1 |
294 |
jeremybenn |
-- CXG2010.A
|
2 |
|
|
--
|
3 |
|
|
-- Grant of Unlimited Rights
|
4 |
|
|
--
|
5 |
|
|
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
|
6 |
|
|
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
|
7 |
|
|
-- unlimited rights in the software and documentation contained herein.
|
8 |
|
|
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
|
9 |
|
|
-- this public release, the Government intends to confer upon all
|
10 |
|
|
-- recipients unlimited rights equal to those held by the Government.
|
11 |
|
|
-- These rights include rights to use, duplicate, release or disclose the
|
12 |
|
|
-- released technical data and computer software in whole or in part, in
|
13 |
|
|
-- any manner and for any purpose whatsoever, and to have or permit others
|
14 |
|
|
-- to do so.
|
15 |
|
|
--
|
16 |
|
|
-- DISCLAIMER
|
17 |
|
|
--
|
18 |
|
|
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
|
19 |
|
|
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
|
20 |
|
|
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
|
21 |
|
|
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
|
22 |
|
|
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
|
23 |
|
|
-- PARTICULAR PURPOSE OF SAID MATERIAL.
|
24 |
|
|
--*
|
25 |
|
|
--
|
26 |
|
|
-- OBJECTIVE:
|
27 |
|
|
-- Check that the exp function returns
|
28 |
|
|
-- results that are within the error bound allowed.
|
29 |
|
|
--
|
30 |
|
|
-- TEST DESCRIPTION:
|
31 |
|
|
-- This test contains three test packages that are almost
|
32 |
|
|
-- identical. The first two packages differ only in the
|
33 |
|
|
-- floating point type that is being tested. The first
|
34 |
|
|
-- and third package differ only in whether the generic
|
35 |
|
|
-- elementary functions package or the pre-instantiated
|
36 |
|
|
-- package is used.
|
37 |
|
|
-- The test package is not generic so that the arguments
|
38 |
|
|
-- and expected results for some of the test values
|
39 |
|
|
-- can be expressed as universal real instead of being
|
40 |
|
|
-- computed at runtime.
|
41 |
|
|
--
|
42 |
|
|
-- SPECIAL REQUIREMENTS
|
43 |
|
|
-- The Strict Mode for the numerical accuracy must be
|
44 |
|
|
-- selected. The method by which this mode is selected
|
45 |
|
|
-- is implementation dependent.
|
46 |
|
|
--
|
47 |
|
|
-- APPLICABILITY CRITERIA:
|
48 |
|
|
-- This test applies only to implementations supporting the
|
49 |
|
|
-- Numerics Annex and where the Machine_Radix is 2, 4, 8, or 16.
|
50 |
|
|
-- This test only applies to the Strict Mode for numerical
|
51 |
|
|
-- accuracy.
|
52 |
|
|
--
|
53 |
|
|
--
|
54 |
|
|
-- CHANGE HISTORY:
|
55 |
|
|
-- 1 Mar 96 SAIC Initial release for 2.1
|
56 |
|
|
-- 2 Sep 96 SAIC Improved check routine
|
57 |
|
|
--
|
58 |
|
|
--!
|
59 |
|
|
|
60 |
|
|
--
|
61 |
|
|
-- References:
|
62 |
|
|
--
|
63 |
|
|
-- Software Manual for the Elementary Functions
|
64 |
|
|
-- William J. Cody, Jr. and William Waite
|
65 |
|
|
-- Prentice-Hall, 1980
|
66 |
|
|
--
|
67 |
|
|
-- CRC Standard Mathematical Tables
|
68 |
|
|
-- 23rd Edition
|
69 |
|
|
--
|
70 |
|
|
-- Implementation and Testing of Function Software
|
71 |
|
|
-- W. J. Cody
|
72 |
|
|
-- Problems and Methodologies in Mathematical Software Production
|
73 |
|
|
-- editors P. C. Messina and A. Murli
|
74 |
|
|
-- Lecture Notes in Computer Science Volume 142
|
75 |
|
|
-- Springer Verlag, 1982
|
76 |
|
|
--
|
77 |
|
|
|
78 |
|
|
--
|
79 |
|
|
-- Notes on derivation of error bound for exp(p)*exp(-p)
|
80 |
|
|
--
|
81 |
|
|
-- Let a = true value of exp(p) and ac be the computed value.
|
82 |
|
|
-- Then a = ac(1+e1), where |e1| <= 4*Model_Epsilon.
|
83 |
|
|
-- Similarly, let b = true value of exp(-p) and bc be the computed value.
|
84 |
|
|
-- Then b = bc(1+e2), where |e2| <= 4*ME.
|
85 |
|
|
--
|
86 |
|
|
-- The product of x and y is (x*y)(1+e3), where |e3| <= 1.0ME
|
87 |
|
|
--
|
88 |
|
|
-- Hence, the computed ab is [ac(1+e1)*bc(1+e2)](1+e3) =
|
89 |
|
|
-- (ac*bc)[1 + e1 + e2 + e3 + e1e2 + e1e3 + e2e3 + e1e2e3).
|
90 |
|
|
--
|
91 |
|
|
-- Throwing away the last four tiny terms, we have (ac*bc)(1 + eta),
|
92 |
|
|
--
|
93 |
|
|
-- where |eta| <= (4+4+1)ME = 9.0Model_Epsilon.
|
94 |
|
|
|
95 |
|
|
with System;
|
96 |
|
|
with Report;
|
97 |
|
|
with Ada.Numerics.Generic_Elementary_Functions;
|
98 |
|
|
with Ada.Numerics.Elementary_Functions;
|
99 |
|
|
procedure CXG2010 is
|
100 |
|
|
Verbose : constant Boolean := False;
|
101 |
|
|
Max_Samples : constant := 1000;
|
102 |
|
|
Accuracy_Error_Reported : Boolean := False;
|
103 |
|
|
|
104 |
|
|
package Float_Check is
|
105 |
|
|
subtype Real is Float;
|
106 |
|
|
procedure Do_Test;
|
107 |
|
|
end Float_Check;
|
108 |
|
|
|
109 |
|
|
package body Float_Check is
|
110 |
|
|
package Elementary_Functions is new
|
111 |
|
|
Ada.Numerics.Generic_Elementary_Functions (Real);
|
112 |
|
|
function Sqrt (X : Real) return Real renames
|
113 |
|
|
Elementary_Functions.Sqrt;
|
114 |
|
|
function Exp (X : Real) return Real renames
|
115 |
|
|
Elementary_Functions.Exp;
|
116 |
|
|
|
117 |
|
|
|
118 |
|
|
-- The following value is a lower bound on the accuracy
|
119 |
|
|
-- required. It is normally 0.0 so that the lower bound
|
120 |
|
|
-- is computed from Model_Epsilon. However, for tests
|
121 |
|
|
-- where the expected result is only known to a certain
|
122 |
|
|
-- amount of precision this bound takes on a non-zero
|
123 |
|
|
-- value to account for that level of precision.
|
124 |
|
|
Error_Low_Bound : Real := 0.0;
|
125 |
|
|
|
126 |
|
|
procedure Check (Actual, Expected : Real;
|
127 |
|
|
Test_Name : String;
|
128 |
|
|
MRE : Real) is
|
129 |
|
|
Max_Error : Real;
|
130 |
|
|
Rel_Error : Real;
|
131 |
|
|
Abs_Error : Real;
|
132 |
|
|
begin
|
133 |
|
|
-- In the case where the expected result is very small or 0
|
134 |
|
|
-- we compute the maximum error as a multiple of Model_Epsilon
|
135 |
|
|
-- instead of Model_Epsilon and Expected.
|
136 |
|
|
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
|
137 |
|
|
Abs_Error := MRE * Real'Model_Epsilon;
|
138 |
|
|
if Rel_Error > Abs_Error then
|
139 |
|
|
Max_Error := Rel_Error;
|
140 |
|
|
else
|
141 |
|
|
Max_Error := Abs_Error;
|
142 |
|
|
end if;
|
143 |
|
|
|
144 |
|
|
-- take into account the low bound on the error
|
145 |
|
|
if Max_Error < Error_Low_Bound then
|
146 |
|
|
Max_Error := Error_Low_Bound;
|
147 |
|
|
end if;
|
148 |
|
|
|
149 |
|
|
if abs (Actual - Expected) > Max_Error then
|
150 |
|
|
Accuracy_Error_Reported := True;
|
151 |
|
|
Report.Failed (Test_Name &
|
152 |
|
|
" actual: " & Real'Image (Actual) &
|
153 |
|
|
" expected: " & Real'Image (Expected) &
|
154 |
|
|
" difference: " & Real'Image (Actual - Expected) &
|
155 |
|
|
" max err:" & Real'Image (Max_Error) );
|
156 |
|
|
elsif Verbose then
|
157 |
|
|
if Actual = Expected then
|
158 |
|
|
Report.Comment (Test_Name & " exact result");
|
159 |
|
|
else
|
160 |
|
|
Report.Comment (Test_Name & " passed");
|
161 |
|
|
end if;
|
162 |
|
|
end if;
|
163 |
|
|
end Check;
|
164 |
|
|
|
165 |
|
|
|
166 |
|
|
procedure Argument_Range_Check_1 (A, B : Real;
|
167 |
|
|
Test : String) is
|
168 |
|
|
-- test a evenly distributed selection of
|
169 |
|
|
-- arguments selected from the range A to B.
|
170 |
|
|
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
|
171 |
|
|
-- The parameter One_Minus_Exp_Minus_V is the value
|
172 |
|
|
-- 1.0 - Exp (-V)
|
173 |
|
|
-- accurate to machine precision.
|
174 |
|
|
-- This procedure is a translation of part of Cody's test
|
175 |
|
|
X : Real;
|
176 |
|
|
Y : Real;
|
177 |
|
|
ZX, ZY : Real;
|
178 |
|
|
V : constant := 1.0 / 16.0;
|
179 |
|
|
One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
|
180 |
|
|
|
181 |
|
|
begin
|
182 |
|
|
Accuracy_Error_Reported := False;
|
183 |
|
|
for I in 1..Max_Samples loop
|
184 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
185 |
|
|
Y := X - V;
|
186 |
|
|
if Y < 0.0 then
|
187 |
|
|
X := Y + V;
|
188 |
|
|
end if;
|
189 |
|
|
|
190 |
|
|
ZX := Exp (X);
|
191 |
|
|
ZY := Exp (Y);
|
192 |
|
|
|
193 |
|
|
-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
|
194 |
|
|
-- which simplifies to ZX := Exp (X-V);
|
195 |
|
|
ZX := ZX - ZX * One_Minus_Exp_Minus_V;
|
196 |
|
|
|
197 |
|
|
-- note that since the expected value is computed, we
|
198 |
|
|
-- must take the error in that computation into account.
|
199 |
|
|
Check (ZY, ZX,
|
200 |
|
|
"test " & Test & " -" &
|
201 |
|
|
Integer'Image (I) &
|
202 |
|
|
" exp (" & Real'Image (X) & ")",
|
203 |
|
|
9.0);
|
204 |
|
|
exit when Accuracy_Error_Reported;
|
205 |
|
|
end loop;
|
206 |
|
|
exception
|
207 |
|
|
when Constraint_Error =>
|
208 |
|
|
Report.Failed
|
209 |
|
|
("Constraint_Error raised in argument range check 1");
|
210 |
|
|
when others =>
|
211 |
|
|
Report.Failed ("exception in argument range check 1");
|
212 |
|
|
end Argument_Range_Check_1;
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
procedure Argument_Range_Check_2 (A, B : Real;
|
217 |
|
|
Test : String) is
|
218 |
|
|
-- test a evenly distributed selection of
|
219 |
|
|
-- arguments selected from the range A to B.
|
220 |
|
|
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
|
221 |
|
|
-- The parameter One_Minus_Exp_Minus_V is the value
|
222 |
|
|
-- 1.0 - Exp (-V)
|
223 |
|
|
-- accurate to machine precision.
|
224 |
|
|
-- This procedure is a translation of part of Cody's test
|
225 |
|
|
X : Real;
|
226 |
|
|
Y : Real;
|
227 |
|
|
ZX, ZY : Real;
|
228 |
|
|
V : constant := 45.0 / 16.0;
|
229 |
|
|
-- 1/16 - Exp(45/16)
|
230 |
|
|
Coeff : constant := 2.4453321046920570389E-3;
|
231 |
|
|
|
232 |
|
|
begin
|
233 |
|
|
Accuracy_Error_Reported := False;
|
234 |
|
|
for I in 1..Max_Samples loop
|
235 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
236 |
|
|
Y := X - V;
|
237 |
|
|
if Y < 0.0 then
|
238 |
|
|
X := Y + V;
|
239 |
|
|
end if;
|
240 |
|
|
|
241 |
|
|
ZX := Exp (X);
|
242 |
|
|
ZY := Exp (Y);
|
243 |
|
|
|
244 |
|
|
-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
|
245 |
|
|
-- where Coeff is 1/16 - Exp(45/16)
|
246 |
|
|
-- which simplifies to ZX := Exp (X-V);
|
247 |
|
|
ZX := ZX * 0.0625 - ZX * Coeff;
|
248 |
|
|
|
249 |
|
|
-- note that since the expected value is computed, we
|
250 |
|
|
-- must take the error in that computation into account.
|
251 |
|
|
Check (ZY, ZX,
|
252 |
|
|
"test " & Test & " -" &
|
253 |
|
|
Integer'Image (I) &
|
254 |
|
|
" exp (" & Real'Image (X) & ")",
|
255 |
|
|
9.0);
|
256 |
|
|
exit when Accuracy_Error_Reported;
|
257 |
|
|
end loop;
|
258 |
|
|
exception
|
259 |
|
|
when Constraint_Error =>
|
260 |
|
|
Report.Failed
|
261 |
|
|
("Constraint_Error raised in argument range check 2");
|
262 |
|
|
when others =>
|
263 |
|
|
Report.Failed ("exception in argument range check 2");
|
264 |
|
|
end Argument_Range_Check_2;
|
265 |
|
|
|
266 |
|
|
|
267 |
|
|
procedure Do_Test is
|
268 |
|
|
begin
|
269 |
|
|
|
270 |
|
|
--- test 1 ---
|
271 |
|
|
declare
|
272 |
|
|
Y : Real;
|
273 |
|
|
begin
|
274 |
|
|
Y := Exp(1.0);
|
275 |
|
|
-- normal accuracy requirements
|
276 |
|
|
Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
|
277 |
|
|
exception
|
278 |
|
|
when Constraint_Error =>
|
279 |
|
|
Report.Failed ("Constraint_Error raised in test 1");
|
280 |
|
|
when others =>
|
281 |
|
|
Report.Failed ("exception in test 1");
|
282 |
|
|
end;
|
283 |
|
|
|
284 |
|
|
--- test 2 ---
|
285 |
|
|
declare
|
286 |
|
|
Y : Real;
|
287 |
|
|
begin
|
288 |
|
|
Y := Exp(16.0) * Exp(-16.0);
|
289 |
|
|
Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
|
290 |
|
|
exception
|
291 |
|
|
when Constraint_Error =>
|
292 |
|
|
Report.Failed ("Constraint_Error raised in test 2");
|
293 |
|
|
when others =>
|
294 |
|
|
Report.Failed ("exception in test 2");
|
295 |
|
|
end;
|
296 |
|
|
|
297 |
|
|
--- test 3 ---
|
298 |
|
|
declare
|
299 |
|
|
Y : Real;
|
300 |
|
|
begin
|
301 |
|
|
Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
|
302 |
|
|
Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
|
303 |
|
|
exception
|
304 |
|
|
when Constraint_Error =>
|
305 |
|
|
Report.Failed ("Constraint_Error raised in test 3");
|
306 |
|
|
when others =>
|
307 |
|
|
Report.Failed ("exception in test 3");
|
308 |
|
|
end;
|
309 |
|
|
|
310 |
|
|
--- test 4 ---
|
311 |
|
|
declare
|
312 |
|
|
Y : Real;
|
313 |
|
|
begin
|
314 |
|
|
Y := Exp(0.0);
|
315 |
|
|
Check (Y, 1.0, "test 4 -- exp(0.0)",
|
316 |
|
|
0.0); -- no error allowed
|
317 |
|
|
exception
|
318 |
|
|
when Constraint_Error =>
|
319 |
|
|
Report.Failed ("Constraint_Error raised in test 4");
|
320 |
|
|
when others =>
|
321 |
|
|
Report.Failed ("exception in test 4");
|
322 |
|
|
end;
|
323 |
|
|
|
324 |
|
|
--- test 5 ---
|
325 |
|
|
-- constants used here only have 19 digits of precision
|
326 |
|
|
if Real'Digits > 19 then
|
327 |
|
|
Error_Low_Bound := 0.00000_00000_00000_0001;
|
328 |
|
|
Report.Comment ("exp accuracy checked to 19 digits");
|
329 |
|
|
end if;
|
330 |
|
|
|
331 |
|
|
Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
|
332 |
|
|
1.0,
|
333 |
|
|
"5");
|
334 |
|
|
Error_Low_Bound := 0.0; -- reset
|
335 |
|
|
|
336 |
|
|
--- test 6 ---
|
337 |
|
|
-- constants used here only have 19 digits of precision
|
338 |
|
|
if Real'Digits > 19 then
|
339 |
|
|
Error_Low_Bound := 0.00000_00000_00000_0001;
|
340 |
|
|
Report.Comment ("exp accuracy checked to 19 digits");
|
341 |
|
|
end if;
|
342 |
|
|
|
343 |
|
|
Argument_Range_Check_2 (1.0,
|
344 |
|
|
Sqrt(Real(Real'Machine_Radix)),
|
345 |
|
|
"6");
|
346 |
|
|
Error_Low_Bound := 0.0; -- reset
|
347 |
|
|
|
348 |
|
|
end Do_Test;
|
349 |
|
|
end Float_Check;
|
350 |
|
|
|
351 |
|
|
-----------------------------------------------------------------------
|
352 |
|
|
-----------------------------------------------------------------------
|
353 |
|
|
-- check the floating point type with the most digits
|
354 |
|
|
type A_Long_Float is digits System.Max_Digits;
|
355 |
|
|
|
356 |
|
|
|
357 |
|
|
package A_Long_Float_Check is
|
358 |
|
|
subtype Real is A_Long_Float;
|
359 |
|
|
procedure Do_Test;
|
360 |
|
|
end A_Long_Float_Check;
|
361 |
|
|
|
362 |
|
|
package body A_Long_Float_Check is
|
363 |
|
|
package Elementary_Functions is new
|
364 |
|
|
Ada.Numerics.Generic_Elementary_Functions (Real);
|
365 |
|
|
function Sqrt (X : Real) return Real renames
|
366 |
|
|
Elementary_Functions.Sqrt;
|
367 |
|
|
function Exp (X : Real) return Real renames
|
368 |
|
|
Elementary_Functions.Exp;
|
369 |
|
|
|
370 |
|
|
|
371 |
|
|
-- The following value is a lower bound on the accuracy
|
372 |
|
|
-- required. It is normally 0.0 so that the lower bound
|
373 |
|
|
-- is computed from Model_Epsilon. However, for tests
|
374 |
|
|
-- where the expected result is only known to a certain
|
375 |
|
|
-- amount of precision this bound takes on a non-zero
|
376 |
|
|
-- value to account for that level of precision.
|
377 |
|
|
Error_Low_Bound : Real := 0.0;
|
378 |
|
|
|
379 |
|
|
procedure Check (Actual, Expected : Real;
|
380 |
|
|
Test_Name : String;
|
381 |
|
|
MRE : Real) is
|
382 |
|
|
Max_Error : Real;
|
383 |
|
|
Rel_Error : Real;
|
384 |
|
|
Abs_Error : Real;
|
385 |
|
|
begin
|
386 |
|
|
-- In the case where the expected result is very small or 0
|
387 |
|
|
-- we compute the maximum error as a multiple of Model_Epsilon
|
388 |
|
|
-- instead of Model_Epsilon and Expected.
|
389 |
|
|
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
|
390 |
|
|
Abs_Error := MRE * Real'Model_Epsilon;
|
391 |
|
|
if Rel_Error > Abs_Error then
|
392 |
|
|
Max_Error := Rel_Error;
|
393 |
|
|
else
|
394 |
|
|
Max_Error := Abs_Error;
|
395 |
|
|
end if;
|
396 |
|
|
|
397 |
|
|
-- take into account the low bound on the error
|
398 |
|
|
if Max_Error < Error_Low_Bound then
|
399 |
|
|
Max_Error := Error_Low_Bound;
|
400 |
|
|
end if;
|
401 |
|
|
|
402 |
|
|
if abs (Actual - Expected) > Max_Error then
|
403 |
|
|
Accuracy_Error_Reported := True;
|
404 |
|
|
Report.Failed (Test_Name &
|
405 |
|
|
" actual: " & Real'Image (Actual) &
|
406 |
|
|
" expected: " & Real'Image (Expected) &
|
407 |
|
|
" difference: " & Real'Image (Actual - Expected) &
|
408 |
|
|
" max err:" & Real'Image (Max_Error) );
|
409 |
|
|
elsif Verbose then
|
410 |
|
|
if Actual = Expected then
|
411 |
|
|
Report.Comment (Test_Name & " exact result");
|
412 |
|
|
else
|
413 |
|
|
Report.Comment (Test_Name & " passed");
|
414 |
|
|
end if;
|
415 |
|
|
end if;
|
416 |
|
|
end Check;
|
417 |
|
|
|
418 |
|
|
|
419 |
|
|
procedure Argument_Range_Check_1 (A, B : Real;
|
420 |
|
|
Test : String) is
|
421 |
|
|
-- test a evenly distributed selection of
|
422 |
|
|
-- arguments selected from the range A to B.
|
423 |
|
|
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
|
424 |
|
|
-- The parameter One_Minus_Exp_Minus_V is the value
|
425 |
|
|
-- 1.0 - Exp (-V)
|
426 |
|
|
-- accurate to machine precision.
|
427 |
|
|
-- This procedure is a translation of part of Cody's test
|
428 |
|
|
X : Real;
|
429 |
|
|
Y : Real;
|
430 |
|
|
ZX, ZY : Real;
|
431 |
|
|
V : constant := 1.0 / 16.0;
|
432 |
|
|
One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
|
433 |
|
|
|
434 |
|
|
begin
|
435 |
|
|
Accuracy_Error_Reported := False;
|
436 |
|
|
for I in 1..Max_Samples loop
|
437 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
438 |
|
|
Y := X - V;
|
439 |
|
|
if Y < 0.0 then
|
440 |
|
|
X := Y + V;
|
441 |
|
|
end if;
|
442 |
|
|
|
443 |
|
|
ZX := Exp (X);
|
444 |
|
|
ZY := Exp (Y);
|
445 |
|
|
|
446 |
|
|
-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
|
447 |
|
|
-- which simplifies to ZX := Exp (X-V);
|
448 |
|
|
ZX := ZX - ZX * One_Minus_Exp_Minus_V;
|
449 |
|
|
|
450 |
|
|
-- note that since the expected value is computed, we
|
451 |
|
|
-- must take the error in that computation into account.
|
452 |
|
|
Check (ZY, ZX,
|
453 |
|
|
"test " & Test & " -" &
|
454 |
|
|
Integer'Image (I) &
|
455 |
|
|
" exp (" & Real'Image (X) & ")",
|
456 |
|
|
9.0);
|
457 |
|
|
exit when Accuracy_Error_Reported;
|
458 |
|
|
end loop;
|
459 |
|
|
exception
|
460 |
|
|
when Constraint_Error =>
|
461 |
|
|
Report.Failed
|
462 |
|
|
("Constraint_Error raised in argument range check 1");
|
463 |
|
|
when others =>
|
464 |
|
|
Report.Failed ("exception in argument range check 1");
|
465 |
|
|
end Argument_Range_Check_1;
|
466 |
|
|
|
467 |
|
|
|
468 |
|
|
|
469 |
|
|
procedure Argument_Range_Check_2 (A, B : Real;
|
470 |
|
|
Test : String) is
|
471 |
|
|
-- test a evenly distributed selection of
|
472 |
|
|
-- arguments selected from the range A to B.
|
473 |
|
|
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
|
474 |
|
|
-- The parameter One_Minus_Exp_Minus_V is the value
|
475 |
|
|
-- 1.0 - Exp (-V)
|
476 |
|
|
-- accurate to machine precision.
|
477 |
|
|
-- This procedure is a translation of part of Cody's test
|
478 |
|
|
X : Real;
|
479 |
|
|
Y : Real;
|
480 |
|
|
ZX, ZY : Real;
|
481 |
|
|
V : constant := 45.0 / 16.0;
|
482 |
|
|
-- 1/16 - Exp(45/16)
|
483 |
|
|
Coeff : constant := 2.4453321046920570389E-3;
|
484 |
|
|
|
485 |
|
|
begin
|
486 |
|
|
Accuracy_Error_Reported := False;
|
487 |
|
|
for I in 1..Max_Samples loop
|
488 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
489 |
|
|
Y := X - V;
|
490 |
|
|
if Y < 0.0 then
|
491 |
|
|
X := Y + V;
|
492 |
|
|
end if;
|
493 |
|
|
|
494 |
|
|
ZX := Exp (X);
|
495 |
|
|
ZY := Exp (Y);
|
496 |
|
|
|
497 |
|
|
-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
|
498 |
|
|
-- where Coeff is 1/16 - Exp(45/16)
|
499 |
|
|
-- which simplifies to ZX := Exp (X-V);
|
500 |
|
|
ZX := ZX * 0.0625 - ZX * Coeff;
|
501 |
|
|
|
502 |
|
|
-- note that since the expected value is computed, we
|
503 |
|
|
-- must take the error in that computation into account.
|
504 |
|
|
Check (ZY, ZX,
|
505 |
|
|
"test " & Test & " -" &
|
506 |
|
|
Integer'Image (I) &
|
507 |
|
|
" exp (" & Real'Image (X) & ")",
|
508 |
|
|
9.0);
|
509 |
|
|
exit when Accuracy_Error_Reported;
|
510 |
|
|
end loop;
|
511 |
|
|
exception
|
512 |
|
|
when Constraint_Error =>
|
513 |
|
|
Report.Failed
|
514 |
|
|
("Constraint_Error raised in argument range check 2");
|
515 |
|
|
when others =>
|
516 |
|
|
Report.Failed ("exception in argument range check 2");
|
517 |
|
|
end Argument_Range_Check_2;
|
518 |
|
|
|
519 |
|
|
|
520 |
|
|
procedure Do_Test is
|
521 |
|
|
begin
|
522 |
|
|
|
523 |
|
|
--- test 1 ---
|
524 |
|
|
declare
|
525 |
|
|
Y : Real;
|
526 |
|
|
begin
|
527 |
|
|
Y := Exp(1.0);
|
528 |
|
|
-- normal accuracy requirements
|
529 |
|
|
Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
|
530 |
|
|
exception
|
531 |
|
|
when Constraint_Error =>
|
532 |
|
|
Report.Failed ("Constraint_Error raised in test 1");
|
533 |
|
|
when others =>
|
534 |
|
|
Report.Failed ("exception in test 1");
|
535 |
|
|
end;
|
536 |
|
|
|
537 |
|
|
--- test 2 ---
|
538 |
|
|
declare
|
539 |
|
|
Y : Real;
|
540 |
|
|
begin
|
541 |
|
|
Y := Exp(16.0) * Exp(-16.0);
|
542 |
|
|
Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
|
543 |
|
|
exception
|
544 |
|
|
when Constraint_Error =>
|
545 |
|
|
Report.Failed ("Constraint_Error raised in test 2");
|
546 |
|
|
when others =>
|
547 |
|
|
Report.Failed ("exception in test 2");
|
548 |
|
|
end;
|
549 |
|
|
|
550 |
|
|
--- test 3 ---
|
551 |
|
|
declare
|
552 |
|
|
Y : Real;
|
553 |
|
|
begin
|
554 |
|
|
Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
|
555 |
|
|
Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
|
556 |
|
|
exception
|
557 |
|
|
when Constraint_Error =>
|
558 |
|
|
Report.Failed ("Constraint_Error raised in test 3");
|
559 |
|
|
when others =>
|
560 |
|
|
Report.Failed ("exception in test 3");
|
561 |
|
|
end;
|
562 |
|
|
|
563 |
|
|
--- test 4 ---
|
564 |
|
|
declare
|
565 |
|
|
Y : Real;
|
566 |
|
|
begin
|
567 |
|
|
Y := Exp(0.0);
|
568 |
|
|
Check (Y, 1.0, "test 4 -- exp(0.0)",
|
569 |
|
|
0.0); -- no error allowed
|
570 |
|
|
exception
|
571 |
|
|
when Constraint_Error =>
|
572 |
|
|
Report.Failed ("Constraint_Error raised in test 4");
|
573 |
|
|
when others =>
|
574 |
|
|
Report.Failed ("exception in test 4");
|
575 |
|
|
end;
|
576 |
|
|
|
577 |
|
|
--- test 5 ---
|
578 |
|
|
-- constants used here only have 19 digits of precision
|
579 |
|
|
if Real'Digits > 19 then
|
580 |
|
|
Error_Low_Bound := 0.00000_00000_00000_0001;
|
581 |
|
|
Report.Comment ("exp accuracy checked to 19 digits");
|
582 |
|
|
end if;
|
583 |
|
|
|
584 |
|
|
Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
|
585 |
|
|
1.0,
|
586 |
|
|
"5");
|
587 |
|
|
Error_Low_Bound := 0.0; -- reset
|
588 |
|
|
|
589 |
|
|
--- test 6 ---
|
590 |
|
|
-- constants used here only have 19 digits of precision
|
591 |
|
|
if Real'Digits > 19 then
|
592 |
|
|
Error_Low_Bound := 0.00000_00000_00000_0001;
|
593 |
|
|
Report.Comment ("exp accuracy checked to 19 digits");
|
594 |
|
|
end if;
|
595 |
|
|
|
596 |
|
|
Argument_Range_Check_2 (1.0,
|
597 |
|
|
Sqrt(Real(Real'Machine_Radix)),
|
598 |
|
|
"6");
|
599 |
|
|
Error_Low_Bound := 0.0; -- reset
|
600 |
|
|
|
601 |
|
|
end Do_Test;
|
602 |
|
|
end A_Long_Float_Check;
|
603 |
|
|
|
604 |
|
|
-----------------------------------------------------------------------
|
605 |
|
|
-----------------------------------------------------------------------
|
606 |
|
|
|
607 |
|
|
package Non_Generic_Check is
|
608 |
|
|
procedure Do_Test;
|
609 |
|
|
subtype Real is Float;
|
610 |
|
|
end Non_Generic_Check;
|
611 |
|
|
|
612 |
|
|
package body Non_Generic_Check is
|
613 |
|
|
|
614 |
|
|
package Elementary_Functions renames
|
615 |
|
|
Ada.Numerics.Elementary_Functions;
|
616 |
|
|
function Sqrt (X : Real) return Real renames
|
617 |
|
|
Elementary_Functions.Sqrt;
|
618 |
|
|
function Exp (X : Real) return Real renames
|
619 |
|
|
Elementary_Functions.Exp;
|
620 |
|
|
|
621 |
|
|
|
622 |
|
|
-- The following value is a lower bound on the accuracy
|
623 |
|
|
-- required. It is normally 0.0 so that the lower bound
|
624 |
|
|
-- is computed from Model_Epsilon. However, for tests
|
625 |
|
|
-- where the expected result is only known to a certain
|
626 |
|
|
-- amount of precision this bound takes on a non-zero
|
627 |
|
|
-- value to account for that level of precision.
|
628 |
|
|
Error_Low_Bound : Real := 0.0;
|
629 |
|
|
|
630 |
|
|
procedure Check (Actual, Expected : Real;
|
631 |
|
|
Test_Name : String;
|
632 |
|
|
MRE : Real) is
|
633 |
|
|
Max_Error : Real;
|
634 |
|
|
Rel_Error : Real;
|
635 |
|
|
Abs_Error : Real;
|
636 |
|
|
begin
|
637 |
|
|
-- In the case where the expected result is very small or 0
|
638 |
|
|
-- we compute the maximum error as a multiple of Model_Epsilon
|
639 |
|
|
-- instead of Model_Epsilon and Expected.
|
640 |
|
|
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
|
641 |
|
|
Abs_Error := MRE * Real'Model_Epsilon;
|
642 |
|
|
if Rel_Error > Abs_Error then
|
643 |
|
|
Max_Error := Rel_Error;
|
644 |
|
|
else
|
645 |
|
|
Max_Error := Abs_Error;
|
646 |
|
|
end if;
|
647 |
|
|
|
648 |
|
|
-- take into account the low bound on the error
|
649 |
|
|
if Max_Error < Error_Low_Bound then
|
650 |
|
|
Max_Error := Error_Low_Bound;
|
651 |
|
|
end if;
|
652 |
|
|
|
653 |
|
|
if abs (Actual - Expected) > Max_Error then
|
654 |
|
|
Accuracy_Error_Reported := True;
|
655 |
|
|
Report.Failed (Test_Name &
|
656 |
|
|
" actual: " & Real'Image (Actual) &
|
657 |
|
|
" expected: " & Real'Image (Expected) &
|
658 |
|
|
" difference: " & Real'Image (Actual - Expected) &
|
659 |
|
|
" max err:" & Real'Image (Max_Error) );
|
660 |
|
|
elsif Verbose then
|
661 |
|
|
if Actual = Expected then
|
662 |
|
|
Report.Comment (Test_Name & " exact result");
|
663 |
|
|
else
|
664 |
|
|
Report.Comment (Test_Name & " passed");
|
665 |
|
|
end if;
|
666 |
|
|
end if;
|
667 |
|
|
end Check;
|
668 |
|
|
|
669 |
|
|
|
670 |
|
|
procedure Argument_Range_Check_1 (A, B : Real;
|
671 |
|
|
Test : String) is
|
672 |
|
|
-- test a evenly distributed selection of
|
673 |
|
|
-- arguments selected from the range A to B.
|
674 |
|
|
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
|
675 |
|
|
-- The parameter One_Minus_Exp_Minus_V is the value
|
676 |
|
|
-- 1.0 - Exp (-V)
|
677 |
|
|
-- accurate to machine precision.
|
678 |
|
|
-- This procedure is a translation of part of Cody's test
|
679 |
|
|
X : Real;
|
680 |
|
|
Y : Real;
|
681 |
|
|
ZX, ZY : Real;
|
682 |
|
|
V : constant := 1.0 / 16.0;
|
683 |
|
|
One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
|
684 |
|
|
|
685 |
|
|
begin
|
686 |
|
|
Accuracy_Error_Reported := False;
|
687 |
|
|
for I in 1..Max_Samples loop
|
688 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
689 |
|
|
Y := X - V;
|
690 |
|
|
if Y < 0.0 then
|
691 |
|
|
X := Y + V;
|
692 |
|
|
end if;
|
693 |
|
|
|
694 |
|
|
ZX := Exp (X);
|
695 |
|
|
ZY := Exp (Y);
|
696 |
|
|
|
697 |
|
|
-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
|
698 |
|
|
-- which simplifies to ZX := Exp (X-V);
|
699 |
|
|
ZX := ZX - ZX * One_Minus_Exp_Minus_V;
|
700 |
|
|
|
701 |
|
|
-- note that since the expected value is computed, we
|
702 |
|
|
-- must take the error in that computation into account.
|
703 |
|
|
Check (ZY, ZX,
|
704 |
|
|
"test " & Test & " -" &
|
705 |
|
|
Integer'Image (I) &
|
706 |
|
|
" exp (" & Real'Image (X) & ")",
|
707 |
|
|
9.0);
|
708 |
|
|
exit when Accuracy_Error_Reported;
|
709 |
|
|
end loop;
|
710 |
|
|
exception
|
711 |
|
|
when Constraint_Error =>
|
712 |
|
|
Report.Failed
|
713 |
|
|
("Constraint_Error raised in argument range check 1");
|
714 |
|
|
when others =>
|
715 |
|
|
Report.Failed ("exception in argument range check 1");
|
716 |
|
|
end Argument_Range_Check_1;
|
717 |
|
|
|
718 |
|
|
|
719 |
|
|
|
720 |
|
|
procedure Argument_Range_Check_2 (A, B : Real;
|
721 |
|
|
Test : String) is
|
722 |
|
|
-- test a evenly distributed selection of
|
723 |
|
|
-- arguments selected from the range A to B.
|
724 |
|
|
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
|
725 |
|
|
-- The parameter One_Minus_Exp_Minus_V is the value
|
726 |
|
|
-- 1.0 - Exp (-V)
|
727 |
|
|
-- accurate to machine precision.
|
728 |
|
|
-- This procedure is a translation of part of Cody's test
|
729 |
|
|
X : Real;
|
730 |
|
|
Y : Real;
|
731 |
|
|
ZX, ZY : Real;
|
732 |
|
|
V : constant := 45.0 / 16.0;
|
733 |
|
|
-- 1/16 - Exp(45/16)
|
734 |
|
|
Coeff : constant := 2.4453321046920570389E-3;
|
735 |
|
|
|
736 |
|
|
begin
|
737 |
|
|
Accuracy_Error_Reported := False;
|
738 |
|
|
for I in 1..Max_Samples loop
|
739 |
|
|
X := (B - A) * Real (I) / Real (Max_Samples) + A;
|
740 |
|
|
Y := X - V;
|
741 |
|
|
if Y < 0.0 then
|
742 |
|
|
X := Y + V;
|
743 |
|
|
end if;
|
744 |
|
|
|
745 |
|
|
ZX := Exp (X);
|
746 |
|
|
ZY := Exp (Y);
|
747 |
|
|
|
748 |
|
|
-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
|
749 |
|
|
-- where Coeff is 1/16 - Exp(45/16)
|
750 |
|
|
-- which simplifies to ZX := Exp (X-V);
|
751 |
|
|
ZX := ZX * 0.0625 - ZX * Coeff;
|
752 |
|
|
|
753 |
|
|
-- note that since the expected value is computed, we
|
754 |
|
|
-- must take the error in that computation into account.
|
755 |
|
|
Check (ZY, ZX,
|
756 |
|
|
"test " & Test & " -" &
|
757 |
|
|
Integer'Image (I) &
|
758 |
|
|
" exp (" & Real'Image (X) & ")",
|
759 |
|
|
9.0);
|
760 |
|
|
exit when Accuracy_Error_Reported;
|
761 |
|
|
end loop;
|
762 |
|
|
exception
|
763 |
|
|
when Constraint_Error =>
|
764 |
|
|
Report.Failed
|
765 |
|
|
("Constraint_Error raised in argument range check 2");
|
766 |
|
|
when others =>
|
767 |
|
|
Report.Failed ("exception in argument range check 2");
|
768 |
|
|
end Argument_Range_Check_2;
|
769 |
|
|
|
770 |
|
|
|
771 |
|
|
procedure Do_Test is
|
772 |
|
|
begin
|
773 |
|
|
|
774 |
|
|
--- test 1 ---
|
775 |
|
|
declare
|
776 |
|
|
Y : Real;
|
777 |
|
|
begin
|
778 |
|
|
Y := Exp(1.0);
|
779 |
|
|
-- normal accuracy requirements
|
780 |
|
|
Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
|
781 |
|
|
exception
|
782 |
|
|
when Constraint_Error =>
|
783 |
|
|
Report.Failed ("Constraint_Error raised in test 1");
|
784 |
|
|
when others =>
|
785 |
|
|
Report.Failed ("exception in test 1");
|
786 |
|
|
end;
|
787 |
|
|
|
788 |
|
|
--- test 2 ---
|
789 |
|
|
declare
|
790 |
|
|
Y : Real;
|
791 |
|
|
begin
|
792 |
|
|
Y := Exp(16.0) * Exp(-16.0);
|
793 |
|
|
Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
|
794 |
|
|
exception
|
795 |
|
|
when Constraint_Error =>
|
796 |
|
|
Report.Failed ("Constraint_Error raised in test 2");
|
797 |
|
|
when others =>
|
798 |
|
|
Report.Failed ("exception in test 2");
|
799 |
|
|
end;
|
800 |
|
|
|
801 |
|
|
--- test 3 ---
|
802 |
|
|
declare
|
803 |
|
|
Y : Real;
|
804 |
|
|
begin
|
805 |
|
|
Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
|
806 |
|
|
Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
|
807 |
|
|
exception
|
808 |
|
|
when Constraint_Error =>
|
809 |
|
|
Report.Failed ("Constraint_Error raised in test 3");
|
810 |
|
|
when others =>
|
811 |
|
|
Report.Failed ("exception in test 3");
|
812 |
|
|
end;
|
813 |
|
|
|
814 |
|
|
--- test 4 ---
|
815 |
|
|
declare
|
816 |
|
|
Y : Real;
|
817 |
|
|
begin
|
818 |
|
|
Y := Exp(0.0);
|
819 |
|
|
Check (Y, 1.0, "test 4 -- exp(0.0)",
|
820 |
|
|
0.0); -- no error allowed
|
821 |
|
|
exception
|
822 |
|
|
when Constraint_Error =>
|
823 |
|
|
Report.Failed ("Constraint_Error raised in test 4");
|
824 |
|
|
when others =>
|
825 |
|
|
Report.Failed ("exception in test 4");
|
826 |
|
|
end;
|
827 |
|
|
|
828 |
|
|
--- test 5 ---
|
829 |
|
|
-- constants used here only have 19 digits of precision
|
830 |
|
|
if Real'Digits > 19 then
|
831 |
|
|
Error_Low_Bound := 0.00000_00000_00000_0001;
|
832 |
|
|
Report.Comment ("exp accuracy checked to 19 digits");
|
833 |
|
|
end if;
|
834 |
|
|
|
835 |
|
|
Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
|
836 |
|
|
1.0,
|
837 |
|
|
"5");
|
838 |
|
|
Error_Low_Bound := 0.0; -- reset
|
839 |
|
|
|
840 |
|
|
--- test 6 ---
|
841 |
|
|
-- constants used here only have 19 digits of precision
|
842 |
|
|
if Real'Digits > 19 then
|
843 |
|
|
Error_Low_Bound := 0.00000_00000_00000_0001;
|
844 |
|
|
Report.Comment ("exp accuracy checked to 19 digits");
|
845 |
|
|
end if;
|
846 |
|
|
|
847 |
|
|
Argument_Range_Check_2 (1.0,
|
848 |
|
|
Sqrt(Real(Real'Machine_Radix)),
|
849 |
|
|
"6");
|
850 |
|
|
Error_Low_Bound := 0.0; -- reset
|
851 |
|
|
|
852 |
|
|
end Do_Test;
|
853 |
|
|
end Non_Generic_Check;
|
854 |
|
|
|
855 |
|
|
-----------------------------------------------------------------------
|
856 |
|
|
-----------------------------------------------------------------------
|
857 |
|
|
|
858 |
|
|
begin
|
859 |
|
|
Report.Test ("CXG2010",
|
860 |
|
|
"Check the accuracy of the exp function");
|
861 |
|
|
|
862 |
|
|
-- the test only applies to machines with a radix of 2,4,8, or 16
|
863 |
|
|
case Float'Machine_Radix is
|
864 |
|
|
when 2 | 4 | 8 | 16 => null;
|
865 |
|
|
when others =>
|
866 |
|
|
Report.Not_Applicable ("only applicable to binary radix");
|
867 |
|
|
Report.Result;
|
868 |
|
|
return;
|
869 |
|
|
end case;
|
870 |
|
|
|
871 |
|
|
if Verbose then
|
872 |
|
|
Report.Comment ("checking Standard.Float");
|
873 |
|
|
end if;
|
874 |
|
|
|
875 |
|
|
Float_Check.Do_Test;
|
876 |
|
|
|
877 |
|
|
if Verbose then
|
878 |
|
|
Report.Comment ("checking a digits" &
|
879 |
|
|
Integer'Image (System.Max_Digits) &
|
880 |
|
|
" floating point type");
|
881 |
|
|
end if;
|
882 |
|
|
|
883 |
|
|
A_Long_Float_Check.Do_Test;
|
884 |
|
|
|
885 |
|
|
if Verbose then
|
886 |
|
|
Report.Comment ("checking non-generic package");
|
887 |
|
|
end if;
|
888 |
|
|
|
889 |
|
|
Non_Generic_Check.Do_Test;
|
890 |
|
|
|
891 |
|
|
Report.Result;
|
892 |
|
|
end CXG2010;
|