OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cc/] [cc70a02.a] - Blame information for rev 294

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 294 jeremybenn
-- CC70A02.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the visible part of a generic formal package includes the
28
--      first list of basic declarative items of the package specification.
29
--      Check for a generic subprogram which declares a formal package with
30
--      (<>) as its actual part.
31
--
32
-- TEST DESCRIPTION:
33
--      The "first list of basic declarative items" of a package specification
34
--      is the visible part of the package. Thus, the declarations in the
35
--      visible part of the actual instance corresponding to a formal
36
--      package are available in the generic which declares the formal package.
37
--
38
--      Declare a generic package which simulates a complex integer abstraction
39
--      (foundation code).
40
--
41
--      Declare a second generic package which defines a "signature" for
42
--      mathematical groups. Declare a generic function within a package
43
--      which utilizes the second generic package as a generic formal package
44
--      (with a (<>) actual_part).
45
--
46
--      In the main program, instantiate the first generic package, then
47
--      instantiate the second generic package with objects, types, and
48
--      operations declared in the first instance.
49
--
50
--      Instantiate the generic function and pass the second instance
51
--      to it as a generic actual parameter. Check that the instance of the
52
--      generic function performs as expected.
53
--
54
--
55
-- CHANGE HISTORY:
56
--      06 Dec 94   SAIC    ACVC 2.0
57
--
58
--!
59
 
60
generic               -- Mathematical group signature.
61
 
62
   type Group_Type is private;
63
 
64
   Identity : in Group_Type;
65
 
66
   with function Operation (Left, Right : Group_Type) return Group_Type;
67
   with function Inverse   (Right : Group_Type)       return Group_Type;
68
 
69
package CC70A02_0 is end;
70
 
71
-- No body for CC70A02_0.
72
 
73
 
74
     --==================================================================--
75
 
76
 
77
with CC70A02_0;       -- Mathematical group signature.
78
 
79
package CC70A02_1 is  -- Mathematical group operations.
80
 
81
   --                                  --
82
   -- Generic formal package used here --
83
   --                                  --
84
 
85
   generic            -- Powers for mathematical groups.
86
      with package Group is new CC70A02_0 (<>);
87
   function Power (Left : Group.Group_Type; Right : Integer)
88
     return Group.Group_Type;
89
 
90
 
91
end CC70A02_1;
92
 
93
 
94
     --==================================================================--
95
 
96
 
97
package body CC70A02_1 is  -- Mathematical group operations.
98
 
99
 
100
 
101
   function Power (Left : Group.Group_Type; Right : Integer)
102
     return Group.Group_Type is
103
      Result : Group.Group_Type := Group.Identity;
104
   begin
105
      for I in 1 .. abs(Right) loop                 -- Repeat group operations
106
         Result := Group.Operation (Result, Left);  -- the specified number of
107
      end loop;                                     -- times.
108
 
109
      if Right < 0 then                             -- If specified power is
110
         return Group.Inverse (Result);             -- negative, return the
111
      else                                          -- inverse of the result.
112
         return Result;                             -- If it is zero, return
113
      end if;                                       -- the identity.
114
   end Power;
115
 
116
 
117
end CC70A02_1;
118
 
119
 
120
     --==================================================================--
121
 
122
 
123
with Report;
124
 
125
with FC70A00;    -- Complex integer abstraction.
126
with CC70A02_0;  -- Mathematical group signature.
127
with CC70A02_1;  -- Mathematical group operations.
128
 
129
procedure CC70A02 is
130
 
131
   -- Declare an instance of complex integers:
132
 
133
   type My_Integer is range -100 .. 100;
134
   package Complex_Integers is new FC70A00 (My_Integer);
135
 
136
 
137
   -- Define an addition group for complex integers:
138
 
139
   package Complex_Addition_Group is new CC70A02_0
140
     (Group_Type => Complex_Integers.Complex_Type,  -- For complex integers...
141
      Identity   => Complex_Integers.Zero,          -- Additive identity.
142
      Operation  => Complex_Integers."+",           -- Additive operation.
143
      Inverse    => Complex_Integers."-");          -- Additive inverse.
144
 
145
   function Complex_Multiplication is new           -- Multiplication of a
146
     CC70A02_1.Power(Complex_Addition_Group);       -- complex integer by a
147
                                                    -- constant.
148
 
149
 
150
   -- Define a multiplication group for complex integers:
151
 
152
   package Complex_Multiplication_Group is new CC70A02_0
153
     (Group_Type => Complex_Integers.Complex_Type,  -- For complex integers...
154
      Identity   => Complex_Integers.One,           -- Multiplicative identity.
155
      Operation  => Complex_Integers."*",           -- Multiplicative oper.
156
      Inverse    => Complex_Integers.Reciprocal);   -- Multiplicative inverse.
157
 
158
   function Complex_Exponentiation is new           -- Exponentiation of a
159
     CC70A02_1.Power(Complex_Multiplication_Group); -- complex integer by a
160
                                                    -- constant.
161
 
162
   use Complex_Integers;
163
 
164
 
165
begin  -- Main program.
166
 
167
   Report.Test ("CC70A02", "Check that the visible part of a generic " &
168
                "formal package includes the first list of basic " &
169
                "declarative items of the package specification. Check " &
170
                "for a generic subprogram where formal package has (<>) " &
171
                "actual part");
172
 
173
   declare
174
      Mult_Operand         : constant Complex_Type := Complex ( -4,  9);
175
      Exp_Operand          : constant Complex_Type := Complex (  0, -7);
176
 
177
      Expected_Mult_Result : constant Complex_Type := Complex ( 28, -63);
178
      Expected_Exp_Result  : constant Complex_Type := Complex (-49,   0);
179
   begin
180
 
181
      if Complex_Multiplication (Mult_Operand, -7) /= Expected_Mult_Result then
182
         Report.Failed ("Incorrect results from complex multiplication");
183
      end if;
184
 
185
      if Complex_Exponentiation (Exp_Operand, 2) /= Expected_Exp_Result then
186
         Report.Failed ("Incorrect results from complex exponentiation");
187
      end if;
188
 
189
   end;
190
 
191
   Report.Result;
192
 
193
end CC70A02;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.