1 |
294 |
jeremybenn |
-- CXG2020.A
|
2 |
|
|
--
|
3 |
|
|
-- Grant of Unlimited Rights
|
4 |
|
|
--
|
5 |
|
|
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
|
6 |
|
|
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
|
7 |
|
|
-- unlimited rights in the software and documentation contained herein.
|
8 |
|
|
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
|
9 |
|
|
-- this public release, the Government intends to confer upon all
|
10 |
|
|
-- recipients unlimited rights equal to those held by the Government.
|
11 |
|
|
-- These rights include rights to use, duplicate, release or disclose the
|
12 |
|
|
-- released technical data and computer software in whole or in part, in
|
13 |
|
|
-- any manner and for any purpose whatsoever, and to have or permit others
|
14 |
|
|
-- to do so.
|
15 |
|
|
--
|
16 |
|
|
-- DISCLAIMER
|
17 |
|
|
--
|
18 |
|
|
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
|
19 |
|
|
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
|
20 |
|
|
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
|
21 |
|
|
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
|
22 |
|
|
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
|
23 |
|
|
-- PARTICULAR PURPOSE OF SAID MATERIAL.
|
24 |
|
|
--*
|
25 |
|
|
--
|
26 |
|
|
-- OBJECTIVE:
|
27 |
|
|
-- Check that the complex SQRT function returns
|
28 |
|
|
-- a result that is within the error bound allowed.
|
29 |
|
|
--
|
30 |
|
|
-- TEST DESCRIPTION:
|
31 |
|
|
-- This test consists of a generic package that is
|
32 |
|
|
-- instantiated to check complex numbers based upon
|
33 |
|
|
-- both Float and a long float type.
|
34 |
|
|
-- The test for each floating point type is divided into
|
35 |
|
|
-- several parts:
|
36 |
|
|
-- Special value checks where the result is a known constant.
|
37 |
|
|
-- Checks that use an identity for determining the result.
|
38 |
|
|
--
|
39 |
|
|
-- SPECIAL REQUIREMENTS
|
40 |
|
|
-- The Strict Mode for the numerical accuracy must be
|
41 |
|
|
-- selected. The method by which this mode is selected
|
42 |
|
|
-- is implementation dependent.
|
43 |
|
|
--
|
44 |
|
|
-- APPLICABILITY CRITERIA:
|
45 |
|
|
-- This test applies only to implementations supporting the
|
46 |
|
|
-- Numerics Annex.
|
47 |
|
|
-- This test only applies to the Strict Mode for numerical
|
48 |
|
|
-- accuracy.
|
49 |
|
|
--
|
50 |
|
|
--
|
51 |
|
|
-- CHANGE HISTORY:
|
52 |
|
|
-- 24 Mar 96 SAIC Initial release for 2.1
|
53 |
|
|
-- 17 Aug 96 SAIC Incorporated reviewer comments.
|
54 |
|
|
-- 03 Jun 98 EDS Added parens to ensure that the expression is not
|
55 |
|
|
-- evaluated by multiplying its two large terms
|
56 |
|
|
-- together and overflowing.
|
57 |
|
|
--!
|
58 |
|
|
|
59 |
|
|
--
|
60 |
|
|
-- References:
|
61 |
|
|
--
|
62 |
|
|
-- W. J. Cody
|
63 |
|
|
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
|
64 |
|
|
-- Algorithm 714, Collected Algorithms from ACM.
|
65 |
|
|
-- Published in Transactions On Mathematical Software,
|
66 |
|
|
-- Vol. 19, No. 1, March, 1993, pp. 1-21.
|
67 |
|
|
--
|
68 |
|
|
-- CRC Standard Mathematical Tables
|
69 |
|
|
-- 23rd Edition
|
70 |
|
|
--
|
71 |
|
|
|
72 |
|
|
with System;
|
73 |
|
|
with Report;
|
74 |
|
|
with Ada.Numerics.Generic_Complex_Types;
|
75 |
|
|
with Ada.Numerics.Generic_Complex_Elementary_Functions;
|
76 |
|
|
procedure CXG2020 is
|
77 |
|
|
Verbose : constant Boolean := False;
|
78 |
|
|
-- Note that Max_Samples is the number of samples taken in
|
79 |
|
|
-- both the real and imaginary directions. Thus, for Max_Samples
|
80 |
|
|
-- of 100 the number of values checked is 10000.
|
81 |
|
|
Max_Samples : constant := 100;
|
82 |
|
|
|
83 |
|
|
E : constant := Ada.Numerics.E;
|
84 |
|
|
Pi : constant := Ada.Numerics.Pi;
|
85 |
|
|
|
86 |
|
|
-- CRC Standard Mathematical Tables; 23rd Edition; pg 738
|
87 |
|
|
Sqrt2 : constant :=
|
88 |
|
|
1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
|
89 |
|
|
Sqrt3 : constant :=
|
90 |
|
|
1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
|
91 |
|
|
|
92 |
|
|
generic
|
93 |
|
|
type Real is digits <>;
|
94 |
|
|
package Generic_Check is
|
95 |
|
|
procedure Do_Test;
|
96 |
|
|
end Generic_Check;
|
97 |
|
|
|
98 |
|
|
package body Generic_Check is
|
99 |
|
|
package Complex_Type is new
|
100 |
|
|
Ada.Numerics.Generic_Complex_Types (Real);
|
101 |
|
|
use Complex_Type;
|
102 |
|
|
|
103 |
|
|
package CEF is new
|
104 |
|
|
Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
|
105 |
|
|
|
106 |
|
|
function Sqrt (X : Complex) return Complex renames CEF.Sqrt;
|
107 |
|
|
|
108 |
|
|
-- flag used to terminate some tests early
|
109 |
|
|
Accuracy_Error_Reported : Boolean := False;
|
110 |
|
|
|
111 |
|
|
|
112 |
|
|
procedure Check (Actual, Expected : Real;
|
113 |
|
|
Test_Name : String;
|
114 |
|
|
MRE : Real) is
|
115 |
|
|
Max_Error : Real;
|
116 |
|
|
Rel_Error : Real;
|
117 |
|
|
Abs_Error : Real;
|
118 |
|
|
begin
|
119 |
|
|
-- In the case where the expected result is very small or 0
|
120 |
|
|
-- we compute the maximum error as a multiple of Model_Epsilon
|
121 |
|
|
-- instead of Model_Epsilon and Expected.
|
122 |
|
|
Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);
|
123 |
|
|
Abs_Error := MRE * Real'Model_Epsilon;
|
124 |
|
|
if Rel_Error > Abs_Error then
|
125 |
|
|
Max_Error := Rel_Error;
|
126 |
|
|
else
|
127 |
|
|
Max_Error := Abs_Error;
|
128 |
|
|
end if;
|
129 |
|
|
|
130 |
|
|
if abs (Actual - Expected) > Max_Error then
|
131 |
|
|
Accuracy_Error_Reported := True;
|
132 |
|
|
Report.Failed (Test_Name &
|
133 |
|
|
" actual: " & Real'Image (Actual) &
|
134 |
|
|
" expected: " & Real'Image (Expected) &
|
135 |
|
|
" difference: " & Real'Image (Actual - Expected) &
|
136 |
|
|
" max err:" & Real'Image (Max_Error) );
|
137 |
|
|
elsif Verbose then
|
138 |
|
|
if Actual = Expected then
|
139 |
|
|
Report.Comment (Test_Name & " exact result");
|
140 |
|
|
else
|
141 |
|
|
Report.Comment (Test_Name & " passed");
|
142 |
|
|
end if;
|
143 |
|
|
end if;
|
144 |
|
|
end Check;
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
procedure Check (Actual, Expected : Complex;
|
148 |
|
|
Test_Name : String;
|
149 |
|
|
MRE : Real) is
|
150 |
|
|
begin
|
151 |
|
|
Check (Actual.Re, Expected.Re, Test_Name & " real part", MRE);
|
152 |
|
|
Check (Actual.Im, Expected.Im, Test_Name & " imaginary part", MRE);
|
153 |
|
|
end Check;
|
154 |
|
|
|
155 |
|
|
|
156 |
|
|
procedure Special_Value_Test is
|
157 |
|
|
-- In the following tests the expected result is accurate
|
158 |
|
|
-- to the machine precision so the minimum guaranteed error
|
159 |
|
|
-- bound can be used if the argument is exact.
|
160 |
|
|
--
|
161 |
|
|
-- One or i is added to the actual and expected results in
|
162 |
|
|
-- order to prevent the expected result from having a
|
163 |
|
|
-- real or imaginary part of 0. This is to allow a reasonable
|
164 |
|
|
-- relative error for that component.
|
165 |
|
|
Minimum_Error : constant := 6.0;
|
166 |
|
|
Z1, Z2 : Complex;
|
167 |
|
|
begin
|
168 |
|
|
Check (Sqrt(9.0+0.0*i) + i,
|
169 |
|
|
3.0+1.0*i,
|
170 |
|
|
"sqrt(9+0i)+i",
|
171 |
|
|
Minimum_Error);
|
172 |
|
|
Check (Sqrt (-2.0 + 0.0 * i) + 1.0,
|
173 |
|
|
1.0 + Sqrt2 * i,
|
174 |
|
|
"sqrt(-2)+1 ",
|
175 |
|
|
Minimum_Error);
|
176 |
|
|
|
177 |
|
|
-- make sure no exception occurs when taking the sqrt of
|
178 |
|
|
-- very large and very small values.
|
179 |
|
|
|
180 |
|
|
Z1 := (Real'Safe_Last * 0.9, Real'Safe_Last * 0.9);
|
181 |
|
|
Z2 := Sqrt (Z1);
|
182 |
|
|
begin
|
183 |
|
|
Check (Z2 * Z2,
|
184 |
|
|
Z1,
|
185 |
|
|
"sqrt((big,big))",
|
186 |
|
|
Minimum_Error + 5.0); -- +5 for multiply
|
187 |
|
|
exception
|
188 |
|
|
when others =>
|
189 |
|
|
Report.Failed ("unexpected exception in sqrt((big,big))");
|
190 |
|
|
end;
|
191 |
|
|
|
192 |
|
|
Z1 := (Real'Model_Epsilon * 10.0, Real'Model_Epsilon * 10.0);
|
193 |
|
|
Z2 := Sqrt (Z1);
|
194 |
|
|
begin
|
195 |
|
|
Check (Z2 * Z2,
|
196 |
|
|
Z1,
|
197 |
|
|
"sqrt((little,little))",
|
198 |
|
|
Minimum_Error + 5.0); -- +5 for multiply
|
199 |
|
|
exception
|
200 |
|
|
when others =>
|
201 |
|
|
Report.Failed ("unexpected exception in " &
|
202 |
|
|
"sqrt((little,little))");
|
203 |
|
|
end;
|
204 |
|
|
|
205 |
|
|
exception
|
206 |
|
|
when Constraint_Error =>
|
207 |
|
|
Report.Failed ("Constraint_Error raised in special value test");
|
208 |
|
|
when others =>
|
209 |
|
|
Report.Failed ("exception in special value test");
|
210 |
|
|
end Special_Value_Test;
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
procedure Exact_Result_Test is
|
215 |
|
|
No_Error : constant := 0.0;
|
216 |
|
|
begin
|
217 |
|
|
-- G.1.2(36);6.0
|
218 |
|
|
Check (Sqrt(0.0 + 0.0*i), 0.0 + 0.0 * i, "sqrt(0+0i)", No_Error);
|
219 |
|
|
|
220 |
|
|
-- G.1.2(37);6.0
|
221 |
|
|
Check (Sqrt(1.0 + 0.0*i), 1.0 + 0.0 * i, "sqrt(1+0i)", No_Error);
|
222 |
|
|
|
223 |
|
|
-- G.1.2(38-39);6.0
|
224 |
|
|
Check (Sqrt(-1.0 + 0.0*i), 0.0 + 1.0 * i, "sqrt(-1+0i)", No_Error);
|
225 |
|
|
|
226 |
|
|
-- G.1.2(40);6.0
|
227 |
|
|
if Real'Signed_Zeros then
|
228 |
|
|
Check (Sqrt(-1.0-0.0*i), 0.0 - 1.0 * i, "sqrt(-1-0i)", No_Error);
|
229 |
|
|
end if;
|
230 |
|
|
exception
|
231 |
|
|
when Constraint_Error =>
|
232 |
|
|
Report.Failed ("Constraint_Error raised in Exact_Result Test");
|
233 |
|
|
when others =>
|
234 |
|
|
Report.Failed ("exception in Exact_Result Test");
|
235 |
|
|
end Exact_Result_Test;
|
236 |
|
|
|
237 |
|
|
|
238 |
|
|
procedure Identity_Test (RA, RB, IA, IB : Real) is
|
239 |
|
|
-- Tests an identity over a range of values specified
|
240 |
|
|
-- by the 4 parameters. RA and RB denote the range for the
|
241 |
|
|
-- real part while IA and IB denote the range for the
|
242 |
|
|
-- imaginary part of the result.
|
243 |
|
|
--
|
244 |
|
|
-- For this test we use the identity
|
245 |
|
|
-- Sqrt(Z*Z) = Z
|
246 |
|
|
--
|
247 |
|
|
|
248 |
|
|
Scale : Real := Real (Real'Machine_Radix) ** (Real'Mantissa / 2 + 4);
|
249 |
|
|
W, X, Y, Z : Real;
|
250 |
|
|
CX : Complex;
|
251 |
|
|
Actual, Expected : Complex;
|
252 |
|
|
begin
|
253 |
|
|
Accuracy_Error_Reported := False; -- reset
|
254 |
|
|
for II in 1..Max_Samples loop
|
255 |
|
|
X := (RB - RA) * Real (II) / Real (Max_Samples) + RA;
|
256 |
|
|
for J in 1..Max_Samples loop
|
257 |
|
|
Y := (IB - IA) * Real (J) / Real (Max_Samples) + IA;
|
258 |
|
|
|
259 |
|
|
-- purify the arguments to minimize roundoff error.
|
260 |
|
|
-- We construct the values so that the products X*X,
|
261 |
|
|
-- Y*Y, and X*Y are all exact machine numbers.
|
262 |
|
|
-- See Cody page 7 and CELEFUNT code.
|
263 |
|
|
Z := X * Scale;
|
264 |
|
|
W := Z + X;
|
265 |
|
|
X := W - Z;
|
266 |
|
|
Z := Y * Scale;
|
267 |
|
|
W := Z + Y;
|
268 |
|
|
Y := W - Z;
|
269 |
|
|
-- G.1.2(21);6.0 - real part of result is non-negative
|
270 |
|
|
Expected := Compose_From_Cartesian( abs X,Y);
|
271 |
|
|
Z := X*X - Y*Y;
|
272 |
|
|
W := X*Y;
|
273 |
|
|
CX := Compose_From_Cartesian(Z,W+W);
|
274 |
|
|
|
275 |
|
|
-- The arguments are now ready so on with the
|
276 |
|
|
-- identity computation.
|
277 |
|
|
Actual := Sqrt(CX);
|
278 |
|
|
|
279 |
|
|
Check (Actual, Expected,
|
280 |
|
|
"Identity_1_Test " & Integer'Image (II) &
|
281 |
|
|
Integer'Image (J) & ": Sqrt((" &
|
282 |
|
|
Real'Image (CX.Re) & ", " &
|
283 |
|
|
Real'Image (CX.Im) & ")) ",
|
284 |
|
|
8.5); -- 6.0 from sqrt, 2.5 from argument.
|
285 |
|
|
-- See Cody pg 7-8 for analysis of additional error amount.
|
286 |
|
|
|
287 |
|
|
if Accuracy_Error_Reported then
|
288 |
|
|
-- only report the first error in this test in order to keep
|
289 |
|
|
-- lots of failures from producing a huge error log
|
290 |
|
|
return;
|
291 |
|
|
end if;
|
292 |
|
|
end loop;
|
293 |
|
|
end loop;
|
294 |
|
|
|
295 |
|
|
exception
|
296 |
|
|
when Constraint_Error =>
|
297 |
|
|
Report.Failed
|
298 |
|
|
("Constraint_Error raised in Identity_Test" &
|
299 |
|
|
" for X=(" & Real'Image (X) &
|
300 |
|
|
", " & Real'Image (X) & ")");
|
301 |
|
|
when others =>
|
302 |
|
|
Report.Failed ("exception in Identity_Test" &
|
303 |
|
|
" for X=(" & Real'Image (X) &
|
304 |
|
|
", " & Real'Image (X) & ")");
|
305 |
|
|
end Identity_Test;
|
306 |
|
|
|
307 |
|
|
|
308 |
|
|
procedure Do_Test is
|
309 |
|
|
begin
|
310 |
|
|
Special_Value_Test;
|
311 |
|
|
Exact_Result_Test;
|
312 |
|
|
-- ranges where the sign is the same and where it
|
313 |
|
|
-- differs.
|
314 |
|
|
Identity_Test ( 0.0, 10.0, 0.0, 10.0);
|
315 |
|
|
Identity_Test ( 0.0, 100.0, -100.0, 0.0);
|
316 |
|
|
end Do_Test;
|
317 |
|
|
end Generic_Check;
|
318 |
|
|
|
319 |
|
|
-----------------------------------------------------------------------
|
320 |
|
|
-----------------------------------------------------------------------
|
321 |
|
|
package Float_Check is new Generic_Check (Float);
|
322 |
|
|
|
323 |
|
|
-- check the floating point type with the most digits
|
324 |
|
|
type A_Long_Float is digits System.Max_Digits;
|
325 |
|
|
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
|
326 |
|
|
|
327 |
|
|
-----------------------------------------------------------------------
|
328 |
|
|
-----------------------------------------------------------------------
|
329 |
|
|
|
330 |
|
|
|
331 |
|
|
begin
|
332 |
|
|
Report.Test ("CXG2020",
|
333 |
|
|
"Check the accuracy of the complex SQRT function");
|
334 |
|
|
|
335 |
|
|
if Verbose then
|
336 |
|
|
Report.Comment ("checking Standard.Float");
|
337 |
|
|
end if;
|
338 |
|
|
|
339 |
|
|
Float_Check.Do_Test;
|
340 |
|
|
|
341 |
|
|
if Verbose then
|
342 |
|
|
Report.Comment ("checking a digits" &
|
343 |
|
|
Integer'Image (System.Max_Digits) &
|
344 |
|
|
" floating point type");
|
345 |
|
|
end if;
|
346 |
|
|
|
347 |
|
|
A_Long_Float_Check.Do_Test;
|
348 |
|
|
|
349 |
|
|
|
350 |
|
|
Report.Result;
|
351 |
|
|
end CXG2020;
|