OpenCores
URL https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk

Subversion Repositories openrisc_me

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2017.a] - Blame information for rev 322

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 294 jeremybenn
-- CXG2017.A
2
--
3
--                             Grant of Unlimited Rights
4
--
5
--     Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
6
--     F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
7
--     unlimited rights in the software and documentation contained herein.
8
--     Unlimited rights are defined in DFAR 252.227-7013(a)(19).  By making
9
--     this public release, the Government intends to confer upon all
10
--     recipients unlimited rights  equal to those held by the Government.
11
--     These rights include rights to use, duplicate, release or disclose the
12
--     released technical data and computer software in whole or in part, in
13
--     any manner and for any purpose whatsoever, and to have or permit others
14
--     to do so.
15
--
16
--                                    DISCLAIMER
17
--
18
--     ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
19
--     DISCLOSED ARE AS IS.  THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
20
--     WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
21
--     SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
22
--     OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
23
--     PARTICULAR PURPOSE OF SAID MATERIAL.
24
--*
25
--
26
-- OBJECTIVE:
27
--      Check that the TANH function returns
28
--      a result that is within the error bound allowed.
29
--
30
-- TEST DESCRIPTION:
31
--      This test consists of a generic package that is
32
--      instantiated to check both Float and a long float type.
33
--      The test for each floating point type is divided into
34
--      several parts:
35
--         Special value checks where the result is a known constant.
36
--         Checks that use an identity for determining the result.
37
--
38
-- SPECIAL REQUIREMENTS
39
--      The Strict Mode for the numerical accuracy must be
40
--      selected.  The method by which this mode is selected
41
--      is implementation dependent.
42
--
43
-- APPLICABILITY CRITERIA:
44
--      This test applies only to implementations supporting the
45
--      Numerics Annex.
46
--      This test only applies to the Strict Mode for numerical
47
--      accuracy.
48
--
49
--
50
-- CHANGE HISTORY:
51
--      20 Mar 96   SAIC    Initial release for 2.1
52
--      17 Aug 96   SAIC    Incorporated reviewer comments.
53
--      03 Jun 98   EDS     Add parens to remove the potential for overflow.
54
--                          Remove the invocation of Identity_Test that checks
55
--                          Tanh values that are too close to zero for the
56
--                          test's error bounds.
57
--!
58
 
59
--
60
-- References:
61
--
62
-- Software Manual for the Elementary Functions
63
-- William J. Cody, Jr. and William Waite
64
-- Prentice-Hall, 1980
65
--
66
-- CRC Standard Mathematical Tables
67
-- 23rd Edition
68
--
69
-- Implementation and Testing of Function Software
70
-- W. J. Cody
71
-- Problems and Methodologies in Mathematical Software Production
72
-- editors P. C. Messina and A. Murli
73
-- Lecture Notes in Computer Science   Volume 142
74
-- Springer Verlag, 1982
75
--
76
 
77
with System;
78
with Report;
79
with Ada.Numerics.Generic_Elementary_Functions;
80
procedure CXG2017 is
81
   Verbose : constant Boolean := False;
82
   Max_Samples : constant := 1000;
83
 
84
   E  : constant := Ada.Numerics.E;
85
 
86
   generic
87
      type Real is digits <>;
88
   package Generic_Check is
89
      procedure Do_Test;
90
   end Generic_Check;
91
 
92
   package body Generic_Check is
93
      package Elementary_Functions is new
94
           Ada.Numerics.Generic_Elementary_Functions (Real);
95
 
96
      function Tanh (X : Real) return Real renames
97
           Elementary_Functions.Tanh;
98
 
99
      function Log (X : Real) return Real renames
100
           Elementary_Functions.Log;
101
 
102
      -- flag used to terminate some tests early
103
      Accuracy_Error_Reported : Boolean := False;
104
 
105
 
106
      -- The following value is a lower bound on the accuracy
107
      -- required.  It is normally 0.0 so that the lower bound
108
      -- is computed from Model_Epsilon.  However, for tests
109
      -- where the expected result is only known to a certain
110
      -- amount of precision this bound takes on a non-zero
111
      -- value to account for that level of precision.
112
      Error_Low_Bound : Real := 0.0;
113
 
114
      procedure Check (Actual, Expected : Real;
115
                       Test_Name : String;
116
                       MRE : Real) is
117
         Max_Error : Real;
118
         Rel_Error : Real;
119
         Abs_Error : Real;
120
      begin
121
         -- In the case where the expected result is very small or 0
122
         -- we compute the maximum error as a multiple of Model_Small instead
123
         -- of Model_Epsilon and Expected.
124
         Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
125
         Abs_Error := MRE * Real'Model_Small;
126
         if Rel_Error > Abs_Error then
127
            Max_Error := Rel_Error;
128
         else
129
            Max_Error := Abs_Error;
130
         end if;
131
         -- take into account the low bound on the error
132
         if Max_Error < Error_Low_Bound then
133
            Max_Error := Error_Low_Bound;
134
         end if;
135
 
136
         if abs (Actual - Expected) > Max_Error then
137
            Accuracy_Error_Reported := True;
138
            Report.Failed (Test_Name &
139
                           " actual: " & Real'Image (Actual) &
140
                           " expected: " & Real'Image (Expected) &
141
                           " difference: " & Real'Image (Actual - Expected) &
142
                           " max err:" & Real'Image (Max_Error) );
143
         elsif Verbose then
144
            if Actual = Expected then
145
               Report.Comment (Test_Name & "  exact result");
146
            else
147
               Report.Comment (Test_Name & "  passed");
148
            end if;
149
         end if;
150
      end Check;
151
 
152
 
153
      procedure Special_Value_Test is
154
         -- In the following tests the expected result is accurate
155
         -- to the machine precision so the minimum guaranteed error
156
         -- bound can be used.
157
         Minimum_Error : constant := 8.0;
158
         E2 : constant := E * E;
159
      begin
160
         Check (Tanh (1.0),
161
                (E - 1.0 / E) / (E + 1.0 / E),
162
                "tanh(1)",
163
                Minimum_Error);
164
         Check (Tanh (2.0),
165
                (E2 - 1.0 / E2) / (E2 + 1.0 / E2),
166
                "tanh(2)",
167
                Minimum_Error);
168
      exception
169
         when Constraint_Error =>
170
            Report.Failed ("Constraint_Error raised in special value test");
171
         when others =>
172
            Report.Failed ("exception in special value test");
173
      end Special_Value_Test;
174
 
175
 
176
 
177
      procedure Exact_Result_Test is
178
         No_Error : constant := 0.0;
179
      begin
180
         -- A.5.1(38);6.0
181
         Check (Tanh (0.0),  0.0, "tanh(0)", No_Error);
182
      exception
183
         when Constraint_Error =>
184
            Report.Failed ("Constraint_Error raised in Exact_Result Test");
185
         when others =>
186
            Report.Failed ("exception in Exact_Result Test");
187
      end Exact_Result_Test;
188
 
189
 
190
      procedure Identity_Test (A, B : Real) is
191
      -- For this test we use the identity
192
      --    TANH(u+v) = [TANH(u) + TANH(v)] / [1 + TANH(u)*TANH(v)]
193
      -- which is transformed to
194
      --    TANH(x) = [TANH(y)+C] / [1 + TANH(y) * C]
195
      -- where C = TANH(1/8) and y = x - 1/8
196
      --
197
      -- see Cody pg 248-249 for details on the error analysis.
198
      -- The net result is a relative error bound of 16 * Model_Epsilon.
199
      --
200
      -- The second part of this test checks the identity
201
      --    TANH(-x) = -TANH(X)
202
 
203
         X, Y : Real;
204
         Actual1, Actual2 : Real;
205
         C : constant := 1.2435300177159620805e-1;
206
      begin
207
         if Real'Digits > 20 then
208
            -- constant C is accurate to 20 digits.  Set the low bound
209
            -- on the error to 16*10**-20
210
            Error_Low_Bound := 0.00000_00000_00000_00016;
211
            Report.Comment ("tanh accuracy checked to 20 digits");
212
         end if;
213
 
214
         Accuracy_Error_Reported := False;  -- reset
215
         for I in 1..Max_Samples loop
216
            X :=  (B - A) * (Real (I) / Real (Max_Samples)) + A;
217
            Actual1 := Tanh(X);
218
 
219
            -- TANH(x) = [TANH(y)+C] / [1 + TANH(y) * C]
220
            Y := X - (1.0 / 8.0);
221
            Actual2 := (Tanh (Y) + C) / (1.0 + Tanh(Y) * C);
222
 
223
            Check (Actual1, Actual2,
224
                   "Identity_1_Test " & Integer'Image (I) & ": tanh(" &
225
                   Real'Image (X) & ") ",
226
                   16.0);
227
 
228
            -- TANH(-x) = -TANH(X)
229
            Actual2 := Tanh(-X);
230
            Check (-Actual1, Actual2,
231
                   "Identity_2_Test " & Integer'Image (I) & ": tanh(" &
232
                   Real'Image (X) & ") ",
233
                   16.0);
234
 
235
            if Accuracy_Error_Reported then
236
              -- only report the first error in this test in order to keep
237
              -- lots of failures from producing a huge error log
238
              return;
239
            end if;
240
 
241
         end loop;
242
         Error_Low_Bound := 0.0;   -- reset
243
      exception
244
         when Constraint_Error =>
245
            Report.Failed
246
               ("Constraint_Error raised in Identity_Test" &
247
                " for X=" & Real'Image (X));
248
         when others =>
249
            Report.Failed ("exception in Identity_Test" &
250
                " for X=" & Real'Image (X));
251
      end Identity_Test;
252
 
253
 
254
 
255
      procedure Do_Test is
256
      begin
257
         Special_Value_Test;
258
         Exact_Result_Test;
259
            -- cover a large range
260
         Identity_Test (1.0, Real'Safe_Last);
261
      end Do_Test;
262
   end Generic_Check;
263
 
264
   -----------------------------------------------------------------------
265
   -----------------------------------------------------------------------
266
   package Float_Check is new Generic_Check (Float);
267
 
268
   -- check the floating point type with the most digits
269
   type A_Long_Float is digits System.Max_Digits;
270
   package A_Long_Float_Check is new Generic_Check (A_Long_Float);
271
 
272
   -----------------------------------------------------------------------
273
   -----------------------------------------------------------------------
274
 
275
 
276
begin
277
   Report.Test ("CXG2017",
278
                "Check the accuracy of the TANH function");
279
 
280
   if Verbose then
281
      Report.Comment ("checking Standard.Float");
282
   end if;
283
 
284
   Float_Check.Do_Test;
285
 
286
   if Verbose then
287
      Report.Comment ("checking a digits" &
288
                      Integer'Image (System.Max_Digits) &
289
                      " floating point type");
290
   end if;
291
 
292
   A_Long_Float_Check.Do_Test;
293
 
294
 
295
   Report.Result;
296
end CXG2017;

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.