OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [gcc.dg/] [cpp/] [arith-3.c] - Blame information for rev 378

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 298 jeremybenn
/* Preprocessor arithmetic semantic tests.  */
2
 
3
/* Copyright (C) 2002 Free Software Foundation, Inc.  */
4
/* Source: Neil Booth, 26 May 2002.  */
5
 
6
/* The file tests overflow warnings for, and values of, preprocessor
7
   arithmetic that are dependent on target precision.
8
 
9
   Please keep changes to arith-2.c and arith-3.c in sync.  */
10
 
11
/* { dg-do preprocess } */
12
/* { dg-options "-std=c99 -fshow-column" } */
13
 
14
#include <limits.h>
15
 
16
#define APPEND2(NUM, SUFF) NUM ## SUFF
17
#define APPEND(NUM, SUFF) APPEND2(NUM, SUFF)
18
 
19
#define TARGET_UTYPE_MAX  ULLONG_MAX
20
 
21
/* The tests in this file depend only on the macros defined in this
22
   #if block.  Note that it is no good calculating these values, as
23
   the intent is to test both the preprocessor's number parser and
24
   arithmetic.  */
25
#if TARGET_UTYPE_MAX == 65535ULL
26
 
27
#  define TARG_PRECISION 16
28
#  define MAX_INT  32767
29
#  define MAX_UINT 65535
30
 
31
#  define TARG_MAX_HEX 0x7fff
32
#  define TARG_MAX_OCT 077777
33
#  define TARG_MAX_PLUS_1 32768L
34
#  define TARG_MAX_PLUS_1_U 32768UL
35
#  define TARG_MAX_PLUS_1_HEX 0x8000
36
#  define TARG_MAX_PLUS_1_OCT 0100000
37
#  define UTARG_MAX_HEX 0xffff
38
#  define UTARG_MAX_OCT 0177777
39
#  define UTARG_MAX_PLUS_1 65536L
40
#  define UTARG_MAX_PLUS_1_HEX 0x10000
41
#  define UTARG_MAX_PLUS_1_OCT 0200000
42
 
43
#  define TARG_LOWPART_PLUS_1 256L
44
#  define TARG_LOWPART_PLUS_1_U 256UL
45
 
46
  /* Division and modulo; anything that uses the high half in both
47
     dividend and divisor.  */
48
#  define LONG_UDIVISION 61234UL / 260L
49
#  define LONG_UDIVISION_ANSWER 235
50
#  define LONG_SDIVISION -15000L / 299L
51
#  define LONG_SDIVISION_ANSWER -50
52
#  define LONG_UMODULO 61234UL % 260L
53
#  define LONG_UMODULO_ANSWER 134
54
#  define LONG_SMODULO -15000L % 299L
55
#  define LONG_SMODULO_ANSWER -50
56
 
57
#elif TARGET_UTYPE_MAX == 4294967295ULL
58
 
59
#  define TARG_PRECISION 32
60
#  define MAX_INT  2147483647
61
#  define MAX_UINT 4294967295
62
 
63
#  define TARG_MAX_HEX 0x7fffffff
64
#  define TARG_MAX_OCT 017777777777
65
#  define TARG_MAX_PLUS_1 2147483648L
66
#  define TARG_MAX_PLUS_1_U 2147483648UL
67
#  define TARG_MAX_PLUS_1_HEX 0x80000000
68
#  define TARG_MAX_PLUS_1_OCT 020000000000
69
#  define UTARG_MAX_HEX 0xffffffff
70
#  define UTARG_MAX_OCT 037777777777
71
#  define UTARG_MAX_PLUS_1 4294967296L
72
#  define UTARG_MAX_PLUS_1_HEX 0x100000000
73
#  define UTARG_MAX_PLUS_1_OCT 040000000000
74
 
75
#  define TARG_LOWPART_PLUS_1 65536
76
#  define TARG_LOWPART_PLUS_1_U 65536UL
77
 
78
  /* Division and modulo; anything that uses the high half in both
79
     dividend and divisor.  */
80
#  define LONG_UDIVISION 268335456UL / 70000L
81
#  define LONG_UDIVISION_ANSWER 3833
82
#  define LONG_SDIVISION -368335456L / 123456L
83
#  define LONG_SDIVISION_ANSWER -2983
84
#  define LONG_UMODULO 268335456UL % 70000L
85
#  define LONG_UMODULO_ANSWER 25456
86
#  define LONG_SMODULO -368335456L % 123456L
87
#  define LONG_SMODULO_ANSWER -66208
88
 
89
#elif TARGET_UTYPE_MAX == 18446744073709551615ULL
90
 
91
#  define TARG_PRECISION 64
92
#  define MAX_INT  9223372036854775807
93
#  define MAX_UINT 18446744073709551615
94
 
95
#  define TARG_MAX_HEX 0x7fffffffffffffff
96
#  define TARG_MAX_OCT 0777777777777777777777
97
#  define TARG_MAX_PLUS_1 9223372036854775808L
98
#  define TARG_MAX_PLUS_1_U 9223372036854775808UL
99
#  define TARG_MAX_PLUS_1_HEX 0x8000000000000000
100
#  define TARG_MAX_PLUS_1_OCT 01000000000000000000000
101
#  define UTARG_MAX_HEX 0xffffffffffffffff
102
#  define UTARG_MAX_OCT 01777777777777777777777
103
#  define UTARG_MAX_PLUS_1 18446744073709551616L
104
#  define UTARG_MAX_PLUS_1_HEX 0x10000000000000000
105
#  define UTARG_MAX_PLUS_1_OCT 02000000000000000000000
106
 
107
#  define TARG_LOWPART_PLUS_1 4294967296
108
#  define TARG_LOWPART_PLUS_1_U 4294967296U
109
 
110
  /* Division and modulo; anything that uses the high half in both
111
     dividend and divisor.  */
112
#  define LONG_UDIVISION 235184372088832UL / 17279869184L
113
#  define LONG_UDIVISION_ANSWER 13610
114
#  define LONG_SDIVISION -234582345927345L / 12345678901L
115
#  define LONG_SDIVISION_ANSWER -19001
116
#  define LONG_UMODULO 235184372088832UL % 17279869184L
117
#  define LONG_UMODULO_ANSWER 5352494592L
118
#  define LONG_SMODULO -234582345927345L % 12345678901L
119
#  define LONG_SMODULO_ANSWER -2101129444L
120
 
121
#else
122
 
123
#  error Please extend the macros here so that this file tests your target
124
 
125
#endif
126
 
127
/* Create more macros based on the above.  */
128
#define TARG_PART_BITS (TARG_PRECISION / 2)
129
#define TARG_MIN (-TARG_MAX - 1)
130
#define TARG_MAX APPEND (MAX_INT, L)
131
#define TARG_MAX_U APPEND (MAX_INT, UL)
132
#define UTARG_MAX APPEND (MAX_UINT, L)
133
#define UTARG_MAX_U APPEND (MAX_UINT, UL)
134
 
135
/* And now the tests.  */
136
 
137
#if TARG_MAX                    /* { dg-bogus "so large" }  */
138
#endif
139
#if TARG_MAX_PLUS_1_HEX         /* { dg-bogus "so large" }  */
140
#endif
141
#if TARG_MAX_PLUS_1_OCT         /* { dg-bogus "so large" }  */
142
#endif
143
 
144
#if UTARG_MAX                   /* { dg-warning "so large" }  */
145
#endif
146
#if UTARG_MAX_PLUS_1            /* { dg-warning "too large" }  */
147
#endif
148
#if UTARG_MAX_PLUS_1_HEX        /* { dg-warning "too large" }  */
149
#endif
150
#if UTARG_MAX_HEX               /* { dg-bogus "too large" }  */
151
#endif
152
#if UTARG_MAX_PLUS_1_OCT        /* { dg-warning "too large" }  */
153
#endif
154
#if UTARG_MAX_OCT               /* { dg-bogus "too large" }  */
155
#endif
156
 
157
#if TARG_MAX < 0 || TARG_MAX_PLUS_1 < 0 /* { dg-warning "so large" } */
158
# error         /* { dg-bogus "error" }  */
159
#endif
160
 
161
#if UTARG_MAX_HEX < 0 || TARG_MAX_HEX < 0
162
# error         /* { dg-bogus "error" }  */
163
#endif
164
 
165
#if UTARG_MAX_OCT < 0 || TARG_MAX_OCT < 0
166
# error         /* { dg-bogus "error" }  */
167
#endif
168
 
169
#if -1 != UTARG_MAX_U
170
# error         /* { dg-bogus "error" }  */
171
#endif
172
 
173
 
174
 
175
 
176
/* Test each operator correctly warns of overflow conditions, and
177
   gives the right answer.  */
178
 
179
/* Binary +.  */
180
#if TARG_MAX + 1 != TARG_MIN    /* { dg-warning "overflow" } */
181
# error         /* { dg-bogus "error" }  */
182
#endif
183
 
184
#if -TARG_MAX + -2 != TARG_MAX  /* { dg-warning "overflow" } */
185
# error         /* { dg-bogus "error" }  */
186
#endif
187
 
188
#if -TARG_MAX + -1 != TARG_MIN  /* { dg-bogus "overflow" } */
189
# error         /* { dg-bogus "error" }  */
190
#endif
191
 
192
#if TARG_MAX_U + 1 != TARG_MIN  /* { dg-bogus "overflow" } */
193
# error         /* { dg-bogus "error" }  */
194
#endif
195
 
196
#if -TARG_MAX_U + -2 != TARG_MAX /* { dg-bogus "overflow" } */
197
# error         /* { dg-bogus "error" }  */
198
#endif
199
 
200
 
201
 
202
 
203
/* Binary -.  */
204
#if TARG_MAX - -1 != TARG_MIN   /* { dg-warning "overflow" } */
205
# error         /* { dg-bogus "error" }  */
206
#endif
207
 
208
#if -TARG_MAX - 2 != TARG_MAX   /* { dg-warning "overflow" } */
209
# error         /* { dg-bogus "error" }  */
210
#endif
211
 
212
#if -TARG_MAX - 1 != TARG_MIN   /* { dg-bogus "overflow" } */
213
# error         /* { dg-bogus "error" }  */
214
#endif
215
 
216
#if TARG_MAX_U - -1 != TARG_MIN /* { dg-bogus "overflow" } */
217
# error         /* { dg-bogus "error" }  */
218
#endif
219
 
220
#if -TARG_MAX_U - 2 != TARG_MAX /* { dg-bogus "overflow" } */
221
# error         /* { dg-bogus "error" }  */
222
#endif
223
 
224
 
225
 
226
 
227
 
228
/* Binary *.  */
229
#if TARG_LOWPART_PLUS_1 * (TARG_LOWPART_PLUS_1 >> 1) != TARG_MIN /* { dg-warning "overflow" } */
230
# error         /* { dg-bogus "error" }  */
231
#endif
232
 
233
#if (TARG_LOWPART_PLUS_1 >> 1) * TARG_LOWPART_PLUS_1 != TARG_MIN /* { dg-warning "overflow" } */
234
# error         /* { dg-bogus "error" }  */
235
#endif
236
 
237
#if (TARG_LOWPART_PLUS_1 << 1) * (TARG_LOWPART_PLUS_1 + 1) != (TARG_LOWPART_PLUS_1 << 1) /* { dg-warning "overflow" } */
238
# error         /* { dg-bogus "error" }  */
239
#endif
240
 
241
#if TARG_MAX * 1 != TARG_MAX    /* { dg-bogus "overflow" } */
242
# error         /* { dg-bogus "error" }  */
243
#endif
244
 
245
#if (TARG_MAX >> 1) * 2 != TARG_MAX - 1 /* { dg-bogus "overflow" } */
246
# error         /* { dg-bogus "error" }  */
247
#endif
248
 
249
#if (TARG_LOWPART_PLUS_1_U + 61) * (TARG_LOWPART_PLUS_1 << 1) != 61 * (TARG_LOWPART_PLUS_1 << 1) /* { dg-bogus "overflow" } */
250
# error         /* { dg-bogus "error" }  */
251
#endif
252
 
253
#if (TARG_LOWPART_PLUS_1 >> 1) * TARG_LOWPART_PLUS_1_U != TARG_MIN /* { dg-bogus "overflow" } */
254
# error         /* { dg-bogus "error" }  */
255
#endif
256
 
257
#if 1 * TARG_MIN != TARG_MIN    /* { dg-bogus "overflow" } */
258
# error         /* { dg-bogus "error" }  */
259
#endif
260
 
261
 
262
 
263
 
264
/* Binary /.  */
265
#if TARG_MIN / -1 != TARG_MIN   /* { dg-warning "overflow" } */
266
# error         /* { dg-bogus "error" }  */
267
#endif
268
 
269
#if TARG_MIN / 1 != TARG_MIN    /* { dg-bogus "overflow" } */
270
# error         /* { dg-bogus "error" }  */
271
#endif
272
 
273
#if -TARG_MAX_PLUS_1_U / -1 != 0 /* { dg-bogus "overflow" } */
274
# error         /* { dg-bogus "error" }  */
275
#endif
276
 
277
#if -5 / (2 - 2) /* { dg-error "13:division by zero" } */
278
#endif
279
 
280
#if LONG_UDIVISION != LONG_UDIVISION_ANSWER
281
# error         /* { dg-bogus "error" }  */
282
#endif
283
 
284
#if LONG_SDIVISION != LONG_SDIVISION_ANSWER
285
# error         /* { dg-bogus "error" }  */
286
#endif
287
 
288
/* Binary %.  Cannot overflow.  */
289
#if -5 % (2 - 2) /* { dg-error "13:division by zero" } */
290
#endif
291
 
292
#if TARG_MIN % 1 /* { dg-bogus "overflow" } */
293
# error         /* { dg-bogus "error" }  */
294
#endif
295
 
296
#if LONG_UMODULO != LONG_UMODULO_ANSWER
297
# error         /* { dg-bogus "error" }  */
298
#endif
299
 
300
#if LONG_SMODULO != LONG_SMODULO_ANSWER
301
# error         /* { dg-bogus "error" }  */
302
#endif
303
 
304
#if 234 % -1U != 234
305
# error         /* { dg-bogus "error" }  */
306
#endif
307
 
308
#if TARG_MIN % -1U != TARG_MIN
309
# error         /* { dg-bogus "error" }  */
310
#endif
311
 
312
/* Binary << and Binary >>, the latter cannot overflow.  */
313
#if -1 >> 3 != -1     /* { dg-bogus "overflow" } */
314
# error         /* { dg-bogus "error" }  */
315
#endif
316
 
317
#if TARG_MAX >> 3 != TARG_MAX / 8     /* { dg-bogus "overflow" } */
318
# error         /* { dg-bogus "error" }  */
319
#endif
320
 
321
#if 0 << 256 != 0  /* { dg-bogus "overflow" } */
322
# error         /* { dg-bogus "error" }  */
323
#endif
324
 
325
#if 1 << 256 != 0 /* { dg-warning "overflow" } */
326
# error         /* { dg-bogus "error" }  */
327
#endif
328
 
329
#if 1U << 256 != 0  /* { dg-bogus "overflow" } */
330
# error         /* { dg-bogus "error" }  */
331
#endif
332
 
333
#if TARG_MAX << 1 != -2  /* { dg-warning "overflow" } */
334
# error         /* { dg-bogus "error" }  */
335
#endif
336
 
337
#if TARG_MAX_U << 1 != -2  /* { dg-bogus "overflow" } */
338
# error         /* { dg-bogus "error" }  */
339
#endif
340
 
341
#if TARG_LOWPART_PLUS_1 << TARG_PART_BITS != 0  /* { dg-warning "overflow" } */
342
# error         /* { dg-bogus "error" }  */
343
#endif
344
 
345
#if TARG_LOWPART_PLUS_1 << (TARG_PART_BITS - 1) != TARG_MIN  /* { dg-warning "overflow" } */
346
# error         /* { dg-bogus "error" }  */
347
#endif
348
 
349
#if TARG_LOWPART_PLUS_1_U << (TARG_PART_BITS - 1) != TARG_MIN  /* { dg-bogus "overflow" } */
350
# error         /* { dg-bogus "error" }  */
351
#endif
352
 
353
#if TARG_LOWPART_PLUS_1 << (TARG_PART_BITS - 2) != (TARG_MAX_PLUS_1_U >> 1)  /* { dg-bogus "overflow" } */
354
# error         /* { dg-bogus "error" }  */
355
#endif
356
 
357
/* Test how the sign bit is handled.  */
358
#if (TARG_MIN << 1) != 0    /* { dg-warning "overflow" } */
359
# error         /* { dg-bogus "error" }  */
360
#endif
361
 
362
#if (TARG_MAX_PLUS_1_U << 1) != 0    /* { dg-bogus "overflow" } */
363
# error         /* { dg-bogus "error" }  */
364
#endif
365
 
366
#if (TARG_MIN >> 1) != 3U << (TARG_PRECISION - 2)    /* { dg-bogus "overflow" } */
367
# error         /* { dg-bogus "error" }  */
368
#endif
369
 
370
#if (TARG_MAX_PLUS_1_U >> 1) != 1 << (TARG_PRECISION - 2)    /* { dg-bogus "overflow" } */
371
# error         /* { dg-bogus "error" }  */
372
#endif
373
 
374
 
375
 
376
/* Unary -.  It can overflow in just one case.  */
377
#if -TARG_MIN != TARG_MIN  /* { dg-warning "overflow" } */
378
# error         /* { dg-bogus "error" }  */
379
#endif
380
 
381
#if - -TARG_MAX != TARG_MAX   /* { dg-bogus "overflow" } */
382
# error         /* { dg-bogus "error" }  */
383
#endif
384
 
385
 
386
 
387
 
388
/* Unary +, ~, and !.  They cannot overflow.  */
389
#if +TARG_MAX != TARG_MAX  /* { dg-bogus "overflow" } */
390
# error         /* { dg-bogus "error" }  */
391
#endif
392
 
393
#if !TARG_MAX + !TARG_MIN != 0   /* { dg-bogus "overflow" } */
394
# error         /* { dg-bogus "error" }  */
395
#endif
396
 
397
#if ~TARG_MAX , ~TARG_MIN != TARG_MAX  /* { dg-bogus "overflow" } */
398
# error         /* { dg-bogus "error" }  */
399
#endif
400
 
401
 
402
 
403
 
404
/* Bitwise &, ^, |.  They cannot overflow.  */
405
#if (TARG_MAX & -1), (TARG_MIN & -1) != TARG_MIN  /* { dg-bogus "overflow" } */
406
# error         /* { dg-bogus "error" }  */
407
#endif
408
 
409
#if TARG_MAX | -1, (TARG_MIN | -1) != -1  /* { dg-bogus "overflow" } */
410
# error         /* { dg-bogus "error" }  */
411
#endif
412
 
413
#if TARG_MAX ^ -1, (TARG_MIN ^ -1) != TARG_MAX  /* { dg-bogus "overflow" } */
414
# error         /* { dg-bogus "error" }  */
415
#endif
416
 
417
 
418
 
419
 
420
/* Comparison operators.  They cannot overflow.  */
421
#if -1 <= TARG_MAX, (TARG_MIN <= 1) != 1  /* { dg-bogus "overflow" } */
422
# error         /* { dg-bogus "error" }  */
423
#endif
424
 
425
#if -1 >= TARG_MAX, (TARG_MIN >= 1) != 0  /* { dg-bogus "overflow" } */
426
# error         /* { dg-bogus "error" }  */
427
#endif
428
 
429
#if -1 < TARG_MAX, (TARG_MIN < 1) != 1  /* { dg-bogus "overflow" } */
430
# error         /* { dg-bogus "error" }  */
431
#endif
432
 
433
#if -1 > TARG_MAX, (TARG_MIN > 1) != 0  /* { dg-bogus "overflow" } */
434
# error         /* { dg-bogus "error" }  */
435
#endif
436
 
437
 
438
 
439
 
440
/* Comma and ? : operators.  They cannot overflow.  */
441
#if -1, TARG_MAX, TARG_MIN != TARG_MIN  /* { dg-bogus "overflow" } */
442
# error         /* { dg-bogus "error" }  */
443
#endif
444
 
445
#if -1 ? TARG_MAX: TARG_MAX, 0 ? 1: TARG_MIN != TARG_MIN /* { dg-bogus "overflow" } */
446
# error         /* { dg-bogus "error" }  */
447
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.