1 |
280 |
jeremybenn |
/* Search an insn for pseudo regs that must be in hard regs and are not.
|
2 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
3 |
|
|
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
4 |
|
|
Free Software Foundation, Inc.
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
9 |
|
|
the terms of the GNU General Public License as published by the Free
|
10 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
11 |
|
|
version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
14 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
15 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
16 |
|
|
for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
/* This file contains subroutines used only from the file reload1.c.
|
23 |
|
|
It knows how to scan one insn for operands and values
|
24 |
|
|
that need to be copied into registers to make valid code.
|
25 |
|
|
It also finds other operands and values which are valid
|
26 |
|
|
but for which equivalent values in registers exist and
|
27 |
|
|
ought to be used instead.
|
28 |
|
|
|
29 |
|
|
Before processing the first insn of the function, call `init_reload'.
|
30 |
|
|
init_reload actually has to be called earlier anyway.
|
31 |
|
|
|
32 |
|
|
To scan an insn, call `find_reloads'. This does two things:
|
33 |
|
|
1. sets up tables describing which values must be reloaded
|
34 |
|
|
for this insn, and what kind of hard regs they must be reloaded into;
|
35 |
|
|
2. optionally record the locations where those values appear in
|
36 |
|
|
the data, so they can be replaced properly later.
|
37 |
|
|
This is done only if the second arg to `find_reloads' is nonzero.
|
38 |
|
|
|
39 |
|
|
The third arg to `find_reloads' specifies the number of levels
|
40 |
|
|
of indirect addressing supported by the machine. If it is zero,
|
41 |
|
|
indirect addressing is not valid. If it is one, (MEM (REG n))
|
42 |
|
|
is valid even if (REG n) did not get a hard register; if it is two,
|
43 |
|
|
(MEM (MEM (REG n))) is also valid even if (REG n) did not get a
|
44 |
|
|
hard register, and similarly for higher values.
|
45 |
|
|
|
46 |
|
|
Then you must choose the hard regs to reload those pseudo regs into,
|
47 |
|
|
and generate appropriate load insns before this insn and perhaps
|
48 |
|
|
also store insns after this insn. Set up the array `reload_reg_rtx'
|
49 |
|
|
to contain the REG rtx's for the registers you used. In some
|
50 |
|
|
cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
|
51 |
|
|
for certain reloads. Then that tells you which register to use,
|
52 |
|
|
so you do not need to allocate one. But you still do need to add extra
|
53 |
|
|
instructions to copy the value into and out of that register.
|
54 |
|
|
|
55 |
|
|
Finally you must call `subst_reloads' to substitute the reload reg rtx's
|
56 |
|
|
into the locations already recorded.
|
57 |
|
|
|
58 |
|
|
NOTE SIDE EFFECTS:
|
59 |
|
|
|
60 |
|
|
find_reloads can alter the operands of the instruction it is called on.
|
61 |
|
|
|
62 |
|
|
1. Two operands of any sort may be interchanged, if they are in a
|
63 |
|
|
commutative instruction.
|
64 |
|
|
This happens only if find_reloads thinks the instruction will compile
|
65 |
|
|
better that way.
|
66 |
|
|
|
67 |
|
|
2. Pseudo-registers that are equivalent to constants are replaced
|
68 |
|
|
with those constants if they are not in hard registers.
|
69 |
|
|
|
70 |
|
|
1 happens every time find_reloads is called.
|
71 |
|
|
2 happens only when REPLACE is 1, which is only when
|
72 |
|
|
actually doing the reloads, not when just counting them.
|
73 |
|
|
|
74 |
|
|
Using a reload register for several reloads in one insn:
|
75 |
|
|
|
76 |
|
|
When an insn has reloads, it is considered as having three parts:
|
77 |
|
|
the input reloads, the insn itself after reloading, and the output reloads.
|
78 |
|
|
Reloads of values used in memory addresses are often needed for only one part.
|
79 |
|
|
|
80 |
|
|
When this is so, reload_when_needed records which part needs the reload.
|
81 |
|
|
Two reloads for different parts of the insn can share the same reload
|
82 |
|
|
register.
|
83 |
|
|
|
84 |
|
|
When a reload is used for addresses in multiple parts, or when it is
|
85 |
|
|
an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
|
86 |
|
|
a register with any other reload. */
|
87 |
|
|
|
88 |
|
|
#define REG_OK_STRICT
|
89 |
|
|
|
90 |
|
|
/* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
|
91 |
|
|
#undef DEBUG_RELOAD
|
92 |
|
|
|
93 |
|
|
#include "config.h"
|
94 |
|
|
#include "system.h"
|
95 |
|
|
#include "coretypes.h"
|
96 |
|
|
#include "tm.h"
|
97 |
|
|
#include "rtl.h"
|
98 |
|
|
#include "tm_p.h"
|
99 |
|
|
#include "insn-config.h"
|
100 |
|
|
#include "expr.h"
|
101 |
|
|
#include "optabs.h"
|
102 |
|
|
#include "recog.h"
|
103 |
|
|
#include "reload.h"
|
104 |
|
|
#include "regs.h"
|
105 |
|
|
#include "addresses.h"
|
106 |
|
|
#include "hard-reg-set.h"
|
107 |
|
|
#include "flags.h"
|
108 |
|
|
#include "real.h"
|
109 |
|
|
#include "output.h"
|
110 |
|
|
#include "function.h"
|
111 |
|
|
#include "toplev.h"
|
112 |
|
|
#include "params.h"
|
113 |
|
|
#include "target.h"
|
114 |
|
|
#include "df.h"
|
115 |
|
|
#include "ira.h"
|
116 |
|
|
|
117 |
|
|
/* True if X is a constant that can be forced into the constant pool. */
|
118 |
|
|
#define CONST_POOL_OK_P(X) \
|
119 |
|
|
(CONSTANT_P (X) \
|
120 |
|
|
&& GET_CODE (X) != HIGH \
|
121 |
|
|
&& !targetm.cannot_force_const_mem (X))
|
122 |
|
|
|
123 |
|
|
/* True if C is a non-empty register class that has too few registers
|
124 |
|
|
to be safely used as a reload target class. */
|
125 |
|
|
#define SMALL_REGISTER_CLASS_P(C) \
|
126 |
|
|
(reg_class_size [(C)] == 1 \
|
127 |
|
|
|| (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
|
128 |
|
|
|
129 |
|
|
|
130 |
|
|
/* All reloads of the current insn are recorded here. See reload.h for
|
131 |
|
|
comments. */
|
132 |
|
|
int n_reloads;
|
133 |
|
|
struct reload rld[MAX_RELOADS];
|
134 |
|
|
|
135 |
|
|
/* All the "earlyclobber" operands of the current insn
|
136 |
|
|
are recorded here. */
|
137 |
|
|
int n_earlyclobbers;
|
138 |
|
|
rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
|
139 |
|
|
|
140 |
|
|
int reload_n_operands;
|
141 |
|
|
|
142 |
|
|
/* Replacing reloads.
|
143 |
|
|
|
144 |
|
|
If `replace_reloads' is nonzero, then as each reload is recorded
|
145 |
|
|
an entry is made for it in the table `replacements'.
|
146 |
|
|
Then later `subst_reloads' can look through that table and
|
147 |
|
|
perform all the replacements needed. */
|
148 |
|
|
|
149 |
|
|
/* Nonzero means record the places to replace. */
|
150 |
|
|
static int replace_reloads;
|
151 |
|
|
|
152 |
|
|
/* Each replacement is recorded with a structure like this. */
|
153 |
|
|
struct replacement
|
154 |
|
|
{
|
155 |
|
|
rtx *where; /* Location to store in */
|
156 |
|
|
rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
|
157 |
|
|
a SUBREG; 0 otherwise. */
|
158 |
|
|
int what; /* which reload this is for */
|
159 |
|
|
enum machine_mode mode; /* mode it must have */
|
160 |
|
|
};
|
161 |
|
|
|
162 |
|
|
static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
|
163 |
|
|
|
164 |
|
|
/* Number of replacements currently recorded. */
|
165 |
|
|
static int n_replacements;
|
166 |
|
|
|
167 |
|
|
/* Used to track what is modified by an operand. */
|
168 |
|
|
struct decomposition
|
169 |
|
|
{
|
170 |
|
|
int reg_flag; /* Nonzero if referencing a register. */
|
171 |
|
|
int safe; /* Nonzero if this can't conflict with anything. */
|
172 |
|
|
rtx base; /* Base address for MEM. */
|
173 |
|
|
HOST_WIDE_INT start; /* Starting offset or register number. */
|
174 |
|
|
HOST_WIDE_INT end; /* Ending offset or register number. */
|
175 |
|
|
};
|
176 |
|
|
|
177 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
178 |
|
|
|
179 |
|
|
/* Save MEMs needed to copy from one class of registers to another. One MEM
|
180 |
|
|
is used per mode, but normally only one or two modes are ever used.
|
181 |
|
|
|
182 |
|
|
We keep two versions, before and after register elimination. The one
|
183 |
|
|
after register elimination is record separately for each operand. This
|
184 |
|
|
is done in case the address is not valid to be sure that we separately
|
185 |
|
|
reload each. */
|
186 |
|
|
|
187 |
|
|
static rtx secondary_memlocs[NUM_MACHINE_MODES];
|
188 |
|
|
static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
|
189 |
|
|
static int secondary_memlocs_elim_used = 0;
|
190 |
|
|
#endif
|
191 |
|
|
|
192 |
|
|
/* The instruction we are doing reloads for;
|
193 |
|
|
so we can test whether a register dies in it. */
|
194 |
|
|
static rtx this_insn;
|
195 |
|
|
|
196 |
|
|
/* Nonzero if this instruction is a user-specified asm with operands. */
|
197 |
|
|
static int this_insn_is_asm;
|
198 |
|
|
|
199 |
|
|
/* If hard_regs_live_known is nonzero,
|
200 |
|
|
we can tell which hard regs are currently live,
|
201 |
|
|
at least enough to succeed in choosing dummy reloads. */
|
202 |
|
|
static int hard_regs_live_known;
|
203 |
|
|
|
204 |
|
|
/* Indexed by hard reg number,
|
205 |
|
|
element is nonnegative if hard reg has been spilled.
|
206 |
|
|
This vector is passed to `find_reloads' as an argument
|
207 |
|
|
and is not changed here. */
|
208 |
|
|
static short *static_reload_reg_p;
|
209 |
|
|
|
210 |
|
|
/* Set to 1 in subst_reg_equivs if it changes anything. */
|
211 |
|
|
static int subst_reg_equivs_changed;
|
212 |
|
|
|
213 |
|
|
/* On return from push_reload, holds the reload-number for the OUT
|
214 |
|
|
operand, which can be different for that from the input operand. */
|
215 |
|
|
static int output_reloadnum;
|
216 |
|
|
|
217 |
|
|
/* Compare two RTX's. */
|
218 |
|
|
#define MATCHES(x, y) \
|
219 |
|
|
(x == y || (x != 0 && (REG_P (x) \
|
220 |
|
|
? REG_P (y) && REGNO (x) == REGNO (y) \
|
221 |
|
|
: rtx_equal_p (x, y) && ! side_effects_p (x))))
|
222 |
|
|
|
223 |
|
|
/* Indicates if two reloads purposes are for similar enough things that we
|
224 |
|
|
can merge their reloads. */
|
225 |
|
|
#define MERGABLE_RELOADS(when1, when2, op1, op2) \
|
226 |
|
|
((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
|
227 |
|
|
|| ((when1) == (when2) && (op1) == (op2)) \
|
228 |
|
|
|| ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
|
229 |
|
|
|| ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
|
230 |
|
|
&& (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
|
231 |
|
|
|| ((when1) == RELOAD_FOR_OTHER_ADDRESS \
|
232 |
|
|
&& (when2) == RELOAD_FOR_OTHER_ADDRESS))
|
233 |
|
|
|
234 |
|
|
/* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
|
235 |
|
|
#define MERGE_TO_OTHER(when1, when2, op1, op2) \
|
236 |
|
|
((when1) != (when2) \
|
237 |
|
|
|| ! ((op1) == (op2) \
|
238 |
|
|
|| (when1) == RELOAD_FOR_INPUT \
|
239 |
|
|
|| (when1) == RELOAD_FOR_OPERAND_ADDRESS \
|
240 |
|
|
|| (when1) == RELOAD_FOR_OTHER_ADDRESS))
|
241 |
|
|
|
242 |
|
|
/* If we are going to reload an address, compute the reload type to
|
243 |
|
|
use. */
|
244 |
|
|
#define ADDR_TYPE(type) \
|
245 |
|
|
((type) == RELOAD_FOR_INPUT_ADDRESS \
|
246 |
|
|
? RELOAD_FOR_INPADDR_ADDRESS \
|
247 |
|
|
: ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
|
248 |
|
|
? RELOAD_FOR_OUTADDR_ADDRESS \
|
249 |
|
|
: (type)))
|
250 |
|
|
|
251 |
|
|
static int push_secondary_reload (int, rtx, int, int, enum reg_class,
|
252 |
|
|
enum machine_mode, enum reload_type,
|
253 |
|
|
enum insn_code *, secondary_reload_info *);
|
254 |
|
|
static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
|
255 |
|
|
int, unsigned int);
|
256 |
|
|
static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
|
257 |
|
|
static void push_replacement (rtx *, int, enum machine_mode);
|
258 |
|
|
static void dup_replacements (rtx *, rtx *);
|
259 |
|
|
static void combine_reloads (void);
|
260 |
|
|
static int find_reusable_reload (rtx *, rtx, enum reg_class,
|
261 |
|
|
enum reload_type, int, int);
|
262 |
|
|
static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
|
263 |
|
|
enum machine_mode, enum reg_class, int, int);
|
264 |
|
|
static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
|
265 |
|
|
static struct decomposition decompose (rtx);
|
266 |
|
|
static int immune_p (rtx, rtx, struct decomposition);
|
267 |
|
|
static bool alternative_allows_const_pool_ref (rtx, const char *, int);
|
268 |
|
|
static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
|
269 |
|
|
int *);
|
270 |
|
|
static rtx make_memloc (rtx, int);
|
271 |
|
|
static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
|
272 |
|
|
addr_space_t, rtx *);
|
273 |
|
|
static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
|
274 |
|
|
int, enum reload_type, int, rtx);
|
275 |
|
|
static rtx subst_reg_equivs (rtx, rtx);
|
276 |
|
|
static rtx subst_indexed_address (rtx);
|
277 |
|
|
static void update_auto_inc_notes (rtx, int, int);
|
278 |
|
|
static int find_reloads_address_1 (enum machine_mode, rtx, int,
|
279 |
|
|
enum rtx_code, enum rtx_code, rtx *,
|
280 |
|
|
int, enum reload_type,int, rtx);
|
281 |
|
|
static void find_reloads_address_part (rtx, rtx *, enum reg_class,
|
282 |
|
|
enum machine_mode, int,
|
283 |
|
|
enum reload_type, int);
|
284 |
|
|
static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
|
285 |
|
|
int, rtx);
|
286 |
|
|
static void copy_replacements_1 (rtx *, rtx *, int);
|
287 |
|
|
static int find_inc_amount (rtx, rtx);
|
288 |
|
|
static int refers_to_mem_for_reload_p (rtx);
|
289 |
|
|
static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
|
290 |
|
|
rtx, rtx *);
|
291 |
|
|
|
292 |
|
|
/* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
|
293 |
|
|
list yet. */
|
294 |
|
|
|
295 |
|
|
static void
|
296 |
|
|
push_reg_equiv_alt_mem (int regno, rtx mem)
|
297 |
|
|
{
|
298 |
|
|
rtx it;
|
299 |
|
|
|
300 |
|
|
for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
|
301 |
|
|
if (rtx_equal_p (XEXP (it, 0), mem))
|
302 |
|
|
return;
|
303 |
|
|
|
304 |
|
|
reg_equiv_alt_mem_list [regno]
|
305 |
|
|
= alloc_EXPR_LIST (REG_EQUIV, mem,
|
306 |
|
|
reg_equiv_alt_mem_list [regno]);
|
307 |
|
|
}
|
308 |
|
|
|
309 |
|
|
/* Determine if any secondary reloads are needed for loading (if IN_P is
|
310 |
|
|
nonzero) or storing (if IN_P is zero) X to or from a reload register of
|
311 |
|
|
register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
|
312 |
|
|
are needed, push them.
|
313 |
|
|
|
314 |
|
|
Return the reload number of the secondary reload we made, or -1 if
|
315 |
|
|
we didn't need one. *PICODE is set to the insn_code to use if we do
|
316 |
|
|
need a secondary reload. */
|
317 |
|
|
|
318 |
|
|
static int
|
319 |
|
|
push_secondary_reload (int in_p, rtx x, int opnum, int optional,
|
320 |
|
|
enum reg_class reload_class,
|
321 |
|
|
enum machine_mode reload_mode, enum reload_type type,
|
322 |
|
|
enum insn_code *picode, secondary_reload_info *prev_sri)
|
323 |
|
|
{
|
324 |
|
|
enum reg_class rclass = NO_REGS;
|
325 |
|
|
enum reg_class scratch_class;
|
326 |
|
|
enum machine_mode mode = reload_mode;
|
327 |
|
|
enum insn_code icode = CODE_FOR_nothing;
|
328 |
|
|
enum insn_code t_icode = CODE_FOR_nothing;
|
329 |
|
|
enum reload_type secondary_type;
|
330 |
|
|
int s_reload, t_reload = -1;
|
331 |
|
|
const char *scratch_constraint;
|
332 |
|
|
char letter;
|
333 |
|
|
secondary_reload_info sri;
|
334 |
|
|
|
335 |
|
|
if (type == RELOAD_FOR_INPUT_ADDRESS
|
336 |
|
|
|| type == RELOAD_FOR_OUTPUT_ADDRESS
|
337 |
|
|
|| type == RELOAD_FOR_INPADDR_ADDRESS
|
338 |
|
|
|| type == RELOAD_FOR_OUTADDR_ADDRESS)
|
339 |
|
|
secondary_type = type;
|
340 |
|
|
else
|
341 |
|
|
secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
|
342 |
|
|
|
343 |
|
|
*picode = CODE_FOR_nothing;
|
344 |
|
|
|
345 |
|
|
/* If X is a paradoxical SUBREG, use the inner value to determine both the
|
346 |
|
|
mode and object being reloaded. */
|
347 |
|
|
if (GET_CODE (x) == SUBREG
|
348 |
|
|
&& (GET_MODE_SIZE (GET_MODE (x))
|
349 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
|
350 |
|
|
{
|
351 |
|
|
x = SUBREG_REG (x);
|
352 |
|
|
reload_mode = GET_MODE (x);
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
/* If X is a pseudo-register that has an equivalent MEM (actually, if it
|
356 |
|
|
is still a pseudo-register by now, it *must* have an equivalent MEM
|
357 |
|
|
but we don't want to assume that), use that equivalent when seeing if
|
358 |
|
|
a secondary reload is needed since whether or not a reload is needed
|
359 |
|
|
might be sensitive to the form of the MEM. */
|
360 |
|
|
|
361 |
|
|
if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
|
362 |
|
|
&& reg_equiv_mem[REGNO (x)] != 0)
|
363 |
|
|
x = reg_equiv_mem[REGNO (x)];
|
364 |
|
|
|
365 |
|
|
sri.icode = CODE_FOR_nothing;
|
366 |
|
|
sri.prev_sri = prev_sri;
|
367 |
|
|
rclass = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
|
368 |
|
|
icode = (enum insn_code) sri.icode;
|
369 |
|
|
|
370 |
|
|
/* If we don't need any secondary registers, done. */
|
371 |
|
|
if (rclass == NO_REGS && icode == CODE_FOR_nothing)
|
372 |
|
|
return -1;
|
373 |
|
|
|
374 |
|
|
if (rclass != NO_REGS)
|
375 |
|
|
t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
|
376 |
|
|
reload_mode, type, &t_icode, &sri);
|
377 |
|
|
|
378 |
|
|
/* If we will be using an insn, the secondary reload is for a
|
379 |
|
|
scratch register. */
|
380 |
|
|
|
381 |
|
|
if (icode != CODE_FOR_nothing)
|
382 |
|
|
{
|
383 |
|
|
/* If IN_P is nonzero, the reload register will be the output in
|
384 |
|
|
operand 0. If IN_P is zero, the reload register will be the input
|
385 |
|
|
in operand 1. Outputs should have an initial "=", which we must
|
386 |
|
|
skip. */
|
387 |
|
|
|
388 |
|
|
/* ??? It would be useful to be able to handle only two, or more than
|
389 |
|
|
three, operands, but for now we can only handle the case of having
|
390 |
|
|
exactly three: output, input and one temp/scratch. */
|
391 |
|
|
gcc_assert (insn_data[(int) icode].n_operands == 3);
|
392 |
|
|
|
393 |
|
|
/* ??? We currently have no way to represent a reload that needs
|
394 |
|
|
an icode to reload from an intermediate tertiary reload register.
|
395 |
|
|
We should probably have a new field in struct reload to tag a
|
396 |
|
|
chain of scratch operand reloads onto. */
|
397 |
|
|
gcc_assert (rclass == NO_REGS);
|
398 |
|
|
|
399 |
|
|
scratch_constraint = insn_data[(int) icode].operand[2].constraint;
|
400 |
|
|
gcc_assert (*scratch_constraint == '=');
|
401 |
|
|
scratch_constraint++;
|
402 |
|
|
if (*scratch_constraint == '&')
|
403 |
|
|
scratch_constraint++;
|
404 |
|
|
letter = *scratch_constraint;
|
405 |
|
|
scratch_class = (letter == 'r' ? GENERAL_REGS
|
406 |
|
|
: REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
|
407 |
|
|
scratch_constraint));
|
408 |
|
|
|
409 |
|
|
rclass = scratch_class;
|
410 |
|
|
mode = insn_data[(int) icode].operand[2].mode;
|
411 |
|
|
}
|
412 |
|
|
|
413 |
|
|
/* This case isn't valid, so fail. Reload is allowed to use the same
|
414 |
|
|
register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
|
415 |
|
|
in the case of a secondary register, we actually need two different
|
416 |
|
|
registers for correct code. We fail here to prevent the possibility of
|
417 |
|
|
silently generating incorrect code later.
|
418 |
|
|
|
419 |
|
|
The convention is that secondary input reloads are valid only if the
|
420 |
|
|
secondary_class is different from class. If you have such a case, you
|
421 |
|
|
can not use secondary reloads, you must work around the problem some
|
422 |
|
|
other way.
|
423 |
|
|
|
424 |
|
|
Allow this when a reload_in/out pattern is being used. I.e. assume
|
425 |
|
|
that the generated code handles this case. */
|
426 |
|
|
|
427 |
|
|
gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
|
428 |
|
|
|| t_icode != CODE_FOR_nothing);
|
429 |
|
|
|
430 |
|
|
/* See if we can reuse an existing secondary reload. */
|
431 |
|
|
for (s_reload = 0; s_reload < n_reloads; s_reload++)
|
432 |
|
|
if (rld[s_reload].secondary_p
|
433 |
|
|
&& (reg_class_subset_p (rclass, rld[s_reload].rclass)
|
434 |
|
|
|| reg_class_subset_p (rld[s_reload].rclass, rclass))
|
435 |
|
|
&& ((in_p && rld[s_reload].inmode == mode)
|
436 |
|
|
|| (! in_p && rld[s_reload].outmode == mode))
|
437 |
|
|
&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
|
438 |
|
|
|| (! in_p && rld[s_reload].secondary_out_reload == t_reload))
|
439 |
|
|
&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
|
440 |
|
|
|| (! in_p && rld[s_reload].secondary_out_icode == t_icode))
|
441 |
|
|
&& (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
|
442 |
|
|
&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
|
443 |
|
|
opnum, rld[s_reload].opnum))
|
444 |
|
|
{
|
445 |
|
|
if (in_p)
|
446 |
|
|
rld[s_reload].inmode = mode;
|
447 |
|
|
if (! in_p)
|
448 |
|
|
rld[s_reload].outmode = mode;
|
449 |
|
|
|
450 |
|
|
if (reg_class_subset_p (rclass, rld[s_reload].rclass))
|
451 |
|
|
rld[s_reload].rclass = rclass;
|
452 |
|
|
|
453 |
|
|
rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
|
454 |
|
|
rld[s_reload].optional &= optional;
|
455 |
|
|
rld[s_reload].secondary_p = 1;
|
456 |
|
|
if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
|
457 |
|
|
opnum, rld[s_reload].opnum))
|
458 |
|
|
rld[s_reload].when_needed = RELOAD_OTHER;
|
459 |
|
|
|
460 |
|
|
break;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
if (s_reload == n_reloads)
|
464 |
|
|
{
|
465 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
466 |
|
|
/* If we need a memory location to copy between the two reload regs,
|
467 |
|
|
set it up now. Note that we do the input case before making
|
468 |
|
|
the reload and the output case after. This is due to the
|
469 |
|
|
way reloads are output. */
|
470 |
|
|
|
471 |
|
|
if (in_p && icode == CODE_FOR_nothing
|
472 |
|
|
&& SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
|
473 |
|
|
{
|
474 |
|
|
get_secondary_mem (x, reload_mode, opnum, type);
|
475 |
|
|
|
476 |
|
|
/* We may have just added new reloads. Make sure we add
|
477 |
|
|
the new reload at the end. */
|
478 |
|
|
s_reload = n_reloads;
|
479 |
|
|
}
|
480 |
|
|
#endif
|
481 |
|
|
|
482 |
|
|
/* We need to make a new secondary reload for this register class. */
|
483 |
|
|
rld[s_reload].in = rld[s_reload].out = 0;
|
484 |
|
|
rld[s_reload].rclass = rclass;
|
485 |
|
|
|
486 |
|
|
rld[s_reload].inmode = in_p ? mode : VOIDmode;
|
487 |
|
|
rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
|
488 |
|
|
rld[s_reload].reg_rtx = 0;
|
489 |
|
|
rld[s_reload].optional = optional;
|
490 |
|
|
rld[s_reload].inc = 0;
|
491 |
|
|
/* Maybe we could combine these, but it seems too tricky. */
|
492 |
|
|
rld[s_reload].nocombine = 1;
|
493 |
|
|
rld[s_reload].in_reg = 0;
|
494 |
|
|
rld[s_reload].out_reg = 0;
|
495 |
|
|
rld[s_reload].opnum = opnum;
|
496 |
|
|
rld[s_reload].when_needed = secondary_type;
|
497 |
|
|
rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
|
498 |
|
|
rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
|
499 |
|
|
rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
|
500 |
|
|
rld[s_reload].secondary_out_icode
|
501 |
|
|
= ! in_p ? t_icode : CODE_FOR_nothing;
|
502 |
|
|
rld[s_reload].secondary_p = 1;
|
503 |
|
|
|
504 |
|
|
n_reloads++;
|
505 |
|
|
|
506 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
507 |
|
|
if (! in_p && icode == CODE_FOR_nothing
|
508 |
|
|
&& SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
|
509 |
|
|
get_secondary_mem (x, mode, opnum, type);
|
510 |
|
|
#endif
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
*picode = icode;
|
514 |
|
|
return s_reload;
|
515 |
|
|
}
|
516 |
|
|
|
517 |
|
|
/* If a secondary reload is needed, return its class. If both an intermediate
|
518 |
|
|
register and a scratch register is needed, we return the class of the
|
519 |
|
|
intermediate register. */
|
520 |
|
|
enum reg_class
|
521 |
|
|
secondary_reload_class (bool in_p, enum reg_class rclass,
|
522 |
|
|
enum machine_mode mode, rtx x)
|
523 |
|
|
{
|
524 |
|
|
enum insn_code icode;
|
525 |
|
|
secondary_reload_info sri;
|
526 |
|
|
|
527 |
|
|
sri.icode = CODE_FOR_nothing;
|
528 |
|
|
sri.prev_sri = NULL;
|
529 |
|
|
rclass = targetm.secondary_reload (in_p, x, rclass, mode, &sri);
|
530 |
|
|
icode = (enum insn_code) sri.icode;
|
531 |
|
|
|
532 |
|
|
/* If there are no secondary reloads at all, we return NO_REGS.
|
533 |
|
|
If an intermediate register is needed, we return its class. */
|
534 |
|
|
if (icode == CODE_FOR_nothing || rclass != NO_REGS)
|
535 |
|
|
return rclass;
|
536 |
|
|
|
537 |
|
|
/* No intermediate register is needed, but we have a special reload
|
538 |
|
|
pattern, which we assume for now needs a scratch register. */
|
539 |
|
|
return scratch_reload_class (icode);
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
/* ICODE is the insn_code of a reload pattern. Check that it has exactly
|
543 |
|
|
three operands, verify that operand 2 is an output operand, and return
|
544 |
|
|
its register class.
|
545 |
|
|
??? We'd like to be able to handle any pattern with at least 2 operands,
|
546 |
|
|
for zero or more scratch registers, but that needs more infrastructure. */
|
547 |
|
|
enum reg_class
|
548 |
|
|
scratch_reload_class (enum insn_code icode)
|
549 |
|
|
{
|
550 |
|
|
const char *scratch_constraint;
|
551 |
|
|
char scratch_letter;
|
552 |
|
|
enum reg_class rclass;
|
553 |
|
|
|
554 |
|
|
gcc_assert (insn_data[(int) icode].n_operands == 3);
|
555 |
|
|
scratch_constraint = insn_data[(int) icode].operand[2].constraint;
|
556 |
|
|
gcc_assert (*scratch_constraint == '=');
|
557 |
|
|
scratch_constraint++;
|
558 |
|
|
if (*scratch_constraint == '&')
|
559 |
|
|
scratch_constraint++;
|
560 |
|
|
scratch_letter = *scratch_constraint;
|
561 |
|
|
if (scratch_letter == 'r')
|
562 |
|
|
return GENERAL_REGS;
|
563 |
|
|
rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
|
564 |
|
|
scratch_constraint);
|
565 |
|
|
gcc_assert (rclass != NO_REGS);
|
566 |
|
|
return rclass;
|
567 |
|
|
}
|
568 |
|
|
|
569 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
570 |
|
|
|
571 |
|
|
/* Return a memory location that will be used to copy X in mode MODE.
|
572 |
|
|
If we haven't already made a location for this mode in this insn,
|
573 |
|
|
call find_reloads_address on the location being returned. */
|
574 |
|
|
|
575 |
|
|
rtx
|
576 |
|
|
get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
|
577 |
|
|
int opnum, enum reload_type type)
|
578 |
|
|
{
|
579 |
|
|
rtx loc;
|
580 |
|
|
int mem_valid;
|
581 |
|
|
|
582 |
|
|
/* By default, if MODE is narrower than a word, widen it to a word.
|
583 |
|
|
This is required because most machines that require these memory
|
584 |
|
|
locations do not support short load and stores from all registers
|
585 |
|
|
(e.g., FP registers). */
|
586 |
|
|
|
587 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED_MODE
|
588 |
|
|
mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
|
589 |
|
|
#else
|
590 |
|
|
if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
|
591 |
|
|
mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
|
592 |
|
|
#endif
|
593 |
|
|
|
594 |
|
|
/* If we already have made a MEM for this operand in MODE, return it. */
|
595 |
|
|
if (secondary_memlocs_elim[(int) mode][opnum] != 0)
|
596 |
|
|
return secondary_memlocs_elim[(int) mode][opnum];
|
597 |
|
|
|
598 |
|
|
/* If this is the first time we've tried to get a MEM for this mode,
|
599 |
|
|
allocate a new one. `something_changed' in reload will get set
|
600 |
|
|
by noticing that the frame size has changed. */
|
601 |
|
|
|
602 |
|
|
if (secondary_memlocs[(int) mode] == 0)
|
603 |
|
|
{
|
604 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED_RTX
|
605 |
|
|
secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
|
606 |
|
|
#else
|
607 |
|
|
secondary_memlocs[(int) mode]
|
608 |
|
|
= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
|
609 |
|
|
#endif
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
/* Get a version of the address doing any eliminations needed. If that
|
613 |
|
|
didn't give us a new MEM, make a new one if it isn't valid. */
|
614 |
|
|
|
615 |
|
|
loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
|
616 |
|
|
mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
|
617 |
|
|
MEM_ADDR_SPACE (loc));
|
618 |
|
|
|
619 |
|
|
if (! mem_valid && loc == secondary_memlocs[(int) mode])
|
620 |
|
|
loc = copy_rtx (loc);
|
621 |
|
|
|
622 |
|
|
/* The only time the call below will do anything is if the stack
|
623 |
|
|
offset is too large. In that case IND_LEVELS doesn't matter, so we
|
624 |
|
|
can just pass a zero. Adjust the type to be the address of the
|
625 |
|
|
corresponding object. If the address was valid, save the eliminated
|
626 |
|
|
address. If it wasn't valid, we need to make a reload each time, so
|
627 |
|
|
don't save it. */
|
628 |
|
|
|
629 |
|
|
if (! mem_valid)
|
630 |
|
|
{
|
631 |
|
|
type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
|
632 |
|
|
: type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
|
633 |
|
|
: RELOAD_OTHER);
|
634 |
|
|
|
635 |
|
|
find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
|
636 |
|
|
opnum, type, 0, 0);
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
secondary_memlocs_elim[(int) mode][opnum] = loc;
|
640 |
|
|
if (secondary_memlocs_elim_used <= (int)mode)
|
641 |
|
|
secondary_memlocs_elim_used = (int)mode + 1;
|
642 |
|
|
return loc;
|
643 |
|
|
}
|
644 |
|
|
|
645 |
|
|
/* Clear any secondary memory locations we've made. */
|
646 |
|
|
|
647 |
|
|
void
|
648 |
|
|
clear_secondary_mem (void)
|
649 |
|
|
{
|
650 |
|
|
memset (secondary_memlocs, 0, sizeof secondary_memlocs);
|
651 |
|
|
}
|
652 |
|
|
#endif /* SECONDARY_MEMORY_NEEDED */
|
653 |
|
|
|
654 |
|
|
|
655 |
|
|
/* Find the largest class which has at least one register valid in
|
656 |
|
|
mode INNER, and which for every such register, that register number
|
657 |
|
|
plus N is also valid in OUTER (if in range) and is cheap to move
|
658 |
|
|
into REGNO. Such a class must exist. */
|
659 |
|
|
|
660 |
|
|
static enum reg_class
|
661 |
|
|
find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
|
662 |
|
|
enum machine_mode inner ATTRIBUTE_UNUSED, int n,
|
663 |
|
|
unsigned int dest_regno ATTRIBUTE_UNUSED)
|
664 |
|
|
{
|
665 |
|
|
int best_cost = -1;
|
666 |
|
|
int rclass;
|
667 |
|
|
int regno;
|
668 |
|
|
enum reg_class best_class = NO_REGS;
|
669 |
|
|
enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
|
670 |
|
|
unsigned int best_size = 0;
|
671 |
|
|
int cost;
|
672 |
|
|
|
673 |
|
|
for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
|
674 |
|
|
{
|
675 |
|
|
int bad = 0;
|
676 |
|
|
int good = 0;
|
677 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
|
678 |
|
|
if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
|
679 |
|
|
{
|
680 |
|
|
if (HARD_REGNO_MODE_OK (regno, inner))
|
681 |
|
|
{
|
682 |
|
|
good = 1;
|
683 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
|
684 |
|
|
|| ! HARD_REGNO_MODE_OK (regno + n, outer))
|
685 |
|
|
bad = 1;
|
686 |
|
|
}
|
687 |
|
|
}
|
688 |
|
|
|
689 |
|
|
if (bad || !good)
|
690 |
|
|
continue;
|
691 |
|
|
cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass, dest_class);
|
692 |
|
|
|
693 |
|
|
if ((reg_class_size[rclass] > best_size
|
694 |
|
|
&& (best_cost < 0 || best_cost >= cost))
|
695 |
|
|
|| best_cost > cost)
|
696 |
|
|
{
|
697 |
|
|
best_class = (enum reg_class) rclass;
|
698 |
|
|
best_size = reg_class_size[rclass];
|
699 |
|
|
best_cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass,
|
700 |
|
|
dest_class);
|
701 |
|
|
}
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
gcc_assert (best_size != 0);
|
705 |
|
|
|
706 |
|
|
return best_class;
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
/* Return the number of a previously made reload that can be combined with
|
710 |
|
|
a new one, or n_reloads if none of the existing reloads can be used.
|
711 |
|
|
OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
|
712 |
|
|
push_reload, they determine the kind of the new reload that we try to
|
713 |
|
|
combine. P_IN points to the corresponding value of IN, which can be
|
714 |
|
|
modified by this function.
|
715 |
|
|
DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
|
716 |
|
|
|
717 |
|
|
static int
|
718 |
|
|
find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
|
719 |
|
|
enum reload_type type, int opnum, int dont_share)
|
720 |
|
|
{
|
721 |
|
|
rtx in = *p_in;
|
722 |
|
|
int i;
|
723 |
|
|
/* We can't merge two reloads if the output of either one is
|
724 |
|
|
earlyclobbered. */
|
725 |
|
|
|
726 |
|
|
if (earlyclobber_operand_p (out))
|
727 |
|
|
return n_reloads;
|
728 |
|
|
|
729 |
|
|
/* We can use an existing reload if the class is right
|
730 |
|
|
and at least one of IN and OUT is a match
|
731 |
|
|
and the other is at worst neutral.
|
732 |
|
|
(A zero compared against anything is neutral.)
|
733 |
|
|
|
734 |
|
|
If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
|
735 |
|
|
for the same thing since that can cause us to need more reload registers
|
736 |
|
|
than we otherwise would. */
|
737 |
|
|
|
738 |
|
|
for (i = 0; i < n_reloads; i++)
|
739 |
|
|
if ((reg_class_subset_p (rclass, rld[i].rclass)
|
740 |
|
|
|| reg_class_subset_p (rld[i].rclass, rclass))
|
741 |
|
|
/* If the existing reload has a register, it must fit our class. */
|
742 |
|
|
&& (rld[i].reg_rtx == 0
|
743 |
|
|
|| TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
|
744 |
|
|
true_regnum (rld[i].reg_rtx)))
|
745 |
|
|
&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
|
746 |
|
|
&& (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
|
747 |
|
|
|| (out != 0 && MATCHES (rld[i].out, out)
|
748 |
|
|
&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
|
749 |
|
|
&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
|
750 |
|
|
&& (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
|
751 |
|
|
&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
|
752 |
|
|
return i;
|
753 |
|
|
|
754 |
|
|
/* Reloading a plain reg for input can match a reload to postincrement
|
755 |
|
|
that reg, since the postincrement's value is the right value.
|
756 |
|
|
Likewise, it can match a preincrement reload, since we regard
|
757 |
|
|
the preincrementation as happening before any ref in this insn
|
758 |
|
|
to that register. */
|
759 |
|
|
for (i = 0; i < n_reloads; i++)
|
760 |
|
|
if ((reg_class_subset_p (rclass, rld[i].rclass)
|
761 |
|
|
|| reg_class_subset_p (rld[i].rclass, rclass))
|
762 |
|
|
/* If the existing reload has a register, it must fit our
|
763 |
|
|
class. */
|
764 |
|
|
&& (rld[i].reg_rtx == 0
|
765 |
|
|
|| TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
|
766 |
|
|
true_regnum (rld[i].reg_rtx)))
|
767 |
|
|
&& out == 0 && rld[i].out == 0 && rld[i].in != 0
|
768 |
|
|
&& ((REG_P (in)
|
769 |
|
|
&& GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
|
770 |
|
|
&& MATCHES (XEXP (rld[i].in, 0), in))
|
771 |
|
|
|| (REG_P (rld[i].in)
|
772 |
|
|
&& GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
|
773 |
|
|
&& MATCHES (XEXP (in, 0), rld[i].in)))
|
774 |
|
|
&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
|
775 |
|
|
&& (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
|
776 |
|
|
&& MERGABLE_RELOADS (type, rld[i].when_needed,
|
777 |
|
|
opnum, rld[i].opnum))
|
778 |
|
|
{
|
779 |
|
|
/* Make sure reload_in ultimately has the increment,
|
780 |
|
|
not the plain register. */
|
781 |
|
|
if (REG_P (in))
|
782 |
|
|
*p_in = rld[i].in;
|
783 |
|
|
return i;
|
784 |
|
|
}
|
785 |
|
|
return n_reloads;
|
786 |
|
|
}
|
787 |
|
|
|
788 |
|
|
/* Return nonzero if X is a SUBREG which will require reloading of its
|
789 |
|
|
SUBREG_REG expression. */
|
790 |
|
|
|
791 |
|
|
static int
|
792 |
|
|
reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
|
793 |
|
|
{
|
794 |
|
|
rtx inner;
|
795 |
|
|
|
796 |
|
|
/* Only SUBREGs are problematical. */
|
797 |
|
|
if (GET_CODE (x) != SUBREG)
|
798 |
|
|
return 0;
|
799 |
|
|
|
800 |
|
|
inner = SUBREG_REG (x);
|
801 |
|
|
|
802 |
|
|
/* If INNER is a constant or PLUS, then INNER must be reloaded. */
|
803 |
|
|
if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
|
804 |
|
|
return 1;
|
805 |
|
|
|
806 |
|
|
/* If INNER is not a hard register, then INNER will not need to
|
807 |
|
|
be reloaded. */
|
808 |
|
|
if (!REG_P (inner)
|
809 |
|
|
|| REGNO (inner) >= FIRST_PSEUDO_REGISTER)
|
810 |
|
|
return 0;
|
811 |
|
|
|
812 |
|
|
/* If INNER is not ok for MODE, then INNER will need reloading. */
|
813 |
|
|
if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
|
814 |
|
|
return 1;
|
815 |
|
|
|
816 |
|
|
/* If the outer part is a word or smaller, INNER larger than a
|
817 |
|
|
word and the number of regs for INNER is not the same as the
|
818 |
|
|
number of words in INNER, then INNER will need reloading. */
|
819 |
|
|
return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
|
820 |
|
|
&& output
|
821 |
|
|
&& GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
|
822 |
|
|
&& ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
|
823 |
|
|
!= (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
/* Return nonzero if IN can be reloaded into REGNO with mode MODE without
|
827 |
|
|
requiring an extra reload register. The caller has already found that
|
828 |
|
|
IN contains some reference to REGNO, so check that we can produce the
|
829 |
|
|
new value in a single step. E.g. if we have
|
830 |
|
|
(set (reg r13) (plus (reg r13) (const int 1))), and there is an
|
831 |
|
|
instruction that adds one to a register, this should succeed.
|
832 |
|
|
However, if we have something like
|
833 |
|
|
(set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
|
834 |
|
|
needs to be loaded into a register first, we need a separate reload
|
835 |
|
|
register.
|
836 |
|
|
Such PLUS reloads are generated by find_reload_address_part.
|
837 |
|
|
The out-of-range PLUS expressions are usually introduced in the instruction
|
838 |
|
|
patterns by register elimination and substituting pseudos without a home
|
839 |
|
|
by their function-invariant equivalences. */
|
840 |
|
|
static int
|
841 |
|
|
can_reload_into (rtx in, int regno, enum machine_mode mode)
|
842 |
|
|
{
|
843 |
|
|
rtx dst, test_insn;
|
844 |
|
|
int r = 0;
|
845 |
|
|
struct recog_data save_recog_data;
|
846 |
|
|
|
847 |
|
|
/* For matching constraints, we often get notional input reloads where
|
848 |
|
|
we want to use the original register as the reload register. I.e.
|
849 |
|
|
technically this is a non-optional input-output reload, but IN is
|
850 |
|
|
already a valid register, and has been chosen as the reload register.
|
851 |
|
|
Speed this up, since it trivially works. */
|
852 |
|
|
if (REG_P (in))
|
853 |
|
|
return 1;
|
854 |
|
|
|
855 |
|
|
/* To test MEMs properly, we'd have to take into account all the reloads
|
856 |
|
|
that are already scheduled, which can become quite complicated.
|
857 |
|
|
And since we've already handled address reloads for this MEM, it
|
858 |
|
|
should always succeed anyway. */
|
859 |
|
|
if (MEM_P (in))
|
860 |
|
|
return 1;
|
861 |
|
|
|
862 |
|
|
/* If we can make a simple SET insn that does the job, everything should
|
863 |
|
|
be fine. */
|
864 |
|
|
dst = gen_rtx_REG (mode, regno);
|
865 |
|
|
test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
|
866 |
|
|
save_recog_data = recog_data;
|
867 |
|
|
if (recog_memoized (test_insn) >= 0)
|
868 |
|
|
{
|
869 |
|
|
extract_insn (test_insn);
|
870 |
|
|
r = constrain_operands (1);
|
871 |
|
|
}
|
872 |
|
|
recog_data = save_recog_data;
|
873 |
|
|
return r;
|
874 |
|
|
}
|
875 |
|
|
|
876 |
|
|
/* Record one reload that needs to be performed.
|
877 |
|
|
IN is an rtx saying where the data are to be found before this instruction.
|
878 |
|
|
OUT says where they must be stored after the instruction.
|
879 |
|
|
(IN is zero for data not read, and OUT is zero for data not written.)
|
880 |
|
|
INLOC and OUTLOC point to the places in the instructions where
|
881 |
|
|
IN and OUT were found.
|
882 |
|
|
If IN and OUT are both nonzero, it means the same register must be used
|
883 |
|
|
to reload both IN and OUT.
|
884 |
|
|
|
885 |
|
|
RCLASS is a register class required for the reloaded data.
|
886 |
|
|
INMODE is the machine mode that the instruction requires
|
887 |
|
|
for the reg that replaces IN and OUTMODE is likewise for OUT.
|
888 |
|
|
|
889 |
|
|
If IN is zero, then OUT's location and mode should be passed as
|
890 |
|
|
INLOC and INMODE.
|
891 |
|
|
|
892 |
|
|
STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
|
893 |
|
|
|
894 |
|
|
OPTIONAL nonzero means this reload does not need to be performed:
|
895 |
|
|
it can be discarded if that is more convenient.
|
896 |
|
|
|
897 |
|
|
OPNUM and TYPE say what the purpose of this reload is.
|
898 |
|
|
|
899 |
|
|
The return value is the reload-number for this reload.
|
900 |
|
|
|
901 |
|
|
If both IN and OUT are nonzero, in some rare cases we might
|
902 |
|
|
want to make two separate reloads. (Actually we never do this now.)
|
903 |
|
|
Therefore, the reload-number for OUT is stored in
|
904 |
|
|
output_reloadnum when we return; the return value applies to IN.
|
905 |
|
|
Usually (presently always), when IN and OUT are nonzero,
|
906 |
|
|
the two reload-numbers are equal, but the caller should be careful to
|
907 |
|
|
distinguish them. */
|
908 |
|
|
|
909 |
|
|
int
|
910 |
|
|
push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
|
911 |
|
|
enum reg_class rclass, enum machine_mode inmode,
|
912 |
|
|
enum machine_mode outmode, int strict_low, int optional,
|
913 |
|
|
int opnum, enum reload_type type)
|
914 |
|
|
{
|
915 |
|
|
int i;
|
916 |
|
|
int dont_share = 0;
|
917 |
|
|
int dont_remove_subreg = 0;
|
918 |
|
|
rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
|
919 |
|
|
int secondary_in_reload = -1, secondary_out_reload = -1;
|
920 |
|
|
enum insn_code secondary_in_icode = CODE_FOR_nothing;
|
921 |
|
|
enum insn_code secondary_out_icode = CODE_FOR_nothing;
|
922 |
|
|
|
923 |
|
|
/* INMODE and/or OUTMODE could be VOIDmode if no mode
|
924 |
|
|
has been specified for the operand. In that case,
|
925 |
|
|
use the operand's mode as the mode to reload. */
|
926 |
|
|
if (inmode == VOIDmode && in != 0)
|
927 |
|
|
inmode = GET_MODE (in);
|
928 |
|
|
if (outmode == VOIDmode && out != 0)
|
929 |
|
|
outmode = GET_MODE (out);
|
930 |
|
|
|
931 |
|
|
/* If find_reloads and friends until now missed to replace a pseudo
|
932 |
|
|
with a constant of reg_equiv_constant something went wrong
|
933 |
|
|
beforehand.
|
934 |
|
|
Note that it can't simply be done here if we missed it earlier
|
935 |
|
|
since the constant might need to be pushed into the literal pool
|
936 |
|
|
and the resulting memref would probably need further
|
937 |
|
|
reloading. */
|
938 |
|
|
if (in != 0 && REG_P (in))
|
939 |
|
|
{
|
940 |
|
|
int regno = REGNO (in);
|
941 |
|
|
|
942 |
|
|
gcc_assert (regno < FIRST_PSEUDO_REGISTER
|
943 |
|
|
|| reg_renumber[regno] >= 0
|
944 |
|
|
|| reg_equiv_constant[regno] == NULL_RTX);
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
/* reg_equiv_constant only contains constants which are obviously
|
948 |
|
|
not appropriate as destination. So if we would need to replace
|
949 |
|
|
the destination pseudo with a constant we are in real
|
950 |
|
|
trouble. */
|
951 |
|
|
if (out != 0 && REG_P (out))
|
952 |
|
|
{
|
953 |
|
|
int regno = REGNO (out);
|
954 |
|
|
|
955 |
|
|
gcc_assert (regno < FIRST_PSEUDO_REGISTER
|
956 |
|
|
|| reg_renumber[regno] >= 0
|
957 |
|
|
|| reg_equiv_constant[regno] == NULL_RTX);
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
/* If we have a read-write operand with an address side-effect,
|
961 |
|
|
change either IN or OUT so the side-effect happens only once. */
|
962 |
|
|
if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
|
963 |
|
|
switch (GET_CODE (XEXP (in, 0)))
|
964 |
|
|
{
|
965 |
|
|
case POST_INC: case POST_DEC: case POST_MODIFY:
|
966 |
|
|
in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
|
967 |
|
|
break;
|
968 |
|
|
|
969 |
|
|
case PRE_INC: case PRE_DEC: case PRE_MODIFY:
|
970 |
|
|
out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
|
971 |
|
|
break;
|
972 |
|
|
|
973 |
|
|
default:
|
974 |
|
|
break;
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
/* If we are reloading a (SUBREG constant ...), really reload just the
|
978 |
|
|
inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
|
979 |
|
|
If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
|
980 |
|
|
a pseudo and hence will become a MEM) with M1 wider than M2 and the
|
981 |
|
|
register is a pseudo, also reload the inside expression.
|
982 |
|
|
For machines that extend byte loads, do this for any SUBREG of a pseudo
|
983 |
|
|
where both M1 and M2 are a word or smaller, M1 is wider than M2, and
|
984 |
|
|
M2 is an integral mode that gets extended when loaded.
|
985 |
|
|
Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
|
986 |
|
|
either M1 is not valid for R or M2 is wider than a word but we only
|
987 |
|
|
need one word to store an M2-sized quantity in R.
|
988 |
|
|
(However, if OUT is nonzero, we need to reload the reg *and*
|
989 |
|
|
the subreg, so do nothing here, and let following statement handle it.)
|
990 |
|
|
|
991 |
|
|
Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
|
992 |
|
|
we can't handle it here because CONST_INT does not indicate a mode.
|
993 |
|
|
|
994 |
|
|
Similarly, we must reload the inside expression if we have a
|
995 |
|
|
STRICT_LOW_PART (presumably, in == out in this case).
|
996 |
|
|
|
997 |
|
|
Also reload the inner expression if it does not require a secondary
|
998 |
|
|
reload but the SUBREG does.
|
999 |
|
|
|
1000 |
|
|
Finally, reload the inner expression if it is a register that is in
|
1001 |
|
|
the class whose registers cannot be referenced in a different size
|
1002 |
|
|
and M1 is not the same size as M2. If subreg_lowpart_p is false, we
|
1003 |
|
|
cannot reload just the inside since we might end up with the wrong
|
1004 |
|
|
register class. But if it is inside a STRICT_LOW_PART, we have
|
1005 |
|
|
no choice, so we hope we do get the right register class there. */
|
1006 |
|
|
|
1007 |
|
|
if (in != 0 && GET_CODE (in) == SUBREG
|
1008 |
|
|
&& (subreg_lowpart_p (in) || strict_low)
|
1009 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1010 |
|
|
&& !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
|
1011 |
|
|
#endif
|
1012 |
|
|
&& (CONSTANT_P (SUBREG_REG (in))
|
1013 |
|
|
|| GET_CODE (SUBREG_REG (in)) == PLUS
|
1014 |
|
|
|| strict_low
|
1015 |
|
|
|| (((REG_P (SUBREG_REG (in))
|
1016 |
|
|
&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
|
1017 |
|
|
|| MEM_P (SUBREG_REG (in)))
|
1018 |
|
|
&& ((GET_MODE_SIZE (inmode)
|
1019 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
|
1020 |
|
|
#ifdef LOAD_EXTEND_OP
|
1021 |
|
|
|| (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
|
1022 |
|
|
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
|
1023 |
|
|
<= UNITS_PER_WORD)
|
1024 |
|
|
&& (GET_MODE_SIZE (inmode)
|
1025 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
|
1026 |
|
|
&& INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
|
1027 |
|
|
&& LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
|
1028 |
|
|
#endif
|
1029 |
|
|
#ifdef WORD_REGISTER_OPERATIONS
|
1030 |
|
|
|| ((GET_MODE_SIZE (inmode)
|
1031 |
|
|
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
|
1032 |
|
|
&& ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
|
1033 |
|
|
((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
|
1034 |
|
|
/ UNITS_PER_WORD)))
|
1035 |
|
|
#endif
|
1036 |
|
|
))
|
1037 |
|
|
|| (REG_P (SUBREG_REG (in))
|
1038 |
|
|
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
|
1039 |
|
|
/* The case where out is nonzero
|
1040 |
|
|
is handled differently in the following statement. */
|
1041 |
|
|
&& (out == 0 || subreg_lowpart_p (in))
|
1042 |
|
|
&& ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
|
1043 |
|
|
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
|
1044 |
|
|
> UNITS_PER_WORD)
|
1045 |
|
|
&& ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
|
1046 |
|
|
/ UNITS_PER_WORD)
|
1047 |
|
|
!= (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
|
1048 |
|
|
[GET_MODE (SUBREG_REG (in))]))
|
1049 |
|
|
|| ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
|
1050 |
|
|
|| (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
|
1051 |
|
|
&& (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
|
1052 |
|
|
SUBREG_REG (in))
|
1053 |
|
|
== NO_REGS))
|
1054 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1055 |
|
|
|| (REG_P (SUBREG_REG (in))
|
1056 |
|
|
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
|
1057 |
|
|
&& REG_CANNOT_CHANGE_MODE_P
|
1058 |
|
|
(REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
|
1059 |
|
|
#endif
|
1060 |
|
|
))
|
1061 |
|
|
{
|
1062 |
|
|
in_subreg_loc = inloc;
|
1063 |
|
|
inloc = &SUBREG_REG (in);
|
1064 |
|
|
in = *inloc;
|
1065 |
|
|
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
|
1066 |
|
|
if (MEM_P (in))
|
1067 |
|
|
/* This is supposed to happen only for paradoxical subregs made by
|
1068 |
|
|
combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
|
1069 |
|
|
gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
|
1070 |
|
|
#endif
|
1071 |
|
|
inmode = GET_MODE (in);
|
1072 |
|
|
}
|
1073 |
|
|
|
1074 |
|
|
/* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
|
1075 |
|
|
either M1 is not valid for R or M2 is wider than a word but we only
|
1076 |
|
|
need one word to store an M2-sized quantity in R.
|
1077 |
|
|
|
1078 |
|
|
However, we must reload the inner reg *as well as* the subreg in
|
1079 |
|
|
that case. */
|
1080 |
|
|
|
1081 |
|
|
/* Similar issue for (SUBREG constant ...) if it was not handled by the
|
1082 |
|
|
code above. This can happen if SUBREG_BYTE != 0. */
|
1083 |
|
|
|
1084 |
|
|
if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
|
1085 |
|
|
{
|
1086 |
|
|
enum reg_class in_class = rclass;
|
1087 |
|
|
|
1088 |
|
|
if (REG_P (SUBREG_REG (in)))
|
1089 |
|
|
in_class
|
1090 |
|
|
= find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
|
1091 |
|
|
subreg_regno_offset (REGNO (SUBREG_REG (in)),
|
1092 |
|
|
GET_MODE (SUBREG_REG (in)),
|
1093 |
|
|
SUBREG_BYTE (in),
|
1094 |
|
|
GET_MODE (in)),
|
1095 |
|
|
REGNO (SUBREG_REG (in)));
|
1096 |
|
|
|
1097 |
|
|
/* This relies on the fact that emit_reload_insns outputs the
|
1098 |
|
|
instructions for input reloads of type RELOAD_OTHER in the same
|
1099 |
|
|
order as the reloads. Thus if the outer reload is also of type
|
1100 |
|
|
RELOAD_OTHER, we are guaranteed that this inner reload will be
|
1101 |
|
|
output before the outer reload. */
|
1102 |
|
|
push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
|
1103 |
|
|
in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
|
1104 |
|
|
dont_remove_subreg = 1;
|
1105 |
|
|
}
|
1106 |
|
|
|
1107 |
|
|
/* Similarly for paradoxical and problematical SUBREGs on the output.
|
1108 |
|
|
Note that there is no reason we need worry about the previous value
|
1109 |
|
|
of SUBREG_REG (out); even if wider than out,
|
1110 |
|
|
storing in a subreg is entitled to clobber it all
|
1111 |
|
|
(except in the case of STRICT_LOW_PART,
|
1112 |
|
|
and in that case the constraint should label it input-output.) */
|
1113 |
|
|
if (out != 0 && GET_CODE (out) == SUBREG
|
1114 |
|
|
&& (subreg_lowpart_p (out) || strict_low)
|
1115 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1116 |
|
|
&& !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
|
1117 |
|
|
#endif
|
1118 |
|
|
&& (CONSTANT_P (SUBREG_REG (out))
|
1119 |
|
|
|| strict_low
|
1120 |
|
|
|| (((REG_P (SUBREG_REG (out))
|
1121 |
|
|
&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
|
1122 |
|
|
|| MEM_P (SUBREG_REG (out)))
|
1123 |
|
|
&& ((GET_MODE_SIZE (outmode)
|
1124 |
|
|
> GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
|
1125 |
|
|
#ifdef WORD_REGISTER_OPERATIONS
|
1126 |
|
|
|| ((GET_MODE_SIZE (outmode)
|
1127 |
|
|
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
|
1128 |
|
|
&& ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
|
1129 |
|
|
((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
|
1130 |
|
|
/ UNITS_PER_WORD)))
|
1131 |
|
|
#endif
|
1132 |
|
|
))
|
1133 |
|
|
|| (REG_P (SUBREG_REG (out))
|
1134 |
|
|
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
|
1135 |
|
|
&& ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
|
1136 |
|
|
&& (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
|
1137 |
|
|
> UNITS_PER_WORD)
|
1138 |
|
|
&& ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
|
1139 |
|
|
/ UNITS_PER_WORD)
|
1140 |
|
|
!= (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
|
1141 |
|
|
[GET_MODE (SUBREG_REG (out))]))
|
1142 |
|
|
|| ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
|
1143 |
|
|
|| (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
|
1144 |
|
|
&& (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
|
1145 |
|
|
SUBREG_REG (out))
|
1146 |
|
|
== NO_REGS))
|
1147 |
|
|
#ifdef CANNOT_CHANGE_MODE_CLASS
|
1148 |
|
|
|| (REG_P (SUBREG_REG (out))
|
1149 |
|
|
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
|
1150 |
|
|
&& REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
|
1151 |
|
|
GET_MODE (SUBREG_REG (out)),
|
1152 |
|
|
outmode))
|
1153 |
|
|
#endif
|
1154 |
|
|
))
|
1155 |
|
|
{
|
1156 |
|
|
out_subreg_loc = outloc;
|
1157 |
|
|
outloc = &SUBREG_REG (out);
|
1158 |
|
|
out = *outloc;
|
1159 |
|
|
#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
|
1160 |
|
|
gcc_assert (!MEM_P (out)
|
1161 |
|
|
|| GET_MODE_SIZE (GET_MODE (out))
|
1162 |
|
|
<= GET_MODE_SIZE (outmode));
|
1163 |
|
|
#endif
|
1164 |
|
|
outmode = GET_MODE (out);
|
1165 |
|
|
}
|
1166 |
|
|
|
1167 |
|
|
/* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
|
1168 |
|
|
either M1 is not valid for R or M2 is wider than a word but we only
|
1169 |
|
|
need one word to store an M2-sized quantity in R.
|
1170 |
|
|
|
1171 |
|
|
However, we must reload the inner reg *as well as* the subreg in
|
1172 |
|
|
that case. In this case, the inner reg is an in-out reload. */
|
1173 |
|
|
|
1174 |
|
|
if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
|
1175 |
|
|
{
|
1176 |
|
|
/* This relies on the fact that emit_reload_insns outputs the
|
1177 |
|
|
instructions for output reloads of type RELOAD_OTHER in reverse
|
1178 |
|
|
order of the reloads. Thus if the outer reload is also of type
|
1179 |
|
|
RELOAD_OTHER, we are guaranteed that this inner reload will be
|
1180 |
|
|
output after the outer reload. */
|
1181 |
|
|
dont_remove_subreg = 1;
|
1182 |
|
|
push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
|
1183 |
|
|
&SUBREG_REG (out),
|
1184 |
|
|
find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
|
1185 |
|
|
subreg_regno_offset (REGNO (SUBREG_REG (out)),
|
1186 |
|
|
GET_MODE (SUBREG_REG (out)),
|
1187 |
|
|
SUBREG_BYTE (out),
|
1188 |
|
|
GET_MODE (out)),
|
1189 |
|
|
REGNO (SUBREG_REG (out))),
|
1190 |
|
|
VOIDmode, VOIDmode, 0, 0,
|
1191 |
|
|
opnum, RELOAD_OTHER);
|
1192 |
|
|
}
|
1193 |
|
|
|
1194 |
|
|
/* If IN appears in OUT, we can't share any input-only reload for IN. */
|
1195 |
|
|
if (in != 0 && out != 0 && MEM_P (out)
|
1196 |
|
|
&& (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
|
1197 |
|
|
&& reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
|
1198 |
|
|
dont_share = 1;
|
1199 |
|
|
|
1200 |
|
|
/* If IN is a SUBREG of a hard register, make a new REG. This
|
1201 |
|
|
simplifies some of the cases below. */
|
1202 |
|
|
|
1203 |
|
|
if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
|
1204 |
|
|
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
|
1205 |
|
|
&& ! dont_remove_subreg)
|
1206 |
|
|
in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
|
1207 |
|
|
|
1208 |
|
|
/* Similarly for OUT. */
|
1209 |
|
|
if (out != 0 && GET_CODE (out) == SUBREG
|
1210 |
|
|
&& REG_P (SUBREG_REG (out))
|
1211 |
|
|
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
|
1212 |
|
|
&& ! dont_remove_subreg)
|
1213 |
|
|
out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
|
1214 |
|
|
|
1215 |
|
|
/* Narrow down the class of register wanted if that is
|
1216 |
|
|
desirable on this machine for efficiency. */
|
1217 |
|
|
{
|
1218 |
|
|
enum reg_class preferred_class = rclass;
|
1219 |
|
|
|
1220 |
|
|
if (in != 0)
|
1221 |
|
|
preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
|
1222 |
|
|
|
1223 |
|
|
/* Output reloads may need analogous treatment, different in detail. */
|
1224 |
|
|
#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
|
1225 |
|
|
if (out != 0)
|
1226 |
|
|
preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
|
1227 |
|
|
#endif
|
1228 |
|
|
|
1229 |
|
|
/* Discard what the target said if we cannot do it. */
|
1230 |
|
|
if (preferred_class != NO_REGS
|
1231 |
|
|
|| (optional && type == RELOAD_FOR_OUTPUT))
|
1232 |
|
|
rclass = preferred_class;
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
/* Make sure we use a class that can handle the actual pseudo
|
1236 |
|
|
inside any subreg. For example, on the 386, QImode regs
|
1237 |
|
|
can appear within SImode subregs. Although GENERAL_REGS
|
1238 |
|
|
can handle SImode, QImode needs a smaller class. */
|
1239 |
|
|
#ifdef LIMIT_RELOAD_CLASS
|
1240 |
|
|
if (in_subreg_loc)
|
1241 |
|
|
rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
|
1242 |
|
|
else if (in != 0 && GET_CODE (in) == SUBREG)
|
1243 |
|
|
rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
|
1244 |
|
|
|
1245 |
|
|
if (out_subreg_loc)
|
1246 |
|
|
rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
|
1247 |
|
|
if (out != 0 && GET_CODE (out) == SUBREG)
|
1248 |
|
|
rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
|
1249 |
|
|
#endif
|
1250 |
|
|
|
1251 |
|
|
/* Verify that this class is at least possible for the mode that
|
1252 |
|
|
is specified. */
|
1253 |
|
|
if (this_insn_is_asm)
|
1254 |
|
|
{
|
1255 |
|
|
enum machine_mode mode;
|
1256 |
|
|
if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
|
1257 |
|
|
mode = inmode;
|
1258 |
|
|
else
|
1259 |
|
|
mode = outmode;
|
1260 |
|
|
if (mode == VOIDmode)
|
1261 |
|
|
{
|
1262 |
|
|
error_for_asm (this_insn, "cannot reload integer constant "
|
1263 |
|
|
"operand in %<asm%>");
|
1264 |
|
|
mode = word_mode;
|
1265 |
|
|
if (in != 0)
|
1266 |
|
|
inmode = word_mode;
|
1267 |
|
|
if (out != 0)
|
1268 |
|
|
outmode = word_mode;
|
1269 |
|
|
}
|
1270 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
1271 |
|
|
if (HARD_REGNO_MODE_OK (i, mode)
|
1272 |
|
|
&& in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
|
1273 |
|
|
break;
|
1274 |
|
|
if (i == FIRST_PSEUDO_REGISTER)
|
1275 |
|
|
{
|
1276 |
|
|
error_for_asm (this_insn, "impossible register constraint "
|
1277 |
|
|
"in %<asm%>");
|
1278 |
|
|
/* Avoid further trouble with this insn. */
|
1279 |
|
|
PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
|
1280 |
|
|
/* We used to continue here setting class to ALL_REGS, but it triggers
|
1281 |
|
|
sanity check on i386 for:
|
1282 |
|
|
void foo(long double d)
|
1283 |
|
|
{
|
1284 |
|
|
asm("" :: "a" (d));
|
1285 |
|
|
}
|
1286 |
|
|
Returning zero here ought to be safe as we take care in
|
1287 |
|
|
find_reloads to not process the reloads when instruction was
|
1288 |
|
|
replaced by USE. */
|
1289 |
|
|
|
1290 |
|
|
return 0;
|
1291 |
|
|
}
|
1292 |
|
|
}
|
1293 |
|
|
|
1294 |
|
|
/* Optional output reloads are always OK even if we have no register class,
|
1295 |
|
|
since the function of these reloads is only to have spill_reg_store etc.
|
1296 |
|
|
set, so that the storing insn can be deleted later. */
|
1297 |
|
|
gcc_assert (rclass != NO_REGS
|
1298 |
|
|
|| (optional != 0 && type == RELOAD_FOR_OUTPUT));
|
1299 |
|
|
|
1300 |
|
|
i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
|
1301 |
|
|
|
1302 |
|
|
if (i == n_reloads)
|
1303 |
|
|
{
|
1304 |
|
|
/* See if we need a secondary reload register to move between CLASS
|
1305 |
|
|
and IN or CLASS and OUT. Get the icode and push any required reloads
|
1306 |
|
|
needed for each of them if so. */
|
1307 |
|
|
|
1308 |
|
|
if (in != 0)
|
1309 |
|
|
secondary_in_reload
|
1310 |
|
|
= push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
|
1311 |
|
|
&secondary_in_icode, NULL);
|
1312 |
|
|
if (out != 0 && GET_CODE (out) != SCRATCH)
|
1313 |
|
|
secondary_out_reload
|
1314 |
|
|
= push_secondary_reload (0, out, opnum, optional, rclass, outmode,
|
1315 |
|
|
type, &secondary_out_icode, NULL);
|
1316 |
|
|
|
1317 |
|
|
/* We found no existing reload suitable for re-use.
|
1318 |
|
|
So add an additional reload. */
|
1319 |
|
|
|
1320 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
1321 |
|
|
/* If a memory location is needed for the copy, make one. */
|
1322 |
|
|
if (in != 0
|
1323 |
|
|
&& (REG_P (in)
|
1324 |
|
|
|| (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
|
1325 |
|
|
&& reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
|
1326 |
|
|
&& SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
|
1327 |
|
|
rclass, inmode))
|
1328 |
|
|
get_secondary_mem (in, inmode, opnum, type);
|
1329 |
|
|
#endif
|
1330 |
|
|
|
1331 |
|
|
i = n_reloads;
|
1332 |
|
|
rld[i].in = in;
|
1333 |
|
|
rld[i].out = out;
|
1334 |
|
|
rld[i].rclass = rclass;
|
1335 |
|
|
rld[i].inmode = inmode;
|
1336 |
|
|
rld[i].outmode = outmode;
|
1337 |
|
|
rld[i].reg_rtx = 0;
|
1338 |
|
|
rld[i].optional = optional;
|
1339 |
|
|
rld[i].inc = 0;
|
1340 |
|
|
rld[i].nocombine = 0;
|
1341 |
|
|
rld[i].in_reg = inloc ? *inloc : 0;
|
1342 |
|
|
rld[i].out_reg = outloc ? *outloc : 0;
|
1343 |
|
|
rld[i].opnum = opnum;
|
1344 |
|
|
rld[i].when_needed = type;
|
1345 |
|
|
rld[i].secondary_in_reload = secondary_in_reload;
|
1346 |
|
|
rld[i].secondary_out_reload = secondary_out_reload;
|
1347 |
|
|
rld[i].secondary_in_icode = secondary_in_icode;
|
1348 |
|
|
rld[i].secondary_out_icode = secondary_out_icode;
|
1349 |
|
|
rld[i].secondary_p = 0;
|
1350 |
|
|
|
1351 |
|
|
n_reloads++;
|
1352 |
|
|
|
1353 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
1354 |
|
|
if (out != 0
|
1355 |
|
|
&& (REG_P (out)
|
1356 |
|
|
|| (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
|
1357 |
|
|
&& reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
|
1358 |
|
|
&& SECONDARY_MEMORY_NEEDED (rclass,
|
1359 |
|
|
REGNO_REG_CLASS (reg_or_subregno (out)),
|
1360 |
|
|
outmode))
|
1361 |
|
|
get_secondary_mem (out, outmode, opnum, type);
|
1362 |
|
|
#endif
|
1363 |
|
|
}
|
1364 |
|
|
else
|
1365 |
|
|
{
|
1366 |
|
|
/* We are reusing an existing reload,
|
1367 |
|
|
but we may have additional information for it.
|
1368 |
|
|
For example, we may now have both IN and OUT
|
1369 |
|
|
while the old one may have just one of them. */
|
1370 |
|
|
|
1371 |
|
|
/* The modes can be different. If they are, we want to reload in
|
1372 |
|
|
the larger mode, so that the value is valid for both modes. */
|
1373 |
|
|
if (inmode != VOIDmode
|
1374 |
|
|
&& GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
|
1375 |
|
|
rld[i].inmode = inmode;
|
1376 |
|
|
if (outmode != VOIDmode
|
1377 |
|
|
&& GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
|
1378 |
|
|
rld[i].outmode = outmode;
|
1379 |
|
|
if (in != 0)
|
1380 |
|
|
{
|
1381 |
|
|
rtx in_reg = inloc ? *inloc : 0;
|
1382 |
|
|
/* If we merge reloads for two distinct rtl expressions that
|
1383 |
|
|
are identical in content, there might be duplicate address
|
1384 |
|
|
reloads. Remove the extra set now, so that if we later find
|
1385 |
|
|
that we can inherit this reload, we can get rid of the
|
1386 |
|
|
address reloads altogether.
|
1387 |
|
|
|
1388 |
|
|
Do not do this if both reloads are optional since the result
|
1389 |
|
|
would be an optional reload which could potentially leave
|
1390 |
|
|
unresolved address replacements.
|
1391 |
|
|
|
1392 |
|
|
It is not sufficient to call transfer_replacements since
|
1393 |
|
|
choose_reload_regs will remove the replacements for address
|
1394 |
|
|
reloads of inherited reloads which results in the same
|
1395 |
|
|
problem. */
|
1396 |
|
|
if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
|
1397 |
|
|
&& ! (rld[i].optional && optional))
|
1398 |
|
|
{
|
1399 |
|
|
/* We must keep the address reload with the lower operand
|
1400 |
|
|
number alive. */
|
1401 |
|
|
if (opnum > rld[i].opnum)
|
1402 |
|
|
{
|
1403 |
|
|
remove_address_replacements (in);
|
1404 |
|
|
in = rld[i].in;
|
1405 |
|
|
in_reg = rld[i].in_reg;
|
1406 |
|
|
}
|
1407 |
|
|
else
|
1408 |
|
|
remove_address_replacements (rld[i].in);
|
1409 |
|
|
}
|
1410 |
|
|
/* When emitting reloads we don't necessarily look at the in-
|
1411 |
|
|
and outmode, but also directly at the operands (in and out).
|
1412 |
|
|
So we can't simply overwrite them with whatever we have found
|
1413 |
|
|
for this (to-be-merged) reload, we have to "merge" that too.
|
1414 |
|
|
Reusing another reload already verified that we deal with the
|
1415 |
|
|
same operands, just possibly in different modes. So we
|
1416 |
|
|
overwrite the operands only when the new mode is larger.
|
1417 |
|
|
See also PR33613. */
|
1418 |
|
|
if (!rld[i].in
|
1419 |
|
|
|| GET_MODE_SIZE (GET_MODE (in))
|
1420 |
|
|
> GET_MODE_SIZE (GET_MODE (rld[i].in)))
|
1421 |
|
|
rld[i].in = in;
|
1422 |
|
|
if (!rld[i].in_reg
|
1423 |
|
|
|| (in_reg
|
1424 |
|
|
&& GET_MODE_SIZE (GET_MODE (in_reg))
|
1425 |
|
|
> GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
|
1426 |
|
|
rld[i].in_reg = in_reg;
|
1427 |
|
|
}
|
1428 |
|
|
if (out != 0)
|
1429 |
|
|
{
|
1430 |
|
|
if (!rld[i].out
|
1431 |
|
|
|| (out
|
1432 |
|
|
&& GET_MODE_SIZE (GET_MODE (out))
|
1433 |
|
|
> GET_MODE_SIZE (GET_MODE (rld[i].out))))
|
1434 |
|
|
rld[i].out = out;
|
1435 |
|
|
if (outloc
|
1436 |
|
|
&& (!rld[i].out_reg
|
1437 |
|
|
|| GET_MODE_SIZE (GET_MODE (*outloc))
|
1438 |
|
|
> GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
|
1439 |
|
|
rld[i].out_reg = *outloc;
|
1440 |
|
|
}
|
1441 |
|
|
if (reg_class_subset_p (rclass, rld[i].rclass))
|
1442 |
|
|
rld[i].rclass = rclass;
|
1443 |
|
|
rld[i].optional &= optional;
|
1444 |
|
|
if (MERGE_TO_OTHER (type, rld[i].when_needed,
|
1445 |
|
|
opnum, rld[i].opnum))
|
1446 |
|
|
rld[i].when_needed = RELOAD_OTHER;
|
1447 |
|
|
rld[i].opnum = MIN (rld[i].opnum, opnum);
|
1448 |
|
|
}
|
1449 |
|
|
|
1450 |
|
|
/* If the ostensible rtx being reloaded differs from the rtx found
|
1451 |
|
|
in the location to substitute, this reload is not safe to combine
|
1452 |
|
|
because we cannot reliably tell whether it appears in the insn. */
|
1453 |
|
|
|
1454 |
|
|
if (in != 0 && in != *inloc)
|
1455 |
|
|
rld[i].nocombine = 1;
|
1456 |
|
|
|
1457 |
|
|
#if 0
|
1458 |
|
|
/* This was replaced by changes in find_reloads_address_1 and the new
|
1459 |
|
|
function inc_for_reload, which go with a new meaning of reload_inc. */
|
1460 |
|
|
|
1461 |
|
|
/* If this is an IN/OUT reload in an insn that sets the CC,
|
1462 |
|
|
it must be for an autoincrement. It doesn't work to store
|
1463 |
|
|
the incremented value after the insn because that would clobber the CC.
|
1464 |
|
|
So we must do the increment of the value reloaded from,
|
1465 |
|
|
increment it, store it back, then decrement again. */
|
1466 |
|
|
if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
|
1467 |
|
|
{
|
1468 |
|
|
out = 0;
|
1469 |
|
|
rld[i].out = 0;
|
1470 |
|
|
rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
|
1471 |
|
|
/* If we did not find a nonzero amount-to-increment-by,
|
1472 |
|
|
that contradicts the belief that IN is being incremented
|
1473 |
|
|
in an address in this insn. */
|
1474 |
|
|
gcc_assert (rld[i].inc != 0);
|
1475 |
|
|
}
|
1476 |
|
|
#endif
|
1477 |
|
|
|
1478 |
|
|
/* If we will replace IN and OUT with the reload-reg,
|
1479 |
|
|
record where they are located so that substitution need
|
1480 |
|
|
not do a tree walk. */
|
1481 |
|
|
|
1482 |
|
|
if (replace_reloads)
|
1483 |
|
|
{
|
1484 |
|
|
if (inloc != 0)
|
1485 |
|
|
{
|
1486 |
|
|
struct replacement *r = &replacements[n_replacements++];
|
1487 |
|
|
r->what = i;
|
1488 |
|
|
r->subreg_loc = in_subreg_loc;
|
1489 |
|
|
r->where = inloc;
|
1490 |
|
|
r->mode = inmode;
|
1491 |
|
|
}
|
1492 |
|
|
if (outloc != 0 && outloc != inloc)
|
1493 |
|
|
{
|
1494 |
|
|
struct replacement *r = &replacements[n_replacements++];
|
1495 |
|
|
r->what = i;
|
1496 |
|
|
r->where = outloc;
|
1497 |
|
|
r->subreg_loc = out_subreg_loc;
|
1498 |
|
|
r->mode = outmode;
|
1499 |
|
|
}
|
1500 |
|
|
}
|
1501 |
|
|
|
1502 |
|
|
/* If this reload is just being introduced and it has both
|
1503 |
|
|
an incoming quantity and an outgoing quantity that are
|
1504 |
|
|
supposed to be made to match, see if either one of the two
|
1505 |
|
|
can serve as the place to reload into.
|
1506 |
|
|
|
1507 |
|
|
If one of them is acceptable, set rld[i].reg_rtx
|
1508 |
|
|
to that one. */
|
1509 |
|
|
|
1510 |
|
|
if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
|
1511 |
|
|
{
|
1512 |
|
|
rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
|
1513 |
|
|
inmode, outmode,
|
1514 |
|
|
rld[i].rclass, i,
|
1515 |
|
|
earlyclobber_operand_p (out));
|
1516 |
|
|
|
1517 |
|
|
/* If the outgoing register already contains the same value
|
1518 |
|
|
as the incoming one, we can dispense with loading it.
|
1519 |
|
|
The easiest way to tell the caller that is to give a phony
|
1520 |
|
|
value for the incoming operand (same as outgoing one). */
|
1521 |
|
|
if (rld[i].reg_rtx == out
|
1522 |
|
|
&& (REG_P (in) || CONSTANT_P (in))
|
1523 |
|
|
&& 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
|
1524 |
|
|
static_reload_reg_p, i, inmode))
|
1525 |
|
|
rld[i].in = out;
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
/* If this is an input reload and the operand contains a register that
|
1529 |
|
|
dies in this insn and is used nowhere else, see if it is the right class
|
1530 |
|
|
to be used for this reload. Use it if so. (This occurs most commonly
|
1531 |
|
|
in the case of paradoxical SUBREGs and in-out reloads). We cannot do
|
1532 |
|
|
this if it is also an output reload that mentions the register unless
|
1533 |
|
|
the output is a SUBREG that clobbers an entire register.
|
1534 |
|
|
|
1535 |
|
|
Note that the operand might be one of the spill regs, if it is a
|
1536 |
|
|
pseudo reg and we are in a block where spilling has not taken place.
|
1537 |
|
|
But if there is no spilling in this block, that is OK.
|
1538 |
|
|
An explicitly used hard reg cannot be a spill reg. */
|
1539 |
|
|
|
1540 |
|
|
if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
|
1541 |
|
|
{
|
1542 |
|
|
rtx note;
|
1543 |
|
|
int regno;
|
1544 |
|
|
enum machine_mode rel_mode = inmode;
|
1545 |
|
|
|
1546 |
|
|
if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
|
1547 |
|
|
rel_mode = outmode;
|
1548 |
|
|
|
1549 |
|
|
for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
|
1550 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD
|
1551 |
|
|
&& REG_P (XEXP (note, 0))
|
1552 |
|
|
&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
|
1553 |
|
|
&& reg_mentioned_p (XEXP (note, 0), in)
|
1554 |
|
|
/* Check that a former pseudo is valid; see find_dummy_reload. */
|
1555 |
|
|
&& (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
|
1556 |
|
|
|| (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
|
1557 |
|
|
ORIGINAL_REGNO (XEXP (note, 0)))
|
1558 |
|
|
&& hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
|
1559 |
|
|
&& ! refers_to_regno_for_reload_p (regno,
|
1560 |
|
|
end_hard_regno (rel_mode,
|
1561 |
|
|
regno),
|
1562 |
|
|
PATTERN (this_insn), inloc)
|
1563 |
|
|
/* If this is also an output reload, IN cannot be used as
|
1564 |
|
|
the reload register if it is set in this insn unless IN
|
1565 |
|
|
is also OUT. */
|
1566 |
|
|
&& (out == 0 || in == out
|
1567 |
|
|
|| ! hard_reg_set_here_p (regno,
|
1568 |
|
|
end_hard_regno (rel_mode, regno),
|
1569 |
|
|
PATTERN (this_insn)))
|
1570 |
|
|
/* ??? Why is this code so different from the previous?
|
1571 |
|
|
Is there any simple coherent way to describe the two together?
|
1572 |
|
|
What's going on here. */
|
1573 |
|
|
&& (in != out
|
1574 |
|
|
|| (GET_CODE (in) == SUBREG
|
1575 |
|
|
&& (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
|
1576 |
|
|
/ UNITS_PER_WORD)
|
1577 |
|
|
== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
|
1578 |
|
|
+ (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
|
1579 |
|
|
/* Make sure the operand fits in the reg that dies. */
|
1580 |
|
|
&& (GET_MODE_SIZE (rel_mode)
|
1581 |
|
|
<= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
|
1582 |
|
|
&& HARD_REGNO_MODE_OK (regno, inmode)
|
1583 |
|
|
&& HARD_REGNO_MODE_OK (regno, outmode))
|
1584 |
|
|
{
|
1585 |
|
|
unsigned int offs;
|
1586 |
|
|
unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
|
1587 |
|
|
hard_regno_nregs[regno][outmode]);
|
1588 |
|
|
|
1589 |
|
|
for (offs = 0; offs < nregs; offs++)
|
1590 |
|
|
if (fixed_regs[regno + offs]
|
1591 |
|
|
|| ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
|
1592 |
|
|
regno + offs))
|
1593 |
|
|
break;
|
1594 |
|
|
|
1595 |
|
|
if (offs == nregs
|
1596 |
|
|
&& (! (refers_to_regno_for_reload_p
|
1597 |
|
|
(regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
|
1598 |
|
|
|| can_reload_into (in, regno, inmode)))
|
1599 |
|
|
{
|
1600 |
|
|
rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
|
1601 |
|
|
break;
|
1602 |
|
|
}
|
1603 |
|
|
}
|
1604 |
|
|
}
|
1605 |
|
|
|
1606 |
|
|
if (out)
|
1607 |
|
|
output_reloadnum = i;
|
1608 |
|
|
|
1609 |
|
|
return i;
|
1610 |
|
|
}
|
1611 |
|
|
|
1612 |
|
|
/* Record an additional place we must replace a value
|
1613 |
|
|
for which we have already recorded a reload.
|
1614 |
|
|
RELOADNUM is the value returned by push_reload
|
1615 |
|
|
when the reload was recorded.
|
1616 |
|
|
This is used in insn patterns that use match_dup. */
|
1617 |
|
|
|
1618 |
|
|
static void
|
1619 |
|
|
push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
|
1620 |
|
|
{
|
1621 |
|
|
if (replace_reloads)
|
1622 |
|
|
{
|
1623 |
|
|
struct replacement *r = &replacements[n_replacements++];
|
1624 |
|
|
r->what = reloadnum;
|
1625 |
|
|
r->where = loc;
|
1626 |
|
|
r->subreg_loc = 0;
|
1627 |
|
|
r->mode = mode;
|
1628 |
|
|
}
|
1629 |
|
|
}
|
1630 |
|
|
|
1631 |
|
|
/* Duplicate any replacement we have recorded to apply at
|
1632 |
|
|
location ORIG_LOC to also be performed at DUP_LOC.
|
1633 |
|
|
This is used in insn patterns that use match_dup. */
|
1634 |
|
|
|
1635 |
|
|
static void
|
1636 |
|
|
dup_replacements (rtx *dup_loc, rtx *orig_loc)
|
1637 |
|
|
{
|
1638 |
|
|
int i, n = n_replacements;
|
1639 |
|
|
|
1640 |
|
|
for (i = 0; i < n; i++)
|
1641 |
|
|
{
|
1642 |
|
|
struct replacement *r = &replacements[i];
|
1643 |
|
|
if (r->where == orig_loc)
|
1644 |
|
|
push_replacement (dup_loc, r->what, r->mode);
|
1645 |
|
|
}
|
1646 |
|
|
}
|
1647 |
|
|
|
1648 |
|
|
/* Transfer all replacements that used to be in reload FROM to be in
|
1649 |
|
|
reload TO. */
|
1650 |
|
|
|
1651 |
|
|
void
|
1652 |
|
|
transfer_replacements (int to, int from)
|
1653 |
|
|
{
|
1654 |
|
|
int i;
|
1655 |
|
|
|
1656 |
|
|
for (i = 0; i < n_replacements; i++)
|
1657 |
|
|
if (replacements[i].what == from)
|
1658 |
|
|
replacements[i].what = to;
|
1659 |
|
|
}
|
1660 |
|
|
|
1661 |
|
|
/* IN_RTX is the value loaded by a reload that we now decided to inherit,
|
1662 |
|
|
or a subpart of it. If we have any replacements registered for IN_RTX,
|
1663 |
|
|
cancel the reloads that were supposed to load them.
|
1664 |
|
|
Return nonzero if we canceled any reloads. */
|
1665 |
|
|
int
|
1666 |
|
|
remove_address_replacements (rtx in_rtx)
|
1667 |
|
|
{
|
1668 |
|
|
int i, j;
|
1669 |
|
|
char reload_flags[MAX_RELOADS];
|
1670 |
|
|
int something_changed = 0;
|
1671 |
|
|
|
1672 |
|
|
memset (reload_flags, 0, sizeof reload_flags);
|
1673 |
|
|
for (i = 0, j = 0; i < n_replacements; i++)
|
1674 |
|
|
{
|
1675 |
|
|
if (loc_mentioned_in_p (replacements[i].where, in_rtx))
|
1676 |
|
|
reload_flags[replacements[i].what] |= 1;
|
1677 |
|
|
else
|
1678 |
|
|
{
|
1679 |
|
|
replacements[j++] = replacements[i];
|
1680 |
|
|
reload_flags[replacements[i].what] |= 2;
|
1681 |
|
|
}
|
1682 |
|
|
}
|
1683 |
|
|
/* Note that the following store must be done before the recursive calls. */
|
1684 |
|
|
n_replacements = j;
|
1685 |
|
|
|
1686 |
|
|
for (i = n_reloads - 1; i >= 0; i--)
|
1687 |
|
|
{
|
1688 |
|
|
if (reload_flags[i] == 1)
|
1689 |
|
|
{
|
1690 |
|
|
deallocate_reload_reg (i);
|
1691 |
|
|
remove_address_replacements (rld[i].in);
|
1692 |
|
|
rld[i].in = 0;
|
1693 |
|
|
something_changed = 1;
|
1694 |
|
|
}
|
1695 |
|
|
}
|
1696 |
|
|
return something_changed;
|
1697 |
|
|
}
|
1698 |
|
|
|
1699 |
|
|
/* If there is only one output reload, and it is not for an earlyclobber
|
1700 |
|
|
operand, try to combine it with a (logically unrelated) input reload
|
1701 |
|
|
to reduce the number of reload registers needed.
|
1702 |
|
|
|
1703 |
|
|
This is safe if the input reload does not appear in
|
1704 |
|
|
the value being output-reloaded, because this implies
|
1705 |
|
|
it is not needed any more once the original insn completes.
|
1706 |
|
|
|
1707 |
|
|
If that doesn't work, see we can use any of the registers that
|
1708 |
|
|
die in this insn as a reload register. We can if it is of the right
|
1709 |
|
|
class and does not appear in the value being output-reloaded. */
|
1710 |
|
|
|
1711 |
|
|
static void
|
1712 |
|
|
combine_reloads (void)
|
1713 |
|
|
{
|
1714 |
|
|
int i, regno;
|
1715 |
|
|
int output_reload = -1;
|
1716 |
|
|
int secondary_out = -1;
|
1717 |
|
|
rtx note;
|
1718 |
|
|
|
1719 |
|
|
/* Find the output reload; return unless there is exactly one
|
1720 |
|
|
and that one is mandatory. */
|
1721 |
|
|
|
1722 |
|
|
for (i = 0; i < n_reloads; i++)
|
1723 |
|
|
if (rld[i].out != 0)
|
1724 |
|
|
{
|
1725 |
|
|
if (output_reload >= 0)
|
1726 |
|
|
return;
|
1727 |
|
|
output_reload = i;
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
if (output_reload < 0 || rld[output_reload].optional)
|
1731 |
|
|
return;
|
1732 |
|
|
|
1733 |
|
|
/* An input-output reload isn't combinable. */
|
1734 |
|
|
|
1735 |
|
|
if (rld[output_reload].in != 0)
|
1736 |
|
|
return;
|
1737 |
|
|
|
1738 |
|
|
/* If this reload is for an earlyclobber operand, we can't do anything. */
|
1739 |
|
|
if (earlyclobber_operand_p (rld[output_reload].out))
|
1740 |
|
|
return;
|
1741 |
|
|
|
1742 |
|
|
/* If there is a reload for part of the address of this operand, we would
|
1743 |
|
|
need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
|
1744 |
|
|
its life to the point where doing this combine would not lower the
|
1745 |
|
|
number of spill registers needed. */
|
1746 |
|
|
for (i = 0; i < n_reloads; i++)
|
1747 |
|
|
if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|
1748 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
|
1749 |
|
|
&& rld[i].opnum == rld[output_reload].opnum)
|
1750 |
|
|
return;
|
1751 |
|
|
|
1752 |
|
|
/* Check each input reload; can we combine it? */
|
1753 |
|
|
|
1754 |
|
|
for (i = 0; i < n_reloads; i++)
|
1755 |
|
|
if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
|
1756 |
|
|
/* Life span of this reload must not extend past main insn. */
|
1757 |
|
|
&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
|
1758 |
|
|
&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
|
1759 |
|
|
&& rld[i].when_needed != RELOAD_OTHER
|
1760 |
|
|
&& (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
|
1761 |
|
|
== CLASS_MAX_NREGS (rld[output_reload].rclass,
|
1762 |
|
|
rld[output_reload].outmode))
|
1763 |
|
|
&& rld[i].inc == 0
|
1764 |
|
|
&& rld[i].reg_rtx == 0
|
1765 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
1766 |
|
|
/* Don't combine two reloads with different secondary
|
1767 |
|
|
memory locations. */
|
1768 |
|
|
&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
|
1769 |
|
|
|| secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
|
1770 |
|
|
|| rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
|
1771 |
|
|
secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
|
1772 |
|
|
#endif
|
1773 |
|
|
&& (SMALL_REGISTER_CLASSES
|
1774 |
|
|
? (rld[i].rclass == rld[output_reload].rclass)
|
1775 |
|
|
: (reg_class_subset_p (rld[i].rclass,
|
1776 |
|
|
rld[output_reload].rclass)
|
1777 |
|
|
|| reg_class_subset_p (rld[output_reload].rclass,
|
1778 |
|
|
rld[i].rclass)))
|
1779 |
|
|
&& (MATCHES (rld[i].in, rld[output_reload].out)
|
1780 |
|
|
/* Args reversed because the first arg seems to be
|
1781 |
|
|
the one that we imagine being modified
|
1782 |
|
|
while the second is the one that might be affected. */
|
1783 |
|
|
|| (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
|
1784 |
|
|
rld[i].in)
|
1785 |
|
|
/* However, if the input is a register that appears inside
|
1786 |
|
|
the output, then we also can't share.
|
1787 |
|
|
Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
|
1788 |
|
|
If the same reload reg is used for both reg 69 and the
|
1789 |
|
|
result to be stored in memory, then that result
|
1790 |
|
|
will clobber the address of the memory ref. */
|
1791 |
|
|
&& ! (REG_P (rld[i].in)
|
1792 |
|
|
&& reg_overlap_mentioned_for_reload_p (rld[i].in,
|
1793 |
|
|
rld[output_reload].out))))
|
1794 |
|
|
&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
|
1795 |
|
|
rld[i].when_needed != RELOAD_FOR_INPUT)
|
1796 |
|
|
&& (reg_class_size[(int) rld[i].rclass]
|
1797 |
|
|
|| SMALL_REGISTER_CLASSES)
|
1798 |
|
|
/* We will allow making things slightly worse by combining an
|
1799 |
|
|
input and an output, but no worse than that. */
|
1800 |
|
|
&& (rld[i].when_needed == RELOAD_FOR_INPUT
|
1801 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTPUT))
|
1802 |
|
|
{
|
1803 |
|
|
int j;
|
1804 |
|
|
|
1805 |
|
|
/* We have found a reload to combine with! */
|
1806 |
|
|
rld[i].out = rld[output_reload].out;
|
1807 |
|
|
rld[i].out_reg = rld[output_reload].out_reg;
|
1808 |
|
|
rld[i].outmode = rld[output_reload].outmode;
|
1809 |
|
|
/* Mark the old output reload as inoperative. */
|
1810 |
|
|
rld[output_reload].out = 0;
|
1811 |
|
|
/* The combined reload is needed for the entire insn. */
|
1812 |
|
|
rld[i].when_needed = RELOAD_OTHER;
|
1813 |
|
|
/* If the output reload had a secondary reload, copy it. */
|
1814 |
|
|
if (rld[output_reload].secondary_out_reload != -1)
|
1815 |
|
|
{
|
1816 |
|
|
rld[i].secondary_out_reload
|
1817 |
|
|
= rld[output_reload].secondary_out_reload;
|
1818 |
|
|
rld[i].secondary_out_icode
|
1819 |
|
|
= rld[output_reload].secondary_out_icode;
|
1820 |
|
|
}
|
1821 |
|
|
|
1822 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
1823 |
|
|
/* Copy any secondary MEM. */
|
1824 |
|
|
if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
|
1825 |
|
|
secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
|
1826 |
|
|
= secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
|
1827 |
|
|
#endif
|
1828 |
|
|
/* If required, minimize the register class. */
|
1829 |
|
|
if (reg_class_subset_p (rld[output_reload].rclass,
|
1830 |
|
|
rld[i].rclass))
|
1831 |
|
|
rld[i].rclass = rld[output_reload].rclass;
|
1832 |
|
|
|
1833 |
|
|
/* Transfer all replacements from the old reload to the combined. */
|
1834 |
|
|
for (j = 0; j < n_replacements; j++)
|
1835 |
|
|
if (replacements[j].what == output_reload)
|
1836 |
|
|
replacements[j].what = i;
|
1837 |
|
|
|
1838 |
|
|
return;
|
1839 |
|
|
}
|
1840 |
|
|
|
1841 |
|
|
/* If this insn has only one operand that is modified or written (assumed
|
1842 |
|
|
to be the first), it must be the one corresponding to this reload. It
|
1843 |
|
|
is safe to use anything that dies in this insn for that output provided
|
1844 |
|
|
that it does not occur in the output (we already know it isn't an
|
1845 |
|
|
earlyclobber. If this is an asm insn, give up. */
|
1846 |
|
|
|
1847 |
|
|
if (INSN_CODE (this_insn) == -1)
|
1848 |
|
|
return;
|
1849 |
|
|
|
1850 |
|
|
for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
|
1851 |
|
|
if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
|
1852 |
|
|
|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
|
1853 |
|
|
return;
|
1854 |
|
|
|
1855 |
|
|
/* See if some hard register that dies in this insn and is not used in
|
1856 |
|
|
the output is the right class. Only works if the register we pick
|
1857 |
|
|
up can fully hold our output reload. */
|
1858 |
|
|
for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
|
1859 |
|
|
if (REG_NOTE_KIND (note) == REG_DEAD
|
1860 |
|
|
&& REG_P (XEXP (note, 0))
|
1861 |
|
|
&& !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
|
1862 |
|
|
rld[output_reload].out)
|
1863 |
|
|
&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
|
1864 |
|
|
&& HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
|
1865 |
|
|
&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
|
1866 |
|
|
regno)
|
1867 |
|
|
&& (hard_regno_nregs[regno][rld[output_reload].outmode]
|
1868 |
|
|
<= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
|
1869 |
|
|
/* Ensure that a secondary or tertiary reload for this output
|
1870 |
|
|
won't want this register. */
|
1871 |
|
|
&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
|
1872 |
|
|
|| (!(TEST_HARD_REG_BIT
|
1873 |
|
|
(reg_class_contents[(int) rld[secondary_out].rclass], regno))
|
1874 |
|
|
&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
|
1875 |
|
|
|| !(TEST_HARD_REG_BIT
|
1876 |
|
|
(reg_class_contents[(int) rld[secondary_out].rclass],
|
1877 |
|
|
regno)))))
|
1878 |
|
|
&& !fixed_regs[regno]
|
1879 |
|
|
/* Check that a former pseudo is valid; see find_dummy_reload. */
|
1880 |
|
|
&& (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
|
1881 |
|
|
|| (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
|
1882 |
|
|
ORIGINAL_REGNO (XEXP (note, 0)))
|
1883 |
|
|
&& hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
|
1884 |
|
|
{
|
1885 |
|
|
rld[output_reload].reg_rtx
|
1886 |
|
|
= gen_rtx_REG (rld[output_reload].outmode, regno);
|
1887 |
|
|
return;
|
1888 |
|
|
}
|
1889 |
|
|
}
|
1890 |
|
|
|
1891 |
|
|
/* Try to find a reload register for an in-out reload (expressions IN and OUT).
|
1892 |
|
|
See if one of IN and OUT is a register that may be used;
|
1893 |
|
|
this is desirable since a spill-register won't be needed.
|
1894 |
|
|
If so, return the register rtx that proves acceptable.
|
1895 |
|
|
|
1896 |
|
|
INLOC and OUTLOC are locations where IN and OUT appear in the insn.
|
1897 |
|
|
RCLASS is the register class required for the reload.
|
1898 |
|
|
|
1899 |
|
|
If FOR_REAL is >= 0, it is the number of the reload,
|
1900 |
|
|
and in some cases when it can be discovered that OUT doesn't need
|
1901 |
|
|
to be computed, clear out rld[FOR_REAL].out.
|
1902 |
|
|
|
1903 |
|
|
If FOR_REAL is -1, this should not be done, because this call
|
1904 |
|
|
is just to see if a register can be found, not to find and install it.
|
1905 |
|
|
|
1906 |
|
|
EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
|
1907 |
|
|
puts an additional constraint on being able to use IN for OUT since
|
1908 |
|
|
IN must not appear elsewhere in the insn (it is assumed that IN itself
|
1909 |
|
|
is safe from the earlyclobber). */
|
1910 |
|
|
|
1911 |
|
|
static rtx
|
1912 |
|
|
find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
|
1913 |
|
|
enum machine_mode inmode, enum machine_mode outmode,
|
1914 |
|
|
enum reg_class rclass, int for_real, int earlyclobber)
|
1915 |
|
|
{
|
1916 |
|
|
rtx in = real_in;
|
1917 |
|
|
rtx out = real_out;
|
1918 |
|
|
int in_offset = 0;
|
1919 |
|
|
int out_offset = 0;
|
1920 |
|
|
rtx value = 0;
|
1921 |
|
|
|
1922 |
|
|
/* If operands exceed a word, we can't use either of them
|
1923 |
|
|
unless they have the same size. */
|
1924 |
|
|
if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
|
1925 |
|
|
&& (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
|
1926 |
|
|
|| GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
|
1927 |
|
|
return 0;
|
1928 |
|
|
|
1929 |
|
|
/* Note that {in,out}_offset are needed only when 'in' or 'out'
|
1930 |
|
|
respectively refers to a hard register. */
|
1931 |
|
|
|
1932 |
|
|
/* Find the inside of any subregs. */
|
1933 |
|
|
while (GET_CODE (out) == SUBREG)
|
1934 |
|
|
{
|
1935 |
|
|
if (REG_P (SUBREG_REG (out))
|
1936 |
|
|
&& REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
|
1937 |
|
|
out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
|
1938 |
|
|
GET_MODE (SUBREG_REG (out)),
|
1939 |
|
|
SUBREG_BYTE (out),
|
1940 |
|
|
GET_MODE (out));
|
1941 |
|
|
out = SUBREG_REG (out);
|
1942 |
|
|
}
|
1943 |
|
|
while (GET_CODE (in) == SUBREG)
|
1944 |
|
|
{
|
1945 |
|
|
if (REG_P (SUBREG_REG (in))
|
1946 |
|
|
&& REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
|
1947 |
|
|
in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
|
1948 |
|
|
GET_MODE (SUBREG_REG (in)),
|
1949 |
|
|
SUBREG_BYTE (in),
|
1950 |
|
|
GET_MODE (in));
|
1951 |
|
|
in = SUBREG_REG (in);
|
1952 |
|
|
}
|
1953 |
|
|
|
1954 |
|
|
/* Narrow down the reg class, the same way push_reload will;
|
1955 |
|
|
otherwise we might find a dummy now, but push_reload won't. */
|
1956 |
|
|
{
|
1957 |
|
|
enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
|
1958 |
|
|
if (preferred_class != NO_REGS)
|
1959 |
|
|
rclass = preferred_class;
|
1960 |
|
|
}
|
1961 |
|
|
|
1962 |
|
|
/* See if OUT will do. */
|
1963 |
|
|
if (REG_P (out)
|
1964 |
|
|
&& REGNO (out) < FIRST_PSEUDO_REGISTER)
|
1965 |
|
|
{
|
1966 |
|
|
unsigned int regno = REGNO (out) + out_offset;
|
1967 |
|
|
unsigned int nwords = hard_regno_nregs[regno][outmode];
|
1968 |
|
|
rtx saved_rtx;
|
1969 |
|
|
|
1970 |
|
|
/* When we consider whether the insn uses OUT,
|
1971 |
|
|
ignore references within IN. They don't prevent us
|
1972 |
|
|
from copying IN into OUT, because those refs would
|
1973 |
|
|
move into the insn that reloads IN.
|
1974 |
|
|
|
1975 |
|
|
However, we only ignore IN in its role as this reload.
|
1976 |
|
|
If the insn uses IN elsewhere and it contains OUT,
|
1977 |
|
|
that counts. We can't be sure it's the "same" operand
|
1978 |
|
|
so it might not go through this reload. */
|
1979 |
|
|
saved_rtx = *inloc;
|
1980 |
|
|
*inloc = const0_rtx;
|
1981 |
|
|
|
1982 |
|
|
if (regno < FIRST_PSEUDO_REGISTER
|
1983 |
|
|
&& HARD_REGNO_MODE_OK (regno, outmode)
|
1984 |
|
|
&& ! refers_to_regno_for_reload_p (regno, regno + nwords,
|
1985 |
|
|
PATTERN (this_insn), outloc))
|
1986 |
|
|
{
|
1987 |
|
|
unsigned int i;
|
1988 |
|
|
|
1989 |
|
|
for (i = 0; i < nwords; i++)
|
1990 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
|
1991 |
|
|
regno + i))
|
1992 |
|
|
break;
|
1993 |
|
|
|
1994 |
|
|
if (i == nwords)
|
1995 |
|
|
{
|
1996 |
|
|
if (REG_P (real_out))
|
1997 |
|
|
value = real_out;
|
1998 |
|
|
else
|
1999 |
|
|
value = gen_rtx_REG (outmode, regno);
|
2000 |
|
|
}
|
2001 |
|
|
}
|
2002 |
|
|
|
2003 |
|
|
*inloc = saved_rtx;
|
2004 |
|
|
}
|
2005 |
|
|
|
2006 |
|
|
/* Consider using IN if OUT was not acceptable
|
2007 |
|
|
or if OUT dies in this insn (like the quotient in a divmod insn).
|
2008 |
|
|
We can't use IN unless it is dies in this insn,
|
2009 |
|
|
which means we must know accurately which hard regs are live.
|
2010 |
|
|
Also, the result can't go in IN if IN is used within OUT,
|
2011 |
|
|
or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
|
2012 |
|
|
if (hard_regs_live_known
|
2013 |
|
|
&& REG_P (in)
|
2014 |
|
|
&& REGNO (in) < FIRST_PSEUDO_REGISTER
|
2015 |
|
|
&& (value == 0
|
2016 |
|
|
|| find_reg_note (this_insn, REG_UNUSED, real_out))
|
2017 |
|
|
&& find_reg_note (this_insn, REG_DEAD, real_in)
|
2018 |
|
|
&& !fixed_regs[REGNO (in)]
|
2019 |
|
|
&& HARD_REGNO_MODE_OK (REGNO (in),
|
2020 |
|
|
/* The only case where out and real_out might
|
2021 |
|
|
have different modes is where real_out
|
2022 |
|
|
is a subreg, and in that case, out
|
2023 |
|
|
has a real mode. */
|
2024 |
|
|
(GET_MODE (out) != VOIDmode
|
2025 |
|
|
? GET_MODE (out) : outmode))
|
2026 |
|
|
&& (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
|
2027 |
|
|
/* However only do this if we can be sure that this input
|
2028 |
|
|
operand doesn't correspond with an uninitialized pseudo.
|
2029 |
|
|
global can assign some hardreg to it that is the same as
|
2030 |
|
|
the one assigned to a different, also live pseudo (as it
|
2031 |
|
|
can ignore the conflict). We must never introduce writes
|
2032 |
|
|
to such hardregs, as they would clobber the other live
|
2033 |
|
|
pseudo. See PR 20973. */
|
2034 |
|
|
|| (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
|
2035 |
|
|
ORIGINAL_REGNO (in))
|
2036 |
|
|
/* Similarly, only do this if we can be sure that the death
|
2037 |
|
|
note is still valid. global can assign some hardreg to
|
2038 |
|
|
the pseudo referenced in the note and simultaneously a
|
2039 |
|
|
subword of this hardreg to a different, also live pseudo,
|
2040 |
|
|
because only another subword of the hardreg is actually
|
2041 |
|
|
used in the insn. This cannot happen if the pseudo has
|
2042 |
|
|
been assigned exactly one hardreg. See PR 33732. */
|
2043 |
|
|
&& hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
|
2044 |
|
|
{
|
2045 |
|
|
unsigned int regno = REGNO (in) + in_offset;
|
2046 |
|
|
unsigned int nwords = hard_regno_nregs[regno][inmode];
|
2047 |
|
|
|
2048 |
|
|
if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
|
2049 |
|
|
&& ! hard_reg_set_here_p (regno, regno + nwords,
|
2050 |
|
|
PATTERN (this_insn))
|
2051 |
|
|
&& (! earlyclobber
|
2052 |
|
|
|| ! refers_to_regno_for_reload_p (regno, regno + nwords,
|
2053 |
|
|
PATTERN (this_insn), inloc)))
|
2054 |
|
|
{
|
2055 |
|
|
unsigned int i;
|
2056 |
|
|
|
2057 |
|
|
for (i = 0; i < nwords; i++)
|
2058 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
|
2059 |
|
|
regno + i))
|
2060 |
|
|
break;
|
2061 |
|
|
|
2062 |
|
|
if (i == nwords)
|
2063 |
|
|
{
|
2064 |
|
|
/* If we were going to use OUT as the reload reg
|
2065 |
|
|
and changed our mind, it means OUT is a dummy that
|
2066 |
|
|
dies here. So don't bother copying value to it. */
|
2067 |
|
|
if (for_real >= 0 && value == real_out)
|
2068 |
|
|
rld[for_real].out = 0;
|
2069 |
|
|
if (REG_P (real_in))
|
2070 |
|
|
value = real_in;
|
2071 |
|
|
else
|
2072 |
|
|
value = gen_rtx_REG (inmode, regno);
|
2073 |
|
|
}
|
2074 |
|
|
}
|
2075 |
|
|
}
|
2076 |
|
|
|
2077 |
|
|
return value;
|
2078 |
|
|
}
|
2079 |
|
|
|
2080 |
|
|
/* This page contains subroutines used mainly for determining
|
2081 |
|
|
whether the IN or an OUT of a reload can serve as the
|
2082 |
|
|
reload register. */
|
2083 |
|
|
|
2084 |
|
|
/* Return 1 if X is an operand of an insn that is being earlyclobbered. */
|
2085 |
|
|
|
2086 |
|
|
int
|
2087 |
|
|
earlyclobber_operand_p (rtx x)
|
2088 |
|
|
{
|
2089 |
|
|
int i;
|
2090 |
|
|
|
2091 |
|
|
for (i = 0; i < n_earlyclobbers; i++)
|
2092 |
|
|
if (reload_earlyclobbers[i] == x)
|
2093 |
|
|
return 1;
|
2094 |
|
|
|
2095 |
|
|
return 0;
|
2096 |
|
|
}
|
2097 |
|
|
|
2098 |
|
|
/* Return 1 if expression X alters a hard reg in the range
|
2099 |
|
|
from BEG_REGNO (inclusive) to END_REGNO (exclusive),
|
2100 |
|
|
either explicitly or in the guise of a pseudo-reg allocated to REGNO.
|
2101 |
|
|
X should be the body of an instruction. */
|
2102 |
|
|
|
2103 |
|
|
static int
|
2104 |
|
|
hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
|
2105 |
|
|
{
|
2106 |
|
|
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
|
2107 |
|
|
{
|
2108 |
|
|
rtx op0 = SET_DEST (x);
|
2109 |
|
|
|
2110 |
|
|
while (GET_CODE (op0) == SUBREG)
|
2111 |
|
|
op0 = SUBREG_REG (op0);
|
2112 |
|
|
if (REG_P (op0))
|
2113 |
|
|
{
|
2114 |
|
|
unsigned int r = REGNO (op0);
|
2115 |
|
|
|
2116 |
|
|
/* See if this reg overlaps range under consideration. */
|
2117 |
|
|
if (r < end_regno
|
2118 |
|
|
&& end_hard_regno (GET_MODE (op0), r) > beg_regno)
|
2119 |
|
|
return 1;
|
2120 |
|
|
}
|
2121 |
|
|
}
|
2122 |
|
|
else if (GET_CODE (x) == PARALLEL)
|
2123 |
|
|
{
|
2124 |
|
|
int i = XVECLEN (x, 0) - 1;
|
2125 |
|
|
|
2126 |
|
|
for (; i >= 0; i--)
|
2127 |
|
|
if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
|
2128 |
|
|
return 1;
|
2129 |
|
|
}
|
2130 |
|
|
|
2131 |
|
|
return 0;
|
2132 |
|
|
}
|
2133 |
|
|
|
2134 |
|
|
/* Return 1 if ADDR is a valid memory address for mode MODE
|
2135 |
|
|
in address space AS, and check that each pseudo reg has the
|
2136 |
|
|
proper kind of hard reg. */
|
2137 |
|
|
|
2138 |
|
|
int
|
2139 |
|
|
strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
|
2140 |
|
|
rtx addr, addr_space_t as)
|
2141 |
|
|
{
|
2142 |
|
|
#ifdef GO_IF_LEGITIMATE_ADDRESS
|
2143 |
|
|
gcc_assert (ADDR_SPACE_GENERIC_P (as));
|
2144 |
|
|
GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
|
2145 |
|
|
return 0;
|
2146 |
|
|
|
2147 |
|
|
win:
|
2148 |
|
|
return 1;
|
2149 |
|
|
#else
|
2150 |
|
|
return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
|
2151 |
|
|
#endif
|
2152 |
|
|
}
|
2153 |
|
|
|
2154 |
|
|
/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
|
2155 |
|
|
if they are the same hard reg, and has special hacks for
|
2156 |
|
|
autoincrement and autodecrement.
|
2157 |
|
|
This is specifically intended for find_reloads to use
|
2158 |
|
|
in determining whether two operands match.
|
2159 |
|
|
X is the operand whose number is the lower of the two.
|
2160 |
|
|
|
2161 |
|
|
The value is 2 if Y contains a pre-increment that matches
|
2162 |
|
|
a non-incrementing address in X. */
|
2163 |
|
|
|
2164 |
|
|
/* ??? To be completely correct, we should arrange to pass
|
2165 |
|
|
for X the output operand and for Y the input operand.
|
2166 |
|
|
For now, we assume that the output operand has the lower number
|
2167 |
|
|
because that is natural in (SET output (... input ...)). */
|
2168 |
|
|
|
2169 |
|
|
int
|
2170 |
|
|
operands_match_p (rtx x, rtx y)
|
2171 |
|
|
{
|
2172 |
|
|
int i;
|
2173 |
|
|
RTX_CODE code = GET_CODE (x);
|
2174 |
|
|
const char *fmt;
|
2175 |
|
|
int success_2;
|
2176 |
|
|
|
2177 |
|
|
if (x == y)
|
2178 |
|
|
return 1;
|
2179 |
|
|
if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
|
2180 |
|
|
&& (REG_P (y) || (GET_CODE (y) == SUBREG
|
2181 |
|
|
&& REG_P (SUBREG_REG (y)))))
|
2182 |
|
|
{
|
2183 |
|
|
int j;
|
2184 |
|
|
|
2185 |
|
|
if (code == SUBREG)
|
2186 |
|
|
{
|
2187 |
|
|
i = REGNO (SUBREG_REG (x));
|
2188 |
|
|
if (i >= FIRST_PSEUDO_REGISTER)
|
2189 |
|
|
goto slow;
|
2190 |
|
|
i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
|
2191 |
|
|
GET_MODE (SUBREG_REG (x)),
|
2192 |
|
|
SUBREG_BYTE (x),
|
2193 |
|
|
GET_MODE (x));
|
2194 |
|
|
}
|
2195 |
|
|
else
|
2196 |
|
|
i = REGNO (x);
|
2197 |
|
|
|
2198 |
|
|
if (GET_CODE (y) == SUBREG)
|
2199 |
|
|
{
|
2200 |
|
|
j = REGNO (SUBREG_REG (y));
|
2201 |
|
|
if (j >= FIRST_PSEUDO_REGISTER)
|
2202 |
|
|
goto slow;
|
2203 |
|
|
j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
|
2204 |
|
|
GET_MODE (SUBREG_REG (y)),
|
2205 |
|
|
SUBREG_BYTE (y),
|
2206 |
|
|
GET_MODE (y));
|
2207 |
|
|
}
|
2208 |
|
|
else
|
2209 |
|
|
j = REGNO (y);
|
2210 |
|
|
|
2211 |
|
|
/* On a WORDS_BIG_ENDIAN machine, point to the last register of a
|
2212 |
|
|
multiple hard register group of scalar integer registers, so that
|
2213 |
|
|
for example (reg:DI 0) and (reg:SI 1) will be considered the same
|
2214 |
|
|
register. */
|
2215 |
|
|
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
|
2216 |
|
|
&& SCALAR_INT_MODE_P (GET_MODE (x))
|
2217 |
|
|
&& i < FIRST_PSEUDO_REGISTER)
|
2218 |
|
|
i += hard_regno_nregs[i][GET_MODE (x)] - 1;
|
2219 |
|
|
if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
|
2220 |
|
|
&& SCALAR_INT_MODE_P (GET_MODE (y))
|
2221 |
|
|
&& j < FIRST_PSEUDO_REGISTER)
|
2222 |
|
|
j += hard_regno_nregs[j][GET_MODE (y)] - 1;
|
2223 |
|
|
|
2224 |
|
|
return i == j;
|
2225 |
|
|
}
|
2226 |
|
|
/* If two operands must match, because they are really a single
|
2227 |
|
|
operand of an assembler insn, then two postincrements are invalid
|
2228 |
|
|
because the assembler insn would increment only once.
|
2229 |
|
|
On the other hand, a postincrement matches ordinary indexing
|
2230 |
|
|
if the postincrement is the output operand. */
|
2231 |
|
|
if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
|
2232 |
|
|
return operands_match_p (XEXP (x, 0), y);
|
2233 |
|
|
/* Two preincrements are invalid
|
2234 |
|
|
because the assembler insn would increment only once.
|
2235 |
|
|
On the other hand, a preincrement matches ordinary indexing
|
2236 |
|
|
if the preincrement is the input operand.
|
2237 |
|
|
In this case, return 2, since some callers need to do special
|
2238 |
|
|
things when this happens. */
|
2239 |
|
|
if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
|
2240 |
|
|
|| GET_CODE (y) == PRE_MODIFY)
|
2241 |
|
|
return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
|
2242 |
|
|
|
2243 |
|
|
slow:
|
2244 |
|
|
|
2245 |
|
|
/* Now we have disposed of all the cases in which different rtx codes
|
2246 |
|
|
can match. */
|
2247 |
|
|
if (code != GET_CODE (y))
|
2248 |
|
|
return 0;
|
2249 |
|
|
|
2250 |
|
|
/* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
|
2251 |
|
|
if (GET_MODE (x) != GET_MODE (y))
|
2252 |
|
|
return 0;
|
2253 |
|
|
|
2254 |
|
|
/* MEMs refering to different address space are not equivalent. */
|
2255 |
|
|
if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
|
2256 |
|
|
return 0;
|
2257 |
|
|
|
2258 |
|
|
switch (code)
|
2259 |
|
|
{
|
2260 |
|
|
case CONST_INT:
|
2261 |
|
|
case CONST_DOUBLE:
|
2262 |
|
|
case CONST_FIXED:
|
2263 |
|
|
return 0;
|
2264 |
|
|
|
2265 |
|
|
case LABEL_REF:
|
2266 |
|
|
return XEXP (x, 0) == XEXP (y, 0);
|
2267 |
|
|
case SYMBOL_REF:
|
2268 |
|
|
return XSTR (x, 0) == XSTR (y, 0);
|
2269 |
|
|
|
2270 |
|
|
default:
|
2271 |
|
|
break;
|
2272 |
|
|
}
|
2273 |
|
|
|
2274 |
|
|
/* Compare the elements. If any pair of corresponding elements
|
2275 |
|
|
fail to match, return 0 for the whole things. */
|
2276 |
|
|
|
2277 |
|
|
success_2 = 0;
|
2278 |
|
|
fmt = GET_RTX_FORMAT (code);
|
2279 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
2280 |
|
|
{
|
2281 |
|
|
int val, j;
|
2282 |
|
|
switch (fmt[i])
|
2283 |
|
|
{
|
2284 |
|
|
case 'w':
|
2285 |
|
|
if (XWINT (x, i) != XWINT (y, i))
|
2286 |
|
|
return 0;
|
2287 |
|
|
break;
|
2288 |
|
|
|
2289 |
|
|
case 'i':
|
2290 |
|
|
if (XINT (x, i) != XINT (y, i))
|
2291 |
|
|
return 0;
|
2292 |
|
|
break;
|
2293 |
|
|
|
2294 |
|
|
case 'e':
|
2295 |
|
|
val = operands_match_p (XEXP (x, i), XEXP (y, i));
|
2296 |
|
|
if (val == 0)
|
2297 |
|
|
return 0;
|
2298 |
|
|
/* If any subexpression returns 2,
|
2299 |
|
|
we should return 2 if we are successful. */
|
2300 |
|
|
if (val == 2)
|
2301 |
|
|
success_2 = 1;
|
2302 |
|
|
break;
|
2303 |
|
|
|
2304 |
|
|
case '0':
|
2305 |
|
|
break;
|
2306 |
|
|
|
2307 |
|
|
case 'E':
|
2308 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
2309 |
|
|
return 0;
|
2310 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; --j)
|
2311 |
|
|
{
|
2312 |
|
|
val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
|
2313 |
|
|
if (val == 0)
|
2314 |
|
|
return 0;
|
2315 |
|
|
if (val == 2)
|
2316 |
|
|
success_2 = 1;
|
2317 |
|
|
}
|
2318 |
|
|
break;
|
2319 |
|
|
|
2320 |
|
|
/* It is believed that rtx's at this level will never
|
2321 |
|
|
contain anything but integers and other rtx's,
|
2322 |
|
|
except for within LABEL_REFs and SYMBOL_REFs. */
|
2323 |
|
|
default:
|
2324 |
|
|
gcc_unreachable ();
|
2325 |
|
|
}
|
2326 |
|
|
}
|
2327 |
|
|
return 1 + success_2;
|
2328 |
|
|
}
|
2329 |
|
|
|
2330 |
|
|
/* Describe the range of registers or memory referenced by X.
|
2331 |
|
|
If X is a register, set REG_FLAG and put the first register
|
2332 |
|
|
number into START and the last plus one into END.
|
2333 |
|
|
If X is a memory reference, put a base address into BASE
|
2334 |
|
|
and a range of integer offsets into START and END.
|
2335 |
|
|
If X is pushing on the stack, we can assume it causes no trouble,
|
2336 |
|
|
so we set the SAFE field. */
|
2337 |
|
|
|
2338 |
|
|
static struct decomposition
|
2339 |
|
|
decompose (rtx x)
|
2340 |
|
|
{
|
2341 |
|
|
struct decomposition val;
|
2342 |
|
|
int all_const = 0;
|
2343 |
|
|
|
2344 |
|
|
memset (&val, 0, sizeof (val));
|
2345 |
|
|
|
2346 |
|
|
switch (GET_CODE (x))
|
2347 |
|
|
{
|
2348 |
|
|
case MEM:
|
2349 |
|
|
{
|
2350 |
|
|
rtx base = NULL_RTX, offset = 0;
|
2351 |
|
|
rtx addr = XEXP (x, 0);
|
2352 |
|
|
|
2353 |
|
|
if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
|
2354 |
|
|
|| GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
|
2355 |
|
|
{
|
2356 |
|
|
val.base = XEXP (addr, 0);
|
2357 |
|
|
val.start = -GET_MODE_SIZE (GET_MODE (x));
|
2358 |
|
|
val.end = GET_MODE_SIZE (GET_MODE (x));
|
2359 |
|
|
val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
|
2360 |
|
|
return val;
|
2361 |
|
|
}
|
2362 |
|
|
|
2363 |
|
|
if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
|
2364 |
|
|
{
|
2365 |
|
|
if (GET_CODE (XEXP (addr, 1)) == PLUS
|
2366 |
|
|
&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
|
2367 |
|
|
&& CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
|
2368 |
|
|
{
|
2369 |
|
|
val.base = XEXP (addr, 0);
|
2370 |
|
|
val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
|
2371 |
|
|
val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
|
2372 |
|
|
val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
|
2373 |
|
|
return val;
|
2374 |
|
|
}
|
2375 |
|
|
}
|
2376 |
|
|
|
2377 |
|
|
if (GET_CODE (addr) == CONST)
|
2378 |
|
|
{
|
2379 |
|
|
addr = XEXP (addr, 0);
|
2380 |
|
|
all_const = 1;
|
2381 |
|
|
}
|
2382 |
|
|
if (GET_CODE (addr) == PLUS)
|
2383 |
|
|
{
|
2384 |
|
|
if (CONSTANT_P (XEXP (addr, 0)))
|
2385 |
|
|
{
|
2386 |
|
|
base = XEXP (addr, 1);
|
2387 |
|
|
offset = XEXP (addr, 0);
|
2388 |
|
|
}
|
2389 |
|
|
else if (CONSTANT_P (XEXP (addr, 1)))
|
2390 |
|
|
{
|
2391 |
|
|
base = XEXP (addr, 0);
|
2392 |
|
|
offset = XEXP (addr, 1);
|
2393 |
|
|
}
|
2394 |
|
|
}
|
2395 |
|
|
|
2396 |
|
|
if (offset == 0)
|
2397 |
|
|
{
|
2398 |
|
|
base = addr;
|
2399 |
|
|
offset = const0_rtx;
|
2400 |
|
|
}
|
2401 |
|
|
if (GET_CODE (offset) == CONST)
|
2402 |
|
|
offset = XEXP (offset, 0);
|
2403 |
|
|
if (GET_CODE (offset) == PLUS)
|
2404 |
|
|
{
|
2405 |
|
|
if (CONST_INT_P (XEXP (offset, 0)))
|
2406 |
|
|
{
|
2407 |
|
|
base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
|
2408 |
|
|
offset = XEXP (offset, 0);
|
2409 |
|
|
}
|
2410 |
|
|
else if (CONST_INT_P (XEXP (offset, 1)))
|
2411 |
|
|
{
|
2412 |
|
|
base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
|
2413 |
|
|
offset = XEXP (offset, 1);
|
2414 |
|
|
}
|
2415 |
|
|
else
|
2416 |
|
|
{
|
2417 |
|
|
base = gen_rtx_PLUS (GET_MODE (base), base, offset);
|
2418 |
|
|
offset = const0_rtx;
|
2419 |
|
|
}
|
2420 |
|
|
}
|
2421 |
|
|
else if (!CONST_INT_P (offset))
|
2422 |
|
|
{
|
2423 |
|
|
base = gen_rtx_PLUS (GET_MODE (base), base, offset);
|
2424 |
|
|
offset = const0_rtx;
|
2425 |
|
|
}
|
2426 |
|
|
|
2427 |
|
|
if (all_const && GET_CODE (base) == PLUS)
|
2428 |
|
|
base = gen_rtx_CONST (GET_MODE (base), base);
|
2429 |
|
|
|
2430 |
|
|
gcc_assert (CONST_INT_P (offset));
|
2431 |
|
|
|
2432 |
|
|
val.start = INTVAL (offset);
|
2433 |
|
|
val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
|
2434 |
|
|
val.base = base;
|
2435 |
|
|
}
|
2436 |
|
|
break;
|
2437 |
|
|
|
2438 |
|
|
case REG:
|
2439 |
|
|
val.reg_flag = 1;
|
2440 |
|
|
val.start = true_regnum (x);
|
2441 |
|
|
if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
|
2442 |
|
|
{
|
2443 |
|
|
/* A pseudo with no hard reg. */
|
2444 |
|
|
val.start = REGNO (x);
|
2445 |
|
|
val.end = val.start + 1;
|
2446 |
|
|
}
|
2447 |
|
|
else
|
2448 |
|
|
/* A hard reg. */
|
2449 |
|
|
val.end = end_hard_regno (GET_MODE (x), val.start);
|
2450 |
|
|
break;
|
2451 |
|
|
|
2452 |
|
|
case SUBREG:
|
2453 |
|
|
if (!REG_P (SUBREG_REG (x)))
|
2454 |
|
|
/* This could be more precise, but it's good enough. */
|
2455 |
|
|
return decompose (SUBREG_REG (x));
|
2456 |
|
|
val.reg_flag = 1;
|
2457 |
|
|
val.start = true_regnum (x);
|
2458 |
|
|
if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
|
2459 |
|
|
return decompose (SUBREG_REG (x));
|
2460 |
|
|
else
|
2461 |
|
|
/* A hard reg. */
|
2462 |
|
|
val.end = val.start + subreg_nregs (x);
|
2463 |
|
|
break;
|
2464 |
|
|
|
2465 |
|
|
case SCRATCH:
|
2466 |
|
|
/* This hasn't been assigned yet, so it can't conflict yet. */
|
2467 |
|
|
val.safe = 1;
|
2468 |
|
|
break;
|
2469 |
|
|
|
2470 |
|
|
default:
|
2471 |
|
|
gcc_assert (CONSTANT_P (x));
|
2472 |
|
|
val.safe = 1;
|
2473 |
|
|
break;
|
2474 |
|
|
}
|
2475 |
|
|
return val;
|
2476 |
|
|
}
|
2477 |
|
|
|
2478 |
|
|
/* Return 1 if altering Y will not modify the value of X.
|
2479 |
|
|
Y is also described by YDATA, which should be decompose (Y). */
|
2480 |
|
|
|
2481 |
|
|
static int
|
2482 |
|
|
immune_p (rtx x, rtx y, struct decomposition ydata)
|
2483 |
|
|
{
|
2484 |
|
|
struct decomposition xdata;
|
2485 |
|
|
|
2486 |
|
|
if (ydata.reg_flag)
|
2487 |
|
|
return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
|
2488 |
|
|
if (ydata.safe)
|
2489 |
|
|
return 1;
|
2490 |
|
|
|
2491 |
|
|
gcc_assert (MEM_P (y));
|
2492 |
|
|
/* If Y is memory and X is not, Y can't affect X. */
|
2493 |
|
|
if (!MEM_P (x))
|
2494 |
|
|
return 1;
|
2495 |
|
|
|
2496 |
|
|
xdata = decompose (x);
|
2497 |
|
|
|
2498 |
|
|
if (! rtx_equal_p (xdata.base, ydata.base))
|
2499 |
|
|
{
|
2500 |
|
|
/* If bases are distinct symbolic constants, there is no overlap. */
|
2501 |
|
|
if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
|
2502 |
|
|
return 1;
|
2503 |
|
|
/* Constants and stack slots never overlap. */
|
2504 |
|
|
if (CONSTANT_P (xdata.base)
|
2505 |
|
|
&& (ydata.base == frame_pointer_rtx
|
2506 |
|
|
|| ydata.base == hard_frame_pointer_rtx
|
2507 |
|
|
|| ydata.base == stack_pointer_rtx))
|
2508 |
|
|
return 1;
|
2509 |
|
|
if (CONSTANT_P (ydata.base)
|
2510 |
|
|
&& (xdata.base == frame_pointer_rtx
|
2511 |
|
|
|| xdata.base == hard_frame_pointer_rtx
|
2512 |
|
|
|| xdata.base == stack_pointer_rtx))
|
2513 |
|
|
return 1;
|
2514 |
|
|
/* If either base is variable, we don't know anything. */
|
2515 |
|
|
return 0;
|
2516 |
|
|
}
|
2517 |
|
|
|
2518 |
|
|
return (xdata.start >= ydata.end || ydata.start >= xdata.end);
|
2519 |
|
|
}
|
2520 |
|
|
|
2521 |
|
|
/* Similar, but calls decompose. */
|
2522 |
|
|
|
2523 |
|
|
int
|
2524 |
|
|
safe_from_earlyclobber (rtx op, rtx clobber)
|
2525 |
|
|
{
|
2526 |
|
|
struct decomposition early_data;
|
2527 |
|
|
|
2528 |
|
|
early_data = decompose (clobber);
|
2529 |
|
|
return immune_p (op, clobber, early_data);
|
2530 |
|
|
}
|
2531 |
|
|
|
2532 |
|
|
/* Main entry point of this file: search the body of INSN
|
2533 |
|
|
for values that need reloading and record them with push_reload.
|
2534 |
|
|
REPLACE nonzero means record also where the values occur
|
2535 |
|
|
so that subst_reloads can be used.
|
2536 |
|
|
|
2537 |
|
|
IND_LEVELS says how many levels of indirection are supported by this
|
2538 |
|
|
machine; a value of zero means that a memory reference is not a valid
|
2539 |
|
|
memory address.
|
2540 |
|
|
|
2541 |
|
|
LIVE_KNOWN says we have valid information about which hard
|
2542 |
|
|
regs are live at each point in the program; this is true when
|
2543 |
|
|
we are called from global_alloc but false when stupid register
|
2544 |
|
|
allocation has been done.
|
2545 |
|
|
|
2546 |
|
|
RELOAD_REG_P if nonzero is a vector indexed by hard reg number
|
2547 |
|
|
which is nonnegative if the reg has been commandeered for reloading into.
|
2548 |
|
|
It is copied into STATIC_RELOAD_REG_P and referenced from there
|
2549 |
|
|
by various subroutines.
|
2550 |
|
|
|
2551 |
|
|
Return TRUE if some operands need to be changed, because of swapping
|
2552 |
|
|
commutative operands, reg_equiv_address substitution, or whatever. */
|
2553 |
|
|
|
2554 |
|
|
int
|
2555 |
|
|
find_reloads (rtx insn, int replace, int ind_levels, int live_known,
|
2556 |
|
|
short *reload_reg_p)
|
2557 |
|
|
{
|
2558 |
|
|
int insn_code_number;
|
2559 |
|
|
int i, j;
|
2560 |
|
|
int noperands;
|
2561 |
|
|
/* These start out as the constraints for the insn
|
2562 |
|
|
and they are chewed up as we consider alternatives. */
|
2563 |
|
|
const char *constraints[MAX_RECOG_OPERANDS];
|
2564 |
|
|
/* These are the preferred classes for an operand, or NO_REGS if it isn't
|
2565 |
|
|
a register. */
|
2566 |
|
|
enum reg_class preferred_class[MAX_RECOG_OPERANDS];
|
2567 |
|
|
char pref_or_nothing[MAX_RECOG_OPERANDS];
|
2568 |
|
|
/* Nonzero for a MEM operand whose entire address needs a reload.
|
2569 |
|
|
May be -1 to indicate the entire address may or may not need a reload. */
|
2570 |
|
|
int address_reloaded[MAX_RECOG_OPERANDS];
|
2571 |
|
|
/* Nonzero for an address operand that needs to be completely reloaded.
|
2572 |
|
|
May be -1 to indicate the entire operand may or may not need a reload. */
|
2573 |
|
|
int address_operand_reloaded[MAX_RECOG_OPERANDS];
|
2574 |
|
|
/* Value of enum reload_type to use for operand. */
|
2575 |
|
|
enum reload_type operand_type[MAX_RECOG_OPERANDS];
|
2576 |
|
|
/* Value of enum reload_type to use within address of operand. */
|
2577 |
|
|
enum reload_type address_type[MAX_RECOG_OPERANDS];
|
2578 |
|
|
/* Save the usage of each operand. */
|
2579 |
|
|
enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
|
2580 |
|
|
int no_input_reloads = 0, no_output_reloads = 0;
|
2581 |
|
|
int n_alternatives;
|
2582 |
|
|
enum reg_class this_alternative[MAX_RECOG_OPERANDS];
|
2583 |
|
|
char this_alternative_match_win[MAX_RECOG_OPERANDS];
|
2584 |
|
|
char this_alternative_win[MAX_RECOG_OPERANDS];
|
2585 |
|
|
char this_alternative_offmemok[MAX_RECOG_OPERANDS];
|
2586 |
|
|
char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
|
2587 |
|
|
int this_alternative_matches[MAX_RECOG_OPERANDS];
|
2588 |
|
|
int swapped;
|
2589 |
|
|
int goal_alternative[MAX_RECOG_OPERANDS];
|
2590 |
|
|
int this_alternative_number;
|
2591 |
|
|
int goal_alternative_number = 0;
|
2592 |
|
|
int operand_reloadnum[MAX_RECOG_OPERANDS];
|
2593 |
|
|
int goal_alternative_matches[MAX_RECOG_OPERANDS];
|
2594 |
|
|
int goal_alternative_matched[MAX_RECOG_OPERANDS];
|
2595 |
|
|
char goal_alternative_match_win[MAX_RECOG_OPERANDS];
|
2596 |
|
|
char goal_alternative_win[MAX_RECOG_OPERANDS];
|
2597 |
|
|
char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
|
2598 |
|
|
char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
|
2599 |
|
|
int goal_alternative_swapped;
|
2600 |
|
|
int best;
|
2601 |
|
|
int best_small_class_operands_num;
|
2602 |
|
|
int commutative;
|
2603 |
|
|
char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
|
2604 |
|
|
rtx substed_operand[MAX_RECOG_OPERANDS];
|
2605 |
|
|
rtx body = PATTERN (insn);
|
2606 |
|
|
rtx set = single_set (insn);
|
2607 |
|
|
int goal_earlyclobber = 0, this_earlyclobber;
|
2608 |
|
|
enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
|
2609 |
|
|
int retval = 0;
|
2610 |
|
|
|
2611 |
|
|
this_insn = insn;
|
2612 |
|
|
n_reloads = 0;
|
2613 |
|
|
n_replacements = 0;
|
2614 |
|
|
n_earlyclobbers = 0;
|
2615 |
|
|
replace_reloads = replace;
|
2616 |
|
|
hard_regs_live_known = live_known;
|
2617 |
|
|
static_reload_reg_p = reload_reg_p;
|
2618 |
|
|
|
2619 |
|
|
/* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
|
2620 |
|
|
neither are insns that SET cc0. Insns that use CC0 are not allowed
|
2621 |
|
|
to have any input reloads. */
|
2622 |
|
|
if (JUMP_P (insn) || CALL_P (insn))
|
2623 |
|
|
no_output_reloads = 1;
|
2624 |
|
|
|
2625 |
|
|
#ifdef HAVE_cc0
|
2626 |
|
|
if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
|
2627 |
|
|
no_input_reloads = 1;
|
2628 |
|
|
if (reg_set_p (cc0_rtx, PATTERN (insn)))
|
2629 |
|
|
no_output_reloads = 1;
|
2630 |
|
|
#endif
|
2631 |
|
|
|
2632 |
|
|
#ifdef SECONDARY_MEMORY_NEEDED
|
2633 |
|
|
/* The eliminated forms of any secondary memory locations are per-insn, so
|
2634 |
|
|
clear them out here. */
|
2635 |
|
|
|
2636 |
|
|
if (secondary_memlocs_elim_used)
|
2637 |
|
|
{
|
2638 |
|
|
memset (secondary_memlocs_elim, 0,
|
2639 |
|
|
sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
|
2640 |
|
|
secondary_memlocs_elim_used = 0;
|
2641 |
|
|
}
|
2642 |
|
|
#endif
|
2643 |
|
|
|
2644 |
|
|
/* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
|
2645 |
|
|
is cheap to move between them. If it is not, there may not be an insn
|
2646 |
|
|
to do the copy, so we may need a reload. */
|
2647 |
|
|
if (GET_CODE (body) == SET
|
2648 |
|
|
&& REG_P (SET_DEST (body))
|
2649 |
|
|
&& REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
|
2650 |
|
|
&& REG_P (SET_SRC (body))
|
2651 |
|
|
&& REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
|
2652 |
|
|
&& REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
|
2653 |
|
|
REGNO_REG_CLASS (REGNO (SET_SRC (body))),
|
2654 |
|
|
REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
|
2655 |
|
|
return 0;
|
2656 |
|
|
|
2657 |
|
|
extract_insn (insn);
|
2658 |
|
|
|
2659 |
|
|
noperands = reload_n_operands = recog_data.n_operands;
|
2660 |
|
|
n_alternatives = recog_data.n_alternatives;
|
2661 |
|
|
|
2662 |
|
|
/* Just return "no reloads" if insn has no operands with constraints. */
|
2663 |
|
|
if (noperands == 0 || n_alternatives == 0)
|
2664 |
|
|
return 0;
|
2665 |
|
|
|
2666 |
|
|
insn_code_number = INSN_CODE (insn);
|
2667 |
|
|
this_insn_is_asm = insn_code_number < 0;
|
2668 |
|
|
|
2669 |
|
|
memcpy (operand_mode, recog_data.operand_mode,
|
2670 |
|
|
noperands * sizeof (enum machine_mode));
|
2671 |
|
|
memcpy (constraints, recog_data.constraints,
|
2672 |
|
|
noperands * sizeof (const char *));
|
2673 |
|
|
|
2674 |
|
|
commutative = -1;
|
2675 |
|
|
|
2676 |
|
|
/* If we will need to know, later, whether some pair of operands
|
2677 |
|
|
are the same, we must compare them now and save the result.
|
2678 |
|
|
Reloading the base and index registers will clobber them
|
2679 |
|
|
and afterward they will fail to match. */
|
2680 |
|
|
|
2681 |
|
|
for (i = 0; i < noperands; i++)
|
2682 |
|
|
{
|
2683 |
|
|
const char *p;
|
2684 |
|
|
int c;
|
2685 |
|
|
char *end;
|
2686 |
|
|
|
2687 |
|
|
substed_operand[i] = recog_data.operand[i];
|
2688 |
|
|
p = constraints[i];
|
2689 |
|
|
|
2690 |
|
|
modified[i] = RELOAD_READ;
|
2691 |
|
|
|
2692 |
|
|
/* Scan this operand's constraint to see if it is an output operand,
|
2693 |
|
|
an in-out operand, is commutative, or should match another. */
|
2694 |
|
|
|
2695 |
|
|
while ((c = *p))
|
2696 |
|
|
{
|
2697 |
|
|
p += CONSTRAINT_LEN (c, p);
|
2698 |
|
|
switch (c)
|
2699 |
|
|
{
|
2700 |
|
|
case '=':
|
2701 |
|
|
modified[i] = RELOAD_WRITE;
|
2702 |
|
|
break;
|
2703 |
|
|
case '+':
|
2704 |
|
|
modified[i] = RELOAD_READ_WRITE;
|
2705 |
|
|
break;
|
2706 |
|
|
case '%':
|
2707 |
|
|
{
|
2708 |
|
|
/* The last operand should not be marked commutative. */
|
2709 |
|
|
gcc_assert (i != noperands - 1);
|
2710 |
|
|
|
2711 |
|
|
/* We currently only support one commutative pair of
|
2712 |
|
|
operands. Some existing asm code currently uses more
|
2713 |
|
|
than one pair. Previously, that would usually work,
|
2714 |
|
|
but sometimes it would crash the compiler. We
|
2715 |
|
|
continue supporting that case as well as we can by
|
2716 |
|
|
silently ignoring all but the first pair. In the
|
2717 |
|
|
future we may handle it correctly. */
|
2718 |
|
|
if (commutative < 0)
|
2719 |
|
|
commutative = i;
|
2720 |
|
|
else
|
2721 |
|
|
gcc_assert (this_insn_is_asm);
|
2722 |
|
|
}
|
2723 |
|
|
break;
|
2724 |
|
|
/* Use of ISDIGIT is tempting here, but it may get expensive because
|
2725 |
|
|
of locale support we don't want. */
|
2726 |
|
|
case '0': case '1': case '2': case '3': case '4':
|
2727 |
|
|
case '5': case '6': case '7': case '8': case '9':
|
2728 |
|
|
{
|
2729 |
|
|
c = strtoul (p - 1, &end, 10);
|
2730 |
|
|
p = end;
|
2731 |
|
|
|
2732 |
|
|
operands_match[c][i]
|
2733 |
|
|
= operands_match_p (recog_data.operand[c],
|
2734 |
|
|
recog_data.operand[i]);
|
2735 |
|
|
|
2736 |
|
|
/* An operand may not match itself. */
|
2737 |
|
|
gcc_assert (c != i);
|
2738 |
|
|
|
2739 |
|
|
/* If C can be commuted with C+1, and C might need to match I,
|
2740 |
|
|
then C+1 might also need to match I. */
|
2741 |
|
|
if (commutative >= 0)
|
2742 |
|
|
{
|
2743 |
|
|
if (c == commutative || c == commutative + 1)
|
2744 |
|
|
{
|
2745 |
|
|
int other = c + (c == commutative ? 1 : -1);
|
2746 |
|
|
operands_match[other][i]
|
2747 |
|
|
= operands_match_p (recog_data.operand[other],
|
2748 |
|
|
recog_data.operand[i]);
|
2749 |
|
|
}
|
2750 |
|
|
if (i == commutative || i == commutative + 1)
|
2751 |
|
|
{
|
2752 |
|
|
int other = i + (i == commutative ? 1 : -1);
|
2753 |
|
|
operands_match[c][other]
|
2754 |
|
|
= operands_match_p (recog_data.operand[c],
|
2755 |
|
|
recog_data.operand[other]);
|
2756 |
|
|
}
|
2757 |
|
|
/* Note that C is supposed to be less than I.
|
2758 |
|
|
No need to consider altering both C and I because in
|
2759 |
|
|
that case we would alter one into the other. */
|
2760 |
|
|
}
|
2761 |
|
|
}
|
2762 |
|
|
}
|
2763 |
|
|
}
|
2764 |
|
|
}
|
2765 |
|
|
|
2766 |
|
|
/* Examine each operand that is a memory reference or memory address
|
2767 |
|
|
and reload parts of the addresses into index registers.
|
2768 |
|
|
Also here any references to pseudo regs that didn't get hard regs
|
2769 |
|
|
but are equivalent to constants get replaced in the insn itself
|
2770 |
|
|
with those constants. Nobody will ever see them again.
|
2771 |
|
|
|
2772 |
|
|
Finally, set up the preferred classes of each operand. */
|
2773 |
|
|
|
2774 |
|
|
for (i = 0; i < noperands; i++)
|
2775 |
|
|
{
|
2776 |
|
|
RTX_CODE code = GET_CODE (recog_data.operand[i]);
|
2777 |
|
|
|
2778 |
|
|
address_reloaded[i] = 0;
|
2779 |
|
|
address_operand_reloaded[i] = 0;
|
2780 |
|
|
operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
|
2781 |
|
|
: modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
|
2782 |
|
|
: RELOAD_OTHER);
|
2783 |
|
|
address_type[i]
|
2784 |
|
|
= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
|
2785 |
|
|
: modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
|
2786 |
|
|
: RELOAD_OTHER);
|
2787 |
|
|
|
2788 |
|
|
if (*constraints[i] == 0)
|
2789 |
|
|
/* Ignore things like match_operator operands. */
|
2790 |
|
|
;
|
2791 |
|
|
else if (constraints[i][0] == 'p'
|
2792 |
|
|
|| EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
|
2793 |
|
|
{
|
2794 |
|
|
address_operand_reloaded[i]
|
2795 |
|
|
= find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
|
2796 |
|
|
recog_data.operand[i],
|
2797 |
|
|
recog_data.operand_loc[i],
|
2798 |
|
|
i, operand_type[i], ind_levels, insn);
|
2799 |
|
|
|
2800 |
|
|
/* If we now have a simple operand where we used to have a
|
2801 |
|
|
PLUS or MULT, re-recognize and try again. */
|
2802 |
|
|
if ((OBJECT_P (*recog_data.operand_loc[i])
|
2803 |
|
|
|| GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
|
2804 |
|
|
&& (GET_CODE (recog_data.operand[i]) == MULT
|
2805 |
|
|
|| GET_CODE (recog_data.operand[i]) == PLUS))
|
2806 |
|
|
{
|
2807 |
|
|
INSN_CODE (insn) = -1;
|
2808 |
|
|
retval = find_reloads (insn, replace, ind_levels, live_known,
|
2809 |
|
|
reload_reg_p);
|
2810 |
|
|
return retval;
|
2811 |
|
|
}
|
2812 |
|
|
|
2813 |
|
|
recog_data.operand[i] = *recog_data.operand_loc[i];
|
2814 |
|
|
substed_operand[i] = recog_data.operand[i];
|
2815 |
|
|
|
2816 |
|
|
/* Address operands are reloaded in their existing mode,
|
2817 |
|
|
no matter what is specified in the machine description. */
|
2818 |
|
|
operand_mode[i] = GET_MODE (recog_data.operand[i]);
|
2819 |
|
|
}
|
2820 |
|
|
else if (code == MEM)
|
2821 |
|
|
{
|
2822 |
|
|
address_reloaded[i]
|
2823 |
|
|
= find_reloads_address (GET_MODE (recog_data.operand[i]),
|
2824 |
|
|
recog_data.operand_loc[i],
|
2825 |
|
|
XEXP (recog_data.operand[i], 0),
|
2826 |
|
|
&XEXP (recog_data.operand[i], 0),
|
2827 |
|
|
i, address_type[i], ind_levels, insn);
|
2828 |
|
|
recog_data.operand[i] = *recog_data.operand_loc[i];
|
2829 |
|
|
substed_operand[i] = recog_data.operand[i];
|
2830 |
|
|
}
|
2831 |
|
|
else if (code == SUBREG)
|
2832 |
|
|
{
|
2833 |
|
|
rtx reg = SUBREG_REG (recog_data.operand[i]);
|
2834 |
|
|
rtx op
|
2835 |
|
|
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
|
2836 |
|
|
ind_levels,
|
2837 |
|
|
set != 0
|
2838 |
|
|
&& &SET_DEST (set) == recog_data.operand_loc[i],
|
2839 |
|
|
insn,
|
2840 |
|
|
&address_reloaded[i]);
|
2841 |
|
|
|
2842 |
|
|
/* If we made a MEM to load (a part of) the stackslot of a pseudo
|
2843 |
|
|
that didn't get a hard register, emit a USE with a REG_EQUAL
|
2844 |
|
|
note in front so that we might inherit a previous, possibly
|
2845 |
|
|
wider reload. */
|
2846 |
|
|
|
2847 |
|
|
if (replace
|
2848 |
|
|
&& MEM_P (op)
|
2849 |
|
|
&& REG_P (reg)
|
2850 |
|
|
&& (GET_MODE_SIZE (GET_MODE (reg))
|
2851 |
|
|
>= GET_MODE_SIZE (GET_MODE (op)))
|
2852 |
|
|
&& reg_equiv_constant[REGNO (reg)] == 0)
|
2853 |
|
|
set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
|
2854 |
|
|
insn),
|
2855 |
|
|
REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
|
2856 |
|
|
|
2857 |
|
|
substed_operand[i] = recog_data.operand[i] = op;
|
2858 |
|
|
}
|
2859 |
|
|
else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
|
2860 |
|
|
/* We can get a PLUS as an "operand" as a result of register
|
2861 |
|
|
elimination. See eliminate_regs and gen_reload. We handle
|
2862 |
|
|
a unary operator by reloading the operand. */
|
2863 |
|
|
substed_operand[i] = recog_data.operand[i]
|
2864 |
|
|
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
|
2865 |
|
|
ind_levels, 0, insn,
|
2866 |
|
|
&address_reloaded[i]);
|
2867 |
|
|
else if (code == REG)
|
2868 |
|
|
{
|
2869 |
|
|
/* This is equivalent to calling find_reloads_toplev.
|
2870 |
|
|
The code is duplicated for speed.
|
2871 |
|
|
When we find a pseudo always equivalent to a constant,
|
2872 |
|
|
we replace it by the constant. We must be sure, however,
|
2873 |
|
|
that we don't try to replace it in the insn in which it
|
2874 |
|
|
is being set. */
|
2875 |
|
|
int regno = REGNO (recog_data.operand[i]);
|
2876 |
|
|
if (reg_equiv_constant[regno] != 0
|
2877 |
|
|
&& (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
|
2878 |
|
|
{
|
2879 |
|
|
/* Record the existing mode so that the check if constants are
|
2880 |
|
|
allowed will work when operand_mode isn't specified. */
|
2881 |
|
|
|
2882 |
|
|
if (operand_mode[i] == VOIDmode)
|
2883 |
|
|
operand_mode[i] = GET_MODE (recog_data.operand[i]);
|
2884 |
|
|
|
2885 |
|
|
substed_operand[i] = recog_data.operand[i]
|
2886 |
|
|
= reg_equiv_constant[regno];
|
2887 |
|
|
}
|
2888 |
|
|
if (reg_equiv_memory_loc[regno] != 0
|
2889 |
|
|
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
|
2890 |
|
|
/* We need not give a valid is_set_dest argument since the case
|
2891 |
|
|
of a constant equivalence was checked above. */
|
2892 |
|
|
substed_operand[i] = recog_data.operand[i]
|
2893 |
|
|
= find_reloads_toplev (recog_data.operand[i], i, address_type[i],
|
2894 |
|
|
ind_levels, 0, insn,
|
2895 |
|
|
&address_reloaded[i]);
|
2896 |
|
|
}
|
2897 |
|
|
/* If the operand is still a register (we didn't replace it with an
|
2898 |
|
|
equivalent), get the preferred class to reload it into. */
|
2899 |
|
|
code = GET_CODE (recog_data.operand[i]);
|
2900 |
|
|
preferred_class[i]
|
2901 |
|
|
= ((code == REG && REGNO (recog_data.operand[i])
|
2902 |
|
|
>= FIRST_PSEUDO_REGISTER)
|
2903 |
|
|
? reg_preferred_class (REGNO (recog_data.operand[i]))
|
2904 |
|
|
: NO_REGS);
|
2905 |
|
|
pref_or_nothing[i]
|
2906 |
|
|
= (code == REG
|
2907 |
|
|
&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
|
2908 |
|
|
&& reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
|
2909 |
|
|
}
|
2910 |
|
|
|
2911 |
|
|
/* If this is simply a copy from operand 1 to operand 0, merge the
|
2912 |
|
|
preferred classes for the operands. */
|
2913 |
|
|
if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
|
2914 |
|
|
&& recog_data.operand[1] == SET_SRC (set))
|
2915 |
|
|
{
|
2916 |
|
|
preferred_class[0] = preferred_class[1]
|
2917 |
|
|
= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
|
2918 |
|
|
pref_or_nothing[0] |= pref_or_nothing[1];
|
2919 |
|
|
pref_or_nothing[1] |= pref_or_nothing[0];
|
2920 |
|
|
}
|
2921 |
|
|
|
2922 |
|
|
/* Now see what we need for pseudo-regs that didn't get hard regs
|
2923 |
|
|
or got the wrong kind of hard reg. For this, we must consider
|
2924 |
|
|
all the operands together against the register constraints. */
|
2925 |
|
|
|
2926 |
|
|
best = MAX_RECOG_OPERANDS * 2 + 600;
|
2927 |
|
|
best_small_class_operands_num = 0;
|
2928 |
|
|
|
2929 |
|
|
swapped = 0;
|
2930 |
|
|
goal_alternative_swapped = 0;
|
2931 |
|
|
try_swapped:
|
2932 |
|
|
|
2933 |
|
|
/* The constraints are made of several alternatives.
|
2934 |
|
|
Each operand's constraint looks like foo,bar,... with commas
|
2935 |
|
|
separating the alternatives. The first alternatives for all
|
2936 |
|
|
operands go together, the second alternatives go together, etc.
|
2937 |
|
|
|
2938 |
|
|
First loop over alternatives. */
|
2939 |
|
|
|
2940 |
|
|
for (this_alternative_number = 0;
|
2941 |
|
|
this_alternative_number < n_alternatives;
|
2942 |
|
|
this_alternative_number++)
|
2943 |
|
|
{
|
2944 |
|
|
/* Loop over operands for one constraint alternative. */
|
2945 |
|
|
/* LOSERS counts those that don't fit this alternative
|
2946 |
|
|
and would require loading. */
|
2947 |
|
|
int losers = 0;
|
2948 |
|
|
/* BAD is set to 1 if it some operand can't fit this alternative
|
2949 |
|
|
even after reloading. */
|
2950 |
|
|
int bad = 0;
|
2951 |
|
|
/* REJECT is a count of how undesirable this alternative says it is
|
2952 |
|
|
if any reloading is required. If the alternative matches exactly
|
2953 |
|
|
then REJECT is ignored, but otherwise it gets this much
|
2954 |
|
|
counted against it in addition to the reloading needed. Each
|
2955 |
|
|
? counts three times here since we want the disparaging caused by
|
2956 |
|
|
a bad register class to only count 1/3 as much. */
|
2957 |
|
|
int reject = 0;
|
2958 |
|
|
|
2959 |
|
|
if (!recog_data.alternative_enabled_p[this_alternative_number])
|
2960 |
|
|
{
|
2961 |
|
|
int i;
|
2962 |
|
|
|
2963 |
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
2964 |
|
|
constraints[i] = skip_alternative (constraints[i]);
|
2965 |
|
|
|
2966 |
|
|
continue;
|
2967 |
|
|
}
|
2968 |
|
|
|
2969 |
|
|
this_earlyclobber = 0;
|
2970 |
|
|
|
2971 |
|
|
for (i = 0; i < noperands; i++)
|
2972 |
|
|
{
|
2973 |
|
|
const char *p = constraints[i];
|
2974 |
|
|
char *end;
|
2975 |
|
|
int len;
|
2976 |
|
|
int win = 0;
|
2977 |
|
|
int did_match = 0;
|
2978 |
|
|
/* 0 => this operand can be reloaded somehow for this alternative. */
|
2979 |
|
|
int badop = 1;
|
2980 |
|
|
/* 0 => this operand can be reloaded if the alternative allows regs. */
|
2981 |
|
|
int winreg = 0;
|
2982 |
|
|
int c;
|
2983 |
|
|
int m;
|
2984 |
|
|
rtx operand = recog_data.operand[i];
|
2985 |
|
|
int offset = 0;
|
2986 |
|
|
/* Nonzero means this is a MEM that must be reloaded into a reg
|
2987 |
|
|
regardless of what the constraint says. */
|
2988 |
|
|
int force_reload = 0;
|
2989 |
|
|
int offmemok = 0;
|
2990 |
|
|
/* Nonzero if a constant forced into memory would be OK for this
|
2991 |
|
|
operand. */
|
2992 |
|
|
int constmemok = 0;
|
2993 |
|
|
int earlyclobber = 0;
|
2994 |
|
|
|
2995 |
|
|
/* If the predicate accepts a unary operator, it means that
|
2996 |
|
|
we need to reload the operand, but do not do this for
|
2997 |
|
|
match_operator and friends. */
|
2998 |
|
|
if (UNARY_P (operand) && *p != 0)
|
2999 |
|
|
operand = XEXP (operand, 0);
|
3000 |
|
|
|
3001 |
|
|
/* If the operand is a SUBREG, extract
|
3002 |
|
|
the REG or MEM (or maybe even a constant) within.
|
3003 |
|
|
(Constants can occur as a result of reg_equiv_constant.) */
|
3004 |
|
|
|
3005 |
|
|
while (GET_CODE (operand) == SUBREG)
|
3006 |
|
|
{
|
3007 |
|
|
/* Offset only matters when operand is a REG and
|
3008 |
|
|
it is a hard reg. This is because it is passed
|
3009 |
|
|
to reg_fits_class_p if it is a REG and all pseudos
|
3010 |
|
|
return 0 from that function. */
|
3011 |
|
|
if (REG_P (SUBREG_REG (operand))
|
3012 |
|
|
&& REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
|
3013 |
|
|
{
|
3014 |
|
|
if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
|
3015 |
|
|
GET_MODE (SUBREG_REG (operand)),
|
3016 |
|
|
SUBREG_BYTE (operand),
|
3017 |
|
|
GET_MODE (operand)) < 0)
|
3018 |
|
|
force_reload = 1;
|
3019 |
|
|
offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
|
3020 |
|
|
GET_MODE (SUBREG_REG (operand)),
|
3021 |
|
|
SUBREG_BYTE (operand),
|
3022 |
|
|
GET_MODE (operand));
|
3023 |
|
|
}
|
3024 |
|
|
operand = SUBREG_REG (operand);
|
3025 |
|
|
/* Force reload if this is a constant or PLUS or if there may
|
3026 |
|
|
be a problem accessing OPERAND in the outer mode. */
|
3027 |
|
|
if (CONSTANT_P (operand)
|
3028 |
|
|
|| GET_CODE (operand) == PLUS
|
3029 |
|
|
/* We must force a reload of paradoxical SUBREGs
|
3030 |
|
|
of a MEM because the alignment of the inner value
|
3031 |
|
|
may not be enough to do the outer reference. On
|
3032 |
|
|
big-endian machines, it may also reference outside
|
3033 |
|
|
the object.
|
3034 |
|
|
|
3035 |
|
|
On machines that extend byte operations and we have a
|
3036 |
|
|
SUBREG where both the inner and outer modes are no wider
|
3037 |
|
|
than a word and the inner mode is narrower, is integral,
|
3038 |
|
|
and gets extended when loaded from memory, combine.c has
|
3039 |
|
|
made assumptions about the behavior of the machine in such
|
3040 |
|
|
register access. If the data is, in fact, in memory we
|
3041 |
|
|
must always load using the size assumed to be in the
|
3042 |
|
|
register and let the insn do the different-sized
|
3043 |
|
|
accesses.
|
3044 |
|
|
|
3045 |
|
|
This is doubly true if WORD_REGISTER_OPERATIONS. In
|
3046 |
|
|
this case eliminate_regs has left non-paradoxical
|
3047 |
|
|
subregs for push_reload to see. Make sure it does
|
3048 |
|
|
by forcing the reload.
|
3049 |
|
|
|
3050 |
|
|
??? When is it right at this stage to have a subreg
|
3051 |
|
|
of a mem that is _not_ to be handled specially? IMO
|
3052 |
|
|
those should have been reduced to just a mem. */
|
3053 |
|
|
|| ((MEM_P (operand)
|
3054 |
|
|
|| (REG_P (operand)
|
3055 |
|
|
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER))
|
3056 |
|
|
#ifndef WORD_REGISTER_OPERATIONS
|
3057 |
|
|
&& (((GET_MODE_BITSIZE (GET_MODE (operand))
|
3058 |
|
|
< BIGGEST_ALIGNMENT)
|
3059 |
|
|
&& (GET_MODE_SIZE (operand_mode[i])
|
3060 |
|
|
> GET_MODE_SIZE (GET_MODE (operand))))
|
3061 |
|
|
|| BYTES_BIG_ENDIAN
|
3062 |
|
|
#ifdef LOAD_EXTEND_OP
|
3063 |
|
|
|| (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
|
3064 |
|
|
&& (GET_MODE_SIZE (GET_MODE (operand))
|
3065 |
|
|
<= UNITS_PER_WORD)
|
3066 |
|
|
&& (GET_MODE_SIZE (operand_mode[i])
|
3067 |
|
|
> GET_MODE_SIZE (GET_MODE (operand)))
|
3068 |
|
|
&& INTEGRAL_MODE_P (GET_MODE (operand))
|
3069 |
|
|
&& LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
|
3070 |
|
|
#endif
|
3071 |
|
|
)
|
3072 |
|
|
#endif
|
3073 |
|
|
)
|
3074 |
|
|
)
|
3075 |
|
|
force_reload = 1;
|
3076 |
|
|
}
|
3077 |
|
|
|
3078 |
|
|
this_alternative[i] = NO_REGS;
|
3079 |
|
|
this_alternative_win[i] = 0;
|
3080 |
|
|
this_alternative_match_win[i] = 0;
|
3081 |
|
|
this_alternative_offmemok[i] = 0;
|
3082 |
|
|
this_alternative_earlyclobber[i] = 0;
|
3083 |
|
|
this_alternative_matches[i] = -1;
|
3084 |
|
|
|
3085 |
|
|
/* An empty constraint or empty alternative
|
3086 |
|
|
allows anything which matched the pattern. */
|
3087 |
|
|
if (*p == 0 || *p == ',')
|
3088 |
|
|
win = 1, badop = 0;
|
3089 |
|
|
|
3090 |
|
|
/* Scan this alternative's specs for this operand;
|
3091 |
|
|
set WIN if the operand fits any letter in this alternative.
|
3092 |
|
|
Otherwise, clear BADOP if this operand could
|
3093 |
|
|
fit some letter after reloads,
|
3094 |
|
|
or set WINREG if this operand could fit after reloads
|
3095 |
|
|
provided the constraint allows some registers. */
|
3096 |
|
|
|
3097 |
|
|
do
|
3098 |
|
|
switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
|
3099 |
|
|
{
|
3100 |
|
|
case '\0':
|
3101 |
|
|
len = 0;
|
3102 |
|
|
break;
|
3103 |
|
|
case ',':
|
3104 |
|
|
c = '\0';
|
3105 |
|
|
break;
|
3106 |
|
|
|
3107 |
|
|
case '=': case '+': case '*':
|
3108 |
|
|
break;
|
3109 |
|
|
|
3110 |
|
|
case '%':
|
3111 |
|
|
/* We only support one commutative marker, the first
|
3112 |
|
|
one. We already set commutative above. */
|
3113 |
|
|
break;
|
3114 |
|
|
|
3115 |
|
|
case '?':
|
3116 |
|
|
reject += 6;
|
3117 |
|
|
break;
|
3118 |
|
|
|
3119 |
|
|
case '!':
|
3120 |
|
|
reject = 600;
|
3121 |
|
|
break;
|
3122 |
|
|
|
3123 |
|
|
case '#':
|
3124 |
|
|
/* Ignore rest of this alternative as far as
|
3125 |
|
|
reloading is concerned. */
|
3126 |
|
|
do
|
3127 |
|
|
p++;
|
3128 |
|
|
while (*p && *p != ',');
|
3129 |
|
|
len = 0;
|
3130 |
|
|
break;
|
3131 |
|
|
|
3132 |
|
|
case '0': case '1': case '2': case '3': case '4':
|
3133 |
|
|
case '5': case '6': case '7': case '8': case '9':
|
3134 |
|
|
m = strtoul (p, &end, 10);
|
3135 |
|
|
p = end;
|
3136 |
|
|
len = 0;
|
3137 |
|
|
|
3138 |
|
|
this_alternative_matches[i] = m;
|
3139 |
|
|
/* We are supposed to match a previous operand.
|
3140 |
|
|
If we do, we win if that one did.
|
3141 |
|
|
If we do not, count both of the operands as losers.
|
3142 |
|
|
(This is too conservative, since most of the time
|
3143 |
|
|
only a single reload insn will be needed to make
|
3144 |
|
|
the two operands win. As a result, this alternative
|
3145 |
|
|
may be rejected when it is actually desirable.) */
|
3146 |
|
|
if ((swapped && (m != commutative || i != commutative + 1))
|
3147 |
|
|
/* If we are matching as if two operands were swapped,
|
3148 |
|
|
also pretend that operands_match had been computed
|
3149 |
|
|
with swapped.
|
3150 |
|
|
But if I is the second of those and C is the first,
|
3151 |
|
|
don't exchange them, because operands_match is valid
|
3152 |
|
|
only on one side of its diagonal. */
|
3153 |
|
|
? (operands_match
|
3154 |
|
|
[(m == commutative || m == commutative + 1)
|
3155 |
|
|
? 2 * commutative + 1 - m : m]
|
3156 |
|
|
[(i == commutative || i == commutative + 1)
|
3157 |
|
|
? 2 * commutative + 1 - i : i])
|
3158 |
|
|
: operands_match[m][i])
|
3159 |
|
|
{
|
3160 |
|
|
/* If we are matching a non-offsettable address where an
|
3161 |
|
|
offsettable address was expected, then we must reject
|
3162 |
|
|
this combination, because we can't reload it. */
|
3163 |
|
|
if (this_alternative_offmemok[m]
|
3164 |
|
|
&& MEM_P (recog_data.operand[m])
|
3165 |
|
|
&& this_alternative[m] == NO_REGS
|
3166 |
|
|
&& ! this_alternative_win[m])
|
3167 |
|
|
bad = 1;
|
3168 |
|
|
|
3169 |
|
|
did_match = this_alternative_win[m];
|
3170 |
|
|
}
|
3171 |
|
|
else
|
3172 |
|
|
{
|
3173 |
|
|
/* Operands don't match. */
|
3174 |
|
|
rtx value;
|
3175 |
|
|
int loc1, loc2;
|
3176 |
|
|
/* Retroactively mark the operand we had to match
|
3177 |
|
|
as a loser, if it wasn't already. */
|
3178 |
|
|
if (this_alternative_win[m])
|
3179 |
|
|
losers++;
|
3180 |
|
|
this_alternative_win[m] = 0;
|
3181 |
|
|
if (this_alternative[m] == NO_REGS)
|
3182 |
|
|
bad = 1;
|
3183 |
|
|
/* But count the pair only once in the total badness of
|
3184 |
|
|
this alternative, if the pair can be a dummy reload.
|
3185 |
|
|
The pointers in operand_loc are not swapped; swap
|
3186 |
|
|
them by hand if necessary. */
|
3187 |
|
|
if (swapped && i == commutative)
|
3188 |
|
|
loc1 = commutative + 1;
|
3189 |
|
|
else if (swapped && i == commutative + 1)
|
3190 |
|
|
loc1 = commutative;
|
3191 |
|
|
else
|
3192 |
|
|
loc1 = i;
|
3193 |
|
|
if (swapped && m == commutative)
|
3194 |
|
|
loc2 = commutative + 1;
|
3195 |
|
|
else if (swapped && m == commutative + 1)
|
3196 |
|
|
loc2 = commutative;
|
3197 |
|
|
else
|
3198 |
|
|
loc2 = m;
|
3199 |
|
|
value
|
3200 |
|
|
= find_dummy_reload (recog_data.operand[i],
|
3201 |
|
|
recog_data.operand[m],
|
3202 |
|
|
recog_data.operand_loc[loc1],
|
3203 |
|
|
recog_data.operand_loc[loc2],
|
3204 |
|
|
operand_mode[i], operand_mode[m],
|
3205 |
|
|
this_alternative[m], -1,
|
3206 |
|
|
this_alternative_earlyclobber[m]);
|
3207 |
|
|
|
3208 |
|
|
if (value != 0)
|
3209 |
|
|
losers--;
|
3210 |
|
|
}
|
3211 |
|
|
/* This can be fixed with reloads if the operand
|
3212 |
|
|
we are supposed to match can be fixed with reloads. */
|
3213 |
|
|
badop = 0;
|
3214 |
|
|
this_alternative[i] = this_alternative[m];
|
3215 |
|
|
|
3216 |
|
|
/* If we have to reload this operand and some previous
|
3217 |
|
|
operand also had to match the same thing as this
|
3218 |
|
|
operand, we don't know how to do that. So reject this
|
3219 |
|
|
alternative. */
|
3220 |
|
|
if (! did_match || force_reload)
|
3221 |
|
|
for (j = 0; j < i; j++)
|
3222 |
|
|
if (this_alternative_matches[j]
|
3223 |
|
|
== this_alternative_matches[i])
|
3224 |
|
|
badop = 1;
|
3225 |
|
|
break;
|
3226 |
|
|
|
3227 |
|
|
case 'p':
|
3228 |
|
|
/* All necessary reloads for an address_operand
|
3229 |
|
|
were handled in find_reloads_address. */
|
3230 |
|
|
this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
|
3231 |
|
|
SCRATCH);
|
3232 |
|
|
win = 1;
|
3233 |
|
|
badop = 0;
|
3234 |
|
|
break;
|
3235 |
|
|
|
3236 |
|
|
case TARGET_MEM_CONSTRAINT:
|
3237 |
|
|
if (force_reload)
|
3238 |
|
|
break;
|
3239 |
|
|
if (MEM_P (operand)
|
3240 |
|
|
|| (REG_P (operand)
|
3241 |
|
|
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
|
3242 |
|
|
&& reg_renumber[REGNO (operand)] < 0))
|
3243 |
|
|
win = 1;
|
3244 |
|
|
if (CONST_POOL_OK_P (operand))
|
3245 |
|
|
badop = 0;
|
3246 |
|
|
constmemok = 1;
|
3247 |
|
|
break;
|
3248 |
|
|
|
3249 |
|
|
case '<':
|
3250 |
|
|
if (MEM_P (operand)
|
3251 |
|
|
&& ! address_reloaded[i]
|
3252 |
|
|
&& (GET_CODE (XEXP (operand, 0)) == PRE_DEC
|
3253 |
|
|
|| GET_CODE (XEXP (operand, 0)) == POST_DEC))
|
3254 |
|
|
win = 1;
|
3255 |
|
|
break;
|
3256 |
|
|
|
3257 |
|
|
case '>':
|
3258 |
|
|
if (MEM_P (operand)
|
3259 |
|
|
&& ! address_reloaded[i]
|
3260 |
|
|
&& (GET_CODE (XEXP (operand, 0)) == PRE_INC
|
3261 |
|
|
|| GET_CODE (XEXP (operand, 0)) == POST_INC))
|
3262 |
|
|
win = 1;
|
3263 |
|
|
break;
|
3264 |
|
|
|
3265 |
|
|
/* Memory operand whose address is not offsettable. */
|
3266 |
|
|
case 'V':
|
3267 |
|
|
if (force_reload)
|
3268 |
|
|
break;
|
3269 |
|
|
if (MEM_P (operand)
|
3270 |
|
|
&& ! (ind_levels ? offsettable_memref_p (operand)
|
3271 |
|
|
: offsettable_nonstrict_memref_p (operand))
|
3272 |
|
|
/* Certain mem addresses will become offsettable
|
3273 |
|
|
after they themselves are reloaded. This is important;
|
3274 |
|
|
we don't want our own handling of unoffsettables
|
3275 |
|
|
to override the handling of reg_equiv_address. */
|
3276 |
|
|
&& !(REG_P (XEXP (operand, 0))
|
3277 |
|
|
&& (ind_levels == 0
|
3278 |
|
|
|| reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
|
3279 |
|
|
win = 1;
|
3280 |
|
|
break;
|
3281 |
|
|
|
3282 |
|
|
/* Memory operand whose address is offsettable. */
|
3283 |
|
|
case 'o':
|
3284 |
|
|
if (force_reload)
|
3285 |
|
|
break;
|
3286 |
|
|
if ((MEM_P (operand)
|
3287 |
|
|
/* If IND_LEVELS, find_reloads_address won't reload a
|
3288 |
|
|
pseudo that didn't get a hard reg, so we have to
|
3289 |
|
|
reject that case. */
|
3290 |
|
|
&& ((ind_levels ? offsettable_memref_p (operand)
|
3291 |
|
|
: offsettable_nonstrict_memref_p (operand))
|
3292 |
|
|
/* A reloaded address is offsettable because it is now
|
3293 |
|
|
just a simple register indirect. */
|
3294 |
|
|
|| address_reloaded[i] == 1))
|
3295 |
|
|
|| (REG_P (operand)
|
3296 |
|
|
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
|
3297 |
|
|
&& reg_renumber[REGNO (operand)] < 0
|
3298 |
|
|
/* If reg_equiv_address is nonzero, we will be
|
3299 |
|
|
loading it into a register; hence it will be
|
3300 |
|
|
offsettable, but we cannot say that reg_equiv_mem
|
3301 |
|
|
is offsettable without checking. */
|
3302 |
|
|
&& ((reg_equiv_mem[REGNO (operand)] != 0
|
3303 |
|
|
&& offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
|
3304 |
|
|
|| (reg_equiv_address[REGNO (operand)] != 0))))
|
3305 |
|
|
win = 1;
|
3306 |
|
|
if (CONST_POOL_OK_P (operand)
|
3307 |
|
|
|| MEM_P (operand))
|
3308 |
|
|
badop = 0;
|
3309 |
|
|
constmemok = 1;
|
3310 |
|
|
offmemok = 1;
|
3311 |
|
|
break;
|
3312 |
|
|
|
3313 |
|
|
case '&':
|
3314 |
|
|
/* Output operand that is stored before the need for the
|
3315 |
|
|
input operands (and their index registers) is over. */
|
3316 |
|
|
earlyclobber = 1, this_earlyclobber = 1;
|
3317 |
|
|
break;
|
3318 |
|
|
|
3319 |
|
|
case 'E':
|
3320 |
|
|
case 'F':
|
3321 |
|
|
if (GET_CODE (operand) == CONST_DOUBLE
|
3322 |
|
|
|| (GET_CODE (operand) == CONST_VECTOR
|
3323 |
|
|
&& (GET_MODE_CLASS (GET_MODE (operand))
|
3324 |
|
|
== MODE_VECTOR_FLOAT)))
|
3325 |
|
|
win = 1;
|
3326 |
|
|
break;
|
3327 |
|
|
|
3328 |
|
|
case 'G':
|
3329 |
|
|
case 'H':
|
3330 |
|
|
if (GET_CODE (operand) == CONST_DOUBLE
|
3331 |
|
|
&& CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
|
3332 |
|
|
win = 1;
|
3333 |
|
|
break;
|
3334 |
|
|
|
3335 |
|
|
case 's':
|
3336 |
|
|
if (CONST_INT_P (operand)
|
3337 |
|
|
|| (GET_CODE (operand) == CONST_DOUBLE
|
3338 |
|
|
&& GET_MODE (operand) == VOIDmode))
|
3339 |
|
|
break;
|
3340 |
|
|
case 'i':
|
3341 |
|
|
if (CONSTANT_P (operand)
|
3342 |
|
|
&& (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
|
3343 |
|
|
win = 1;
|
3344 |
|
|
break;
|
3345 |
|
|
|
3346 |
|
|
case 'n':
|
3347 |
|
|
if (CONST_INT_P (operand)
|
3348 |
|
|
|| (GET_CODE (operand) == CONST_DOUBLE
|
3349 |
|
|
&& GET_MODE (operand) == VOIDmode))
|
3350 |
|
|
win = 1;
|
3351 |
|
|
break;
|
3352 |
|
|
|
3353 |
|
|
case 'I':
|
3354 |
|
|
case 'J':
|
3355 |
|
|
case 'K':
|
3356 |
|
|
case 'L':
|
3357 |
|
|
case 'M':
|
3358 |
|
|
case 'N':
|
3359 |
|
|
case 'O':
|
3360 |
|
|
case 'P':
|
3361 |
|
|
if (CONST_INT_P (operand)
|
3362 |
|
|
&& CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
|
3363 |
|
|
win = 1;
|
3364 |
|
|
break;
|
3365 |
|
|
|
3366 |
|
|
case 'X':
|
3367 |
|
|
force_reload = 0;
|
3368 |
|
|
win = 1;
|
3369 |
|
|
break;
|
3370 |
|
|
|
3371 |
|
|
case 'g':
|
3372 |
|
|
if (! force_reload
|
3373 |
|
|
/* A PLUS is never a valid operand, but reload can make
|
3374 |
|
|
it from a register when eliminating registers. */
|
3375 |
|
|
&& GET_CODE (operand) != PLUS
|
3376 |
|
|
/* A SCRATCH is not a valid operand. */
|
3377 |
|
|
&& GET_CODE (operand) != SCRATCH
|
3378 |
|
|
&& (! CONSTANT_P (operand)
|
3379 |
|
|
|| ! flag_pic
|
3380 |
|
|
|| LEGITIMATE_PIC_OPERAND_P (operand))
|
3381 |
|
|
&& (GENERAL_REGS == ALL_REGS
|
3382 |
|
|
|| !REG_P (operand)
|
3383 |
|
|
|| (REGNO (operand) >= FIRST_PSEUDO_REGISTER
|
3384 |
|
|
&& reg_renumber[REGNO (operand)] < 0)))
|
3385 |
|
|
win = 1;
|
3386 |
|
|
/* Drop through into 'r' case. */
|
3387 |
|
|
|
3388 |
|
|
case 'r':
|
3389 |
|
|
this_alternative[i]
|
3390 |
|
|
= reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
|
3391 |
|
|
goto reg;
|
3392 |
|
|
|
3393 |
|
|
default:
|
3394 |
|
|
if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
|
3395 |
|
|
{
|
3396 |
|
|
#ifdef EXTRA_CONSTRAINT_STR
|
3397 |
|
|
if (EXTRA_MEMORY_CONSTRAINT (c, p))
|
3398 |
|
|
{
|
3399 |
|
|
if (force_reload)
|
3400 |
|
|
break;
|
3401 |
|
|
if (EXTRA_CONSTRAINT_STR (operand, c, p))
|
3402 |
|
|
win = 1;
|
3403 |
|
|
/* If the address was already reloaded,
|
3404 |
|
|
we win as well. */
|
3405 |
|
|
else if (MEM_P (operand)
|
3406 |
|
|
&& address_reloaded[i] == 1)
|
3407 |
|
|
win = 1;
|
3408 |
|
|
/* Likewise if the address will be reloaded because
|
3409 |
|
|
reg_equiv_address is nonzero. For reg_equiv_mem
|
3410 |
|
|
we have to check. */
|
3411 |
|
|
else if (REG_P (operand)
|
3412 |
|
|
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
|
3413 |
|
|
&& reg_renumber[REGNO (operand)] < 0
|
3414 |
|
|
&& ((reg_equiv_mem[REGNO (operand)] != 0
|
3415 |
|
|
&& EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
|
3416 |
|
|
|| (reg_equiv_address[REGNO (operand)] != 0)))
|
3417 |
|
|
win = 1;
|
3418 |
|
|
|
3419 |
|
|
/* If we didn't already win, we can reload
|
3420 |
|
|
constants via force_const_mem, and other
|
3421 |
|
|
MEMs by reloading the address like for 'o'. */
|
3422 |
|
|
if (CONST_POOL_OK_P (operand)
|
3423 |
|
|
|| MEM_P (operand))
|
3424 |
|
|
badop = 0;
|
3425 |
|
|
constmemok = 1;
|
3426 |
|
|
offmemok = 1;
|
3427 |
|
|
break;
|
3428 |
|
|
}
|
3429 |
|
|
if (EXTRA_ADDRESS_CONSTRAINT (c, p))
|
3430 |
|
|
{
|
3431 |
|
|
if (EXTRA_CONSTRAINT_STR (operand, c, p))
|
3432 |
|
|
win = 1;
|
3433 |
|
|
|
3434 |
|
|
/* If we didn't already win, we can reload
|
3435 |
|
|
the address into a base register. */
|
3436 |
|
|
this_alternative[i] = base_reg_class (VOIDmode,
|
3437 |
|
|
ADDRESS,
|
3438 |
|
|
SCRATCH);
|
3439 |
|
|
badop = 0;
|
3440 |
|
|
break;
|
3441 |
|
|
}
|
3442 |
|
|
|
3443 |
|
|
if (EXTRA_CONSTRAINT_STR (operand, c, p))
|
3444 |
|
|
win = 1;
|
3445 |
|
|
#endif
|
3446 |
|
|
break;
|
3447 |
|
|
}
|
3448 |
|
|
|
3449 |
|
|
this_alternative[i]
|
3450 |
|
|
= (reg_class_subunion
|
3451 |
|
|
[this_alternative[i]]
|
3452 |
|
|
[(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
|
3453 |
|
|
reg:
|
3454 |
|
|
if (GET_MODE (operand) == BLKmode)
|
3455 |
|
|
break;
|
3456 |
|
|
winreg = 1;
|
3457 |
|
|
if (REG_P (operand)
|
3458 |
|
|
&& reg_fits_class_p (operand, this_alternative[i],
|
3459 |
|
|
offset, GET_MODE (recog_data.operand[i])))
|
3460 |
|
|
win = 1;
|
3461 |
|
|
break;
|
3462 |
|
|
}
|
3463 |
|
|
while ((p += len), c);
|
3464 |
|
|
|
3465 |
|
|
constraints[i] = p;
|
3466 |
|
|
|
3467 |
|
|
/* If this operand could be handled with a reg,
|
3468 |
|
|
and some reg is allowed, then this operand can be handled. */
|
3469 |
|
|
if (winreg && this_alternative[i] != NO_REGS)
|
3470 |
|
|
badop = 0;
|
3471 |
|
|
|
3472 |
|
|
/* Record which operands fit this alternative. */
|
3473 |
|
|
this_alternative_earlyclobber[i] = earlyclobber;
|
3474 |
|
|
if (win && ! force_reload)
|
3475 |
|
|
this_alternative_win[i] = 1;
|
3476 |
|
|
else if (did_match && ! force_reload)
|
3477 |
|
|
this_alternative_match_win[i] = 1;
|
3478 |
|
|
else
|
3479 |
|
|
{
|
3480 |
|
|
int const_to_mem = 0;
|
3481 |
|
|
|
3482 |
|
|
this_alternative_offmemok[i] = offmemok;
|
3483 |
|
|
losers++;
|
3484 |
|
|
if (badop)
|
3485 |
|
|
bad = 1;
|
3486 |
|
|
/* Alternative loses if it has no regs for a reg operand. */
|
3487 |
|
|
if (REG_P (operand)
|
3488 |
|
|
&& this_alternative[i] == NO_REGS
|
3489 |
|
|
&& this_alternative_matches[i] < 0)
|
3490 |
|
|
bad = 1;
|
3491 |
|
|
|
3492 |
|
|
/* If this is a constant that is reloaded into the desired
|
3493 |
|
|
class by copying it to memory first, count that as another
|
3494 |
|
|
reload. This is consistent with other code and is
|
3495 |
|
|
required to avoid choosing another alternative when
|
3496 |
|
|
the constant is moved into memory by this function on
|
3497 |
|
|
an early reload pass. Note that the test here is
|
3498 |
|
|
precisely the same as in the code below that calls
|
3499 |
|
|
force_const_mem. */
|
3500 |
|
|
if (CONST_POOL_OK_P (operand)
|
3501 |
|
|
&& ((PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
|
3502 |
|
|
== NO_REGS)
|
3503 |
|
|
|| no_input_reloads)
|
3504 |
|
|
&& operand_mode[i] != VOIDmode)
|
3505 |
|
|
{
|
3506 |
|
|
const_to_mem = 1;
|
3507 |
|
|
if (this_alternative[i] != NO_REGS)
|
3508 |
|
|
losers++;
|
3509 |
|
|
}
|
3510 |
|
|
|
3511 |
|
|
/* Alternative loses if it requires a type of reload not
|
3512 |
|
|
permitted for this insn. We can always reload SCRATCH
|
3513 |
|
|
and objects with a REG_UNUSED note. */
|
3514 |
|
|
if (GET_CODE (operand) != SCRATCH
|
3515 |
|
|
&& modified[i] != RELOAD_READ && no_output_reloads
|
3516 |
|
|
&& ! find_reg_note (insn, REG_UNUSED, operand))
|
3517 |
|
|
bad = 1;
|
3518 |
|
|
else if (modified[i] != RELOAD_WRITE && no_input_reloads
|
3519 |
|
|
&& ! const_to_mem)
|
3520 |
|
|
bad = 1;
|
3521 |
|
|
|
3522 |
|
|
/* If we can't reload this value at all, reject this
|
3523 |
|
|
alternative. Note that we could also lose due to
|
3524 |
|
|
LIMIT_RELOAD_CLASS, but we don't check that
|
3525 |
|
|
here. */
|
3526 |
|
|
|
3527 |
|
|
if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
|
3528 |
|
|
{
|
3529 |
|
|
if (PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
|
3530 |
|
|
== NO_REGS)
|
3531 |
|
|
reject = 600;
|
3532 |
|
|
|
3533 |
|
|
#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
|
3534 |
|
|
if (operand_type[i] == RELOAD_FOR_OUTPUT
|
3535 |
|
|
&& (PREFERRED_OUTPUT_RELOAD_CLASS (operand,
|
3536 |
|
|
this_alternative[i])
|
3537 |
|
|
== NO_REGS))
|
3538 |
|
|
reject = 600;
|
3539 |
|
|
#endif
|
3540 |
|
|
}
|
3541 |
|
|
|
3542 |
|
|
/* We prefer to reload pseudos over reloading other things,
|
3543 |
|
|
since such reloads may be able to be eliminated later.
|
3544 |
|
|
If we are reloading a SCRATCH, we won't be generating any
|
3545 |
|
|
insns, just using a register, so it is also preferred.
|
3546 |
|
|
So bump REJECT in other cases. Don't do this in the
|
3547 |
|
|
case where we are forcing a constant into memory and
|
3548 |
|
|
it will then win since we don't want to have a different
|
3549 |
|
|
alternative match then. */
|
3550 |
|
|
if (! (REG_P (operand)
|
3551 |
|
|
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER)
|
3552 |
|
|
&& GET_CODE (operand) != SCRATCH
|
3553 |
|
|
&& ! (const_to_mem && constmemok))
|
3554 |
|
|
reject += 2;
|
3555 |
|
|
|
3556 |
|
|
/* Input reloads can be inherited more often than output
|
3557 |
|
|
reloads can be removed, so penalize output reloads. */
|
3558 |
|
|
if (operand_type[i] != RELOAD_FOR_INPUT
|
3559 |
|
|
&& GET_CODE (operand) != SCRATCH)
|
3560 |
|
|
reject++;
|
3561 |
|
|
}
|
3562 |
|
|
|
3563 |
|
|
/* If this operand is a pseudo register that didn't get a hard
|
3564 |
|
|
reg and this alternative accepts some register, see if the
|
3565 |
|
|
class that we want is a subset of the preferred class for this
|
3566 |
|
|
register. If not, but it intersects that class, use the
|
3567 |
|
|
preferred class instead. If it does not intersect the preferred
|
3568 |
|
|
class, show that usage of this alternative should be discouraged;
|
3569 |
|
|
it will be discouraged more still if the register is `preferred
|
3570 |
|
|
or nothing'. We do this because it increases the chance of
|
3571 |
|
|
reusing our spill register in a later insn and avoiding a pair
|
3572 |
|
|
of memory stores and loads.
|
3573 |
|
|
|
3574 |
|
|
Don't bother with this if this alternative will accept this
|
3575 |
|
|
operand.
|
3576 |
|
|
|
3577 |
|
|
Don't do this for a multiword operand, since it is only a
|
3578 |
|
|
small win and has the risk of requiring more spill registers,
|
3579 |
|
|
which could cause a large loss.
|
3580 |
|
|
|
3581 |
|
|
Don't do this if the preferred class has only one register
|
3582 |
|
|
because we might otherwise exhaust the class. */
|
3583 |
|
|
|
3584 |
|
|
if (! win && ! did_match
|
3585 |
|
|
&& this_alternative[i] != NO_REGS
|
3586 |
|
|
&& GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
|
3587 |
|
|
&& reg_class_size [(int) preferred_class[i]] > 0
|
3588 |
|
|
&& ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
|
3589 |
|
|
{
|
3590 |
|
|
if (! reg_class_subset_p (this_alternative[i],
|
3591 |
|
|
preferred_class[i]))
|
3592 |
|
|
{
|
3593 |
|
|
/* Since we don't have a way of forming the intersection,
|
3594 |
|
|
we just do something special if the preferred class
|
3595 |
|
|
is a subset of the class we have; that's the most
|
3596 |
|
|
common case anyway. */
|
3597 |
|
|
if (reg_class_subset_p (preferred_class[i],
|
3598 |
|
|
this_alternative[i]))
|
3599 |
|
|
this_alternative[i] = preferred_class[i];
|
3600 |
|
|
else
|
3601 |
|
|
reject += (2 + 2 * pref_or_nothing[i]);
|
3602 |
|
|
}
|
3603 |
|
|
}
|
3604 |
|
|
}
|
3605 |
|
|
|
3606 |
|
|
/* Now see if any output operands that are marked "earlyclobber"
|
3607 |
|
|
in this alternative conflict with any input operands
|
3608 |
|
|
or any memory addresses. */
|
3609 |
|
|
|
3610 |
|
|
for (i = 0; i < noperands; i++)
|
3611 |
|
|
if (this_alternative_earlyclobber[i]
|
3612 |
|
|
&& (this_alternative_win[i] || this_alternative_match_win[i]))
|
3613 |
|
|
{
|
3614 |
|
|
struct decomposition early_data;
|
3615 |
|
|
|
3616 |
|
|
early_data = decompose (recog_data.operand[i]);
|
3617 |
|
|
|
3618 |
|
|
gcc_assert (modified[i] != RELOAD_READ);
|
3619 |
|
|
|
3620 |
|
|
if (this_alternative[i] == NO_REGS)
|
3621 |
|
|
{
|
3622 |
|
|
this_alternative_earlyclobber[i] = 0;
|
3623 |
|
|
gcc_assert (this_insn_is_asm);
|
3624 |
|
|
error_for_asm (this_insn,
|
3625 |
|
|
"%<&%> constraint used with no register class");
|
3626 |
|
|
}
|
3627 |
|
|
|
3628 |
|
|
for (j = 0; j < noperands; j++)
|
3629 |
|
|
/* Is this an input operand or a memory ref? */
|
3630 |
|
|
if ((MEM_P (recog_data.operand[j])
|
3631 |
|
|
|| modified[j] != RELOAD_WRITE)
|
3632 |
|
|
&& j != i
|
3633 |
|
|
/* Ignore things like match_operator operands. */
|
3634 |
|
|
&& *recog_data.constraints[j] != 0
|
3635 |
|
|
/* Don't count an input operand that is constrained to match
|
3636 |
|
|
the early clobber operand. */
|
3637 |
|
|
&& ! (this_alternative_matches[j] == i
|
3638 |
|
|
&& rtx_equal_p (recog_data.operand[i],
|
3639 |
|
|
recog_data.operand[j]))
|
3640 |
|
|
/* Is it altered by storing the earlyclobber operand? */
|
3641 |
|
|
&& !immune_p (recog_data.operand[j], recog_data.operand[i],
|
3642 |
|
|
early_data))
|
3643 |
|
|
{
|
3644 |
|
|
/* If the output is in a non-empty few-regs class,
|
3645 |
|
|
it's costly to reload it, so reload the input instead. */
|
3646 |
|
|
if (SMALL_REGISTER_CLASS_P (this_alternative[i])
|
3647 |
|
|
&& (REG_P (recog_data.operand[j])
|
3648 |
|
|
|| GET_CODE (recog_data.operand[j]) == SUBREG))
|
3649 |
|
|
{
|
3650 |
|
|
losers++;
|
3651 |
|
|
this_alternative_win[j] = 0;
|
3652 |
|
|
this_alternative_match_win[j] = 0;
|
3653 |
|
|
}
|
3654 |
|
|
else
|
3655 |
|
|
break;
|
3656 |
|
|
}
|
3657 |
|
|
/* If an earlyclobber operand conflicts with something,
|
3658 |
|
|
it must be reloaded, so request this and count the cost. */
|
3659 |
|
|
if (j != noperands)
|
3660 |
|
|
{
|
3661 |
|
|
losers++;
|
3662 |
|
|
this_alternative_win[i] = 0;
|
3663 |
|
|
this_alternative_match_win[j] = 0;
|
3664 |
|
|
for (j = 0; j < noperands; j++)
|
3665 |
|
|
if (this_alternative_matches[j] == i
|
3666 |
|
|
&& this_alternative_match_win[j])
|
3667 |
|
|
{
|
3668 |
|
|
this_alternative_win[j] = 0;
|
3669 |
|
|
this_alternative_match_win[j] = 0;
|
3670 |
|
|
losers++;
|
3671 |
|
|
}
|
3672 |
|
|
}
|
3673 |
|
|
}
|
3674 |
|
|
|
3675 |
|
|
/* If one alternative accepts all the operands, no reload required,
|
3676 |
|
|
choose that alternative; don't consider the remaining ones. */
|
3677 |
|
|
if (losers == 0)
|
3678 |
|
|
{
|
3679 |
|
|
/* Unswap these so that they are never swapped at `finish'. */
|
3680 |
|
|
if (commutative >= 0)
|
3681 |
|
|
{
|
3682 |
|
|
recog_data.operand[commutative] = substed_operand[commutative];
|
3683 |
|
|
recog_data.operand[commutative + 1]
|
3684 |
|
|
= substed_operand[commutative + 1];
|
3685 |
|
|
}
|
3686 |
|
|
for (i = 0; i < noperands; i++)
|
3687 |
|
|
{
|
3688 |
|
|
goal_alternative_win[i] = this_alternative_win[i];
|
3689 |
|
|
goal_alternative_match_win[i] = this_alternative_match_win[i];
|
3690 |
|
|
goal_alternative[i] = this_alternative[i];
|
3691 |
|
|
goal_alternative_offmemok[i] = this_alternative_offmemok[i];
|
3692 |
|
|
goal_alternative_matches[i] = this_alternative_matches[i];
|
3693 |
|
|
goal_alternative_earlyclobber[i]
|
3694 |
|
|
= this_alternative_earlyclobber[i];
|
3695 |
|
|
}
|
3696 |
|
|
goal_alternative_number = this_alternative_number;
|
3697 |
|
|
goal_alternative_swapped = swapped;
|
3698 |
|
|
goal_earlyclobber = this_earlyclobber;
|
3699 |
|
|
goto finish;
|
3700 |
|
|
}
|
3701 |
|
|
|
3702 |
|
|
/* REJECT, set by the ! and ? constraint characters and when a register
|
3703 |
|
|
would be reloaded into a non-preferred class, discourages the use of
|
3704 |
|
|
this alternative for a reload goal. REJECT is incremented by six
|
3705 |
|
|
for each ? and two for each non-preferred class. */
|
3706 |
|
|
losers = losers * 6 + reject;
|
3707 |
|
|
|
3708 |
|
|
/* If this alternative can be made to work by reloading,
|
3709 |
|
|
and it needs less reloading than the others checked so far,
|
3710 |
|
|
record it as the chosen goal for reloading. */
|
3711 |
|
|
if (! bad)
|
3712 |
|
|
{
|
3713 |
|
|
bool change_p = false;
|
3714 |
|
|
int small_class_operands_num = 0;
|
3715 |
|
|
|
3716 |
|
|
if (best >= losers)
|
3717 |
|
|
{
|
3718 |
|
|
for (i = 0; i < noperands; i++)
|
3719 |
|
|
small_class_operands_num
|
3720 |
|
|
+= SMALL_REGISTER_CLASS_P (this_alternative[i]) ? 1 : 0;
|
3721 |
|
|
if (best > losers
|
3722 |
|
|
|| (best == losers
|
3723 |
|
|
/* If the cost of the reloads is the same,
|
3724 |
|
|
prefer alternative which requires minimal
|
3725 |
|
|
number of small register classes for the
|
3726 |
|
|
operands. This improves chances of reloads
|
3727 |
|
|
for insn requiring small register
|
3728 |
|
|
classes. */
|
3729 |
|
|
&& (small_class_operands_num
|
3730 |
|
|
< best_small_class_operands_num)))
|
3731 |
|
|
change_p = true;
|
3732 |
|
|
}
|
3733 |
|
|
if (change_p)
|
3734 |
|
|
{
|
3735 |
|
|
for (i = 0; i < noperands; i++)
|
3736 |
|
|
{
|
3737 |
|
|
goal_alternative[i] = this_alternative[i];
|
3738 |
|
|
goal_alternative_win[i] = this_alternative_win[i];
|
3739 |
|
|
goal_alternative_match_win[i]
|
3740 |
|
|
= this_alternative_match_win[i];
|
3741 |
|
|
goal_alternative_offmemok[i]
|
3742 |
|
|
= this_alternative_offmemok[i];
|
3743 |
|
|
goal_alternative_matches[i] = this_alternative_matches[i];
|
3744 |
|
|
goal_alternative_earlyclobber[i]
|
3745 |
|
|
= this_alternative_earlyclobber[i];
|
3746 |
|
|
}
|
3747 |
|
|
goal_alternative_swapped = swapped;
|
3748 |
|
|
best = losers;
|
3749 |
|
|
best_small_class_operands_num = small_class_operands_num;
|
3750 |
|
|
goal_alternative_number = this_alternative_number;
|
3751 |
|
|
goal_earlyclobber = this_earlyclobber;
|
3752 |
|
|
}
|
3753 |
|
|
}
|
3754 |
|
|
}
|
3755 |
|
|
|
3756 |
|
|
/* If insn is commutative (it's safe to exchange a certain pair of operands)
|
3757 |
|
|
then we need to try each alternative twice,
|
3758 |
|
|
the second time matching those two operands
|
3759 |
|
|
as if we had exchanged them.
|
3760 |
|
|
To do this, really exchange them in operands.
|
3761 |
|
|
|
3762 |
|
|
If we have just tried the alternatives the second time,
|
3763 |
|
|
return operands to normal and drop through. */
|
3764 |
|
|
|
3765 |
|
|
if (commutative >= 0)
|
3766 |
|
|
{
|
3767 |
|
|
swapped = !swapped;
|
3768 |
|
|
if (swapped)
|
3769 |
|
|
{
|
3770 |
|
|
enum reg_class tclass;
|
3771 |
|
|
int t;
|
3772 |
|
|
|
3773 |
|
|
recog_data.operand[commutative] = substed_operand[commutative + 1];
|
3774 |
|
|
recog_data.operand[commutative + 1] = substed_operand[commutative];
|
3775 |
|
|
/* Swap the duplicates too. */
|
3776 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
3777 |
|
|
if (recog_data.dup_num[i] == commutative
|
3778 |
|
|
|| recog_data.dup_num[i] == commutative + 1)
|
3779 |
|
|
*recog_data.dup_loc[i]
|
3780 |
|
|
= recog_data.operand[(int) recog_data.dup_num[i]];
|
3781 |
|
|
|
3782 |
|
|
tclass = preferred_class[commutative];
|
3783 |
|
|
preferred_class[commutative] = preferred_class[commutative + 1];
|
3784 |
|
|
preferred_class[commutative + 1] = tclass;
|
3785 |
|
|
|
3786 |
|
|
t = pref_or_nothing[commutative];
|
3787 |
|
|
pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
|
3788 |
|
|
pref_or_nothing[commutative + 1] = t;
|
3789 |
|
|
|
3790 |
|
|
t = address_reloaded[commutative];
|
3791 |
|
|
address_reloaded[commutative] = address_reloaded[commutative + 1];
|
3792 |
|
|
address_reloaded[commutative + 1] = t;
|
3793 |
|
|
|
3794 |
|
|
memcpy (constraints, recog_data.constraints,
|
3795 |
|
|
noperands * sizeof (const char *));
|
3796 |
|
|
goto try_swapped;
|
3797 |
|
|
}
|
3798 |
|
|
else
|
3799 |
|
|
{
|
3800 |
|
|
recog_data.operand[commutative] = substed_operand[commutative];
|
3801 |
|
|
recog_data.operand[commutative + 1]
|
3802 |
|
|
= substed_operand[commutative + 1];
|
3803 |
|
|
/* Unswap the duplicates too. */
|
3804 |
|
|
for (i = 0; i < recog_data.n_dups; i++)
|
3805 |
|
|
if (recog_data.dup_num[i] == commutative
|
3806 |
|
|
|| recog_data.dup_num[i] == commutative + 1)
|
3807 |
|
|
*recog_data.dup_loc[i]
|
3808 |
|
|
= recog_data.operand[(int) recog_data.dup_num[i]];
|
3809 |
|
|
}
|
3810 |
|
|
}
|
3811 |
|
|
|
3812 |
|
|
/* The operands don't meet the constraints.
|
3813 |
|
|
goal_alternative describes the alternative
|
3814 |
|
|
that we could reach by reloading the fewest operands.
|
3815 |
|
|
Reload so as to fit it. */
|
3816 |
|
|
|
3817 |
|
|
if (best == MAX_RECOG_OPERANDS * 2 + 600)
|
3818 |
|
|
{
|
3819 |
|
|
/* No alternative works with reloads?? */
|
3820 |
|
|
if (insn_code_number >= 0)
|
3821 |
|
|
fatal_insn ("unable to generate reloads for:", insn);
|
3822 |
|
|
error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
|
3823 |
|
|
/* Avoid further trouble with this insn. */
|
3824 |
|
|
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
|
3825 |
|
|
n_reloads = 0;
|
3826 |
|
|
return 0;
|
3827 |
|
|
}
|
3828 |
|
|
|
3829 |
|
|
/* Jump to `finish' from above if all operands are valid already.
|
3830 |
|
|
In that case, goal_alternative_win is all 1. */
|
3831 |
|
|
finish:
|
3832 |
|
|
|
3833 |
|
|
/* Right now, for any pair of operands I and J that are required to match,
|
3834 |
|
|
with I < J,
|
3835 |
|
|
goal_alternative_matches[J] is I.
|
3836 |
|
|
Set up goal_alternative_matched as the inverse function:
|
3837 |
|
|
goal_alternative_matched[I] = J. */
|
3838 |
|
|
|
3839 |
|
|
for (i = 0; i < noperands; i++)
|
3840 |
|
|
goal_alternative_matched[i] = -1;
|
3841 |
|
|
|
3842 |
|
|
for (i = 0; i < noperands; i++)
|
3843 |
|
|
if (! goal_alternative_win[i]
|
3844 |
|
|
&& goal_alternative_matches[i] >= 0)
|
3845 |
|
|
goal_alternative_matched[goal_alternative_matches[i]] = i;
|
3846 |
|
|
|
3847 |
|
|
for (i = 0; i < noperands; i++)
|
3848 |
|
|
goal_alternative_win[i] |= goal_alternative_match_win[i];
|
3849 |
|
|
|
3850 |
|
|
/* If the best alternative is with operands 1 and 2 swapped,
|
3851 |
|
|
consider them swapped before reporting the reloads. Update the
|
3852 |
|
|
operand numbers of any reloads already pushed. */
|
3853 |
|
|
|
3854 |
|
|
if (goal_alternative_swapped)
|
3855 |
|
|
{
|
3856 |
|
|
rtx tem;
|
3857 |
|
|
|
3858 |
|
|
tem = substed_operand[commutative];
|
3859 |
|
|
substed_operand[commutative] = substed_operand[commutative + 1];
|
3860 |
|
|
substed_operand[commutative + 1] = tem;
|
3861 |
|
|
tem = recog_data.operand[commutative];
|
3862 |
|
|
recog_data.operand[commutative] = recog_data.operand[commutative + 1];
|
3863 |
|
|
recog_data.operand[commutative + 1] = tem;
|
3864 |
|
|
tem = *recog_data.operand_loc[commutative];
|
3865 |
|
|
*recog_data.operand_loc[commutative]
|
3866 |
|
|
= *recog_data.operand_loc[commutative + 1];
|
3867 |
|
|
*recog_data.operand_loc[commutative + 1] = tem;
|
3868 |
|
|
|
3869 |
|
|
for (i = 0; i < n_reloads; i++)
|
3870 |
|
|
{
|
3871 |
|
|
if (rld[i].opnum == commutative)
|
3872 |
|
|
rld[i].opnum = commutative + 1;
|
3873 |
|
|
else if (rld[i].opnum == commutative + 1)
|
3874 |
|
|
rld[i].opnum = commutative;
|
3875 |
|
|
}
|
3876 |
|
|
}
|
3877 |
|
|
|
3878 |
|
|
for (i = 0; i < noperands; i++)
|
3879 |
|
|
{
|
3880 |
|
|
operand_reloadnum[i] = -1;
|
3881 |
|
|
|
3882 |
|
|
/* If this is an earlyclobber operand, we need to widen the scope.
|
3883 |
|
|
The reload must remain valid from the start of the insn being
|
3884 |
|
|
reloaded until after the operand is stored into its destination.
|
3885 |
|
|
We approximate this with RELOAD_OTHER even though we know that we
|
3886 |
|
|
do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
|
3887 |
|
|
|
3888 |
|
|
One special case that is worth checking is when we have an
|
3889 |
|
|
output that is earlyclobber but isn't used past the insn (typically
|
3890 |
|
|
a SCRATCH). In this case, we only need have the reload live
|
3891 |
|
|
through the insn itself, but not for any of our input or output
|
3892 |
|
|
reloads.
|
3893 |
|
|
But we must not accidentally narrow the scope of an existing
|
3894 |
|
|
RELOAD_OTHER reload - leave these alone.
|
3895 |
|
|
|
3896 |
|
|
In any case, anything needed to address this operand can remain
|
3897 |
|
|
however they were previously categorized. */
|
3898 |
|
|
|
3899 |
|
|
if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
|
3900 |
|
|
operand_type[i]
|
3901 |
|
|
= (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
|
3902 |
|
|
? RELOAD_FOR_INSN : RELOAD_OTHER);
|
3903 |
|
|
}
|
3904 |
|
|
|
3905 |
|
|
/* Any constants that aren't allowed and can't be reloaded
|
3906 |
|
|
into registers are here changed into memory references. */
|
3907 |
|
|
for (i = 0; i < noperands; i++)
|
3908 |
|
|
if (! goal_alternative_win[i])
|
3909 |
|
|
{
|
3910 |
|
|
rtx op = recog_data.operand[i];
|
3911 |
|
|
rtx subreg = NULL_RTX;
|
3912 |
|
|
rtx plus = NULL_RTX;
|
3913 |
|
|
enum machine_mode mode = operand_mode[i];
|
3914 |
|
|
|
3915 |
|
|
/* Reloads of SUBREGs of CONSTANT RTXs are handled later in
|
3916 |
|
|
push_reload so we have to let them pass here. */
|
3917 |
|
|
if (GET_CODE (op) == SUBREG)
|
3918 |
|
|
{
|
3919 |
|
|
subreg = op;
|
3920 |
|
|
op = SUBREG_REG (op);
|
3921 |
|
|
mode = GET_MODE (op);
|
3922 |
|
|
}
|
3923 |
|
|
|
3924 |
|
|
if (GET_CODE (op) == PLUS)
|
3925 |
|
|
{
|
3926 |
|
|
plus = op;
|
3927 |
|
|
op = XEXP (op, 1);
|
3928 |
|
|
}
|
3929 |
|
|
|
3930 |
|
|
if (CONST_POOL_OK_P (op)
|
3931 |
|
|
&& ((PREFERRED_RELOAD_CLASS (op,
|
3932 |
|
|
(enum reg_class) goal_alternative[i])
|
3933 |
|
|
== NO_REGS)
|
3934 |
|
|
|| no_input_reloads)
|
3935 |
|
|
&& mode != VOIDmode)
|
3936 |
|
|
{
|
3937 |
|
|
int this_address_reloaded;
|
3938 |
|
|
rtx tem = force_const_mem (mode, op);
|
3939 |
|
|
|
3940 |
|
|
/* If we stripped a SUBREG or a PLUS above add it back. */
|
3941 |
|
|
if (plus != NULL_RTX)
|
3942 |
|
|
tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
|
3943 |
|
|
|
3944 |
|
|
if (subreg != NULL_RTX)
|
3945 |
|
|
tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
|
3946 |
|
|
|
3947 |
|
|
this_address_reloaded = 0;
|
3948 |
|
|
substed_operand[i] = recog_data.operand[i]
|
3949 |
|
|
= find_reloads_toplev (tem, i, address_type[i], ind_levels,
|
3950 |
|
|
0, insn, &this_address_reloaded);
|
3951 |
|
|
|
3952 |
|
|
/* If the alternative accepts constant pool refs directly
|
3953 |
|
|
there will be no reload needed at all. */
|
3954 |
|
|
if (plus == NULL_RTX
|
3955 |
|
|
&& subreg == NULL_RTX
|
3956 |
|
|
&& alternative_allows_const_pool_ref (this_address_reloaded == 0
|
3957 |
|
|
? substed_operand[i]
|
3958 |
|
|
: NULL,
|
3959 |
|
|
recog_data.constraints[i],
|
3960 |
|
|
goal_alternative_number))
|
3961 |
|
|
goal_alternative_win[i] = 1;
|
3962 |
|
|
}
|
3963 |
|
|
}
|
3964 |
|
|
|
3965 |
|
|
/* Record the values of the earlyclobber operands for the caller. */
|
3966 |
|
|
if (goal_earlyclobber)
|
3967 |
|
|
for (i = 0; i < noperands; i++)
|
3968 |
|
|
if (goal_alternative_earlyclobber[i])
|
3969 |
|
|
reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
|
3970 |
|
|
|
3971 |
|
|
/* Now record reloads for all the operands that need them. */
|
3972 |
|
|
for (i = 0; i < noperands; i++)
|
3973 |
|
|
if (! goal_alternative_win[i])
|
3974 |
|
|
{
|
3975 |
|
|
/* Operands that match previous ones have already been handled. */
|
3976 |
|
|
if (goal_alternative_matches[i] >= 0)
|
3977 |
|
|
;
|
3978 |
|
|
/* Handle an operand with a nonoffsettable address
|
3979 |
|
|
appearing where an offsettable address will do
|
3980 |
|
|
by reloading the address into a base register.
|
3981 |
|
|
|
3982 |
|
|
??? We can also do this when the operand is a register and
|
3983 |
|
|
reg_equiv_mem is not offsettable, but this is a bit tricky,
|
3984 |
|
|
so we don't bother with it. It may not be worth doing. */
|
3985 |
|
|
else if (goal_alternative_matched[i] == -1
|
3986 |
|
|
&& goal_alternative_offmemok[i]
|
3987 |
|
|
&& MEM_P (recog_data.operand[i]))
|
3988 |
|
|
{
|
3989 |
|
|
/* If the address to be reloaded is a VOIDmode constant,
|
3990 |
|
|
use the default address mode as mode of the reload register,
|
3991 |
|
|
as would have been done by find_reloads_address. */
|
3992 |
|
|
enum machine_mode address_mode;
|
3993 |
|
|
address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
|
3994 |
|
|
if (address_mode == VOIDmode)
|
3995 |
|
|
{
|
3996 |
|
|
addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
|
3997 |
|
|
address_mode = targetm.addr_space.address_mode (as);
|
3998 |
|
|
}
|
3999 |
|
|
|
4000 |
|
|
operand_reloadnum[i]
|
4001 |
|
|
= push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
|
4002 |
|
|
&XEXP (recog_data.operand[i], 0), (rtx*) 0,
|
4003 |
|
|
base_reg_class (VOIDmode, MEM, SCRATCH),
|
4004 |
|
|
address_mode,
|
4005 |
|
|
VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
|
4006 |
|
|
rld[operand_reloadnum[i]].inc
|
4007 |
|
|
= GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
|
4008 |
|
|
|
4009 |
|
|
/* If this operand is an output, we will have made any
|
4010 |
|
|
reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
|
4011 |
|
|
now we are treating part of the operand as an input, so
|
4012 |
|
|
we must change these to RELOAD_FOR_INPUT_ADDRESS. */
|
4013 |
|
|
|
4014 |
|
|
if (modified[i] == RELOAD_WRITE)
|
4015 |
|
|
{
|
4016 |
|
|
for (j = 0; j < n_reloads; j++)
|
4017 |
|
|
{
|
4018 |
|
|
if (rld[j].opnum == i)
|
4019 |
|
|
{
|
4020 |
|
|
if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
|
4021 |
|
|
rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
|
4022 |
|
|
else if (rld[j].when_needed
|
4023 |
|
|
== RELOAD_FOR_OUTADDR_ADDRESS)
|
4024 |
|
|
rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
|
4025 |
|
|
}
|
4026 |
|
|
}
|
4027 |
|
|
}
|
4028 |
|
|
}
|
4029 |
|
|
else if (goal_alternative_matched[i] == -1)
|
4030 |
|
|
{
|
4031 |
|
|
operand_reloadnum[i]
|
4032 |
|
|
= push_reload ((modified[i] != RELOAD_WRITE
|
4033 |
|
|
? recog_data.operand[i] : 0),
|
4034 |
|
|
(modified[i] != RELOAD_READ
|
4035 |
|
|
? recog_data.operand[i] : 0),
|
4036 |
|
|
(modified[i] != RELOAD_WRITE
|
4037 |
|
|
? recog_data.operand_loc[i] : 0),
|
4038 |
|
|
(modified[i] != RELOAD_READ
|
4039 |
|
|
? recog_data.operand_loc[i] : 0),
|
4040 |
|
|
(enum reg_class) goal_alternative[i],
|
4041 |
|
|
(modified[i] == RELOAD_WRITE
|
4042 |
|
|
? VOIDmode : operand_mode[i]),
|
4043 |
|
|
(modified[i] == RELOAD_READ
|
4044 |
|
|
? VOIDmode : operand_mode[i]),
|
4045 |
|
|
(insn_code_number < 0 ? 0
|
4046 |
|
|
: insn_data[insn_code_number].operand[i].strict_low),
|
4047 |
|
|
0, i, operand_type[i]);
|
4048 |
|
|
}
|
4049 |
|
|
/* In a matching pair of operands, one must be input only
|
4050 |
|
|
and the other must be output only.
|
4051 |
|
|
Pass the input operand as IN and the other as OUT. */
|
4052 |
|
|
else if (modified[i] == RELOAD_READ
|
4053 |
|
|
&& modified[goal_alternative_matched[i]] == RELOAD_WRITE)
|
4054 |
|
|
{
|
4055 |
|
|
operand_reloadnum[i]
|
4056 |
|
|
= push_reload (recog_data.operand[i],
|
4057 |
|
|
recog_data.operand[goal_alternative_matched[i]],
|
4058 |
|
|
recog_data.operand_loc[i],
|
4059 |
|
|
recog_data.operand_loc[goal_alternative_matched[i]],
|
4060 |
|
|
(enum reg_class) goal_alternative[i],
|
4061 |
|
|
operand_mode[i],
|
4062 |
|
|
operand_mode[goal_alternative_matched[i]],
|
4063 |
|
|
0, 0, i, RELOAD_OTHER);
|
4064 |
|
|
operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
|
4065 |
|
|
}
|
4066 |
|
|
else if (modified[i] == RELOAD_WRITE
|
4067 |
|
|
&& modified[goal_alternative_matched[i]] == RELOAD_READ)
|
4068 |
|
|
{
|
4069 |
|
|
operand_reloadnum[goal_alternative_matched[i]]
|
4070 |
|
|
= push_reload (recog_data.operand[goal_alternative_matched[i]],
|
4071 |
|
|
recog_data.operand[i],
|
4072 |
|
|
recog_data.operand_loc[goal_alternative_matched[i]],
|
4073 |
|
|
recog_data.operand_loc[i],
|
4074 |
|
|
(enum reg_class) goal_alternative[i],
|
4075 |
|
|
operand_mode[goal_alternative_matched[i]],
|
4076 |
|
|
operand_mode[i],
|
4077 |
|
|
0, 0, i, RELOAD_OTHER);
|
4078 |
|
|
operand_reloadnum[i] = output_reloadnum;
|
4079 |
|
|
}
|
4080 |
|
|
else
|
4081 |
|
|
{
|
4082 |
|
|
gcc_assert (insn_code_number < 0);
|
4083 |
|
|
error_for_asm (insn, "inconsistent operand constraints "
|
4084 |
|
|
"in an %<asm%>");
|
4085 |
|
|
/* Avoid further trouble with this insn. */
|
4086 |
|
|
PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
|
4087 |
|
|
n_reloads = 0;
|
4088 |
|
|
return 0;
|
4089 |
|
|
}
|
4090 |
|
|
}
|
4091 |
|
|
else if (goal_alternative_matched[i] < 0
|
4092 |
|
|
&& goal_alternative_matches[i] < 0
|
4093 |
|
|
&& address_operand_reloaded[i] != 1
|
4094 |
|
|
&& optimize)
|
4095 |
|
|
{
|
4096 |
|
|
/* For each non-matching operand that's a MEM or a pseudo-register
|
4097 |
|
|
that didn't get a hard register, make an optional reload.
|
4098 |
|
|
This may get done even if the insn needs no reloads otherwise. */
|
4099 |
|
|
|
4100 |
|
|
rtx operand = recog_data.operand[i];
|
4101 |
|
|
|
4102 |
|
|
while (GET_CODE (operand) == SUBREG)
|
4103 |
|
|
operand = SUBREG_REG (operand);
|
4104 |
|
|
if ((MEM_P (operand)
|
4105 |
|
|
|| (REG_P (operand)
|
4106 |
|
|
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER))
|
4107 |
|
|
/* If this is only for an output, the optional reload would not
|
4108 |
|
|
actually cause us to use a register now, just note that
|
4109 |
|
|
something is stored here. */
|
4110 |
|
|
&& ((enum reg_class) goal_alternative[i] != NO_REGS
|
4111 |
|
|
|| modified[i] == RELOAD_WRITE)
|
4112 |
|
|
&& ! no_input_reloads
|
4113 |
|
|
/* An optional output reload might allow to delete INSN later.
|
4114 |
|
|
We mustn't make in-out reloads on insns that are not permitted
|
4115 |
|
|
output reloads.
|
4116 |
|
|
If this is an asm, we can't delete it; we must not even call
|
4117 |
|
|
push_reload for an optional output reload in this case,
|
4118 |
|
|
because we can't be sure that the constraint allows a register,
|
4119 |
|
|
and push_reload verifies the constraints for asms. */
|
4120 |
|
|
&& (modified[i] == RELOAD_READ
|
4121 |
|
|
|| (! no_output_reloads && ! this_insn_is_asm)))
|
4122 |
|
|
operand_reloadnum[i]
|
4123 |
|
|
= push_reload ((modified[i] != RELOAD_WRITE
|
4124 |
|
|
? recog_data.operand[i] : 0),
|
4125 |
|
|
(modified[i] != RELOAD_READ
|
4126 |
|
|
? recog_data.operand[i] : 0),
|
4127 |
|
|
(modified[i] != RELOAD_WRITE
|
4128 |
|
|
? recog_data.operand_loc[i] : 0),
|
4129 |
|
|
(modified[i] != RELOAD_READ
|
4130 |
|
|
? recog_data.operand_loc[i] : 0),
|
4131 |
|
|
(enum reg_class) goal_alternative[i],
|
4132 |
|
|
(modified[i] == RELOAD_WRITE
|
4133 |
|
|
? VOIDmode : operand_mode[i]),
|
4134 |
|
|
(modified[i] == RELOAD_READ
|
4135 |
|
|
? VOIDmode : operand_mode[i]),
|
4136 |
|
|
(insn_code_number < 0 ? 0
|
4137 |
|
|
: insn_data[insn_code_number].operand[i].strict_low),
|
4138 |
|
|
1, i, operand_type[i]);
|
4139 |
|
|
/* If a memory reference remains (either as a MEM or a pseudo that
|
4140 |
|
|
did not get a hard register), yet we can't make an optional
|
4141 |
|
|
reload, check if this is actually a pseudo register reference;
|
4142 |
|
|
we then need to emit a USE and/or a CLOBBER so that reload
|
4143 |
|
|
inheritance will do the right thing. */
|
4144 |
|
|
else if (replace
|
4145 |
|
|
&& (MEM_P (operand)
|
4146 |
|
|
|| (REG_P (operand)
|
4147 |
|
|
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
|
4148 |
|
|
&& reg_renumber [REGNO (operand)] < 0)))
|
4149 |
|
|
{
|
4150 |
|
|
operand = *recog_data.operand_loc[i];
|
4151 |
|
|
|
4152 |
|
|
while (GET_CODE (operand) == SUBREG)
|
4153 |
|
|
operand = SUBREG_REG (operand);
|
4154 |
|
|
if (REG_P (operand))
|
4155 |
|
|
{
|
4156 |
|
|
if (modified[i] != RELOAD_WRITE)
|
4157 |
|
|
/* We mark the USE with QImode so that we recognize
|
4158 |
|
|
it as one that can be safely deleted at the end
|
4159 |
|
|
of reload. */
|
4160 |
|
|
PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
|
4161 |
|
|
insn), QImode);
|
4162 |
|
|
if (modified[i] != RELOAD_READ)
|
4163 |
|
|
emit_insn_after (gen_clobber (operand), insn);
|
4164 |
|
|
}
|
4165 |
|
|
}
|
4166 |
|
|
}
|
4167 |
|
|
else if (goal_alternative_matches[i] >= 0
|
4168 |
|
|
&& goal_alternative_win[goal_alternative_matches[i]]
|
4169 |
|
|
&& modified[i] == RELOAD_READ
|
4170 |
|
|
&& modified[goal_alternative_matches[i]] == RELOAD_WRITE
|
4171 |
|
|
&& ! no_input_reloads && ! no_output_reloads
|
4172 |
|
|
&& optimize)
|
4173 |
|
|
{
|
4174 |
|
|
/* Similarly, make an optional reload for a pair of matching
|
4175 |
|
|
objects that are in MEM or a pseudo that didn't get a hard reg. */
|
4176 |
|
|
|
4177 |
|
|
rtx operand = recog_data.operand[i];
|
4178 |
|
|
|
4179 |
|
|
while (GET_CODE (operand) == SUBREG)
|
4180 |
|
|
operand = SUBREG_REG (operand);
|
4181 |
|
|
if ((MEM_P (operand)
|
4182 |
|
|
|| (REG_P (operand)
|
4183 |
|
|
&& REGNO (operand) >= FIRST_PSEUDO_REGISTER))
|
4184 |
|
|
&& ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
|
4185 |
|
|
!= NO_REGS))
|
4186 |
|
|
operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
|
4187 |
|
|
= push_reload (recog_data.operand[goal_alternative_matches[i]],
|
4188 |
|
|
recog_data.operand[i],
|
4189 |
|
|
recog_data.operand_loc[goal_alternative_matches[i]],
|
4190 |
|
|
recog_data.operand_loc[i],
|
4191 |
|
|
(enum reg_class) goal_alternative[goal_alternative_matches[i]],
|
4192 |
|
|
operand_mode[goal_alternative_matches[i]],
|
4193 |
|
|
operand_mode[i],
|
4194 |
|
|
0, 1, goal_alternative_matches[i], RELOAD_OTHER);
|
4195 |
|
|
}
|
4196 |
|
|
|
4197 |
|
|
/* Perform whatever substitutions on the operands we are supposed
|
4198 |
|
|
to make due to commutativity or replacement of registers
|
4199 |
|
|
with equivalent constants or memory slots. */
|
4200 |
|
|
|
4201 |
|
|
for (i = 0; i < noperands; i++)
|
4202 |
|
|
{
|
4203 |
|
|
/* We only do this on the last pass through reload, because it is
|
4204 |
|
|
possible for some data (like reg_equiv_address) to be changed during
|
4205 |
|
|
later passes. Moreover, we lose the opportunity to get a useful
|
4206 |
|
|
reload_{in,out}_reg when we do these replacements. */
|
4207 |
|
|
|
4208 |
|
|
if (replace)
|
4209 |
|
|
{
|
4210 |
|
|
rtx substitution = substed_operand[i];
|
4211 |
|
|
|
4212 |
|
|
*recog_data.operand_loc[i] = substitution;
|
4213 |
|
|
|
4214 |
|
|
/* If we're replacing an operand with a LABEL_REF, we need to
|
4215 |
|
|
make sure that there's a REG_LABEL_OPERAND note attached to
|
4216 |
|
|
this instruction. */
|
4217 |
|
|
if (GET_CODE (substitution) == LABEL_REF
|
4218 |
|
|
&& !find_reg_note (insn, REG_LABEL_OPERAND,
|
4219 |
|
|
XEXP (substitution, 0))
|
4220 |
|
|
/* For a JUMP_P, if it was a branch target it must have
|
4221 |
|
|
already been recorded as such. */
|
4222 |
|
|
&& (!JUMP_P (insn)
|
4223 |
|
|
|| !label_is_jump_target_p (XEXP (substitution, 0),
|
4224 |
|
|
insn)))
|
4225 |
|
|
add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
|
4226 |
|
|
}
|
4227 |
|
|
else
|
4228 |
|
|
retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
|
4229 |
|
|
}
|
4230 |
|
|
|
4231 |
|
|
/* If this insn pattern contains any MATCH_DUP's, make sure that
|
4232 |
|
|
they will be substituted if the operands they match are substituted.
|
4233 |
|
|
Also do now any substitutions we already did on the operands.
|
4234 |
|
|
|
4235 |
|
|
Don't do this if we aren't making replacements because we might be
|
4236 |
|
|
propagating things allocated by frame pointer elimination into places
|
4237 |
|
|
it doesn't expect. */
|
4238 |
|
|
|
4239 |
|
|
if (insn_code_number >= 0 && replace)
|
4240 |
|
|
for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
|
4241 |
|
|
{
|
4242 |
|
|
int opno = recog_data.dup_num[i];
|
4243 |
|
|
*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
|
4244 |
|
|
dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
|
4245 |
|
|
}
|
4246 |
|
|
|
4247 |
|
|
#if 0
|
4248 |
|
|
/* This loses because reloading of prior insns can invalidate the equivalence
|
4249 |
|
|
(or at least find_equiv_reg isn't smart enough to find it any more),
|
4250 |
|
|
causing this insn to need more reload regs than it needed before.
|
4251 |
|
|
It may be too late to make the reload regs available.
|
4252 |
|
|
Now this optimization is done safely in choose_reload_regs. */
|
4253 |
|
|
|
4254 |
|
|
/* For each reload of a reg into some other class of reg,
|
4255 |
|
|
search for an existing equivalent reg (same value now) in the right class.
|
4256 |
|
|
We can use it as long as we don't need to change its contents. */
|
4257 |
|
|
for (i = 0; i < n_reloads; i++)
|
4258 |
|
|
if (rld[i].reg_rtx == 0
|
4259 |
|
|
&& rld[i].in != 0
|
4260 |
|
|
&& REG_P (rld[i].in)
|
4261 |
|
|
&& rld[i].out == 0)
|
4262 |
|
|
{
|
4263 |
|
|
rld[i].reg_rtx
|
4264 |
|
|
= find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
|
4265 |
|
|
static_reload_reg_p, 0, rld[i].inmode);
|
4266 |
|
|
/* Prevent generation of insn to load the value
|
4267 |
|
|
because the one we found already has the value. */
|
4268 |
|
|
if (rld[i].reg_rtx)
|
4269 |
|
|
rld[i].in = rld[i].reg_rtx;
|
4270 |
|
|
}
|
4271 |
|
|
#endif
|
4272 |
|
|
|
4273 |
|
|
/* If we detected error and replaced asm instruction by USE, forget about the
|
4274 |
|
|
reloads. */
|
4275 |
|
|
if (GET_CODE (PATTERN (insn)) == USE
|
4276 |
|
|
&& CONST_INT_P (XEXP (PATTERN (insn), 0)))
|
4277 |
|
|
n_reloads = 0;
|
4278 |
|
|
|
4279 |
|
|
/* Perhaps an output reload can be combined with another
|
4280 |
|
|
to reduce needs by one. */
|
4281 |
|
|
if (!goal_earlyclobber)
|
4282 |
|
|
combine_reloads ();
|
4283 |
|
|
|
4284 |
|
|
/* If we have a pair of reloads for parts of an address, they are reloading
|
4285 |
|
|
the same object, the operands themselves were not reloaded, and they
|
4286 |
|
|
are for two operands that are supposed to match, merge the reloads and
|
4287 |
|
|
change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
|
4288 |
|
|
|
4289 |
|
|
for (i = 0; i < n_reloads; i++)
|
4290 |
|
|
{
|
4291 |
|
|
int k;
|
4292 |
|
|
|
4293 |
|
|
for (j = i + 1; j < n_reloads; j++)
|
4294 |
|
|
if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
4295 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|
4296 |
|
|
|| rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|
4297 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
|
4298 |
|
|
&& (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
4299 |
|
|
|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|
4300 |
|
|
|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|
4301 |
|
|
|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
|
4302 |
|
|
&& rtx_equal_p (rld[i].in, rld[j].in)
|
4303 |
|
|
&& (operand_reloadnum[rld[i].opnum] < 0
|
4304 |
|
|
|| rld[operand_reloadnum[rld[i].opnum]].optional)
|
4305 |
|
|
&& (operand_reloadnum[rld[j].opnum] < 0
|
4306 |
|
|
|| rld[operand_reloadnum[rld[j].opnum]].optional)
|
4307 |
|
|
&& (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
|
4308 |
|
|
|| (goal_alternative_matches[rld[j].opnum]
|
4309 |
|
|
== rld[i].opnum)))
|
4310 |
|
|
{
|
4311 |
|
|
for (k = 0; k < n_replacements; k++)
|
4312 |
|
|
if (replacements[k].what == j)
|
4313 |
|
|
replacements[k].what = i;
|
4314 |
|
|
|
4315 |
|
|
if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|
4316 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
|
4317 |
|
|
rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
|
4318 |
|
|
else
|
4319 |
|
|
rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
|
4320 |
|
|
rld[j].in = 0;
|
4321 |
|
|
}
|
4322 |
|
|
}
|
4323 |
|
|
|
4324 |
|
|
/* Scan all the reloads and update their type.
|
4325 |
|
|
If a reload is for the address of an operand and we didn't reload
|
4326 |
|
|
that operand, change the type. Similarly, change the operand number
|
4327 |
|
|
of a reload when two operands match. If a reload is optional, treat it
|
4328 |
|
|
as though the operand isn't reloaded.
|
4329 |
|
|
|
4330 |
|
|
??? This latter case is somewhat odd because if we do the optional
|
4331 |
|
|
reload, it means the object is hanging around. Thus we need only
|
4332 |
|
|
do the address reload if the optional reload was NOT done.
|
4333 |
|
|
|
4334 |
|
|
Change secondary reloads to be the address type of their operand, not
|
4335 |
|
|
the normal type.
|
4336 |
|
|
|
4337 |
|
|
If an operand's reload is now RELOAD_OTHER, change any
|
4338 |
|
|
RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
|
4339 |
|
|
RELOAD_FOR_OTHER_ADDRESS. */
|
4340 |
|
|
|
4341 |
|
|
for (i = 0; i < n_reloads; i++)
|
4342 |
|
|
{
|
4343 |
|
|
if (rld[i].secondary_p
|
4344 |
|
|
&& rld[i].when_needed == operand_type[rld[i].opnum])
|
4345 |
|
|
rld[i].when_needed = address_type[rld[i].opnum];
|
4346 |
|
|
|
4347 |
|
|
if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
4348 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|
4349 |
|
|
|| rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|
4350 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
|
4351 |
|
|
&& (operand_reloadnum[rld[i].opnum] < 0
|
4352 |
|
|
|| rld[operand_reloadnum[rld[i].opnum]].optional))
|
4353 |
|
|
{
|
4354 |
|
|
/* If we have a secondary reload to go along with this reload,
|
4355 |
|
|
change its type to RELOAD_FOR_OPADDR_ADDR. */
|
4356 |
|
|
|
4357 |
|
|
if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
4358 |
|
|
|| rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
|
4359 |
|
|
&& rld[i].secondary_in_reload != -1)
|
4360 |
|
|
{
|
4361 |
|
|
int secondary_in_reload = rld[i].secondary_in_reload;
|
4362 |
|
|
|
4363 |
|
|
rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
|
4364 |
|
|
|
4365 |
|
|
/* If there's a tertiary reload we have to change it also. */
|
4366 |
|
|
if (secondary_in_reload > 0
|
4367 |
|
|
&& rld[secondary_in_reload].secondary_in_reload != -1)
|
4368 |
|
|
rld[rld[secondary_in_reload].secondary_in_reload].when_needed
|
4369 |
|
|
= RELOAD_FOR_OPADDR_ADDR;
|
4370 |
|
|
}
|
4371 |
|
|
|
4372 |
|
|
if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
|
4373 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
|
4374 |
|
|
&& rld[i].secondary_out_reload != -1)
|
4375 |
|
|
{
|
4376 |
|
|
int secondary_out_reload = rld[i].secondary_out_reload;
|
4377 |
|
|
|
4378 |
|
|
rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
|
4379 |
|
|
|
4380 |
|
|
/* If there's a tertiary reload we have to change it also. */
|
4381 |
|
|
if (secondary_out_reload
|
4382 |
|
|
&& rld[secondary_out_reload].secondary_out_reload != -1)
|
4383 |
|
|
rld[rld[secondary_out_reload].secondary_out_reload].when_needed
|
4384 |
|
|
= RELOAD_FOR_OPADDR_ADDR;
|
4385 |
|
|
}
|
4386 |
|
|
|
4387 |
|
|
if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
|
4388 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
|
4389 |
|
|
rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
|
4390 |
|
|
else
|
4391 |
|
|
rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
|
4392 |
|
|
}
|
4393 |
|
|
|
4394 |
|
|
if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
|
4395 |
|
|
|| rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
|
4396 |
|
|
&& operand_reloadnum[rld[i].opnum] >= 0
|
4397 |
|
|
&& (rld[operand_reloadnum[rld[i].opnum]].when_needed
|
4398 |
|
|
== RELOAD_OTHER))
|
4399 |
|
|
rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
|
4400 |
|
|
|
4401 |
|
|
if (goal_alternative_matches[rld[i].opnum] >= 0)
|
4402 |
|
|
rld[i].opnum = goal_alternative_matches[rld[i].opnum];
|
4403 |
|
|
}
|
4404 |
|
|
|
4405 |
|
|
/* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
|
4406 |
|
|
If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
|
4407 |
|
|
reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
|
4408 |
|
|
|
4409 |
|
|
choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
|
4410 |
|
|
conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
|
4411 |
|
|
single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
|
4412 |
|
|
However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
|
4413 |
|
|
then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
|
4414 |
|
|
RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
|
4415 |
|
|
This is complicated by the fact that a single operand can have more
|
4416 |
|
|
than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
|
4417 |
|
|
choose_reload_regs without affecting code quality, and cases that
|
4418 |
|
|
actually fail are extremely rare, so it turns out to be better to fix
|
4419 |
|
|
the problem here by not generating cases that choose_reload_regs will
|
4420 |
|
|
fail for. */
|
4421 |
|
|
/* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
|
4422 |
|
|
RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
|
4423 |
|
|
a single operand.
|
4424 |
|
|
We can reduce the register pressure by exploiting that a
|
4425 |
|
|
RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
|
4426 |
|
|
does not conflict with any of them, if it is only used for the first of
|
4427 |
|
|
the RELOAD_FOR_X_ADDRESS reloads. */
|
4428 |
|
|
{
|
4429 |
|
|
int first_op_addr_num = -2;
|
4430 |
|
|
int first_inpaddr_num[MAX_RECOG_OPERANDS];
|
4431 |
|
|
int first_outpaddr_num[MAX_RECOG_OPERANDS];
|
4432 |
|
|
int need_change = 0;
|
4433 |
|
|
/* We use last_op_addr_reload and the contents of the above arrays
|
4434 |
|
|
first as flags - -2 means no instance encountered, -1 means exactly
|
4435 |
|
|
one instance encountered.
|
4436 |
|
|
If more than one instance has been encountered, we store the reload
|
4437 |
|
|
number of the first reload of the kind in question; reload numbers
|
4438 |
|
|
are known to be non-negative. */
|
4439 |
|
|
for (i = 0; i < noperands; i++)
|
4440 |
|
|
first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
|
4441 |
|
|
for (i = n_reloads - 1; i >= 0; i--)
|
4442 |
|
|
{
|
4443 |
|
|
switch (rld[i].when_needed)
|
4444 |
|
|
{
|
4445 |
|
|
case RELOAD_FOR_OPERAND_ADDRESS:
|
4446 |
|
|
if (++first_op_addr_num >= 0)
|
4447 |
|
|
{
|
4448 |
|
|
first_op_addr_num = i;
|
4449 |
|
|
need_change = 1;
|
4450 |
|
|
}
|
4451 |
|
|
break;
|
4452 |
|
|
case RELOAD_FOR_INPUT_ADDRESS:
|
4453 |
|
|
if (++first_inpaddr_num[rld[i].opnum] >= 0)
|
4454 |
|
|
{
|
4455 |
|
|
first_inpaddr_num[rld[i].opnum] = i;
|
4456 |
|
|
need_change = 1;
|
4457 |
|
|
}
|
4458 |
|
|
break;
|
4459 |
|
|
case RELOAD_FOR_OUTPUT_ADDRESS:
|
4460 |
|
|
if (++first_outpaddr_num[rld[i].opnum] >= 0)
|
4461 |
|
|
{
|
4462 |
|
|
first_outpaddr_num[rld[i].opnum] = i;
|
4463 |
|
|
need_change = 1;
|
4464 |
|
|
}
|
4465 |
|
|
break;
|
4466 |
|
|
default:
|
4467 |
|
|
break;
|
4468 |
|
|
}
|
4469 |
|
|
}
|
4470 |
|
|
|
4471 |
|
|
if (need_change)
|
4472 |
|
|
{
|
4473 |
|
|
for (i = 0; i < n_reloads; i++)
|
4474 |
|
|
{
|
4475 |
|
|
int first_num;
|
4476 |
|
|
enum reload_type type;
|
4477 |
|
|
|
4478 |
|
|
switch (rld[i].when_needed)
|
4479 |
|
|
{
|
4480 |
|
|
case RELOAD_FOR_OPADDR_ADDR:
|
4481 |
|
|
first_num = first_op_addr_num;
|
4482 |
|
|
type = RELOAD_FOR_OPERAND_ADDRESS;
|
4483 |
|
|
break;
|
4484 |
|
|
case RELOAD_FOR_INPADDR_ADDRESS:
|
4485 |
|
|
first_num = first_inpaddr_num[rld[i].opnum];
|
4486 |
|
|
type = RELOAD_FOR_INPUT_ADDRESS;
|
4487 |
|
|
break;
|
4488 |
|
|
case RELOAD_FOR_OUTADDR_ADDRESS:
|
4489 |
|
|
first_num = first_outpaddr_num[rld[i].opnum];
|
4490 |
|
|
type = RELOAD_FOR_OUTPUT_ADDRESS;
|
4491 |
|
|
break;
|
4492 |
|
|
default:
|
4493 |
|
|
continue;
|
4494 |
|
|
}
|
4495 |
|
|
if (first_num < 0)
|
4496 |
|
|
continue;
|
4497 |
|
|
else if (i > first_num)
|
4498 |
|
|
rld[i].when_needed = type;
|
4499 |
|
|
else
|
4500 |
|
|
{
|
4501 |
|
|
/* Check if the only TYPE reload that uses reload I is
|
4502 |
|
|
reload FIRST_NUM. */
|
4503 |
|
|
for (j = n_reloads - 1; j > first_num; j--)
|
4504 |
|
|
{
|
4505 |
|
|
if (rld[j].when_needed == type
|
4506 |
|
|
&& (rld[i].secondary_p
|
4507 |
|
|
? rld[j].secondary_in_reload == i
|
4508 |
|
|
: reg_mentioned_p (rld[i].in, rld[j].in)))
|
4509 |
|
|
{
|
4510 |
|
|
rld[i].when_needed = type;
|
4511 |
|
|
break;
|
4512 |
|
|
}
|
4513 |
|
|
}
|
4514 |
|
|
}
|
4515 |
|
|
}
|
4516 |
|
|
}
|
4517 |
|
|
}
|
4518 |
|
|
|
4519 |
|
|
/* See if we have any reloads that are now allowed to be merged
|
4520 |
|
|
because we've changed when the reload is needed to
|
4521 |
|
|
RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
|
4522 |
|
|
check for the most common cases. */
|
4523 |
|
|
|
4524 |
|
|
for (i = 0; i < n_reloads; i++)
|
4525 |
|
|
if (rld[i].in != 0 && rld[i].out == 0
|
4526 |
|
|
&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
|
4527 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
|
4528 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
|
4529 |
|
|
for (j = 0; j < n_reloads; j++)
|
4530 |
|
|
if (i != j && rld[j].in != 0 && rld[j].out == 0
|
4531 |
|
|
&& rld[j].when_needed == rld[i].when_needed
|
4532 |
|
|
&& MATCHES (rld[i].in, rld[j].in)
|
4533 |
|
|
&& rld[i].rclass == rld[j].rclass
|
4534 |
|
|
&& !rld[i].nocombine && !rld[j].nocombine
|
4535 |
|
|
&& rld[i].reg_rtx == rld[j].reg_rtx)
|
4536 |
|
|
{
|
4537 |
|
|
rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
|
4538 |
|
|
transfer_replacements (i, j);
|
4539 |
|
|
rld[j].in = 0;
|
4540 |
|
|
}
|
4541 |
|
|
|
4542 |
|
|
#ifdef HAVE_cc0
|
4543 |
|
|
/* If we made any reloads for addresses, see if they violate a
|
4544 |
|
|
"no input reloads" requirement for this insn. But loads that we
|
4545 |
|
|
do after the insn (such as for output addresses) are fine. */
|
4546 |
|
|
if (no_input_reloads)
|
4547 |
|
|
for (i = 0; i < n_reloads; i++)
|
4548 |
|
|
gcc_assert (rld[i].in == 0
|
4549 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
|
4550 |
|
|
|| rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
|
4551 |
|
|
#endif
|
4552 |
|
|
|
4553 |
|
|
/* Compute reload_mode and reload_nregs. */
|
4554 |
|
|
for (i = 0; i < n_reloads; i++)
|
4555 |
|
|
{
|
4556 |
|
|
rld[i].mode
|
4557 |
|
|
= (rld[i].inmode == VOIDmode
|
4558 |
|
|
|| (GET_MODE_SIZE (rld[i].outmode)
|
4559 |
|
|
> GET_MODE_SIZE (rld[i].inmode)))
|
4560 |
|
|
? rld[i].outmode : rld[i].inmode;
|
4561 |
|
|
|
4562 |
|
|
rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
|
4563 |
|
|
}
|
4564 |
|
|
|
4565 |
|
|
/* Special case a simple move with an input reload and a
|
4566 |
|
|
destination of a hard reg, if the hard reg is ok, use it. */
|
4567 |
|
|
for (i = 0; i < n_reloads; i++)
|
4568 |
|
|
if (rld[i].when_needed == RELOAD_FOR_INPUT
|
4569 |
|
|
&& GET_CODE (PATTERN (insn)) == SET
|
4570 |
|
|
&& REG_P (SET_DEST (PATTERN (insn)))
|
4571 |
|
|
&& (SET_SRC (PATTERN (insn)) == rld[i].in
|
4572 |
|
|
|| SET_SRC (PATTERN (insn)) == rld[i].in_reg)
|
4573 |
|
|
&& !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
|
4574 |
|
|
{
|
4575 |
|
|
rtx dest = SET_DEST (PATTERN (insn));
|
4576 |
|
|
unsigned int regno = REGNO (dest);
|
4577 |
|
|
|
4578 |
|
|
if (regno < FIRST_PSEUDO_REGISTER
|
4579 |
|
|
&& TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
|
4580 |
|
|
&& HARD_REGNO_MODE_OK (regno, rld[i].mode))
|
4581 |
|
|
{
|
4582 |
|
|
int nr = hard_regno_nregs[regno][rld[i].mode];
|
4583 |
|
|
int ok = 1, nri;
|
4584 |
|
|
|
4585 |
|
|
for (nri = 1; nri < nr; nri ++)
|
4586 |
|
|
if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
|
4587 |
|
|
ok = 0;
|
4588 |
|
|
|
4589 |
|
|
if (ok)
|
4590 |
|
|
rld[i].reg_rtx = dest;
|
4591 |
|
|
}
|
4592 |
|
|
}
|
4593 |
|
|
|
4594 |
|
|
return retval;
|
4595 |
|
|
}
|
4596 |
|
|
|
4597 |
|
|
/* Return true if alternative number ALTNUM in constraint-string
|
4598 |
|
|
CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
|
4599 |
|
|
MEM gives the reference if it didn't need any reloads, otherwise it
|
4600 |
|
|
is null. */
|
4601 |
|
|
|
4602 |
|
|
static bool
|
4603 |
|
|
alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
|
4604 |
|
|
const char *constraint, int altnum)
|
4605 |
|
|
{
|
4606 |
|
|
int c;
|
4607 |
|
|
|
4608 |
|
|
/* Skip alternatives before the one requested. */
|
4609 |
|
|
while (altnum > 0)
|
4610 |
|
|
{
|
4611 |
|
|
while (*constraint++ != ',');
|
4612 |
|
|
altnum--;
|
4613 |
|
|
}
|
4614 |
|
|
/* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
|
4615 |
|
|
If one of them is present, this alternative accepts the result of
|
4616 |
|
|
passing a constant-pool reference through find_reloads_toplev.
|
4617 |
|
|
|
4618 |
|
|
The same is true of extra memory constraints if the address
|
4619 |
|
|
was reloaded into a register. However, the target may elect
|
4620 |
|
|
to disallow the original constant address, forcing it to be
|
4621 |
|
|
reloaded into a register instead. */
|
4622 |
|
|
for (; (c = *constraint) && c != ',' && c != '#';
|
4623 |
|
|
constraint += CONSTRAINT_LEN (c, constraint))
|
4624 |
|
|
{
|
4625 |
|
|
if (c == TARGET_MEM_CONSTRAINT || c == 'o')
|
4626 |
|
|
return true;
|
4627 |
|
|
#ifdef EXTRA_CONSTRAINT_STR
|
4628 |
|
|
if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
|
4629 |
|
|
&& (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
|
4630 |
|
|
return true;
|
4631 |
|
|
#endif
|
4632 |
|
|
}
|
4633 |
|
|
return false;
|
4634 |
|
|
}
|
4635 |
|
|
|
4636 |
|
|
/* Scan X for memory references and scan the addresses for reloading.
|
4637 |
|
|
Also checks for references to "constant" regs that we want to eliminate
|
4638 |
|
|
and replaces them with the values they stand for.
|
4639 |
|
|
We may alter X destructively if it contains a reference to such.
|
4640 |
|
|
If X is just a constant reg, we return the equivalent value
|
4641 |
|
|
instead of X.
|
4642 |
|
|
|
4643 |
|
|
IND_LEVELS says how many levels of indirect addressing this machine
|
4644 |
|
|
supports.
|
4645 |
|
|
|
4646 |
|
|
OPNUM and TYPE identify the purpose of the reload.
|
4647 |
|
|
|
4648 |
|
|
IS_SET_DEST is true if X is the destination of a SET, which is not
|
4649 |
|
|
appropriate to be replaced by a constant.
|
4650 |
|
|
|
4651 |
|
|
INSN, if nonzero, is the insn in which we do the reload. It is used
|
4652 |
|
|
to determine if we may generate output reloads, and where to put USEs
|
4653 |
|
|
for pseudos that we have to replace with stack slots.
|
4654 |
|
|
|
4655 |
|
|
ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
|
4656 |
|
|
result of find_reloads_address. */
|
4657 |
|
|
|
4658 |
|
|
static rtx
|
4659 |
|
|
find_reloads_toplev (rtx x, int opnum, enum reload_type type,
|
4660 |
|
|
int ind_levels, int is_set_dest, rtx insn,
|
4661 |
|
|
int *address_reloaded)
|
4662 |
|
|
{
|
4663 |
|
|
RTX_CODE code = GET_CODE (x);
|
4664 |
|
|
|
4665 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
4666 |
|
|
int i;
|
4667 |
|
|
int copied;
|
4668 |
|
|
|
4669 |
|
|
if (code == REG)
|
4670 |
|
|
{
|
4671 |
|
|
/* This code is duplicated for speed in find_reloads. */
|
4672 |
|
|
int regno = REGNO (x);
|
4673 |
|
|
if (reg_equiv_constant[regno] != 0 && !is_set_dest)
|
4674 |
|
|
x = reg_equiv_constant[regno];
|
4675 |
|
|
#if 0
|
4676 |
|
|
/* This creates (subreg (mem...)) which would cause an unnecessary
|
4677 |
|
|
reload of the mem. */
|
4678 |
|
|
else if (reg_equiv_mem[regno] != 0)
|
4679 |
|
|
x = reg_equiv_mem[regno];
|
4680 |
|
|
#endif
|
4681 |
|
|
else if (reg_equiv_memory_loc[regno]
|
4682 |
|
|
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
|
4683 |
|
|
{
|
4684 |
|
|
rtx mem = make_memloc (x, regno);
|
4685 |
|
|
if (reg_equiv_address[regno]
|
4686 |
|
|
|| ! rtx_equal_p (mem, reg_equiv_mem[regno]))
|
4687 |
|
|
{
|
4688 |
|
|
/* If this is not a toplevel operand, find_reloads doesn't see
|
4689 |
|
|
this substitution. We have to emit a USE of the pseudo so
|
4690 |
|
|
that delete_output_reload can see it. */
|
4691 |
|
|
if (replace_reloads && recog_data.operand[opnum] != x)
|
4692 |
|
|
/* We mark the USE with QImode so that we recognize it
|
4693 |
|
|
as one that can be safely deleted at the end of
|
4694 |
|
|
reload. */
|
4695 |
|
|
PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
|
4696 |
|
|
QImode);
|
4697 |
|
|
x = mem;
|
4698 |
|
|
i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
|
4699 |
|
|
opnum, type, ind_levels, insn);
|
4700 |
|
|
if (!rtx_equal_p (x, mem))
|
4701 |
|
|
push_reg_equiv_alt_mem (regno, x);
|
4702 |
|
|
if (address_reloaded)
|
4703 |
|
|
*address_reloaded = i;
|
4704 |
|
|
}
|
4705 |
|
|
}
|
4706 |
|
|
return x;
|
4707 |
|
|
}
|
4708 |
|
|
if (code == MEM)
|
4709 |
|
|
{
|
4710 |
|
|
rtx tem = x;
|
4711 |
|
|
|
4712 |
|
|
i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
|
4713 |
|
|
opnum, type, ind_levels, insn);
|
4714 |
|
|
if (address_reloaded)
|
4715 |
|
|
*address_reloaded = i;
|
4716 |
|
|
|
4717 |
|
|
return tem;
|
4718 |
|
|
}
|
4719 |
|
|
|
4720 |
|
|
if (code == SUBREG && REG_P (SUBREG_REG (x)))
|
4721 |
|
|
{
|
4722 |
|
|
/* Check for SUBREG containing a REG that's equivalent to a
|
4723 |
|
|
constant. If the constant has a known value, truncate it
|
4724 |
|
|
right now. Similarly if we are extracting a single-word of a
|
4725 |
|
|
multi-word constant. If the constant is symbolic, allow it
|
4726 |
|
|
to be substituted normally. push_reload will strip the
|
4727 |
|
|
subreg later. The constant must not be VOIDmode, because we
|
4728 |
|
|
will lose the mode of the register (this should never happen
|
4729 |
|
|
because one of the cases above should handle it). */
|
4730 |
|
|
|
4731 |
|
|
int regno = REGNO (SUBREG_REG (x));
|
4732 |
|
|
rtx tem;
|
4733 |
|
|
|
4734 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER
|
4735 |
|
|
&& reg_renumber[regno] < 0
|
4736 |
|
|
&& reg_equiv_constant[regno] != 0)
|
4737 |
|
|
{
|
4738 |
|
|
tem =
|
4739 |
|
|
simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
|
4740 |
|
|
GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
|
4741 |
|
|
gcc_assert (tem);
|
4742 |
|
|
if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
|
4743 |
|
|
{
|
4744 |
|
|
tem = force_const_mem (GET_MODE (x), tem);
|
4745 |
|
|
i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
|
4746 |
|
|
&XEXP (tem, 0), opnum, type,
|
4747 |
|
|
ind_levels, insn);
|
4748 |
|
|
if (address_reloaded)
|
4749 |
|
|
*address_reloaded = i;
|
4750 |
|
|
}
|
4751 |
|
|
return tem;
|
4752 |
|
|
}
|
4753 |
|
|
|
4754 |
|
|
/* If the subreg contains a reg that will be converted to a mem,
|
4755 |
|
|
convert the subreg to a narrower memref now.
|
4756 |
|
|
Otherwise, we would get (subreg (mem ...) ...),
|
4757 |
|
|
which would force reload of the mem.
|
4758 |
|
|
|
4759 |
|
|
We also need to do this if there is an equivalent MEM that is
|
4760 |
|
|
not offsettable. In that case, alter_subreg would produce an
|
4761 |
|
|
invalid address on big-endian machines.
|
4762 |
|
|
|
4763 |
|
|
For machines that extend byte loads, we must not reload using
|
4764 |
|
|
a wider mode if we have a paradoxical SUBREG. find_reloads will
|
4765 |
|
|
force a reload in that case. So we should not do anything here. */
|
4766 |
|
|
|
4767 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER
|
4768 |
|
|
#ifdef LOAD_EXTEND_OP
|
4769 |
|
|
&& (GET_MODE_SIZE (GET_MODE (x))
|
4770 |
|
|
<= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
|
4771 |
|
|
#endif
|
4772 |
|
|
&& (reg_equiv_address[regno] != 0
|
4773 |
|
|
|| (reg_equiv_mem[regno] != 0
|
4774 |
|
|
&& (! strict_memory_address_addr_space_p
|
4775 |
|
|
(GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
|
4776 |
|
|
MEM_ADDR_SPACE (reg_equiv_mem[regno]))
|
4777 |
|
|
|| ! offsettable_memref_p (reg_equiv_mem[regno])
|
4778 |
|
|
|| num_not_at_initial_offset))))
|
4779 |
|
|
x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
|
4780 |
|
|
insn);
|
4781 |
|
|
}
|
4782 |
|
|
|
4783 |
|
|
for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
4784 |
|
|
{
|
4785 |
|
|
if (fmt[i] == 'e')
|
4786 |
|
|
{
|
4787 |
|
|
rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
|
4788 |
|
|
ind_levels, is_set_dest, insn,
|
4789 |
|
|
address_reloaded);
|
4790 |
|
|
/* If we have replaced a reg with it's equivalent memory loc -
|
4791 |
|
|
that can still be handled here e.g. if it's in a paradoxical
|
4792 |
|
|
subreg - we must make the change in a copy, rather than using
|
4793 |
|
|
a destructive change. This way, find_reloads can still elect
|
4794 |
|
|
not to do the change. */
|
4795 |
|
|
if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
|
4796 |
|
|
{
|
4797 |
|
|
x = shallow_copy_rtx (x);
|
4798 |
|
|
copied = 1;
|
4799 |
|
|
}
|
4800 |
|
|
XEXP (x, i) = new_part;
|
4801 |
|
|
}
|
4802 |
|
|
}
|
4803 |
|
|
return x;
|
4804 |
|
|
}
|
4805 |
|
|
|
4806 |
|
|
/* Return a mem ref for the memory equivalent of reg REGNO.
|
4807 |
|
|
This mem ref is not shared with anything. */
|
4808 |
|
|
|
4809 |
|
|
static rtx
|
4810 |
|
|
make_memloc (rtx ad, int regno)
|
4811 |
|
|
{
|
4812 |
|
|
/* We must rerun eliminate_regs, in case the elimination
|
4813 |
|
|
offsets have changed. */
|
4814 |
|
|
rtx tem
|
4815 |
|
|
= XEXP (eliminate_regs (reg_equiv_memory_loc[regno], VOIDmode, NULL_RTX),
|
4816 |
|
|
0);
|
4817 |
|
|
|
4818 |
|
|
/* If TEM might contain a pseudo, we must copy it to avoid
|
4819 |
|
|
modifying it when we do the substitution for the reload. */
|
4820 |
|
|
if (rtx_varies_p (tem, 0))
|
4821 |
|
|
tem = copy_rtx (tem);
|
4822 |
|
|
|
4823 |
|
|
tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
|
4824 |
|
|
tem = adjust_address_nv (tem, GET_MODE (ad), 0);
|
4825 |
|
|
|
4826 |
|
|
/* Copy the result if it's still the same as the equivalence, to avoid
|
4827 |
|
|
modifying it when we do the substitution for the reload. */
|
4828 |
|
|
if (tem == reg_equiv_memory_loc[regno])
|
4829 |
|
|
tem = copy_rtx (tem);
|
4830 |
|
|
return tem;
|
4831 |
|
|
}
|
4832 |
|
|
|
4833 |
|
|
/* Returns true if AD could be turned into a valid memory reference
|
4834 |
|
|
to mode MODE in address space AS by reloading the part pointed to
|
4835 |
|
|
by PART into a register. */
|
4836 |
|
|
|
4837 |
|
|
static int
|
4838 |
|
|
maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
|
4839 |
|
|
addr_space_t as, rtx *part)
|
4840 |
|
|
{
|
4841 |
|
|
int retv;
|
4842 |
|
|
rtx tem = *part;
|
4843 |
|
|
rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
|
4844 |
|
|
|
4845 |
|
|
*part = reg;
|
4846 |
|
|
retv = memory_address_addr_space_p (mode, ad, as);
|
4847 |
|
|
*part = tem;
|
4848 |
|
|
|
4849 |
|
|
return retv;
|
4850 |
|
|
}
|
4851 |
|
|
|
4852 |
|
|
/* Record all reloads needed for handling memory address AD
|
4853 |
|
|
which appears in *LOC in a memory reference to mode MODE
|
4854 |
|
|
which itself is found in location *MEMREFLOC.
|
4855 |
|
|
Note that we take shortcuts assuming that no multi-reg machine mode
|
4856 |
|
|
occurs as part of an address.
|
4857 |
|
|
|
4858 |
|
|
OPNUM and TYPE specify the purpose of this reload.
|
4859 |
|
|
|
4860 |
|
|
IND_LEVELS says how many levels of indirect addressing this machine
|
4861 |
|
|
supports.
|
4862 |
|
|
|
4863 |
|
|
INSN, if nonzero, is the insn in which we do the reload. It is used
|
4864 |
|
|
to determine if we may generate output reloads, and where to put USEs
|
4865 |
|
|
for pseudos that we have to replace with stack slots.
|
4866 |
|
|
|
4867 |
|
|
Value is one if this address is reloaded or replaced as a whole; it is
|
4868 |
|
|
zero if the top level of this address was not reloaded or replaced, and
|
4869 |
|
|
it is -1 if it may or may not have been reloaded or replaced.
|
4870 |
|
|
|
4871 |
|
|
Note that there is no verification that the address will be valid after
|
4872 |
|
|
this routine does its work. Instead, we rely on the fact that the address
|
4873 |
|
|
was valid when reload started. So we need only undo things that reload
|
4874 |
|
|
could have broken. These are wrong register types, pseudos not allocated
|
4875 |
|
|
to a hard register, and frame pointer elimination. */
|
4876 |
|
|
|
4877 |
|
|
static int
|
4878 |
|
|
find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
|
4879 |
|
|
rtx *loc, int opnum, enum reload_type type,
|
4880 |
|
|
int ind_levels, rtx insn)
|
4881 |
|
|
{
|
4882 |
|
|
addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
|
4883 |
|
|
: ADDR_SPACE_GENERIC;
|
4884 |
|
|
int regno;
|
4885 |
|
|
int removed_and = 0;
|
4886 |
|
|
int op_index;
|
4887 |
|
|
rtx tem;
|
4888 |
|
|
|
4889 |
|
|
/* If the address is a register, see if it is a legitimate address and
|
4890 |
|
|
reload if not. We first handle the cases where we need not reload
|
4891 |
|
|
or where we must reload in a non-standard way. */
|
4892 |
|
|
|
4893 |
|
|
if (REG_P (ad))
|
4894 |
|
|
{
|
4895 |
|
|
regno = REGNO (ad);
|
4896 |
|
|
|
4897 |
|
|
if (reg_equiv_constant[regno] != 0)
|
4898 |
|
|
{
|
4899 |
|
|
find_reloads_address_part (reg_equiv_constant[regno], loc,
|
4900 |
|
|
base_reg_class (mode, MEM, SCRATCH),
|
4901 |
|
|
GET_MODE (ad), opnum, type, ind_levels);
|
4902 |
|
|
return 1;
|
4903 |
|
|
}
|
4904 |
|
|
|
4905 |
|
|
tem = reg_equiv_memory_loc[regno];
|
4906 |
|
|
if (tem != 0)
|
4907 |
|
|
{
|
4908 |
|
|
if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
|
4909 |
|
|
{
|
4910 |
|
|
tem = make_memloc (ad, regno);
|
4911 |
|
|
if (! strict_memory_address_addr_space_p (GET_MODE (tem),
|
4912 |
|
|
XEXP (tem, 0),
|
4913 |
|
|
MEM_ADDR_SPACE (tem)))
|
4914 |
|
|
{
|
4915 |
|
|
rtx orig = tem;
|
4916 |
|
|
|
4917 |
|
|
find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
|
4918 |
|
|
&XEXP (tem, 0), opnum,
|
4919 |
|
|
ADDR_TYPE (type), ind_levels, insn);
|
4920 |
|
|
if (!rtx_equal_p (tem, orig))
|
4921 |
|
|
push_reg_equiv_alt_mem (regno, tem);
|
4922 |
|
|
}
|
4923 |
|
|
/* We can avoid a reload if the register's equivalent memory
|
4924 |
|
|
expression is valid as an indirect memory address.
|
4925 |
|
|
But not all addresses are valid in a mem used as an indirect
|
4926 |
|
|
address: only reg or reg+constant. */
|
4927 |
|
|
|
4928 |
|
|
if (ind_levels > 0
|
4929 |
|
|
&& strict_memory_address_addr_space_p (mode, tem, as)
|
4930 |
|
|
&& (REG_P (XEXP (tem, 0))
|
4931 |
|
|
|| (GET_CODE (XEXP (tem, 0)) == PLUS
|
4932 |
|
|
&& REG_P (XEXP (XEXP (tem, 0), 0))
|
4933 |
|
|
&& CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
|
4934 |
|
|
{
|
4935 |
|
|
/* TEM is not the same as what we'll be replacing the
|
4936 |
|
|
pseudo with after reload, put a USE in front of INSN
|
4937 |
|
|
in the final reload pass. */
|
4938 |
|
|
if (replace_reloads
|
4939 |
|
|
&& num_not_at_initial_offset
|
4940 |
|
|
&& ! rtx_equal_p (tem, reg_equiv_mem[regno]))
|
4941 |
|
|
{
|
4942 |
|
|
*loc = tem;
|
4943 |
|
|
/* We mark the USE with QImode so that we
|
4944 |
|
|
recognize it as one that can be safely
|
4945 |
|
|
deleted at the end of reload. */
|
4946 |
|
|
PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
|
4947 |
|
|
insn), QImode);
|
4948 |
|
|
|
4949 |
|
|
/* This doesn't really count as replacing the address
|
4950 |
|
|
as a whole, since it is still a memory access. */
|
4951 |
|
|
}
|
4952 |
|
|
return 0;
|
4953 |
|
|
}
|
4954 |
|
|
ad = tem;
|
4955 |
|
|
}
|
4956 |
|
|
}
|
4957 |
|
|
|
4958 |
|
|
/* The only remaining case where we can avoid a reload is if this is a
|
4959 |
|
|
hard register that is valid as a base register and which is not the
|
4960 |
|
|
subject of a CLOBBER in this insn. */
|
4961 |
|
|
|
4962 |
|
|
else if (regno < FIRST_PSEUDO_REGISTER
|
4963 |
|
|
&& regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
|
4964 |
|
|
&& ! regno_clobbered_p (regno, this_insn, mode, 0))
|
4965 |
|
|
return 0;
|
4966 |
|
|
|
4967 |
|
|
/* If we do not have one of the cases above, we must do the reload. */
|
4968 |
|
|
push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
|
4969 |
|
|
GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
|
4970 |
|
|
return 1;
|
4971 |
|
|
}
|
4972 |
|
|
|
4973 |
|
|
if (strict_memory_address_addr_space_p (mode, ad, as))
|
4974 |
|
|
{
|
4975 |
|
|
/* The address appears valid, so reloads are not needed.
|
4976 |
|
|
But the address may contain an eliminable register.
|
4977 |
|
|
This can happen because a machine with indirect addressing
|
4978 |
|
|
may consider a pseudo register by itself a valid address even when
|
4979 |
|
|
it has failed to get a hard reg.
|
4980 |
|
|
So do a tree-walk to find and eliminate all such regs. */
|
4981 |
|
|
|
4982 |
|
|
/* But first quickly dispose of a common case. */
|
4983 |
|
|
if (GET_CODE (ad) == PLUS
|
4984 |
|
|
&& CONST_INT_P (XEXP (ad, 1))
|
4985 |
|
|
&& REG_P (XEXP (ad, 0))
|
4986 |
|
|
&& reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
|
4987 |
|
|
return 0;
|
4988 |
|
|
|
4989 |
|
|
subst_reg_equivs_changed = 0;
|
4990 |
|
|
*loc = subst_reg_equivs (ad, insn);
|
4991 |
|
|
|
4992 |
|
|
if (! subst_reg_equivs_changed)
|
4993 |
|
|
return 0;
|
4994 |
|
|
|
4995 |
|
|
/* Check result for validity after substitution. */
|
4996 |
|
|
if (strict_memory_address_addr_space_p (mode, ad, as))
|
4997 |
|
|
return 0;
|
4998 |
|
|
}
|
4999 |
|
|
|
5000 |
|
|
#ifdef LEGITIMIZE_RELOAD_ADDRESS
|
5001 |
|
|
do
|
5002 |
|
|
{
|
5003 |
|
|
if (memrefloc && ADDR_SPACE_GENERIC_P (as))
|
5004 |
|
|
{
|
5005 |
|
|
LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
|
5006 |
|
|
ind_levels, win);
|
5007 |
|
|
}
|
5008 |
|
|
break;
|
5009 |
|
|
win:
|
5010 |
|
|
*memrefloc = copy_rtx (*memrefloc);
|
5011 |
|
|
XEXP (*memrefloc, 0) = ad;
|
5012 |
|
|
move_replacements (&ad, &XEXP (*memrefloc, 0));
|
5013 |
|
|
return -1;
|
5014 |
|
|
}
|
5015 |
|
|
while (0);
|
5016 |
|
|
#endif
|
5017 |
|
|
|
5018 |
|
|
/* The address is not valid. We have to figure out why. First see if
|
5019 |
|
|
we have an outer AND and remove it if so. Then analyze what's inside. */
|
5020 |
|
|
|
5021 |
|
|
if (GET_CODE (ad) == AND)
|
5022 |
|
|
{
|
5023 |
|
|
removed_and = 1;
|
5024 |
|
|
loc = &XEXP (ad, 0);
|
5025 |
|
|
ad = *loc;
|
5026 |
|
|
}
|
5027 |
|
|
|
5028 |
|
|
/* One possibility for why the address is invalid is that it is itself
|
5029 |
|
|
a MEM. This can happen when the frame pointer is being eliminated, a
|
5030 |
|
|
pseudo is not allocated to a hard register, and the offset between the
|
5031 |
|
|
frame and stack pointers is not its initial value. In that case the
|
5032 |
|
|
pseudo will have been replaced by a MEM referring to the
|
5033 |
|
|
stack pointer. */
|
5034 |
|
|
if (MEM_P (ad))
|
5035 |
|
|
{
|
5036 |
|
|
/* First ensure that the address in this MEM is valid. Then, unless
|
5037 |
|
|
indirect addresses are valid, reload the MEM into a register. */
|
5038 |
|
|
tem = ad;
|
5039 |
|
|
find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
|
5040 |
|
|
opnum, ADDR_TYPE (type),
|
5041 |
|
|
ind_levels == 0 ? 0 : ind_levels - 1, insn);
|
5042 |
|
|
|
5043 |
|
|
/* If tem was changed, then we must create a new memory reference to
|
5044 |
|
|
hold it and store it back into memrefloc. */
|
5045 |
|
|
if (tem != ad && memrefloc)
|
5046 |
|
|
{
|
5047 |
|
|
*memrefloc = copy_rtx (*memrefloc);
|
5048 |
|
|
copy_replacements (tem, XEXP (*memrefloc, 0));
|
5049 |
|
|
loc = &XEXP (*memrefloc, 0);
|
5050 |
|
|
if (removed_and)
|
5051 |
|
|
loc = &XEXP (*loc, 0);
|
5052 |
|
|
}
|
5053 |
|
|
|
5054 |
|
|
/* Check similar cases as for indirect addresses as above except
|
5055 |
|
|
that we can allow pseudos and a MEM since they should have been
|
5056 |
|
|
taken care of above. */
|
5057 |
|
|
|
5058 |
|
|
if (ind_levels == 0
|
5059 |
|
|
|| (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
|
5060 |
|
|
|| MEM_P (XEXP (tem, 0))
|
5061 |
|
|
|| ! (REG_P (XEXP (tem, 0))
|
5062 |
|
|
|| (GET_CODE (XEXP (tem, 0)) == PLUS
|
5063 |
|
|
&& REG_P (XEXP (XEXP (tem, 0), 0))
|
5064 |
|
|
&& CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
|
5065 |
|
|
{
|
5066 |
|
|
/* Must use TEM here, not AD, since it is the one that will
|
5067 |
|
|
have any subexpressions reloaded, if needed. */
|
5068 |
|
|
push_reload (tem, NULL_RTX, loc, (rtx*) 0,
|
5069 |
|
|
base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
|
5070 |
|
|
VOIDmode, 0,
|
5071 |
|
|
0, opnum, type);
|
5072 |
|
|
return ! removed_and;
|
5073 |
|
|
}
|
5074 |
|
|
else
|
5075 |
|
|
return 0;
|
5076 |
|
|
}
|
5077 |
|
|
|
5078 |
|
|
/* If we have address of a stack slot but it's not valid because the
|
5079 |
|
|
displacement is too large, compute the sum in a register.
|
5080 |
|
|
Handle all base registers here, not just fp/ap/sp, because on some
|
5081 |
|
|
targets (namely SH) we can also get too large displacements from
|
5082 |
|
|
big-endian corrections. */
|
5083 |
|
|
else if (GET_CODE (ad) == PLUS
|
5084 |
|
|
&& REG_P (XEXP (ad, 0))
|
5085 |
|
|
&& REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
|
5086 |
|
|
&& CONST_INT_P (XEXP (ad, 1))
|
5087 |
|
|
&& regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
|
5088 |
|
|
CONST_INT))
|
5089 |
|
|
|
5090 |
|
|
{
|
5091 |
|
|
/* Unshare the MEM rtx so we can safely alter it. */
|
5092 |
|
|
if (memrefloc)
|
5093 |
|
|
{
|
5094 |
|
|
*memrefloc = copy_rtx (*memrefloc);
|
5095 |
|
|
loc = &XEXP (*memrefloc, 0);
|
5096 |
|
|
if (removed_and)
|
5097 |
|
|
loc = &XEXP (*loc, 0);
|
5098 |
|
|
}
|
5099 |
|
|
|
5100 |
|
|
if (double_reg_address_ok)
|
5101 |
|
|
{
|
5102 |
|
|
/* Unshare the sum as well. */
|
5103 |
|
|
*loc = ad = copy_rtx (ad);
|
5104 |
|
|
|
5105 |
|
|
/* Reload the displacement into an index reg.
|
5106 |
|
|
We assume the frame pointer or arg pointer is a base reg. */
|
5107 |
|
|
find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
|
5108 |
|
|
INDEX_REG_CLASS, GET_MODE (ad), opnum,
|
5109 |
|
|
type, ind_levels);
|
5110 |
|
|
return 0;
|
5111 |
|
|
}
|
5112 |
|
|
else
|
5113 |
|
|
{
|
5114 |
|
|
/* If the sum of two regs is not necessarily valid,
|
5115 |
|
|
reload the sum into a base reg.
|
5116 |
|
|
That will at least work. */
|
5117 |
|
|
find_reloads_address_part (ad, loc,
|
5118 |
|
|
base_reg_class (mode, MEM, SCRATCH),
|
5119 |
|
|
GET_MODE (ad), opnum, type, ind_levels);
|
5120 |
|
|
}
|
5121 |
|
|
return ! removed_and;
|
5122 |
|
|
}
|
5123 |
|
|
|
5124 |
|
|
/* If we have an indexed stack slot, there are three possible reasons why
|
5125 |
|
|
it might be invalid: The index might need to be reloaded, the address
|
5126 |
|
|
might have been made by frame pointer elimination and hence have a
|
5127 |
|
|
constant out of range, or both reasons might apply.
|
5128 |
|
|
|
5129 |
|
|
We can easily check for an index needing reload, but even if that is the
|
5130 |
|
|
case, we might also have an invalid constant. To avoid making the
|
5131 |
|
|
conservative assumption and requiring two reloads, we see if this address
|
5132 |
|
|
is valid when not interpreted strictly. If it is, the only problem is
|
5133 |
|
|
that the index needs a reload and find_reloads_address_1 will take care
|
5134 |
|
|
of it.
|
5135 |
|
|
|
5136 |
|
|
Handle all base registers here, not just fp/ap/sp, because on some
|
5137 |
|
|
targets (namely SPARC) we can also get invalid addresses from preventive
|
5138 |
|
|
subreg big-endian corrections made by find_reloads_toplev. We
|
5139 |
|
|
can also get expressions involving LO_SUM (rather than PLUS) from
|
5140 |
|
|
find_reloads_subreg_address.
|
5141 |
|
|
|
5142 |
|
|
If we decide to do something, it must be that `double_reg_address_ok'
|
5143 |
|
|
is true. We generate a reload of the base register + constant and
|
5144 |
|
|
rework the sum so that the reload register will be added to the index.
|
5145 |
|
|
This is safe because we know the address isn't shared.
|
5146 |
|
|
|
5147 |
|
|
We check for the base register as both the first and second operand of
|
5148 |
|
|
the innermost PLUS and/or LO_SUM. */
|
5149 |
|
|
|
5150 |
|
|
for (op_index = 0; op_index < 2; ++op_index)
|
5151 |
|
|
{
|
5152 |
|
|
rtx operand, addend;
|
5153 |
|
|
enum rtx_code inner_code;
|
5154 |
|
|
|
5155 |
|
|
if (GET_CODE (ad) != PLUS)
|
5156 |
|
|
continue;
|
5157 |
|
|
|
5158 |
|
|
inner_code = GET_CODE (XEXP (ad, 0));
|
5159 |
|
|
if (!(GET_CODE (ad) == PLUS
|
5160 |
|
|
&& CONST_INT_P (XEXP (ad, 1))
|
5161 |
|
|
&& (inner_code == PLUS || inner_code == LO_SUM)))
|
5162 |
|
|
continue;
|
5163 |
|
|
|
5164 |
|
|
operand = XEXP (XEXP (ad, 0), op_index);
|
5165 |
|
|
if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
|
5166 |
|
|
continue;
|
5167 |
|
|
|
5168 |
|
|
addend = XEXP (XEXP (ad, 0), 1 - op_index);
|
5169 |
|
|
|
5170 |
|
|
if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
|
5171 |
|
|
GET_CODE (addend))
|
5172 |
|
|
|| operand == frame_pointer_rtx
|
5173 |
|
|
#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
5174 |
|
|
|| operand == hard_frame_pointer_rtx
|
5175 |
|
|
#endif
|
5176 |
|
|
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
5177 |
|
|
|| operand == arg_pointer_rtx
|
5178 |
|
|
#endif
|
5179 |
|
|
|| operand == stack_pointer_rtx)
|
5180 |
|
|
&& ! maybe_memory_address_addr_space_p
|
5181 |
|
|
(mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
|
5182 |
|
|
{
|
5183 |
|
|
rtx offset_reg;
|
5184 |
|
|
enum reg_class cls;
|
5185 |
|
|
|
5186 |
|
|
offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
|
5187 |
|
|
|
5188 |
|
|
/* Form the adjusted address. */
|
5189 |
|
|
if (GET_CODE (XEXP (ad, 0)) == PLUS)
|
5190 |
|
|
ad = gen_rtx_PLUS (GET_MODE (ad),
|
5191 |
|
|
op_index == 0 ? offset_reg : addend,
|
5192 |
|
|
op_index == 0 ? addend : offset_reg);
|
5193 |
|
|
else
|
5194 |
|
|
ad = gen_rtx_LO_SUM (GET_MODE (ad),
|
5195 |
|
|
op_index == 0 ? offset_reg : addend,
|
5196 |
|
|
op_index == 0 ? addend : offset_reg);
|
5197 |
|
|
*loc = ad;
|
5198 |
|
|
|
5199 |
|
|
cls = base_reg_class (mode, MEM, GET_CODE (addend));
|
5200 |
|
|
find_reloads_address_part (XEXP (ad, op_index),
|
5201 |
|
|
&XEXP (ad, op_index), cls,
|
5202 |
|
|
GET_MODE (ad), opnum, type, ind_levels);
|
5203 |
|
|
find_reloads_address_1 (mode,
|
5204 |
|
|
XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
|
5205 |
|
|
GET_CODE (XEXP (ad, op_index)),
|
5206 |
|
|
&XEXP (ad, 1 - op_index), opnum,
|
5207 |
|
|
type, 0, insn);
|
5208 |
|
|
|
5209 |
|
|
return 0;
|
5210 |
|
|
}
|
5211 |
|
|
}
|
5212 |
|
|
|
5213 |
|
|
/* See if address becomes valid when an eliminable register
|
5214 |
|
|
in a sum is replaced. */
|
5215 |
|
|
|
5216 |
|
|
tem = ad;
|
5217 |
|
|
if (GET_CODE (ad) == PLUS)
|
5218 |
|
|
tem = subst_indexed_address (ad);
|
5219 |
|
|
if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
|
5220 |
|
|
{
|
5221 |
|
|
/* Ok, we win that way. Replace any additional eliminable
|
5222 |
|
|
registers. */
|
5223 |
|
|
|
5224 |
|
|
subst_reg_equivs_changed = 0;
|
5225 |
|
|
tem = subst_reg_equivs (tem, insn);
|
5226 |
|
|
|
5227 |
|
|
/* Make sure that didn't make the address invalid again. */
|
5228 |
|
|
|
5229 |
|
|
if (! subst_reg_equivs_changed
|
5230 |
|
|
|| strict_memory_address_addr_space_p (mode, tem, as))
|
5231 |
|
|
{
|
5232 |
|
|
*loc = tem;
|
5233 |
|
|
return 0;
|
5234 |
|
|
}
|
5235 |
|
|
}
|
5236 |
|
|
|
5237 |
|
|
/* If constants aren't valid addresses, reload the constant address
|
5238 |
|
|
into a register. */
|
5239 |
|
|
if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
|
5240 |
|
|
{
|
5241 |
|
|
enum machine_mode address_mode = GET_MODE (ad);
|
5242 |
|
|
if (address_mode == VOIDmode)
|
5243 |
|
|
address_mode = targetm.addr_space.address_mode (as);
|
5244 |
|
|
|
5245 |
|
|
/* If AD is an address in the constant pool, the MEM rtx may be shared.
|
5246 |
|
|
Unshare it so we can safely alter it. */
|
5247 |
|
|
if (memrefloc && GET_CODE (ad) == SYMBOL_REF
|
5248 |
|
|
&& CONSTANT_POOL_ADDRESS_P (ad))
|
5249 |
|
|
{
|
5250 |
|
|
*memrefloc = copy_rtx (*memrefloc);
|
5251 |
|
|
loc = &XEXP (*memrefloc, 0);
|
5252 |
|
|
if (removed_and)
|
5253 |
|
|
loc = &XEXP (*loc, 0);
|
5254 |
|
|
}
|
5255 |
|
|
|
5256 |
|
|
find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
|
5257 |
|
|
address_mode, opnum, type, ind_levels);
|
5258 |
|
|
return ! removed_and;
|
5259 |
|
|
}
|
5260 |
|
|
|
5261 |
|
|
return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
|
5262 |
|
|
ind_levels, insn);
|
5263 |
|
|
}
|
5264 |
|
|
|
5265 |
|
|
/* Find all pseudo regs appearing in AD
|
5266 |
|
|
that are eliminable in favor of equivalent values
|
5267 |
|
|
and do not have hard regs; replace them by their equivalents.
|
5268 |
|
|
INSN, if nonzero, is the insn in which we do the reload. We put USEs in
|
5269 |
|
|
front of it for pseudos that we have to replace with stack slots. */
|
5270 |
|
|
|
5271 |
|
|
static rtx
|
5272 |
|
|
subst_reg_equivs (rtx ad, rtx insn)
|
5273 |
|
|
{
|
5274 |
|
|
RTX_CODE code = GET_CODE (ad);
|
5275 |
|
|
int i;
|
5276 |
|
|
const char *fmt;
|
5277 |
|
|
|
5278 |
|
|
switch (code)
|
5279 |
|
|
{
|
5280 |
|
|
case HIGH:
|
5281 |
|
|
case CONST_INT:
|
5282 |
|
|
case CONST:
|
5283 |
|
|
case CONST_DOUBLE:
|
5284 |
|
|
case CONST_FIXED:
|
5285 |
|
|
case CONST_VECTOR:
|
5286 |
|
|
case SYMBOL_REF:
|
5287 |
|
|
case LABEL_REF:
|
5288 |
|
|
case PC:
|
5289 |
|
|
case CC0:
|
5290 |
|
|
return ad;
|
5291 |
|
|
|
5292 |
|
|
case REG:
|
5293 |
|
|
{
|
5294 |
|
|
int regno = REGNO (ad);
|
5295 |
|
|
|
5296 |
|
|
if (reg_equiv_constant[regno] != 0)
|
5297 |
|
|
{
|
5298 |
|
|
subst_reg_equivs_changed = 1;
|
5299 |
|
|
return reg_equiv_constant[regno];
|
5300 |
|
|
}
|
5301 |
|
|
if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
|
5302 |
|
|
{
|
5303 |
|
|
rtx mem = make_memloc (ad, regno);
|
5304 |
|
|
if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
|
5305 |
|
|
{
|
5306 |
|
|
subst_reg_equivs_changed = 1;
|
5307 |
|
|
/* We mark the USE with QImode so that we recognize it
|
5308 |
|
|
as one that can be safely deleted at the end of
|
5309 |
|
|
reload. */
|
5310 |
|
|
PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
|
5311 |
|
|
QImode);
|
5312 |
|
|
return mem;
|
5313 |
|
|
}
|
5314 |
|
|
}
|
5315 |
|
|
}
|
5316 |
|
|
return ad;
|
5317 |
|
|
|
5318 |
|
|
case PLUS:
|
5319 |
|
|
/* Quickly dispose of a common case. */
|
5320 |
|
|
if (XEXP (ad, 0) == frame_pointer_rtx
|
5321 |
|
|
&& CONST_INT_P (XEXP (ad, 1)))
|
5322 |
|
|
return ad;
|
5323 |
|
|
break;
|
5324 |
|
|
|
5325 |
|
|
default:
|
5326 |
|
|
break;
|
5327 |
|
|
}
|
5328 |
|
|
|
5329 |
|
|
fmt = GET_RTX_FORMAT (code);
|
5330 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
5331 |
|
|
if (fmt[i] == 'e')
|
5332 |
|
|
XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
|
5333 |
|
|
return ad;
|
5334 |
|
|
}
|
5335 |
|
|
|
5336 |
|
|
/* Compute the sum of X and Y, making canonicalizations assumed in an
|
5337 |
|
|
address, namely: sum constant integers, surround the sum of two
|
5338 |
|
|
constants with a CONST, put the constant as the second operand, and
|
5339 |
|
|
group the constant on the outermost sum.
|
5340 |
|
|
|
5341 |
|
|
This routine assumes both inputs are already in canonical form. */
|
5342 |
|
|
|
5343 |
|
|
rtx
|
5344 |
|
|
form_sum (enum machine_mode mode, rtx x, rtx y)
|
5345 |
|
|
{
|
5346 |
|
|
rtx tem;
|
5347 |
|
|
|
5348 |
|
|
gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
|
5349 |
|
|
gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
|
5350 |
|
|
|
5351 |
|
|
if (CONST_INT_P (x))
|
5352 |
|
|
return plus_constant (y, INTVAL (x));
|
5353 |
|
|
else if (CONST_INT_P (y))
|
5354 |
|
|
return plus_constant (x, INTVAL (y));
|
5355 |
|
|
else if (CONSTANT_P (x))
|
5356 |
|
|
tem = x, x = y, y = tem;
|
5357 |
|
|
|
5358 |
|
|
if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
|
5359 |
|
|
return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
|
5360 |
|
|
|
5361 |
|
|
/* Note that if the operands of Y are specified in the opposite
|
5362 |
|
|
order in the recursive calls below, infinite recursion will occur. */
|
5363 |
|
|
if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
|
5364 |
|
|
return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
|
5365 |
|
|
|
5366 |
|
|
/* If both constant, encapsulate sum. Otherwise, just form sum. A
|
5367 |
|
|
constant will have been placed second. */
|
5368 |
|
|
if (CONSTANT_P (x) && CONSTANT_P (y))
|
5369 |
|
|
{
|
5370 |
|
|
if (GET_CODE (x) == CONST)
|
5371 |
|
|
x = XEXP (x, 0);
|
5372 |
|
|
if (GET_CODE (y) == CONST)
|
5373 |
|
|
y = XEXP (y, 0);
|
5374 |
|
|
|
5375 |
|
|
return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
|
5376 |
|
|
}
|
5377 |
|
|
|
5378 |
|
|
return gen_rtx_PLUS (mode, x, y);
|
5379 |
|
|
}
|
5380 |
|
|
|
5381 |
|
|
/* If ADDR is a sum containing a pseudo register that should be
|
5382 |
|
|
replaced with a constant (from reg_equiv_constant),
|
5383 |
|
|
return the result of doing so, and also apply the associative
|
5384 |
|
|
law so that the result is more likely to be a valid address.
|
5385 |
|
|
(But it is not guaranteed to be one.)
|
5386 |
|
|
|
5387 |
|
|
Note that at most one register is replaced, even if more are
|
5388 |
|
|
replaceable. Also, we try to put the result into a canonical form
|
5389 |
|
|
so it is more likely to be a valid address.
|
5390 |
|
|
|
5391 |
|
|
In all other cases, return ADDR. */
|
5392 |
|
|
|
5393 |
|
|
static rtx
|
5394 |
|
|
subst_indexed_address (rtx addr)
|
5395 |
|
|
{
|
5396 |
|
|
rtx op0 = 0, op1 = 0, op2 = 0;
|
5397 |
|
|
rtx tem;
|
5398 |
|
|
int regno;
|
5399 |
|
|
|
5400 |
|
|
if (GET_CODE (addr) == PLUS)
|
5401 |
|
|
{
|
5402 |
|
|
/* Try to find a register to replace. */
|
5403 |
|
|
op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
|
5404 |
|
|
if (REG_P (op0)
|
5405 |
|
|
&& (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
|
5406 |
|
|
&& reg_renumber[regno] < 0
|
5407 |
|
|
&& reg_equiv_constant[regno] != 0)
|
5408 |
|
|
op0 = reg_equiv_constant[regno];
|
5409 |
|
|
else if (REG_P (op1)
|
5410 |
|
|
&& (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
|
5411 |
|
|
&& reg_renumber[regno] < 0
|
5412 |
|
|
&& reg_equiv_constant[regno] != 0)
|
5413 |
|
|
op1 = reg_equiv_constant[regno];
|
5414 |
|
|
else if (GET_CODE (op0) == PLUS
|
5415 |
|
|
&& (tem = subst_indexed_address (op0)) != op0)
|
5416 |
|
|
op0 = tem;
|
5417 |
|
|
else if (GET_CODE (op1) == PLUS
|
5418 |
|
|
&& (tem = subst_indexed_address (op1)) != op1)
|
5419 |
|
|
op1 = tem;
|
5420 |
|
|
else
|
5421 |
|
|
return addr;
|
5422 |
|
|
|
5423 |
|
|
/* Pick out up to three things to add. */
|
5424 |
|
|
if (GET_CODE (op1) == PLUS)
|
5425 |
|
|
op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
|
5426 |
|
|
else if (GET_CODE (op0) == PLUS)
|
5427 |
|
|
op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
|
5428 |
|
|
|
5429 |
|
|
/* Compute the sum. */
|
5430 |
|
|
if (op2 != 0)
|
5431 |
|
|
op1 = form_sum (GET_MODE (addr), op1, op2);
|
5432 |
|
|
if (op1 != 0)
|
5433 |
|
|
op0 = form_sum (GET_MODE (addr), op0, op1);
|
5434 |
|
|
|
5435 |
|
|
return op0;
|
5436 |
|
|
}
|
5437 |
|
|
return addr;
|
5438 |
|
|
}
|
5439 |
|
|
|
5440 |
|
|
/* Update the REG_INC notes for an insn. It updates all REG_INC
|
5441 |
|
|
notes for the instruction which refer to REGNO the to refer
|
5442 |
|
|
to the reload number.
|
5443 |
|
|
|
5444 |
|
|
INSN is the insn for which any REG_INC notes need updating.
|
5445 |
|
|
|
5446 |
|
|
REGNO is the register number which has been reloaded.
|
5447 |
|
|
|
5448 |
|
|
RELOADNUM is the reload number. */
|
5449 |
|
|
|
5450 |
|
|
static void
|
5451 |
|
|
update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
|
5452 |
|
|
int reloadnum ATTRIBUTE_UNUSED)
|
5453 |
|
|
{
|
5454 |
|
|
#ifdef AUTO_INC_DEC
|
5455 |
|
|
rtx link;
|
5456 |
|
|
|
5457 |
|
|
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
5458 |
|
|
if (REG_NOTE_KIND (link) == REG_INC
|
5459 |
|
|
&& (int) REGNO (XEXP (link, 0)) == regno)
|
5460 |
|
|
push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
|
5461 |
|
|
#endif
|
5462 |
|
|
}
|
5463 |
|
|
|
5464 |
|
|
/* Record the pseudo registers we must reload into hard registers in a
|
5465 |
|
|
subexpression of a would-be memory address, X referring to a value
|
5466 |
|
|
in mode MODE. (This function is not called if the address we find
|
5467 |
|
|
is strictly valid.)
|
5468 |
|
|
|
5469 |
|
|
CONTEXT = 1 means we are considering regs as index regs,
|
5470 |
|
|
= 0 means we are considering them as base regs.
|
5471 |
|
|
OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
|
5472 |
|
|
or an autoinc code.
|
5473 |
|
|
If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
|
5474 |
|
|
is the code of the index part of the address. Otherwise, pass SCRATCH
|
5475 |
|
|
for this argument.
|
5476 |
|
|
OPNUM and TYPE specify the purpose of any reloads made.
|
5477 |
|
|
|
5478 |
|
|
IND_LEVELS says how many levels of indirect addressing are
|
5479 |
|
|
supported at this point in the address.
|
5480 |
|
|
|
5481 |
|
|
INSN, if nonzero, is the insn in which we do the reload. It is used
|
5482 |
|
|
to determine if we may generate output reloads.
|
5483 |
|
|
|
5484 |
|
|
We return nonzero if X, as a whole, is reloaded or replaced. */
|
5485 |
|
|
|
5486 |
|
|
/* Note that we take shortcuts assuming that no multi-reg machine mode
|
5487 |
|
|
occurs as part of an address.
|
5488 |
|
|
Also, this is not fully machine-customizable; it works for machines
|
5489 |
|
|
such as VAXen and 68000's and 32000's, but other possible machines
|
5490 |
|
|
could have addressing modes that this does not handle right.
|
5491 |
|
|
If you add push_reload calls here, you need to make sure gen_reload
|
5492 |
|
|
handles those cases gracefully. */
|
5493 |
|
|
|
5494 |
|
|
static int
|
5495 |
|
|
find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
|
5496 |
|
|
enum rtx_code outer_code, enum rtx_code index_code,
|
5497 |
|
|
rtx *loc, int opnum, enum reload_type type,
|
5498 |
|
|
int ind_levels, rtx insn)
|
5499 |
|
|
{
|
5500 |
|
|
#define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
|
5501 |
|
|
((CONTEXT) == 0 \
|
5502 |
|
|
? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
|
5503 |
|
|
: REGNO_OK_FOR_INDEX_P (REGNO))
|
5504 |
|
|
|
5505 |
|
|
enum reg_class context_reg_class;
|
5506 |
|
|
RTX_CODE code = GET_CODE (x);
|
5507 |
|
|
|
5508 |
|
|
if (context == 1)
|
5509 |
|
|
context_reg_class = INDEX_REG_CLASS;
|
5510 |
|
|
else
|
5511 |
|
|
context_reg_class = base_reg_class (mode, outer_code, index_code);
|
5512 |
|
|
|
5513 |
|
|
switch (code)
|
5514 |
|
|
{
|
5515 |
|
|
case PLUS:
|
5516 |
|
|
{
|
5517 |
|
|
rtx orig_op0 = XEXP (x, 0);
|
5518 |
|
|
rtx orig_op1 = XEXP (x, 1);
|
5519 |
|
|
RTX_CODE code0 = GET_CODE (orig_op0);
|
5520 |
|
|
RTX_CODE code1 = GET_CODE (orig_op1);
|
5521 |
|
|
rtx op0 = orig_op0;
|
5522 |
|
|
rtx op1 = orig_op1;
|
5523 |
|
|
|
5524 |
|
|
if (GET_CODE (op0) == SUBREG)
|
5525 |
|
|
{
|
5526 |
|
|
op0 = SUBREG_REG (op0);
|
5527 |
|
|
code0 = GET_CODE (op0);
|
5528 |
|
|
if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
|
5529 |
|
|
op0 = gen_rtx_REG (word_mode,
|
5530 |
|
|
(REGNO (op0) +
|
5531 |
|
|
subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
|
5532 |
|
|
GET_MODE (SUBREG_REG (orig_op0)),
|
5533 |
|
|
SUBREG_BYTE (orig_op0),
|
5534 |
|
|
GET_MODE (orig_op0))));
|
5535 |
|
|
}
|
5536 |
|
|
|
5537 |
|
|
if (GET_CODE (op1) == SUBREG)
|
5538 |
|
|
{
|
5539 |
|
|
op1 = SUBREG_REG (op1);
|
5540 |
|
|
code1 = GET_CODE (op1);
|
5541 |
|
|
if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
|
5542 |
|
|
/* ??? Why is this given op1's mode and above for
|
5543 |
|
|
??? op0 SUBREGs we use word_mode? */
|
5544 |
|
|
op1 = gen_rtx_REG (GET_MODE (op1),
|
5545 |
|
|
(REGNO (op1) +
|
5546 |
|
|
subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
|
5547 |
|
|
GET_MODE (SUBREG_REG (orig_op1)),
|
5548 |
|
|
SUBREG_BYTE (orig_op1),
|
5549 |
|
|
GET_MODE (orig_op1))));
|
5550 |
|
|
}
|
5551 |
|
|
/* Plus in the index register may be created only as a result of
|
5552 |
|
|
register rematerialization for expression like &localvar*4. Reload it.
|
5553 |
|
|
It may be possible to combine the displacement on the outer level,
|
5554 |
|
|
but it is probably not worthwhile to do so. */
|
5555 |
|
|
if (context == 1)
|
5556 |
|
|
{
|
5557 |
|
|
find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
|
5558 |
|
|
opnum, ADDR_TYPE (type), ind_levels, insn);
|
5559 |
|
|
push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
|
5560 |
|
|
context_reg_class,
|
5561 |
|
|
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
|
5562 |
|
|
return 1;
|
5563 |
|
|
}
|
5564 |
|
|
|
5565 |
|
|
if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
|
5566 |
|
|
|| code0 == ZERO_EXTEND || code1 == MEM)
|
5567 |
|
|
{
|
5568 |
|
|
find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
|
5569 |
|
|
&XEXP (x, 0), opnum, type, ind_levels,
|
5570 |
|
|
insn);
|
5571 |
|
|
find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
|
5572 |
|
|
&XEXP (x, 1), opnum, type, ind_levels,
|
5573 |
|
|
insn);
|
5574 |
|
|
}
|
5575 |
|
|
|
5576 |
|
|
else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
|
5577 |
|
|
|| code1 == ZERO_EXTEND || code0 == MEM)
|
5578 |
|
|
{
|
5579 |
|
|
find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
|
5580 |
|
|
&XEXP (x, 0), opnum, type, ind_levels,
|
5581 |
|
|
insn);
|
5582 |
|
|
find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
|
5583 |
|
|
&XEXP (x, 1), opnum, type, ind_levels,
|
5584 |
|
|
insn);
|
5585 |
|
|
}
|
5586 |
|
|
|
5587 |
|
|
else if (code0 == CONST_INT || code0 == CONST
|
5588 |
|
|
|| code0 == SYMBOL_REF || code0 == LABEL_REF)
|
5589 |
|
|
find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
|
5590 |
|
|
&XEXP (x, 1), opnum, type, ind_levels,
|
5591 |
|
|
insn);
|
5592 |
|
|
|
5593 |
|
|
else if (code1 == CONST_INT || code1 == CONST
|
5594 |
|
|
|| code1 == SYMBOL_REF || code1 == LABEL_REF)
|
5595 |
|
|
find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
|
5596 |
|
|
&XEXP (x, 0), opnum, type, ind_levels,
|
5597 |
|
|
insn);
|
5598 |
|
|
|
5599 |
|
|
else if (code0 == REG && code1 == REG)
|
5600 |
|
|
{
|
5601 |
|
|
if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
|
5602 |
|
|
&& regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
|
5603 |
|
|
return 0;
|
5604 |
|
|
else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
|
5605 |
|
|
&& regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
|
5606 |
|
|
return 0;
|
5607 |
|
|
else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
|
5608 |
|
|
find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
|
5609 |
|
|
&XEXP (x, 1), opnum, type, ind_levels,
|
5610 |
|
|
insn);
|
5611 |
|
|
else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
|
5612 |
|
|
find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
|
5613 |
|
|
&XEXP (x, 0), opnum, type, ind_levels,
|
5614 |
|
|
insn);
|
5615 |
|
|
else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
|
5616 |
|
|
find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
|
5617 |
|
|
&XEXP (x, 0), opnum, type, ind_levels,
|
5618 |
|
|
insn);
|
5619 |
|
|
else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
|
5620 |
|
|
find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
|
5621 |
|
|
&XEXP (x, 1), opnum, type, ind_levels,
|
5622 |
|
|
insn);
|
5623 |
|
|
else
|
5624 |
|
|
{
|
5625 |
|
|
find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
|
5626 |
|
|
&XEXP (x, 0), opnum, type, ind_levels,
|
5627 |
|
|
insn);
|
5628 |
|
|
find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
|
5629 |
|
|
&XEXP (x, 1), opnum, type, ind_levels,
|
5630 |
|
|
insn);
|
5631 |
|
|
}
|
5632 |
|
|
}
|
5633 |
|
|
|
5634 |
|
|
else if (code0 == REG)
|
5635 |
|
|
{
|
5636 |
|
|
find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
|
5637 |
|
|
&XEXP (x, 0), opnum, type, ind_levels,
|
5638 |
|
|
insn);
|
5639 |
|
|
find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
|
5640 |
|
|
&XEXP (x, 1), opnum, type, ind_levels,
|
5641 |
|
|
insn);
|
5642 |
|
|
}
|
5643 |
|
|
|
5644 |
|
|
else if (code1 == REG)
|
5645 |
|
|
{
|
5646 |
|
|
find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
|
5647 |
|
|
&XEXP (x, 1), opnum, type, ind_levels,
|
5648 |
|
|
insn);
|
5649 |
|
|
find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
|
5650 |
|
|
&XEXP (x, 0), opnum, type, ind_levels,
|
5651 |
|
|
insn);
|
5652 |
|
|
}
|
5653 |
|
|
}
|
5654 |
|
|
|
5655 |
|
|
return 0;
|
5656 |
|
|
|
5657 |
|
|
case POST_MODIFY:
|
5658 |
|
|
case PRE_MODIFY:
|
5659 |
|
|
{
|
5660 |
|
|
rtx op0 = XEXP (x, 0);
|
5661 |
|
|
rtx op1 = XEXP (x, 1);
|
5662 |
|
|
enum rtx_code index_code;
|
5663 |
|
|
int regno;
|
5664 |
|
|
int reloadnum;
|
5665 |
|
|
|
5666 |
|
|
if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
|
5667 |
|
|
return 0;
|
5668 |
|
|
|
5669 |
|
|
/* Currently, we only support {PRE,POST}_MODIFY constructs
|
5670 |
|
|
where a base register is {inc,dec}remented by the contents
|
5671 |
|
|
of another register or by a constant value. Thus, these
|
5672 |
|
|
operands must match. */
|
5673 |
|
|
gcc_assert (op0 == XEXP (op1, 0));
|
5674 |
|
|
|
5675 |
|
|
/* Require index register (or constant). Let's just handle the
|
5676 |
|
|
register case in the meantime... If the target allows
|
5677 |
|
|
auto-modify by a constant then we could try replacing a pseudo
|
5678 |
|
|
register with its equivalent constant where applicable.
|
5679 |
|
|
|
5680 |
|
|
We also handle the case where the register was eliminated
|
5681 |
|
|
resulting in a PLUS subexpression.
|
5682 |
|
|
|
5683 |
|
|
If we later decide to reload the whole PRE_MODIFY or
|
5684 |
|
|
POST_MODIFY, inc_for_reload might clobber the reload register
|
5685 |
|
|
before reading the index. The index register might therefore
|
5686 |
|
|
need to live longer than a TYPE reload normally would, so be
|
5687 |
|
|
conservative and class it as RELOAD_OTHER. */
|
5688 |
|
|
if ((REG_P (XEXP (op1, 1))
|
5689 |
|
|
&& !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
|
5690 |
|
|
|| GET_CODE (XEXP (op1, 1)) == PLUS)
|
5691 |
|
|
find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
|
5692 |
|
|
&XEXP (op1, 1), opnum, RELOAD_OTHER,
|
5693 |
|
|
ind_levels, insn);
|
5694 |
|
|
|
5695 |
|
|
gcc_assert (REG_P (XEXP (op1, 0)));
|
5696 |
|
|
|
5697 |
|
|
regno = REGNO (XEXP (op1, 0));
|
5698 |
|
|
index_code = GET_CODE (XEXP (op1, 1));
|
5699 |
|
|
|
5700 |
|
|
/* A register that is incremented cannot be constant! */
|
5701 |
|
|
gcc_assert (regno < FIRST_PSEUDO_REGISTER
|
5702 |
|
|
|| reg_equiv_constant[regno] == 0);
|
5703 |
|
|
|
5704 |
|
|
/* Handle a register that is equivalent to a memory location
|
5705 |
|
|
which cannot be addressed directly. */
|
5706 |
|
|
if (reg_equiv_memory_loc[regno] != 0
|
5707 |
|
|
&& (reg_equiv_address[regno] != 0
|
5708 |
|
|
|| num_not_at_initial_offset))
|
5709 |
|
|
{
|
5710 |
|
|
rtx tem = make_memloc (XEXP (x, 0), regno);
|
5711 |
|
|
|
5712 |
|
|
if (reg_equiv_address[regno]
|
5713 |
|
|
|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
|
5714 |
|
|
{
|
5715 |
|
|
rtx orig = tem;
|
5716 |
|
|
|
5717 |
|
|
/* First reload the memory location's address.
|
5718 |
|
|
We can't use ADDR_TYPE (type) here, because we need to
|
5719 |
|
|
write back the value after reading it, hence we actually
|
5720 |
|
|
need two registers. */
|
5721 |
|
|
find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
|
5722 |
|
|
&XEXP (tem, 0), opnum,
|
5723 |
|
|
RELOAD_OTHER,
|
5724 |
|
|
ind_levels, insn);
|
5725 |
|
|
|
5726 |
|
|
if (!rtx_equal_p (tem, orig))
|
5727 |
|
|
push_reg_equiv_alt_mem (regno, tem);
|
5728 |
|
|
|
5729 |
|
|
/* Then reload the memory location into a base
|
5730 |
|
|
register. */
|
5731 |
|
|
reloadnum = push_reload (tem, tem, &XEXP (x, 0),
|
5732 |
|
|
&XEXP (op1, 0),
|
5733 |
|
|
base_reg_class (mode, code,
|
5734 |
|
|
index_code),
|
5735 |
|
|
GET_MODE (x), GET_MODE (x), 0,
|
5736 |
|
|
0, opnum, RELOAD_OTHER);
|
5737 |
|
|
|
5738 |
|
|
update_auto_inc_notes (this_insn, regno, reloadnum);
|
5739 |
|
|
return 0;
|
5740 |
|
|
}
|
5741 |
|
|
}
|
5742 |
|
|
|
5743 |
|
|
if (reg_renumber[regno] >= 0)
|
5744 |
|
|
regno = reg_renumber[regno];
|
5745 |
|
|
|
5746 |
|
|
/* We require a base register here... */
|
5747 |
|
|
if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
|
5748 |
|
|
{
|
5749 |
|
|
reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
|
5750 |
|
|
&XEXP (op1, 0), &XEXP (x, 0),
|
5751 |
|
|
base_reg_class (mode, code, index_code),
|
5752 |
|
|
GET_MODE (x), GET_MODE (x), 0, 0,
|
5753 |
|
|
opnum, RELOAD_OTHER);
|
5754 |
|
|
|
5755 |
|
|
update_auto_inc_notes (this_insn, regno, reloadnum);
|
5756 |
|
|
return 0;
|
5757 |
|
|
}
|
5758 |
|
|
}
|
5759 |
|
|
return 0;
|
5760 |
|
|
|
5761 |
|
|
case POST_INC:
|
5762 |
|
|
case POST_DEC:
|
5763 |
|
|
case PRE_INC:
|
5764 |
|
|
case PRE_DEC:
|
5765 |
|
|
if (REG_P (XEXP (x, 0)))
|
5766 |
|
|
{
|
5767 |
|
|
int regno = REGNO (XEXP (x, 0));
|
5768 |
|
|
int value = 0;
|
5769 |
|
|
rtx x_orig = x;
|
5770 |
|
|
|
5771 |
|
|
/* A register that is incremented cannot be constant! */
|
5772 |
|
|
gcc_assert (regno < FIRST_PSEUDO_REGISTER
|
5773 |
|
|
|| reg_equiv_constant[regno] == 0);
|
5774 |
|
|
|
5775 |
|
|
/* Handle a register that is equivalent to a memory location
|
5776 |
|
|
which cannot be addressed directly. */
|
5777 |
|
|
if (reg_equiv_memory_loc[regno] != 0
|
5778 |
|
|
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
|
5779 |
|
|
{
|
5780 |
|
|
rtx tem = make_memloc (XEXP (x, 0), regno);
|
5781 |
|
|
if (reg_equiv_address[regno]
|
5782 |
|
|
|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
|
5783 |
|
|
{
|
5784 |
|
|
rtx orig = tem;
|
5785 |
|
|
|
5786 |
|
|
/* First reload the memory location's address.
|
5787 |
|
|
We can't use ADDR_TYPE (type) here, because we need to
|
5788 |
|
|
write back the value after reading it, hence we actually
|
5789 |
|
|
need two registers. */
|
5790 |
|
|
find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
|
5791 |
|
|
&XEXP (tem, 0), opnum, type,
|
5792 |
|
|
ind_levels, insn);
|
5793 |
|
|
if (!rtx_equal_p (tem, orig))
|
5794 |
|
|
push_reg_equiv_alt_mem (regno, tem);
|
5795 |
|
|
/* Put this inside a new increment-expression. */
|
5796 |
|
|
x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
|
5797 |
|
|
/* Proceed to reload that, as if it contained a register. */
|
5798 |
|
|
}
|
5799 |
|
|
}
|
5800 |
|
|
|
5801 |
|
|
/* If we have a hard register that is ok in this incdec context,
|
5802 |
|
|
don't make a reload. If the register isn't nice enough for
|
5803 |
|
|
autoincdec, we can reload it. But, if an autoincrement of a
|
5804 |
|
|
register that we here verified as playing nice, still outside
|
5805 |
|
|
isn't "valid", it must be that no autoincrement is "valid".
|
5806 |
|
|
If that is true and something made an autoincrement anyway,
|
5807 |
|
|
this must be a special context where one is allowed.
|
5808 |
|
|
(For example, a "push" instruction.)
|
5809 |
|
|
We can't improve this address, so leave it alone. */
|
5810 |
|
|
|
5811 |
|
|
/* Otherwise, reload the autoincrement into a suitable hard reg
|
5812 |
|
|
and record how much to increment by. */
|
5813 |
|
|
|
5814 |
|
|
if (reg_renumber[regno] >= 0)
|
5815 |
|
|
regno = reg_renumber[regno];
|
5816 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER
|
5817 |
|
|
|| !REG_OK_FOR_CONTEXT (context, regno, mode, code,
|
5818 |
|
|
index_code))
|
5819 |
|
|
{
|
5820 |
|
|
int reloadnum;
|
5821 |
|
|
|
5822 |
|
|
/* If we can output the register afterwards, do so, this
|
5823 |
|
|
saves the extra update.
|
5824 |
|
|
We can do so if we have an INSN - i.e. no JUMP_INSN nor
|
5825 |
|
|
CALL_INSN - and it does not set CC0.
|
5826 |
|
|
But don't do this if we cannot directly address the
|
5827 |
|
|
memory location, since this will make it harder to
|
5828 |
|
|
reuse address reloads, and increases register pressure.
|
5829 |
|
|
Also don't do this if we can probably update x directly. */
|
5830 |
|
|
rtx equiv = (MEM_P (XEXP (x, 0))
|
5831 |
|
|
? XEXP (x, 0)
|
5832 |
|
|
: reg_equiv_mem[regno]);
|
5833 |
|
|
int icode
|
5834 |
|
|
= (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
|
5835 |
|
|
if (insn && NONJUMP_INSN_P (insn) && equiv
|
5836 |
|
|
&& memory_operand (equiv, GET_MODE (equiv))
|
5837 |
|
|
#ifdef HAVE_cc0
|
5838 |
|
|
&& ! sets_cc0_p (PATTERN (insn))
|
5839 |
|
|
#endif
|
5840 |
|
|
&& ! (icode != CODE_FOR_nothing
|
5841 |
|
|
&& ((*insn_data[icode].operand[0].predicate)
|
5842 |
|
|
(equiv, GET_MODE (x)))
|
5843 |
|
|
&& ((*insn_data[icode].operand[1].predicate)
|
5844 |
|
|
(equiv, GET_MODE (x)))))
|
5845 |
|
|
{
|
5846 |
|
|
/* We use the original pseudo for loc, so that
|
5847 |
|
|
emit_reload_insns() knows which pseudo this
|
5848 |
|
|
reload refers to and updates the pseudo rtx, not
|
5849 |
|
|
its equivalent memory location, as well as the
|
5850 |
|
|
corresponding entry in reg_last_reload_reg. */
|
5851 |
|
|
loc = &XEXP (x_orig, 0);
|
5852 |
|
|
x = XEXP (x, 0);
|
5853 |
|
|
reloadnum
|
5854 |
|
|
= push_reload (x, x, loc, loc,
|
5855 |
|
|
context_reg_class,
|
5856 |
|
|
GET_MODE (x), GET_MODE (x), 0, 0,
|
5857 |
|
|
opnum, RELOAD_OTHER);
|
5858 |
|
|
}
|
5859 |
|
|
else
|
5860 |
|
|
{
|
5861 |
|
|
reloadnum
|
5862 |
|
|
= push_reload (x, x, loc, (rtx*) 0,
|
5863 |
|
|
context_reg_class,
|
5864 |
|
|
GET_MODE (x), GET_MODE (x), 0, 0,
|
5865 |
|
|
opnum, type);
|
5866 |
|
|
rld[reloadnum].inc
|
5867 |
|
|
= find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
|
5868 |
|
|
|
5869 |
|
|
value = 1;
|
5870 |
|
|
}
|
5871 |
|
|
|
5872 |
|
|
update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
|
5873 |
|
|
reloadnum);
|
5874 |
|
|
}
|
5875 |
|
|
return value;
|
5876 |
|
|
}
|
5877 |
|
|
return 0;
|
5878 |
|
|
|
5879 |
|
|
case TRUNCATE:
|
5880 |
|
|
case SIGN_EXTEND:
|
5881 |
|
|
case ZERO_EXTEND:
|
5882 |
|
|
/* Look for parts to reload in the inner expression and reload them
|
5883 |
|
|
too, in addition to this operation. Reloading all inner parts in
|
5884 |
|
|
addition to this one shouldn't be necessary, but at this point,
|
5885 |
|
|
we don't know if we can possibly omit any part that *can* be
|
5886 |
|
|
reloaded. Targets that are better off reloading just either part
|
5887 |
|
|
(or perhaps even a different part of an outer expression), should
|
5888 |
|
|
define LEGITIMIZE_RELOAD_ADDRESS. */
|
5889 |
|
|
find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
|
5890 |
|
|
context, code, SCRATCH, &XEXP (x, 0), opnum,
|
5891 |
|
|
type, ind_levels, insn);
|
5892 |
|
|
push_reload (x, NULL_RTX, loc, (rtx*) 0,
|
5893 |
|
|
context_reg_class,
|
5894 |
|
|
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
|
5895 |
|
|
return 1;
|
5896 |
|
|
|
5897 |
|
|
case MEM:
|
5898 |
|
|
/* This is probably the result of a substitution, by eliminate_regs, of
|
5899 |
|
|
an equivalent address for a pseudo that was not allocated to a hard
|
5900 |
|
|
register. Verify that the specified address is valid and reload it
|
5901 |
|
|
into a register.
|
5902 |
|
|
|
5903 |
|
|
Since we know we are going to reload this item, don't decrement for
|
5904 |
|
|
the indirection level.
|
5905 |
|
|
|
5906 |
|
|
Note that this is actually conservative: it would be slightly more
|
5907 |
|
|
efficient to use the value of SPILL_INDIRECT_LEVELS from
|
5908 |
|
|
reload1.c here. */
|
5909 |
|
|
|
5910 |
|
|
find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
|
5911 |
|
|
opnum, ADDR_TYPE (type), ind_levels, insn);
|
5912 |
|
|
push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
|
5913 |
|
|
context_reg_class,
|
5914 |
|
|
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
|
5915 |
|
|
return 1;
|
5916 |
|
|
|
5917 |
|
|
case REG:
|
5918 |
|
|
{
|
5919 |
|
|
int regno = REGNO (x);
|
5920 |
|
|
|
5921 |
|
|
if (reg_equiv_constant[regno] != 0)
|
5922 |
|
|
{
|
5923 |
|
|
find_reloads_address_part (reg_equiv_constant[regno], loc,
|
5924 |
|
|
context_reg_class,
|
5925 |
|
|
GET_MODE (x), opnum, type, ind_levels);
|
5926 |
|
|
return 1;
|
5927 |
|
|
}
|
5928 |
|
|
|
5929 |
|
|
#if 0 /* This might screw code in reload1.c to delete prior output-reload
|
5930 |
|
|
that feeds this insn. */
|
5931 |
|
|
if (reg_equiv_mem[regno] != 0)
|
5932 |
|
|
{
|
5933 |
|
|
push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
|
5934 |
|
|
context_reg_class,
|
5935 |
|
|
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
|
5936 |
|
|
return 1;
|
5937 |
|
|
}
|
5938 |
|
|
#endif
|
5939 |
|
|
|
5940 |
|
|
if (reg_equiv_memory_loc[regno]
|
5941 |
|
|
&& (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
|
5942 |
|
|
{
|
5943 |
|
|
rtx tem = make_memloc (x, regno);
|
5944 |
|
|
if (reg_equiv_address[regno] != 0
|
5945 |
|
|
|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
|
5946 |
|
|
{
|
5947 |
|
|
x = tem;
|
5948 |
|
|
find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
|
5949 |
|
|
&XEXP (x, 0), opnum, ADDR_TYPE (type),
|
5950 |
|
|
ind_levels, insn);
|
5951 |
|
|
if (!rtx_equal_p (x, tem))
|
5952 |
|
|
push_reg_equiv_alt_mem (regno, x);
|
5953 |
|
|
}
|
5954 |
|
|
}
|
5955 |
|
|
|
5956 |
|
|
if (reg_renumber[regno] >= 0)
|
5957 |
|
|
regno = reg_renumber[regno];
|
5958 |
|
|
|
5959 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER
|
5960 |
|
|
|| !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
|
5961 |
|
|
index_code))
|
5962 |
|
|
{
|
5963 |
|
|
push_reload (x, NULL_RTX, loc, (rtx*) 0,
|
5964 |
|
|
context_reg_class,
|
5965 |
|
|
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
|
5966 |
|
|
return 1;
|
5967 |
|
|
}
|
5968 |
|
|
|
5969 |
|
|
/* If a register appearing in an address is the subject of a CLOBBER
|
5970 |
|
|
in this insn, reload it into some other register to be safe.
|
5971 |
|
|
The CLOBBER is supposed to make the register unavailable
|
5972 |
|
|
from before this insn to after it. */
|
5973 |
|
|
if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
|
5974 |
|
|
{
|
5975 |
|
|
push_reload (x, NULL_RTX, loc, (rtx*) 0,
|
5976 |
|
|
context_reg_class,
|
5977 |
|
|
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
|
5978 |
|
|
return 1;
|
5979 |
|
|
}
|
5980 |
|
|
}
|
5981 |
|
|
return 0;
|
5982 |
|
|
|
5983 |
|
|
case SUBREG:
|
5984 |
|
|
if (REG_P (SUBREG_REG (x)))
|
5985 |
|
|
{
|
5986 |
|
|
/* If this is a SUBREG of a hard register and the resulting register
|
5987 |
|
|
is of the wrong class, reload the whole SUBREG. This avoids
|
5988 |
|
|
needless copies if SUBREG_REG is multi-word. */
|
5989 |
|
|
if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
|
5990 |
|
|
{
|
5991 |
|
|
int regno ATTRIBUTE_UNUSED = subreg_regno (x);
|
5992 |
|
|
|
5993 |
|
|
if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
|
5994 |
|
|
index_code))
|
5995 |
|
|
{
|
5996 |
|
|
push_reload (x, NULL_RTX, loc, (rtx*) 0,
|
5997 |
|
|
context_reg_class,
|
5998 |
|
|
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
|
5999 |
|
|
return 1;
|
6000 |
|
|
}
|
6001 |
|
|
}
|
6002 |
|
|
/* If this is a SUBREG of a pseudo-register, and the pseudo-register
|
6003 |
|
|
is larger than the class size, then reload the whole SUBREG. */
|
6004 |
|
|
else
|
6005 |
|
|
{
|
6006 |
|
|
enum reg_class rclass = context_reg_class;
|
6007 |
|
|
if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
|
6008 |
|
|
> reg_class_size[rclass])
|
6009 |
|
|
{
|
6010 |
|
|
x = find_reloads_subreg_address (x, 0, opnum,
|
6011 |
|
|
ADDR_TYPE (type),
|
6012 |
|
|
ind_levels, insn);
|
6013 |
|
|
push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
|
6014 |
|
|
GET_MODE (x), VOIDmode, 0, 0, opnum, type);
|
6015 |
|
|
return 1;
|
6016 |
|
|
}
|
6017 |
|
|
}
|
6018 |
|
|
}
|
6019 |
|
|
break;
|
6020 |
|
|
|
6021 |
|
|
default:
|
6022 |
|
|
break;
|
6023 |
|
|
}
|
6024 |
|
|
|
6025 |
|
|
{
|
6026 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
6027 |
|
|
int i;
|
6028 |
|
|
|
6029 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
6030 |
|
|
{
|
6031 |
|
|
if (fmt[i] == 'e')
|
6032 |
|
|
/* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
|
6033 |
|
|
we get here. */
|
6034 |
|
|
find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
|
6035 |
|
|
&XEXP (x, i), opnum, type, ind_levels, insn);
|
6036 |
|
|
}
|
6037 |
|
|
}
|
6038 |
|
|
|
6039 |
|
|
#undef REG_OK_FOR_CONTEXT
|
6040 |
|
|
return 0;
|
6041 |
|
|
}
|
6042 |
|
|
|
6043 |
|
|
/* X, which is found at *LOC, is a part of an address that needs to be
|
6044 |
|
|
reloaded into a register of class RCLASS. If X is a constant, or if
|
6045 |
|
|
X is a PLUS that contains a constant, check that the constant is a
|
6046 |
|
|
legitimate operand and that we are supposed to be able to load
|
6047 |
|
|
it into the register.
|
6048 |
|
|
|
6049 |
|
|
If not, force the constant into memory and reload the MEM instead.
|
6050 |
|
|
|
6051 |
|
|
MODE is the mode to use, in case X is an integer constant.
|
6052 |
|
|
|
6053 |
|
|
OPNUM and TYPE describe the purpose of any reloads made.
|
6054 |
|
|
|
6055 |
|
|
IND_LEVELS says how many levels of indirect addressing this machine
|
6056 |
|
|
supports. */
|
6057 |
|
|
|
6058 |
|
|
static void
|
6059 |
|
|
find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
|
6060 |
|
|
enum machine_mode mode, int opnum,
|
6061 |
|
|
enum reload_type type, int ind_levels)
|
6062 |
|
|
{
|
6063 |
|
|
if (CONSTANT_P (x)
|
6064 |
|
|
&& (! LEGITIMATE_CONSTANT_P (x)
|
6065 |
|
|
|| PREFERRED_RELOAD_CLASS (x, rclass) == NO_REGS))
|
6066 |
|
|
{
|
6067 |
|
|
x = force_const_mem (mode, x);
|
6068 |
|
|
find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
|
6069 |
|
|
opnum, type, ind_levels, 0);
|
6070 |
|
|
}
|
6071 |
|
|
|
6072 |
|
|
else if (GET_CODE (x) == PLUS
|
6073 |
|
|
&& CONSTANT_P (XEXP (x, 1))
|
6074 |
|
|
&& (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
|
6075 |
|
|
|| PREFERRED_RELOAD_CLASS (XEXP (x, 1), rclass) == NO_REGS))
|
6076 |
|
|
{
|
6077 |
|
|
rtx tem;
|
6078 |
|
|
|
6079 |
|
|
tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
|
6080 |
|
|
x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
|
6081 |
|
|
find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
|
6082 |
|
|
opnum, type, ind_levels, 0);
|
6083 |
|
|
}
|
6084 |
|
|
|
6085 |
|
|
push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
|
6086 |
|
|
mode, VOIDmode, 0, 0, opnum, type);
|
6087 |
|
|
}
|
6088 |
|
|
|
6089 |
|
|
/* X, a subreg of a pseudo, is a part of an address that needs to be
|
6090 |
|
|
reloaded.
|
6091 |
|
|
|
6092 |
|
|
If the pseudo is equivalent to a memory location that cannot be directly
|
6093 |
|
|
addressed, make the necessary address reloads.
|
6094 |
|
|
|
6095 |
|
|
If address reloads have been necessary, or if the address is changed
|
6096 |
|
|
by register elimination, return the rtx of the memory location;
|
6097 |
|
|
otherwise, return X.
|
6098 |
|
|
|
6099 |
|
|
If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
|
6100 |
|
|
memory location.
|
6101 |
|
|
|
6102 |
|
|
OPNUM and TYPE identify the purpose of the reload.
|
6103 |
|
|
|
6104 |
|
|
IND_LEVELS says how many levels of indirect addressing are
|
6105 |
|
|
supported at this point in the address.
|
6106 |
|
|
|
6107 |
|
|
INSN, if nonzero, is the insn in which we do the reload. It is used
|
6108 |
|
|
to determine where to put USEs for pseudos that we have to replace with
|
6109 |
|
|
stack slots. */
|
6110 |
|
|
|
6111 |
|
|
static rtx
|
6112 |
|
|
find_reloads_subreg_address (rtx x, int force_replace, int opnum,
|
6113 |
|
|
enum reload_type type, int ind_levels, rtx insn)
|
6114 |
|
|
{
|
6115 |
|
|
int regno = REGNO (SUBREG_REG (x));
|
6116 |
|
|
|
6117 |
|
|
if (reg_equiv_memory_loc[regno])
|
6118 |
|
|
{
|
6119 |
|
|
/* If the address is not directly addressable, or if the address is not
|
6120 |
|
|
offsettable, then it must be replaced. */
|
6121 |
|
|
if (! force_replace
|
6122 |
|
|
&& (reg_equiv_address[regno]
|
6123 |
|
|
|| ! offsettable_memref_p (reg_equiv_mem[regno])))
|
6124 |
|
|
force_replace = 1;
|
6125 |
|
|
|
6126 |
|
|
if (force_replace || num_not_at_initial_offset)
|
6127 |
|
|
{
|
6128 |
|
|
rtx tem = make_memloc (SUBREG_REG (x), regno);
|
6129 |
|
|
|
6130 |
|
|
/* If the address changes because of register elimination, then
|
6131 |
|
|
it must be replaced. */
|
6132 |
|
|
if (force_replace
|
6133 |
|
|
|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
|
6134 |
|
|
{
|
6135 |
|
|
unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
|
6136 |
|
|
unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
|
6137 |
|
|
int offset;
|
6138 |
|
|
rtx orig = tem;
|
6139 |
|
|
int reloaded;
|
6140 |
|
|
|
6141 |
|
|
/* For big-endian paradoxical subregs, SUBREG_BYTE does not
|
6142 |
|
|
hold the correct (negative) byte offset. */
|
6143 |
|
|
if (BYTES_BIG_ENDIAN && outer_size > inner_size)
|
6144 |
|
|
offset = inner_size - outer_size;
|
6145 |
|
|
else
|
6146 |
|
|
offset = SUBREG_BYTE (x);
|
6147 |
|
|
|
6148 |
|
|
XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
|
6149 |
|
|
PUT_MODE (tem, GET_MODE (x));
|
6150 |
|
|
if (MEM_OFFSET (tem))
|
6151 |
|
|
set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
|
6152 |
|
|
if (MEM_SIZE (tem)
|
6153 |
|
|
&& INTVAL (MEM_SIZE (tem)) != (HOST_WIDE_INT) outer_size)
|
6154 |
|
|
set_mem_size (tem, GEN_INT (outer_size));
|
6155 |
|
|
|
6156 |
|
|
/* If this was a paradoxical subreg that we replaced, the
|
6157 |
|
|
resulting memory must be sufficiently aligned to allow
|
6158 |
|
|
us to widen the mode of the memory. */
|
6159 |
|
|
if (outer_size > inner_size)
|
6160 |
|
|
{
|
6161 |
|
|
rtx base;
|
6162 |
|
|
|
6163 |
|
|
base = XEXP (tem, 0);
|
6164 |
|
|
if (GET_CODE (base) == PLUS)
|
6165 |
|
|
{
|
6166 |
|
|
if (CONST_INT_P (XEXP (base, 1))
|
6167 |
|
|
&& INTVAL (XEXP (base, 1)) % outer_size != 0)
|
6168 |
|
|
return x;
|
6169 |
|
|
base = XEXP (base, 0);
|
6170 |
|
|
}
|
6171 |
|
|
if (!REG_P (base)
|
6172 |
|
|
|| (REGNO_POINTER_ALIGN (REGNO (base))
|
6173 |
|
|
< outer_size * BITS_PER_UNIT))
|
6174 |
|
|
return x;
|
6175 |
|
|
}
|
6176 |
|
|
|
6177 |
|
|
reloaded = find_reloads_address (GET_MODE (tem), &tem,
|
6178 |
|
|
XEXP (tem, 0), &XEXP (tem, 0),
|
6179 |
|
|
opnum, type, ind_levels, insn);
|
6180 |
|
|
/* ??? Do we need to handle nonzero offsets somehow? */
|
6181 |
|
|
if (!offset && !rtx_equal_p (tem, orig))
|
6182 |
|
|
push_reg_equiv_alt_mem (regno, tem);
|
6183 |
|
|
|
6184 |
|
|
/* For some processors an address may be valid in the
|
6185 |
|
|
original mode but not in a smaller mode. For
|
6186 |
|
|
example, ARM accepts a scaled index register in
|
6187 |
|
|
SImode but not in HImode. Note that this is only
|
6188 |
|
|
a problem if the address in reg_equiv_mem is already
|
6189 |
|
|
invalid in the new mode; other cases would be fixed
|
6190 |
|
|
by find_reloads_address as usual.
|
6191 |
|
|
|
6192 |
|
|
??? We attempt to handle such cases here by doing an
|
6193 |
|
|
additional reload of the full address after the
|
6194 |
|
|
usual processing by find_reloads_address. Note that
|
6195 |
|
|
this may not work in the general case, but it seems
|
6196 |
|
|
to cover the cases where this situation currently
|
6197 |
|
|
occurs. A more general fix might be to reload the
|
6198 |
|
|
*value* instead of the address, but this would not
|
6199 |
|
|
be expected by the callers of this routine as-is.
|
6200 |
|
|
|
6201 |
|
|
If find_reloads_address already completed replaced
|
6202 |
|
|
the address, there is nothing further to do. */
|
6203 |
|
|
if (reloaded == 0
|
6204 |
|
|
&& reg_equiv_mem[regno] != 0
|
6205 |
|
|
&& !strict_memory_address_addr_space_p
|
6206 |
|
|
(GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
|
6207 |
|
|
MEM_ADDR_SPACE (reg_equiv_mem[regno])))
|
6208 |
|
|
push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
|
6209 |
|
|
base_reg_class (GET_MODE (tem), MEM, SCRATCH),
|
6210 |
|
|
GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
|
6211 |
|
|
opnum, type);
|
6212 |
|
|
|
6213 |
|
|
/* If this is not a toplevel operand, find_reloads doesn't see
|
6214 |
|
|
this substitution. We have to emit a USE of the pseudo so
|
6215 |
|
|
that delete_output_reload can see it. */
|
6216 |
|
|
if (replace_reloads && recog_data.operand[opnum] != x)
|
6217 |
|
|
/* We mark the USE with QImode so that we recognize it
|
6218 |
|
|
as one that can be safely deleted at the end of
|
6219 |
|
|
reload. */
|
6220 |
|
|
PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
|
6221 |
|
|
SUBREG_REG (x)),
|
6222 |
|
|
insn), QImode);
|
6223 |
|
|
x = tem;
|
6224 |
|
|
}
|
6225 |
|
|
}
|
6226 |
|
|
}
|
6227 |
|
|
return x;
|
6228 |
|
|
}
|
6229 |
|
|
|
6230 |
|
|
/* Substitute into the current INSN the registers into which we have reloaded
|
6231 |
|
|
the things that need reloading. The array `replacements'
|
6232 |
|
|
contains the locations of all pointers that must be changed
|
6233 |
|
|
and says what to replace them with.
|
6234 |
|
|
|
6235 |
|
|
Return the rtx that X translates into; usually X, but modified. */
|
6236 |
|
|
|
6237 |
|
|
void
|
6238 |
|
|
subst_reloads (rtx insn)
|
6239 |
|
|
{
|
6240 |
|
|
int i;
|
6241 |
|
|
|
6242 |
|
|
for (i = 0; i < n_replacements; i++)
|
6243 |
|
|
{
|
6244 |
|
|
struct replacement *r = &replacements[i];
|
6245 |
|
|
rtx reloadreg = rld[r->what].reg_rtx;
|
6246 |
|
|
if (reloadreg)
|
6247 |
|
|
{
|
6248 |
|
|
#ifdef DEBUG_RELOAD
|
6249 |
|
|
/* This checking takes a very long time on some platforms
|
6250 |
|
|
causing the gcc.c-torture/compile/limits-fnargs.c test
|
6251 |
|
|
to time out during testing. See PR 31850.
|
6252 |
|
|
|
6253 |
|
|
Internal consistency test. Check that we don't modify
|
6254 |
|
|
anything in the equivalence arrays. Whenever something from
|
6255 |
|
|
those arrays needs to be reloaded, it must be unshared before
|
6256 |
|
|
being substituted into; the equivalence must not be modified.
|
6257 |
|
|
Otherwise, if the equivalence is used after that, it will
|
6258 |
|
|
have been modified, and the thing substituted (probably a
|
6259 |
|
|
register) is likely overwritten and not a usable equivalence. */
|
6260 |
|
|
int check_regno;
|
6261 |
|
|
|
6262 |
|
|
for (check_regno = 0; check_regno < max_regno; check_regno++)
|
6263 |
|
|
{
|
6264 |
|
|
#define CHECK_MODF(ARRAY) \
|
6265 |
|
|
gcc_assert (!ARRAY[check_regno] \
|
6266 |
|
|
|| !loc_mentioned_in_p (r->where, \
|
6267 |
|
|
ARRAY[check_regno]))
|
6268 |
|
|
|
6269 |
|
|
CHECK_MODF (reg_equiv_constant);
|
6270 |
|
|
CHECK_MODF (reg_equiv_memory_loc);
|
6271 |
|
|
CHECK_MODF (reg_equiv_address);
|
6272 |
|
|
CHECK_MODF (reg_equiv_mem);
|
6273 |
|
|
#undef CHECK_MODF
|
6274 |
|
|
}
|
6275 |
|
|
#endif /* DEBUG_RELOAD */
|
6276 |
|
|
|
6277 |
|
|
/* If we're replacing a LABEL_REF with a register, there must
|
6278 |
|
|
already be an indication (to e.g. flow) which label this
|
6279 |
|
|
register refers to. */
|
6280 |
|
|
gcc_assert (GET_CODE (*r->where) != LABEL_REF
|
6281 |
|
|
|| !JUMP_P (insn)
|
6282 |
|
|
|| find_reg_note (insn,
|
6283 |
|
|
REG_LABEL_OPERAND,
|
6284 |
|
|
XEXP (*r->where, 0))
|
6285 |
|
|
|| label_is_jump_target_p (XEXP (*r->where, 0), insn));
|
6286 |
|
|
|
6287 |
|
|
/* Encapsulate RELOADREG so its machine mode matches what
|
6288 |
|
|
used to be there. Note that gen_lowpart_common will
|
6289 |
|
|
do the wrong thing if RELOADREG is multi-word. RELOADREG
|
6290 |
|
|
will always be a REG here. */
|
6291 |
|
|
if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
|
6292 |
|
|
reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
|
6293 |
|
|
|
6294 |
|
|
/* If we are putting this into a SUBREG and RELOADREG is a
|
6295 |
|
|
SUBREG, we would be making nested SUBREGs, so we have to fix
|
6296 |
|
|
this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
|
6297 |
|
|
|
6298 |
|
|
if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
|
6299 |
|
|
{
|
6300 |
|
|
if (GET_MODE (*r->subreg_loc)
|
6301 |
|
|
== GET_MODE (SUBREG_REG (reloadreg)))
|
6302 |
|
|
*r->subreg_loc = SUBREG_REG (reloadreg);
|
6303 |
|
|
else
|
6304 |
|
|
{
|
6305 |
|
|
int final_offset =
|
6306 |
|
|
SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
|
6307 |
|
|
|
6308 |
|
|
/* When working with SUBREGs the rule is that the byte
|
6309 |
|
|
offset must be a multiple of the SUBREG's mode. */
|
6310 |
|
|
final_offset = (final_offset /
|
6311 |
|
|
GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
|
6312 |
|
|
final_offset = (final_offset *
|
6313 |
|
|
GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
|
6314 |
|
|
|
6315 |
|
|
*r->where = SUBREG_REG (reloadreg);
|
6316 |
|
|
SUBREG_BYTE (*r->subreg_loc) = final_offset;
|
6317 |
|
|
}
|
6318 |
|
|
}
|
6319 |
|
|
else
|
6320 |
|
|
*r->where = reloadreg;
|
6321 |
|
|
}
|
6322 |
|
|
/* If reload got no reg and isn't optional, something's wrong. */
|
6323 |
|
|
else
|
6324 |
|
|
gcc_assert (rld[r->what].optional);
|
6325 |
|
|
}
|
6326 |
|
|
}
|
6327 |
|
|
|
6328 |
|
|
/* Make a copy of any replacements being done into X and move those
|
6329 |
|
|
copies to locations in Y, a copy of X. */
|
6330 |
|
|
|
6331 |
|
|
void
|
6332 |
|
|
copy_replacements (rtx x, rtx y)
|
6333 |
|
|
{
|
6334 |
|
|
/* We can't support X being a SUBREG because we might then need to know its
|
6335 |
|
|
location if something inside it was replaced. */
|
6336 |
|
|
gcc_assert (GET_CODE (x) != SUBREG);
|
6337 |
|
|
|
6338 |
|
|
copy_replacements_1 (&x, &y, n_replacements);
|
6339 |
|
|
}
|
6340 |
|
|
|
6341 |
|
|
static void
|
6342 |
|
|
copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
|
6343 |
|
|
{
|
6344 |
|
|
int i, j;
|
6345 |
|
|
rtx x, y;
|
6346 |
|
|
struct replacement *r;
|
6347 |
|
|
enum rtx_code code;
|
6348 |
|
|
const char *fmt;
|
6349 |
|
|
|
6350 |
|
|
for (j = 0; j < orig_replacements; j++)
|
6351 |
|
|
{
|
6352 |
|
|
if (replacements[j].subreg_loc == px)
|
6353 |
|
|
{
|
6354 |
|
|
r = &replacements[n_replacements++];
|
6355 |
|
|
r->where = replacements[j].where;
|
6356 |
|
|
r->subreg_loc = py;
|
6357 |
|
|
r->what = replacements[j].what;
|
6358 |
|
|
r->mode = replacements[j].mode;
|
6359 |
|
|
}
|
6360 |
|
|
else if (replacements[j].where == px)
|
6361 |
|
|
{
|
6362 |
|
|
r = &replacements[n_replacements++];
|
6363 |
|
|
r->where = py;
|
6364 |
|
|
r->subreg_loc = 0;
|
6365 |
|
|
r->what = replacements[j].what;
|
6366 |
|
|
r->mode = replacements[j].mode;
|
6367 |
|
|
}
|
6368 |
|
|
}
|
6369 |
|
|
|
6370 |
|
|
x = *px;
|
6371 |
|
|
y = *py;
|
6372 |
|
|
code = GET_CODE (x);
|
6373 |
|
|
fmt = GET_RTX_FORMAT (code);
|
6374 |
|
|
|
6375 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
6376 |
|
|
{
|
6377 |
|
|
if (fmt[i] == 'e')
|
6378 |
|
|
copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
|
6379 |
|
|
else if (fmt[i] == 'E')
|
6380 |
|
|
for (j = XVECLEN (x, i); --j >= 0; )
|
6381 |
|
|
copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
|
6382 |
|
|
orig_replacements);
|
6383 |
|
|
}
|
6384 |
|
|
}
|
6385 |
|
|
|
6386 |
|
|
/* Change any replacements being done to *X to be done to *Y. */
|
6387 |
|
|
|
6388 |
|
|
void
|
6389 |
|
|
move_replacements (rtx *x, rtx *y)
|
6390 |
|
|
{
|
6391 |
|
|
int i;
|
6392 |
|
|
|
6393 |
|
|
for (i = 0; i < n_replacements; i++)
|
6394 |
|
|
if (replacements[i].subreg_loc == x)
|
6395 |
|
|
replacements[i].subreg_loc = y;
|
6396 |
|
|
else if (replacements[i].where == x)
|
6397 |
|
|
{
|
6398 |
|
|
replacements[i].where = y;
|
6399 |
|
|
replacements[i].subreg_loc = 0;
|
6400 |
|
|
}
|
6401 |
|
|
}
|
6402 |
|
|
|
6403 |
|
|
/* If LOC was scheduled to be replaced by something, return the replacement.
|
6404 |
|
|
Otherwise, return *LOC. */
|
6405 |
|
|
|
6406 |
|
|
rtx
|
6407 |
|
|
find_replacement (rtx *loc)
|
6408 |
|
|
{
|
6409 |
|
|
struct replacement *r;
|
6410 |
|
|
|
6411 |
|
|
for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
|
6412 |
|
|
{
|
6413 |
|
|
rtx reloadreg = rld[r->what].reg_rtx;
|
6414 |
|
|
|
6415 |
|
|
if (reloadreg && r->where == loc)
|
6416 |
|
|
{
|
6417 |
|
|
if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
|
6418 |
|
|
reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
|
6419 |
|
|
|
6420 |
|
|
return reloadreg;
|
6421 |
|
|
}
|
6422 |
|
|
else if (reloadreg && r->subreg_loc == loc)
|
6423 |
|
|
{
|
6424 |
|
|
/* RELOADREG must be either a REG or a SUBREG.
|
6425 |
|
|
|
6426 |
|
|
??? Is it actually still ever a SUBREG? If so, why? */
|
6427 |
|
|
|
6428 |
|
|
if (REG_P (reloadreg))
|
6429 |
|
|
return gen_rtx_REG (GET_MODE (*loc),
|
6430 |
|
|
(REGNO (reloadreg) +
|
6431 |
|
|
subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
|
6432 |
|
|
GET_MODE (SUBREG_REG (*loc)),
|
6433 |
|
|
SUBREG_BYTE (*loc),
|
6434 |
|
|
GET_MODE (*loc))));
|
6435 |
|
|
else if (GET_MODE (reloadreg) == GET_MODE (*loc))
|
6436 |
|
|
return reloadreg;
|
6437 |
|
|
else
|
6438 |
|
|
{
|
6439 |
|
|
int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
|
6440 |
|
|
|
6441 |
|
|
/* When working with SUBREGs the rule is that the byte
|
6442 |
|
|
offset must be a multiple of the SUBREG's mode. */
|
6443 |
|
|
final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
|
6444 |
|
|
final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
|
6445 |
|
|
return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
|
6446 |
|
|
final_offset);
|
6447 |
|
|
}
|
6448 |
|
|
}
|
6449 |
|
|
}
|
6450 |
|
|
|
6451 |
|
|
/* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
|
6452 |
|
|
what's inside and make a new rtl if so. */
|
6453 |
|
|
if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
|
6454 |
|
|
|| GET_CODE (*loc) == MULT)
|
6455 |
|
|
{
|
6456 |
|
|
rtx x = find_replacement (&XEXP (*loc, 0));
|
6457 |
|
|
rtx y = find_replacement (&XEXP (*loc, 1));
|
6458 |
|
|
|
6459 |
|
|
if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
|
6460 |
|
|
return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
|
6461 |
|
|
}
|
6462 |
|
|
|
6463 |
|
|
return *loc;
|
6464 |
|
|
}
|
6465 |
|
|
|
6466 |
|
|
/* Return nonzero if register in range [REGNO, ENDREGNO)
|
6467 |
|
|
appears either explicitly or implicitly in X
|
6468 |
|
|
other than being stored into (except for earlyclobber operands).
|
6469 |
|
|
|
6470 |
|
|
References contained within the substructure at LOC do not count.
|
6471 |
|
|
LOC may be zero, meaning don't ignore anything.
|
6472 |
|
|
|
6473 |
|
|
This is similar to refers_to_regno_p in rtlanal.c except that we
|
6474 |
|
|
look at equivalences for pseudos that didn't get hard registers. */
|
6475 |
|
|
|
6476 |
|
|
static int
|
6477 |
|
|
refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
|
6478 |
|
|
rtx x, rtx *loc)
|
6479 |
|
|
{
|
6480 |
|
|
int i;
|
6481 |
|
|
unsigned int r;
|
6482 |
|
|
RTX_CODE code;
|
6483 |
|
|
const char *fmt;
|
6484 |
|
|
|
6485 |
|
|
if (x == 0)
|
6486 |
|
|
return 0;
|
6487 |
|
|
|
6488 |
|
|
repeat:
|
6489 |
|
|
code = GET_CODE (x);
|
6490 |
|
|
|
6491 |
|
|
switch (code)
|
6492 |
|
|
{
|
6493 |
|
|
case REG:
|
6494 |
|
|
r = REGNO (x);
|
6495 |
|
|
|
6496 |
|
|
/* If this is a pseudo, a hard register must not have been allocated.
|
6497 |
|
|
X must therefore either be a constant or be in memory. */
|
6498 |
|
|
if (r >= FIRST_PSEUDO_REGISTER)
|
6499 |
|
|
{
|
6500 |
|
|
if (reg_equiv_memory_loc[r])
|
6501 |
|
|
return refers_to_regno_for_reload_p (regno, endregno,
|
6502 |
|
|
reg_equiv_memory_loc[r],
|
6503 |
|
|
(rtx*) 0);
|
6504 |
|
|
|
6505 |
|
|
gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
|
6506 |
|
|
return 0;
|
6507 |
|
|
}
|
6508 |
|
|
|
6509 |
|
|
return (endregno > r
|
6510 |
|
|
&& regno < r + (r < FIRST_PSEUDO_REGISTER
|
6511 |
|
|
? hard_regno_nregs[r][GET_MODE (x)]
|
6512 |
|
|
: 1));
|
6513 |
|
|
|
6514 |
|
|
case SUBREG:
|
6515 |
|
|
/* If this is a SUBREG of a hard reg, we can see exactly which
|
6516 |
|
|
registers are being modified. Otherwise, handle normally. */
|
6517 |
|
|
if (REG_P (SUBREG_REG (x))
|
6518 |
|
|
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
|
6519 |
|
|
{
|
6520 |
|
|
unsigned int inner_regno = subreg_regno (x);
|
6521 |
|
|
unsigned int inner_endregno
|
6522 |
|
|
= inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
|
6523 |
|
|
? subreg_nregs (x) : 1);
|
6524 |
|
|
|
6525 |
|
|
return endregno > inner_regno && regno < inner_endregno;
|
6526 |
|
|
}
|
6527 |
|
|
break;
|
6528 |
|
|
|
6529 |
|
|
case CLOBBER:
|
6530 |
|
|
case SET:
|
6531 |
|
|
if (&SET_DEST (x) != loc
|
6532 |
|
|
/* Note setting a SUBREG counts as referring to the REG it is in for
|
6533 |
|
|
a pseudo but not for hard registers since we can
|
6534 |
|
|
treat each word individually. */
|
6535 |
|
|
&& ((GET_CODE (SET_DEST (x)) == SUBREG
|
6536 |
|
|
&& loc != &SUBREG_REG (SET_DEST (x))
|
6537 |
|
|
&& REG_P (SUBREG_REG (SET_DEST (x)))
|
6538 |
|
|
&& REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
|
6539 |
|
|
&& refers_to_regno_for_reload_p (regno, endregno,
|
6540 |
|
|
SUBREG_REG (SET_DEST (x)),
|
6541 |
|
|
loc))
|
6542 |
|
|
/* If the output is an earlyclobber operand, this is
|
6543 |
|
|
a conflict. */
|
6544 |
|
|
|| ((!REG_P (SET_DEST (x))
|
6545 |
|
|
|| earlyclobber_operand_p (SET_DEST (x)))
|
6546 |
|
|
&& refers_to_regno_for_reload_p (regno, endregno,
|
6547 |
|
|
SET_DEST (x), loc))))
|
6548 |
|
|
return 1;
|
6549 |
|
|
|
6550 |
|
|
if (code == CLOBBER || loc == &SET_SRC (x))
|
6551 |
|
|
return 0;
|
6552 |
|
|
x = SET_SRC (x);
|
6553 |
|
|
goto repeat;
|
6554 |
|
|
|
6555 |
|
|
default:
|
6556 |
|
|
break;
|
6557 |
|
|
}
|
6558 |
|
|
|
6559 |
|
|
/* X does not match, so try its subexpressions. */
|
6560 |
|
|
|
6561 |
|
|
fmt = GET_RTX_FORMAT (code);
|
6562 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
6563 |
|
|
{
|
6564 |
|
|
if (fmt[i] == 'e' && loc != &XEXP (x, i))
|
6565 |
|
|
{
|
6566 |
|
|
if (i == 0)
|
6567 |
|
|
{
|
6568 |
|
|
x = XEXP (x, 0);
|
6569 |
|
|
goto repeat;
|
6570 |
|
|
}
|
6571 |
|
|
else
|
6572 |
|
|
if (refers_to_regno_for_reload_p (regno, endregno,
|
6573 |
|
|
XEXP (x, i), loc))
|
6574 |
|
|
return 1;
|
6575 |
|
|
}
|
6576 |
|
|
else if (fmt[i] == 'E')
|
6577 |
|
|
{
|
6578 |
|
|
int j;
|
6579 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
6580 |
|
|
if (loc != &XVECEXP (x, i, j)
|
6581 |
|
|
&& refers_to_regno_for_reload_p (regno, endregno,
|
6582 |
|
|
XVECEXP (x, i, j), loc))
|
6583 |
|
|
return 1;
|
6584 |
|
|
}
|
6585 |
|
|
}
|
6586 |
|
|
return 0;
|
6587 |
|
|
}
|
6588 |
|
|
|
6589 |
|
|
/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
|
6590 |
|
|
we check if any register number in X conflicts with the relevant register
|
6591 |
|
|
numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
|
6592 |
|
|
contains a MEM (we don't bother checking for memory addresses that can't
|
6593 |
|
|
conflict because we expect this to be a rare case.
|
6594 |
|
|
|
6595 |
|
|
This function is similar to reg_overlap_mentioned_p in rtlanal.c except
|
6596 |
|
|
that we look at equivalences for pseudos that didn't get hard registers. */
|
6597 |
|
|
|
6598 |
|
|
int
|
6599 |
|
|
reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
|
6600 |
|
|
{
|
6601 |
|
|
int regno, endregno;
|
6602 |
|
|
|
6603 |
|
|
/* Overly conservative. */
|
6604 |
|
|
if (GET_CODE (x) == STRICT_LOW_PART
|
6605 |
|
|
|| GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
|
6606 |
|
|
x = XEXP (x, 0);
|
6607 |
|
|
|
6608 |
|
|
/* If either argument is a constant, then modifying X can not affect IN. */
|
6609 |
|
|
if (CONSTANT_P (x) || CONSTANT_P (in))
|
6610 |
|
|
return 0;
|
6611 |
|
|
else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
|
6612 |
|
|
return refers_to_mem_for_reload_p (in);
|
6613 |
|
|
else if (GET_CODE (x) == SUBREG)
|
6614 |
|
|
{
|
6615 |
|
|
regno = REGNO (SUBREG_REG (x));
|
6616 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
6617 |
|
|
regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
|
6618 |
|
|
GET_MODE (SUBREG_REG (x)),
|
6619 |
|
|
SUBREG_BYTE (x),
|
6620 |
|
|
GET_MODE (x));
|
6621 |
|
|
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
|
6622 |
|
|
? subreg_nregs (x) : 1);
|
6623 |
|
|
|
6624 |
|
|
return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
|
6625 |
|
|
}
|
6626 |
|
|
else if (REG_P (x))
|
6627 |
|
|
{
|
6628 |
|
|
regno = REGNO (x);
|
6629 |
|
|
|
6630 |
|
|
/* If this is a pseudo, it must not have been assigned a hard register.
|
6631 |
|
|
Therefore, it must either be in memory or be a constant. */
|
6632 |
|
|
|
6633 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER)
|
6634 |
|
|
{
|
6635 |
|
|
if (reg_equiv_memory_loc[regno])
|
6636 |
|
|
return refers_to_mem_for_reload_p (in);
|
6637 |
|
|
gcc_assert (reg_equiv_constant[regno]);
|
6638 |
|
|
return 0;
|
6639 |
|
|
}
|
6640 |
|
|
|
6641 |
|
|
endregno = END_HARD_REGNO (x);
|
6642 |
|
|
|
6643 |
|
|
return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
|
6644 |
|
|
}
|
6645 |
|
|
else if (MEM_P (x))
|
6646 |
|
|
return refers_to_mem_for_reload_p (in);
|
6647 |
|
|
else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
|
6648 |
|
|
|| GET_CODE (x) == CC0)
|
6649 |
|
|
return reg_mentioned_p (x, in);
|
6650 |
|
|
else
|
6651 |
|
|
{
|
6652 |
|
|
gcc_assert (GET_CODE (x) == PLUS);
|
6653 |
|
|
|
6654 |
|
|
/* We actually want to know if X is mentioned somewhere inside IN.
|
6655 |
|
|
We must not say that (plus (sp) (const_int 124)) is in
|
6656 |
|
|
(plus (sp) (const_int 64)), since that can lead to incorrect reload
|
6657 |
|
|
allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
|
6658 |
|
|
into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
|
6659 |
|
|
while (MEM_P (in))
|
6660 |
|
|
in = XEXP (in, 0);
|
6661 |
|
|
if (REG_P (in))
|
6662 |
|
|
return 0;
|
6663 |
|
|
else if (GET_CODE (in) == PLUS)
|
6664 |
|
|
return (rtx_equal_p (x, in)
|
6665 |
|
|
|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
|
6666 |
|
|
|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
|
6667 |
|
|
else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
|
6668 |
|
|
|| reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
|
6669 |
|
|
}
|
6670 |
|
|
|
6671 |
|
|
gcc_unreachable ();
|
6672 |
|
|
}
|
6673 |
|
|
|
6674 |
|
|
/* Return nonzero if anything in X contains a MEM. Look also for pseudo
|
6675 |
|
|
registers. */
|
6676 |
|
|
|
6677 |
|
|
static int
|
6678 |
|
|
refers_to_mem_for_reload_p (rtx x)
|
6679 |
|
|
{
|
6680 |
|
|
const char *fmt;
|
6681 |
|
|
int i;
|
6682 |
|
|
|
6683 |
|
|
if (MEM_P (x))
|
6684 |
|
|
return 1;
|
6685 |
|
|
|
6686 |
|
|
if (REG_P (x))
|
6687 |
|
|
return (REGNO (x) >= FIRST_PSEUDO_REGISTER
|
6688 |
|
|
&& reg_equiv_memory_loc[REGNO (x)]);
|
6689 |
|
|
|
6690 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
6691 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
6692 |
|
|
if (fmt[i] == 'e'
|
6693 |
|
|
&& (MEM_P (XEXP (x, i))
|
6694 |
|
|
|| refers_to_mem_for_reload_p (XEXP (x, i))))
|
6695 |
|
|
return 1;
|
6696 |
|
|
|
6697 |
|
|
return 0;
|
6698 |
|
|
}
|
6699 |
|
|
|
6700 |
|
|
/* Check the insns before INSN to see if there is a suitable register
|
6701 |
|
|
containing the same value as GOAL.
|
6702 |
|
|
If OTHER is -1, look for a register in class RCLASS.
|
6703 |
|
|
Otherwise, just see if register number OTHER shares GOAL's value.
|
6704 |
|
|
|
6705 |
|
|
Return an rtx for the register found, or zero if none is found.
|
6706 |
|
|
|
6707 |
|
|
If RELOAD_REG_P is (short *)1,
|
6708 |
|
|
we reject any hard reg that appears in reload_reg_rtx
|
6709 |
|
|
because such a hard reg is also needed coming into this insn.
|
6710 |
|
|
|
6711 |
|
|
If RELOAD_REG_P is any other nonzero value,
|
6712 |
|
|
it is a vector indexed by hard reg number
|
6713 |
|
|
and we reject any hard reg whose element in the vector is nonnegative
|
6714 |
|
|
as well as any that appears in reload_reg_rtx.
|
6715 |
|
|
|
6716 |
|
|
If GOAL is zero, then GOALREG is a register number; we look
|
6717 |
|
|
for an equivalent for that register.
|
6718 |
|
|
|
6719 |
|
|
MODE is the machine mode of the value we want an equivalence for.
|
6720 |
|
|
If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
|
6721 |
|
|
|
6722 |
|
|
This function is used by jump.c as well as in the reload pass.
|
6723 |
|
|
|
6724 |
|
|
If GOAL is the sum of the stack pointer and a constant, we treat it
|
6725 |
|
|
as if it were a constant except that sp is required to be unchanging. */
|
6726 |
|
|
|
6727 |
|
|
rtx
|
6728 |
|
|
find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
|
6729 |
|
|
short *reload_reg_p, int goalreg, enum machine_mode mode)
|
6730 |
|
|
{
|
6731 |
|
|
rtx p = insn;
|
6732 |
|
|
rtx goaltry, valtry, value, where;
|
6733 |
|
|
rtx pat;
|
6734 |
|
|
int regno = -1;
|
6735 |
|
|
int valueno;
|
6736 |
|
|
int goal_mem = 0;
|
6737 |
|
|
int goal_const = 0;
|
6738 |
|
|
int goal_mem_addr_varies = 0;
|
6739 |
|
|
int need_stable_sp = 0;
|
6740 |
|
|
int nregs;
|
6741 |
|
|
int valuenregs;
|
6742 |
|
|
int num = 0;
|
6743 |
|
|
|
6744 |
|
|
if (goal == 0)
|
6745 |
|
|
regno = goalreg;
|
6746 |
|
|
else if (REG_P (goal))
|
6747 |
|
|
regno = REGNO (goal);
|
6748 |
|
|
else if (MEM_P (goal))
|
6749 |
|
|
{
|
6750 |
|
|
enum rtx_code code = GET_CODE (XEXP (goal, 0));
|
6751 |
|
|
if (MEM_VOLATILE_P (goal))
|
6752 |
|
|
return 0;
|
6753 |
|
|
if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
|
6754 |
|
|
return 0;
|
6755 |
|
|
/* An address with side effects must be reexecuted. */
|
6756 |
|
|
switch (code)
|
6757 |
|
|
{
|
6758 |
|
|
case POST_INC:
|
6759 |
|
|
case PRE_INC:
|
6760 |
|
|
case POST_DEC:
|
6761 |
|
|
case PRE_DEC:
|
6762 |
|
|
case POST_MODIFY:
|
6763 |
|
|
case PRE_MODIFY:
|
6764 |
|
|
return 0;
|
6765 |
|
|
default:
|
6766 |
|
|
break;
|
6767 |
|
|
}
|
6768 |
|
|
goal_mem = 1;
|
6769 |
|
|
}
|
6770 |
|
|
else if (CONSTANT_P (goal))
|
6771 |
|
|
goal_const = 1;
|
6772 |
|
|
else if (GET_CODE (goal) == PLUS
|
6773 |
|
|
&& XEXP (goal, 0) == stack_pointer_rtx
|
6774 |
|
|
&& CONSTANT_P (XEXP (goal, 1)))
|
6775 |
|
|
goal_const = need_stable_sp = 1;
|
6776 |
|
|
else if (GET_CODE (goal) == PLUS
|
6777 |
|
|
&& XEXP (goal, 0) == frame_pointer_rtx
|
6778 |
|
|
&& CONSTANT_P (XEXP (goal, 1)))
|
6779 |
|
|
goal_const = 1;
|
6780 |
|
|
else
|
6781 |
|
|
return 0;
|
6782 |
|
|
|
6783 |
|
|
num = 0;
|
6784 |
|
|
/* Scan insns back from INSN, looking for one that copies
|
6785 |
|
|
a value into or out of GOAL.
|
6786 |
|
|
Stop and give up if we reach a label. */
|
6787 |
|
|
|
6788 |
|
|
while (1)
|
6789 |
|
|
{
|
6790 |
|
|
p = PREV_INSN (p);
|
6791 |
|
|
if (p && DEBUG_INSN_P (p))
|
6792 |
|
|
continue;
|
6793 |
|
|
num++;
|
6794 |
|
|
if (p == 0 || LABEL_P (p)
|
6795 |
|
|
|| num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
|
6796 |
|
|
return 0;
|
6797 |
|
|
|
6798 |
|
|
if (NONJUMP_INSN_P (p)
|
6799 |
|
|
/* If we don't want spill regs ... */
|
6800 |
|
|
&& (! (reload_reg_p != 0
|
6801 |
|
|
&& reload_reg_p != (short *) (HOST_WIDE_INT) 1)
|
6802 |
|
|
/* ... then ignore insns introduced by reload; they aren't
|
6803 |
|
|
useful and can cause results in reload_as_needed to be
|
6804 |
|
|
different from what they were when calculating the need for
|
6805 |
|
|
spills. If we notice an input-reload insn here, we will
|
6806 |
|
|
reject it below, but it might hide a usable equivalent.
|
6807 |
|
|
That makes bad code. It may even fail: perhaps no reg was
|
6808 |
|
|
spilled for this insn because it was assumed we would find
|
6809 |
|
|
that equivalent. */
|
6810 |
|
|
|| INSN_UID (p) < reload_first_uid))
|
6811 |
|
|
{
|
6812 |
|
|
rtx tem;
|
6813 |
|
|
pat = single_set (p);
|
6814 |
|
|
|
6815 |
|
|
/* First check for something that sets some reg equal to GOAL. */
|
6816 |
|
|
if (pat != 0
|
6817 |
|
|
&& ((regno >= 0
|
6818 |
|
|
&& true_regnum (SET_SRC (pat)) == regno
|
6819 |
|
|
&& (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
|
6820 |
|
|
||
|
6821 |
|
|
(regno >= 0
|
6822 |
|
|
&& true_regnum (SET_DEST (pat)) == regno
|
6823 |
|
|
&& (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
|
6824 |
|
|
||
|
6825 |
|
|
(goal_const && rtx_equal_p (SET_SRC (pat), goal)
|
6826 |
|
|
/* When looking for stack pointer + const,
|
6827 |
|
|
make sure we don't use a stack adjust. */
|
6828 |
|
|
&& !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
|
6829 |
|
|
&& (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
|
6830 |
|
|
|| (goal_mem
|
6831 |
|
|
&& (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
|
6832 |
|
|
&& rtx_renumbered_equal_p (goal, SET_SRC (pat)))
|
6833 |
|
|
|| (goal_mem
|
6834 |
|
|
&& (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
|
6835 |
|
|
&& rtx_renumbered_equal_p (goal, SET_DEST (pat)))
|
6836 |
|
|
/* If we are looking for a constant,
|
6837 |
|
|
and something equivalent to that constant was copied
|
6838 |
|
|
into a reg, we can use that reg. */
|
6839 |
|
|
|| (goal_const && REG_NOTES (p) != 0
|
6840 |
|
|
&& (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
|
6841 |
|
|
&& ((rtx_equal_p (XEXP (tem, 0), goal)
|
6842 |
|
|
&& (valueno
|
6843 |
|
|
= true_regnum (valtry = SET_DEST (pat))) >= 0)
|
6844 |
|
|
|| (REG_P (SET_DEST (pat))
|
6845 |
|
|
&& GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
|
6846 |
|
|
&& SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
|
6847 |
|
|
&& CONST_INT_P (goal)
|
6848 |
|
|
&& 0 != (goaltry
|
6849 |
|
|
= operand_subword (XEXP (tem, 0), 0, 0,
|
6850 |
|
|
VOIDmode))
|
6851 |
|
|
&& rtx_equal_p (goal, goaltry)
|
6852 |
|
|
&& (valtry
|
6853 |
|
|
= operand_subword (SET_DEST (pat), 0, 0,
|
6854 |
|
|
VOIDmode))
|
6855 |
|
|
&& (valueno = true_regnum (valtry)) >= 0)))
|
6856 |
|
|
|| (goal_const && (tem = find_reg_note (p, REG_EQUIV,
|
6857 |
|
|
NULL_RTX))
|
6858 |
|
|
&& REG_P (SET_DEST (pat))
|
6859 |
|
|
&& GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
|
6860 |
|
|
&& SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
|
6861 |
|
|
&& CONST_INT_P (goal)
|
6862 |
|
|
&& 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
|
6863 |
|
|
VOIDmode))
|
6864 |
|
|
&& rtx_equal_p (goal, goaltry)
|
6865 |
|
|
&& (valtry
|
6866 |
|
|
= operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
|
6867 |
|
|
&& (valueno = true_regnum (valtry)) >= 0)))
|
6868 |
|
|
{
|
6869 |
|
|
if (other >= 0)
|
6870 |
|
|
{
|
6871 |
|
|
if (valueno != other)
|
6872 |
|
|
continue;
|
6873 |
|
|
}
|
6874 |
|
|
else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
|
6875 |
|
|
continue;
|
6876 |
|
|
else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
|
6877 |
|
|
mode, valueno))
|
6878 |
|
|
continue;
|
6879 |
|
|
value = valtry;
|
6880 |
|
|
where = p;
|
6881 |
|
|
break;
|
6882 |
|
|
}
|
6883 |
|
|
}
|
6884 |
|
|
}
|
6885 |
|
|
|
6886 |
|
|
/* We found a previous insn copying GOAL into a suitable other reg VALUE
|
6887 |
|
|
(or copying VALUE into GOAL, if GOAL is also a register).
|
6888 |
|
|
Now verify that VALUE is really valid. */
|
6889 |
|
|
|
6890 |
|
|
/* VALUENO is the register number of VALUE; a hard register. */
|
6891 |
|
|
|
6892 |
|
|
/* Don't try to re-use something that is killed in this insn. We want
|
6893 |
|
|
to be able to trust REG_UNUSED notes. */
|
6894 |
|
|
if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
|
6895 |
|
|
return 0;
|
6896 |
|
|
|
6897 |
|
|
/* If we propose to get the value from the stack pointer or if GOAL is
|
6898 |
|
|
a MEM based on the stack pointer, we need a stable SP. */
|
6899 |
|
|
if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
|
6900 |
|
|
|| (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
|
6901 |
|
|
goal)))
|
6902 |
|
|
need_stable_sp = 1;
|
6903 |
|
|
|
6904 |
|
|
/* Reject VALUE if the copy-insn moved the wrong sort of datum. */
|
6905 |
|
|
if (GET_MODE (value) != mode)
|
6906 |
|
|
return 0;
|
6907 |
|
|
|
6908 |
|
|
/* Reject VALUE if it was loaded from GOAL
|
6909 |
|
|
and is also a register that appears in the address of GOAL. */
|
6910 |
|
|
|
6911 |
|
|
if (goal_mem && value == SET_DEST (single_set (where))
|
6912 |
|
|
&& refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
|
6913 |
|
|
goal, (rtx*) 0))
|
6914 |
|
|
return 0;
|
6915 |
|
|
|
6916 |
|
|
/* Reject registers that overlap GOAL. */
|
6917 |
|
|
|
6918 |
|
|
if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
|
6919 |
|
|
nregs = hard_regno_nregs[regno][mode];
|
6920 |
|
|
else
|
6921 |
|
|
nregs = 1;
|
6922 |
|
|
valuenregs = hard_regno_nregs[valueno][mode];
|
6923 |
|
|
|
6924 |
|
|
if (!goal_mem && !goal_const
|
6925 |
|
|
&& regno + nregs > valueno && regno < valueno + valuenregs)
|
6926 |
|
|
return 0;
|
6927 |
|
|
|
6928 |
|
|
/* Reject VALUE if it is one of the regs reserved for reloads.
|
6929 |
|
|
Reload1 knows how to reuse them anyway, and it would get
|
6930 |
|
|
confused if we allocated one without its knowledge.
|
6931 |
|
|
(Now that insns introduced by reload are ignored above,
|
6932 |
|
|
this case shouldn't happen, but I'm not positive.) */
|
6933 |
|
|
|
6934 |
|
|
if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
|
6935 |
|
|
{
|
6936 |
|
|
int i;
|
6937 |
|
|
for (i = 0; i < valuenregs; ++i)
|
6938 |
|
|
if (reload_reg_p[valueno + i] >= 0)
|
6939 |
|
|
return 0;
|
6940 |
|
|
}
|
6941 |
|
|
|
6942 |
|
|
/* Reject VALUE if it is a register being used for an input reload
|
6943 |
|
|
even if it is not one of those reserved. */
|
6944 |
|
|
|
6945 |
|
|
if (reload_reg_p != 0)
|
6946 |
|
|
{
|
6947 |
|
|
int i;
|
6948 |
|
|
for (i = 0; i < n_reloads; i++)
|
6949 |
|
|
if (rld[i].reg_rtx != 0 && rld[i].in)
|
6950 |
|
|
{
|
6951 |
|
|
int regno1 = REGNO (rld[i].reg_rtx);
|
6952 |
|
|
int nregs1 = hard_regno_nregs[regno1]
|
6953 |
|
|
[GET_MODE (rld[i].reg_rtx)];
|
6954 |
|
|
if (regno1 < valueno + valuenregs
|
6955 |
|
|
&& regno1 + nregs1 > valueno)
|
6956 |
|
|
return 0;
|
6957 |
|
|
}
|
6958 |
|
|
}
|
6959 |
|
|
|
6960 |
|
|
if (goal_mem)
|
6961 |
|
|
/* We must treat frame pointer as varying here,
|
6962 |
|
|
since it can vary--in a nonlocal goto as generated by expand_goto. */
|
6963 |
|
|
goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
|
6964 |
|
|
|
6965 |
|
|
/* Now verify that the values of GOAL and VALUE remain unaltered
|
6966 |
|
|
until INSN is reached. */
|
6967 |
|
|
|
6968 |
|
|
p = insn;
|
6969 |
|
|
while (1)
|
6970 |
|
|
{
|
6971 |
|
|
p = PREV_INSN (p);
|
6972 |
|
|
if (p == where)
|
6973 |
|
|
return value;
|
6974 |
|
|
|
6975 |
|
|
/* Don't trust the conversion past a function call
|
6976 |
|
|
if either of the two is in a call-clobbered register, or memory. */
|
6977 |
|
|
if (CALL_P (p))
|
6978 |
|
|
{
|
6979 |
|
|
int i;
|
6980 |
|
|
|
6981 |
|
|
if (goal_mem || need_stable_sp)
|
6982 |
|
|
return 0;
|
6983 |
|
|
|
6984 |
|
|
if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
|
6985 |
|
|
for (i = 0; i < nregs; ++i)
|
6986 |
|
|
if (call_used_regs[regno + i]
|
6987 |
|
|
|| HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
|
6988 |
|
|
return 0;
|
6989 |
|
|
|
6990 |
|
|
if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
|
6991 |
|
|
for (i = 0; i < valuenregs; ++i)
|
6992 |
|
|
if (call_used_regs[valueno + i]
|
6993 |
|
|
|| HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
|
6994 |
|
|
return 0;
|
6995 |
|
|
}
|
6996 |
|
|
|
6997 |
|
|
if (INSN_P (p))
|
6998 |
|
|
{
|
6999 |
|
|
pat = PATTERN (p);
|
7000 |
|
|
|
7001 |
|
|
/* Watch out for unspec_volatile, and volatile asms. */
|
7002 |
|
|
if (volatile_insn_p (pat))
|
7003 |
|
|
return 0;
|
7004 |
|
|
|
7005 |
|
|
/* If this insn P stores in either GOAL or VALUE, return 0.
|
7006 |
|
|
If GOAL is a memory ref and this insn writes memory, return 0.
|
7007 |
|
|
If GOAL is a memory ref and its address is not constant,
|
7008 |
|
|
and this insn P changes a register used in GOAL, return 0. */
|
7009 |
|
|
|
7010 |
|
|
if (GET_CODE (pat) == COND_EXEC)
|
7011 |
|
|
pat = COND_EXEC_CODE (pat);
|
7012 |
|
|
if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
|
7013 |
|
|
{
|
7014 |
|
|
rtx dest = SET_DEST (pat);
|
7015 |
|
|
while (GET_CODE (dest) == SUBREG
|
7016 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
7017 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
7018 |
|
|
dest = XEXP (dest, 0);
|
7019 |
|
|
if (REG_P (dest))
|
7020 |
|
|
{
|
7021 |
|
|
int xregno = REGNO (dest);
|
7022 |
|
|
int xnregs;
|
7023 |
|
|
if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
|
7024 |
|
|
xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
|
7025 |
|
|
else
|
7026 |
|
|
xnregs = 1;
|
7027 |
|
|
if (xregno < regno + nregs && xregno + xnregs > regno)
|
7028 |
|
|
return 0;
|
7029 |
|
|
if (xregno < valueno + valuenregs
|
7030 |
|
|
&& xregno + xnregs > valueno)
|
7031 |
|
|
return 0;
|
7032 |
|
|
if (goal_mem_addr_varies
|
7033 |
|
|
&& reg_overlap_mentioned_for_reload_p (dest, goal))
|
7034 |
|
|
return 0;
|
7035 |
|
|
if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
|
7036 |
|
|
return 0;
|
7037 |
|
|
}
|
7038 |
|
|
else if (goal_mem && MEM_P (dest)
|
7039 |
|
|
&& ! push_operand (dest, GET_MODE (dest)))
|
7040 |
|
|
return 0;
|
7041 |
|
|
else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
|
7042 |
|
|
&& reg_equiv_memory_loc[regno] != 0)
|
7043 |
|
|
return 0;
|
7044 |
|
|
else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
|
7045 |
|
|
return 0;
|
7046 |
|
|
}
|
7047 |
|
|
else if (GET_CODE (pat) == PARALLEL)
|
7048 |
|
|
{
|
7049 |
|
|
int i;
|
7050 |
|
|
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
|
7051 |
|
|
{
|
7052 |
|
|
rtx v1 = XVECEXP (pat, 0, i);
|
7053 |
|
|
if (GET_CODE (v1) == COND_EXEC)
|
7054 |
|
|
v1 = COND_EXEC_CODE (v1);
|
7055 |
|
|
if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
|
7056 |
|
|
{
|
7057 |
|
|
rtx dest = SET_DEST (v1);
|
7058 |
|
|
while (GET_CODE (dest) == SUBREG
|
7059 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
7060 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
7061 |
|
|
dest = XEXP (dest, 0);
|
7062 |
|
|
if (REG_P (dest))
|
7063 |
|
|
{
|
7064 |
|
|
int xregno = REGNO (dest);
|
7065 |
|
|
int xnregs;
|
7066 |
|
|
if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
|
7067 |
|
|
xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
|
7068 |
|
|
else
|
7069 |
|
|
xnregs = 1;
|
7070 |
|
|
if (xregno < regno + nregs
|
7071 |
|
|
&& xregno + xnregs > regno)
|
7072 |
|
|
return 0;
|
7073 |
|
|
if (xregno < valueno + valuenregs
|
7074 |
|
|
&& xregno + xnregs > valueno)
|
7075 |
|
|
return 0;
|
7076 |
|
|
if (goal_mem_addr_varies
|
7077 |
|
|
&& reg_overlap_mentioned_for_reload_p (dest,
|
7078 |
|
|
goal))
|
7079 |
|
|
return 0;
|
7080 |
|
|
if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
|
7081 |
|
|
return 0;
|
7082 |
|
|
}
|
7083 |
|
|
else if (goal_mem && MEM_P (dest)
|
7084 |
|
|
&& ! push_operand (dest, GET_MODE (dest)))
|
7085 |
|
|
return 0;
|
7086 |
|
|
else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
|
7087 |
|
|
&& reg_equiv_memory_loc[regno] != 0)
|
7088 |
|
|
return 0;
|
7089 |
|
|
else if (need_stable_sp
|
7090 |
|
|
&& push_operand (dest, GET_MODE (dest)))
|
7091 |
|
|
return 0;
|
7092 |
|
|
}
|
7093 |
|
|
}
|
7094 |
|
|
}
|
7095 |
|
|
|
7096 |
|
|
if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
|
7097 |
|
|
{
|
7098 |
|
|
rtx link;
|
7099 |
|
|
|
7100 |
|
|
for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
|
7101 |
|
|
link = XEXP (link, 1))
|
7102 |
|
|
{
|
7103 |
|
|
pat = XEXP (link, 0);
|
7104 |
|
|
if (GET_CODE (pat) == CLOBBER)
|
7105 |
|
|
{
|
7106 |
|
|
rtx dest = SET_DEST (pat);
|
7107 |
|
|
|
7108 |
|
|
if (REG_P (dest))
|
7109 |
|
|
{
|
7110 |
|
|
int xregno = REGNO (dest);
|
7111 |
|
|
int xnregs
|
7112 |
|
|
= hard_regno_nregs[xregno][GET_MODE (dest)];
|
7113 |
|
|
|
7114 |
|
|
if (xregno < regno + nregs
|
7115 |
|
|
&& xregno + xnregs > regno)
|
7116 |
|
|
return 0;
|
7117 |
|
|
else if (xregno < valueno + valuenregs
|
7118 |
|
|
&& xregno + xnregs > valueno)
|
7119 |
|
|
return 0;
|
7120 |
|
|
else if (goal_mem_addr_varies
|
7121 |
|
|
&& reg_overlap_mentioned_for_reload_p (dest,
|
7122 |
|
|
goal))
|
7123 |
|
|
return 0;
|
7124 |
|
|
}
|
7125 |
|
|
|
7126 |
|
|
else if (goal_mem && MEM_P (dest)
|
7127 |
|
|
&& ! push_operand (dest, GET_MODE (dest)))
|
7128 |
|
|
return 0;
|
7129 |
|
|
else if (need_stable_sp
|
7130 |
|
|
&& push_operand (dest, GET_MODE (dest)))
|
7131 |
|
|
return 0;
|
7132 |
|
|
}
|
7133 |
|
|
}
|
7134 |
|
|
}
|
7135 |
|
|
|
7136 |
|
|
#ifdef AUTO_INC_DEC
|
7137 |
|
|
/* If this insn auto-increments or auto-decrements
|
7138 |
|
|
either regno or valueno, return 0 now.
|
7139 |
|
|
If GOAL is a memory ref and its address is not constant,
|
7140 |
|
|
and this insn P increments a register used in GOAL, return 0. */
|
7141 |
|
|
{
|
7142 |
|
|
rtx link;
|
7143 |
|
|
|
7144 |
|
|
for (link = REG_NOTES (p); link; link = XEXP (link, 1))
|
7145 |
|
|
if (REG_NOTE_KIND (link) == REG_INC
|
7146 |
|
|
&& REG_P (XEXP (link, 0)))
|
7147 |
|
|
{
|
7148 |
|
|
int incno = REGNO (XEXP (link, 0));
|
7149 |
|
|
if (incno < regno + nregs && incno >= regno)
|
7150 |
|
|
return 0;
|
7151 |
|
|
if (incno < valueno + valuenregs && incno >= valueno)
|
7152 |
|
|
return 0;
|
7153 |
|
|
if (goal_mem_addr_varies
|
7154 |
|
|
&& reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
|
7155 |
|
|
goal))
|
7156 |
|
|
return 0;
|
7157 |
|
|
}
|
7158 |
|
|
}
|
7159 |
|
|
#endif
|
7160 |
|
|
}
|
7161 |
|
|
}
|
7162 |
|
|
}
|
7163 |
|
|
|
7164 |
|
|
/* Find a place where INCED appears in an increment or decrement operator
|
7165 |
|
|
within X, and return the amount INCED is incremented or decremented by.
|
7166 |
|
|
The value is always positive. */
|
7167 |
|
|
|
7168 |
|
|
static int
|
7169 |
|
|
find_inc_amount (rtx x, rtx inced)
|
7170 |
|
|
{
|
7171 |
|
|
enum rtx_code code = GET_CODE (x);
|
7172 |
|
|
const char *fmt;
|
7173 |
|
|
int i;
|
7174 |
|
|
|
7175 |
|
|
if (code == MEM)
|
7176 |
|
|
{
|
7177 |
|
|
rtx addr = XEXP (x, 0);
|
7178 |
|
|
if ((GET_CODE (addr) == PRE_DEC
|
7179 |
|
|
|| GET_CODE (addr) == POST_DEC
|
7180 |
|
|
|| GET_CODE (addr) == PRE_INC
|
7181 |
|
|
|| GET_CODE (addr) == POST_INC)
|
7182 |
|
|
&& XEXP (addr, 0) == inced)
|
7183 |
|
|
return GET_MODE_SIZE (GET_MODE (x));
|
7184 |
|
|
else if ((GET_CODE (addr) == PRE_MODIFY
|
7185 |
|
|
|| GET_CODE (addr) == POST_MODIFY)
|
7186 |
|
|
&& GET_CODE (XEXP (addr, 1)) == PLUS
|
7187 |
|
|
&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
|
7188 |
|
|
&& XEXP (addr, 0) == inced
|
7189 |
|
|
&& CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
|
7190 |
|
|
{
|
7191 |
|
|
i = INTVAL (XEXP (XEXP (addr, 1), 1));
|
7192 |
|
|
return i < 0 ? -i : i;
|
7193 |
|
|
}
|
7194 |
|
|
}
|
7195 |
|
|
|
7196 |
|
|
fmt = GET_RTX_FORMAT (code);
|
7197 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
7198 |
|
|
{
|
7199 |
|
|
if (fmt[i] == 'e')
|
7200 |
|
|
{
|
7201 |
|
|
int tem = find_inc_amount (XEXP (x, i), inced);
|
7202 |
|
|
if (tem != 0)
|
7203 |
|
|
return tem;
|
7204 |
|
|
}
|
7205 |
|
|
if (fmt[i] == 'E')
|
7206 |
|
|
{
|
7207 |
|
|
int j;
|
7208 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
7209 |
|
|
{
|
7210 |
|
|
int tem = find_inc_amount (XVECEXP (x, i, j), inced);
|
7211 |
|
|
if (tem != 0)
|
7212 |
|
|
return tem;
|
7213 |
|
|
}
|
7214 |
|
|
}
|
7215 |
|
|
}
|
7216 |
|
|
|
7217 |
|
|
return 0;
|
7218 |
|
|
}
|
7219 |
|
|
|
7220 |
|
|
/* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
|
7221 |
|
|
REG_INC note in insn INSN. REGNO must refer to a hard register. */
|
7222 |
|
|
|
7223 |
|
|
#ifdef AUTO_INC_DEC
|
7224 |
|
|
static int
|
7225 |
|
|
reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
|
7226 |
|
|
rtx insn)
|
7227 |
|
|
{
|
7228 |
|
|
rtx link;
|
7229 |
|
|
|
7230 |
|
|
gcc_assert (insn);
|
7231 |
|
|
|
7232 |
|
|
if (! INSN_P (insn))
|
7233 |
|
|
return 0;
|
7234 |
|
|
|
7235 |
|
|
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
7236 |
|
|
if (REG_NOTE_KIND (link) == REG_INC)
|
7237 |
|
|
{
|
7238 |
|
|
unsigned int test = (int) REGNO (XEXP (link, 0));
|
7239 |
|
|
if (test >= regno && test < endregno)
|
7240 |
|
|
return 1;
|
7241 |
|
|
}
|
7242 |
|
|
return 0;
|
7243 |
|
|
}
|
7244 |
|
|
#else
|
7245 |
|
|
|
7246 |
|
|
#define reg_inc_found_and_valid_p(regno,endregno,insn) 0
|
7247 |
|
|
|
7248 |
|
|
#endif
|
7249 |
|
|
|
7250 |
|
|
/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
|
7251 |
|
|
If SETS is 1, also consider SETs. If SETS is 2, enable checking
|
7252 |
|
|
REG_INC. REGNO must refer to a hard register. */
|
7253 |
|
|
|
7254 |
|
|
int
|
7255 |
|
|
regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
|
7256 |
|
|
int sets)
|
7257 |
|
|
{
|
7258 |
|
|
unsigned int nregs, endregno;
|
7259 |
|
|
|
7260 |
|
|
/* regno must be a hard register. */
|
7261 |
|
|
gcc_assert (regno < FIRST_PSEUDO_REGISTER);
|
7262 |
|
|
|
7263 |
|
|
nregs = hard_regno_nregs[regno][mode];
|
7264 |
|
|
endregno = regno + nregs;
|
7265 |
|
|
|
7266 |
|
|
if ((GET_CODE (PATTERN (insn)) == CLOBBER
|
7267 |
|
|
|| (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
|
7268 |
|
|
&& REG_P (XEXP (PATTERN (insn), 0)))
|
7269 |
|
|
{
|
7270 |
|
|
unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
|
7271 |
|
|
|
7272 |
|
|
return test >= regno && test < endregno;
|
7273 |
|
|
}
|
7274 |
|
|
|
7275 |
|
|
if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
|
7276 |
|
|
return 1;
|
7277 |
|
|
|
7278 |
|
|
if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
7279 |
|
|
{
|
7280 |
|
|
int i = XVECLEN (PATTERN (insn), 0) - 1;
|
7281 |
|
|
|
7282 |
|
|
for (; i >= 0; i--)
|
7283 |
|
|
{
|
7284 |
|
|
rtx elt = XVECEXP (PATTERN (insn), 0, i);
|
7285 |
|
|
if ((GET_CODE (elt) == CLOBBER
|
7286 |
|
|
|| (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
|
7287 |
|
|
&& REG_P (XEXP (elt, 0)))
|
7288 |
|
|
{
|
7289 |
|
|
unsigned int test = REGNO (XEXP (elt, 0));
|
7290 |
|
|
|
7291 |
|
|
if (test >= regno && test < endregno)
|
7292 |
|
|
return 1;
|
7293 |
|
|
}
|
7294 |
|
|
if (sets == 2
|
7295 |
|
|
&& reg_inc_found_and_valid_p (regno, endregno, elt))
|
7296 |
|
|
return 1;
|
7297 |
|
|
}
|
7298 |
|
|
}
|
7299 |
|
|
|
7300 |
|
|
return 0;
|
7301 |
|
|
}
|
7302 |
|
|
|
7303 |
|
|
/* Find the low part, with mode MODE, of a hard regno RELOADREG. */
|
7304 |
|
|
rtx
|
7305 |
|
|
reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
|
7306 |
|
|
{
|
7307 |
|
|
int regno;
|
7308 |
|
|
|
7309 |
|
|
if (GET_MODE (reloadreg) == mode)
|
7310 |
|
|
return reloadreg;
|
7311 |
|
|
|
7312 |
|
|
regno = REGNO (reloadreg);
|
7313 |
|
|
|
7314 |
|
|
if (WORDS_BIG_ENDIAN)
|
7315 |
|
|
regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
|
7316 |
|
|
- (int) hard_regno_nregs[regno][mode];
|
7317 |
|
|
|
7318 |
|
|
return gen_rtx_REG (mode, regno);
|
7319 |
|
|
}
|
7320 |
|
|
|
7321 |
|
|
static const char *const reload_when_needed_name[] =
|
7322 |
|
|
{
|
7323 |
|
|
"RELOAD_FOR_INPUT",
|
7324 |
|
|
"RELOAD_FOR_OUTPUT",
|
7325 |
|
|
"RELOAD_FOR_INSN",
|
7326 |
|
|
"RELOAD_FOR_INPUT_ADDRESS",
|
7327 |
|
|
"RELOAD_FOR_INPADDR_ADDRESS",
|
7328 |
|
|
"RELOAD_FOR_OUTPUT_ADDRESS",
|
7329 |
|
|
"RELOAD_FOR_OUTADDR_ADDRESS",
|
7330 |
|
|
"RELOAD_FOR_OPERAND_ADDRESS",
|
7331 |
|
|
"RELOAD_FOR_OPADDR_ADDR",
|
7332 |
|
|
"RELOAD_OTHER",
|
7333 |
|
|
"RELOAD_FOR_OTHER_ADDRESS"
|
7334 |
|
|
};
|
7335 |
|
|
|
7336 |
|
|
/* These functions are used to print the variables set by 'find_reloads' */
|
7337 |
|
|
|
7338 |
|
|
void
|
7339 |
|
|
debug_reload_to_stream (FILE *f)
|
7340 |
|
|
{
|
7341 |
|
|
int r;
|
7342 |
|
|
const char *prefix;
|
7343 |
|
|
|
7344 |
|
|
if (! f)
|
7345 |
|
|
f = stderr;
|
7346 |
|
|
for (r = 0; r < n_reloads; r++)
|
7347 |
|
|
{
|
7348 |
|
|
fprintf (f, "Reload %d: ", r);
|
7349 |
|
|
|
7350 |
|
|
if (rld[r].in != 0)
|
7351 |
|
|
{
|
7352 |
|
|
fprintf (f, "reload_in (%s) = ",
|
7353 |
|
|
GET_MODE_NAME (rld[r].inmode));
|
7354 |
|
|
print_inline_rtx (f, rld[r].in, 24);
|
7355 |
|
|
fprintf (f, "\n\t");
|
7356 |
|
|
}
|
7357 |
|
|
|
7358 |
|
|
if (rld[r].out != 0)
|
7359 |
|
|
{
|
7360 |
|
|
fprintf (f, "reload_out (%s) = ",
|
7361 |
|
|
GET_MODE_NAME (rld[r].outmode));
|
7362 |
|
|
print_inline_rtx (f, rld[r].out, 24);
|
7363 |
|
|
fprintf (f, "\n\t");
|
7364 |
|
|
}
|
7365 |
|
|
|
7366 |
|
|
fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
|
7367 |
|
|
|
7368 |
|
|
fprintf (f, "%s (opnum = %d)",
|
7369 |
|
|
reload_when_needed_name[(int) rld[r].when_needed],
|
7370 |
|
|
rld[r].opnum);
|
7371 |
|
|
|
7372 |
|
|
if (rld[r].optional)
|
7373 |
|
|
fprintf (f, ", optional");
|
7374 |
|
|
|
7375 |
|
|
if (rld[r].nongroup)
|
7376 |
|
|
fprintf (f, ", nongroup");
|
7377 |
|
|
|
7378 |
|
|
if (rld[r].inc != 0)
|
7379 |
|
|
fprintf (f, ", inc by %d", rld[r].inc);
|
7380 |
|
|
|
7381 |
|
|
if (rld[r].nocombine)
|
7382 |
|
|
fprintf (f, ", can't combine");
|
7383 |
|
|
|
7384 |
|
|
if (rld[r].secondary_p)
|
7385 |
|
|
fprintf (f, ", secondary_reload_p");
|
7386 |
|
|
|
7387 |
|
|
if (rld[r].in_reg != 0)
|
7388 |
|
|
{
|
7389 |
|
|
fprintf (f, "\n\treload_in_reg: ");
|
7390 |
|
|
print_inline_rtx (f, rld[r].in_reg, 24);
|
7391 |
|
|
}
|
7392 |
|
|
|
7393 |
|
|
if (rld[r].out_reg != 0)
|
7394 |
|
|
{
|
7395 |
|
|
fprintf (f, "\n\treload_out_reg: ");
|
7396 |
|
|
print_inline_rtx (f, rld[r].out_reg, 24);
|
7397 |
|
|
}
|
7398 |
|
|
|
7399 |
|
|
if (rld[r].reg_rtx != 0)
|
7400 |
|
|
{
|
7401 |
|
|
fprintf (f, "\n\treload_reg_rtx: ");
|
7402 |
|
|
print_inline_rtx (f, rld[r].reg_rtx, 24);
|
7403 |
|
|
}
|
7404 |
|
|
|
7405 |
|
|
prefix = "\n\t";
|
7406 |
|
|
if (rld[r].secondary_in_reload != -1)
|
7407 |
|
|
{
|
7408 |
|
|
fprintf (f, "%ssecondary_in_reload = %d",
|
7409 |
|
|
prefix, rld[r].secondary_in_reload);
|
7410 |
|
|
prefix = ", ";
|
7411 |
|
|
}
|
7412 |
|
|
|
7413 |
|
|
if (rld[r].secondary_out_reload != -1)
|
7414 |
|
|
fprintf (f, "%ssecondary_out_reload = %d\n",
|
7415 |
|
|
prefix, rld[r].secondary_out_reload);
|
7416 |
|
|
|
7417 |
|
|
prefix = "\n\t";
|
7418 |
|
|
if (rld[r].secondary_in_icode != CODE_FOR_nothing)
|
7419 |
|
|
{
|
7420 |
|
|
fprintf (f, "%ssecondary_in_icode = %s", prefix,
|
7421 |
|
|
insn_data[rld[r].secondary_in_icode].name);
|
7422 |
|
|
prefix = ", ";
|
7423 |
|
|
}
|
7424 |
|
|
|
7425 |
|
|
if (rld[r].secondary_out_icode != CODE_FOR_nothing)
|
7426 |
|
|
fprintf (f, "%ssecondary_out_icode = %s", prefix,
|
7427 |
|
|
insn_data[rld[r].secondary_out_icode].name);
|
7428 |
|
|
|
7429 |
|
|
fprintf (f, "\n");
|
7430 |
|
|
}
|
7431 |
|
|
}
|
7432 |
|
|
|
7433 |
|
|
void
|
7434 |
|
|
debug_reload (void)
|
7435 |
|
|
{
|
7436 |
|
|
debug_reload_to_stream (stderr);
|
7437 |
|
|
}
|