OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2011.a] - Blame information for rev 294

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 294 jeremybenn
-- CXG2011.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the log function returns
28
--      results that are within the error bound allowed.
29
--
30
-- TEST DESCRIPTION:
31
--      This test consists of a generic package that is
32
--      instantiated to check both Float and a long float type.
33
--      The test for each floating point type is divided into
34
--      several parts:
35
--         Special value checks where the result is a known constant.
36
--         Checks in a range where a Taylor series can be used to compute
37
--            the expected result.
38
--         Checks that use an identity for determining the result.
39
--         Exception checks.
40
--
41
-- SPECIAL REQUIREMENTS
42
--      The Strict Mode for the numerical accuracy must be
43
--      selected.  The method by which this mode is selected
44
--      is implementation dependent.
45
--
46
-- APPLICABILITY CRITERIA:
47
--      This test applies only to implementations supporting the
48
--      Numerics Annex.
49
--      This test only applies to the Strict Mode for numerical
50
--      accuracy.
51
--
52
--
53
-- CHANGE HISTORY:
54
--       1 Mar 96   SAIC    Initial release for 2.1
55
--      22 Aug 96   SAIC    Improved Check routine
56
--      02 DEC 97   EDS     Log (0.0) must raise Constraint_Error,
57
--                          not Argument_Error
58
--!
59
 
60
--
61
-- References:
62
--
63
-- Software Manual for the Elementary Functions
64
-- William J. Cody, Jr. and William Waite
65
-- Prentice-Hall, 1980
66
--
67
-- CRC Standard Mathematical Tables
68
-- 23rd Edition
69
--
70
-- Implementation and Testing of Function Software
71
-- W. J. Cody
72
-- Problems and Methodologies in Mathematical Software Production
73
-- editors P. C. Messina and A. Murli
74
-- Lecture Notes in Computer Science   Volume 142
75
-- Springer Verlag, 1982
76
--
77
 
78
with System;
79
with Report;
80
with Ada.Numerics.Generic_Elementary_Functions;
81
procedure CXG2011 is
82
   Verbose : constant Boolean := False;
83
   Max_Samples : constant := 1000;
84
 
85
   -- CRC Handbook Page 738
86
   Ln10 : constant := 2.30258_50929_94045_68401_79914_54684_36420_76011_01489;
87
   Ln2  : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755_00134;
88
 
89
   generic
90
      type Real is digits <>;
91
   package Generic_Check is
92
      procedure Do_Test;
93
   end Generic_Check;
94
 
95
   package body Generic_Check is
96
      package Elementary_Functions is new
97
           Ada.Numerics.Generic_Elementary_Functions (Real);
98
      function Sqrt (X : Real'Base) return Real'Base renames
99
           Elementary_Functions.Sqrt;
100
      function Exp (X : Real'Base) return Real'Base renames
101
           Elementary_Functions.Exp;
102
      function Log (X : Real'Base) return Real'Base renames
103
           Elementary_Functions.Log;
104
      function Log (X, Base : Real'Base) return Real'Base renames
105
           Elementary_Functions.Log;
106
 
107
      -- flag used to terminate some tests early
108
      Accuracy_Error_Reported : Boolean := False;
109
 
110
 
111
      -- The following value is a lower bound on the accuracy
112
      -- required.  It is normally 0.0 so that the lower bound
113
      -- is computed from Model_Epsilon.  However, for tests
114
      -- where the expected result is only known to a certain
115
      -- amount of precision this bound takes on a non-zero
116
      -- value to account for that level of precision.
117
      Error_Low_Bound : Real := 0.0;
118
 
119
      procedure Check (Actual, Expected : Real;
120
                       Test_Name : String;
121
                       MRE : Real) is
122
         Max_Error : Real;
123
         Rel_Error : Real;
124
         Abs_Error : Real;
125
      begin
126
         -- In the case where the expected result is very small or 0
127
         -- we compute the maximum error as a multiple of Model_Epsilon
128
         -- instead of Model_Epsilon and Expected.
129
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
130
         Abs_Error := MRE * Real'Model_Epsilon;
131
         if Rel_Error > Abs_Error then
132
            Max_Error := Rel_Error;
133
         else
134
            Max_Error := Abs_Error;
135
         end if;
136
 
137
         -- take into account the low bound on the error
138
         if Max_Error < Error_Low_Bound then
139
            Max_Error := Error_Low_Bound;
140
         end if;
141
 
142
         if abs (Actual - Expected) > Max_Error then
143
            Accuracy_Error_Reported := True;
144
            Report.Failed (Test_Name &
145
                           " actual: " & Real'Image (Actual) &
146
                           " expected: " & Real'Image (Expected) &
147
                           " difference: " & Real'Image (Actual - Expected) &
148
                           " max err:" & Real'Image (Max_Error) );
149
         elsif Verbose then
150
            if Actual = Expected then
151
               Report.Comment (Test_Name & "  exact result");
152
            else
153
               Report.Comment (Test_Name & "  passed");
154
            end if;
155
         end if;
156
      end Check;
157
 
158
 
159
      procedure Special_Value_Test is
160
      begin
161
 
162
         --- test 1 ---
163
         declare
164
            Y : Real;
165
         begin
166
            Y := Log(1.0);
167
            Check (Y, 0.0, "special value test 1 -- log(1)",
168
                   0.0);  -- no error allowed
169
         exception
170
            when Constraint_Error =>
171
               Report.Failed ("Constraint_Error raised in test 1");
172
            when others =>
173
               Report.Failed ("exception in test 1");
174
         end;
175
 
176
         --- test 2 ---
177
         declare
178
            Y : Real;
179
         begin
180
            Y := Log(10.0);
181
            Check (Y, Ln10, "special value test 2 -- log(10)", 4.0);
182
         exception
183
            when Constraint_Error =>
184
               Report.Failed ("Constraint_Error raised in test 2");
185
            when others =>
186
               Report.Failed ("exception in test 2");
187
         end;
188
 
189
         --- test 3 ---
190
         declare
191
            Y : Real;
192
         begin
193
            Y := Log (2.0);
194
            Check (Y, Ln2, "special value test 3 -- log(2)", 4.0);
195
         exception
196
            when Constraint_Error =>
197
               Report.Failed ("Constraint_Error raised in test 3");
198
            when others =>
199
               Report.Failed ("exception in test 3");
200
         end;
201
 
202
         --- test 4 ---
203
         declare
204
            Y : Real;
205
         begin
206
            Y := Log (2.0 ** 18, 2.0);
207
            Check (Y, 18.0, "special value test 4 -- log(2**18,2)", 4.0);
208
         exception
209
            when Constraint_Error =>
210
               Report.Failed ("Constraint_Error raised in test 4");
211
            when others =>
212
               Report.Failed ("exception in test 4");
213
         end;
214
      end Special_Value_Test;
215
 
216
 
217
      procedure Taylor_Series_Test is
218
      -- Use a 4 term taylor series expansion to check a selection of
219
      -- arguments very near 1.0.
220
      -- The range is chosen so that the 4 term taylor series will
221
      -- provide accuracy to machine precision.   Cody pg 49-50.
222
         Half_Range : constant Real := Real'Model_Epsilon * 50.0;
223
         A : constant Real := 1.0 - Half_Range;
224
         B : constant Real := 1.0 + Half_Range;
225
         X : Real;
226
         Xm1 : Real;
227
         Expected : Real;
228
         Actual : Real;
229
 
230
      begin
231
         Accuracy_Error_Reported := False;  -- reset
232
         for I in 1..Max_Samples loop
233
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
234
 
235
            Xm1 := X - 1.0;
236
            -- The following is the first 4 terms of the taylor series
237
            -- that has been rearranged to minimize error in the calculation
238
            Expected := (Xm1 * (1.0/3.0 - Xm1/4.0) - 0.5) * Xm1 * Xm1 + Xm1;
239
 
240
            Actual := Log (X);
241
            Check (Actual, Expected,
242
                   "Taylor Series Test -" &
243
                   Integer'Image (I) &
244
                   " log (" & Real'Image (X) & ")",
245
                   4.0);
246
            if Accuracy_Error_Reported then
247
              -- only report the first error in this test in order to keep
248
              -- lots of failures from producing a huge error log
249
              return;
250
            end if;
251
         end loop;
252
      exception
253
         when Constraint_Error =>
254
            Report.Failed
255
               ("Constraint_Error raised in Taylor Series Test");
256
         when others =>
257
            Report.Failed ("exception in Taylor Series Test");
258
      end Taylor_Series_Test;
259
 
260
 
261
 
262
      procedure Log_Difference_Identity is
263
      -- Check using the identity ln(x) = ln(17x/16) - ln(17/16)
264
      -- over the range A to B.
265
      -- The selected range assures that both X and 17x/16 will
266
      -- have the same exponents and neither argument gets too close
267
      -- to 1.    Cody pg 50.
268
         A : constant Real := 1.0 / Sqrt (2.0);
269
         B : constant Real := 15.0 / 16.0;
270
         X : Real;
271
         Expected : Real;
272
         Actual : Real;
273
      begin
274
         Accuracy_Error_Reported := False;  -- reset
275
         for I in 1..Max_Samples loop
276
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
277
            -- magic argument purification
278
            X := Real'Machine (Real'Machine (X+8.0) - 8.0);
279
 
280
            Expected := Log (X + X / 16.0) - Log (17.0/16.0);
281
 
282
            Actual := Log (X);
283
            Check (Actual, Expected,
284
                   "Log Difference Identity -" &
285
                   Integer'Image (I) &
286
                   " log (" & Real'Image (X) & ")",
287
                   4.0);
288
 
289
            if Accuracy_Error_Reported then
290
              -- only report the first error in this test in order to keep
291
              -- lots of failures from producing a huge error log
292
              return;
293
            end if;
294
         end loop;
295
      exception
296
         when Constraint_Error =>
297
            Report.Failed
298
               ("Constraint_Error raised in Log Difference Identity Test");
299
         when others =>
300
            Report.Failed ("exception in Log Difference Identity Test");
301
      end Log_Difference_Identity;
302
 
303
 
304
      procedure Log_Product_Identity is
305
      -- Check using the identity ln(x**2) = 2ln(x)
306
      -- over the range A to B.
307
      -- This large range is chosen to minimize the possibility of
308
      -- undetected systematic errors.   Cody pg 53.
309
         A : constant Real := 16.0;
310
         B : constant Real := 240.0;
311
         X : Real;
312
         Expected : Real;
313
         Actual : Real;
314
      begin
315
         Accuracy_Error_Reported := False;  -- reset
316
         for I in 1..Max_Samples loop
317
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
318
            -- magic argument purification
319
            X := Real'Machine (Real'Machine (X+8.0) - 8.0);
320
 
321
            Expected := 2.0 * Log (X);
322
 
323
            Actual := Log (X*X);
324
            Check (Actual, Expected,
325
                   "Log Product Identity -" &
326
                   Integer'Image (I) &
327
                   " log (" & Real'Image (X) & ")",
328
                   4.0);
329
            if Accuracy_Error_Reported then
330
              -- only report the first error in this test in order to keep
331
              -- lots of failures from producing a huge error log
332
              return;
333
            end if;
334
         end loop;
335
      exception
336
         when Constraint_Error =>
337
            Report.Failed
338
               ("Constraint_Error raised in Log Product Identity Test");
339
         when others =>
340
            Report.Failed ("exception in Log Product Identity Test");
341
      end Log_Product_Identity;
342
 
343
 
344
      procedure Log10_Test is
345
      -- Check using the identity log(x) = log(11x/10) - log(1.1)
346
      -- over the range A to B.  See Cody pg 52.
347
         A : constant Real := 1.0 / Sqrt (10.0);
348
         B : constant Real := 0.9;
349
         X : Real;
350
         Expected : Real;
351
         Actual : Real;
352
      begin
353
         if Real'Digits > 17 then
354
             -- constant used below is accuract to 17 digits
355
            Error_Low_Bound := 0.00000_00000_00000_01;
356
            Report.Comment ("log accuracy checked to 19 digits");
357
         end if;
358
         Accuracy_Error_Reported := False;  -- reset
359
         for I in 1..Max_Samples loop
360
            X :=  (B - A) * Real (I) / Real (Max_Samples) + A;
361
 
362
            Expected := Log (X + X/10.0, 10.0)
363
                     - 3.77060_15822_50407_5E-4 - 21.0 / 512.0;
364
 
365
            Actual := Log (X, 10.0);
366
            Check (Actual, Expected,
367
                   "Log 10 Test -" &
368
                   Integer'Image (I) &
369
                   " log (" & Real'Image (X) & ")",
370
                   4.0);
371
 
372
              -- only report the first error in this test in order to keep
373
              -- lots of failures from producing a huge error log
374
            exit when Accuracy_Error_Reported;
375
         end loop;
376
         Error_Low_Bound := 0.0;   -- reset
377
 
378
      exception
379
         when Constraint_Error =>
380
            Report.Failed
381
               ("Constraint_Error raised in Log 10 Test");
382
         when others =>
383
            Report.Failed ("exception in Log 10 Test");
384
      end Log10_Test;
385
 
386
 
387
      procedure Exception_Test is
388
         X1, X2, X3, X4 : Real;
389
      begin
390
         begin
391
            X1 := Log (0.0);
392
            Report.Failed ("exception not raised for LOG(0)");
393
         exception
394
            -- Log (0.0) must raise Constraint_Error, not Argument_Error,
395
            -- as per A.5.1(28,29).  Was incorrect in ACVC 2.1 release.
396
            when Ada.Numerics.Argument_Error =>
397
               Report.Failed ("Argument_Error raised instead of" &
398
                              " Constraint_Error for LOG(0)--A.5.1(28,29)");
399
            when Constraint_Error =>  null;  -- ok
400
            when others =>
401
               Report.Failed ("wrong exception raised for LOG(0)");
402
         end;
403
 
404
         begin
405
            X2 := Log ( 1.0, 0.0);
406
            Report.Failed ("exception not raised for LOG(1,0)");
407
         exception
408
            when Ada.Numerics.Argument_Error =>  null;  -- ok
409
            when Constraint_Error =>
410
               Report.Failed ("constraint_error raised instead of" &
411
                              " argument_error for LOG(1,0)");
412
            when others =>
413
               Report.Failed ("wrong exception raised for LOG(1,0)");
414
         end;
415
 
416
         begin
417
            X3 := Log (1.0, 1.0);
418
            Report.Failed ("exception not raised for LOG(1,1)");
419
         exception
420
            when Ada.Numerics.Argument_Error =>  null;  -- ok
421
            when Constraint_Error =>
422
               Report.Failed ("constraint_error raised instead of" &
423
                              " argument_error for LOG(1,1)");
424
            when others =>
425
               Report.Failed ("wrong exception raised for LOG(1,1)");
426
         end;
427
 
428
         begin
429
            X4 := Log (1.0, -10.0);
430
            Report.Failed ("exception not raised for LOG(1,-10)");
431
         exception
432
            when Ada.Numerics.Argument_Error =>  null;  -- ok
433
            when Constraint_Error =>
434
               Report.Failed ("constraint_error raised instead of" &
435
                              " argument_error for LOG(1,-10)");
436
            when others =>
437
               Report.Failed ("wrong exception raised for LOG(1,-10)");
438
         end;
439
 
440
         -- optimizer thwarting
441
         if Report.Ident_Bool (False) then
442
            Report.Comment (Real'Image (X1+X2+X3+X4));
443
         end if;
444
      end Exception_Test;
445
 
446
 
447
      procedure Do_Test is
448
      begin
449
         Special_Value_Test;
450
         Taylor_Series_Test;
451
         Log_Difference_Identity;
452
         Log_Product_Identity;
453
         Log10_Test;
454
         Exception_Test;
455
      end Do_Test;
456
   end Generic_Check;
457
 
458
   -----------------------------------------------------------------------
459
   -----------------------------------------------------------------------
460
   package Float_Check is new Generic_Check (Float);
461
 
462
   -- check the floating point type with the most digits
463
   type A_Long_Float is digits System.Max_Digits;
464
   package A_Long_Float_Check is new Generic_Check (A_Long_Float);
465
 
466
   -----------------------------------------------------------------------
467
   -----------------------------------------------------------------------
468
 
469
 
470
begin
471
   Report.Test ("CXG2011",
472
                "Check the accuracy of the log function");
473
 
474
   if Verbose then
475
      Report.Comment ("checking Standard.Float");
476
   end if;
477
 
478
   Float_Check.Do_Test;
479
 
480
   if Verbose then
481
      Report.Comment ("checking a digits" &
482
                      Integer'Image (System.Max_Digits) &
483
                      " floating point type");
484
   end if;
485
 
486
   A_Long_Float_Check.Do_Test;
487
 
488
 
489
   Report.Result;
490
end CXG2011;

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.