
|
sets might not be to a pointer value (consider access to a
|
1156 |
|
|
union in two threads of control in the presence of global
|
1157 |
|
|
optimizations). So only set REG_POINTER on the destination
|
1158 |
|
|
pseudo if this is the only set of that pseudo. */
|
1159 |
|
|
&& DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
|
1160 |
|
|
&& ! REG_USERVAR_P (SET_DEST (x))
|
1161 |
|
|
&& ! REG_POINTER (SET_DEST (x))
|
1162 |
|
|
&& ((REG_P (SET_SRC (x))
|
1163 |
|
|
&& REG_POINTER (SET_SRC (x)))
|
1164 |
|
|
|| ((GET_CODE (SET_SRC (x)) == PLUS
|
1165 |
|
|
|| GET_CODE (SET_SRC (x)) == LO_SUM)
|
1166 |
|
|
&& CONST_INT_P (XEXP (SET_SRC (x), 1))
|
1167 |
|
|
&& REG_P (XEXP (SET_SRC (x), 0))
|
1168 |
|
|
&& REG_POINTER (XEXP (SET_SRC (x), 0)))
|
1169 |
|
|
|| GET_CODE (SET_SRC (x)) == CONST
|
1170 |
|
|
|| GET_CODE (SET_SRC (x)) == SYMBOL_REF
|
1171 |
|
|
|| GET_CODE (SET_SRC (x)) == LABEL_REF
|
1172 |
|
|
|| (GET_CODE (SET_SRC (x)) == HIGH
|
1173 |
|
|
&& (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
|
1174 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
|
1175 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
|
1176 |
|
|
|| ((GET_CODE (SET_SRC (x)) == PLUS
|
1177 |
|
|
|| GET_CODE (SET_SRC (x)) == LO_SUM)
|
1178 |
|
|
&& (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
|
1179 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
|
1180 |
|
|
|| GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
|
1181 |
|
|
|| ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
|
1182 |
|
|
&& (GET_CODE (XEXP (note, 0)) == CONST
|
1183 |
|
|
|| GET_CODE (XEXP (note, 0)) == SYMBOL_REF
|
1184 |
|
|
|| GET_CODE (XEXP (note, 0)) == LABEL_REF))))
|
1185 |
|
|
REG_POINTER (SET_DEST (x)) = 1;
|
1186 |
|
|
|
1187 |
|
|
/* If this is setting a register from a register or from a simple
|
1188 |
|
|
conversion of a register, propagate REG_EXPR. */
|
1189 |
|
|
if (REG_P (dest) && !REG_ATTRS (dest))
|
1190 |
|
|
{
|
1191 |
|
|
rtx src = SET_SRC (x);
|
1192 |
|
|
|
1193 |
|
|
while (GET_CODE (src) == SIGN_EXTEND
|
1194 |
|
|
|| GET_CODE (src) == ZERO_EXTEND
|
1195 |
|
|
|| GET_CODE (src) == TRUNCATE
|
1196 |
|
|
|| (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
|
1197 |
|
|
src = XEXP (src, 0);
|
1198 |
|
|
|
1199 |
|
|
set_reg_attrs_from_value (dest, src);
|
1200 |
|
|
}
|
1201 |
|
|
|
1202 |
|
|
/* ... fall through ... */
|
1203 |
|
|
|
1204 |
|
|
default:
|
1205 |
|
|
{
|
1206 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
1207 |
|
|
int i;
|
1208 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1209 |
|
|
{
|
1210 |
|
|
if (fmt[i] == 'e')
|
1211 |
|
|
reg_scan_mark_refs (XEXP (x, i), insn);
|
1212 |
|
|
else if (fmt[i] == 'E' && XVEC (x, i) != 0)
|
1213 |
|
|
{
|
1214 |
|
|
int j;
|
1215 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
1216 |
|
|
reg_scan_mark_refs (XVECEXP (x, i, j), insn);
|
1217 |
|
|
}
|
1218 |
|
|
}
|
1219 |
|
|
}
|
1220 |
|
|
}
|
1221 |
|
|
}
|
1222 |
|
|
|
1223 |
|
|
|
1224 |
|
|
/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
|
1225 |
|
|
is also in C2. */
|
1226 |
|
|
int
|
1227 |
|
|
reg_class_subset_p (enum reg_class c1, enum reg_class c2)
|
1228 |
|
|
{
|
1229 |
|
|
return (c1 == c2
|
1230 |
|
|
|| c2 == ALL_REGS
|
1231 |
|
|
|| hard_reg_set_subset_p (reg_class_contents[(int) c1],
|
1232 |
|
|
reg_class_contents[(int) c2]));
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
/* Return nonzero if there is a register that is in both C1 and C2. */
|
1236 |
|
|
int
|
1237 |
|
|
reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
|
1238 |
|
|
{
|
1239 |
|
|
return (c1 == c2
|
1240 |
|
|
|| c1 == ALL_REGS
|
1241 |
|
|
|| c2 == ALL_REGS
|
1242 |
|
|
|| hard_reg_set_intersect_p (reg_class_contents[(int) c1],
|
1243 |
|
|
reg_class_contents[(int) c2]));
|
1244 |
|
|
}
|
1245 |
|
|
|
1246 |
|
|
|
1247 |
|
|
|
1248 |
|
|
/* Passes for keeping and updating info about modes of registers
|
1249 |
|
|
inside subregisters. */
|
1250 |
|
|
|
1251 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1252 |
|
|
|
1253 |
|
|
struct subregs_of_mode_node
|
1254 |
|
|
{
|
1255 |
|
|
unsigned int block;
|
1256 |
|
|
unsigned char modes[MAX_MACHINE_MODE];
|
1257 |
|
|
};
|
1258 |
|
|
|
1259 |
|
|
static htab_t subregs_of_mode;
|
1260 |
|
|
|
1261 |
|
|
static hashval_t
|
1262 |
|
|
som_hash (const void *x)
|
1263 |
|
|
{
|
1264 |
|
|
const struct subregs_of_mode_node *const a =
|
1265 |
|
|
(const struct subregs_of_mode_node *) x;
|
1266 |
|
|
return a->block;
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
static int
|
1270 |
|
|
som_eq (const void *x, const void *y)
|
1271 |
|
|
{
|
1272 |
|
|
const struct subregs_of_mode_node *const a =
|
1273 |
|
|
(const struct subregs_of_mode_node *) x;
|
1274 |
|
|
const struct subregs_of_mode_node *const b =
|
1275 |
|
|
(const struct subregs_of_mode_node *) y;
|
1276 |
|
|
return a->block == b->block;
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
static void
|
1280 |
|
|
record_subregs_of_mode (rtx subreg)
|
1281 |
|
|
{
|
1282 |
|
|
struct subregs_of_mode_node dummy, *node;
|
1283 |
|
|
enum machine_mode mode;
|
1284 |
|
|
unsigned int regno;
|
1285 |
|
|
void **slot;
|
1286 |
|
|
|
1287 |
|
|
if (!REG_P (SUBREG_REG (subreg)))
|
1288 |
|
|
return;
|
1289 |
|
|
|
1290 |
|
|
regno = REGNO (SUBREG_REG (subreg));
|
1291 |
|
|
mode = GET_MODE (subreg);
|
1292 |
|
|
|
1293 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
1294 |
|
|
return;
|
1295 |
|
|
|
1296 |
|
|
dummy.block = regno & -8;
|
1297 |
|
|
slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
|
1298 |
|
|
dummy.block, INSERT);
|
1299 |
|
|
node = (struct subregs_of_mode_node *) *slot;
|
1300 |
|
|
if (node == NULL)
|
1301 |
|
|
{
|
1302 |
|
|
node = XCNEW (struct subregs_of_mode_node);
|
1303 |
|
|
node->block = regno & -8;
|
1304 |
|
|
*slot = node;
|
1305 |
|
|
}
|
1306 |
|
|
|
1307 |
|
|
node->modes[mode] |= 1 << (regno & 7);
|
1308 |
|
|
}
|
1309 |
|
|
|
1310 |
|
|
/* Call record_subregs_of_mode for all the subregs in X. */
|
1311 |
|
|
static void
|
1312 |
|
|
find_subregs_of_mode (rtx x)
|
1313 |
|
|
{
|
1314 |
|
|
enum rtx_code code = GET_CODE (x);
|
1315 |
|
|
const char * const fmt = GET_RTX_FORMAT (code);
|
1316 |
|
|
int i;
|
1317 |
|
|
|
1318 |
|
|
if (code == SUBREG)
|
1319 |
|
|
record_subregs_of_mode (x);
|
1320 |
|
|
|
1321 |
|
|
/* Time for some deep diving. */
|
1322 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
1323 |
|
|
{
|
1324 |
|
|
if (fmt[i] == 'e')
|
1325 |
|
|
find_subregs_of_mode (XEXP (x, i));
|
1326 |
|
|
else if (fmt[i] == 'E')
|
1327 |
|
|
{
|
1328 |
|
|
int j;
|
1329 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
1330 |
|
|
find_subregs_of_mode (XVECEXP (x, i, j));
|
1331 |
|
|
}
|
1332 |
|
|
}
|
1333 |
|
|
}
|
1334 |
|
|
|
1335 |
|
|
void
|
1336 |
|
|
init_subregs_of_mode (void)
|
1337 |
|
|
{
|
1338 |
|
|
basic_block bb;
|
1339 |
|
|
rtx insn;
|
1340 |
|
|
|
1341 |
|
|
if (subregs_of_mode)
|
1342 |
|
|
htab_empty (subregs_of_mode);
|
1343 |
|
|
else
|
1344 |
|
|
subregs_of_mode = htab_create (100, som_hash, som_eq, free);
|
1345 |
|
|
|
1346 |
|
|
FOR_EACH_BB (bb)
|
1347 |
|
|
FOR_BB_INSNS (bb, insn)
|
1348 |
|
|
if (INSN_P (insn))
|
1349 |
|
|
find_subregs_of_mode (PATTERN (insn));
|
1350 |
|
|
}
|
1351 |
|
|
|
1352 |
|
|
/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
|
1353 |
|
|
mode. */
|
1354 |
|
|
bool
|
1355 |
|
|
invalid_mode_change_p (unsigned int regno,
|
1356 |
|
|
enum reg_class rclass ATTRIBUTE_UNUSED,
|
1357 |
|
|
enum machine_mode from)
|
1358 |
|
|
{
|
1359 |
|
|
struct subregs_of_mode_node dummy, *node;
|
1360 |
|
|
unsigned int to;
|
1361 |
|
|
unsigned char mask;
|
1362 |
|
|
|
1363 |
|
|
gcc_assert (subregs_of_mode);
|
1364 |
|
|
dummy.block = regno & -8;
|
1365 |
|
|
node = (struct subregs_of_mode_node *)
|
1366 |
|
|
htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
|
1367 |
|
|
if (node == NULL)
|
1368 |
|
|
return false;
|
1369 |
|
|
|
1370 |
|
|
mask = 1 << (regno & 7);
|
1371 |
|
|
for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
|
1372 |
|
|
if (node->modes[to] & mask)
|
1373 |
|
|
if (CANNOT_CHANGE_MODE_CLASS (from, (enum machine_mode) to, rclass))
|
1374 |
|
|
return true;
|
1375 |
|
|
|
1376 |
|
|
return false;
|
1377 |
|
|
}
|
1378 |
|
|
|
1379 |
|
|
void
|
1380 |
|
|
finish_subregs_of_mode (void)
|
1381 |
|
|
{
|
1382 |
|
|
htab_delete (subregs_of_mode);
|
1383 |
|
|
subregs_of_mode = 0;
|
1384 |
|
|
}
|
1385 |
|
|
#else
|
1386 |
|
|
void
|
1387 |
|
|
init_subregs_of_mode (void)
|
1388 |
|
|
{
|
1389 |
|
|
}
|
1390 |
|
|
void
|
1391 |
|
|
finish_subregs_of_mode (void)
|
1392 |
|
|
{
|
1393 |
|
|
}
|
1394 |
|
|
|
1395 |
|
|
#endif /* CANNOT_CHANGE_MODE_CLASS */
|
1396 |
|
|
|
1397 |
|
|
#include "gt-reginfo.h"
|