| 1 |
280 |
jeremybenn |
/* Instruction scheduling pass.
|
| 2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
| 3 |
|
|
2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
|
| 4 |
|
|
Free Software Foundation, Inc.
|
| 5 |
|
|
Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
|
| 6 |
|
|
and currently maintained by, Jim Wilson (wilson@cygnus.com)
|
| 7 |
|
|
|
| 8 |
|
|
This file is part of GCC.
|
| 9 |
|
|
|
| 10 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 11 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 12 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 13 |
|
|
version.
|
| 14 |
|
|
|
| 15 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 16 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 17 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 18 |
|
|
for more details.
|
| 19 |
|
|
|
| 20 |
|
|
You should have received a copy of the GNU General Public License
|
| 21 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 22 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 23 |
|
|
|
| 24 |
|
|
/* This pass implements list scheduling within basic blocks. It is
|
| 25 |
|
|
run twice: (1) after flow analysis, but before register allocation,
|
| 26 |
|
|
and (2) after register allocation.
|
| 27 |
|
|
|
| 28 |
|
|
The first run performs interblock scheduling, moving insns between
|
| 29 |
|
|
different blocks in the same "region", and the second runs only
|
| 30 |
|
|
basic block scheduling.
|
| 31 |
|
|
|
| 32 |
|
|
Interblock motions performed are useful motions and speculative
|
| 33 |
|
|
motions, including speculative loads. Motions requiring code
|
| 34 |
|
|
duplication are not supported. The identification of motion type
|
| 35 |
|
|
and the check for validity of speculative motions requires
|
| 36 |
|
|
construction and analysis of the function's control flow graph.
|
| 37 |
|
|
|
| 38 |
|
|
The main entry point for this pass is schedule_insns(), called for
|
| 39 |
|
|
each function. The work of the scheduler is organized in three
|
| 40 |
|
|
levels: (1) function level: insns are subject to splitting,
|
| 41 |
|
|
control-flow-graph is constructed, regions are computed (after
|
| 42 |
|
|
reload, each region is of one block), (2) region level: control
|
| 43 |
|
|
flow graph attributes required for interblock scheduling are
|
| 44 |
|
|
computed (dominators, reachability, etc.), data dependences and
|
| 45 |
|
|
priorities are computed, and (3) block level: insns in the block
|
| 46 |
|
|
are actually scheduled. */
|
| 47 |
|
|
|
| 48 |
|
|
#include "config.h"
|
| 49 |
|
|
#include "system.h"
|
| 50 |
|
|
#include "coretypes.h"
|
| 51 |
|
|
#include "tm.h"
|
| 52 |
|
|
#include "toplev.h"
|
| 53 |
|
|
#include "rtl.h"
|
| 54 |
|
|
#include "tm_p.h"
|
| 55 |
|
|
#include "hard-reg-set.h"
|
| 56 |
|
|
#include "regs.h"
|
| 57 |
|
|
#include "function.h"
|
| 58 |
|
|
#include "flags.h"
|
| 59 |
|
|
#include "insn-config.h"
|
| 60 |
|
|
#include "insn-attr.h"
|
| 61 |
|
|
#include "except.h"
|
| 62 |
|
|
#include "toplev.h"
|
| 63 |
|
|
#include "recog.h"
|
| 64 |
|
|
#include "cfglayout.h"
|
| 65 |
|
|
#include "params.h"
|
| 66 |
|
|
#include "sched-int.h"
|
| 67 |
|
|
#include "sel-sched.h"
|
| 68 |
|
|
#include "target.h"
|
| 69 |
|
|
#include "timevar.h"
|
| 70 |
|
|
#include "tree-pass.h"
|
| 71 |
|
|
#include "dbgcnt.h"
|
| 72 |
|
|
|
| 73 |
|
|
#ifdef INSN_SCHEDULING
|
| 74 |
|
|
|
| 75 |
|
|
/* Some accessor macros for h_i_d members only used within this file. */
|
| 76 |
|
|
#define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
|
| 77 |
|
|
#define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
|
| 78 |
|
|
|
| 79 |
|
|
/* nr_inter/spec counts interblock/speculative motion for the function. */
|
| 80 |
|
|
static int nr_inter, nr_spec;
|
| 81 |
|
|
|
| 82 |
|
|
static int is_cfg_nonregular (void);
|
| 83 |
|
|
|
| 84 |
|
|
/* Number of regions in the procedure. */
|
| 85 |
|
|
int nr_regions = 0;
|
| 86 |
|
|
|
| 87 |
|
|
/* Table of region descriptions. */
|
| 88 |
|
|
region *rgn_table = NULL;
|
| 89 |
|
|
|
| 90 |
|
|
/* Array of lists of regions' blocks. */
|
| 91 |
|
|
int *rgn_bb_table = NULL;
|
| 92 |
|
|
|
| 93 |
|
|
/* Topological order of blocks in the region (if b2 is reachable from
|
| 94 |
|
|
b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
|
| 95 |
|
|
always referred to by either block or b, while its topological
|
| 96 |
|
|
order name (in the region) is referred to by bb. */
|
| 97 |
|
|
int *block_to_bb = NULL;
|
| 98 |
|
|
|
| 99 |
|
|
/* The number of the region containing a block. */
|
| 100 |
|
|
int *containing_rgn = NULL;
|
| 101 |
|
|
|
| 102 |
|
|
/* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
|
| 103 |
|
|
Currently we can get a ebb only through splitting of currently
|
| 104 |
|
|
scheduling block, therefore, we don't need ebb_head array for every region,
|
| 105 |
|
|
hence, its sufficient to hold it for current one only. */
|
| 106 |
|
|
int *ebb_head = NULL;
|
| 107 |
|
|
|
| 108 |
|
|
/* The minimum probability of reaching a source block so that it will be
|
| 109 |
|
|
considered for speculative scheduling. */
|
| 110 |
|
|
static int min_spec_prob;
|
| 111 |
|
|
|
| 112 |
|
|
static void find_single_block_region (bool);
|
| 113 |
|
|
static void find_rgns (void);
|
| 114 |
|
|
static bool too_large (int, int *, int *);
|
| 115 |
|
|
|
| 116 |
|
|
/* Blocks of the current region being scheduled. */
|
| 117 |
|
|
int current_nr_blocks;
|
| 118 |
|
|
int current_blocks;
|
| 119 |
|
|
|
| 120 |
|
|
/* A speculative motion requires checking live information on the path
|
| 121 |
|
|
from 'source' to 'target'. The split blocks are those to be checked.
|
| 122 |
|
|
After a speculative motion, live information should be modified in
|
| 123 |
|
|
the 'update' blocks.
|
| 124 |
|
|
|
| 125 |
|
|
Lists of split and update blocks for each candidate of the current
|
| 126 |
|
|
target are in array bblst_table. */
|
| 127 |
|
|
static basic_block *bblst_table;
|
| 128 |
|
|
static int bblst_size, bblst_last;
|
| 129 |
|
|
|
| 130 |
|
|
/* Target info declarations.
|
| 131 |
|
|
|
| 132 |
|
|
The block currently being scheduled is referred to as the "target" block,
|
| 133 |
|
|
while other blocks in the region from which insns can be moved to the
|
| 134 |
|
|
target are called "source" blocks. The candidate structure holds info
|
| 135 |
|
|
about such sources: are they valid? Speculative? Etc. */
|
| 136 |
|
|
typedef struct
|
| 137 |
|
|
{
|
| 138 |
|
|
basic_block *first_member;
|
| 139 |
|
|
int nr_members;
|
| 140 |
|
|
}
|
| 141 |
|
|
bblst;
|
| 142 |
|
|
|
| 143 |
|
|
typedef struct
|
| 144 |
|
|
{
|
| 145 |
|
|
char is_valid;
|
| 146 |
|
|
char is_speculative;
|
| 147 |
|
|
int src_prob;
|
| 148 |
|
|
bblst split_bbs;
|
| 149 |
|
|
bblst update_bbs;
|
| 150 |
|
|
}
|
| 151 |
|
|
candidate;
|
| 152 |
|
|
|
| 153 |
|
|
static candidate *candidate_table;
|
| 154 |
|
|
#define IS_VALID(src) (candidate_table[src].is_valid)
|
| 155 |
|
|
#define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
|
| 156 |
|
|
#define IS_SPECULATIVE_INSN(INSN) \
|
| 157 |
|
|
(IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
|
| 158 |
|
|
#define SRC_PROB(src) ( candidate_table[src].src_prob )
|
| 159 |
|
|
|
| 160 |
|
|
/* The bb being currently scheduled. */
|
| 161 |
|
|
int target_bb;
|
| 162 |
|
|
|
| 163 |
|
|
/* List of edges. */
|
| 164 |
|
|
typedef struct
|
| 165 |
|
|
{
|
| 166 |
|
|
edge *first_member;
|
| 167 |
|
|
int nr_members;
|
| 168 |
|
|
}
|
| 169 |
|
|
edgelst;
|
| 170 |
|
|
|
| 171 |
|
|
static edge *edgelst_table;
|
| 172 |
|
|
static int edgelst_last;
|
| 173 |
|
|
|
| 174 |
|
|
static void extract_edgelst (sbitmap, edgelst *);
|
| 175 |
|
|
|
| 176 |
|
|
/* Target info functions. */
|
| 177 |
|
|
static void split_edges (int, int, edgelst *);
|
| 178 |
|
|
static void compute_trg_info (int);
|
| 179 |
|
|
void debug_candidate (int);
|
| 180 |
|
|
void debug_candidates (int);
|
| 181 |
|
|
|
| 182 |
|
|
/* Dominators array: dom[i] contains the sbitmap of dominators of
|
| 183 |
|
|
bb i in the region. */
|
| 184 |
|
|
static sbitmap *dom;
|
| 185 |
|
|
|
| 186 |
|
|
/* bb 0 is the only region entry. */
|
| 187 |
|
|
#define IS_RGN_ENTRY(bb) (!bb)
|
| 188 |
|
|
|
| 189 |
|
|
/* Is bb_src dominated by bb_trg. */
|
| 190 |
|
|
#define IS_DOMINATED(bb_src, bb_trg) \
|
| 191 |
|
|
( TEST_BIT (dom[bb_src], bb_trg) )
|
| 192 |
|
|
|
| 193 |
|
|
/* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
|
| 194 |
|
|
the probability of bb i relative to the region entry. */
|
| 195 |
|
|
static int *prob;
|
| 196 |
|
|
|
| 197 |
|
|
/* Bit-set of edges, where bit i stands for edge i. */
|
| 198 |
|
|
typedef sbitmap edgeset;
|
| 199 |
|
|
|
| 200 |
|
|
/* Number of edges in the region. */
|
| 201 |
|
|
static int rgn_nr_edges;
|
| 202 |
|
|
|
| 203 |
|
|
/* Array of size rgn_nr_edges. */
|
| 204 |
|
|
static edge *rgn_edges;
|
| 205 |
|
|
|
| 206 |
|
|
/* Mapping from each edge in the graph to its number in the rgn. */
|
| 207 |
|
|
#define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
|
| 208 |
|
|
#define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
|
| 209 |
|
|
|
| 210 |
|
|
/* The split edges of a source bb is different for each target
|
| 211 |
|
|
bb. In order to compute this efficiently, the 'potential-split edges'
|
| 212 |
|
|
are computed for each bb prior to scheduling a region. This is actually
|
| 213 |
|
|
the split edges of each bb relative to the region entry.
|
| 214 |
|
|
|
| 215 |
|
|
pot_split[bb] is the set of potential split edges of bb. */
|
| 216 |
|
|
static edgeset *pot_split;
|
| 217 |
|
|
|
| 218 |
|
|
/* For every bb, a set of its ancestor edges. */
|
| 219 |
|
|
static edgeset *ancestor_edges;
|
| 220 |
|
|
|
| 221 |
|
|
#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
|
| 222 |
|
|
|
| 223 |
|
|
/* Speculative scheduling functions. */
|
| 224 |
|
|
static int check_live_1 (int, rtx);
|
| 225 |
|
|
static void update_live_1 (int, rtx);
|
| 226 |
|
|
static int is_pfree (rtx, int, int);
|
| 227 |
|
|
static int find_conditional_protection (rtx, int);
|
| 228 |
|
|
static int is_conditionally_protected (rtx, int, int);
|
| 229 |
|
|
static int is_prisky (rtx, int, int);
|
| 230 |
|
|
static int is_exception_free (rtx, int, int);
|
| 231 |
|
|
|
| 232 |
|
|
static bool sets_likely_spilled (rtx);
|
| 233 |
|
|
static void sets_likely_spilled_1 (rtx, const_rtx, void *);
|
| 234 |
|
|
static void add_branch_dependences (rtx, rtx);
|
| 235 |
|
|
static void compute_block_dependences (int);
|
| 236 |
|
|
|
| 237 |
|
|
static void schedule_region (int);
|
| 238 |
|
|
static rtx concat_INSN_LIST (rtx, rtx);
|
| 239 |
|
|
static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
|
| 240 |
|
|
static void propagate_deps (int, struct deps_desc *);
|
| 241 |
|
|
static void free_pending_lists (void);
|
| 242 |
|
|
|
| 243 |
|
|
/* Functions for construction of the control flow graph. */
|
| 244 |
|
|
|
| 245 |
|
|
/* Return 1 if control flow graph should not be constructed, 0 otherwise.
|
| 246 |
|
|
|
| 247 |
|
|
We decide not to build the control flow graph if there is possibly more
|
| 248 |
|
|
than one entry to the function, if computed branches exist, if we
|
| 249 |
|
|
have nonlocal gotos, or if we have an unreachable loop. */
|
| 250 |
|
|
|
| 251 |
|
|
static int
|
| 252 |
|
|
is_cfg_nonregular (void)
|
| 253 |
|
|
{
|
| 254 |
|
|
basic_block b;
|
| 255 |
|
|
rtx insn;
|
| 256 |
|
|
|
| 257 |
|
|
/* If we have a label that could be the target of a nonlocal goto, then
|
| 258 |
|
|
the cfg is not well structured. */
|
| 259 |
|
|
if (nonlocal_goto_handler_labels)
|
| 260 |
|
|
return 1;
|
| 261 |
|
|
|
| 262 |
|
|
/* If we have any forced labels, then the cfg is not well structured. */
|
| 263 |
|
|
if (forced_labels)
|
| 264 |
|
|
return 1;
|
| 265 |
|
|
|
| 266 |
|
|
/* If we have exception handlers, then we consider the cfg not well
|
| 267 |
|
|
structured. ?!? We should be able to handle this now that we
|
| 268 |
|
|
compute an accurate cfg for EH. */
|
| 269 |
|
|
if (current_function_has_exception_handlers ())
|
| 270 |
|
|
return 1;
|
| 271 |
|
|
|
| 272 |
|
|
/* If we have insns which refer to labels as non-jumped-to operands,
|
| 273 |
|
|
then we consider the cfg not well structured. */
|
| 274 |
|
|
FOR_EACH_BB (b)
|
| 275 |
|
|
FOR_BB_INSNS (b, insn)
|
| 276 |
|
|
{
|
| 277 |
|
|
rtx note, next, set, dest;
|
| 278 |
|
|
|
| 279 |
|
|
/* If this function has a computed jump, then we consider the cfg
|
| 280 |
|
|
not well structured. */
|
| 281 |
|
|
if (JUMP_P (insn) && computed_jump_p (insn))
|
| 282 |
|
|
return 1;
|
| 283 |
|
|
|
| 284 |
|
|
if (!INSN_P (insn))
|
| 285 |
|
|
continue;
|
| 286 |
|
|
|
| 287 |
|
|
note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
|
| 288 |
|
|
if (note == NULL_RTX)
|
| 289 |
|
|
continue;
|
| 290 |
|
|
|
| 291 |
|
|
/* For that label not to be seen as a referred-to label, this
|
| 292 |
|
|
must be a single-set which is feeding a jump *only*. This
|
| 293 |
|
|
could be a conditional jump with the label split off for
|
| 294 |
|
|
machine-specific reasons or a casesi/tablejump. */
|
| 295 |
|
|
next = next_nonnote_insn (insn);
|
| 296 |
|
|
if (next == NULL_RTX
|
| 297 |
|
|
|| !JUMP_P (next)
|
| 298 |
|
|
|| (JUMP_LABEL (next) != XEXP (note, 0)
|
| 299 |
|
|
&& find_reg_note (next, REG_LABEL_TARGET,
|
| 300 |
|
|
XEXP (note, 0)) == NULL_RTX)
|
| 301 |
|
|
|| BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
|
| 302 |
|
|
return 1;
|
| 303 |
|
|
|
| 304 |
|
|
set = single_set (insn);
|
| 305 |
|
|
if (set == NULL_RTX)
|
| 306 |
|
|
return 1;
|
| 307 |
|
|
|
| 308 |
|
|
dest = SET_DEST (set);
|
| 309 |
|
|
if (!REG_P (dest) || !dead_or_set_p (next, dest))
|
| 310 |
|
|
return 1;
|
| 311 |
|
|
}
|
| 312 |
|
|
|
| 313 |
|
|
/* Unreachable loops with more than one basic block are detected
|
| 314 |
|
|
during the DFS traversal in find_rgns.
|
| 315 |
|
|
|
| 316 |
|
|
Unreachable loops with a single block are detected here. This
|
| 317 |
|
|
test is redundant with the one in find_rgns, but it's much
|
| 318 |
|
|
cheaper to go ahead and catch the trivial case here. */
|
| 319 |
|
|
FOR_EACH_BB (b)
|
| 320 |
|
|
{
|
| 321 |
|
|
if (EDGE_COUNT (b->preds) == 0
|
| 322 |
|
|
|| (single_pred_p (b)
|
| 323 |
|
|
&& single_pred (b) == b))
|
| 324 |
|
|
return 1;
|
| 325 |
|
|
}
|
| 326 |
|
|
|
| 327 |
|
|
/* All the tests passed. Consider the cfg well structured. */
|
| 328 |
|
|
return 0;
|
| 329 |
|
|
}
|
| 330 |
|
|
|
| 331 |
|
|
/* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
|
| 332 |
|
|
|
| 333 |
|
|
static void
|
| 334 |
|
|
extract_edgelst (sbitmap set, edgelst *el)
|
| 335 |
|
|
{
|
| 336 |
|
|
unsigned int i = 0;
|
| 337 |
|
|
sbitmap_iterator sbi;
|
| 338 |
|
|
|
| 339 |
|
|
/* edgelst table space is reused in each call to extract_edgelst. */
|
| 340 |
|
|
edgelst_last = 0;
|
| 341 |
|
|
|
| 342 |
|
|
el->first_member = &edgelst_table[edgelst_last];
|
| 343 |
|
|
el->nr_members = 0;
|
| 344 |
|
|
|
| 345 |
|
|
/* Iterate over each word in the bitset. */
|
| 346 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (set, 0, i, sbi)
|
| 347 |
|
|
{
|
| 348 |
|
|
edgelst_table[edgelst_last++] = rgn_edges[i];
|
| 349 |
|
|
el->nr_members++;
|
| 350 |
|
|
}
|
| 351 |
|
|
}
|
| 352 |
|
|
|
| 353 |
|
|
/* Functions for the construction of regions. */
|
| 354 |
|
|
|
| 355 |
|
|
/* Print the regions, for debugging purposes. Callable from debugger. */
|
| 356 |
|
|
|
| 357 |
|
|
void
|
| 358 |
|
|
debug_regions (void)
|
| 359 |
|
|
{
|
| 360 |
|
|
int rgn, bb;
|
| 361 |
|
|
|
| 362 |
|
|
fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
|
| 363 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
| 364 |
|
|
{
|
| 365 |
|
|
fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
|
| 366 |
|
|
rgn_table[rgn].rgn_nr_blocks);
|
| 367 |
|
|
fprintf (sched_dump, ";;\tbb/block: ");
|
| 368 |
|
|
|
| 369 |
|
|
/* We don't have ebb_head initialized yet, so we can't use
|
| 370 |
|
|
BB_TO_BLOCK (). */
|
| 371 |
|
|
current_blocks = RGN_BLOCKS (rgn);
|
| 372 |
|
|
|
| 373 |
|
|
for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
|
| 374 |
|
|
fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
|
| 375 |
|
|
|
| 376 |
|
|
fprintf (sched_dump, "\n\n");
|
| 377 |
|
|
}
|
| 378 |
|
|
}
|
| 379 |
|
|
|
| 380 |
|
|
/* Print the region's basic blocks. */
|
| 381 |
|
|
|
| 382 |
|
|
void
|
| 383 |
|
|
debug_region (int rgn)
|
| 384 |
|
|
{
|
| 385 |
|
|
int bb;
|
| 386 |
|
|
|
| 387 |
|
|
fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
|
| 388 |
|
|
fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
|
| 389 |
|
|
rgn_table[rgn].rgn_nr_blocks);
|
| 390 |
|
|
fprintf (stderr, ";;\tbb/block: ");
|
| 391 |
|
|
|
| 392 |
|
|
/* We don't have ebb_head initialized yet, so we can't use
|
| 393 |
|
|
BB_TO_BLOCK (). */
|
| 394 |
|
|
current_blocks = RGN_BLOCKS (rgn);
|
| 395 |
|
|
|
| 396 |
|
|
for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
|
| 397 |
|
|
fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
|
| 398 |
|
|
|
| 399 |
|
|
fprintf (stderr, "\n\n");
|
| 400 |
|
|
|
| 401 |
|
|
for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
|
| 402 |
|
|
{
|
| 403 |
|
|
debug_bb_n_slim (rgn_bb_table[current_blocks + bb]);
|
| 404 |
|
|
fprintf (stderr, "\n");
|
| 405 |
|
|
}
|
| 406 |
|
|
|
| 407 |
|
|
fprintf (stderr, "\n");
|
| 408 |
|
|
|
| 409 |
|
|
}
|
| 410 |
|
|
|
| 411 |
|
|
/* True when a bb with index BB_INDEX contained in region RGN. */
|
| 412 |
|
|
static bool
|
| 413 |
|
|
bb_in_region_p (int bb_index, int rgn)
|
| 414 |
|
|
{
|
| 415 |
|
|
int i;
|
| 416 |
|
|
|
| 417 |
|
|
for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
|
| 418 |
|
|
if (rgn_bb_table[current_blocks + i] == bb_index)
|
| 419 |
|
|
return true;
|
| 420 |
|
|
|
| 421 |
|
|
return false;
|
| 422 |
|
|
}
|
| 423 |
|
|
|
| 424 |
|
|
/* Dump region RGN to file F using dot syntax. */
|
| 425 |
|
|
void
|
| 426 |
|
|
dump_region_dot (FILE *f, int rgn)
|
| 427 |
|
|
{
|
| 428 |
|
|
int i;
|
| 429 |
|
|
|
| 430 |
|
|
fprintf (f, "digraph Region_%d {\n", rgn);
|
| 431 |
|
|
|
| 432 |
|
|
/* We don't have ebb_head initialized yet, so we can't use
|
| 433 |
|
|
BB_TO_BLOCK (). */
|
| 434 |
|
|
current_blocks = RGN_BLOCKS (rgn);
|
| 435 |
|
|
|
| 436 |
|
|
for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
|
| 437 |
|
|
{
|
| 438 |
|
|
edge e;
|
| 439 |
|
|
edge_iterator ei;
|
| 440 |
|
|
int src_bb_num = rgn_bb_table[current_blocks + i];
|
| 441 |
|
|
struct basic_block_def *bb = BASIC_BLOCK (src_bb_num);
|
| 442 |
|
|
|
| 443 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 444 |
|
|
if (bb_in_region_p (e->dest->index, rgn))
|
| 445 |
|
|
fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
|
| 446 |
|
|
}
|
| 447 |
|
|
fprintf (f, "}\n");
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
/* The same, but first open a file specified by FNAME. */
|
| 451 |
|
|
void
|
| 452 |
|
|
dump_region_dot_file (const char *fname, int rgn)
|
| 453 |
|
|
{
|
| 454 |
|
|
FILE *f = fopen (fname, "wt");
|
| 455 |
|
|
dump_region_dot (f, rgn);
|
| 456 |
|
|
fclose (f);
|
| 457 |
|
|
}
|
| 458 |
|
|
|
| 459 |
|
|
/* Build a single block region for each basic block in the function.
|
| 460 |
|
|
This allows for using the same code for interblock and basic block
|
| 461 |
|
|
scheduling. */
|
| 462 |
|
|
|
| 463 |
|
|
static void
|
| 464 |
|
|
find_single_block_region (bool ebbs_p)
|
| 465 |
|
|
{
|
| 466 |
|
|
basic_block bb, ebb_start;
|
| 467 |
|
|
int i = 0;
|
| 468 |
|
|
|
| 469 |
|
|
nr_regions = 0;
|
| 470 |
|
|
|
| 471 |
|
|
if (ebbs_p) {
|
| 472 |
|
|
int probability_cutoff;
|
| 473 |
|
|
if (profile_info && flag_branch_probabilities)
|
| 474 |
|
|
probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
|
| 475 |
|
|
else
|
| 476 |
|
|
probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
|
| 477 |
|
|
probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
|
| 478 |
|
|
|
| 479 |
|
|
FOR_EACH_BB (ebb_start)
|
| 480 |
|
|
{
|
| 481 |
|
|
RGN_NR_BLOCKS (nr_regions) = 0;
|
| 482 |
|
|
RGN_BLOCKS (nr_regions) = i;
|
| 483 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
| 484 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
| 485 |
|
|
|
| 486 |
|
|
for (bb = ebb_start; ; bb = bb->next_bb)
|
| 487 |
|
|
{
|
| 488 |
|
|
edge e;
|
| 489 |
|
|
edge_iterator ei;
|
| 490 |
|
|
|
| 491 |
|
|
rgn_bb_table[i] = bb->index;
|
| 492 |
|
|
RGN_NR_BLOCKS (nr_regions)++;
|
| 493 |
|
|
CONTAINING_RGN (bb->index) = nr_regions;
|
| 494 |
|
|
BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
|
| 495 |
|
|
i++;
|
| 496 |
|
|
|
| 497 |
|
|
if (bb->next_bb == EXIT_BLOCK_PTR
|
| 498 |
|
|
|| LABEL_P (BB_HEAD (bb->next_bb)))
|
| 499 |
|
|
break;
|
| 500 |
|
|
|
| 501 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 502 |
|
|
if ((e->flags & EDGE_FALLTHRU) != 0)
|
| 503 |
|
|
break;
|
| 504 |
|
|
if (! e)
|
| 505 |
|
|
break;
|
| 506 |
|
|
if (e->probability <= probability_cutoff)
|
| 507 |
|
|
break;
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
ebb_start = bb;
|
| 511 |
|
|
nr_regions++;
|
| 512 |
|
|
}
|
| 513 |
|
|
}
|
| 514 |
|
|
else
|
| 515 |
|
|
FOR_EACH_BB (bb)
|
| 516 |
|
|
{
|
| 517 |
|
|
rgn_bb_table[nr_regions] = bb->index;
|
| 518 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
| 519 |
|
|
RGN_BLOCKS (nr_regions) = nr_regions;
|
| 520 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
| 521 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
| 522 |
|
|
|
| 523 |
|
|
CONTAINING_RGN (bb->index) = nr_regions;
|
| 524 |
|
|
BLOCK_TO_BB (bb->index) = 0;
|
| 525 |
|
|
nr_regions++;
|
| 526 |
|
|
}
|
| 527 |
|
|
}
|
| 528 |
|
|
|
| 529 |
|
|
/* Estimate number of the insns in the BB. */
|
| 530 |
|
|
static int
|
| 531 |
|
|
rgn_estimate_number_of_insns (basic_block bb)
|
| 532 |
|
|
{
|
| 533 |
|
|
int count;
|
| 534 |
|
|
|
| 535 |
|
|
count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
|
| 536 |
|
|
|
| 537 |
|
|
if (MAY_HAVE_DEBUG_INSNS)
|
| 538 |
|
|
{
|
| 539 |
|
|
rtx insn;
|
| 540 |
|
|
|
| 541 |
|
|
FOR_BB_INSNS (bb, insn)
|
| 542 |
|
|
if (DEBUG_INSN_P (insn))
|
| 543 |
|
|
count--;
|
| 544 |
|
|
}
|
| 545 |
|
|
|
| 546 |
|
|
return count;
|
| 547 |
|
|
}
|
| 548 |
|
|
|
| 549 |
|
|
/* Update number of blocks and the estimate for number of insns
|
| 550 |
|
|
in the region. Return true if the region is "too large" for interblock
|
| 551 |
|
|
scheduling (compile time considerations). */
|
| 552 |
|
|
|
| 553 |
|
|
static bool
|
| 554 |
|
|
too_large (int block, int *num_bbs, int *num_insns)
|
| 555 |
|
|
{
|
| 556 |
|
|
(*num_bbs)++;
|
| 557 |
|
|
(*num_insns) += (common_sched_info->estimate_number_of_insns
|
| 558 |
|
|
(BASIC_BLOCK (block)));
|
| 559 |
|
|
|
| 560 |
|
|
return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
|
| 561 |
|
|
|| (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
|
| 562 |
|
|
}
|
| 563 |
|
|
|
| 564 |
|
|
/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
|
| 565 |
|
|
is still an inner loop. Put in max_hdr[blk] the header of the most inner
|
| 566 |
|
|
loop containing blk. */
|
| 567 |
|
|
#define UPDATE_LOOP_RELATIONS(blk, hdr) \
|
| 568 |
|
|
{ \
|
| 569 |
|
|
if (max_hdr[blk] == -1) \
|
| 570 |
|
|
max_hdr[blk] = hdr; \
|
| 571 |
|
|
else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
|
| 572 |
|
|
RESET_BIT (inner, hdr); \
|
| 573 |
|
|
else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
|
| 574 |
|
|
{ \
|
| 575 |
|
|
RESET_BIT (inner,max_hdr[blk]); \
|
| 576 |
|
|
max_hdr[blk] = hdr; \
|
| 577 |
|
|
} \
|
| 578 |
|
|
}
|
| 579 |
|
|
|
| 580 |
|
|
/* Find regions for interblock scheduling.
|
| 581 |
|
|
|
| 582 |
|
|
A region for scheduling can be:
|
| 583 |
|
|
|
| 584 |
|
|
* A loop-free procedure, or
|
| 585 |
|
|
|
| 586 |
|
|
* A reducible inner loop, or
|
| 587 |
|
|
|
| 588 |
|
|
* A basic block not contained in any other region.
|
| 589 |
|
|
|
| 590 |
|
|
?!? In theory we could build other regions based on extended basic
|
| 591 |
|
|
blocks or reverse extended basic blocks. Is it worth the trouble?
|
| 592 |
|
|
|
| 593 |
|
|
Loop blocks that form a region are put into the region's block list
|
| 594 |
|
|
in topological order.
|
| 595 |
|
|
|
| 596 |
|
|
This procedure stores its results into the following global (ick) variables
|
| 597 |
|
|
|
| 598 |
|
|
* rgn_nr
|
| 599 |
|
|
* rgn_table
|
| 600 |
|
|
* rgn_bb_table
|
| 601 |
|
|
* block_to_bb
|
| 602 |
|
|
* containing region
|
| 603 |
|
|
|
| 604 |
|
|
We use dominator relationships to avoid making regions out of non-reducible
|
| 605 |
|
|
loops.
|
| 606 |
|
|
|
| 607 |
|
|
This procedure needs to be converted to work on pred/succ lists instead
|
| 608 |
|
|
of edge tables. That would simplify it somewhat. */
|
| 609 |
|
|
|
| 610 |
|
|
static void
|
| 611 |
|
|
haifa_find_rgns (void)
|
| 612 |
|
|
{
|
| 613 |
|
|
int *max_hdr, *dfs_nr, *degree;
|
| 614 |
|
|
char no_loops = 1;
|
| 615 |
|
|
int node, child, loop_head, i, head, tail;
|
| 616 |
|
|
int count = 0, sp, idx = 0;
|
| 617 |
|
|
edge_iterator current_edge;
|
| 618 |
|
|
edge_iterator *stack;
|
| 619 |
|
|
int num_bbs, num_insns, unreachable;
|
| 620 |
|
|
int too_large_failure;
|
| 621 |
|
|
basic_block bb;
|
| 622 |
|
|
|
| 623 |
|
|
/* Note if a block is a natural loop header. */
|
| 624 |
|
|
sbitmap header;
|
| 625 |
|
|
|
| 626 |
|
|
/* Note if a block is a natural inner loop header. */
|
| 627 |
|
|
sbitmap inner;
|
| 628 |
|
|
|
| 629 |
|
|
/* Note if a block is in the block queue. */
|
| 630 |
|
|
sbitmap in_queue;
|
| 631 |
|
|
|
| 632 |
|
|
/* Note if a block is in the block queue. */
|
| 633 |
|
|
sbitmap in_stack;
|
| 634 |
|
|
|
| 635 |
|
|
/* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
|
| 636 |
|
|
and a mapping from block to its loop header (if the block is contained
|
| 637 |
|
|
in a loop, else -1).
|
| 638 |
|
|
|
| 639 |
|
|
Store results in HEADER, INNER, and MAX_HDR respectively, these will
|
| 640 |
|
|
be used as inputs to the second traversal.
|
| 641 |
|
|
|
| 642 |
|
|
STACK, SP and DFS_NR are only used during the first traversal. */
|
| 643 |
|
|
|
| 644 |
|
|
/* Allocate and initialize variables for the first traversal. */
|
| 645 |
|
|
max_hdr = XNEWVEC (int, last_basic_block);
|
| 646 |
|
|
dfs_nr = XCNEWVEC (int, last_basic_block);
|
| 647 |
|
|
stack = XNEWVEC (edge_iterator, n_edges);
|
| 648 |
|
|
|
| 649 |
|
|
inner = sbitmap_alloc (last_basic_block);
|
| 650 |
|
|
sbitmap_ones (inner);
|
| 651 |
|
|
|
| 652 |
|
|
header = sbitmap_alloc (last_basic_block);
|
| 653 |
|
|
sbitmap_zero (header);
|
| 654 |
|
|
|
| 655 |
|
|
in_queue = sbitmap_alloc (last_basic_block);
|
| 656 |
|
|
sbitmap_zero (in_queue);
|
| 657 |
|
|
|
| 658 |
|
|
in_stack = sbitmap_alloc (last_basic_block);
|
| 659 |
|
|
sbitmap_zero (in_stack);
|
| 660 |
|
|
|
| 661 |
|
|
for (i = 0; i < last_basic_block; i++)
|
| 662 |
|
|
max_hdr[i] = -1;
|
| 663 |
|
|
|
| 664 |
|
|
#define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
|
| 665 |
|
|
#define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
|
| 666 |
|
|
|
| 667 |
|
|
/* DFS traversal to find inner loops in the cfg. */
|
| 668 |
|
|
|
| 669 |
|
|
current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
|
| 670 |
|
|
sp = -1;
|
| 671 |
|
|
|
| 672 |
|
|
while (1)
|
| 673 |
|
|
{
|
| 674 |
|
|
if (EDGE_PASSED (current_edge))
|
| 675 |
|
|
{
|
| 676 |
|
|
/* We have reached a leaf node or a node that was already
|
| 677 |
|
|
processed. Pop edges off the stack until we find
|
| 678 |
|
|
an edge that has not yet been processed. */
|
| 679 |
|
|
while (sp >= 0 && EDGE_PASSED (current_edge))
|
| 680 |
|
|
{
|
| 681 |
|
|
/* Pop entry off the stack. */
|
| 682 |
|
|
current_edge = stack[sp--];
|
| 683 |
|
|
node = ei_edge (current_edge)->src->index;
|
| 684 |
|
|
gcc_assert (node != ENTRY_BLOCK);
|
| 685 |
|
|
child = ei_edge (current_edge)->dest->index;
|
| 686 |
|
|
gcc_assert (child != EXIT_BLOCK);
|
| 687 |
|
|
RESET_BIT (in_stack, child);
|
| 688 |
|
|
if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
|
| 689 |
|
|
UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
|
| 690 |
|
|
ei_next (¤t_edge);
|
| 691 |
|
|
}
|
| 692 |
|
|
|
| 693 |
|
|
/* See if have finished the DFS tree traversal. */
|
| 694 |
|
|
if (sp < 0 && EDGE_PASSED (current_edge))
|
| 695 |
|
|
break;
|
| 696 |
|
|
|
| 697 |
|
|
/* Nope, continue the traversal with the popped node. */
|
| 698 |
|
|
continue;
|
| 699 |
|
|
}
|
| 700 |
|
|
|
| 701 |
|
|
/* Process a node. */
|
| 702 |
|
|
node = ei_edge (current_edge)->src->index;
|
| 703 |
|
|
gcc_assert (node != ENTRY_BLOCK);
|
| 704 |
|
|
SET_BIT (in_stack, node);
|
| 705 |
|
|
dfs_nr[node] = ++count;
|
| 706 |
|
|
|
| 707 |
|
|
/* We don't traverse to the exit block. */
|
| 708 |
|
|
child = ei_edge (current_edge)->dest->index;
|
| 709 |
|
|
if (child == EXIT_BLOCK)
|
| 710 |
|
|
{
|
| 711 |
|
|
SET_EDGE_PASSED (current_edge);
|
| 712 |
|
|
ei_next (¤t_edge);
|
| 713 |
|
|
continue;
|
| 714 |
|
|
}
|
| 715 |
|
|
|
| 716 |
|
|
/* If the successor is in the stack, then we've found a loop.
|
| 717 |
|
|
Mark the loop, if it is not a natural loop, then it will
|
| 718 |
|
|
be rejected during the second traversal. */
|
| 719 |
|
|
if (TEST_BIT (in_stack, child))
|
| 720 |
|
|
{
|
| 721 |
|
|
no_loops = 0;
|
| 722 |
|
|
SET_BIT (header, child);
|
| 723 |
|
|
UPDATE_LOOP_RELATIONS (node, child);
|
| 724 |
|
|
SET_EDGE_PASSED (current_edge);
|
| 725 |
|
|
ei_next (¤t_edge);
|
| 726 |
|
|
continue;
|
| 727 |
|
|
}
|
| 728 |
|
|
|
| 729 |
|
|
/* If the child was already visited, then there is no need to visit
|
| 730 |
|
|
it again. Just update the loop relationships and restart
|
| 731 |
|
|
with a new edge. */
|
| 732 |
|
|
if (dfs_nr[child])
|
| 733 |
|
|
{
|
| 734 |
|
|
if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
|
| 735 |
|
|
UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
|
| 736 |
|
|
SET_EDGE_PASSED (current_edge);
|
| 737 |
|
|
ei_next (¤t_edge);
|
| 738 |
|
|
continue;
|
| 739 |
|
|
}
|
| 740 |
|
|
|
| 741 |
|
|
/* Push an entry on the stack and continue DFS traversal. */
|
| 742 |
|
|
stack[++sp] = current_edge;
|
| 743 |
|
|
SET_EDGE_PASSED (current_edge);
|
| 744 |
|
|
current_edge = ei_start (ei_edge (current_edge)->dest->succs);
|
| 745 |
|
|
}
|
| 746 |
|
|
|
| 747 |
|
|
/* Reset ->aux field used by EDGE_PASSED. */
|
| 748 |
|
|
FOR_ALL_BB (bb)
|
| 749 |
|
|
{
|
| 750 |
|
|
edge_iterator ei;
|
| 751 |
|
|
edge e;
|
| 752 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 753 |
|
|
e->aux = NULL;
|
| 754 |
|
|
}
|
| 755 |
|
|
|
| 756 |
|
|
|
| 757 |
|
|
/* Another check for unreachable blocks. The earlier test in
|
| 758 |
|
|
is_cfg_nonregular only finds unreachable blocks that do not
|
| 759 |
|
|
form a loop.
|
| 760 |
|
|
|
| 761 |
|
|
The DFS traversal will mark every block that is reachable from
|
| 762 |
|
|
the entry node by placing a nonzero value in dfs_nr. Thus if
|
| 763 |
|
|
dfs_nr is zero for any block, then it must be unreachable. */
|
| 764 |
|
|
unreachable = 0;
|
| 765 |
|
|
FOR_EACH_BB (bb)
|
| 766 |
|
|
if (dfs_nr[bb->index] == 0)
|
| 767 |
|
|
{
|
| 768 |
|
|
unreachable = 1;
|
| 769 |
|
|
break;
|
| 770 |
|
|
}
|
| 771 |
|
|
|
| 772 |
|
|
/* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
|
| 773 |
|
|
to hold degree counts. */
|
| 774 |
|
|
degree = dfs_nr;
|
| 775 |
|
|
|
| 776 |
|
|
FOR_EACH_BB (bb)
|
| 777 |
|
|
degree[bb->index] = EDGE_COUNT (bb->preds);
|
| 778 |
|
|
|
| 779 |
|
|
/* Do not perform region scheduling if there are any unreachable
|
| 780 |
|
|
blocks. */
|
| 781 |
|
|
if (!unreachable)
|
| 782 |
|
|
{
|
| 783 |
|
|
int *queue, *degree1 = NULL;
|
| 784 |
|
|
/* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
|
| 785 |
|
|
there basic blocks, which are forced to be region heads.
|
| 786 |
|
|
This is done to try to assemble few smaller regions
|
| 787 |
|
|
from a too_large region. */
|
| 788 |
|
|
sbitmap extended_rgn_header = NULL;
|
| 789 |
|
|
bool extend_regions_p;
|
| 790 |
|
|
|
| 791 |
|
|
if (no_loops)
|
| 792 |
|
|
SET_BIT (header, 0);
|
| 793 |
|
|
|
| 794 |
|
|
/* Second traversal:find reducible inner loops and topologically sort
|
| 795 |
|
|
block of each region. */
|
| 796 |
|
|
|
| 797 |
|
|
queue = XNEWVEC (int, n_basic_blocks);
|
| 798 |
|
|
|
| 799 |
|
|
extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
|
| 800 |
|
|
if (extend_regions_p)
|
| 801 |
|
|
{
|
| 802 |
|
|
degree1 = XNEWVEC (int, last_basic_block);
|
| 803 |
|
|
extended_rgn_header = sbitmap_alloc (last_basic_block);
|
| 804 |
|
|
sbitmap_zero (extended_rgn_header);
|
| 805 |
|
|
}
|
| 806 |
|
|
|
| 807 |
|
|
/* Find blocks which are inner loop headers. We still have non-reducible
|
| 808 |
|
|
loops to consider at this point. */
|
| 809 |
|
|
FOR_EACH_BB (bb)
|
| 810 |
|
|
{
|
| 811 |
|
|
if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
|
| 812 |
|
|
{
|
| 813 |
|
|
edge e;
|
| 814 |
|
|
edge_iterator ei;
|
| 815 |
|
|
basic_block jbb;
|
| 816 |
|
|
|
| 817 |
|
|
/* Now check that the loop is reducible. We do this separate
|
| 818 |
|
|
from finding inner loops so that we do not find a reducible
|
| 819 |
|
|
loop which contains an inner non-reducible loop.
|
| 820 |
|
|
|
| 821 |
|
|
A simple way to find reducible/natural loops is to verify
|
| 822 |
|
|
that each block in the loop is dominated by the loop
|
| 823 |
|
|
header.
|
| 824 |
|
|
|
| 825 |
|
|
If there exists a block that is not dominated by the loop
|
| 826 |
|
|
header, then the block is reachable from outside the loop
|
| 827 |
|
|
and thus the loop is not a natural loop. */
|
| 828 |
|
|
FOR_EACH_BB (jbb)
|
| 829 |
|
|
{
|
| 830 |
|
|
/* First identify blocks in the loop, except for the loop
|
| 831 |
|
|
entry block. */
|
| 832 |
|
|
if (bb->index == max_hdr[jbb->index] && bb != jbb)
|
| 833 |
|
|
{
|
| 834 |
|
|
/* Now verify that the block is dominated by the loop
|
| 835 |
|
|
header. */
|
| 836 |
|
|
if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
|
| 837 |
|
|
break;
|
| 838 |
|
|
}
|
| 839 |
|
|
}
|
| 840 |
|
|
|
| 841 |
|
|
/* If we exited the loop early, then I is the header of
|
| 842 |
|
|
a non-reducible loop and we should quit processing it
|
| 843 |
|
|
now. */
|
| 844 |
|
|
if (jbb != EXIT_BLOCK_PTR)
|
| 845 |
|
|
continue;
|
| 846 |
|
|
|
| 847 |
|
|
/* I is a header of an inner loop, or block 0 in a subroutine
|
| 848 |
|
|
with no loops at all. */
|
| 849 |
|
|
head = tail = -1;
|
| 850 |
|
|
too_large_failure = 0;
|
| 851 |
|
|
loop_head = max_hdr[bb->index];
|
| 852 |
|
|
|
| 853 |
|
|
if (extend_regions_p)
|
| 854 |
|
|
/* We save degree in case when we meet a too_large region
|
| 855 |
|
|
and cancel it. We need a correct degree later when
|
| 856 |
|
|
calling extend_rgns. */
|
| 857 |
|
|
memcpy (degree1, degree, last_basic_block * sizeof (int));
|
| 858 |
|
|
|
| 859 |
|
|
/* Decrease degree of all I's successors for topological
|
| 860 |
|
|
ordering. */
|
| 861 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 862 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
| 863 |
|
|
--degree[e->dest->index];
|
| 864 |
|
|
|
| 865 |
|
|
/* Estimate # insns, and count # blocks in the region. */
|
| 866 |
|
|
num_bbs = 1;
|
| 867 |
|
|
num_insns = common_sched_info->estimate_number_of_insns (bb);
|
| 868 |
|
|
|
| 869 |
|
|
/* Find all loop latches (blocks with back edges to the loop
|
| 870 |
|
|
header) or all the leaf blocks in the cfg has no loops.
|
| 871 |
|
|
|
| 872 |
|
|
Place those blocks into the queue. */
|
| 873 |
|
|
if (no_loops)
|
| 874 |
|
|
{
|
| 875 |
|
|
FOR_EACH_BB (jbb)
|
| 876 |
|
|
/* Leaf nodes have only a single successor which must
|
| 877 |
|
|
be EXIT_BLOCK. */
|
| 878 |
|
|
if (single_succ_p (jbb)
|
| 879 |
|
|
&& single_succ (jbb) == EXIT_BLOCK_PTR)
|
| 880 |
|
|
{
|
| 881 |
|
|
queue[++tail] = jbb->index;
|
| 882 |
|
|
SET_BIT (in_queue, jbb->index);
|
| 883 |
|
|
|
| 884 |
|
|
if (too_large (jbb->index, &num_bbs, &num_insns))
|
| 885 |
|
|
{
|
| 886 |
|
|
too_large_failure = 1;
|
| 887 |
|
|
break;
|
| 888 |
|
|
}
|
| 889 |
|
|
}
|
| 890 |
|
|
}
|
| 891 |
|
|
else
|
| 892 |
|
|
{
|
| 893 |
|
|
edge e;
|
| 894 |
|
|
|
| 895 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 896 |
|
|
{
|
| 897 |
|
|
if (e->src == ENTRY_BLOCK_PTR)
|
| 898 |
|
|
continue;
|
| 899 |
|
|
|
| 900 |
|
|
node = e->src->index;
|
| 901 |
|
|
|
| 902 |
|
|
if (max_hdr[node] == loop_head && node != bb->index)
|
| 903 |
|
|
{
|
| 904 |
|
|
/* This is a loop latch. */
|
| 905 |
|
|
queue[++tail] = node;
|
| 906 |
|
|
SET_BIT (in_queue, node);
|
| 907 |
|
|
|
| 908 |
|
|
if (too_large (node, &num_bbs, &num_insns))
|
| 909 |
|
|
{
|
| 910 |
|
|
too_large_failure = 1;
|
| 911 |
|
|
break;
|
| 912 |
|
|
}
|
| 913 |
|
|
}
|
| 914 |
|
|
}
|
| 915 |
|
|
}
|
| 916 |
|
|
|
| 917 |
|
|
/* Now add all the blocks in the loop to the queue.
|
| 918 |
|
|
|
| 919 |
|
|
We know the loop is a natural loop; however the algorithm
|
| 920 |
|
|
above will not always mark certain blocks as being in the
|
| 921 |
|
|
loop. Consider:
|
| 922 |
|
|
node children
|
| 923 |
|
|
a b,c
|
| 924 |
|
|
b c
|
| 925 |
|
|
c a,d
|
| 926 |
|
|
d b
|
| 927 |
|
|
|
| 928 |
|
|
The algorithm in the DFS traversal may not mark B & D as part
|
| 929 |
|
|
of the loop (i.e. they will not have max_hdr set to A).
|
| 930 |
|
|
|
| 931 |
|
|
We know they can not be loop latches (else they would have
|
| 932 |
|
|
had max_hdr set since they'd have a backedge to a dominator
|
| 933 |
|
|
block). So we don't need them on the initial queue.
|
| 934 |
|
|
|
| 935 |
|
|
We know they are part of the loop because they are dominated
|
| 936 |
|
|
by the loop header and can be reached by a backwards walk of
|
| 937 |
|
|
the edges starting with nodes on the initial queue.
|
| 938 |
|
|
|
| 939 |
|
|
It is safe and desirable to include those nodes in the
|
| 940 |
|
|
loop/scheduling region. To do so we would need to decrease
|
| 941 |
|
|
the degree of a node if it is the target of a backedge
|
| 942 |
|
|
within the loop itself as the node is placed in the queue.
|
| 943 |
|
|
|
| 944 |
|
|
We do not do this because I'm not sure that the actual
|
| 945 |
|
|
scheduling code will properly handle this case. ?!? */
|
| 946 |
|
|
|
| 947 |
|
|
while (head < tail && !too_large_failure)
|
| 948 |
|
|
{
|
| 949 |
|
|
edge e;
|
| 950 |
|
|
child = queue[++head];
|
| 951 |
|
|
|
| 952 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
|
| 953 |
|
|
{
|
| 954 |
|
|
node = e->src->index;
|
| 955 |
|
|
|
| 956 |
|
|
/* See discussion above about nodes not marked as in
|
| 957 |
|
|
this loop during the initial DFS traversal. */
|
| 958 |
|
|
if (e->src == ENTRY_BLOCK_PTR
|
| 959 |
|
|
|| max_hdr[node] != loop_head)
|
| 960 |
|
|
{
|
| 961 |
|
|
tail = -1;
|
| 962 |
|
|
break;
|
| 963 |
|
|
}
|
| 964 |
|
|
else if (!TEST_BIT (in_queue, node) && node != bb->index)
|
| 965 |
|
|
{
|
| 966 |
|
|
queue[++tail] = node;
|
| 967 |
|
|
SET_BIT (in_queue, node);
|
| 968 |
|
|
|
| 969 |
|
|
if (too_large (node, &num_bbs, &num_insns))
|
| 970 |
|
|
{
|
| 971 |
|
|
too_large_failure = 1;
|
| 972 |
|
|
break;
|
| 973 |
|
|
}
|
| 974 |
|
|
}
|
| 975 |
|
|
}
|
| 976 |
|
|
}
|
| 977 |
|
|
|
| 978 |
|
|
if (tail >= 0 && !too_large_failure)
|
| 979 |
|
|
{
|
| 980 |
|
|
/* Place the loop header into list of region blocks. */
|
| 981 |
|
|
degree[bb->index] = -1;
|
| 982 |
|
|
rgn_bb_table[idx] = bb->index;
|
| 983 |
|
|
RGN_NR_BLOCKS (nr_regions) = num_bbs;
|
| 984 |
|
|
RGN_BLOCKS (nr_regions) = idx++;
|
| 985 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
| 986 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
| 987 |
|
|
CONTAINING_RGN (bb->index) = nr_regions;
|
| 988 |
|
|
BLOCK_TO_BB (bb->index) = count = 0;
|
| 989 |
|
|
|
| 990 |
|
|
/* Remove blocks from queue[] when their in degree
|
| 991 |
|
|
becomes zero. Repeat until no blocks are left on the
|
| 992 |
|
|
list. This produces a topological list of blocks in
|
| 993 |
|
|
the region. */
|
| 994 |
|
|
while (tail >= 0)
|
| 995 |
|
|
{
|
| 996 |
|
|
if (head < 0)
|
| 997 |
|
|
head = tail;
|
| 998 |
|
|
child = queue[head];
|
| 999 |
|
|
if (degree[child] == 0)
|
| 1000 |
|
|
{
|
| 1001 |
|
|
edge e;
|
| 1002 |
|
|
|
| 1003 |
|
|
degree[child] = -1;
|
| 1004 |
|
|
rgn_bb_table[idx++] = child;
|
| 1005 |
|
|
BLOCK_TO_BB (child) = ++count;
|
| 1006 |
|
|
CONTAINING_RGN (child) = nr_regions;
|
| 1007 |
|
|
queue[head] = queue[tail--];
|
| 1008 |
|
|
|
| 1009 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
|
| 1010 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
| 1011 |
|
|
--degree[e->dest->index];
|
| 1012 |
|
|
}
|
| 1013 |
|
|
else
|
| 1014 |
|
|
--head;
|
| 1015 |
|
|
}
|
| 1016 |
|
|
++nr_regions;
|
| 1017 |
|
|
}
|
| 1018 |
|
|
else if (extend_regions_p)
|
| 1019 |
|
|
{
|
| 1020 |
|
|
/* Restore DEGREE. */
|
| 1021 |
|
|
int *t = degree;
|
| 1022 |
|
|
|
| 1023 |
|
|
degree = degree1;
|
| 1024 |
|
|
degree1 = t;
|
| 1025 |
|
|
|
| 1026 |
|
|
/* And force successors of BB to be region heads.
|
| 1027 |
|
|
This may provide several smaller regions instead
|
| 1028 |
|
|
of one too_large region. */
|
| 1029 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
| 1030 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
| 1031 |
|
|
SET_BIT (extended_rgn_header, e->dest->index);
|
| 1032 |
|
|
}
|
| 1033 |
|
|
}
|
| 1034 |
|
|
}
|
| 1035 |
|
|
free (queue);
|
| 1036 |
|
|
|
| 1037 |
|
|
if (extend_regions_p)
|
| 1038 |
|
|
{
|
| 1039 |
|
|
free (degree1);
|
| 1040 |
|
|
|
| 1041 |
|
|
sbitmap_a_or_b (header, header, extended_rgn_header);
|
| 1042 |
|
|
sbitmap_free (extended_rgn_header);
|
| 1043 |
|
|
|
| 1044 |
|
|
extend_rgns (degree, &idx, header, max_hdr);
|
| 1045 |
|
|
}
|
| 1046 |
|
|
}
|
| 1047 |
|
|
|
| 1048 |
|
|
/* Any block that did not end up in a region is placed into a region
|
| 1049 |
|
|
by itself. */
|
| 1050 |
|
|
FOR_EACH_BB (bb)
|
| 1051 |
|
|
if (degree[bb->index] >= 0)
|
| 1052 |
|
|
{
|
| 1053 |
|
|
rgn_bb_table[idx] = bb->index;
|
| 1054 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
| 1055 |
|
|
RGN_BLOCKS (nr_regions) = idx++;
|
| 1056 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
| 1057 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
| 1058 |
|
|
CONTAINING_RGN (bb->index) = nr_regions++;
|
| 1059 |
|
|
BLOCK_TO_BB (bb->index) = 0;
|
| 1060 |
|
|
}
|
| 1061 |
|
|
|
| 1062 |
|
|
free (max_hdr);
|
| 1063 |
|
|
free (degree);
|
| 1064 |
|
|
free (stack);
|
| 1065 |
|
|
sbitmap_free (header);
|
| 1066 |
|
|
sbitmap_free (inner);
|
| 1067 |
|
|
sbitmap_free (in_queue);
|
| 1068 |
|
|
sbitmap_free (in_stack);
|
| 1069 |
|
|
}
|
| 1070 |
|
|
|
| 1071 |
|
|
|
| 1072 |
|
|
/* Wrapper function.
|
| 1073 |
|
|
If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
|
| 1074 |
|
|
regions. Otherwise just call find_rgns_haifa. */
|
| 1075 |
|
|
static void
|
| 1076 |
|
|
find_rgns (void)
|
| 1077 |
|
|
{
|
| 1078 |
|
|
if (sel_sched_p () && flag_sel_sched_pipelining)
|
| 1079 |
|
|
sel_find_rgns ();
|
| 1080 |
|
|
else
|
| 1081 |
|
|
haifa_find_rgns ();
|
| 1082 |
|
|
}
|
| 1083 |
|
|
|
| 1084 |
|
|
static int gather_region_statistics (int **);
|
| 1085 |
|
|
static void print_region_statistics (int *, int, int *, int);
|
| 1086 |
|
|
|
| 1087 |
|
|
/* Calculate the histogram that shows the number of regions having the
|
| 1088 |
|
|
given number of basic blocks, and store it in the RSP array. Return
|
| 1089 |
|
|
the size of this array. */
|
| 1090 |
|
|
static int
|
| 1091 |
|
|
gather_region_statistics (int **rsp)
|
| 1092 |
|
|
{
|
| 1093 |
|
|
int i, *a = 0, a_sz = 0;
|
| 1094 |
|
|
|
| 1095 |
|
|
/* a[i] is the number of regions that have (i + 1) basic blocks. */
|
| 1096 |
|
|
for (i = 0; i < nr_regions; i++)
|
| 1097 |
|
|
{
|
| 1098 |
|
|
int nr_blocks = RGN_NR_BLOCKS (i);
|
| 1099 |
|
|
|
| 1100 |
|
|
gcc_assert (nr_blocks >= 1);
|
| 1101 |
|
|
|
| 1102 |
|
|
if (nr_blocks > a_sz)
|
| 1103 |
|
|
{
|
| 1104 |
|
|
a = XRESIZEVEC (int, a, nr_blocks);
|
| 1105 |
|
|
do
|
| 1106 |
|
|
a[a_sz++] = 0;
|
| 1107 |
|
|
while (a_sz != nr_blocks);
|
| 1108 |
|
|
}
|
| 1109 |
|
|
|
| 1110 |
|
|
a[nr_blocks - 1]++;
|
| 1111 |
|
|
}
|
| 1112 |
|
|
|
| 1113 |
|
|
*rsp = a;
|
| 1114 |
|
|
return a_sz;
|
| 1115 |
|
|
}
|
| 1116 |
|
|
|
| 1117 |
|
|
/* Print regions statistics. S1 and S2 denote the data before and after
|
| 1118 |
|
|
calling extend_rgns, respectively. */
|
| 1119 |
|
|
static void
|
| 1120 |
|
|
print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
|
| 1121 |
|
|
{
|
| 1122 |
|
|
int i;
|
| 1123 |
|
|
|
| 1124 |
|
|
/* We iterate until s2_sz because extend_rgns does not decrease
|
| 1125 |
|
|
the maximal region size. */
|
| 1126 |
|
|
for (i = 1; i < s2_sz; i++)
|
| 1127 |
|
|
{
|
| 1128 |
|
|
int n1, n2;
|
| 1129 |
|
|
|
| 1130 |
|
|
n2 = s2[i];
|
| 1131 |
|
|
|
| 1132 |
|
|
if (n2 == 0)
|
| 1133 |
|
|
continue;
|
| 1134 |
|
|
|
| 1135 |
|
|
if (i >= s1_sz)
|
| 1136 |
|
|
n1 = 0;
|
| 1137 |
|
|
else
|
| 1138 |
|
|
n1 = s1[i];
|
| 1139 |
|
|
|
| 1140 |
|
|
fprintf (sched_dump, ";; Region extension statistics: size %d: " \
|
| 1141 |
|
|
"was %d + %d more\n", i + 1, n1, n2 - n1);
|
| 1142 |
|
|
}
|
| 1143 |
|
|
}
|
| 1144 |
|
|
|
| 1145 |
|
|
/* Extend regions.
|
| 1146 |
|
|
DEGREE - Array of incoming edge count, considering only
|
| 1147 |
|
|
the edges, that don't have their sources in formed regions yet.
|
| 1148 |
|
|
IDXP - pointer to the next available index in rgn_bb_table.
|
| 1149 |
|
|
HEADER - set of all region heads.
|
| 1150 |
|
|
LOOP_HDR - mapping from block to the containing loop
|
| 1151 |
|
|
(two blocks can reside within one region if they have
|
| 1152 |
|
|
the same loop header). */
|
| 1153 |
|
|
void
|
| 1154 |
|
|
extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
|
| 1155 |
|
|
{
|
| 1156 |
|
|
int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
|
| 1157 |
|
|
int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
|
| 1158 |
|
|
|
| 1159 |
|
|
max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
|
| 1160 |
|
|
|
| 1161 |
|
|
max_hdr = XNEWVEC (int, last_basic_block);
|
| 1162 |
|
|
|
| 1163 |
|
|
order = XNEWVEC (int, last_basic_block);
|
| 1164 |
|
|
post_order_compute (order, false, false);
|
| 1165 |
|
|
|
| 1166 |
|
|
for (i = nblocks - 1; i >= 0; i--)
|
| 1167 |
|
|
{
|
| 1168 |
|
|
int bbn = order[i];
|
| 1169 |
|
|
if (degree[bbn] >= 0)
|
| 1170 |
|
|
{
|
| 1171 |
|
|
max_hdr[bbn] = bbn;
|
| 1172 |
|
|
rescan = 1;
|
| 1173 |
|
|
}
|
| 1174 |
|
|
else
|
| 1175 |
|
|
/* This block already was processed in find_rgns. */
|
| 1176 |
|
|
max_hdr[bbn] = -1;
|
| 1177 |
|
|
}
|
| 1178 |
|
|
|
| 1179 |
|
|
/* The idea is to topologically walk through CFG in top-down order.
|
| 1180 |
|
|
During the traversal, if all the predecessors of a node are
|
| 1181 |
|
|
marked to be in the same region (they all have the same max_hdr),
|
| 1182 |
|
|
then current node is also marked to be a part of that region.
|
| 1183 |
|
|
Otherwise the node starts its own region.
|
| 1184 |
|
|
CFG should be traversed until no further changes are made. On each
|
| 1185 |
|
|
iteration the set of the region heads is extended (the set of those
|
| 1186 |
|
|
blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
|
| 1187 |
|
|
set of all basic blocks, thus the algorithm is guaranteed to
|
| 1188 |
|
|
terminate. */
|
| 1189 |
|
|
|
| 1190 |
|
|
while (rescan && iter < max_iter)
|
| 1191 |
|
|
{
|
| 1192 |
|
|
rescan = 0;
|
| 1193 |
|
|
|
| 1194 |
|
|
for (i = nblocks - 1; i >= 0; i--)
|
| 1195 |
|
|
{
|
| 1196 |
|
|
edge e;
|
| 1197 |
|
|
edge_iterator ei;
|
| 1198 |
|
|
int bbn = order[i];
|
| 1199 |
|
|
|
| 1200 |
|
|
if (max_hdr[bbn] != -1 && !TEST_BIT (header, bbn))
|
| 1201 |
|
|
{
|
| 1202 |
|
|
int hdr = -1;
|
| 1203 |
|
|
|
| 1204 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
|
| 1205 |
|
|
{
|
| 1206 |
|
|
int predn = e->src->index;
|
| 1207 |
|
|
|
| 1208 |
|
|
if (predn != ENTRY_BLOCK
|
| 1209 |
|
|
/* If pred wasn't processed in find_rgns. */
|
| 1210 |
|
|
&& max_hdr[predn] != -1
|
| 1211 |
|
|
/* And pred and bb reside in the same loop.
|
| 1212 |
|
|
(Or out of any loop). */
|
| 1213 |
|
|
&& loop_hdr[bbn] == loop_hdr[predn])
|
| 1214 |
|
|
{
|
| 1215 |
|
|
if (hdr == -1)
|
| 1216 |
|
|
/* Then bb extends the containing region of pred. */
|
| 1217 |
|
|
hdr = max_hdr[predn];
|
| 1218 |
|
|
else if (hdr != max_hdr[predn])
|
| 1219 |
|
|
/* Too bad, there are at least two predecessors
|
| 1220 |
|
|
that reside in different regions. Thus, BB should
|
| 1221 |
|
|
begin its own region. */
|
| 1222 |
|
|
{
|
| 1223 |
|
|
hdr = bbn;
|
| 1224 |
|
|
break;
|
| 1225 |
|
|
}
|
| 1226 |
|
|
}
|
| 1227 |
|
|
else
|
| 1228 |
|
|
/* BB starts its own region. */
|
| 1229 |
|
|
{
|
| 1230 |
|
|
hdr = bbn;
|
| 1231 |
|
|
break;
|
| 1232 |
|
|
}
|
| 1233 |
|
|
}
|
| 1234 |
|
|
|
| 1235 |
|
|
if (hdr == bbn)
|
| 1236 |
|
|
{
|
| 1237 |
|
|
/* If BB start its own region,
|
| 1238 |
|
|
update set of headers with BB. */
|
| 1239 |
|
|
SET_BIT (header, bbn);
|
| 1240 |
|
|
rescan = 1;
|
| 1241 |
|
|
}
|
| 1242 |
|
|
else
|
| 1243 |
|
|
gcc_assert (hdr != -1);
|
| 1244 |
|
|
|
| 1245 |
|
|
max_hdr[bbn] = hdr;
|
| 1246 |
|
|
}
|
| 1247 |
|
|
}
|
| 1248 |
|
|
|
| 1249 |
|
|
iter++;
|
| 1250 |
|
|
}
|
| 1251 |
|
|
|
| 1252 |
|
|
/* Statistics were gathered on the SPEC2000 package of tests with
|
| 1253 |
|
|
mainline weekly snapshot gcc-4.1-20051015 on ia64.
|
| 1254 |
|
|
|
| 1255 |
|
|
Statistics for SPECint:
|
| 1256 |
|
|
1 iteration : 1751 cases (38.7%)
|
| 1257 |
|
|
2 iterations: 2770 cases (61.3%)
|
| 1258 |
|
|
Blocks wrapped in regions by find_rgns without extension: 18295 blocks
|
| 1259 |
|
|
Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
|
| 1260 |
|
|
(We don't count single block regions here).
|
| 1261 |
|
|
|
| 1262 |
|
|
Statistics for SPECfp:
|
| 1263 |
|
|
1 iteration : 621 cases (35.9%)
|
| 1264 |
|
|
2 iterations: 1110 cases (64.1%)
|
| 1265 |
|
|
Blocks wrapped in regions by find_rgns without extension: 6476 blocks
|
| 1266 |
|
|
Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
|
| 1267 |
|
|
(We don't count single block regions here).
|
| 1268 |
|
|
|
| 1269 |
|
|
By default we do at most 2 iterations.
|
| 1270 |
|
|
This can be overridden with max-sched-extend-regions-iters parameter:
|
| 1271 |
|
|
|
| 1272 |
|
|
N > 0 - do at most N iterations. */
|
| 1273 |
|
|
|
| 1274 |
|
|
if (sched_verbose && iter != 0)
|
| 1275 |
|
|
fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
|
| 1276 |
|
|
rescan ? "... failed" : "");
|
| 1277 |
|
|
|
| 1278 |
|
|
if (!rescan && iter != 0)
|
| 1279 |
|
|
{
|
| 1280 |
|
|
int *s1 = NULL, s1_sz = 0;
|
| 1281 |
|
|
|
| 1282 |
|
|
/* Save the old statistics for later printout. */
|
| 1283 |
|
|
if (sched_verbose >= 6)
|
| 1284 |
|
|
s1_sz = gather_region_statistics (&s1);
|
| 1285 |
|
|
|
| 1286 |
|
|
/* We have succeeded. Now assemble the regions. */
|
| 1287 |
|
|
for (i = nblocks - 1; i >= 0; i--)
|
| 1288 |
|
|
{
|
| 1289 |
|
|
int bbn = order[i];
|
| 1290 |
|
|
|
| 1291 |
|
|
if (max_hdr[bbn] == bbn)
|
| 1292 |
|
|
/* BBN is a region head. */
|
| 1293 |
|
|
{
|
| 1294 |
|
|
edge e;
|
| 1295 |
|
|
edge_iterator ei;
|
| 1296 |
|
|
int num_bbs = 0, j, num_insns = 0, large;
|
| 1297 |
|
|
|
| 1298 |
|
|
large = too_large (bbn, &num_bbs, &num_insns);
|
| 1299 |
|
|
|
| 1300 |
|
|
degree[bbn] = -1;
|
| 1301 |
|
|
rgn_bb_table[idx] = bbn;
|
| 1302 |
|
|
RGN_BLOCKS (nr_regions) = idx++;
|
| 1303 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
| 1304 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
| 1305 |
|
|
CONTAINING_RGN (bbn) = nr_regions;
|
| 1306 |
|
|
BLOCK_TO_BB (bbn) = 0;
|
| 1307 |
|
|
|
| 1308 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
|
| 1309 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
| 1310 |
|
|
degree[e->dest->index]--;
|
| 1311 |
|
|
|
| 1312 |
|
|
if (!large)
|
| 1313 |
|
|
/* Here we check whether the region is too_large. */
|
| 1314 |
|
|
for (j = i - 1; j >= 0; j--)
|
| 1315 |
|
|
{
|
| 1316 |
|
|
int succn = order[j];
|
| 1317 |
|
|
if (max_hdr[succn] == bbn)
|
| 1318 |
|
|
{
|
| 1319 |
|
|
if ((large = too_large (succn, &num_bbs, &num_insns)))
|
| 1320 |
|
|
break;
|
| 1321 |
|
|
}
|
| 1322 |
|
|
}
|
| 1323 |
|
|
|
| 1324 |
|
|
if (large)
|
| 1325 |
|
|
/* If the region is too_large, then wrap every block of
|
| 1326 |
|
|
the region into single block region.
|
| 1327 |
|
|
Here we wrap region head only. Other blocks are
|
| 1328 |
|
|
processed in the below cycle. */
|
| 1329 |
|
|
{
|
| 1330 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
| 1331 |
|
|
nr_regions++;
|
| 1332 |
|
|
}
|
| 1333 |
|
|
|
| 1334 |
|
|
num_bbs = 1;
|
| 1335 |
|
|
|
| 1336 |
|
|
for (j = i - 1; j >= 0; j--)
|
| 1337 |
|
|
{
|
| 1338 |
|
|
int succn = order[j];
|
| 1339 |
|
|
|
| 1340 |
|
|
if (max_hdr[succn] == bbn)
|
| 1341 |
|
|
/* This cycle iterates over all basic blocks, that
|
| 1342 |
|
|
are supposed to be in the region with head BBN,
|
| 1343 |
|
|
and wraps them into that region (or in single
|
| 1344 |
|
|
block region). */
|
| 1345 |
|
|
{
|
| 1346 |
|
|
gcc_assert (degree[succn] == 0);
|
| 1347 |
|
|
|
| 1348 |
|
|
degree[succn] = -1;
|
| 1349 |
|
|
rgn_bb_table[idx] = succn;
|
| 1350 |
|
|
BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
|
| 1351 |
|
|
CONTAINING_RGN (succn) = nr_regions;
|
| 1352 |
|
|
|
| 1353 |
|
|
if (large)
|
| 1354 |
|
|
/* Wrap SUCCN into single block region. */
|
| 1355 |
|
|
{
|
| 1356 |
|
|
RGN_BLOCKS (nr_regions) = idx;
|
| 1357 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
| 1358 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
| 1359 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
| 1360 |
|
|
nr_regions++;
|
| 1361 |
|
|
}
|
| 1362 |
|
|
|
| 1363 |
|
|
idx++;
|
| 1364 |
|
|
|
| 1365 |
|
|
FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
|
| 1366 |
|
|
if (e->dest != EXIT_BLOCK_PTR)
|
| 1367 |
|
|
degree[e->dest->index]--;
|
| 1368 |
|
|
}
|
| 1369 |
|
|
}
|
| 1370 |
|
|
|
| 1371 |
|
|
if (!large)
|
| 1372 |
|
|
{
|
| 1373 |
|
|
RGN_NR_BLOCKS (nr_regions) = num_bbs;
|
| 1374 |
|
|
nr_regions++;
|
| 1375 |
|
|
}
|
| 1376 |
|
|
}
|
| 1377 |
|
|
}
|
| 1378 |
|
|
|
| 1379 |
|
|
if (sched_verbose >= 6)
|
| 1380 |
|
|
{
|
| 1381 |
|
|
int *s2, s2_sz;
|
| 1382 |
|
|
|
| 1383 |
|
|
/* Get the new statistics and print the comparison with the
|
| 1384 |
|
|
one before calling this function. */
|
| 1385 |
|
|
s2_sz = gather_region_statistics (&s2);
|
| 1386 |
|
|
print_region_statistics (s1, s1_sz, s2, s2_sz);
|
| 1387 |
|
|
free (s1);
|
| 1388 |
|
|
free (s2);
|
| 1389 |
|
|
}
|
| 1390 |
|
|
}
|
| 1391 |
|
|
|
| 1392 |
|
|
free (order);
|
| 1393 |
|
|
free (max_hdr);
|
| 1394 |
|
|
|
| 1395 |
|
|
*idxp = idx;
|
| 1396 |
|
|
}
|
| 1397 |
|
|
|
| 1398 |
|
|
/* Functions for regions scheduling information. */
|
| 1399 |
|
|
|
| 1400 |
|
|
/* Compute dominators, probability, and potential-split-edges of bb.
|
| 1401 |
|
|
Assume that these values were already computed for bb's predecessors. */
|
| 1402 |
|
|
|
| 1403 |
|
|
static void
|
| 1404 |
|
|
compute_dom_prob_ps (int bb)
|
| 1405 |
|
|
{
|
| 1406 |
|
|
edge_iterator in_ei;
|
| 1407 |
|
|
edge in_edge;
|
| 1408 |
|
|
|
| 1409 |
|
|
/* We shouldn't have any real ebbs yet. */
|
| 1410 |
|
|
gcc_assert (ebb_head [bb] == bb + current_blocks);
|
| 1411 |
|
|
|
| 1412 |
|
|
if (IS_RGN_ENTRY (bb))
|
| 1413 |
|
|
{
|
| 1414 |
|
|
SET_BIT (dom[bb], 0);
|
| 1415 |
|
|
prob[bb] = REG_BR_PROB_BASE;
|
| 1416 |
|
|
return;
|
| 1417 |
|
|
}
|
| 1418 |
|
|
|
| 1419 |
|
|
prob[bb] = 0;
|
| 1420 |
|
|
|
| 1421 |
|
|
/* Initialize dom[bb] to '111..1'. */
|
| 1422 |
|
|
sbitmap_ones (dom[bb]);
|
| 1423 |
|
|
|
| 1424 |
|
|
FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
|
| 1425 |
|
|
{
|
| 1426 |
|
|
int pred_bb;
|
| 1427 |
|
|
edge out_edge;
|
| 1428 |
|
|
edge_iterator out_ei;
|
| 1429 |
|
|
|
| 1430 |
|
|
if (in_edge->src == ENTRY_BLOCK_PTR)
|
| 1431 |
|
|
continue;
|
| 1432 |
|
|
|
| 1433 |
|
|
pred_bb = BLOCK_TO_BB (in_edge->src->index);
|
| 1434 |
|
|
sbitmap_a_and_b (dom[bb], dom[bb], dom[pred_bb]);
|
| 1435 |
|
|
sbitmap_a_or_b (ancestor_edges[bb],
|
| 1436 |
|
|
ancestor_edges[bb], ancestor_edges[pred_bb]);
|
| 1437 |
|
|
|
| 1438 |
|
|
SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
|
| 1439 |
|
|
|
| 1440 |
|
|
sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
|
| 1441 |
|
|
|
| 1442 |
|
|
FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
|
| 1443 |
|
|
SET_BIT (pot_split[bb], EDGE_TO_BIT (out_edge));
|
| 1444 |
|
|
|
| 1445 |
|
|
prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
|
| 1446 |
|
|
}
|
| 1447 |
|
|
|
| 1448 |
|
|
SET_BIT (dom[bb], bb);
|
| 1449 |
|
|
sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
|
| 1450 |
|
|
|
| 1451 |
|
|
if (sched_verbose >= 2)
|
| 1452 |
|
|
fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
|
| 1453 |
|
|
(100 * prob[bb]) / REG_BR_PROB_BASE);
|
| 1454 |
|
|
}
|
| 1455 |
|
|
|
| 1456 |
|
|
/* Functions for target info. */
|
| 1457 |
|
|
|
| 1458 |
|
|
/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
|
| 1459 |
|
|
Note that bb_trg dominates bb_src. */
|
| 1460 |
|
|
|
| 1461 |
|
|
static void
|
| 1462 |
|
|
split_edges (int bb_src, int bb_trg, edgelst *bl)
|
| 1463 |
|
|
{
|
| 1464 |
|
|
sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
|
| 1465 |
|
|
sbitmap_copy (src, pot_split[bb_src]);
|
| 1466 |
|
|
|
| 1467 |
|
|
sbitmap_difference (src, src, pot_split[bb_trg]);
|
| 1468 |
|
|
extract_edgelst (src, bl);
|
| 1469 |
|
|
sbitmap_free (src);
|
| 1470 |
|
|
}
|
| 1471 |
|
|
|
| 1472 |
|
|
/* Find the valid candidate-source-blocks for the target block TRG, compute
|
| 1473 |
|
|
their probability, and check if they are speculative or not.
|
| 1474 |
|
|
For speculative sources, compute their update-blocks and split-blocks. */
|
| 1475 |
|
|
|
| 1476 |
|
|
static void
|
| 1477 |
|
|
compute_trg_info (int trg)
|
| 1478 |
|
|
{
|
| 1479 |
|
|
candidate *sp;
|
| 1480 |
|
|
edgelst el = { NULL, 0 };
|
| 1481 |
|
|
int i, j, k, update_idx;
|
| 1482 |
|
|
basic_block block;
|
| 1483 |
|
|
sbitmap visited;
|
| 1484 |
|
|
edge_iterator ei;
|
| 1485 |
|
|
edge e;
|
| 1486 |
|
|
|
| 1487 |
|
|
candidate_table = XNEWVEC (candidate, current_nr_blocks);
|
| 1488 |
|
|
|
| 1489 |
|
|
bblst_last = 0;
|
| 1490 |
|
|
/* bblst_table holds split blocks and update blocks for each block after
|
| 1491 |
|
|
the current one in the region. split blocks and update blocks are
|
| 1492 |
|
|
the TO blocks of region edges, so there can be at most rgn_nr_edges
|
| 1493 |
|
|
of them. */
|
| 1494 |
|
|
bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
|
| 1495 |
|
|
bblst_table = XNEWVEC (basic_block, bblst_size);
|
| 1496 |
|
|
|
| 1497 |
|
|
edgelst_last = 0;
|
| 1498 |
|
|
edgelst_table = XNEWVEC (edge, rgn_nr_edges);
|
| 1499 |
|
|
|
| 1500 |
|
|
/* Define some of the fields for the target bb as well. */
|
| 1501 |
|
|
sp = candidate_table + trg;
|
| 1502 |
|
|
sp->is_valid = 1;
|
| 1503 |
|
|
sp->is_speculative = 0;
|
| 1504 |
|
|
sp->src_prob = REG_BR_PROB_BASE;
|
| 1505 |
|
|
|
| 1506 |
|
|
visited = sbitmap_alloc (last_basic_block);
|
| 1507 |
|
|
|
| 1508 |
|
|
for (i = trg + 1; i < current_nr_blocks; i++)
|
| 1509 |
|
|
{
|
| 1510 |
|
|
sp = candidate_table + i;
|
| 1511 |
|
|
|
| 1512 |
|
|
sp->is_valid = IS_DOMINATED (i, trg);
|
| 1513 |
|
|
if (sp->is_valid)
|
| 1514 |
|
|
{
|
| 1515 |
|
|
int tf = prob[trg], cf = prob[i];
|
| 1516 |
|
|
|
| 1517 |
|
|
/* In CFGs with low probability edges TF can possibly be zero. */
|
| 1518 |
|
|
sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
|
| 1519 |
|
|
sp->is_valid = (sp->src_prob >= min_spec_prob);
|
| 1520 |
|
|
}
|
| 1521 |
|
|
|
| 1522 |
|
|
if (sp->is_valid)
|
| 1523 |
|
|
{
|
| 1524 |
|
|
split_edges (i, trg, &el);
|
| 1525 |
|
|
sp->is_speculative = (el.nr_members) ? 1 : 0;
|
| 1526 |
|
|
if (sp->is_speculative && !flag_schedule_speculative)
|
| 1527 |
|
|
sp->is_valid = 0;
|
| 1528 |
|
|
}
|
| 1529 |
|
|
|
| 1530 |
|
|
if (sp->is_valid)
|
| 1531 |
|
|
{
|
| 1532 |
|
|
/* Compute split blocks and store them in bblst_table.
|
| 1533 |
|
|
The TO block of every split edge is a split block. */
|
| 1534 |
|
|
sp->split_bbs.first_member = &bblst_table[bblst_last];
|
| 1535 |
|
|
sp->split_bbs.nr_members = el.nr_members;
|
| 1536 |
|
|
for (j = 0; j < el.nr_members; bblst_last++, j++)
|
| 1537 |
|
|
bblst_table[bblst_last] = el.first_member[j]->dest;
|
| 1538 |
|
|
sp->update_bbs.first_member = &bblst_table[bblst_last];
|
| 1539 |
|
|
|
| 1540 |
|
|
/* Compute update blocks and store them in bblst_table.
|
| 1541 |
|
|
For every split edge, look at the FROM block, and check
|
| 1542 |
|
|
all out edges. For each out edge that is not a split edge,
|
| 1543 |
|
|
add the TO block to the update block list. This list can end
|
| 1544 |
|
|
up with a lot of duplicates. We need to weed them out to avoid
|
| 1545 |
|
|
overrunning the end of the bblst_table. */
|
| 1546 |
|
|
|
| 1547 |
|
|
update_idx = 0;
|
| 1548 |
|
|
sbitmap_zero (visited);
|
| 1549 |
|
|
for (j = 0; j < el.nr_members; j++)
|
| 1550 |
|
|
{
|
| 1551 |
|
|
block = el.first_member[j]->src;
|
| 1552 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
| 1553 |
|
|
{
|
| 1554 |
|
|
if (!TEST_BIT (visited, e->dest->index))
|
| 1555 |
|
|
{
|
| 1556 |
|
|
for (k = 0; k < el.nr_members; k++)
|
| 1557 |
|
|
if (e == el.first_member[k])
|
| 1558 |
|
|
break;
|
| 1559 |
|
|
|
| 1560 |
|
|
if (k >= el.nr_members)
|
| 1561 |
|
|
{
|
| 1562 |
|
|
bblst_table[bblst_last++] = e->dest;
|
| 1563 |
|
|
SET_BIT (visited, e->dest->index);
|
| 1564 |
|
|
update_idx++;
|
| 1565 |
|
|
}
|
| 1566 |
|
|
}
|
| 1567 |
|
|
}
|
| 1568 |
|
|
}
|
| 1569 |
|
|
sp->update_bbs.nr_members = update_idx;
|
| 1570 |
|
|
|
| 1571 |
|
|
/* Make sure we didn't overrun the end of bblst_table. */
|
| 1572 |
|
|
gcc_assert (bblst_last <= bblst_size);
|
| 1573 |
|
|
}
|
| 1574 |
|
|
else
|
| 1575 |
|
|
{
|
| 1576 |
|
|
sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
|
| 1577 |
|
|
|
| 1578 |
|
|
sp->is_speculative = 0;
|
| 1579 |
|
|
sp->src_prob = 0;
|
| 1580 |
|
|
}
|
| 1581 |
|
|
}
|
| 1582 |
|
|
|
| 1583 |
|
|
sbitmap_free (visited);
|
| 1584 |
|
|
}
|
| 1585 |
|
|
|
| 1586 |
|
|
/* Free the computed target info. */
|
| 1587 |
|
|
static void
|
| 1588 |
|
|
free_trg_info (void)
|
| 1589 |
|
|
{
|
| 1590 |
|
|
free (candidate_table);
|
| 1591 |
|
|
free (bblst_table);
|
| 1592 |
|
|
free (edgelst_table);
|
| 1593 |
|
|
}
|
| 1594 |
|
|
|
| 1595 |
|
|
/* Print candidates info, for debugging purposes. Callable from debugger. */
|
| 1596 |
|
|
|
| 1597 |
|
|
void
|
| 1598 |
|
|
debug_candidate (int i)
|
| 1599 |
|
|
{
|
| 1600 |
|
|
if (!candidate_table[i].is_valid)
|
| 1601 |
|
|
return;
|
| 1602 |
|
|
|
| 1603 |
|
|
if (candidate_table[i].is_speculative)
|
| 1604 |
|
|
{
|
| 1605 |
|
|
int j;
|
| 1606 |
|
|
fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
|
| 1607 |
|
|
|
| 1608 |
|
|
fprintf (sched_dump, "split path: ");
|
| 1609 |
|
|
for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
|
| 1610 |
|
|
{
|
| 1611 |
|
|
int b = candidate_table[i].split_bbs.first_member[j]->index;
|
| 1612 |
|
|
|
| 1613 |
|
|
fprintf (sched_dump, " %d ", b);
|
| 1614 |
|
|
}
|
| 1615 |
|
|
fprintf (sched_dump, "\n");
|
| 1616 |
|
|
|
| 1617 |
|
|
fprintf (sched_dump, "update path: ");
|
| 1618 |
|
|
for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
|
| 1619 |
|
|
{
|
| 1620 |
|
|
int b = candidate_table[i].update_bbs.first_member[j]->index;
|
| 1621 |
|
|
|
| 1622 |
|
|
fprintf (sched_dump, " %d ", b);
|
| 1623 |
|
|
}
|
| 1624 |
|
|
fprintf (sched_dump, "\n");
|
| 1625 |
|
|
}
|
| 1626 |
|
|
else
|
| 1627 |
|
|
{
|
| 1628 |
|
|
fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
|
| 1629 |
|
|
}
|
| 1630 |
|
|
}
|
| 1631 |
|
|
|
| 1632 |
|
|
/* Print candidates info, for debugging purposes. Callable from debugger. */
|
| 1633 |
|
|
|
| 1634 |
|
|
void
|
| 1635 |
|
|
debug_candidates (int trg)
|
| 1636 |
|
|
{
|
| 1637 |
|
|
int i;
|
| 1638 |
|
|
|
| 1639 |
|
|
fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
|
| 1640 |
|
|
BB_TO_BLOCK (trg), trg);
|
| 1641 |
|
|
for (i = trg + 1; i < current_nr_blocks; i++)
|
| 1642 |
|
|
debug_candidate (i);
|
| 1643 |
|
|
}
|
| 1644 |
|
|
|
| 1645 |
|
|
/* Functions for speculative scheduling. */
|
| 1646 |
|
|
|
| 1647 |
|
|
static bitmap_head not_in_df;
|
| 1648 |
|
|
|
| 1649 |
|
|
/* Return 0 if x is a set of a register alive in the beginning of one
|
| 1650 |
|
|
of the split-blocks of src, otherwise return 1. */
|
| 1651 |
|
|
|
| 1652 |
|
|
static int
|
| 1653 |
|
|
check_live_1 (int src, rtx x)
|
| 1654 |
|
|
{
|
| 1655 |
|
|
int i;
|
| 1656 |
|
|
int regno;
|
| 1657 |
|
|
rtx reg = SET_DEST (x);
|
| 1658 |
|
|
|
| 1659 |
|
|
if (reg == 0)
|
| 1660 |
|
|
return 1;
|
| 1661 |
|
|
|
| 1662 |
|
|
while (GET_CODE (reg) == SUBREG
|
| 1663 |
|
|
|| GET_CODE (reg) == ZERO_EXTRACT
|
| 1664 |
|
|
|| GET_CODE (reg) == STRICT_LOW_PART)
|
| 1665 |
|
|
reg = XEXP (reg, 0);
|
| 1666 |
|
|
|
| 1667 |
|
|
if (GET_CODE (reg) == PARALLEL)
|
| 1668 |
|
|
{
|
| 1669 |
|
|
int i;
|
| 1670 |
|
|
|
| 1671 |
|
|
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
|
| 1672 |
|
|
if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
|
| 1673 |
|
|
if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
|
| 1674 |
|
|
return 1;
|
| 1675 |
|
|
|
| 1676 |
|
|
return 0;
|
| 1677 |
|
|
}
|
| 1678 |
|
|
|
| 1679 |
|
|
if (!REG_P (reg))
|
| 1680 |
|
|
return 1;
|
| 1681 |
|
|
|
| 1682 |
|
|
regno = REGNO (reg);
|
| 1683 |
|
|
|
| 1684 |
|
|
if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
|
| 1685 |
|
|
{
|
| 1686 |
|
|
/* Global registers are assumed live. */
|
| 1687 |
|
|
return 0;
|
| 1688 |
|
|
}
|
| 1689 |
|
|
else
|
| 1690 |
|
|
{
|
| 1691 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 1692 |
|
|
{
|
| 1693 |
|
|
/* Check for hard registers. */
|
| 1694 |
|
|
int j = hard_regno_nregs[regno][GET_MODE (reg)];
|
| 1695 |
|
|
while (--j >= 0)
|
| 1696 |
|
|
{
|
| 1697 |
|
|
for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
|
| 1698 |
|
|
{
|
| 1699 |
|
|
basic_block b = candidate_table[src].split_bbs.first_member[i];
|
| 1700 |
|
|
int t = bitmap_bit_p (¬_in_df, b->index);
|
| 1701 |
|
|
|
| 1702 |
|
|
/* We can have split blocks, that were recently generated.
|
| 1703 |
|
|
Such blocks are always outside current region. */
|
| 1704 |
|
|
gcc_assert (!t || (CONTAINING_RGN (b->index)
|
| 1705 |
|
|
!= CONTAINING_RGN (BB_TO_BLOCK (src))));
|
| 1706 |
|
|
|
| 1707 |
|
|
if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
|
| 1708 |
|
|
return 0;
|
| 1709 |
|
|
}
|
| 1710 |
|
|
}
|
| 1711 |
|
|
}
|
| 1712 |
|
|
else
|
| 1713 |
|
|
{
|
| 1714 |
|
|
/* Check for pseudo registers. */
|
| 1715 |
|
|
for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
|
| 1716 |
|
|
{
|
| 1717 |
|
|
basic_block b = candidate_table[src].split_bbs.first_member[i];
|
| 1718 |
|
|
int t = bitmap_bit_p (¬_in_df, b->index);
|
| 1719 |
|
|
|
| 1720 |
|
|
gcc_assert (!t || (CONTAINING_RGN (b->index)
|
| 1721 |
|
|
!= CONTAINING_RGN (BB_TO_BLOCK (src))));
|
| 1722 |
|
|
|
| 1723 |
|
|
if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
|
| 1724 |
|
|
return 0;
|
| 1725 |
|
|
}
|
| 1726 |
|
|
}
|
| 1727 |
|
|
}
|
| 1728 |
|
|
|
| 1729 |
|
|
return 1;
|
| 1730 |
|
|
}
|
| 1731 |
|
|
|
| 1732 |
|
|
/* If x is a set of a register R, mark that R is alive in the beginning
|
| 1733 |
|
|
of every update-block of src. */
|
| 1734 |
|
|
|
| 1735 |
|
|
static void
|
| 1736 |
|
|
update_live_1 (int src, rtx x)
|
| 1737 |
|
|
{
|
| 1738 |
|
|
int i;
|
| 1739 |
|
|
int regno;
|
| 1740 |
|
|
rtx reg = SET_DEST (x);
|
| 1741 |
|
|
|
| 1742 |
|
|
if (reg == 0)
|
| 1743 |
|
|
return;
|
| 1744 |
|
|
|
| 1745 |
|
|
while (GET_CODE (reg) == SUBREG
|
| 1746 |
|
|
|| GET_CODE (reg) == ZERO_EXTRACT
|
| 1747 |
|
|
|| GET_CODE (reg) == STRICT_LOW_PART)
|
| 1748 |
|
|
reg = XEXP (reg, 0);
|
| 1749 |
|
|
|
| 1750 |
|
|
if (GET_CODE (reg) == PARALLEL)
|
| 1751 |
|
|
{
|
| 1752 |
|
|
int i;
|
| 1753 |
|
|
|
| 1754 |
|
|
for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
|
| 1755 |
|
|
if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
|
| 1756 |
|
|
update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
|
| 1757 |
|
|
|
| 1758 |
|
|
return;
|
| 1759 |
|
|
}
|
| 1760 |
|
|
|
| 1761 |
|
|
if (!REG_P (reg))
|
| 1762 |
|
|
return;
|
| 1763 |
|
|
|
| 1764 |
|
|
/* Global registers are always live, so the code below does not apply
|
| 1765 |
|
|
to them. */
|
| 1766 |
|
|
|
| 1767 |
|
|
regno = REGNO (reg);
|
| 1768 |
|
|
|
| 1769 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
|
| 1770 |
|
|
{
|
| 1771 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 1772 |
|
|
{
|
| 1773 |
|
|
int j = hard_regno_nregs[regno][GET_MODE (reg)];
|
| 1774 |
|
|
while (--j >= 0)
|
| 1775 |
|
|
{
|
| 1776 |
|
|
for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
|
| 1777 |
|
|
{
|
| 1778 |
|
|
basic_block b = candidate_table[src].update_bbs.first_member[i];
|
| 1779 |
|
|
|
| 1780 |
|
|
SET_REGNO_REG_SET (df_get_live_in (b), regno + j);
|
| 1781 |
|
|
}
|
| 1782 |
|
|
}
|
| 1783 |
|
|
}
|
| 1784 |
|
|
else
|
| 1785 |
|
|
{
|
| 1786 |
|
|
for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
|
| 1787 |
|
|
{
|
| 1788 |
|
|
basic_block b = candidate_table[src].update_bbs.first_member[i];
|
| 1789 |
|
|
|
| 1790 |
|
|
SET_REGNO_REG_SET (df_get_live_in (b), regno);
|
| 1791 |
|
|
}
|
| 1792 |
|
|
}
|
| 1793 |
|
|
}
|
| 1794 |
|
|
}
|
| 1795 |
|
|
|
| 1796 |
|
|
/* Return 1 if insn can be speculatively moved from block src to trg,
|
| 1797 |
|
|
otherwise return 0. Called before first insertion of insn to
|
| 1798 |
|
|
ready-list or before the scheduling. */
|
| 1799 |
|
|
|
| 1800 |
|
|
static int
|
| 1801 |
|
|
check_live (rtx insn, int src)
|
| 1802 |
|
|
{
|
| 1803 |
|
|
/* Find the registers set by instruction. */
|
| 1804 |
|
|
if (GET_CODE (PATTERN (insn)) == SET
|
| 1805 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
| 1806 |
|
|
return check_live_1 (src, PATTERN (insn));
|
| 1807 |
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
| 1808 |
|
|
{
|
| 1809 |
|
|
int j;
|
| 1810 |
|
|
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
|
| 1811 |
|
|
if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|
| 1812 |
|
|
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
|
| 1813 |
|
|
&& !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
|
| 1814 |
|
|
return 0;
|
| 1815 |
|
|
|
| 1816 |
|
|
return 1;
|
| 1817 |
|
|
}
|
| 1818 |
|
|
|
| 1819 |
|
|
return 1;
|
| 1820 |
|
|
}
|
| 1821 |
|
|
|
| 1822 |
|
|
/* Update the live registers info after insn was moved speculatively from
|
| 1823 |
|
|
block src to trg. */
|
| 1824 |
|
|
|
| 1825 |
|
|
static void
|
| 1826 |
|
|
update_live (rtx insn, int src)
|
| 1827 |
|
|
{
|
| 1828 |
|
|
/* Find the registers set by instruction. */
|
| 1829 |
|
|
if (GET_CODE (PATTERN (insn)) == SET
|
| 1830 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER)
|
| 1831 |
|
|
update_live_1 (src, PATTERN (insn));
|
| 1832 |
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL)
|
| 1833 |
|
|
{
|
| 1834 |
|
|
int j;
|
| 1835 |
|
|
for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
|
| 1836 |
|
|
if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
|
| 1837 |
|
|
|| GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
|
| 1838 |
|
|
update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
|
| 1839 |
|
|
}
|
| 1840 |
|
|
}
|
| 1841 |
|
|
|
| 1842 |
|
|
/* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
|
| 1843 |
|
|
#define IS_REACHABLE(bb_from, bb_to) \
|
| 1844 |
|
|
(bb_from == bb_to \
|
| 1845 |
|
|
|| IS_RGN_ENTRY (bb_from) \
|
| 1846 |
|
|
|| (TEST_BIT (ancestor_edges[bb_to], \
|
| 1847 |
|
|
EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
|
| 1848 |
|
|
|
| 1849 |
|
|
/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
|
| 1850 |
|
|
|
| 1851 |
|
|
static void
|
| 1852 |
|
|
set_spec_fed (rtx load_insn)
|
| 1853 |
|
|
{
|
| 1854 |
|
|
sd_iterator_def sd_it;
|
| 1855 |
|
|
dep_t dep;
|
| 1856 |
|
|
|
| 1857 |
|
|
FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
|
| 1858 |
|
|
if (DEP_TYPE (dep) == REG_DEP_TRUE)
|
| 1859 |
|
|
FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
|
| 1860 |
|
|
}
|
| 1861 |
|
|
|
| 1862 |
|
|
/* On the path from the insn to load_insn_bb, find a conditional
|
| 1863 |
|
|
branch depending on insn, that guards the speculative load. */
|
| 1864 |
|
|
|
| 1865 |
|
|
static int
|
| 1866 |
|
|
find_conditional_protection (rtx insn, int load_insn_bb)
|
| 1867 |
|
|
{
|
| 1868 |
|
|
sd_iterator_def sd_it;
|
| 1869 |
|
|
dep_t dep;
|
| 1870 |
|
|
|
| 1871 |
|
|
/* Iterate through DEF-USE forward dependences. */
|
| 1872 |
|
|
FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
|
| 1873 |
|
|
{
|
| 1874 |
|
|
rtx next = DEP_CON (dep);
|
| 1875 |
|
|
|
| 1876 |
|
|
if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
|
| 1877 |
|
|
CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
|
| 1878 |
|
|
&& IS_REACHABLE (INSN_BB (next), load_insn_bb)
|
| 1879 |
|
|
&& load_insn_bb != INSN_BB (next)
|
| 1880 |
|
|
&& DEP_TYPE (dep) == REG_DEP_TRUE
|
| 1881 |
|
|
&& (JUMP_P (next)
|
| 1882 |
|
|
|| find_conditional_protection (next, load_insn_bb)))
|
| 1883 |
|
|
return 1;
|
| 1884 |
|
|
}
|
| 1885 |
|
|
return 0;
|
| 1886 |
|
|
} /* find_conditional_protection */
|
| 1887 |
|
|
|
| 1888 |
|
|
/* Returns 1 if the same insn1 that participates in the computation
|
| 1889 |
|
|
of load_insn's address is feeding a conditional branch that is
|
| 1890 |
|
|
guarding on load_insn. This is true if we find two DEF-USE
|
| 1891 |
|
|
chains:
|
| 1892 |
|
|
insn1 -> ... -> conditional-branch
|
| 1893 |
|
|
insn1 -> ... -> load_insn,
|
| 1894 |
|
|
and if a flow path exists:
|
| 1895 |
|
|
insn1 -> ... -> conditional-branch -> ... -> load_insn,
|
| 1896 |
|
|
and if insn1 is on the path
|
| 1897 |
|
|
region-entry -> ... -> bb_trg -> ... load_insn.
|
| 1898 |
|
|
|
| 1899 |
|
|
Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
|
| 1900 |
|
|
Locate the branch by following INSN_FORW_DEPS from insn1. */
|
| 1901 |
|
|
|
| 1902 |
|
|
static int
|
| 1903 |
|
|
is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
|
| 1904 |
|
|
{
|
| 1905 |
|
|
sd_iterator_def sd_it;
|
| 1906 |
|
|
dep_t dep;
|
| 1907 |
|
|
|
| 1908 |
|
|
FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
|
| 1909 |
|
|
{
|
| 1910 |
|
|
rtx insn1 = DEP_PRO (dep);
|
| 1911 |
|
|
|
| 1912 |
|
|
/* Must be a DEF-USE dependence upon non-branch. */
|
| 1913 |
|
|
if (DEP_TYPE (dep) != REG_DEP_TRUE
|
| 1914 |
|
|
|| JUMP_P (insn1))
|
| 1915 |
|
|
continue;
|
| 1916 |
|
|
|
| 1917 |
|
|
/* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
|
| 1918 |
|
|
if (INSN_BB (insn1) == bb_src
|
| 1919 |
|
|
|| (CONTAINING_RGN (BLOCK_NUM (insn1))
|
| 1920 |
|
|
!= CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
|
| 1921 |
|
|
|| (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
|
| 1922 |
|
|
&& !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
|
| 1923 |
|
|
continue;
|
| 1924 |
|
|
|
| 1925 |
|
|
/* Now search for the conditional-branch. */
|
| 1926 |
|
|
if (find_conditional_protection (insn1, bb_src))
|
| 1927 |
|
|
return 1;
|
| 1928 |
|
|
|
| 1929 |
|
|
/* Recursive step: search another insn1, "above" current insn1. */
|
| 1930 |
|
|
return is_conditionally_protected (insn1, bb_src, bb_trg);
|
| 1931 |
|
|
}
|
| 1932 |
|
|
|
| 1933 |
|
|
/* The chain does not exist. */
|
| 1934 |
|
|
return 0;
|
| 1935 |
|
|
} /* is_conditionally_protected */
|
| 1936 |
|
|
|
| 1937 |
|
|
/* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
|
| 1938 |
|
|
load_insn can move speculatively from bb_src to bb_trg. All the
|
| 1939 |
|
|
following must hold:
|
| 1940 |
|
|
|
| 1941 |
|
|
(1) both loads have 1 base register (PFREE_CANDIDATEs).
|
| 1942 |
|
|
(2) load_insn and load1 have a def-use dependence upon
|
| 1943 |
|
|
the same insn 'insn1'.
|
| 1944 |
|
|
(3) either load2 is in bb_trg, or:
|
| 1945 |
|
|
- there's only one split-block, and
|
| 1946 |
|
|
- load1 is on the escape path, and
|
| 1947 |
|
|
|
| 1948 |
|
|
From all these we can conclude that the two loads access memory
|
| 1949 |
|
|
addresses that differ at most by a constant, and hence if moving
|
| 1950 |
|
|
load_insn would cause an exception, it would have been caused by
|
| 1951 |
|
|
load2 anyhow. */
|
| 1952 |
|
|
|
| 1953 |
|
|
static int
|
| 1954 |
|
|
is_pfree (rtx load_insn, int bb_src, int bb_trg)
|
| 1955 |
|
|
{
|
| 1956 |
|
|
sd_iterator_def back_sd_it;
|
| 1957 |
|
|
dep_t back_dep;
|
| 1958 |
|
|
candidate *candp = candidate_table + bb_src;
|
| 1959 |
|
|
|
| 1960 |
|
|
if (candp->split_bbs.nr_members != 1)
|
| 1961 |
|
|
/* Must have exactly one escape block. */
|
| 1962 |
|
|
return 0;
|
| 1963 |
|
|
|
| 1964 |
|
|
FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
|
| 1965 |
|
|
{
|
| 1966 |
|
|
rtx insn1 = DEP_PRO (back_dep);
|
| 1967 |
|
|
|
| 1968 |
|
|
if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
|
| 1969 |
|
|
/* Found a DEF-USE dependence (insn1, load_insn). */
|
| 1970 |
|
|
{
|
| 1971 |
|
|
sd_iterator_def fore_sd_it;
|
| 1972 |
|
|
dep_t fore_dep;
|
| 1973 |
|
|
|
| 1974 |
|
|
FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
|
| 1975 |
|
|
{
|
| 1976 |
|
|
rtx insn2 = DEP_CON (fore_dep);
|
| 1977 |
|
|
|
| 1978 |
|
|
if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
|
| 1979 |
|
|
{
|
| 1980 |
|
|
/* Found a DEF-USE dependence (insn1, insn2). */
|
| 1981 |
|
|
if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
|
| 1982 |
|
|
/* insn2 not guaranteed to be a 1 base reg load. */
|
| 1983 |
|
|
continue;
|
| 1984 |
|
|
|
| 1985 |
|
|
if (INSN_BB (insn2) == bb_trg)
|
| 1986 |
|
|
/* insn2 is the similar load, in the target block. */
|
| 1987 |
|
|
return 1;
|
| 1988 |
|
|
|
| 1989 |
|
|
if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
|
| 1990 |
|
|
/* insn2 is a similar load, in a split-block. */
|
| 1991 |
|
|
return 1;
|
| 1992 |
|
|
}
|
| 1993 |
|
|
}
|
| 1994 |
|
|
}
|
| 1995 |
|
|
}
|
| 1996 |
|
|
|
| 1997 |
|
|
/* Couldn't find a similar load. */
|
| 1998 |
|
|
return 0;
|
| 1999 |
|
|
} /* is_pfree */
|
| 2000 |
|
|
|
| 2001 |
|
|
/* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
|
| 2002 |
|
|
a load moved speculatively, or if load_insn is protected by
|
| 2003 |
|
|
a compare on load_insn's address). */
|
| 2004 |
|
|
|
| 2005 |
|
|
static int
|
| 2006 |
|
|
is_prisky (rtx load_insn, int bb_src, int bb_trg)
|
| 2007 |
|
|
{
|
| 2008 |
|
|
if (FED_BY_SPEC_LOAD (load_insn))
|
| 2009 |
|
|
return 1;
|
| 2010 |
|
|
|
| 2011 |
|
|
if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
|
| 2012 |
|
|
/* Dependence may 'hide' out of the region. */
|
| 2013 |
|
|
return 1;
|
| 2014 |
|
|
|
| 2015 |
|
|
if (is_conditionally_protected (load_insn, bb_src, bb_trg))
|
| 2016 |
|
|
return 1;
|
| 2017 |
|
|
|
| 2018 |
|
|
return 0;
|
| 2019 |
|
|
}
|
| 2020 |
|
|
|
| 2021 |
|
|
/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
|
| 2022 |
|
|
Return 1 if insn is exception-free (and the motion is valid)
|
| 2023 |
|
|
and 0 otherwise. */
|
| 2024 |
|
|
|
| 2025 |
|
|
static int
|
| 2026 |
|
|
is_exception_free (rtx insn, int bb_src, int bb_trg)
|
| 2027 |
|
|
{
|
| 2028 |
|
|
int insn_class = haifa_classify_insn (insn);
|
| 2029 |
|
|
|
| 2030 |
|
|
/* Handle non-load insns. */
|
| 2031 |
|
|
switch (insn_class)
|
| 2032 |
|
|
{
|
| 2033 |
|
|
case TRAP_FREE:
|
| 2034 |
|
|
return 1;
|
| 2035 |
|
|
case TRAP_RISKY:
|
| 2036 |
|
|
return 0;
|
| 2037 |
|
|
default:;
|
| 2038 |
|
|
}
|
| 2039 |
|
|
|
| 2040 |
|
|
/* Handle loads. */
|
| 2041 |
|
|
if (!flag_schedule_speculative_load)
|
| 2042 |
|
|
return 0;
|
| 2043 |
|
|
IS_LOAD_INSN (insn) = 1;
|
| 2044 |
|
|
switch (insn_class)
|
| 2045 |
|
|
{
|
| 2046 |
|
|
case IFREE:
|
| 2047 |
|
|
return (1);
|
| 2048 |
|
|
case IRISKY:
|
| 2049 |
|
|
return 0;
|
| 2050 |
|
|
case PFREE_CANDIDATE:
|
| 2051 |
|
|
if (is_pfree (insn, bb_src, bb_trg))
|
| 2052 |
|
|
return 1;
|
| 2053 |
|
|
/* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
|
| 2054 |
|
|
case PRISKY_CANDIDATE:
|
| 2055 |
|
|
if (!flag_schedule_speculative_load_dangerous
|
| 2056 |
|
|
|| is_prisky (insn, bb_src, bb_trg))
|
| 2057 |
|
|
return 0;
|
| 2058 |
|
|
break;
|
| 2059 |
|
|
default:;
|
| 2060 |
|
|
}
|
| 2061 |
|
|
|
| 2062 |
|
|
return flag_schedule_speculative_load_dangerous;
|
| 2063 |
|
|
}
|
| 2064 |
|
|
|
| 2065 |
|
|
/* The number of insns from the current block scheduled so far. */
|
| 2066 |
|
|
static int sched_target_n_insns;
|
| 2067 |
|
|
/* The number of insns from the current block to be scheduled in total. */
|
| 2068 |
|
|
static int target_n_insns;
|
| 2069 |
|
|
/* The number of insns from the entire region scheduled so far. */
|
| 2070 |
|
|
static int sched_n_insns;
|
| 2071 |
|
|
|
| 2072 |
|
|
/* Implementations of the sched_info functions for region scheduling. */
|
| 2073 |
|
|
static void init_ready_list (void);
|
| 2074 |
|
|
static int can_schedule_ready_p (rtx);
|
| 2075 |
|
|
static void begin_schedule_ready (rtx, rtx);
|
| 2076 |
|
|
static ds_t new_ready (rtx, ds_t);
|
| 2077 |
|
|
static int schedule_more_p (void);
|
| 2078 |
|
|
static const char *rgn_print_insn (const_rtx, int);
|
| 2079 |
|
|
static int rgn_rank (rtx, rtx);
|
| 2080 |
|
|
static void compute_jump_reg_dependencies (rtx, regset, regset, regset);
|
| 2081 |
|
|
|
| 2082 |
|
|
/* Functions for speculative scheduling. */
|
| 2083 |
|
|
static void rgn_add_remove_insn (rtx, int);
|
| 2084 |
|
|
static void rgn_add_block (basic_block, basic_block);
|
| 2085 |
|
|
static void rgn_fix_recovery_cfg (int, int, int);
|
| 2086 |
|
|
static basic_block advance_target_bb (basic_block, rtx);
|
| 2087 |
|
|
|
| 2088 |
|
|
/* Return nonzero if there are more insns that should be scheduled. */
|
| 2089 |
|
|
|
| 2090 |
|
|
static int
|
| 2091 |
|
|
schedule_more_p (void)
|
| 2092 |
|
|
{
|
| 2093 |
|
|
return sched_target_n_insns < target_n_insns;
|
| 2094 |
|
|
}
|
| 2095 |
|
|
|
| 2096 |
|
|
/* Add all insns that are initially ready to the ready list READY. Called
|
| 2097 |
|
|
once before scheduling a set of insns. */
|
| 2098 |
|
|
|
| 2099 |
|
|
static void
|
| 2100 |
|
|
init_ready_list (void)
|
| 2101 |
|
|
{
|
| 2102 |
|
|
rtx prev_head = current_sched_info->prev_head;
|
| 2103 |
|
|
rtx next_tail = current_sched_info->next_tail;
|
| 2104 |
|
|
int bb_src;
|
| 2105 |
|
|
rtx insn;
|
| 2106 |
|
|
|
| 2107 |
|
|
target_n_insns = 0;
|
| 2108 |
|
|
sched_target_n_insns = 0;
|
| 2109 |
|
|
sched_n_insns = 0;
|
| 2110 |
|
|
|
| 2111 |
|
|
/* Print debugging information. */
|
| 2112 |
|
|
if (sched_verbose >= 5)
|
| 2113 |
|
|
debug_rgn_dependencies (target_bb);
|
| 2114 |
|
|
|
| 2115 |
|
|
/* Prepare current target block info. */
|
| 2116 |
|
|
if (current_nr_blocks > 1)
|
| 2117 |
|
|
compute_trg_info (target_bb);
|
| 2118 |
|
|
|
| 2119 |
|
|
/* Initialize ready list with all 'ready' insns in target block.
|
| 2120 |
|
|
Count number of insns in the target block being scheduled. */
|
| 2121 |
|
|
for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
|
| 2122 |
|
|
{
|
| 2123 |
|
|
try_ready (insn);
|
| 2124 |
|
|
target_n_insns++;
|
| 2125 |
|
|
|
| 2126 |
|
|
gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
|
| 2127 |
|
|
}
|
| 2128 |
|
|
|
| 2129 |
|
|
/* Add to ready list all 'ready' insns in valid source blocks.
|
| 2130 |
|
|
For speculative insns, check-live, exception-free, and
|
| 2131 |
|
|
issue-delay. */
|
| 2132 |
|
|
for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
|
| 2133 |
|
|
if (IS_VALID (bb_src))
|
| 2134 |
|
|
{
|
| 2135 |
|
|
rtx src_head;
|
| 2136 |
|
|
rtx src_next_tail;
|
| 2137 |
|
|
rtx tail, head;
|
| 2138 |
|
|
|
| 2139 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
|
| 2140 |
|
|
&head, &tail);
|
| 2141 |
|
|
src_next_tail = NEXT_INSN (tail);
|
| 2142 |
|
|
src_head = head;
|
| 2143 |
|
|
|
| 2144 |
|
|
for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
|
| 2145 |
|
|
if (INSN_P (insn) && !BOUNDARY_DEBUG_INSN_P (insn))
|
| 2146 |
|
|
try_ready (insn);
|
| 2147 |
|
|
}
|
| 2148 |
|
|
}
|
| 2149 |
|
|
|
| 2150 |
|
|
/* Called after taking INSN from the ready list. Returns nonzero if this
|
| 2151 |
|
|
insn can be scheduled, nonzero if we should silently discard it. */
|
| 2152 |
|
|
|
| 2153 |
|
|
static int
|
| 2154 |
|
|
can_schedule_ready_p (rtx insn)
|
| 2155 |
|
|
{
|
| 2156 |
|
|
/* An interblock motion? */
|
| 2157 |
|
|
if (INSN_BB (insn) != target_bb
|
| 2158 |
|
|
&& IS_SPECULATIVE_INSN (insn)
|
| 2159 |
|
|
&& !check_live (insn, INSN_BB (insn)))
|
| 2160 |
|
|
return 0;
|
| 2161 |
|
|
else
|
| 2162 |
|
|
return 1;
|
| 2163 |
|
|
}
|
| 2164 |
|
|
|
| 2165 |
|
|
/* Updates counter and other information. Split from can_schedule_ready_p ()
|
| 2166 |
|
|
because when we schedule insn speculatively then insn passed to
|
| 2167 |
|
|
can_schedule_ready_p () differs from the one passed to
|
| 2168 |
|
|
begin_schedule_ready (). */
|
| 2169 |
|
|
static void
|
| 2170 |
|
|
begin_schedule_ready (rtx insn, rtx last ATTRIBUTE_UNUSED)
|
| 2171 |
|
|
{
|
| 2172 |
|
|
/* An interblock motion? */
|
| 2173 |
|
|
if (INSN_BB (insn) != target_bb)
|
| 2174 |
|
|
{
|
| 2175 |
|
|
if (IS_SPECULATIVE_INSN (insn))
|
| 2176 |
|
|
{
|
| 2177 |
|
|
gcc_assert (check_live (insn, INSN_BB (insn)));
|
| 2178 |
|
|
|
| 2179 |
|
|
update_live (insn, INSN_BB (insn));
|
| 2180 |
|
|
|
| 2181 |
|
|
/* For speculative load, mark insns fed by it. */
|
| 2182 |
|
|
if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
|
| 2183 |
|
|
set_spec_fed (insn);
|
| 2184 |
|
|
|
| 2185 |
|
|
nr_spec++;
|
| 2186 |
|
|
}
|
| 2187 |
|
|
nr_inter++;
|
| 2188 |
|
|
}
|
| 2189 |
|
|
else
|
| 2190 |
|
|
{
|
| 2191 |
|
|
/* In block motion. */
|
| 2192 |
|
|
sched_target_n_insns++;
|
| 2193 |
|
|
}
|
| 2194 |
|
|
sched_n_insns++;
|
| 2195 |
|
|
}
|
| 2196 |
|
|
|
| 2197 |
|
|
/* Called after INSN has all its hard dependencies resolved and the speculation
|
| 2198 |
|
|
of type TS is enough to overcome them all.
|
| 2199 |
|
|
Return nonzero if it should be moved to the ready list or the queue, or zero
|
| 2200 |
|
|
if we should silently discard it. */
|
| 2201 |
|
|
static ds_t
|
| 2202 |
|
|
new_ready (rtx next, ds_t ts)
|
| 2203 |
|
|
{
|
| 2204 |
|
|
if (INSN_BB (next) != target_bb)
|
| 2205 |
|
|
{
|
| 2206 |
|
|
int not_ex_free = 0;
|
| 2207 |
|
|
|
| 2208 |
|
|
/* For speculative insns, before inserting to ready/queue,
|
| 2209 |
|
|
check live, exception-free, and issue-delay. */
|
| 2210 |
|
|
if (!IS_VALID (INSN_BB (next))
|
| 2211 |
|
|
|| CANT_MOVE (next)
|
| 2212 |
|
|
|| (IS_SPECULATIVE_INSN (next)
|
| 2213 |
|
|
&& ((recog_memoized (next) >= 0
|
| 2214 |
|
|
&& min_insn_conflict_delay (curr_state, next, next)
|
| 2215 |
|
|
> PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
|
| 2216 |
|
|
|| IS_SPECULATION_CHECK_P (next)
|
| 2217 |
|
|
|| !check_live (next, INSN_BB (next))
|
| 2218 |
|
|
|| (not_ex_free = !is_exception_free (next, INSN_BB (next),
|
| 2219 |
|
|
target_bb)))))
|
| 2220 |
|
|
{
|
| 2221 |
|
|
if (not_ex_free
|
| 2222 |
|
|
/* We are here because is_exception_free () == false.
|
| 2223 |
|
|
But we possibly can handle that with control speculation. */
|
| 2224 |
|
|
&& sched_deps_info->generate_spec_deps
|
| 2225 |
|
|
&& spec_info->mask & BEGIN_CONTROL)
|
| 2226 |
|
|
{
|
| 2227 |
|
|
ds_t new_ds;
|
| 2228 |
|
|
|
| 2229 |
|
|
/* Add control speculation to NEXT's dependency type. */
|
| 2230 |
|
|
new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
|
| 2231 |
|
|
|
| 2232 |
|
|
/* Check if NEXT can be speculated with new dependency type. */
|
| 2233 |
|
|
if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
|
| 2234 |
|
|
/* Here we got new control-speculative instruction. */
|
| 2235 |
|
|
ts = new_ds;
|
| 2236 |
|
|
else
|
| 2237 |
|
|
/* NEXT isn't ready yet. */
|
| 2238 |
|
|
ts = (ts & ~SPECULATIVE) | HARD_DEP;
|
| 2239 |
|
|
}
|
| 2240 |
|
|
else
|
| 2241 |
|
|
/* NEXT isn't ready yet. */
|
| 2242 |
|
|
ts = (ts & ~SPECULATIVE) | HARD_DEP;
|
| 2243 |
|
|
}
|
| 2244 |
|
|
}
|
| 2245 |
|
|
|
| 2246 |
|
|
return ts;
|
| 2247 |
|
|
}
|
| 2248 |
|
|
|
| 2249 |
|
|
/* Return a string that contains the insn uid and optionally anything else
|
| 2250 |
|
|
necessary to identify this insn in an output. It's valid to use a
|
| 2251 |
|
|
static buffer for this. The ALIGNED parameter should cause the string
|
| 2252 |
|
|
to be formatted so that multiple output lines will line up nicely. */
|
| 2253 |
|
|
|
| 2254 |
|
|
static const char *
|
| 2255 |
|
|
rgn_print_insn (const_rtx insn, int aligned)
|
| 2256 |
|
|
{
|
| 2257 |
|
|
static char tmp[80];
|
| 2258 |
|
|
|
| 2259 |
|
|
if (aligned)
|
| 2260 |
|
|
sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
|
| 2261 |
|
|
else
|
| 2262 |
|
|
{
|
| 2263 |
|
|
if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
|
| 2264 |
|
|
sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
|
| 2265 |
|
|
else
|
| 2266 |
|
|
sprintf (tmp, "%d", INSN_UID (insn));
|
| 2267 |
|
|
}
|
| 2268 |
|
|
return tmp;
|
| 2269 |
|
|
}
|
| 2270 |
|
|
|
| 2271 |
|
|
/* Compare priority of two insns. Return a positive number if the second
|
| 2272 |
|
|
insn is to be preferred for scheduling, and a negative one if the first
|
| 2273 |
|
|
is to be preferred. Zero if they are equally good. */
|
| 2274 |
|
|
|
| 2275 |
|
|
static int
|
| 2276 |
|
|
rgn_rank (rtx insn1, rtx insn2)
|
| 2277 |
|
|
{
|
| 2278 |
|
|
/* Some comparison make sense in interblock scheduling only. */
|
| 2279 |
|
|
if (INSN_BB (insn1) != INSN_BB (insn2))
|
| 2280 |
|
|
{
|
| 2281 |
|
|
int spec_val, prob_val;
|
| 2282 |
|
|
|
| 2283 |
|
|
/* Prefer an inblock motion on an interblock motion. */
|
| 2284 |
|
|
if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
|
| 2285 |
|
|
return 1;
|
| 2286 |
|
|
if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
|
| 2287 |
|
|
return -1;
|
| 2288 |
|
|
|
| 2289 |
|
|
/* Prefer a useful motion on a speculative one. */
|
| 2290 |
|
|
spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
|
| 2291 |
|
|
if (spec_val)
|
| 2292 |
|
|
return spec_val;
|
| 2293 |
|
|
|
| 2294 |
|
|
/* Prefer a more probable (speculative) insn. */
|
| 2295 |
|
|
prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
|
| 2296 |
|
|
if (prob_val)
|
| 2297 |
|
|
return prob_val;
|
| 2298 |
|
|
}
|
| 2299 |
|
|
return 0;
|
| 2300 |
|
|
}
|
| 2301 |
|
|
|
| 2302 |
|
|
/* NEXT is an instruction that depends on INSN (a backward dependence);
|
| 2303 |
|
|
return nonzero if we should include this dependence in priority
|
| 2304 |
|
|
calculations. */
|
| 2305 |
|
|
|
| 2306 |
|
|
int
|
| 2307 |
|
|
contributes_to_priority (rtx next, rtx insn)
|
| 2308 |
|
|
{
|
| 2309 |
|
|
/* NEXT and INSN reside in one ebb. */
|
| 2310 |
|
|
return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
|
| 2311 |
|
|
}
|
| 2312 |
|
|
|
| 2313 |
|
|
/* INSN is a JUMP_INSN, COND_SET is the set of registers that are
|
| 2314 |
|
|
conditionally set before INSN. Store the set of registers that
|
| 2315 |
|
|
must be considered as used by this jump in USED and that of
|
| 2316 |
|
|
registers that must be considered as set in SET. */
|
| 2317 |
|
|
|
| 2318 |
|
|
static void
|
| 2319 |
|
|
compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
|
| 2320 |
|
|
regset cond_exec ATTRIBUTE_UNUSED,
|
| 2321 |
|
|
regset used ATTRIBUTE_UNUSED,
|
| 2322 |
|
|
regset set ATTRIBUTE_UNUSED)
|
| 2323 |
|
|
{
|
| 2324 |
|
|
/* Nothing to do here, since we postprocess jumps in
|
| 2325 |
|
|
add_branch_dependences. */
|
| 2326 |
|
|
}
|
| 2327 |
|
|
|
| 2328 |
|
|
/* This variable holds common_sched_info hooks and data relevant to
|
| 2329 |
|
|
the interblock scheduler. */
|
| 2330 |
|
|
static struct common_sched_info_def rgn_common_sched_info;
|
| 2331 |
|
|
|
| 2332 |
|
|
|
| 2333 |
|
|
/* This holds data for the dependence analysis relevant to
|
| 2334 |
|
|
the interblock scheduler. */
|
| 2335 |
|
|
static struct sched_deps_info_def rgn_sched_deps_info;
|
| 2336 |
|
|
|
| 2337 |
|
|
/* This holds constant data used for initializing the above structure
|
| 2338 |
|
|
for the Haifa scheduler. */
|
| 2339 |
|
|
static const struct sched_deps_info_def rgn_const_sched_deps_info =
|
| 2340 |
|
|
{
|
| 2341 |
|
|
compute_jump_reg_dependencies,
|
| 2342 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
| 2343 |
|
|
0, 0, 0
|
| 2344 |
|
|
};
|
| 2345 |
|
|
|
| 2346 |
|
|
/* Same as above, but for the selective scheduler. */
|
| 2347 |
|
|
static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
|
| 2348 |
|
|
{
|
| 2349 |
|
|
compute_jump_reg_dependencies,
|
| 2350 |
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
| 2351 |
|
|
0, 0, 0
|
| 2352 |
|
|
};
|
| 2353 |
|
|
|
| 2354 |
|
|
/* Return true if scheduling INSN will trigger finish of scheduling
|
| 2355 |
|
|
current block. */
|
| 2356 |
|
|
static bool
|
| 2357 |
|
|
rgn_insn_finishes_block_p (rtx insn)
|
| 2358 |
|
|
{
|
| 2359 |
|
|
if (INSN_BB (insn) == target_bb
|
| 2360 |
|
|
&& sched_target_n_insns + 1 == target_n_insns)
|
| 2361 |
|
|
/* INSN is the last not-scheduled instruction in the current block. */
|
| 2362 |
|
|
return true;
|
| 2363 |
|
|
|
| 2364 |
|
|
return false;
|
| 2365 |
|
|
}
|
| 2366 |
|
|
|
| 2367 |
|
|
/* Used in schedule_insns to initialize current_sched_info for scheduling
|
| 2368 |
|
|
regions (or single basic blocks). */
|
| 2369 |
|
|
|
| 2370 |
|
|
static const struct haifa_sched_info rgn_const_sched_info =
|
| 2371 |
|
|
{
|
| 2372 |
|
|
init_ready_list,
|
| 2373 |
|
|
can_schedule_ready_p,
|
| 2374 |
|
|
schedule_more_p,
|
| 2375 |
|
|
new_ready,
|
| 2376 |
|
|
rgn_rank,
|
| 2377 |
|
|
rgn_print_insn,
|
| 2378 |
|
|
contributes_to_priority,
|
| 2379 |
|
|
rgn_insn_finishes_block_p,
|
| 2380 |
|
|
|
| 2381 |
|
|
NULL, NULL,
|
| 2382 |
|
|
NULL, NULL,
|
| 2383 |
|
|
0, 0,
|
| 2384 |
|
|
|
| 2385 |
|
|
rgn_add_remove_insn,
|
| 2386 |
|
|
begin_schedule_ready,
|
| 2387 |
|
|
advance_target_bb,
|
| 2388 |
|
|
SCHED_RGN
|
| 2389 |
|
|
};
|
| 2390 |
|
|
|
| 2391 |
|
|
/* This variable holds the data and hooks needed to the Haifa scheduler backend
|
| 2392 |
|
|
for the interblock scheduler frontend. */
|
| 2393 |
|
|
static struct haifa_sched_info rgn_sched_info;
|
| 2394 |
|
|
|
| 2395 |
|
|
/* Returns maximum priority that an insn was assigned to. */
|
| 2396 |
|
|
|
| 2397 |
|
|
int
|
| 2398 |
|
|
get_rgn_sched_max_insns_priority (void)
|
| 2399 |
|
|
{
|
| 2400 |
|
|
return rgn_sched_info.sched_max_insns_priority;
|
| 2401 |
|
|
}
|
| 2402 |
|
|
|
| 2403 |
|
|
/* Determine if PAT sets a CLASS_LIKELY_SPILLED_P register. */
|
| 2404 |
|
|
|
| 2405 |
|
|
static bool
|
| 2406 |
|
|
sets_likely_spilled (rtx pat)
|
| 2407 |
|
|
{
|
| 2408 |
|
|
bool ret = false;
|
| 2409 |
|
|
note_stores (pat, sets_likely_spilled_1, &ret);
|
| 2410 |
|
|
return ret;
|
| 2411 |
|
|
}
|
| 2412 |
|
|
|
| 2413 |
|
|
static void
|
| 2414 |
|
|
sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
|
| 2415 |
|
|
{
|
| 2416 |
|
|
bool *ret = (bool *) data;
|
| 2417 |
|
|
|
| 2418 |
|
|
if (GET_CODE (pat) == SET
|
| 2419 |
|
|
&& REG_P (x)
|
| 2420 |
|
|
&& REGNO (x) < FIRST_PSEUDO_REGISTER
|
| 2421 |
|
|
&& CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
|
| 2422 |
|
|
*ret = true;
|
| 2423 |
|
|
}
|
| 2424 |
|
|
|
| 2425 |
|
|
/* A bitmap to note insns that participate in any dependency. Used in
|
| 2426 |
|
|
add_branch_dependences. */
|
| 2427 |
|
|
static sbitmap insn_referenced;
|
| 2428 |
|
|
|
| 2429 |
|
|
/* Add dependences so that branches are scheduled to run last in their
|
| 2430 |
|
|
block. */
|
| 2431 |
|
|
static void
|
| 2432 |
|
|
add_branch_dependences (rtx head, rtx tail)
|
| 2433 |
|
|
{
|
| 2434 |
|
|
rtx insn, last;
|
| 2435 |
|
|
|
| 2436 |
|
|
/* For all branches, calls, uses, clobbers, cc0 setters, and instructions
|
| 2437 |
|
|
that can throw exceptions, force them to remain in order at the end of
|
| 2438 |
|
|
the block by adding dependencies and giving the last a high priority.
|
| 2439 |
|
|
There may be notes present, and prev_head may also be a note.
|
| 2440 |
|
|
|
| 2441 |
|
|
Branches must obviously remain at the end. Calls should remain at the
|
| 2442 |
|
|
end since moving them results in worse register allocation. Uses remain
|
| 2443 |
|
|
at the end to ensure proper register allocation.
|
| 2444 |
|
|
|
| 2445 |
|
|
cc0 setters remain at the end because they can't be moved away from
|
| 2446 |
|
|
their cc0 user.
|
| 2447 |
|
|
|
| 2448 |
|
|
COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
|
| 2449 |
|
|
|
| 2450 |
|
|
Insns setting CLASS_LIKELY_SPILLED_P registers (usually return values)
|
| 2451 |
|
|
are not moved before reload because we can wind up with register
|
| 2452 |
|
|
allocation failures. */
|
| 2453 |
|
|
|
| 2454 |
|
|
while (tail != head && DEBUG_INSN_P (tail))
|
| 2455 |
|
|
tail = PREV_INSN (tail);
|
| 2456 |
|
|
|
| 2457 |
|
|
insn = tail;
|
| 2458 |
|
|
last = 0;
|
| 2459 |
|
|
while (CALL_P (insn)
|
| 2460 |
|
|
|| JUMP_P (insn)
|
| 2461 |
|
|
|| (NONJUMP_INSN_P (insn)
|
| 2462 |
|
|
&& (GET_CODE (PATTERN (insn)) == USE
|
| 2463 |
|
|
|| GET_CODE (PATTERN (insn)) == CLOBBER
|
| 2464 |
|
|
|| can_throw_internal (insn)
|
| 2465 |
|
|
#ifdef HAVE_cc0
|
| 2466 |
|
|
|| sets_cc0_p (PATTERN (insn))
|
| 2467 |
|
|
#endif
|
| 2468 |
|
|
|| (!reload_completed
|
| 2469 |
|
|
&& sets_likely_spilled (PATTERN (insn)))))
|
| 2470 |
|
|
|| NOTE_P (insn))
|
| 2471 |
|
|
{
|
| 2472 |
|
|
if (!NOTE_P (insn))
|
| 2473 |
|
|
{
|
| 2474 |
|
|
if (last != 0
|
| 2475 |
|
|
&& sd_find_dep_between (insn, last, false) == NULL)
|
| 2476 |
|
|
{
|
| 2477 |
|
|
if (! sched_insns_conditions_mutex_p (last, insn))
|
| 2478 |
|
|
add_dependence (last, insn, REG_DEP_ANTI);
|
| 2479 |
|
|
SET_BIT (insn_referenced, INSN_LUID (insn));
|
| 2480 |
|
|
}
|
| 2481 |
|
|
|
| 2482 |
|
|
CANT_MOVE (insn) = 1;
|
| 2483 |
|
|
|
| 2484 |
|
|
last = insn;
|
| 2485 |
|
|
}
|
| 2486 |
|
|
|
| 2487 |
|
|
/* Don't overrun the bounds of the basic block. */
|
| 2488 |
|
|
if (insn == head)
|
| 2489 |
|
|
break;
|
| 2490 |
|
|
|
| 2491 |
|
|
do
|
| 2492 |
|
|
insn = PREV_INSN (insn);
|
| 2493 |
|
|
while (insn != head && DEBUG_INSN_P (insn));
|
| 2494 |
|
|
}
|
| 2495 |
|
|
|
| 2496 |
|
|
/* Make sure these insns are scheduled last in their block. */
|
| 2497 |
|
|
insn = last;
|
| 2498 |
|
|
if (insn != 0)
|
| 2499 |
|
|
while (insn != head)
|
| 2500 |
|
|
{
|
| 2501 |
|
|
insn = prev_nonnote_insn (insn);
|
| 2502 |
|
|
|
| 2503 |
|
|
if (TEST_BIT (insn_referenced, INSN_LUID (insn))
|
| 2504 |
|
|
|| DEBUG_INSN_P (insn))
|
| 2505 |
|
|
continue;
|
| 2506 |
|
|
|
| 2507 |
|
|
if (! sched_insns_conditions_mutex_p (last, insn))
|
| 2508 |
|
|
add_dependence (last, insn, REG_DEP_ANTI);
|
| 2509 |
|
|
}
|
| 2510 |
|
|
|
| 2511 |
|
|
if (!targetm.have_conditional_execution ())
|
| 2512 |
|
|
return;
|
| 2513 |
|
|
|
| 2514 |
|
|
/* Finally, if the block ends in a jump, and we are doing intra-block
|
| 2515 |
|
|
scheduling, make sure that the branch depends on any COND_EXEC insns
|
| 2516 |
|
|
inside the block to avoid moving the COND_EXECs past the branch insn.
|
| 2517 |
|
|
|
| 2518 |
|
|
We only have to do this after reload, because (1) before reload there
|
| 2519 |
|
|
are no COND_EXEC insns, and (2) the region scheduler is an intra-block
|
| 2520 |
|
|
scheduler after reload.
|
| 2521 |
|
|
|
| 2522 |
|
|
FIXME: We could in some cases move COND_EXEC insns past the branch if
|
| 2523 |
|
|
this scheduler would be a little smarter. Consider this code:
|
| 2524 |
|
|
|
| 2525 |
|
|
T = [addr]
|
| 2526 |
|
|
C ? addr += 4
|
| 2527 |
|
|
!C ? X += 12
|
| 2528 |
|
|
C ? T += 1
|
| 2529 |
|
|
C ? jump foo
|
| 2530 |
|
|
|
| 2531 |
|
|
On a target with a one cycle stall on a memory access the optimal
|
| 2532 |
|
|
sequence would be:
|
| 2533 |
|
|
|
| 2534 |
|
|
T = [addr]
|
| 2535 |
|
|
C ? addr += 4
|
| 2536 |
|
|
C ? T += 1
|
| 2537 |
|
|
C ? jump foo
|
| 2538 |
|
|
!C ? X += 12
|
| 2539 |
|
|
|
| 2540 |
|
|
We don't want to put the 'X += 12' before the branch because it just
|
| 2541 |
|
|
wastes a cycle of execution time when the branch is taken.
|
| 2542 |
|
|
|
| 2543 |
|
|
Note that in the example "!C" will always be true. That is another
|
| 2544 |
|
|
possible improvement for handling COND_EXECs in this scheduler: it
|
| 2545 |
|
|
could remove always-true predicates. */
|
| 2546 |
|
|
|
| 2547 |
|
|
if (!reload_completed || ! JUMP_P (tail))
|
| 2548 |
|
|
return;
|
| 2549 |
|
|
|
| 2550 |
|
|
insn = tail;
|
| 2551 |
|
|
while (insn != head)
|
| 2552 |
|
|
{
|
| 2553 |
|
|
insn = PREV_INSN (insn);
|
| 2554 |
|
|
|
| 2555 |
|
|
/* Note that we want to add this dependency even when
|
| 2556 |
|
|
sched_insns_conditions_mutex_p returns true. The whole point
|
| 2557 |
|
|
is that we _want_ this dependency, even if these insns really
|
| 2558 |
|
|
are independent. */
|
| 2559 |
|
|
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
|
| 2560 |
|
|
add_dependence (tail, insn, REG_DEP_ANTI);
|
| 2561 |
|
|
}
|
| 2562 |
|
|
}
|
| 2563 |
|
|
|
| 2564 |
|
|
/* Data structures for the computation of data dependences in a regions. We
|
| 2565 |
|
|
keep one `deps' structure for every basic block. Before analyzing the
|
| 2566 |
|
|
data dependences for a bb, its variables are initialized as a function of
|
| 2567 |
|
|
the variables of its predecessors. When the analysis for a bb completes,
|
| 2568 |
|
|
we save the contents to the corresponding bb_deps[bb] variable. */
|
| 2569 |
|
|
|
| 2570 |
|
|
static struct deps_desc *bb_deps;
|
| 2571 |
|
|
|
| 2572 |
|
|
/* Duplicate the INSN_LIST elements of COPY and prepend them to OLD. */
|
| 2573 |
|
|
|
| 2574 |
|
|
static rtx
|
| 2575 |
|
|
concat_INSN_LIST (rtx copy, rtx old)
|
| 2576 |
|
|
{
|
| 2577 |
|
|
rtx new_rtx = old;
|
| 2578 |
|
|
for (; copy ; copy = XEXP (copy, 1))
|
| 2579 |
|
|
new_rtx = alloc_INSN_LIST (XEXP (copy, 0), new_rtx);
|
| 2580 |
|
|
return new_rtx;
|
| 2581 |
|
|
}
|
| 2582 |
|
|
|
| 2583 |
|
|
static void
|
| 2584 |
|
|
concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
|
| 2585 |
|
|
rtx *old_mems_p)
|
| 2586 |
|
|
{
|
| 2587 |
|
|
rtx new_insns = *old_insns_p;
|
| 2588 |
|
|
rtx new_mems = *old_mems_p;
|
| 2589 |
|
|
|
| 2590 |
|
|
while (copy_insns)
|
| 2591 |
|
|
{
|
| 2592 |
|
|
new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
|
| 2593 |
|
|
new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
|
| 2594 |
|
|
copy_insns = XEXP (copy_insns, 1);
|
| 2595 |
|
|
copy_mems = XEXP (copy_mems, 1);
|
| 2596 |
|
|
}
|
| 2597 |
|
|
|
| 2598 |
|
|
*old_insns_p = new_insns;
|
| 2599 |
|
|
*old_mems_p = new_mems;
|
| 2600 |
|
|
}
|
| 2601 |
|
|
|
| 2602 |
|
|
/* Join PRED_DEPS to the SUCC_DEPS. */
|
| 2603 |
|
|
void
|
| 2604 |
|
|
deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
|
| 2605 |
|
|
{
|
| 2606 |
|
|
unsigned reg;
|
| 2607 |
|
|
reg_set_iterator rsi;
|
| 2608 |
|
|
|
| 2609 |
|
|
/* The reg_last lists are inherited by successor. */
|
| 2610 |
|
|
EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
|
| 2611 |
|
|
{
|
| 2612 |
|
|
struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
|
| 2613 |
|
|
struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
|
| 2614 |
|
|
|
| 2615 |
|
|
succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
|
| 2616 |
|
|
succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
|
| 2617 |
|
|
succ_rl->implicit_sets
|
| 2618 |
|
|
= concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
|
| 2619 |
|
|
succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
|
| 2620 |
|
|
succ_rl->clobbers);
|
| 2621 |
|
|
succ_rl->uses_length += pred_rl->uses_length;
|
| 2622 |
|
|
succ_rl->clobbers_length += pred_rl->clobbers_length;
|
| 2623 |
|
|
}
|
| 2624 |
|
|
IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
|
| 2625 |
|
|
|
| 2626 |
|
|
/* Mem read/write lists are inherited by successor. */
|
| 2627 |
|
|
concat_insn_mem_list (pred_deps->pending_read_insns,
|
| 2628 |
|
|
pred_deps->pending_read_mems,
|
| 2629 |
|
|
&succ_deps->pending_read_insns,
|
| 2630 |
|
|
&succ_deps->pending_read_mems);
|
| 2631 |
|
|
concat_insn_mem_list (pred_deps->pending_write_insns,
|
| 2632 |
|
|
pred_deps->pending_write_mems,
|
| 2633 |
|
|
&succ_deps->pending_write_insns,
|
| 2634 |
|
|
&succ_deps->pending_write_mems);
|
| 2635 |
|
|
|
| 2636 |
|
|
succ_deps->last_pending_memory_flush
|
| 2637 |
|
|
= concat_INSN_LIST (pred_deps->last_pending_memory_flush,
|
| 2638 |
|
|
succ_deps->last_pending_memory_flush);
|
| 2639 |
|
|
|
| 2640 |
|
|
succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
|
| 2641 |
|
|
succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
|
| 2642 |
|
|
succ_deps->pending_flush_length += pred_deps->pending_flush_length;
|
| 2643 |
|
|
|
| 2644 |
|
|
/* last_function_call is inherited by successor. */
|
| 2645 |
|
|
succ_deps->last_function_call
|
| 2646 |
|
|
= concat_INSN_LIST (pred_deps->last_function_call,
|
| 2647 |
|
|
succ_deps->last_function_call);
|
| 2648 |
|
|
|
| 2649 |
|
|
/* last_function_call_may_noreturn is inherited by successor. */
|
| 2650 |
|
|
succ_deps->last_function_call_may_noreturn
|
| 2651 |
|
|
= concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
|
| 2652 |
|
|
succ_deps->last_function_call_may_noreturn);
|
| 2653 |
|
|
|
| 2654 |
|
|
/* sched_before_next_call is inherited by successor. */
|
| 2655 |
|
|
succ_deps->sched_before_next_call
|
| 2656 |
|
|
= concat_INSN_LIST (pred_deps->sched_before_next_call,
|
| 2657 |
|
|
succ_deps->sched_before_next_call);
|
| 2658 |
|
|
}
|
| 2659 |
|
|
|
| 2660 |
|
|
/* After computing the dependencies for block BB, propagate the dependencies
|
| 2661 |
|
|
found in TMP_DEPS to the successors of the block. */
|
| 2662 |
|
|
static void
|
| 2663 |
|
|
propagate_deps (int bb, struct deps_desc *pred_deps)
|
| 2664 |
|
|
{
|
| 2665 |
|
|
basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
|
| 2666 |
|
|
edge_iterator ei;
|
| 2667 |
|
|
edge e;
|
| 2668 |
|
|
|
| 2669 |
|
|
/* bb's structures are inherited by its successors. */
|
| 2670 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
| 2671 |
|
|
{
|
| 2672 |
|
|
/* Only bbs "below" bb, in the same region, are interesting. */
|
| 2673 |
|
|
if (e->dest == EXIT_BLOCK_PTR
|
| 2674 |
|
|
|| CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
|
| 2675 |
|
|
|| BLOCK_TO_BB (e->dest->index) <= bb)
|
| 2676 |
|
|
continue;
|
| 2677 |
|
|
|
| 2678 |
|
|
deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
|
| 2679 |
|
|
}
|
| 2680 |
|
|
|
| 2681 |
|
|
/* These lists should point to the right place, for correct
|
| 2682 |
|
|
freeing later. */
|
| 2683 |
|
|
bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
|
| 2684 |
|
|
bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
|
| 2685 |
|
|
bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
|
| 2686 |
|
|
bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
|
| 2687 |
|
|
|
| 2688 |
|
|
/* Can't allow these to be freed twice. */
|
| 2689 |
|
|
pred_deps->pending_read_insns = 0;
|
| 2690 |
|
|
pred_deps->pending_read_mems = 0;
|
| 2691 |
|
|
pred_deps->pending_write_insns = 0;
|
| 2692 |
|
|
pred_deps->pending_write_mems = 0;
|
| 2693 |
|
|
}
|
| 2694 |
|
|
|
| 2695 |
|
|
/* Compute dependences inside bb. In a multiple blocks region:
|
| 2696 |
|
|
(1) a bb is analyzed after its predecessors, and (2) the lists in
|
| 2697 |
|
|
effect at the end of bb (after analyzing for bb) are inherited by
|
| 2698 |
|
|
bb's successors.
|
| 2699 |
|
|
|
| 2700 |
|
|
Specifically for reg-reg data dependences, the block insns are
|
| 2701 |
|
|
scanned by sched_analyze () top-to-bottom. Three lists are
|
| 2702 |
|
|
maintained by sched_analyze (): reg_last[].sets for register DEFs,
|
| 2703 |
|
|
reg_last[].implicit_sets for implicit hard register DEFs, and
|
| 2704 |
|
|
reg_last[].uses for register USEs.
|
| 2705 |
|
|
|
| 2706 |
|
|
When analysis is completed for bb, we update for its successors:
|
| 2707 |
|
|
; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
|
| 2708 |
|
|
; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
|
| 2709 |
|
|
; - USES[succ] = Union (USES [succ], DEFS [bb])
|
| 2710 |
|
|
|
| 2711 |
|
|
The mechanism for computing mem-mem data dependence is very
|
| 2712 |
|
|
similar, and the result is interblock dependences in the region. */
|
| 2713 |
|
|
|
| 2714 |
|
|
static void
|
| 2715 |
|
|
compute_block_dependences (int bb)
|
| 2716 |
|
|
{
|
| 2717 |
|
|
rtx head, tail;
|
| 2718 |
|
|
struct deps_desc tmp_deps;
|
| 2719 |
|
|
|
| 2720 |
|
|
tmp_deps = bb_deps[bb];
|
| 2721 |
|
|
|
| 2722 |
|
|
/* Do the analysis for this block. */
|
| 2723 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
|
| 2724 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
| 2725 |
|
|
|
| 2726 |
|
|
sched_analyze (&tmp_deps, head, tail);
|
| 2727 |
|
|
|
| 2728 |
|
|
/* Selective scheduling handles control dependencies by itself. */
|
| 2729 |
|
|
if (!sel_sched_p ())
|
| 2730 |
|
|
add_branch_dependences (head, tail);
|
| 2731 |
|
|
|
| 2732 |
|
|
if (current_nr_blocks > 1)
|
| 2733 |
|
|
propagate_deps (bb, &tmp_deps);
|
| 2734 |
|
|
|
| 2735 |
|
|
/* Free up the INSN_LISTs. */
|
| 2736 |
|
|
free_deps (&tmp_deps);
|
| 2737 |
|
|
|
| 2738 |
|
|
if (targetm.sched.dependencies_evaluation_hook)
|
| 2739 |
|
|
targetm.sched.dependencies_evaluation_hook (head, tail);
|
| 2740 |
|
|
}
|
| 2741 |
|
|
|
| 2742 |
|
|
/* Free dependencies of instructions inside BB. */
|
| 2743 |
|
|
static void
|
| 2744 |
|
|
free_block_dependencies (int bb)
|
| 2745 |
|
|
{
|
| 2746 |
|
|
rtx head;
|
| 2747 |
|
|
rtx tail;
|
| 2748 |
|
|
|
| 2749 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
| 2750 |
|
|
|
| 2751 |
|
|
if (no_real_insns_p (head, tail))
|
| 2752 |
|
|
return;
|
| 2753 |
|
|
|
| 2754 |
|
|
sched_free_deps (head, tail, true);
|
| 2755 |
|
|
}
|
| 2756 |
|
|
|
| 2757 |
|
|
/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
|
| 2758 |
|
|
them to the unused_*_list variables, so that they can be reused. */
|
| 2759 |
|
|
|
| 2760 |
|
|
static void
|
| 2761 |
|
|
free_pending_lists (void)
|
| 2762 |
|
|
{
|
| 2763 |
|
|
int bb;
|
| 2764 |
|
|
|
| 2765 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 2766 |
|
|
{
|
| 2767 |
|
|
free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
|
| 2768 |
|
|
free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
|
| 2769 |
|
|
free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
|
| 2770 |
|
|
free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
|
| 2771 |
|
|
}
|
| 2772 |
|
|
}
|
| 2773 |
|
|
|
| 2774 |
|
|
/* Print dependences for debugging starting from FROM_BB.
|
| 2775 |
|
|
Callable from debugger. */
|
| 2776 |
|
|
/* Print dependences for debugging starting from FROM_BB.
|
| 2777 |
|
|
Callable from debugger. */
|
| 2778 |
|
|
void
|
| 2779 |
|
|
debug_rgn_dependencies (int from_bb)
|
| 2780 |
|
|
{
|
| 2781 |
|
|
int bb;
|
| 2782 |
|
|
|
| 2783 |
|
|
fprintf (sched_dump,
|
| 2784 |
|
|
";; --------------- forward dependences: ------------ \n");
|
| 2785 |
|
|
|
| 2786 |
|
|
for (bb = from_bb; bb < current_nr_blocks; bb++)
|
| 2787 |
|
|
{
|
| 2788 |
|
|
rtx head, tail;
|
| 2789 |
|
|
|
| 2790 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
| 2791 |
|
|
fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
|
| 2792 |
|
|
BB_TO_BLOCK (bb), bb);
|
| 2793 |
|
|
|
| 2794 |
|
|
debug_dependencies (head, tail);
|
| 2795 |
|
|
}
|
| 2796 |
|
|
}
|
| 2797 |
|
|
|
| 2798 |
|
|
/* Print dependencies information for instructions between HEAD and TAIL.
|
| 2799 |
|
|
??? This function would probably fit best in haifa-sched.c. */
|
| 2800 |
|
|
void debug_dependencies (rtx head, rtx tail)
|
| 2801 |
|
|
{
|
| 2802 |
|
|
rtx insn;
|
| 2803 |
|
|
rtx next_tail = NEXT_INSN (tail);
|
| 2804 |
|
|
|
| 2805 |
|
|
fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
|
| 2806 |
|
|
"insn", "code", "bb", "dep", "prio", "cost",
|
| 2807 |
|
|
"reservation");
|
| 2808 |
|
|
fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
|
| 2809 |
|
|
"----", "----", "--", "---", "----", "----",
|
| 2810 |
|
|
"-----------");
|
| 2811 |
|
|
|
| 2812 |
|
|
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
|
| 2813 |
|
|
{
|
| 2814 |
|
|
if (! INSN_P (insn))
|
| 2815 |
|
|
{
|
| 2816 |
|
|
int n;
|
| 2817 |
|
|
fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
|
| 2818 |
|
|
if (NOTE_P (insn))
|
| 2819 |
|
|
{
|
| 2820 |
|
|
n = NOTE_KIND (insn);
|
| 2821 |
|
|
fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
|
| 2822 |
|
|
}
|
| 2823 |
|
|
else
|
| 2824 |
|
|
fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
|
| 2825 |
|
|
continue;
|
| 2826 |
|
|
}
|
| 2827 |
|
|
|
| 2828 |
|
|
fprintf (sched_dump,
|
| 2829 |
|
|
";; %s%5d%6d%6d%6d%6d%6d ",
|
| 2830 |
|
|
(SCHED_GROUP_P (insn) ? "+" : " "),
|
| 2831 |
|
|
INSN_UID (insn),
|
| 2832 |
|
|
INSN_CODE (insn),
|
| 2833 |
|
|
BLOCK_NUM (insn),
|
| 2834 |
|
|
sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
|
| 2835 |
|
|
(sel_sched_p () ? (sched_emulate_haifa_p ? -1
|
| 2836 |
|
|
: INSN_PRIORITY (insn))
|
| 2837 |
|
|
: INSN_PRIORITY (insn)),
|
| 2838 |
|
|
(sel_sched_p () ? (sched_emulate_haifa_p ? -1
|
| 2839 |
|
|
: insn_cost (insn))
|
| 2840 |
|
|
: insn_cost (insn)));
|
| 2841 |
|
|
|
| 2842 |
|
|
if (recog_memoized (insn) < 0)
|
| 2843 |
|
|
fprintf (sched_dump, "nothing");
|
| 2844 |
|
|
else
|
| 2845 |
|
|
print_reservation (sched_dump, insn);
|
| 2846 |
|
|
|
| 2847 |
|
|
fprintf (sched_dump, "\t: ");
|
| 2848 |
|
|
{
|
| 2849 |
|
|
sd_iterator_def sd_it;
|
| 2850 |
|
|
dep_t dep;
|
| 2851 |
|
|
|
| 2852 |
|
|
FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
|
| 2853 |
|
|
fprintf (sched_dump, "%d ", INSN_UID (DEP_CON (dep)));
|
| 2854 |
|
|
}
|
| 2855 |
|
|
fprintf (sched_dump, "\n");
|
| 2856 |
|
|
}
|
| 2857 |
|
|
|
| 2858 |
|
|
fprintf (sched_dump, "\n");
|
| 2859 |
|
|
}
|
| 2860 |
|
|
|
| 2861 |
|
|
/* Returns true if all the basic blocks of the current region have
|
| 2862 |
|
|
NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
|
| 2863 |
|
|
bool
|
| 2864 |
|
|
sched_is_disabled_for_current_region_p (void)
|
| 2865 |
|
|
{
|
| 2866 |
|
|
int bb;
|
| 2867 |
|
|
|
| 2868 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 2869 |
|
|
if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
|
| 2870 |
|
|
return false;
|
| 2871 |
|
|
|
| 2872 |
|
|
return true;
|
| 2873 |
|
|
}
|
| 2874 |
|
|
|
| 2875 |
|
|
/* Free all region dependencies saved in INSN_BACK_DEPS and
|
| 2876 |
|
|
INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
|
| 2877 |
|
|
when scheduling, so this function is supposed to be called from
|
| 2878 |
|
|
the selective scheduling only. */
|
| 2879 |
|
|
void
|
| 2880 |
|
|
free_rgn_deps (void)
|
| 2881 |
|
|
{
|
| 2882 |
|
|
int bb;
|
| 2883 |
|
|
|
| 2884 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 2885 |
|
|
{
|
| 2886 |
|
|
rtx head, tail;
|
| 2887 |
|
|
|
| 2888 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
|
| 2889 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
| 2890 |
|
|
|
| 2891 |
|
|
sched_free_deps (head, tail, false);
|
| 2892 |
|
|
}
|
| 2893 |
|
|
}
|
| 2894 |
|
|
|
| 2895 |
|
|
static int rgn_n_insns;
|
| 2896 |
|
|
|
| 2897 |
|
|
/* Compute insn priority for a current region. */
|
| 2898 |
|
|
void
|
| 2899 |
|
|
compute_priorities (void)
|
| 2900 |
|
|
{
|
| 2901 |
|
|
int bb;
|
| 2902 |
|
|
|
| 2903 |
|
|
current_sched_info->sched_max_insns_priority = 0;
|
| 2904 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 2905 |
|
|
{
|
| 2906 |
|
|
rtx head, tail;
|
| 2907 |
|
|
|
| 2908 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
|
| 2909 |
|
|
get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
|
| 2910 |
|
|
|
| 2911 |
|
|
if (no_real_insns_p (head, tail))
|
| 2912 |
|
|
continue;
|
| 2913 |
|
|
|
| 2914 |
|
|
rgn_n_insns += set_priorities (head, tail);
|
| 2915 |
|
|
}
|
| 2916 |
|
|
current_sched_info->sched_max_insns_priority++;
|
| 2917 |
|
|
}
|
| 2918 |
|
|
|
| 2919 |
|
|
/* Schedule a region. A region is either an inner loop, a loop-free
|
| 2920 |
|
|
subroutine, or a single basic block. Each bb in the region is
|
| 2921 |
|
|
scheduled after its flow predecessors. */
|
| 2922 |
|
|
|
| 2923 |
|
|
static void
|
| 2924 |
|
|
schedule_region (int rgn)
|
| 2925 |
|
|
{
|
| 2926 |
|
|
int bb;
|
| 2927 |
|
|
int sched_rgn_n_insns = 0;
|
| 2928 |
|
|
|
| 2929 |
|
|
rgn_n_insns = 0;
|
| 2930 |
|
|
|
| 2931 |
|
|
rgn_setup_region (rgn);
|
| 2932 |
|
|
|
| 2933 |
|
|
/* Don't schedule region that is marked by
|
| 2934 |
|
|
NOTE_DISABLE_SCHED_OF_BLOCK. */
|
| 2935 |
|
|
if (sched_is_disabled_for_current_region_p ())
|
| 2936 |
|
|
return;
|
| 2937 |
|
|
|
| 2938 |
|
|
sched_rgn_compute_dependencies (rgn);
|
| 2939 |
|
|
|
| 2940 |
|
|
sched_rgn_local_init (rgn);
|
| 2941 |
|
|
|
| 2942 |
|
|
/* Set priorities. */
|
| 2943 |
|
|
compute_priorities ();
|
| 2944 |
|
|
|
| 2945 |
|
|
sched_extend_ready_list (rgn_n_insns);
|
| 2946 |
|
|
|
| 2947 |
|
|
if (sched_pressure_p)
|
| 2948 |
|
|
{
|
| 2949 |
|
|
sched_init_region_reg_pressure_info ();
|
| 2950 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 2951 |
|
|
{
|
| 2952 |
|
|
basic_block first_bb, last_bb;
|
| 2953 |
|
|
rtx head, tail;
|
| 2954 |
|
|
|
| 2955 |
|
|
first_bb = EBB_FIRST_BB (bb);
|
| 2956 |
|
|
last_bb = EBB_LAST_BB (bb);
|
| 2957 |
|
|
|
| 2958 |
|
|
get_ebb_head_tail (first_bb, last_bb, &head, &tail);
|
| 2959 |
|
|
|
| 2960 |
|
|
if (no_real_insns_p (head, tail))
|
| 2961 |
|
|
{
|
| 2962 |
|
|
gcc_assert (first_bb == last_bb);
|
| 2963 |
|
|
continue;
|
| 2964 |
|
|
}
|
| 2965 |
|
|
sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
|
| 2966 |
|
|
}
|
| 2967 |
|
|
}
|
| 2968 |
|
|
|
| 2969 |
|
|
/* Now we can schedule all blocks. */
|
| 2970 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 2971 |
|
|
{
|
| 2972 |
|
|
basic_block first_bb, last_bb, curr_bb;
|
| 2973 |
|
|
rtx head, tail;
|
| 2974 |
|
|
|
| 2975 |
|
|
first_bb = EBB_FIRST_BB (bb);
|
| 2976 |
|
|
last_bb = EBB_LAST_BB (bb);
|
| 2977 |
|
|
|
| 2978 |
|
|
get_ebb_head_tail (first_bb, last_bb, &head, &tail);
|
| 2979 |
|
|
|
| 2980 |
|
|
if (no_real_insns_p (head, tail))
|
| 2981 |
|
|
{
|
| 2982 |
|
|
gcc_assert (first_bb == last_bb);
|
| 2983 |
|
|
continue;
|
| 2984 |
|
|
}
|
| 2985 |
|
|
|
| 2986 |
|
|
current_sched_info->prev_head = PREV_INSN (head);
|
| 2987 |
|
|
current_sched_info->next_tail = NEXT_INSN (tail);
|
| 2988 |
|
|
|
| 2989 |
|
|
remove_notes (head, tail);
|
| 2990 |
|
|
|
| 2991 |
|
|
unlink_bb_notes (first_bb, last_bb);
|
| 2992 |
|
|
|
| 2993 |
|
|
target_bb = bb;
|
| 2994 |
|
|
|
| 2995 |
|
|
gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
|
| 2996 |
|
|
current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
|
| 2997 |
|
|
|
| 2998 |
|
|
curr_bb = first_bb;
|
| 2999 |
|
|
if (dbg_cnt (sched_block))
|
| 3000 |
|
|
{
|
| 3001 |
|
|
schedule_block (&curr_bb);
|
| 3002 |
|
|
gcc_assert (EBB_FIRST_BB (bb) == first_bb);
|
| 3003 |
|
|
sched_rgn_n_insns += sched_n_insns;
|
| 3004 |
|
|
}
|
| 3005 |
|
|
else
|
| 3006 |
|
|
{
|
| 3007 |
|
|
sched_rgn_n_insns += rgn_n_insns;
|
| 3008 |
|
|
}
|
| 3009 |
|
|
|
| 3010 |
|
|
/* Clean up. */
|
| 3011 |
|
|
if (current_nr_blocks > 1)
|
| 3012 |
|
|
free_trg_info ();
|
| 3013 |
|
|
}
|
| 3014 |
|
|
|
| 3015 |
|
|
/* Sanity check: verify that all region insns were scheduled. */
|
| 3016 |
|
|
gcc_assert (sched_rgn_n_insns == rgn_n_insns);
|
| 3017 |
|
|
|
| 3018 |
|
|
sched_finish_ready_list ();
|
| 3019 |
|
|
|
| 3020 |
|
|
/* Done with this region. */
|
| 3021 |
|
|
sched_rgn_local_finish ();
|
| 3022 |
|
|
|
| 3023 |
|
|
/* Free dependencies. */
|
| 3024 |
|
|
for (bb = 0; bb < current_nr_blocks; ++bb)
|
| 3025 |
|
|
free_block_dependencies (bb);
|
| 3026 |
|
|
|
| 3027 |
|
|
gcc_assert (haifa_recovery_bb_ever_added_p
|
| 3028 |
|
|
|| deps_pools_are_empty_p ());
|
| 3029 |
|
|
}
|
| 3030 |
|
|
|
| 3031 |
|
|
/* Initialize data structures for region scheduling. */
|
| 3032 |
|
|
|
| 3033 |
|
|
void
|
| 3034 |
|
|
sched_rgn_init (bool single_blocks_p)
|
| 3035 |
|
|
{
|
| 3036 |
|
|
min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
|
| 3037 |
|
|
/ 100);
|
| 3038 |
|
|
|
| 3039 |
|
|
nr_inter = 0;
|
| 3040 |
|
|
nr_spec = 0;
|
| 3041 |
|
|
|
| 3042 |
|
|
extend_regions ();
|
| 3043 |
|
|
|
| 3044 |
|
|
CONTAINING_RGN (ENTRY_BLOCK) = -1;
|
| 3045 |
|
|
CONTAINING_RGN (EXIT_BLOCK) = -1;
|
| 3046 |
|
|
|
| 3047 |
|
|
/* Compute regions for scheduling. */
|
| 3048 |
|
|
if (single_blocks_p
|
| 3049 |
|
|
|| n_basic_blocks == NUM_FIXED_BLOCKS + 1
|
| 3050 |
|
|
|| !flag_schedule_interblock
|
| 3051 |
|
|
|| is_cfg_nonregular ())
|
| 3052 |
|
|
{
|
| 3053 |
|
|
find_single_block_region (sel_sched_p ());
|
| 3054 |
|
|
}
|
| 3055 |
|
|
else
|
| 3056 |
|
|
{
|
| 3057 |
|
|
/* Compute the dominators and post dominators. */
|
| 3058 |
|
|
if (!sel_sched_p ())
|
| 3059 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
| 3060 |
|
|
|
| 3061 |
|
|
/* Find regions. */
|
| 3062 |
|
|
find_rgns ();
|
| 3063 |
|
|
|
| 3064 |
|
|
if (sched_verbose >= 3)
|
| 3065 |
|
|
debug_regions ();
|
| 3066 |
|
|
|
| 3067 |
|
|
/* For now. This will move as more and more of haifa is converted
|
| 3068 |
|
|
to using the cfg code. */
|
| 3069 |
|
|
if (!sel_sched_p ())
|
| 3070 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
| 3071 |
|
|
}
|
| 3072 |
|
|
|
| 3073 |
|
|
gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks);
|
| 3074 |
|
|
|
| 3075 |
|
|
RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
|
| 3076 |
|
|
RGN_NR_BLOCKS (nr_regions - 1));
|
| 3077 |
|
|
}
|
| 3078 |
|
|
|
| 3079 |
|
|
/* Free data structures for region scheduling. */
|
| 3080 |
|
|
void
|
| 3081 |
|
|
sched_rgn_finish (void)
|
| 3082 |
|
|
{
|
| 3083 |
|
|
/* Reposition the prologue and epilogue notes in case we moved the
|
| 3084 |
|
|
prologue/epilogue insns. */
|
| 3085 |
|
|
if (reload_completed)
|
| 3086 |
|
|
reposition_prologue_and_epilogue_notes ();
|
| 3087 |
|
|
|
| 3088 |
|
|
if (sched_verbose)
|
| 3089 |
|
|
{
|
| 3090 |
|
|
if (reload_completed == 0
|
| 3091 |
|
|
&& flag_schedule_interblock)
|
| 3092 |
|
|
{
|
| 3093 |
|
|
fprintf (sched_dump,
|
| 3094 |
|
|
"\n;; Procedure interblock/speculative motions == %d/%d \n",
|
| 3095 |
|
|
nr_inter, nr_spec);
|
| 3096 |
|
|
}
|
| 3097 |
|
|
else
|
| 3098 |
|
|
gcc_assert (nr_inter <= 0);
|
| 3099 |
|
|
fprintf (sched_dump, "\n\n");
|
| 3100 |
|
|
}
|
| 3101 |
|
|
|
| 3102 |
|
|
nr_regions = 0;
|
| 3103 |
|
|
|
| 3104 |
|
|
free (rgn_table);
|
| 3105 |
|
|
rgn_table = NULL;
|
| 3106 |
|
|
|
| 3107 |
|
|
free (rgn_bb_table);
|
| 3108 |
|
|
rgn_bb_table = NULL;
|
| 3109 |
|
|
|
| 3110 |
|
|
free (block_to_bb);
|
| 3111 |
|
|
block_to_bb = NULL;
|
| 3112 |
|
|
|
| 3113 |
|
|
free (containing_rgn);
|
| 3114 |
|
|
containing_rgn = NULL;
|
| 3115 |
|
|
|
| 3116 |
|
|
free (ebb_head);
|
| 3117 |
|
|
ebb_head = NULL;
|
| 3118 |
|
|
}
|
| 3119 |
|
|
|
| 3120 |
|
|
/* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
|
| 3121 |
|
|
point to the region RGN. */
|
| 3122 |
|
|
void
|
| 3123 |
|
|
rgn_setup_region (int rgn)
|
| 3124 |
|
|
{
|
| 3125 |
|
|
int bb;
|
| 3126 |
|
|
|
| 3127 |
|
|
/* Set variables for the current region. */
|
| 3128 |
|
|
current_nr_blocks = RGN_NR_BLOCKS (rgn);
|
| 3129 |
|
|
current_blocks = RGN_BLOCKS (rgn);
|
| 3130 |
|
|
|
| 3131 |
|
|
/* EBB_HEAD is a region-scope structure. But we realloc it for
|
| 3132 |
|
|
each region to save time/memory/something else.
|
| 3133 |
|
|
See comments in add_block1, for what reasons we allocate +1 element. */
|
| 3134 |
|
|
ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
|
| 3135 |
|
|
for (bb = 0; bb <= current_nr_blocks; bb++)
|
| 3136 |
|
|
ebb_head[bb] = current_blocks + bb;
|
| 3137 |
|
|
}
|
| 3138 |
|
|
|
| 3139 |
|
|
/* Compute instruction dependencies in region RGN. */
|
| 3140 |
|
|
void
|
| 3141 |
|
|
sched_rgn_compute_dependencies (int rgn)
|
| 3142 |
|
|
{
|
| 3143 |
|
|
if (!RGN_DONT_CALC_DEPS (rgn))
|
| 3144 |
|
|
{
|
| 3145 |
|
|
int bb;
|
| 3146 |
|
|
|
| 3147 |
|
|
if (sel_sched_p ())
|
| 3148 |
|
|
sched_emulate_haifa_p = 1;
|
| 3149 |
|
|
|
| 3150 |
|
|
init_deps_global ();
|
| 3151 |
|
|
|
| 3152 |
|
|
/* Initializations for region data dependence analysis. */
|
| 3153 |
|
|
bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
|
| 3154 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 3155 |
|
|
init_deps (bb_deps + bb, false);
|
| 3156 |
|
|
|
| 3157 |
|
|
/* Initialize bitmap used in add_branch_dependences. */
|
| 3158 |
|
|
insn_referenced = sbitmap_alloc (sched_max_luid);
|
| 3159 |
|
|
sbitmap_zero (insn_referenced);
|
| 3160 |
|
|
|
| 3161 |
|
|
/* Compute backward dependencies. */
|
| 3162 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 3163 |
|
|
compute_block_dependences (bb);
|
| 3164 |
|
|
|
| 3165 |
|
|
sbitmap_free (insn_referenced);
|
| 3166 |
|
|
free_pending_lists ();
|
| 3167 |
|
|
finish_deps_global ();
|
| 3168 |
|
|
free (bb_deps);
|
| 3169 |
|
|
|
| 3170 |
|
|
/* We don't want to recalculate this twice. */
|
| 3171 |
|
|
RGN_DONT_CALC_DEPS (rgn) = 1;
|
| 3172 |
|
|
|
| 3173 |
|
|
if (sel_sched_p ())
|
| 3174 |
|
|
sched_emulate_haifa_p = 0;
|
| 3175 |
|
|
}
|
| 3176 |
|
|
else
|
| 3177 |
|
|
/* (This is a recovery block. It is always a single block region.)
|
| 3178 |
|
|
OR (We use selective scheduling.) */
|
| 3179 |
|
|
gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
|
| 3180 |
|
|
}
|
| 3181 |
|
|
|
| 3182 |
|
|
/* Init region data structures. Returns true if this region should
|
| 3183 |
|
|
not be scheduled. */
|
| 3184 |
|
|
void
|
| 3185 |
|
|
sched_rgn_local_init (int rgn)
|
| 3186 |
|
|
{
|
| 3187 |
|
|
int bb;
|
| 3188 |
|
|
|
| 3189 |
|
|
/* Compute interblock info: probabilities, split-edges, dominators, etc. */
|
| 3190 |
|
|
if (current_nr_blocks > 1)
|
| 3191 |
|
|
{
|
| 3192 |
|
|
basic_block block;
|
| 3193 |
|
|
edge e;
|
| 3194 |
|
|
edge_iterator ei;
|
| 3195 |
|
|
|
| 3196 |
|
|
prob = XNEWVEC (int, current_nr_blocks);
|
| 3197 |
|
|
|
| 3198 |
|
|
dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
|
| 3199 |
|
|
sbitmap_vector_zero (dom, current_nr_blocks);
|
| 3200 |
|
|
|
| 3201 |
|
|
/* Use ->aux to implement EDGE_TO_BIT mapping. */
|
| 3202 |
|
|
rgn_nr_edges = 0;
|
| 3203 |
|
|
FOR_EACH_BB (block)
|
| 3204 |
|
|
{
|
| 3205 |
|
|
if (CONTAINING_RGN (block->index) != rgn)
|
| 3206 |
|
|
continue;
|
| 3207 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
| 3208 |
|
|
SET_EDGE_TO_BIT (e, rgn_nr_edges++);
|
| 3209 |
|
|
}
|
| 3210 |
|
|
|
| 3211 |
|
|
rgn_edges = XNEWVEC (edge, rgn_nr_edges);
|
| 3212 |
|
|
rgn_nr_edges = 0;
|
| 3213 |
|
|
FOR_EACH_BB (block)
|
| 3214 |
|
|
{
|
| 3215 |
|
|
if (CONTAINING_RGN (block->index) != rgn)
|
| 3216 |
|
|
continue;
|
| 3217 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
| 3218 |
|
|
rgn_edges[rgn_nr_edges++] = e;
|
| 3219 |
|
|
}
|
| 3220 |
|
|
|
| 3221 |
|
|
/* Split edges. */
|
| 3222 |
|
|
pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
|
| 3223 |
|
|
sbitmap_vector_zero (pot_split, current_nr_blocks);
|
| 3224 |
|
|
ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
|
| 3225 |
|
|
sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
|
| 3226 |
|
|
|
| 3227 |
|
|
/* Compute probabilities, dominators, split_edges. */
|
| 3228 |
|
|
for (bb = 0; bb < current_nr_blocks; bb++)
|
| 3229 |
|
|
compute_dom_prob_ps (bb);
|
| 3230 |
|
|
|
| 3231 |
|
|
/* Cleanup ->aux used for EDGE_TO_BIT mapping. */
|
| 3232 |
|
|
/* We don't need them anymore. But we want to avoid duplication of
|
| 3233 |
|
|
aux fields in the newly created edges. */
|
| 3234 |
|
|
FOR_EACH_BB (block)
|
| 3235 |
|
|
{
|
| 3236 |
|
|
if (CONTAINING_RGN (block->index) != rgn)
|
| 3237 |
|
|
continue;
|
| 3238 |
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
| 3239 |
|
|
e->aux = NULL;
|
| 3240 |
|
|
}
|
| 3241 |
|
|
}
|
| 3242 |
|
|
}
|
| 3243 |
|
|
|
| 3244 |
|
|
/* Free data computed for the finished region. */
|
| 3245 |
|
|
void
|
| 3246 |
|
|
sched_rgn_local_free (void)
|
| 3247 |
|
|
{
|
| 3248 |
|
|
free (prob);
|
| 3249 |
|
|
sbitmap_vector_free (dom);
|
| 3250 |
|
|
sbitmap_vector_free (pot_split);
|
| 3251 |
|
|
sbitmap_vector_free (ancestor_edges);
|
| 3252 |
|
|
free (rgn_edges);
|
| 3253 |
|
|
}
|
| 3254 |
|
|
|
| 3255 |
|
|
/* Free data computed for the finished region. */
|
| 3256 |
|
|
void
|
| 3257 |
|
|
sched_rgn_local_finish (void)
|
| 3258 |
|
|
{
|
| 3259 |
|
|
if (current_nr_blocks > 1 && !sel_sched_p ())
|
| 3260 |
|
|
{
|
| 3261 |
|
|
sched_rgn_local_free ();
|
| 3262 |
|
|
}
|
| 3263 |
|
|
}
|
| 3264 |
|
|
|
| 3265 |
|
|
/* Setup scheduler infos. */
|
| 3266 |
|
|
void
|
| 3267 |
|
|
rgn_setup_common_sched_info (void)
|
| 3268 |
|
|
{
|
| 3269 |
|
|
memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
|
| 3270 |
|
|
sizeof (rgn_common_sched_info));
|
| 3271 |
|
|
|
| 3272 |
|
|
rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
|
| 3273 |
|
|
rgn_common_sched_info.add_block = rgn_add_block;
|
| 3274 |
|
|
rgn_common_sched_info.estimate_number_of_insns
|
| 3275 |
|
|
= rgn_estimate_number_of_insns;
|
| 3276 |
|
|
rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
|
| 3277 |
|
|
|
| 3278 |
|
|
common_sched_info = &rgn_common_sched_info;
|
| 3279 |
|
|
}
|
| 3280 |
|
|
|
| 3281 |
|
|
/* Setup all *_sched_info structures (for the Haifa frontend
|
| 3282 |
|
|
and for the dependence analysis) in the interblock scheduler. */
|
| 3283 |
|
|
void
|
| 3284 |
|
|
rgn_setup_sched_infos (void)
|
| 3285 |
|
|
{
|
| 3286 |
|
|
if (!sel_sched_p ())
|
| 3287 |
|
|
memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
|
| 3288 |
|
|
sizeof (rgn_sched_deps_info));
|
| 3289 |
|
|
else
|
| 3290 |
|
|
memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
|
| 3291 |
|
|
sizeof (rgn_sched_deps_info));
|
| 3292 |
|
|
|
| 3293 |
|
|
sched_deps_info = &rgn_sched_deps_info;
|
| 3294 |
|
|
|
| 3295 |
|
|
memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
|
| 3296 |
|
|
current_sched_info = &rgn_sched_info;
|
| 3297 |
|
|
}
|
| 3298 |
|
|
|
| 3299 |
|
|
/* The one entry point in this file. */
|
| 3300 |
|
|
void
|
| 3301 |
|
|
schedule_insns (void)
|
| 3302 |
|
|
{
|
| 3303 |
|
|
int rgn;
|
| 3304 |
|
|
|
| 3305 |
|
|
/* Taking care of this degenerate case makes the rest of
|
| 3306 |
|
|
this code simpler. */
|
| 3307 |
|
|
if (n_basic_blocks == NUM_FIXED_BLOCKS)
|
| 3308 |
|
|
return;
|
| 3309 |
|
|
|
| 3310 |
|
|
rgn_setup_common_sched_info ();
|
| 3311 |
|
|
rgn_setup_sched_infos ();
|
| 3312 |
|
|
|
| 3313 |
|
|
haifa_sched_init ();
|
| 3314 |
|
|
sched_rgn_init (reload_completed);
|
| 3315 |
|
|
|
| 3316 |
|
|
bitmap_initialize (¬_in_df, 0);
|
| 3317 |
|
|
bitmap_clear (¬_in_df);
|
| 3318 |
|
|
|
| 3319 |
|
|
/* Schedule every region in the subroutine. */
|
| 3320 |
|
|
for (rgn = 0; rgn < nr_regions; rgn++)
|
| 3321 |
|
|
if (dbg_cnt (sched_region))
|
| 3322 |
|
|
schedule_region (rgn);
|
| 3323 |
|
|
|
| 3324 |
|
|
/* Clean up. */
|
| 3325 |
|
|
sched_rgn_finish ();
|
| 3326 |
|
|
bitmap_clear (¬_in_df);
|
| 3327 |
|
|
|
| 3328 |
|
|
haifa_sched_finish ();
|
| 3329 |
|
|
}
|
| 3330 |
|
|
|
| 3331 |
|
|
/* INSN has been added to/removed from current region. */
|
| 3332 |
|
|
static void
|
| 3333 |
|
|
rgn_add_remove_insn (rtx insn, int remove_p)
|
| 3334 |
|
|
{
|
| 3335 |
|
|
if (!remove_p)
|
| 3336 |
|
|
rgn_n_insns++;
|
| 3337 |
|
|
else
|
| 3338 |
|
|
rgn_n_insns--;
|
| 3339 |
|
|
|
| 3340 |
|
|
if (INSN_BB (insn) == target_bb)
|
| 3341 |
|
|
{
|
| 3342 |
|
|
if (!remove_p)
|
| 3343 |
|
|
target_n_insns++;
|
| 3344 |
|
|
else
|
| 3345 |
|
|
target_n_insns--;
|
| 3346 |
|
|
}
|
| 3347 |
|
|
}
|
| 3348 |
|
|
|
| 3349 |
|
|
/* Extend internal data structures. */
|
| 3350 |
|
|
void
|
| 3351 |
|
|
extend_regions (void)
|
| 3352 |
|
|
{
|
| 3353 |
|
|
rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
|
| 3354 |
|
|
rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
|
| 3355 |
|
|
block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
|
| 3356 |
|
|
containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
|
| 3357 |
|
|
}
|
| 3358 |
|
|
|
| 3359 |
|
|
void
|
| 3360 |
|
|
rgn_make_new_region_out_of_new_block (basic_block bb)
|
| 3361 |
|
|
{
|
| 3362 |
|
|
int i;
|
| 3363 |
|
|
|
| 3364 |
|
|
i = RGN_BLOCKS (nr_regions);
|
| 3365 |
|
|
/* I - first free position in rgn_bb_table. */
|
| 3366 |
|
|
|
| 3367 |
|
|
rgn_bb_table[i] = bb->index;
|
| 3368 |
|
|
RGN_NR_BLOCKS (nr_regions) = 1;
|
| 3369 |
|
|
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
| 3370 |
|
|
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
| 3371 |
|
|
CONTAINING_RGN (bb->index) = nr_regions;
|
| 3372 |
|
|
BLOCK_TO_BB (bb->index) = 0;
|
| 3373 |
|
|
|
| 3374 |
|
|
nr_regions++;
|
| 3375 |
|
|
|
| 3376 |
|
|
RGN_BLOCKS (nr_regions) = i + 1;
|
| 3377 |
|
|
}
|
| 3378 |
|
|
|
| 3379 |
|
|
/* BB was added to ebb after AFTER. */
|
| 3380 |
|
|
static void
|
| 3381 |
|
|
rgn_add_block (basic_block bb, basic_block after)
|
| 3382 |
|
|
{
|
| 3383 |
|
|
extend_regions ();
|
| 3384 |
|
|
bitmap_set_bit (¬_in_df, bb->index);
|
| 3385 |
|
|
|
| 3386 |
|
|
if (after == 0 || after == EXIT_BLOCK_PTR)
|
| 3387 |
|
|
{
|
| 3388 |
|
|
rgn_make_new_region_out_of_new_block (bb);
|
| 3389 |
|
|
RGN_DONT_CALC_DEPS (nr_regions - 1) = (after == EXIT_BLOCK_PTR);
|
| 3390 |
|
|
}
|
| 3391 |
|
|
else
|
| 3392 |
|
|
{
|
| 3393 |
|
|
int i, pos;
|
| 3394 |
|
|
|
| 3395 |
|
|
/* We need to fix rgn_table, block_to_bb, containing_rgn
|
| 3396 |
|
|
and ebb_head. */
|
| 3397 |
|
|
|
| 3398 |
|
|
BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
|
| 3399 |
|
|
|
| 3400 |
|
|
/* We extend ebb_head to one more position to
|
| 3401 |
|
|
easily find the last position of the last ebb in
|
| 3402 |
|
|
the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
|
| 3403 |
|
|
is _always_ valid for access. */
|
| 3404 |
|
|
|
| 3405 |
|
|
i = BLOCK_TO_BB (after->index) + 1;
|
| 3406 |
|
|
pos = ebb_head[i] - 1;
|
| 3407 |
|
|
/* Now POS is the index of the last block in the region. */
|
| 3408 |
|
|
|
| 3409 |
|
|
/* Find index of basic block AFTER. */
|
| 3410 |
|
|
for (; rgn_bb_table[pos] != after->index; pos--);
|
| 3411 |
|
|
|
| 3412 |
|
|
pos++;
|
| 3413 |
|
|
gcc_assert (pos > ebb_head[i - 1]);
|
| 3414 |
|
|
|
| 3415 |
|
|
/* i - ebb right after "AFTER". */
|
| 3416 |
|
|
/* ebb_head[i] - VALID. */
|
| 3417 |
|
|
|
| 3418 |
|
|
/* Source position: ebb_head[i]
|
| 3419 |
|
|
Destination position: ebb_head[i] + 1
|
| 3420 |
|
|
Last position:
|
| 3421 |
|
|
RGN_BLOCKS (nr_regions) - 1
|
| 3422 |
|
|
Number of elements to copy: (last_position) - (source_position) + 1
|
| 3423 |
|
|
*/
|
| 3424 |
|
|
|
| 3425 |
|
|
memmove (rgn_bb_table + pos + 1,
|
| 3426 |
|
|
rgn_bb_table + pos,
|
| 3427 |
|
|
((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
|
| 3428 |
|
|
* sizeof (*rgn_bb_table));
|
| 3429 |
|
|
|
| 3430 |
|
|
rgn_bb_table[pos] = bb->index;
|
| 3431 |
|
|
|
| 3432 |
|
|
for (; i <= current_nr_blocks; i++)
|
| 3433 |
|
|
ebb_head [i]++;
|
| 3434 |
|
|
|
| 3435 |
|
|
i = CONTAINING_RGN (after->index);
|
| 3436 |
|
|
CONTAINING_RGN (bb->index) = i;
|
| 3437 |
|
|
|
| 3438 |
|
|
RGN_HAS_REAL_EBB (i) = 1;
|
| 3439 |
|
|
|
| 3440 |
|
|
for (++i; i <= nr_regions; i++)
|
| 3441 |
|
|
RGN_BLOCKS (i)++;
|
| 3442 |
|
|
}
|
| 3443 |
|
|
}
|
| 3444 |
|
|
|
| 3445 |
|
|
/* Fix internal data after interblock movement of jump instruction.
|
| 3446 |
|
|
For parameter meaning please refer to
|
| 3447 |
|
|
sched-int.h: struct sched_info: fix_recovery_cfg. */
|
| 3448 |
|
|
static void
|
| 3449 |
|
|
rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
|
| 3450 |
|
|
{
|
| 3451 |
|
|
int old_pos, new_pos, i;
|
| 3452 |
|
|
|
| 3453 |
|
|
BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
|
| 3454 |
|
|
|
| 3455 |
|
|
for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
|
| 3456 |
|
|
rgn_bb_table[old_pos] != check_bb_nexti;
|
| 3457 |
|
|
old_pos--);
|
| 3458 |
|
|
gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
|
| 3459 |
|
|
|
| 3460 |
|
|
for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
|
| 3461 |
|
|
rgn_bb_table[new_pos] != bbi;
|
| 3462 |
|
|
new_pos--);
|
| 3463 |
|
|
new_pos++;
|
| 3464 |
|
|
gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
|
| 3465 |
|
|
|
| 3466 |
|
|
gcc_assert (new_pos < old_pos);
|
| 3467 |
|
|
|
| 3468 |
|
|
memmove (rgn_bb_table + new_pos + 1,
|
| 3469 |
|
|
rgn_bb_table + new_pos,
|
| 3470 |
|
|
(old_pos - new_pos) * sizeof (*rgn_bb_table));
|
| 3471 |
|
|
|
| 3472 |
|
|
rgn_bb_table[new_pos] = check_bb_nexti;
|
| 3473 |
|
|
|
| 3474 |
|
|
for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
|
| 3475 |
|
|
ebb_head[i]++;
|
| 3476 |
|
|
}
|
| 3477 |
|
|
|
| 3478 |
|
|
/* Return next block in ebb chain. For parameter meaning please refer to
|
| 3479 |
|
|
sched-int.h: struct sched_info: advance_target_bb. */
|
| 3480 |
|
|
static basic_block
|
| 3481 |
|
|
advance_target_bb (basic_block bb, rtx insn)
|
| 3482 |
|
|
{
|
| 3483 |
|
|
if (insn)
|
| 3484 |
|
|
return 0;
|
| 3485 |
|
|
|
| 3486 |
|
|
gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
|
| 3487 |
|
|
&& BLOCK_TO_BB (bb->next_bb->index) == target_bb);
|
| 3488 |
|
|
return bb->next_bb;
|
| 3489 |
|
|
}
|
| 3490 |
|
|
|
| 3491 |
|
|
#endif
|
| 3492 |
|
|
|
| 3493 |
|
|
static bool
|
| 3494 |
|
|
gate_handle_sched (void)
|
| 3495 |
|
|
{
|
| 3496 |
|
|
#ifdef INSN_SCHEDULING
|
| 3497 |
|
|
return flag_schedule_insns && dbg_cnt (sched_func);
|
| 3498 |
|
|
#else
|
| 3499 |
|
|
return 0;
|
| 3500 |
|
|
#endif
|
| 3501 |
|
|
}
|
| 3502 |
|
|
|
| 3503 |
|
|
/* Run instruction scheduler. */
|
| 3504 |
|
|
static unsigned int
|
| 3505 |
|
|
rest_of_handle_sched (void)
|
| 3506 |
|
|
{
|
| 3507 |
|
|
#ifdef INSN_SCHEDULING
|
| 3508 |
|
|
if (flag_selective_scheduling
|
| 3509 |
|
|
&& ! maybe_skip_selective_scheduling ())
|
| 3510 |
|
|
run_selective_scheduling ();
|
| 3511 |
|
|
else
|
| 3512 |
|
|
schedule_insns ();
|
| 3513 |
|
|
#endif
|
| 3514 |
|
|
return 0;
|
| 3515 |
|
|
}
|
| 3516 |
|
|
|
| 3517 |
|
|
static bool
|
| 3518 |
|
|
gate_handle_sched2 (void)
|
| 3519 |
|
|
{
|
| 3520 |
|
|
#ifdef INSN_SCHEDULING
|
| 3521 |
|
|
return optimize > 0 && flag_schedule_insns_after_reload
|
| 3522 |
|
|
&& dbg_cnt (sched2_func);
|
| 3523 |
|
|
#else
|
| 3524 |
|
|
return 0;
|
| 3525 |
|
|
#endif
|
| 3526 |
|
|
}
|
| 3527 |
|
|
|
| 3528 |
|
|
/* Run second scheduling pass after reload. */
|
| 3529 |
|
|
static unsigned int
|
| 3530 |
|
|
rest_of_handle_sched2 (void)
|
| 3531 |
|
|
{
|
| 3532 |
|
|
#ifdef INSN_SCHEDULING
|
| 3533 |
|
|
if (flag_selective_scheduling2
|
| 3534 |
|
|
&& ! maybe_skip_selective_scheduling ())
|
| 3535 |
|
|
run_selective_scheduling ();
|
| 3536 |
|
|
else
|
| 3537 |
|
|
{
|
| 3538 |
|
|
/* Do control and data sched analysis again,
|
| 3539 |
|
|
and write some more of the results to dump file. */
|
| 3540 |
|
|
if (flag_sched2_use_superblocks)
|
| 3541 |
|
|
schedule_ebbs ();
|
| 3542 |
|
|
else
|
| 3543 |
|
|
schedule_insns ();
|
| 3544 |
|
|
}
|
| 3545 |
|
|
#endif
|
| 3546 |
|
|
return 0;
|
| 3547 |
|
|
}
|
| 3548 |
|
|
|
| 3549 |
|
|
struct rtl_opt_pass pass_sched =
|
| 3550 |
|
|
{
|
| 3551 |
|
|
{
|
| 3552 |
|
|
RTL_PASS,
|
| 3553 |
|
|
"sched1", /* name */
|
| 3554 |
|
|
gate_handle_sched, /* gate */
|
| 3555 |
|
|
rest_of_handle_sched, /* execute */
|
| 3556 |
|
|
NULL, /* sub */
|
| 3557 |
|
|
NULL, /* next */
|
| 3558 |
|
|
0, /* static_pass_number */
|
| 3559 |
|
|
TV_SCHED, /* tv_id */
|
| 3560 |
|
|
0, /* properties_required */
|
| 3561 |
|
|
0, /* properties_provided */
|
| 3562 |
|
|
0, /* properties_destroyed */
|
| 3563 |
|
|
0, /* todo_flags_start */
|
| 3564 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
| 3565 |
|
|
TODO_dump_func |
|
| 3566 |
|
|
TODO_verify_flow |
|
| 3567 |
|
|
TODO_ggc_collect /* todo_flags_finish */
|
| 3568 |
|
|
}
|
| 3569 |
|
|
};
|
| 3570 |
|
|
|
| 3571 |
|
|
struct rtl_opt_pass pass_sched2 =
|
| 3572 |
|
|
{
|
| 3573 |
|
|
{
|
| 3574 |
|
|
RTL_PASS,
|
| 3575 |
|
|
"sched2", /* name */
|
| 3576 |
|
|
gate_handle_sched2, /* gate */
|
| 3577 |
|
|
rest_of_handle_sched2, /* execute */
|
| 3578 |
|
|
NULL, /* sub */
|
| 3579 |
|
|
NULL, /* next */
|
| 3580 |
|
|
0, /* static_pass_number */
|
| 3581 |
|
|
TV_SCHED2, /* tv_id */
|
| 3582 |
|
|
0, /* properties_required */
|
| 3583 |
|
|
0, /* properties_provided */
|
| 3584 |
|
|
0, /* properties_destroyed */
|
| 3585 |
|
|
0, /* todo_flags_start */
|
| 3586 |
|
|
TODO_df_finish | TODO_verify_rtl_sharing |
|
| 3587 |
|
|
TODO_dump_func |
|
| 3588 |
|
|
TODO_verify_flow |
|
| 3589 |
|
|
TODO_ggc_collect /* todo_flags_finish */
|
| 3590 |
|
|
}
|
| 3591 |
|
|
};
|