| 1 |
294 |
jeremybenn |
-- CXG2021.A
|
| 2 |
|
|
--
|
| 3 |
|
|
-- Grant of Unlimited Rights
|
| 4 |
|
|
--
|
| 5 |
|
|
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
|
| 6 |
|
|
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
|
| 7 |
|
|
-- unlimited rights in the software and documentation contained herein.
|
| 8 |
|
|
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
|
| 9 |
|
|
-- this public release, the Government intends to confer upon all
|
| 10 |
|
|
-- recipients unlimited rights equal to those held by the Government.
|
| 11 |
|
|
-- These rights include rights to use, duplicate, release or disclose the
|
| 12 |
|
|
-- released technical data and computer software in whole or in part, in
|
| 13 |
|
|
-- any manner and for any purpose whatsoever, and to have or permit others
|
| 14 |
|
|
-- to do so.
|
| 15 |
|
|
--
|
| 16 |
|
|
-- DISCLAIMER
|
| 17 |
|
|
--
|
| 18 |
|
|
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
|
| 19 |
|
|
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
|
| 20 |
|
|
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
|
| 21 |
|
|
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
|
| 22 |
|
|
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
|
| 23 |
|
|
-- PARTICULAR PURPOSE OF SAID MATERIAL.
|
| 24 |
|
|
--*
|
| 25 |
|
|
--
|
| 26 |
|
|
-- OBJECTIVE:
|
| 27 |
|
|
-- Check that the complex SIN and COS functions return
|
| 28 |
|
|
-- a result that is within the error bound allowed.
|
| 29 |
|
|
--
|
| 30 |
|
|
-- TEST DESCRIPTION:
|
| 31 |
|
|
-- This test consists of a generic package that is
|
| 32 |
|
|
-- instantiated to check complex numbers based upon
|
| 33 |
|
|
-- both Float and a long float type.
|
| 34 |
|
|
-- The test for each floating point type is divided into
|
| 35 |
|
|
-- several parts:
|
| 36 |
|
|
-- Special value checks where the result is a known constant.
|
| 37 |
|
|
-- Checks that use an identity for determining the result.
|
| 38 |
|
|
--
|
| 39 |
|
|
-- SPECIAL REQUIREMENTS
|
| 40 |
|
|
-- The Strict Mode for the numerical accuracy must be
|
| 41 |
|
|
-- selected. The method by which this mode is selected
|
| 42 |
|
|
-- is implementation dependent.
|
| 43 |
|
|
--
|
| 44 |
|
|
-- APPLICABILITY CRITERIA:
|
| 45 |
|
|
-- This test applies only to implementations supporting the
|
| 46 |
|
|
-- Numerics Annex.
|
| 47 |
|
|
-- This test only applies to the Strict Mode for numerical
|
| 48 |
|
|
-- accuracy.
|
| 49 |
|
|
--
|
| 50 |
|
|
--
|
| 51 |
|
|
-- CHANGE HISTORY:
|
| 52 |
|
|
-- 27 Mar 96 SAIC Initial release for 2.1
|
| 53 |
|
|
-- 22 Aug 96 SAIC No longer skips test for systems with
|
| 54 |
|
|
-- more than 20 digits of precision.
|
| 55 |
|
|
--
|
| 56 |
|
|
--!
|
| 57 |
|
|
|
| 58 |
|
|
--
|
| 59 |
|
|
-- References:
|
| 60 |
|
|
--
|
| 61 |
|
|
-- W. J. Cody
|
| 62 |
|
|
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
|
| 63 |
|
|
-- Algorithm 714, Collected Algorithms from ACM.
|
| 64 |
|
|
-- Published in Transactions On Mathematical Software,
|
| 65 |
|
|
-- Vol. 19, No. 1, March, 1993, pp. 1-21.
|
| 66 |
|
|
--
|
| 67 |
|
|
-- CRC Standard Mathematical Tables
|
| 68 |
|
|
-- 23rd Edition
|
| 69 |
|
|
--
|
| 70 |
|
|
|
| 71 |
|
|
with System;
|
| 72 |
|
|
with Report;
|
| 73 |
|
|
with Ada.Numerics.Generic_Complex_Types;
|
| 74 |
|
|
with Ada.Numerics.Generic_Complex_Elementary_Functions;
|
| 75 |
|
|
procedure CXG2021 is
|
| 76 |
|
|
Verbose : constant Boolean := False;
|
| 77 |
|
|
-- Note that Max_Samples is the number of samples taken in
|
| 78 |
|
|
-- both the real and imaginary directions. Thus, for Max_Samples
|
| 79 |
|
|
-- of 100 the number of values checked is 10000.
|
| 80 |
|
|
Max_Samples : constant := 100;
|
| 81 |
|
|
|
| 82 |
|
|
E : constant := Ada.Numerics.E;
|
| 83 |
|
|
Pi : constant := Ada.Numerics.Pi;
|
| 84 |
|
|
|
| 85 |
|
|
generic
|
| 86 |
|
|
type Real is digits <>;
|
| 87 |
|
|
package Generic_Check is
|
| 88 |
|
|
procedure Do_Test;
|
| 89 |
|
|
end Generic_Check;
|
| 90 |
|
|
|
| 91 |
|
|
package body Generic_Check is
|
| 92 |
|
|
package Complex_Type is new
|
| 93 |
|
|
Ada.Numerics.Generic_Complex_Types (Real);
|
| 94 |
|
|
use Complex_Type;
|
| 95 |
|
|
|
| 96 |
|
|
package CEF is new
|
| 97 |
|
|
Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
|
| 98 |
|
|
|
| 99 |
|
|
function Sin (X : Complex) return Complex renames CEF.Sin;
|
| 100 |
|
|
function Cos (X : Complex) return Complex renames CEF.Cos;
|
| 101 |
|
|
|
| 102 |
|
|
-- flag used to terminate some tests early
|
| 103 |
|
|
Accuracy_Error_Reported : Boolean := False;
|
| 104 |
|
|
|
| 105 |
|
|
-- The following value is a lower bound on the accuracy
|
| 106 |
|
|
-- required. It is normally 0.0 so that the lower bound
|
| 107 |
|
|
-- is computed from Model_Epsilon. However, for tests
|
| 108 |
|
|
-- where the expected result is only known to a certain
|
| 109 |
|
|
-- amount of precision this bound takes on a non-zero
|
| 110 |
|
|
-- value to account for that level of precision.
|
| 111 |
|
|
Error_Low_Bound : Real := 0.0;
|
| 112 |
|
|
|
| 113 |
|
|
-- the E_Factor is an additional amount added to the Expected
|
| 114 |
|
|
-- value prior to computing the maximum relative error.
|
| 115 |
|
|
-- This is needed because the error analysis (Cody pg 17-20)
|
| 116 |
|
|
-- requires this additional allowance.
|
| 117 |
|
|
procedure Check (Actual, Expected : Real;
|
| 118 |
|
|
Test_Name : String;
|
| 119 |
|
|
MRE : Real;
|
| 120 |
|
|
E_Factor : Real := 0.0) is
|
| 121 |
|
|
Max_Error : Real;
|
| 122 |
|
|
Rel_Error : Real;
|
| 123 |
|
|
Abs_Error : Real;
|
| 124 |
|
|
begin
|
| 125 |
|
|
-- In the case where the expected result is very small or 0
|
| 126 |
|
|
-- we compute the maximum error as a multiple of Model_Epsilon instead
|
| 127 |
|
|
-- of Model_Epsilon and Expected.
|
| 128 |
|
|
Rel_Error := MRE * Real'Model_Epsilon * (abs Expected + E_Factor);
|
| 129 |
|
|
Abs_Error := MRE * Real'Model_Epsilon;
|
| 130 |
|
|
if Rel_Error > Abs_Error then
|
| 131 |
|
|
Max_Error := Rel_Error;
|
| 132 |
|
|
else
|
| 133 |
|
|
Max_Error := Abs_Error;
|
| 134 |
|
|
end if;
|
| 135 |
|
|
|
| 136 |
|
|
-- take into account the low bound on the error
|
| 137 |
|
|
if Max_Error < Error_Low_Bound then
|
| 138 |
|
|
Max_Error := Error_Low_Bound;
|
| 139 |
|
|
end if;
|
| 140 |
|
|
|
| 141 |
|
|
if abs (Actual - Expected) > Max_Error then
|
| 142 |
|
|
Accuracy_Error_Reported := True;
|
| 143 |
|
|
Report.Failed (Test_Name &
|
| 144 |
|
|
" actual: " & Real'Image (Actual) &
|
| 145 |
|
|
" expected: " & Real'Image (Expected) &
|
| 146 |
|
|
" difference: " & Real'Image (Actual - Expected) &
|
| 147 |
|
|
" max err:" & Real'Image (Max_Error) &
|
| 148 |
|
|
" efactor:" & Real'Image (E_Factor) );
|
| 149 |
|
|
elsif Verbose then
|
| 150 |
|
|
if Actual = Expected then
|
| 151 |
|
|
Report.Comment (Test_Name & " exact result");
|
| 152 |
|
|
else
|
| 153 |
|
|
Report.Comment (Test_Name & " passed" &
|
| 154 |
|
|
" actual: " & Real'Image (Actual) &
|
| 155 |
|
|
" expected: " & Real'Image (Expected) &
|
| 156 |
|
|
" difference: " & Real'Image (Actual - Expected) &
|
| 157 |
|
|
" max err:" & Real'Image (Max_Error) &
|
| 158 |
|
|
" efactor:" & Real'Image (E_Factor) );
|
| 159 |
|
|
end if;
|
| 160 |
|
|
end if;
|
| 161 |
|
|
end Check;
|
| 162 |
|
|
|
| 163 |
|
|
|
| 164 |
|
|
procedure Check (Actual, Expected : Complex;
|
| 165 |
|
|
Test_Name : String;
|
| 166 |
|
|
MRE : Real;
|
| 167 |
|
|
R_Factor, I_Factor : Real := 0.0) is
|
| 168 |
|
|
begin
|
| 169 |
|
|
Check (Actual.Re, Expected.Re, Test_Name & " real part",
|
| 170 |
|
|
MRE, R_Factor);
|
| 171 |
|
|
Check (Actual.Im, Expected.Im, Test_Name & " imaginary part",
|
| 172 |
|
|
MRE, I_Factor);
|
| 173 |
|
|
end Check;
|
| 174 |
|
|
|
| 175 |
|
|
|
| 176 |
|
|
procedure Special_Value_Test is
|
| 177 |
|
|
-- In the following tests the expected result is accurate
|
| 178 |
|
|
-- to the machine precision so the minimum guaranteed error
|
| 179 |
|
|
-- bound can be used if the argument is exact.
|
| 180 |
|
|
-- Since the argument involves Pi, we must allow for this
|
| 181 |
|
|
-- inexact argument.
|
| 182 |
|
|
Minimum_Error : constant := 11.0;
|
| 183 |
|
|
begin
|
| 184 |
|
|
Check (Sin (Pi/2.0 + 0.0*i),
|
| 185 |
|
|
1.0 + 0.0*i,
|
| 186 |
|
|
"sin(pi/2+0i)",
|
| 187 |
|
|
Minimum_Error + 1.0);
|
| 188 |
|
|
Check (Cos (Pi/2.0 + 0.0*i),
|
| 189 |
|
|
0.0 + 0.0*i,
|
| 190 |
|
|
"cos(pi/2+0i)",
|
| 191 |
|
|
Minimum_Error + 1.0);
|
| 192 |
|
|
exception
|
| 193 |
|
|
when Constraint_Error =>
|
| 194 |
|
|
Report.Failed ("Constraint_Error raised in special value test");
|
| 195 |
|
|
when others =>
|
| 196 |
|
|
Report.Failed ("exception in special value test");
|
| 197 |
|
|
end Special_Value_Test;
|
| 198 |
|
|
|
| 199 |
|
|
|
| 200 |
|
|
|
| 201 |
|
|
procedure Exact_Result_Test is
|
| 202 |
|
|
No_Error : constant := 0.0;
|
| 203 |
|
|
begin
|
| 204 |
|
|
-- G.1.2(36);6.0
|
| 205 |
|
|
Check (Sin(0.0 + 0.0*i), 0.0 + 0.0 * i, "sin(0+0i)", No_Error);
|
| 206 |
|
|
Check (Cos(0.0 + 0.0*i), 1.0 + 0.0 * i, "cos(0+0i)", No_Error);
|
| 207 |
|
|
exception
|
| 208 |
|
|
when Constraint_Error =>
|
| 209 |
|
|
Report.Failed ("Constraint_Error raised in Exact_Result Test");
|
| 210 |
|
|
when others =>
|
| 211 |
|
|
Report.Failed ("exception in Exact_Result Test");
|
| 212 |
|
|
end Exact_Result_Test;
|
| 213 |
|
|
|
| 214 |
|
|
|
| 215 |
|
|
procedure Identity_Test (RA, RB, IA, IB : Real) is
|
| 216 |
|
|
-- Tests an identity over a range of values specified
|
| 217 |
|
|
-- by the 4 parameters. RA and RB denote the range for the
|
| 218 |
|
|
-- real part while IA and IB denote the range for the
|
| 219 |
|
|
-- imaginary part.
|
| 220 |
|
|
--
|
| 221 |
|
|
-- For this test we use the identity
|
| 222 |
|
|
-- Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)
|
| 223 |
|
|
-- and
|
| 224 |
|
|
-- Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)
|
| 225 |
|
|
--
|
| 226 |
|
|
|
| 227 |
|
|
X, Y : Real;
|
| 228 |
|
|
Z : Complex;
|
| 229 |
|
|
W : constant Complex := Compose_From_Cartesian(0.0625, 0.0625);
|
| 230 |
|
|
ZmW : Complex; -- Z - W
|
| 231 |
|
|
Sin_ZmW,
|
| 232 |
|
|
Cos_ZmW : Complex;
|
| 233 |
|
|
Actual1, Actual2 : Complex;
|
| 234 |
|
|
R_Factor : Real; -- additional real error factor
|
| 235 |
|
|
I_Factor : Real; -- additional imaginary error factor
|
| 236 |
|
|
Sin_W : constant Complex := (6.2581348413276935585E-2,
|
| 237 |
|
|
6.2418588008436587236E-2);
|
| 238 |
|
|
-- numeric stability is enhanced by using Cos(W) - 1.0 instead of
|
| 239 |
|
|
-- Cos(W) in the computation.
|
| 240 |
|
|
Cos_W_m_1 : constant Complex := (-2.5431314180235545803E-6,
|
| 241 |
|
|
-3.9062493377261771826E-3);
|
| 242 |
|
|
|
| 243 |
|
|
|
| 244 |
|
|
begin
|
| 245 |
|
|
if Real'Digits > 20 then
|
| 246 |
|
|
-- constants used here accurate to 20 digits. Allow 1
|
| 247 |
|
|
-- additional digit of error for computation.
|
| 248 |
|
|
Error_Low_Bound := 0.00000_00000_00000_0001;
|
| 249 |
|
|
Report.Comment ("accuracy checked to 19 digits");
|
| 250 |
|
|
end if;
|
| 251 |
|
|
|
| 252 |
|
|
Accuracy_Error_Reported := False; -- reset
|
| 253 |
|
|
for II in 0..Max_Samples loop
|
| 254 |
|
|
X := (RB - RA) * Real (II) / Real (Max_Samples) + RA;
|
| 255 |
|
|
for J in 0..Max_Samples loop
|
| 256 |
|
|
Y := (IB - IA) * Real (J) / Real (Max_Samples) + IA;
|
| 257 |
|
|
|
| 258 |
|
|
Z := Compose_From_Cartesian(X,Y);
|
| 259 |
|
|
ZmW := Z - W;
|
| 260 |
|
|
Sin_ZmW := Sin (ZmW);
|
| 261 |
|
|
Cos_ZmW := Cos (ZmW);
|
| 262 |
|
|
|
| 263 |
|
|
-- now for the first identity
|
| 264 |
|
|
-- Sin(Z) = Sin(Z-W) * Cos(W) + Cos(Z-W) * Sin(W)
|
| 265 |
|
|
-- = Sin(Z-W) * (1+(Cos(W)-1)) + Cos(Z-W) * Sin(W)
|
| 266 |
|
|
-- = Sin(Z-W) + Sin(Z-W)*(Cos(W)-1) + Cos(Z-W)*Sin(W)
|
| 267 |
|
|
|
| 268 |
|
|
|
| 269 |
|
|
Actual1 := Sin (Z);
|
| 270 |
|
|
Actual2 := Sin_ZmW + (Sin_ZmW * Cos_W_m_1 + Cos_ZmW * Sin_W);
|
| 271 |
|
|
|
| 272 |
|
|
-- The computation of the additional error factors are taken
|
| 273 |
|
|
-- from Cody pages 17-20.
|
| 274 |
|
|
|
| 275 |
|
|
R_Factor := abs (Re (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +
|
| 276 |
|
|
abs (Im (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +
|
| 277 |
|
|
abs (Re (Cos_ZmW) * Re (Sin_W)) +
|
| 278 |
|
|
abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
|
| 279 |
|
|
|
| 280 |
|
|
I_Factor := abs (Re (Sin_ZmW) * Im (1.0 - Cos_W_m_1)) +
|
| 281 |
|
|
abs (Im (Sin_ZmW) * Re (1.0 - Cos_W_m_1)) +
|
| 282 |
|
|
abs (Re (Cos_ZmW) * Im (Sin_W)) +
|
| 283 |
|
|
abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
|
| 284 |
|
|
|
| 285 |
|
|
Check (Actual1, Actual2,
|
| 286 |
|
|
"Identity_1_Test " & Integer'Image (II) &
|
| 287 |
|
|
Integer'Image (J) & ": Sin((" &
|
| 288 |
|
|
Real'Image (Z.Re) & ", " &
|
| 289 |
|
|
Real'Image (Z.Im) & ")) ",
|
| 290 |
|
|
11.0, R_Factor, I_Factor);
|
| 291 |
|
|
|
| 292 |
|
|
-- now for the second identity
|
| 293 |
|
|
-- Cos(Z) = Cos(Z-W) * Cos(W) - Sin(Z-W) * Sin(W)
|
| 294 |
|
|
-- = Cos(Z-W) * (1+(Cos(W)-1) - Sin(Z-W) * Sin(W)
|
| 295 |
|
|
Actual1 := Cos (Z);
|
| 296 |
|
|
Actual2 := Cos_ZmW + (Cos_ZmW * Cos_W_m_1 - Sin_ZmW * Sin_W);
|
| 297 |
|
|
|
| 298 |
|
|
-- The computation of the additional error factors are taken
|
| 299 |
|
|
-- from Cody pages 17-20.
|
| 300 |
|
|
|
| 301 |
|
|
R_Factor := abs (Re (Sin_ZmW) * Re (Sin_W)) +
|
| 302 |
|
|
abs (Im (Sin_ZmW) * Im (Sin_W)) +
|
| 303 |
|
|
abs (Re (Cos_ZmW) * Re (1.0 - Cos_W_m_1)) +
|
| 304 |
|
|
abs (Im (Cos_ZmW) * Im (1.0 - Cos_W_m_1));
|
| 305 |
|
|
|
| 306 |
|
|
I_Factor := abs (Re (Sin_ZmW) * Im (Sin_W)) +
|
| 307 |
|
|
abs (Im (Sin_ZmW) * Re (Sin_W)) +
|
| 308 |
|
|
abs (Re (Cos_ZmW) * Im (1.0 - Cos_W_m_1)) +
|
| 309 |
|
|
abs (Im (Cos_ZmW) * Re (1.0 - Cos_W_m_1));
|
| 310 |
|
|
|
| 311 |
|
|
Check (Actual1, Actual2,
|
| 312 |
|
|
"Identity_2_Test " & Integer'Image (II) &
|
| 313 |
|
|
Integer'Image (J) & ": Cos((" &
|
| 314 |
|
|
Real'Image (Z.Re) & ", " &
|
| 315 |
|
|
Real'Image (Z.Im) & ")) ",
|
| 316 |
|
|
11.0, R_Factor, I_Factor);
|
| 317 |
|
|
|
| 318 |
|
|
if Accuracy_Error_Reported then
|
| 319 |
|
|
-- only report the first error in this test in order to keep
|
| 320 |
|
|
-- lots of failures from producing a huge error log
|
| 321 |
|
|
Error_Low_Bound := 0.0; -- reset
|
| 322 |
|
|
return;
|
| 323 |
|
|
end if;
|
| 324 |
|
|
end loop;
|
| 325 |
|
|
end loop;
|
| 326 |
|
|
|
| 327 |
|
|
Error_Low_Bound := 0.0; -- reset
|
| 328 |
|
|
exception
|
| 329 |
|
|
when Constraint_Error =>
|
| 330 |
|
|
Report.Failed
|
| 331 |
|
|
("Constraint_Error raised in Identity_Test" &
|
| 332 |
|
|
" for Z=(" & Real'Image (X) &
|
| 333 |
|
|
", " & Real'Image (Y) & ")");
|
| 334 |
|
|
when others =>
|
| 335 |
|
|
Report.Failed ("exception in Identity_Test" &
|
| 336 |
|
|
" for Z=(" & Real'Image (X) &
|
| 337 |
|
|
", " & Real'Image (Y) & ")");
|
| 338 |
|
|
end Identity_Test;
|
| 339 |
|
|
|
| 340 |
|
|
|
| 341 |
|
|
procedure Do_Test is
|
| 342 |
|
|
begin
|
| 343 |
|
|
Special_Value_Test;
|
| 344 |
|
|
Exact_Result_Test;
|
| 345 |
|
|
-- test regions where sin and cos have the same sign and
|
| 346 |
|
|
-- about the same magnitude. This will minimize subtraction
|
| 347 |
|
|
-- errors in the identities.
|
| 348 |
|
|
-- See Cody page 17.
|
| 349 |
|
|
Identity_Test (0.0625, 10.0, 0.0625, 10.0);
|
| 350 |
|
|
Identity_Test ( 16.0, 17.0, 16.0, 17.0);
|
| 351 |
|
|
end Do_Test;
|
| 352 |
|
|
end Generic_Check;
|
| 353 |
|
|
|
| 354 |
|
|
-----------------------------------------------------------------------
|
| 355 |
|
|
-----------------------------------------------------------------------
|
| 356 |
|
|
package Float_Check is new Generic_Check (Float);
|
| 357 |
|
|
|
| 358 |
|
|
-- check the floating point type with the most digits
|
| 359 |
|
|
type A_Long_Float is digits System.Max_Digits;
|
| 360 |
|
|
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
|
| 361 |
|
|
|
| 362 |
|
|
-----------------------------------------------------------------------
|
| 363 |
|
|
-----------------------------------------------------------------------
|
| 364 |
|
|
|
| 365 |
|
|
|
| 366 |
|
|
begin
|
| 367 |
|
|
Report.Test ("CXG2021",
|
| 368 |
|
|
"Check the accuracy of the complex SIN and COS functions");
|
| 369 |
|
|
|
| 370 |
|
|
if Verbose then
|
| 371 |
|
|
Report.Comment ("checking Standard.Float");
|
| 372 |
|
|
end if;
|
| 373 |
|
|
|
| 374 |
|
|
Float_Check.Do_Test;
|
| 375 |
|
|
|
| 376 |
|
|
if Verbose then
|
| 377 |
|
|
Report.Comment ("checking a digits" &
|
| 378 |
|
|
Integer'Image (System.Max_Digits) &
|
| 379 |
|
|
" floating point type");
|
| 380 |
|
|
end if;
|
| 381 |
|
|
|
| 382 |
|
|
A_Long_Float_Check.Do_Test;
|
| 383 |
|
|
|
| 384 |
|
|
|
| 385 |
|
|
Report.Result;
|
| 386 |
|
|
end CXG2021;
|