OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg1005.a] - Blame information for rev 294

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 294 jeremybenn
-- CXG1005.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the subprograms defined in the package
28
--      Ada.Numerics.Generic_Complex_Elementary_Functions provide correct
29
--      results.
30
--
31
-- TEST DESCRIPTION:
32
--      This test checks that specific subprograms defined in the generic
33
--      package Generic_Complex_Elementary_Functions are available, and that
34
--      they provide prescribed results given specific input values.
35
--      The generic package Ada.Numerics.Generic_Complex_Types is instantiated
36
--      with a real type (new Float). The resulting new package is used as
37
--      the generic actual to package Complex_IO.
38
--
39
-- SPECIAL REQUIREMENTS:
40
--      Implementations for which Float'Signed_Zeros is True must provide
41
--      a body for ImpDef.Annex_G.Negative_Zero which returns a negative
42
--      zero.
43
--
44
-- APPLICABILITY CRITERIA
45
--      This test only applies to implementations that support the
46
--      numerics annex.
47
--
48
--
49
--
50
-- CHANGE HISTORY:
51
--      06 Dec 94   SAIC    ACVC 2.0
52
--      16 Nov 95   SAIC    Corrected visibility problems for ACVC 2.0.1.
53
--      21 Feb 96   SAIC    Incorporated new structure for package Impdef.
54
--      29 Sep 96   SAIC    Incorporated reviewer comments.
55
--
56
--!
57
 
58
with Ada.Numerics.Generic_Complex_Types;
59
with Ada.Numerics.Generic_Complex_Elementary_Functions;
60
with ImpDef.Annex_G;
61
with Report;
62
 
63
procedure CXG1005 is
64
begin
65
 
66
   Report.Test ("CXG1005", "Check that the subprograms defined in "  &
67
                           "the package Generic_Complex_Elementary_" &
68
                           "Functions provide correct results");
69
 
70
   Test_Block:
71
   declare
72
 
73
      type Real_Type is new Float;
74
 
75
      TC_Signed_Zeros : Boolean := Real_Type'Signed_Zeros;
76
 
77
      package Complex_Pack is new
78
        Ada.Numerics.Generic_Complex_Types(Real_Type);
79
 
80
      package CEF is
81
        new Ada.Numerics.Generic_Complex_Elementary_Functions(Complex_Pack);
82
 
83
      use Ada.Numerics, Complex_Pack, CEF;
84
 
85
      Complex_Zero : constant Complex := Compose_From_Cartesian( 0.0, 0.0);
86
      Plus_One     : constant Complex := Compose_From_Cartesian( 1.0, 0.0);
87
      Minus_One    : constant Complex := Compose_From_Cartesian(-1.0, 0.0);
88
      Plus_i       : constant Complex := Compose_From_Cartesian(i);
89
      Minus_i      : constant Complex := Compose_From_Cartesian(-i);
90
 
91
      Complex_Positive_Real      : constant Complex :=
92
                                         Compose_From_Cartesian(4.0, 2.0);
93
      Complex_Positive_Imaginary : constant Complex :=
94
                                         Compose_From_Cartesian(3.0, 5.0);
95
      Complex_Negative_Real      : constant Complex :=
96
                                         Compose_From_Cartesian(-4.0, 2.0);
97
      Complex_Negative_Imaginary : constant Complex :=
98
                                         Compose_From_Cartesian(3.0, -5.0);
99
 
100
 
101
      function A_Zero_Result (Z : Complex) return Boolean is
102
      begin
103
         return (Re(Z) = 0.0 and Im(Z) = 0.0);
104
      end A_Zero_Result;
105
 
106
 
107
      -- In order to evaluate complex elementary functions that are
108
      -- prescribed to return a "real" result (meaning that the imaginary
109
      -- component is zero), the Function A_Real_Result is defined.
110
 
111
      function A_Real_Result (Z : Complex) return Boolean is
112
      begin
113
         return Im(Z) = 0.0;
114
      end A_Real_Result;
115
 
116
 
117
      -- In order to evaluate complex elementary functions that are
118
      -- prescribed to return an "imaginary" result (meaning that the real
119
      -- component of the complex number is zero, and the imaginary
120
      -- component is non-zero), the Function An_Imaginary_Result is defined.
121
 
122
      function An_Imaginary_Result (Z : Complex) return Boolean is
123
      begin
124
         return  (Re(Z) = 0.0 and Im(Z) /= 0.0);
125
      end An_Imaginary_Result;
126
 
127
 
128
   begin
129
 
130
      -- Check that when the input parameter value is zero, the following
131
      -- functions yield a zero result.
132
 
133
      if not A_Zero_Result( Sqrt(Complex_Zero) ) then
134
         Report.Failed("Non-zero result from Function Sqrt with zero input");
135
      end if;
136
 
137
      if not A_Zero_Result( Sin(Complex_Zero) ) then
138
         Report.Failed("Non-zero result from Function Sin with zero input");
139
      end if;
140
 
141
      if not A_Zero_Result( Arcsin(Complex_Zero) ) then
142
         Report.Failed("Non-zero result from Function Arcsin with zero " &
143
                       "input");
144
      end if;
145
 
146
      if not A_Zero_Result( Tan(Complex_Zero) ) then
147
         Report.Failed("Non-zero result from Function Tan with zero input");
148
      end if;
149
 
150
      if not A_Zero_Result( Arctan(Complex_Zero) ) then
151
         Report.Failed("Non-zero result from Function Arctan with zero " &
152
                       "input");
153
      end if;
154
 
155
      if not A_Zero_Result( Sinh(Complex_Zero) ) then
156
         Report.Failed("Non-zero result from Function Sinh with zero input");
157
      end if;
158
 
159
      if not A_Zero_Result( Arcsinh(Complex_Zero) ) then
160
         Report.Failed("Non-zero result from Function Arcsinh with zero " &
161
                       "input");
162
      end if;
163
 
164
      if not A_Zero_Result( Tanh(Complex_Zero) ) then
165
         Report.Failed("Non-zero result from Function Tanh with zero input");
166
      end if;
167
 
168
      if not A_Zero_Result( Arctanh(Complex_Zero) ) then
169
         Report.Failed("Non-zero result from Function Arctanh with zero " &
170
                       "input");
171
      end if;
172
 
173
 
174
      -- Check that when the input parameter value is zero, the following
175
      -- functions yield a result of one.
176
 
177
      if Exp(Complex_Zero) /= Plus_One
178
      then
179
         Report.Failed("Non-zero result from Function Exp with zero input");
180
      end if;
181
 
182
      if Cos(Complex_Zero) /= Plus_One
183
      then
184
         Report.Failed("Non-zero result from Function Cos with zero input");
185
      end if;
186
 
187
      if Cosh(Complex_Zero) /= Plus_One
188
      then
189
         Report.Failed("Non-zero result from Function Cosh with zero input");
190
      end if;
191
 
192
 
193
      -- Check that when the input parameter value is zero, the following
194
      -- functions yield a real result.
195
 
196
      if not A_Real_Result( Arccos(Complex_Zero) ) then
197
        Report.Failed("Non-real result from Function Arccos with zero input");
198
      end if;
199
 
200
      if not A_Real_Result( Arccot(Complex_Zero) ) then
201
        Report.Failed("Non-real result from Function Arccot with zero input");
202
      end if;
203
 
204
 
205
      -- Check that when the input parameter value is zero, the following
206
      -- functions yield an imaginary result.
207
 
208
      if not An_Imaginary_Result( Arccoth(Complex_Zero) ) then
209
        Report.Failed("Non-imaginary result from Function Arccoth with " &
210
                      "zero input");
211
      end if;
212
 
213
 
214
      -- Check that when the input parameter value is one, the Sqrt function
215
      -- yields a result of one.
216
 
217
      if Sqrt(Plus_One) /= Plus_One then
218
         Report.Failed("Incorrect result from Function Sqrt with input " &
219
                       "value of one");
220
      end if;
221
 
222
 
223
      -- Check that when the input parameter value is one, the following
224
      -- functions yield a result of zero.
225
 
226
      if not A_Zero_Result( Log(Plus_One) ) then
227
         Report.Failed("Non-zero result from Function Log with input " &
228
                       "value of one");
229
      end if;
230
 
231
      if not A_Zero_Result( Arccos(Plus_One) ) then
232
         Report.Failed("Non-zero result from Function Arccos with input " &
233
                       "value of one");
234
      end if;
235
 
236
      if not A_Zero_Result( Arccosh(Plus_One) ) then
237
         Report.Failed("Non-zero result from Function Arccosh with input " &
238
                       "value of one");
239
      end if;
240
 
241
 
242
      -- Check that when the input parameter value is one, the Arcsin
243
      -- function yields a real result.
244
 
245
      if not A_Real_Result( Arcsin(Plus_One) ) then
246
         Report.Failed("Non-real result from Function Arcsin with input " &
247
                       "value of one");
248
      end if;
249
 
250
 
251
      -- Check that when the input parameter value is minus one, the Sqrt
252
      -- function yields a result of "i", when the sign of the imaginary
253
      -- component of the input parameter is positive (and yields "-i", if
254
      -- the sign on the imaginary component is negative), and the
255
      -- Complex_Types.Real'Signed_Zeros attribute is True.
256
 
257
      if TC_Signed_Zeros then
258
 
259
         declare
260
            Minus_One_With_Pos_Zero_Im_Component : Complex :=
261
                                  Compose_From_Cartesian(-1.0, +0.0);
262
            Minus_One_With_Neg_Zero_Im_Component : Complex :=
263
              Compose_From_Cartesian
264
                (-1.0, Real_Type(ImpDef.Annex_G.Negative_Zero));
265
         begin
266
 
267
            if Sqrt(Minus_One_With_Pos_Zero_Im_Component) /= Plus_i then
268
               Report.Failed("Incorrect result from Function Sqrt, when " &
269
                             "input value is minus one with a positive "  &
270
                             "imaginary component, Signed_Zeros being True");
271
            end if;
272
 
273
            if Sqrt(Minus_One_With_Neg_Zero_Im_Component) /= Minus_i then
274
               Report.Failed("Incorrect result from Function Sqrt, when " &
275
                             "input value is minus one with a negative "  &
276
                             "imaginary component, Signed_Zeros being True");
277
            end if;
278
         end;
279
 
280
      else   -- Signed_Zeros is False.
281
 
282
         -- Check that when the input parameter value is minus one, the Sqrt
283
         -- function yields a result of "i", when the
284
         -- Complex_Types.Real'Signed_Zeros attribute is False.
285
 
286
         if Sqrt(Minus_One) /= Plus_i then
287
            Report.Failed("Incorrect result from Function Sqrt, when "    &
288
                          "input value is minus one, Signed_Zeros being " &
289
                          "False");
290
         end if;
291
 
292
      end if;
293
 
294
 
295
      -- Check that when the input parameter value is minus one, the Log
296
      -- function yields an imaginary result.
297
 
298
      if not An_Imaginary_Result( Log(Minus_One) ) then
299
         Report.Failed("Non-imaginary result from Function Log with a " &
300
                       "minus one input value");
301
      end if;
302
 
303
      -- Check that when the input parameter is minus one, the following
304
      -- functions yield a real result.
305
 
306
      if not A_Real_Result( Arcsin(Minus_One) ) then
307
         Report.Failed("Non-real result from Function Arcsin with a " &
308
                       "minus one input value");
309
      end if;
310
 
311
      if not A_Real_Result( Arccos(Minus_One) ) then
312
         Report.Failed("Non-real result from Function Arccos with a " &
313
                       "minus one input value");
314
      end if;
315
 
316
 
317
      -- Check that when the input parameter has a value of +i or -i, the
318
      -- Log function yields an imaginary result.
319
 
320
      if not An_Imaginary_Result( Log(Plus_i) ) then
321
         Report.Failed("Non-imaginary result from Function Log with an " &
322
                       "input value of ""+i""");
323
      end if;
324
 
325
      if not An_Imaginary_Result( Log(Minus_i) ) then
326
         Report.Failed("Non-imaginary result from Function Log with an " &
327
                       "input value of ""-i""");
328
      end if;
329
 
330
 
331
      -- Check that exponentiation by a zero exponent yields the value one.
332
 
333
      if "**"(Left  => Compose_From_Cartesian(5.0, 3.0),
334
              Right => Complex_Zero)                     /= Plus_One  or
335
         Complex_Negative_Real**0.0                      /= Plus_One  or
336
         15.0**Complex_Zero                              /= Plus_One
337
      then
338
         Report.Failed("Incorrect result from exponentiation with a zero " &
339
                       "exponent");
340
      end if;
341
 
342
 
343
      -- Check that exponentiation by a unit exponent yields the value of
344
      -- the left operand (as a complex value).
345
      -- Note: a "unit exponent" is considered the complex number (1.0, 0.0)
346
 
347
      if "**"(Complex_Negative_Real, Plus_One) /=
348
         Complex_Negative_Real                    or
349
         Complex_Negative_Imaginary**Plus_One  /=
350
         Complex_Negative_Imaginary               or
351
         4.0**Plus_One                         /=
352
         Compose_From_Cartesian(4.0, 0.0)
353
      then
354
         Report.Failed("Incorrect result from exponentiation with a unit " &
355
                       "exponent");
356
      end if;
357
 
358
 
359
      -- Check that exponentiation of the value one yields the value one.
360
 
361
      if "**"(Plus_One, Complex_Negative_Imaginary) /= Plus_One  or
362
         Plus_One**9.0                              /= Plus_One  or
363
         1.0**Complex_Negative_Real                 /= Plus_One
364
      then
365
         Report.Failed("Incorrect result from exponentiation of the value " &
366
                       "One");
367
      end if;
368
 
369
 
370
      -- Check that exponentiation of the value zero yields the value zero.
371
      begin
372
         if not A_Zero_Result("**"(Complex_Zero,
373
                                   Complex_Positive_Imaginary)) or
374
            not A_Zero_Result(Complex_Zero**4.0)                or
375
            not A_Zero_Result(0.0**Complex_Positive_Real)
376
         then
377
            Report.Failed("Incorrect result from exponentiation of the " &
378
                          "value zero");
379
         end if;
380
      exception
381
         when others =>
382
           Report.Failed("Exception raised during the exponentiation of " &
383
                         "the complex value zero");
384
      end;
385
 
386
 
387
   exception
388
      when others => Report.Failed ("Exception raised in Test_Block");
389
   end Test_Block;
390
 
391
   Report.Result;
392
 
393
end CXG1005;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.