| 1 |
280 |
jeremybenn |
/* Lower complex number operations to scalar operations.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 8 |
|
|
under the terms of the GNU General Public License as published by the
|
| 9 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 10 |
|
|
later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 13 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "rtl.h"
|
| 27 |
|
|
#include "real.h"
|
| 28 |
|
|
#include "flags.h"
|
| 29 |
|
|
#include "tree-flow.h"
|
| 30 |
|
|
#include "gimple.h"
|
| 31 |
|
|
#include "tree-iterator.h"
|
| 32 |
|
|
#include "tree-pass.h"
|
| 33 |
|
|
#include "tree-ssa-propagate.h"
|
| 34 |
|
|
#include "diagnostic.h"
|
| 35 |
|
|
|
| 36 |
|
|
|
| 37 |
|
|
/* For each complex ssa name, a lattice value. We're interested in finding
|
| 38 |
|
|
out whether a complex number is degenerate in some way, having only real
|
| 39 |
|
|
or only complex parts. */
|
| 40 |
|
|
|
| 41 |
|
|
enum
|
| 42 |
|
|
{
|
| 43 |
|
|
UNINITIALIZED = 0,
|
| 44 |
|
|
ONLY_REAL = 1,
|
| 45 |
|
|
ONLY_IMAG = 2,
|
| 46 |
|
|
VARYING = 3
|
| 47 |
|
|
};
|
| 48 |
|
|
|
| 49 |
|
|
/* The type complex_lattice_t holds combinations of the above
|
| 50 |
|
|
constants. */
|
| 51 |
|
|
typedef int complex_lattice_t;
|
| 52 |
|
|
|
| 53 |
|
|
#define PAIR(a, b) ((a) << 2 | (b))
|
| 54 |
|
|
|
| 55 |
|
|
DEF_VEC_I(complex_lattice_t);
|
| 56 |
|
|
DEF_VEC_ALLOC_I(complex_lattice_t, heap);
|
| 57 |
|
|
|
| 58 |
|
|
static VEC(complex_lattice_t, heap) *complex_lattice_values;
|
| 59 |
|
|
|
| 60 |
|
|
/* For each complex variable, a pair of variables for the components exists in
|
| 61 |
|
|
the hashtable. */
|
| 62 |
|
|
static htab_t complex_variable_components;
|
| 63 |
|
|
|
| 64 |
|
|
/* For each complex SSA_NAME, a pair of ssa names for the components. */
|
| 65 |
|
|
static VEC(tree, heap) *complex_ssa_name_components;
|
| 66 |
|
|
|
| 67 |
|
|
/* Lookup UID in the complex_variable_components hashtable and return the
|
| 68 |
|
|
associated tree. */
|
| 69 |
|
|
static tree
|
| 70 |
|
|
cvc_lookup (unsigned int uid)
|
| 71 |
|
|
{
|
| 72 |
|
|
struct int_tree_map *h, in;
|
| 73 |
|
|
in.uid = uid;
|
| 74 |
|
|
h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
|
| 75 |
|
|
return h ? h->to : NULL;
|
| 76 |
|
|
}
|
| 77 |
|
|
|
| 78 |
|
|
/* Insert the pair UID, TO into the complex_variable_components hashtable. */
|
| 79 |
|
|
|
| 80 |
|
|
static void
|
| 81 |
|
|
cvc_insert (unsigned int uid, tree to)
|
| 82 |
|
|
{
|
| 83 |
|
|
struct int_tree_map *h;
|
| 84 |
|
|
void **loc;
|
| 85 |
|
|
|
| 86 |
|
|
h = XNEW (struct int_tree_map);
|
| 87 |
|
|
h->uid = uid;
|
| 88 |
|
|
h->to = to;
|
| 89 |
|
|
loc = htab_find_slot_with_hash (complex_variable_components, h,
|
| 90 |
|
|
uid, INSERT);
|
| 91 |
|
|
*(struct int_tree_map **) loc = h;
|
| 92 |
|
|
}
|
| 93 |
|
|
|
| 94 |
|
|
/* Return true if T is not a zero constant. In the case of real values,
|
| 95 |
|
|
we're only interested in +0.0. */
|
| 96 |
|
|
|
| 97 |
|
|
static int
|
| 98 |
|
|
some_nonzerop (tree t)
|
| 99 |
|
|
{
|
| 100 |
|
|
int zerop = false;
|
| 101 |
|
|
|
| 102 |
|
|
/* Operations with real or imaginary part of a complex number zero
|
| 103 |
|
|
cannot be treated the same as operations with a real or imaginary
|
| 104 |
|
|
operand if we care about the signs of zeros in the result. */
|
| 105 |
|
|
if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
|
| 106 |
|
|
zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
|
| 107 |
|
|
else if (TREE_CODE (t) == FIXED_CST)
|
| 108 |
|
|
zerop = fixed_zerop (t);
|
| 109 |
|
|
else if (TREE_CODE (t) == INTEGER_CST)
|
| 110 |
|
|
zerop = integer_zerop (t);
|
| 111 |
|
|
|
| 112 |
|
|
return !zerop;
|
| 113 |
|
|
}
|
| 114 |
|
|
|
| 115 |
|
|
|
| 116 |
|
|
/* Compute a lattice value from the components of a complex type REAL
|
| 117 |
|
|
and IMAG. */
|
| 118 |
|
|
|
| 119 |
|
|
static complex_lattice_t
|
| 120 |
|
|
find_lattice_value_parts (tree real, tree imag)
|
| 121 |
|
|
{
|
| 122 |
|
|
int r, i;
|
| 123 |
|
|
complex_lattice_t ret;
|
| 124 |
|
|
|
| 125 |
|
|
r = some_nonzerop (real);
|
| 126 |
|
|
i = some_nonzerop (imag);
|
| 127 |
|
|
ret = r * ONLY_REAL + i * ONLY_IMAG;
|
| 128 |
|
|
|
| 129 |
|
|
/* ??? On occasion we could do better than mapping 0+0i to real, but we
|
| 130 |
|
|
certainly don't want to leave it UNINITIALIZED, which eventually gets
|
| 131 |
|
|
mapped to VARYING. */
|
| 132 |
|
|
if (ret == UNINITIALIZED)
|
| 133 |
|
|
ret = ONLY_REAL;
|
| 134 |
|
|
|
| 135 |
|
|
return ret;
|
| 136 |
|
|
}
|
| 137 |
|
|
|
| 138 |
|
|
|
| 139 |
|
|
/* Compute a lattice value from gimple_val T. */
|
| 140 |
|
|
|
| 141 |
|
|
static complex_lattice_t
|
| 142 |
|
|
find_lattice_value (tree t)
|
| 143 |
|
|
{
|
| 144 |
|
|
tree real, imag;
|
| 145 |
|
|
|
| 146 |
|
|
switch (TREE_CODE (t))
|
| 147 |
|
|
{
|
| 148 |
|
|
case SSA_NAME:
|
| 149 |
|
|
return VEC_index (complex_lattice_t, complex_lattice_values,
|
| 150 |
|
|
SSA_NAME_VERSION (t));
|
| 151 |
|
|
|
| 152 |
|
|
case COMPLEX_CST:
|
| 153 |
|
|
real = TREE_REALPART (t);
|
| 154 |
|
|
imag = TREE_IMAGPART (t);
|
| 155 |
|
|
break;
|
| 156 |
|
|
|
| 157 |
|
|
default:
|
| 158 |
|
|
gcc_unreachable ();
|
| 159 |
|
|
}
|
| 160 |
|
|
|
| 161 |
|
|
return find_lattice_value_parts (real, imag);
|
| 162 |
|
|
}
|
| 163 |
|
|
|
| 164 |
|
|
/* Determine if LHS is something for which we're interested in seeing
|
| 165 |
|
|
simulation results. */
|
| 166 |
|
|
|
| 167 |
|
|
static bool
|
| 168 |
|
|
is_complex_reg (tree lhs)
|
| 169 |
|
|
{
|
| 170 |
|
|
return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
|
| 171 |
|
|
}
|
| 172 |
|
|
|
| 173 |
|
|
/* Mark the incoming parameters to the function as VARYING. */
|
| 174 |
|
|
|
| 175 |
|
|
static void
|
| 176 |
|
|
init_parameter_lattice_values (void)
|
| 177 |
|
|
{
|
| 178 |
|
|
tree parm, ssa_name;
|
| 179 |
|
|
|
| 180 |
|
|
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
|
| 181 |
|
|
if (is_complex_reg (parm)
|
| 182 |
|
|
&& var_ann (parm) != NULL
|
| 183 |
|
|
&& (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
|
| 184 |
|
|
VEC_replace (complex_lattice_t, complex_lattice_values,
|
| 185 |
|
|
SSA_NAME_VERSION (ssa_name), VARYING);
|
| 186 |
|
|
}
|
| 187 |
|
|
|
| 188 |
|
|
/* Initialize simulation state for each statement. Return false if we
|
| 189 |
|
|
found no statements we want to simulate, and thus there's nothing
|
| 190 |
|
|
for the entire pass to do. */
|
| 191 |
|
|
|
| 192 |
|
|
static bool
|
| 193 |
|
|
init_dont_simulate_again (void)
|
| 194 |
|
|
{
|
| 195 |
|
|
basic_block bb;
|
| 196 |
|
|
gimple_stmt_iterator gsi;
|
| 197 |
|
|
gimple phi;
|
| 198 |
|
|
bool saw_a_complex_op = false;
|
| 199 |
|
|
|
| 200 |
|
|
FOR_EACH_BB (bb)
|
| 201 |
|
|
{
|
| 202 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 203 |
|
|
{
|
| 204 |
|
|
phi = gsi_stmt (gsi);
|
| 205 |
|
|
prop_set_simulate_again (phi,
|
| 206 |
|
|
is_complex_reg (gimple_phi_result (phi)));
|
| 207 |
|
|
}
|
| 208 |
|
|
|
| 209 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 210 |
|
|
{
|
| 211 |
|
|
gimple stmt;
|
| 212 |
|
|
tree op0, op1;
|
| 213 |
|
|
bool sim_again_p;
|
| 214 |
|
|
|
| 215 |
|
|
stmt = gsi_stmt (gsi);
|
| 216 |
|
|
op0 = op1 = NULL_TREE;
|
| 217 |
|
|
|
| 218 |
|
|
/* Most control-altering statements must be initially
|
| 219 |
|
|
simulated, else we won't cover the entire cfg. */
|
| 220 |
|
|
sim_again_p = stmt_ends_bb_p (stmt);
|
| 221 |
|
|
|
| 222 |
|
|
switch (gimple_code (stmt))
|
| 223 |
|
|
{
|
| 224 |
|
|
case GIMPLE_CALL:
|
| 225 |
|
|
if (gimple_call_lhs (stmt))
|
| 226 |
|
|
sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
|
| 227 |
|
|
break;
|
| 228 |
|
|
|
| 229 |
|
|
case GIMPLE_ASSIGN:
|
| 230 |
|
|
sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
|
| 231 |
|
|
if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|
| 232 |
|
|
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
|
| 233 |
|
|
op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
|
| 234 |
|
|
else
|
| 235 |
|
|
op0 = gimple_assign_rhs1 (stmt);
|
| 236 |
|
|
if (gimple_num_ops (stmt) > 2)
|
| 237 |
|
|
op1 = gimple_assign_rhs2 (stmt);
|
| 238 |
|
|
break;
|
| 239 |
|
|
|
| 240 |
|
|
case GIMPLE_COND:
|
| 241 |
|
|
op0 = gimple_cond_lhs (stmt);
|
| 242 |
|
|
op1 = gimple_cond_rhs (stmt);
|
| 243 |
|
|
break;
|
| 244 |
|
|
|
| 245 |
|
|
default:
|
| 246 |
|
|
break;
|
| 247 |
|
|
}
|
| 248 |
|
|
|
| 249 |
|
|
if (op0 || op1)
|
| 250 |
|
|
switch (gimple_expr_code (stmt))
|
| 251 |
|
|
{
|
| 252 |
|
|
case EQ_EXPR:
|
| 253 |
|
|
case NE_EXPR:
|
| 254 |
|
|
case PLUS_EXPR:
|
| 255 |
|
|
case MINUS_EXPR:
|
| 256 |
|
|
case MULT_EXPR:
|
| 257 |
|
|
case TRUNC_DIV_EXPR:
|
| 258 |
|
|
case CEIL_DIV_EXPR:
|
| 259 |
|
|
case FLOOR_DIV_EXPR:
|
| 260 |
|
|
case ROUND_DIV_EXPR:
|
| 261 |
|
|
case RDIV_EXPR:
|
| 262 |
|
|
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
|
| 263 |
|
|
|| TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
|
| 264 |
|
|
saw_a_complex_op = true;
|
| 265 |
|
|
break;
|
| 266 |
|
|
|
| 267 |
|
|
case NEGATE_EXPR:
|
| 268 |
|
|
case CONJ_EXPR:
|
| 269 |
|
|
if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
|
| 270 |
|
|
saw_a_complex_op = true;
|
| 271 |
|
|
break;
|
| 272 |
|
|
|
| 273 |
|
|
case REALPART_EXPR:
|
| 274 |
|
|
case IMAGPART_EXPR:
|
| 275 |
|
|
/* The total store transformation performed during
|
| 276 |
|
|
gimplification creates such uninitialized loads
|
| 277 |
|
|
and we need to lower the statement to be able
|
| 278 |
|
|
to fix things up. */
|
| 279 |
|
|
if (TREE_CODE (op0) == SSA_NAME
|
| 280 |
|
|
&& ssa_undefined_value_p (op0))
|
| 281 |
|
|
saw_a_complex_op = true;
|
| 282 |
|
|
break;
|
| 283 |
|
|
|
| 284 |
|
|
default:
|
| 285 |
|
|
break;
|
| 286 |
|
|
}
|
| 287 |
|
|
|
| 288 |
|
|
prop_set_simulate_again (stmt, sim_again_p);
|
| 289 |
|
|
}
|
| 290 |
|
|
}
|
| 291 |
|
|
|
| 292 |
|
|
return saw_a_complex_op;
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
|
| 296 |
|
|
/* Evaluate statement STMT against the complex lattice defined above. */
|
| 297 |
|
|
|
| 298 |
|
|
static enum ssa_prop_result
|
| 299 |
|
|
complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
|
| 300 |
|
|
tree *result_p)
|
| 301 |
|
|
{
|
| 302 |
|
|
complex_lattice_t new_l, old_l, op1_l, op2_l;
|
| 303 |
|
|
unsigned int ver;
|
| 304 |
|
|
tree lhs;
|
| 305 |
|
|
|
| 306 |
|
|
lhs = gimple_get_lhs (stmt);
|
| 307 |
|
|
/* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
|
| 308 |
|
|
if (!lhs)
|
| 309 |
|
|
return SSA_PROP_VARYING;
|
| 310 |
|
|
|
| 311 |
|
|
/* These conditions should be satisfied due to the initial filter
|
| 312 |
|
|
set up in init_dont_simulate_again. */
|
| 313 |
|
|
gcc_assert (TREE_CODE (lhs) == SSA_NAME);
|
| 314 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
|
| 315 |
|
|
|
| 316 |
|
|
*result_p = lhs;
|
| 317 |
|
|
ver = SSA_NAME_VERSION (lhs);
|
| 318 |
|
|
old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
|
| 319 |
|
|
|
| 320 |
|
|
switch (gimple_expr_code (stmt))
|
| 321 |
|
|
{
|
| 322 |
|
|
case SSA_NAME:
|
| 323 |
|
|
case COMPLEX_CST:
|
| 324 |
|
|
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
|
| 325 |
|
|
break;
|
| 326 |
|
|
|
| 327 |
|
|
case COMPLEX_EXPR:
|
| 328 |
|
|
new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
|
| 329 |
|
|
gimple_assign_rhs2 (stmt));
|
| 330 |
|
|
break;
|
| 331 |
|
|
|
| 332 |
|
|
case PLUS_EXPR:
|
| 333 |
|
|
case MINUS_EXPR:
|
| 334 |
|
|
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
|
| 335 |
|
|
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
|
| 336 |
|
|
|
| 337 |
|
|
/* We've set up the lattice values such that IOR neatly
|
| 338 |
|
|
models addition. */
|
| 339 |
|
|
new_l = op1_l | op2_l;
|
| 340 |
|
|
break;
|
| 341 |
|
|
|
| 342 |
|
|
case MULT_EXPR:
|
| 343 |
|
|
case RDIV_EXPR:
|
| 344 |
|
|
case TRUNC_DIV_EXPR:
|
| 345 |
|
|
case CEIL_DIV_EXPR:
|
| 346 |
|
|
case FLOOR_DIV_EXPR:
|
| 347 |
|
|
case ROUND_DIV_EXPR:
|
| 348 |
|
|
op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
|
| 349 |
|
|
op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
|
| 350 |
|
|
|
| 351 |
|
|
/* Obviously, if either varies, so does the result. */
|
| 352 |
|
|
if (op1_l == VARYING || op2_l == VARYING)
|
| 353 |
|
|
new_l = VARYING;
|
| 354 |
|
|
/* Don't prematurely promote variables if we've not yet seen
|
| 355 |
|
|
their inputs. */
|
| 356 |
|
|
else if (op1_l == UNINITIALIZED)
|
| 357 |
|
|
new_l = op2_l;
|
| 358 |
|
|
else if (op2_l == UNINITIALIZED)
|
| 359 |
|
|
new_l = op1_l;
|
| 360 |
|
|
else
|
| 361 |
|
|
{
|
| 362 |
|
|
/* At this point both numbers have only one component. If the
|
| 363 |
|
|
numbers are of opposite kind, the result is imaginary,
|
| 364 |
|
|
otherwise the result is real. The add/subtract translates
|
| 365 |
|
|
the real/imag from/to 0/1; the ^ performs the comparison. */
|
| 366 |
|
|
new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
|
| 367 |
|
|
|
| 368 |
|
|
/* Don't allow the lattice value to flip-flop indefinitely. */
|
| 369 |
|
|
new_l |= old_l;
|
| 370 |
|
|
}
|
| 371 |
|
|
break;
|
| 372 |
|
|
|
| 373 |
|
|
case NEGATE_EXPR:
|
| 374 |
|
|
case CONJ_EXPR:
|
| 375 |
|
|
new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
|
| 376 |
|
|
break;
|
| 377 |
|
|
|
| 378 |
|
|
default:
|
| 379 |
|
|
new_l = VARYING;
|
| 380 |
|
|
break;
|
| 381 |
|
|
}
|
| 382 |
|
|
|
| 383 |
|
|
/* If nothing changed this round, let the propagator know. */
|
| 384 |
|
|
if (new_l == old_l)
|
| 385 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
| 386 |
|
|
|
| 387 |
|
|
VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
|
| 388 |
|
|
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
|
| 389 |
|
|
}
|
| 390 |
|
|
|
| 391 |
|
|
/* Evaluate a PHI node against the complex lattice defined above. */
|
| 392 |
|
|
|
| 393 |
|
|
static enum ssa_prop_result
|
| 394 |
|
|
complex_visit_phi (gimple phi)
|
| 395 |
|
|
{
|
| 396 |
|
|
complex_lattice_t new_l, old_l;
|
| 397 |
|
|
unsigned int ver;
|
| 398 |
|
|
tree lhs;
|
| 399 |
|
|
int i;
|
| 400 |
|
|
|
| 401 |
|
|
lhs = gimple_phi_result (phi);
|
| 402 |
|
|
|
| 403 |
|
|
/* This condition should be satisfied due to the initial filter
|
| 404 |
|
|
set up in init_dont_simulate_again. */
|
| 405 |
|
|
gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
|
| 406 |
|
|
|
| 407 |
|
|
/* We've set up the lattice values such that IOR neatly models PHI meet. */
|
| 408 |
|
|
new_l = UNINITIALIZED;
|
| 409 |
|
|
for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
|
| 410 |
|
|
new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
|
| 411 |
|
|
|
| 412 |
|
|
ver = SSA_NAME_VERSION (lhs);
|
| 413 |
|
|
old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
|
| 414 |
|
|
|
| 415 |
|
|
if (new_l == old_l)
|
| 416 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
| 417 |
|
|
|
| 418 |
|
|
VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
|
| 419 |
|
|
return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
|
| 420 |
|
|
}
|
| 421 |
|
|
|
| 422 |
|
|
/* Create one backing variable for a complex component of ORIG. */
|
| 423 |
|
|
|
| 424 |
|
|
static tree
|
| 425 |
|
|
create_one_component_var (tree type, tree orig, const char *prefix,
|
| 426 |
|
|
const char *suffix, enum tree_code code)
|
| 427 |
|
|
{
|
| 428 |
|
|
tree r = create_tmp_var (type, prefix);
|
| 429 |
|
|
add_referenced_var (r);
|
| 430 |
|
|
|
| 431 |
|
|
DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
|
| 432 |
|
|
DECL_ARTIFICIAL (r) = 1;
|
| 433 |
|
|
|
| 434 |
|
|
if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
|
| 435 |
|
|
{
|
| 436 |
|
|
const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
|
| 437 |
|
|
|
| 438 |
|
|
DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
|
| 439 |
|
|
|
| 440 |
|
|
SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
|
| 441 |
|
|
DECL_DEBUG_EXPR_IS_FROM (r) = 1;
|
| 442 |
|
|
DECL_IGNORED_P (r) = 0;
|
| 443 |
|
|
TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
|
| 444 |
|
|
}
|
| 445 |
|
|
else
|
| 446 |
|
|
{
|
| 447 |
|
|
DECL_IGNORED_P (r) = 1;
|
| 448 |
|
|
TREE_NO_WARNING (r) = 1;
|
| 449 |
|
|
}
|
| 450 |
|
|
|
| 451 |
|
|
return r;
|
| 452 |
|
|
}
|
| 453 |
|
|
|
| 454 |
|
|
/* Retrieve a value for a complex component of VAR. */
|
| 455 |
|
|
|
| 456 |
|
|
static tree
|
| 457 |
|
|
get_component_var (tree var, bool imag_p)
|
| 458 |
|
|
{
|
| 459 |
|
|
size_t decl_index = DECL_UID (var) * 2 + imag_p;
|
| 460 |
|
|
tree ret = cvc_lookup (decl_index);
|
| 461 |
|
|
|
| 462 |
|
|
if (ret == NULL)
|
| 463 |
|
|
{
|
| 464 |
|
|
ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
|
| 465 |
|
|
imag_p ? "CI" : "CR",
|
| 466 |
|
|
imag_p ? "$imag" : "$real",
|
| 467 |
|
|
imag_p ? IMAGPART_EXPR : REALPART_EXPR);
|
| 468 |
|
|
cvc_insert (decl_index, ret);
|
| 469 |
|
|
}
|
| 470 |
|
|
|
| 471 |
|
|
return ret;
|
| 472 |
|
|
}
|
| 473 |
|
|
|
| 474 |
|
|
/* Retrieve a value for a complex component of SSA_NAME. */
|
| 475 |
|
|
|
| 476 |
|
|
static tree
|
| 477 |
|
|
get_component_ssa_name (tree ssa_name, bool imag_p)
|
| 478 |
|
|
{
|
| 479 |
|
|
complex_lattice_t lattice = find_lattice_value (ssa_name);
|
| 480 |
|
|
size_t ssa_name_index;
|
| 481 |
|
|
tree ret;
|
| 482 |
|
|
|
| 483 |
|
|
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
|
| 484 |
|
|
{
|
| 485 |
|
|
tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
|
| 486 |
|
|
if (SCALAR_FLOAT_TYPE_P (inner_type))
|
| 487 |
|
|
return build_real (inner_type, dconst0);
|
| 488 |
|
|
else
|
| 489 |
|
|
return build_int_cst (inner_type, 0);
|
| 490 |
|
|
}
|
| 491 |
|
|
|
| 492 |
|
|
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
|
| 493 |
|
|
ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
|
| 494 |
|
|
if (ret == NULL)
|
| 495 |
|
|
{
|
| 496 |
|
|
ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
|
| 497 |
|
|
ret = make_ssa_name (ret, NULL);
|
| 498 |
|
|
|
| 499 |
|
|
/* Copy some properties from the original. In particular, whether it
|
| 500 |
|
|
is used in an abnormal phi, and whether it's uninitialized. */
|
| 501 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
|
| 502 |
|
|
= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
|
| 503 |
|
|
if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
|
| 504 |
|
|
&& gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
|
| 505 |
|
|
{
|
| 506 |
|
|
SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
|
| 507 |
|
|
set_default_def (SSA_NAME_VAR (ret), ret);
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
|
| 511 |
|
|
}
|
| 512 |
|
|
|
| 513 |
|
|
return ret;
|
| 514 |
|
|
}
|
| 515 |
|
|
|
| 516 |
|
|
/* Set a value for a complex component of SSA_NAME, return a
|
| 517 |
|
|
gimple_seq of stuff that needs doing. */
|
| 518 |
|
|
|
| 519 |
|
|
static gimple_seq
|
| 520 |
|
|
set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
|
| 521 |
|
|
{
|
| 522 |
|
|
complex_lattice_t lattice = find_lattice_value (ssa_name);
|
| 523 |
|
|
size_t ssa_name_index;
|
| 524 |
|
|
tree comp;
|
| 525 |
|
|
gimple last;
|
| 526 |
|
|
gimple_seq list;
|
| 527 |
|
|
|
| 528 |
|
|
/* We know the value must be zero, else there's a bug in our lattice
|
| 529 |
|
|
analysis. But the value may well be a variable known to contain
|
| 530 |
|
|
zero. We should be safe ignoring it. */
|
| 531 |
|
|
if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
|
| 532 |
|
|
return NULL;
|
| 533 |
|
|
|
| 534 |
|
|
/* If we've already assigned an SSA_NAME to this component, then this
|
| 535 |
|
|
means that our walk of the basic blocks found a use before the set.
|
| 536 |
|
|
This is fine. Now we should create an initialization for the value
|
| 537 |
|
|
we created earlier. */
|
| 538 |
|
|
ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
|
| 539 |
|
|
comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
|
| 540 |
|
|
if (comp)
|
| 541 |
|
|
;
|
| 542 |
|
|
|
| 543 |
|
|
/* If we've nothing assigned, and the value we're given is already stable,
|
| 544 |
|
|
then install that as the value for this SSA_NAME. This preemptively
|
| 545 |
|
|
copy-propagates the value, which avoids unnecessary memory allocation. */
|
| 546 |
|
|
else if (is_gimple_min_invariant (value)
|
| 547 |
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
| 548 |
|
|
{
|
| 549 |
|
|
VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
|
| 550 |
|
|
return NULL;
|
| 551 |
|
|
}
|
| 552 |
|
|
else if (TREE_CODE (value) == SSA_NAME
|
| 553 |
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
|
| 554 |
|
|
{
|
| 555 |
|
|
/* Replace an anonymous base value with the variable from cvc_lookup.
|
| 556 |
|
|
This should result in better debug info. */
|
| 557 |
|
|
if (DECL_IGNORED_P (SSA_NAME_VAR (value))
|
| 558 |
|
|
&& !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
|
| 559 |
|
|
{
|
| 560 |
|
|
comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
|
| 561 |
|
|
replace_ssa_name_symbol (value, comp);
|
| 562 |
|
|
}
|
| 563 |
|
|
|
| 564 |
|
|
VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
|
| 565 |
|
|
return NULL;
|
| 566 |
|
|
}
|
| 567 |
|
|
|
| 568 |
|
|
/* Finally, we need to stabilize the result by installing the value into
|
| 569 |
|
|
a new ssa name. */
|
| 570 |
|
|
else
|
| 571 |
|
|
comp = get_component_ssa_name (ssa_name, imag_p);
|
| 572 |
|
|
|
| 573 |
|
|
/* Do all the work to assign VALUE to COMP. */
|
| 574 |
|
|
list = NULL;
|
| 575 |
|
|
value = force_gimple_operand (value, &list, false, NULL);
|
| 576 |
|
|
last = gimple_build_assign (comp, value);
|
| 577 |
|
|
gimple_seq_add_stmt (&list, last);
|
| 578 |
|
|
gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
|
| 579 |
|
|
|
| 580 |
|
|
return list;
|
| 581 |
|
|
}
|
| 582 |
|
|
|
| 583 |
|
|
/* Extract the real or imaginary part of a complex variable or constant.
|
| 584 |
|
|
Make sure that it's a proper gimple_val and gimplify it if not.
|
| 585 |
|
|
Emit any new code before gsi. */
|
| 586 |
|
|
|
| 587 |
|
|
static tree
|
| 588 |
|
|
extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
|
| 589 |
|
|
bool gimple_p)
|
| 590 |
|
|
{
|
| 591 |
|
|
switch (TREE_CODE (t))
|
| 592 |
|
|
{
|
| 593 |
|
|
case COMPLEX_CST:
|
| 594 |
|
|
return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
|
| 595 |
|
|
|
| 596 |
|
|
case COMPLEX_EXPR:
|
| 597 |
|
|
gcc_unreachable ();
|
| 598 |
|
|
|
| 599 |
|
|
case VAR_DECL:
|
| 600 |
|
|
case RESULT_DECL:
|
| 601 |
|
|
case PARM_DECL:
|
| 602 |
|
|
case INDIRECT_REF:
|
| 603 |
|
|
case COMPONENT_REF:
|
| 604 |
|
|
case ARRAY_REF:
|
| 605 |
|
|
case VIEW_CONVERT_EXPR:
|
| 606 |
|
|
{
|
| 607 |
|
|
tree inner_type = TREE_TYPE (TREE_TYPE (t));
|
| 608 |
|
|
|
| 609 |
|
|
t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
|
| 610 |
|
|
inner_type, unshare_expr (t));
|
| 611 |
|
|
|
| 612 |
|
|
if (gimple_p)
|
| 613 |
|
|
t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
|
| 614 |
|
|
GSI_SAME_STMT);
|
| 615 |
|
|
|
| 616 |
|
|
return t;
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
case SSA_NAME:
|
| 620 |
|
|
return get_component_ssa_name (t, imagpart_p);
|
| 621 |
|
|
|
| 622 |
|
|
default:
|
| 623 |
|
|
gcc_unreachable ();
|
| 624 |
|
|
}
|
| 625 |
|
|
}
|
| 626 |
|
|
|
| 627 |
|
|
/* Update the complex components of the ssa name on the lhs of STMT. */
|
| 628 |
|
|
|
| 629 |
|
|
static void
|
| 630 |
|
|
update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
|
| 631 |
|
|
tree i)
|
| 632 |
|
|
{
|
| 633 |
|
|
tree lhs;
|
| 634 |
|
|
gimple_seq list;
|
| 635 |
|
|
|
| 636 |
|
|
lhs = gimple_get_lhs (stmt);
|
| 637 |
|
|
|
| 638 |
|
|
list = set_component_ssa_name (lhs, false, r);
|
| 639 |
|
|
if (list)
|
| 640 |
|
|
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
|
| 641 |
|
|
|
| 642 |
|
|
list = set_component_ssa_name (lhs, true, i);
|
| 643 |
|
|
if (list)
|
| 644 |
|
|
gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
|
| 645 |
|
|
}
|
| 646 |
|
|
|
| 647 |
|
|
static void
|
| 648 |
|
|
update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
|
| 649 |
|
|
{
|
| 650 |
|
|
gimple_seq list;
|
| 651 |
|
|
|
| 652 |
|
|
list = set_component_ssa_name (lhs, false, r);
|
| 653 |
|
|
if (list)
|
| 654 |
|
|
gsi_insert_seq_on_edge (e, list);
|
| 655 |
|
|
|
| 656 |
|
|
list = set_component_ssa_name (lhs, true, i);
|
| 657 |
|
|
if (list)
|
| 658 |
|
|
gsi_insert_seq_on_edge (e, list);
|
| 659 |
|
|
}
|
| 660 |
|
|
|
| 661 |
|
|
|
| 662 |
|
|
/* Update an assignment to a complex variable in place. */
|
| 663 |
|
|
|
| 664 |
|
|
static void
|
| 665 |
|
|
update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
|
| 666 |
|
|
{
|
| 667 |
|
|
gimple_stmt_iterator orig_si = *gsi;
|
| 668 |
|
|
|
| 669 |
|
|
if (gimple_in_ssa_p (cfun))
|
| 670 |
|
|
update_complex_components (gsi, gsi_stmt (*gsi), r, i);
|
| 671 |
|
|
|
| 672 |
|
|
gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
|
| 673 |
|
|
update_stmt (gsi_stmt (orig_si));
|
| 674 |
|
|
}
|
| 675 |
|
|
|
| 676 |
|
|
|
| 677 |
|
|
/* Generate code at the entry point of the function to initialize the
|
| 678 |
|
|
component variables for a complex parameter. */
|
| 679 |
|
|
|
| 680 |
|
|
static void
|
| 681 |
|
|
update_parameter_components (void)
|
| 682 |
|
|
{
|
| 683 |
|
|
edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
|
| 684 |
|
|
tree parm;
|
| 685 |
|
|
|
| 686 |
|
|
for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
|
| 687 |
|
|
{
|
| 688 |
|
|
tree type = TREE_TYPE (parm);
|
| 689 |
|
|
tree ssa_name, r, i;
|
| 690 |
|
|
|
| 691 |
|
|
if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
|
| 692 |
|
|
continue;
|
| 693 |
|
|
|
| 694 |
|
|
type = TREE_TYPE (type);
|
| 695 |
|
|
ssa_name = gimple_default_def (cfun, parm);
|
| 696 |
|
|
if (!ssa_name)
|
| 697 |
|
|
continue;
|
| 698 |
|
|
|
| 699 |
|
|
r = build1 (REALPART_EXPR, type, ssa_name);
|
| 700 |
|
|
i = build1 (IMAGPART_EXPR, type, ssa_name);
|
| 701 |
|
|
update_complex_components_on_edge (entry_edge, ssa_name, r, i);
|
| 702 |
|
|
}
|
| 703 |
|
|
}
|
| 704 |
|
|
|
| 705 |
|
|
/* Generate code to set the component variables of a complex variable
|
| 706 |
|
|
to match the PHI statements in block BB. */
|
| 707 |
|
|
|
| 708 |
|
|
static void
|
| 709 |
|
|
update_phi_components (basic_block bb)
|
| 710 |
|
|
{
|
| 711 |
|
|
gimple_stmt_iterator gsi;
|
| 712 |
|
|
|
| 713 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 714 |
|
|
{
|
| 715 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 716 |
|
|
|
| 717 |
|
|
if (is_complex_reg (gimple_phi_result (phi)))
|
| 718 |
|
|
{
|
| 719 |
|
|
tree lr, li;
|
| 720 |
|
|
gimple pr = NULL, pi = NULL;
|
| 721 |
|
|
unsigned int i, n;
|
| 722 |
|
|
|
| 723 |
|
|
lr = get_component_ssa_name (gimple_phi_result (phi), false);
|
| 724 |
|
|
if (TREE_CODE (lr) == SSA_NAME)
|
| 725 |
|
|
{
|
| 726 |
|
|
pr = create_phi_node (lr, bb);
|
| 727 |
|
|
SSA_NAME_DEF_STMT (lr) = pr;
|
| 728 |
|
|
}
|
| 729 |
|
|
|
| 730 |
|
|
li = get_component_ssa_name (gimple_phi_result (phi), true);
|
| 731 |
|
|
if (TREE_CODE (li) == SSA_NAME)
|
| 732 |
|
|
{
|
| 733 |
|
|
pi = create_phi_node (li, bb);
|
| 734 |
|
|
SSA_NAME_DEF_STMT (li) = pi;
|
| 735 |
|
|
}
|
| 736 |
|
|
|
| 737 |
|
|
for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
|
| 738 |
|
|
{
|
| 739 |
|
|
tree comp, arg = gimple_phi_arg_def (phi, i);
|
| 740 |
|
|
if (pr)
|
| 741 |
|
|
{
|
| 742 |
|
|
comp = extract_component (NULL, arg, false, false);
|
| 743 |
|
|
SET_PHI_ARG_DEF (pr, i, comp);
|
| 744 |
|
|
}
|
| 745 |
|
|
if (pi)
|
| 746 |
|
|
{
|
| 747 |
|
|
comp = extract_component (NULL, arg, true, false);
|
| 748 |
|
|
SET_PHI_ARG_DEF (pi, i, comp);
|
| 749 |
|
|
}
|
| 750 |
|
|
}
|
| 751 |
|
|
}
|
| 752 |
|
|
}
|
| 753 |
|
|
}
|
| 754 |
|
|
|
| 755 |
|
|
/* Expand a complex move to scalars. */
|
| 756 |
|
|
|
| 757 |
|
|
static void
|
| 758 |
|
|
expand_complex_move (gimple_stmt_iterator *gsi, tree type)
|
| 759 |
|
|
{
|
| 760 |
|
|
tree inner_type = TREE_TYPE (type);
|
| 761 |
|
|
tree r, i, lhs, rhs;
|
| 762 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 763 |
|
|
|
| 764 |
|
|
if (is_gimple_assign (stmt))
|
| 765 |
|
|
{
|
| 766 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 767 |
|
|
if (gimple_num_ops (stmt) == 2)
|
| 768 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
| 769 |
|
|
else
|
| 770 |
|
|
rhs = NULL_TREE;
|
| 771 |
|
|
}
|
| 772 |
|
|
else if (is_gimple_call (stmt))
|
| 773 |
|
|
{
|
| 774 |
|
|
lhs = gimple_call_lhs (stmt);
|
| 775 |
|
|
rhs = NULL_TREE;
|
| 776 |
|
|
}
|
| 777 |
|
|
else
|
| 778 |
|
|
gcc_unreachable ();
|
| 779 |
|
|
|
| 780 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
| 781 |
|
|
{
|
| 782 |
|
|
if (is_ctrl_altering_stmt (stmt))
|
| 783 |
|
|
{
|
| 784 |
|
|
edge_iterator ei;
|
| 785 |
|
|
edge e;
|
| 786 |
|
|
|
| 787 |
|
|
/* The value is not assigned on the exception edges, so we need not
|
| 788 |
|
|
concern ourselves there. We do need to update on the fallthru
|
| 789 |
|
|
edge. Find it. */
|
| 790 |
|
|
FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
|
| 791 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
| 792 |
|
|
goto found_fallthru;
|
| 793 |
|
|
gcc_unreachable ();
|
| 794 |
|
|
found_fallthru:
|
| 795 |
|
|
|
| 796 |
|
|
r = build1 (REALPART_EXPR, inner_type, lhs);
|
| 797 |
|
|
i = build1 (IMAGPART_EXPR, inner_type, lhs);
|
| 798 |
|
|
update_complex_components_on_edge (e, lhs, r, i);
|
| 799 |
|
|
}
|
| 800 |
|
|
else if (is_gimple_call (stmt)
|
| 801 |
|
|
|| gimple_has_side_effects (stmt)
|
| 802 |
|
|
|| gimple_assign_rhs_code (stmt) == PAREN_EXPR)
|
| 803 |
|
|
{
|
| 804 |
|
|
r = build1 (REALPART_EXPR, inner_type, lhs);
|
| 805 |
|
|
i = build1 (IMAGPART_EXPR, inner_type, lhs);
|
| 806 |
|
|
update_complex_components (gsi, stmt, r, i);
|
| 807 |
|
|
}
|
| 808 |
|
|
else
|
| 809 |
|
|
{
|
| 810 |
|
|
if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
|
| 811 |
|
|
{
|
| 812 |
|
|
r = extract_component (gsi, rhs, 0, true);
|
| 813 |
|
|
i = extract_component (gsi, rhs, 1, true);
|
| 814 |
|
|
}
|
| 815 |
|
|
else
|
| 816 |
|
|
{
|
| 817 |
|
|
r = gimple_assign_rhs1 (stmt);
|
| 818 |
|
|
i = gimple_assign_rhs2 (stmt);
|
| 819 |
|
|
}
|
| 820 |
|
|
update_complex_assignment (gsi, r, i);
|
| 821 |
|
|
}
|
| 822 |
|
|
}
|
| 823 |
|
|
else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
|
| 824 |
|
|
{
|
| 825 |
|
|
tree x;
|
| 826 |
|
|
gimple t;
|
| 827 |
|
|
|
| 828 |
|
|
r = extract_component (gsi, rhs, 0, false);
|
| 829 |
|
|
i = extract_component (gsi, rhs, 1, false);
|
| 830 |
|
|
|
| 831 |
|
|
x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
|
| 832 |
|
|
t = gimple_build_assign (x, r);
|
| 833 |
|
|
gsi_insert_before (gsi, t, GSI_SAME_STMT);
|
| 834 |
|
|
|
| 835 |
|
|
if (stmt == gsi_stmt (*gsi))
|
| 836 |
|
|
{
|
| 837 |
|
|
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
|
| 838 |
|
|
gimple_assign_set_lhs (stmt, x);
|
| 839 |
|
|
gimple_assign_set_rhs1 (stmt, i);
|
| 840 |
|
|
}
|
| 841 |
|
|
else
|
| 842 |
|
|
{
|
| 843 |
|
|
x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
|
| 844 |
|
|
t = gimple_build_assign (x, i);
|
| 845 |
|
|
gsi_insert_before (gsi, t, GSI_SAME_STMT);
|
| 846 |
|
|
|
| 847 |
|
|
stmt = gsi_stmt (*gsi);
|
| 848 |
|
|
gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
|
| 849 |
|
|
gimple_return_set_retval (stmt, lhs);
|
| 850 |
|
|
}
|
| 851 |
|
|
|
| 852 |
|
|
update_stmt (stmt);
|
| 853 |
|
|
}
|
| 854 |
|
|
}
|
| 855 |
|
|
|
| 856 |
|
|
/* Expand complex addition to scalars:
|
| 857 |
|
|
a + b = (ar + br) + i(ai + bi)
|
| 858 |
|
|
a - b = (ar - br) + i(ai + bi)
|
| 859 |
|
|
*/
|
| 860 |
|
|
|
| 861 |
|
|
static void
|
| 862 |
|
|
expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
|
| 863 |
|
|
tree ar, tree ai, tree br, tree bi,
|
| 864 |
|
|
enum tree_code code,
|
| 865 |
|
|
complex_lattice_t al, complex_lattice_t bl)
|
| 866 |
|
|
{
|
| 867 |
|
|
tree rr, ri;
|
| 868 |
|
|
|
| 869 |
|
|
switch (PAIR (al, bl))
|
| 870 |
|
|
{
|
| 871 |
|
|
case PAIR (ONLY_REAL, ONLY_REAL):
|
| 872 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
|
| 873 |
|
|
ri = ai;
|
| 874 |
|
|
break;
|
| 875 |
|
|
|
| 876 |
|
|
case PAIR (ONLY_REAL, ONLY_IMAG):
|
| 877 |
|
|
rr = ar;
|
| 878 |
|
|
if (code == MINUS_EXPR)
|
| 879 |
|
|
ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
|
| 880 |
|
|
else
|
| 881 |
|
|
ri = bi;
|
| 882 |
|
|
break;
|
| 883 |
|
|
|
| 884 |
|
|
case PAIR (ONLY_IMAG, ONLY_REAL):
|
| 885 |
|
|
if (code == MINUS_EXPR)
|
| 886 |
|
|
rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
|
| 887 |
|
|
else
|
| 888 |
|
|
rr = br;
|
| 889 |
|
|
ri = ai;
|
| 890 |
|
|
break;
|
| 891 |
|
|
|
| 892 |
|
|
case PAIR (ONLY_IMAG, ONLY_IMAG):
|
| 893 |
|
|
rr = ar;
|
| 894 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
|
| 895 |
|
|
break;
|
| 896 |
|
|
|
| 897 |
|
|
case PAIR (VARYING, ONLY_REAL):
|
| 898 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
|
| 899 |
|
|
ri = ai;
|
| 900 |
|
|
break;
|
| 901 |
|
|
|
| 902 |
|
|
case PAIR (VARYING, ONLY_IMAG):
|
| 903 |
|
|
rr = ar;
|
| 904 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
|
| 905 |
|
|
break;
|
| 906 |
|
|
|
| 907 |
|
|
case PAIR (ONLY_REAL, VARYING):
|
| 908 |
|
|
if (code == MINUS_EXPR)
|
| 909 |
|
|
goto general;
|
| 910 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
|
| 911 |
|
|
ri = bi;
|
| 912 |
|
|
break;
|
| 913 |
|
|
|
| 914 |
|
|
case PAIR (ONLY_IMAG, VARYING):
|
| 915 |
|
|
if (code == MINUS_EXPR)
|
| 916 |
|
|
goto general;
|
| 917 |
|
|
rr = br;
|
| 918 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
|
| 919 |
|
|
break;
|
| 920 |
|
|
|
| 921 |
|
|
case PAIR (VARYING, VARYING):
|
| 922 |
|
|
general:
|
| 923 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
|
| 924 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
|
| 925 |
|
|
break;
|
| 926 |
|
|
|
| 927 |
|
|
default:
|
| 928 |
|
|
gcc_unreachable ();
|
| 929 |
|
|
}
|
| 930 |
|
|
|
| 931 |
|
|
update_complex_assignment (gsi, rr, ri);
|
| 932 |
|
|
}
|
| 933 |
|
|
|
| 934 |
|
|
/* Expand a complex multiplication or division to a libcall to the c99
|
| 935 |
|
|
compliant routines. */
|
| 936 |
|
|
|
| 937 |
|
|
static void
|
| 938 |
|
|
expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
|
| 939 |
|
|
tree br, tree bi, enum tree_code code)
|
| 940 |
|
|
{
|
| 941 |
|
|
enum machine_mode mode;
|
| 942 |
|
|
enum built_in_function bcode;
|
| 943 |
|
|
tree fn, type, lhs;
|
| 944 |
|
|
gimple old_stmt, stmt;
|
| 945 |
|
|
|
| 946 |
|
|
old_stmt = gsi_stmt (*gsi);
|
| 947 |
|
|
lhs = gimple_assign_lhs (old_stmt);
|
| 948 |
|
|
type = TREE_TYPE (lhs);
|
| 949 |
|
|
|
| 950 |
|
|
mode = TYPE_MODE (type);
|
| 951 |
|
|
gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
|
| 952 |
|
|
|
| 953 |
|
|
if (code == MULT_EXPR)
|
| 954 |
|
|
bcode = ((enum built_in_function)
|
| 955 |
|
|
(BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
|
| 956 |
|
|
else if (code == RDIV_EXPR)
|
| 957 |
|
|
bcode = ((enum built_in_function)
|
| 958 |
|
|
(BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
|
| 959 |
|
|
else
|
| 960 |
|
|
gcc_unreachable ();
|
| 961 |
|
|
fn = built_in_decls[bcode];
|
| 962 |
|
|
|
| 963 |
|
|
stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
|
| 964 |
|
|
gimple_call_set_lhs (stmt, lhs);
|
| 965 |
|
|
update_stmt (stmt);
|
| 966 |
|
|
gsi_replace (gsi, stmt, false);
|
| 967 |
|
|
|
| 968 |
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
| 969 |
|
|
gimple_purge_dead_eh_edges (gsi_bb (*gsi));
|
| 970 |
|
|
|
| 971 |
|
|
if (gimple_in_ssa_p (cfun))
|
| 972 |
|
|
{
|
| 973 |
|
|
type = TREE_TYPE (type);
|
| 974 |
|
|
update_complex_components (gsi, stmt,
|
| 975 |
|
|
build1 (REALPART_EXPR, type, lhs),
|
| 976 |
|
|
build1 (IMAGPART_EXPR, type, lhs));
|
| 977 |
|
|
SSA_NAME_DEF_STMT (lhs) = stmt;
|
| 978 |
|
|
}
|
| 979 |
|
|
}
|
| 980 |
|
|
|
| 981 |
|
|
/* Expand complex multiplication to scalars:
|
| 982 |
|
|
a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
|
| 983 |
|
|
*/
|
| 984 |
|
|
|
| 985 |
|
|
static void
|
| 986 |
|
|
expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
|
| 987 |
|
|
tree ar, tree ai, tree br, tree bi,
|
| 988 |
|
|
complex_lattice_t al, complex_lattice_t bl)
|
| 989 |
|
|
{
|
| 990 |
|
|
tree rr, ri;
|
| 991 |
|
|
|
| 992 |
|
|
if (al < bl)
|
| 993 |
|
|
{
|
| 994 |
|
|
complex_lattice_t tl;
|
| 995 |
|
|
rr = ar, ar = br, br = rr;
|
| 996 |
|
|
ri = ai, ai = bi, bi = ri;
|
| 997 |
|
|
tl = al, al = bl, bl = tl;
|
| 998 |
|
|
}
|
| 999 |
|
|
|
| 1000 |
|
|
switch (PAIR (al, bl))
|
| 1001 |
|
|
{
|
| 1002 |
|
|
case PAIR (ONLY_REAL, ONLY_REAL):
|
| 1003 |
|
|
rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
|
| 1004 |
|
|
ri = ai;
|
| 1005 |
|
|
break;
|
| 1006 |
|
|
|
| 1007 |
|
|
case PAIR (ONLY_IMAG, ONLY_REAL):
|
| 1008 |
|
|
rr = ar;
|
| 1009 |
|
|
if (TREE_CODE (ai) == REAL_CST
|
| 1010 |
|
|
&& REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
|
| 1011 |
|
|
ri = br;
|
| 1012 |
|
|
else
|
| 1013 |
|
|
ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
|
| 1014 |
|
|
break;
|
| 1015 |
|
|
|
| 1016 |
|
|
case PAIR (ONLY_IMAG, ONLY_IMAG):
|
| 1017 |
|
|
rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
|
| 1018 |
|
|
rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
|
| 1019 |
|
|
ri = ar;
|
| 1020 |
|
|
break;
|
| 1021 |
|
|
|
| 1022 |
|
|
case PAIR (VARYING, ONLY_REAL):
|
| 1023 |
|
|
rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
|
| 1024 |
|
|
ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
|
| 1025 |
|
|
break;
|
| 1026 |
|
|
|
| 1027 |
|
|
case PAIR (VARYING, ONLY_IMAG):
|
| 1028 |
|
|
rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
|
| 1029 |
|
|
rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
|
| 1030 |
|
|
ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
|
| 1031 |
|
|
break;
|
| 1032 |
|
|
|
| 1033 |
|
|
case PAIR (VARYING, VARYING):
|
| 1034 |
|
|
if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
|
| 1035 |
|
|
{
|
| 1036 |
|
|
expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
|
| 1037 |
|
|
return;
|
| 1038 |
|
|
}
|
| 1039 |
|
|
else
|
| 1040 |
|
|
{
|
| 1041 |
|
|
tree t1, t2, t3, t4;
|
| 1042 |
|
|
|
| 1043 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
|
| 1044 |
|
|
t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
|
| 1045 |
|
|
t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
|
| 1046 |
|
|
|
| 1047 |
|
|
/* Avoid expanding redundant multiplication for the common
|
| 1048 |
|
|
case of squaring a complex number. */
|
| 1049 |
|
|
if (ar == br && ai == bi)
|
| 1050 |
|
|
t4 = t3;
|
| 1051 |
|
|
else
|
| 1052 |
|
|
t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
|
| 1053 |
|
|
|
| 1054 |
|
|
rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
|
| 1055 |
|
|
ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
|
| 1056 |
|
|
}
|
| 1057 |
|
|
break;
|
| 1058 |
|
|
|
| 1059 |
|
|
default:
|
| 1060 |
|
|
gcc_unreachable ();
|
| 1061 |
|
|
}
|
| 1062 |
|
|
|
| 1063 |
|
|
update_complex_assignment (gsi, rr, ri);
|
| 1064 |
|
|
}
|
| 1065 |
|
|
|
| 1066 |
|
|
/* Keep this algorithm in sync with fold-const.c:const_binop().
|
| 1067 |
|
|
|
| 1068 |
|
|
Expand complex division to scalars, straightforward algorithm.
|
| 1069 |
|
|
a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
|
| 1070 |
|
|
t = br*br + bi*bi
|
| 1071 |
|
|
*/
|
| 1072 |
|
|
|
| 1073 |
|
|
static void
|
| 1074 |
|
|
expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
|
| 1075 |
|
|
tree ar, tree ai, tree br, tree bi,
|
| 1076 |
|
|
enum tree_code code)
|
| 1077 |
|
|
{
|
| 1078 |
|
|
tree rr, ri, div, t1, t2, t3;
|
| 1079 |
|
|
|
| 1080 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
|
| 1081 |
|
|
t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
|
| 1082 |
|
|
div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
|
| 1083 |
|
|
|
| 1084 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
|
| 1085 |
|
|
t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
|
| 1086 |
|
|
t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
|
| 1087 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, t3, div);
|
| 1088 |
|
|
|
| 1089 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
|
| 1090 |
|
|
t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
|
| 1091 |
|
|
t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
|
| 1092 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, t3, div);
|
| 1093 |
|
|
|
| 1094 |
|
|
update_complex_assignment (gsi, rr, ri);
|
| 1095 |
|
|
}
|
| 1096 |
|
|
|
| 1097 |
|
|
/* Keep this algorithm in sync with fold-const.c:const_binop().
|
| 1098 |
|
|
|
| 1099 |
|
|
Expand complex division to scalars, modified algorithm to minimize
|
| 1100 |
|
|
overflow with wide input ranges. */
|
| 1101 |
|
|
|
| 1102 |
|
|
static void
|
| 1103 |
|
|
expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
|
| 1104 |
|
|
tree ar, tree ai, tree br, tree bi,
|
| 1105 |
|
|
enum tree_code code)
|
| 1106 |
|
|
{
|
| 1107 |
|
|
tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
|
| 1108 |
|
|
basic_block bb_cond, bb_true, bb_false, bb_join;
|
| 1109 |
|
|
gimple stmt;
|
| 1110 |
|
|
|
| 1111 |
|
|
/* Examine |br| < |bi|, and branch. */
|
| 1112 |
|
|
t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
|
| 1113 |
|
|
t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
|
| 1114 |
|
|
compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
|
| 1115 |
|
|
LT_EXPR, boolean_type_node, t1, t2);
|
| 1116 |
|
|
STRIP_NOPS (compare);
|
| 1117 |
|
|
|
| 1118 |
|
|
bb_cond = bb_true = bb_false = bb_join = NULL;
|
| 1119 |
|
|
rr = ri = tr = ti = NULL;
|
| 1120 |
|
|
if (TREE_CODE (compare) != INTEGER_CST)
|
| 1121 |
|
|
{
|
| 1122 |
|
|
edge e;
|
| 1123 |
|
|
gimple stmt;
|
| 1124 |
|
|
tree cond, tmp;
|
| 1125 |
|
|
|
| 1126 |
|
|
tmp = create_tmp_var (boolean_type_node, NULL);
|
| 1127 |
|
|
stmt = gimple_build_assign (tmp, compare);
|
| 1128 |
|
|
if (gimple_in_ssa_p (cfun))
|
| 1129 |
|
|
{
|
| 1130 |
|
|
tmp = make_ssa_name (tmp, stmt);
|
| 1131 |
|
|
gimple_assign_set_lhs (stmt, tmp);
|
| 1132 |
|
|
}
|
| 1133 |
|
|
|
| 1134 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
| 1135 |
|
|
|
| 1136 |
|
|
cond = fold_build2_loc (gimple_location (stmt),
|
| 1137 |
|
|
EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
|
| 1138 |
|
|
stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
|
| 1139 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
| 1140 |
|
|
|
| 1141 |
|
|
/* Split the original block, and create the TRUE and FALSE blocks. */
|
| 1142 |
|
|
e = split_block (gsi_bb (*gsi), stmt);
|
| 1143 |
|
|
bb_cond = e->src;
|
| 1144 |
|
|
bb_join = e->dest;
|
| 1145 |
|
|
bb_true = create_empty_bb (bb_cond);
|
| 1146 |
|
|
bb_false = create_empty_bb (bb_true);
|
| 1147 |
|
|
|
| 1148 |
|
|
/* Wire the blocks together. */
|
| 1149 |
|
|
e->flags = EDGE_TRUE_VALUE;
|
| 1150 |
|
|
redirect_edge_succ (e, bb_true);
|
| 1151 |
|
|
make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
|
| 1152 |
|
|
make_edge (bb_true, bb_join, EDGE_FALLTHRU);
|
| 1153 |
|
|
make_edge (bb_false, bb_join, EDGE_FALLTHRU);
|
| 1154 |
|
|
|
| 1155 |
|
|
/* Update dominance info. Note that bb_join's data was
|
| 1156 |
|
|
updated by split_block. */
|
| 1157 |
|
|
if (dom_info_available_p (CDI_DOMINATORS))
|
| 1158 |
|
|
{
|
| 1159 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
|
| 1160 |
|
|
set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
|
| 1161 |
|
|
}
|
| 1162 |
|
|
|
| 1163 |
|
|
rr = make_rename_temp (inner_type, NULL);
|
| 1164 |
|
|
ri = make_rename_temp (inner_type, NULL);
|
| 1165 |
|
|
}
|
| 1166 |
|
|
|
| 1167 |
|
|
/* In the TRUE branch, we compute
|
| 1168 |
|
|
ratio = br/bi;
|
| 1169 |
|
|
div = (br * ratio) + bi;
|
| 1170 |
|
|
tr = (ar * ratio) + ai;
|
| 1171 |
|
|
ti = (ai * ratio) - ar;
|
| 1172 |
|
|
tr = tr / div;
|
| 1173 |
|
|
ti = ti / div; */
|
| 1174 |
|
|
if (bb_true || integer_nonzerop (compare))
|
| 1175 |
|
|
{
|
| 1176 |
|
|
if (bb_true)
|
| 1177 |
|
|
{
|
| 1178 |
|
|
*gsi = gsi_last_bb (bb_true);
|
| 1179 |
|
|
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
|
| 1180 |
|
|
}
|
| 1181 |
|
|
|
| 1182 |
|
|
ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
|
| 1183 |
|
|
|
| 1184 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
|
| 1185 |
|
|
div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
|
| 1186 |
|
|
|
| 1187 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
|
| 1188 |
|
|
tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
|
| 1189 |
|
|
|
| 1190 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
|
| 1191 |
|
|
ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
|
| 1192 |
|
|
|
| 1193 |
|
|
tr = gimplify_build2 (gsi, code, inner_type, tr, div);
|
| 1194 |
|
|
ti = gimplify_build2 (gsi, code, inner_type, ti, div);
|
| 1195 |
|
|
|
| 1196 |
|
|
if (bb_true)
|
| 1197 |
|
|
{
|
| 1198 |
|
|
stmt = gimple_build_assign (rr, tr);
|
| 1199 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
| 1200 |
|
|
stmt = gimple_build_assign (ri, ti);
|
| 1201 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
| 1202 |
|
|
gsi_remove (gsi, true);
|
| 1203 |
|
|
}
|
| 1204 |
|
|
}
|
| 1205 |
|
|
|
| 1206 |
|
|
/* In the FALSE branch, we compute
|
| 1207 |
|
|
ratio = d/c;
|
| 1208 |
|
|
divisor = (d * ratio) + c;
|
| 1209 |
|
|
tr = (b * ratio) + a;
|
| 1210 |
|
|
ti = b - (a * ratio);
|
| 1211 |
|
|
tr = tr / div;
|
| 1212 |
|
|
ti = ti / div; */
|
| 1213 |
|
|
if (bb_false || integer_zerop (compare))
|
| 1214 |
|
|
{
|
| 1215 |
|
|
if (bb_false)
|
| 1216 |
|
|
{
|
| 1217 |
|
|
*gsi = gsi_last_bb (bb_false);
|
| 1218 |
|
|
gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
|
| 1219 |
|
|
}
|
| 1220 |
|
|
|
| 1221 |
|
|
ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
|
| 1222 |
|
|
|
| 1223 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
|
| 1224 |
|
|
div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
|
| 1225 |
|
|
|
| 1226 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
|
| 1227 |
|
|
tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
|
| 1228 |
|
|
|
| 1229 |
|
|
t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
|
| 1230 |
|
|
ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
|
| 1231 |
|
|
|
| 1232 |
|
|
tr = gimplify_build2 (gsi, code, inner_type, tr, div);
|
| 1233 |
|
|
ti = gimplify_build2 (gsi, code, inner_type, ti, div);
|
| 1234 |
|
|
|
| 1235 |
|
|
if (bb_false)
|
| 1236 |
|
|
{
|
| 1237 |
|
|
stmt = gimple_build_assign (rr, tr);
|
| 1238 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
| 1239 |
|
|
stmt = gimple_build_assign (ri, ti);
|
| 1240 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
| 1241 |
|
|
gsi_remove (gsi, true);
|
| 1242 |
|
|
}
|
| 1243 |
|
|
}
|
| 1244 |
|
|
|
| 1245 |
|
|
if (bb_join)
|
| 1246 |
|
|
*gsi = gsi_start_bb (bb_join);
|
| 1247 |
|
|
else
|
| 1248 |
|
|
rr = tr, ri = ti;
|
| 1249 |
|
|
|
| 1250 |
|
|
update_complex_assignment (gsi, rr, ri);
|
| 1251 |
|
|
}
|
| 1252 |
|
|
|
| 1253 |
|
|
/* Expand complex division to scalars. */
|
| 1254 |
|
|
|
| 1255 |
|
|
static void
|
| 1256 |
|
|
expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
|
| 1257 |
|
|
tree ar, tree ai, tree br, tree bi,
|
| 1258 |
|
|
enum tree_code code,
|
| 1259 |
|
|
complex_lattice_t al, complex_lattice_t bl)
|
| 1260 |
|
|
{
|
| 1261 |
|
|
tree rr, ri;
|
| 1262 |
|
|
|
| 1263 |
|
|
switch (PAIR (al, bl))
|
| 1264 |
|
|
{
|
| 1265 |
|
|
case PAIR (ONLY_REAL, ONLY_REAL):
|
| 1266 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
|
| 1267 |
|
|
ri = ai;
|
| 1268 |
|
|
break;
|
| 1269 |
|
|
|
| 1270 |
|
|
case PAIR (ONLY_REAL, ONLY_IMAG):
|
| 1271 |
|
|
rr = ai;
|
| 1272 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
|
| 1273 |
|
|
ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
|
| 1274 |
|
|
break;
|
| 1275 |
|
|
|
| 1276 |
|
|
case PAIR (ONLY_IMAG, ONLY_REAL):
|
| 1277 |
|
|
rr = ar;
|
| 1278 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, ai, br);
|
| 1279 |
|
|
break;
|
| 1280 |
|
|
|
| 1281 |
|
|
case PAIR (ONLY_IMAG, ONLY_IMAG):
|
| 1282 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
|
| 1283 |
|
|
ri = ar;
|
| 1284 |
|
|
break;
|
| 1285 |
|
|
|
| 1286 |
|
|
case PAIR (VARYING, ONLY_REAL):
|
| 1287 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, ar, br);
|
| 1288 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, ai, br);
|
| 1289 |
|
|
break;
|
| 1290 |
|
|
|
| 1291 |
|
|
case PAIR (VARYING, ONLY_IMAG):
|
| 1292 |
|
|
rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
|
| 1293 |
|
|
ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
|
| 1294 |
|
|
ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
|
| 1295 |
|
|
|
| 1296 |
|
|
case PAIR (ONLY_REAL, VARYING):
|
| 1297 |
|
|
case PAIR (ONLY_IMAG, VARYING):
|
| 1298 |
|
|
case PAIR (VARYING, VARYING):
|
| 1299 |
|
|
switch (flag_complex_method)
|
| 1300 |
|
|
{
|
| 1301 |
|
|
case 0:
|
| 1302 |
|
|
/* straightforward implementation of complex divide acceptable. */
|
| 1303 |
|
|
expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
|
| 1304 |
|
|
break;
|
| 1305 |
|
|
|
| 1306 |
|
|
case 2:
|
| 1307 |
|
|
if (SCALAR_FLOAT_TYPE_P (inner_type))
|
| 1308 |
|
|
{
|
| 1309 |
|
|
expand_complex_libcall (gsi, ar, ai, br, bi, code);
|
| 1310 |
|
|
break;
|
| 1311 |
|
|
}
|
| 1312 |
|
|
/* FALLTHRU */
|
| 1313 |
|
|
|
| 1314 |
|
|
case 1:
|
| 1315 |
|
|
/* wide ranges of inputs must work for complex divide. */
|
| 1316 |
|
|
expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
|
| 1317 |
|
|
break;
|
| 1318 |
|
|
|
| 1319 |
|
|
default:
|
| 1320 |
|
|
gcc_unreachable ();
|
| 1321 |
|
|
}
|
| 1322 |
|
|
return;
|
| 1323 |
|
|
|
| 1324 |
|
|
default:
|
| 1325 |
|
|
gcc_unreachable ();
|
| 1326 |
|
|
}
|
| 1327 |
|
|
|
| 1328 |
|
|
update_complex_assignment (gsi, rr, ri);
|
| 1329 |
|
|
}
|
| 1330 |
|
|
|
| 1331 |
|
|
/* Expand complex negation to scalars:
|
| 1332 |
|
|
-a = (-ar) + i(-ai)
|
| 1333 |
|
|
*/
|
| 1334 |
|
|
|
| 1335 |
|
|
static void
|
| 1336 |
|
|
expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
|
| 1337 |
|
|
tree ar, tree ai)
|
| 1338 |
|
|
{
|
| 1339 |
|
|
tree rr, ri;
|
| 1340 |
|
|
|
| 1341 |
|
|
rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
|
| 1342 |
|
|
ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
|
| 1343 |
|
|
|
| 1344 |
|
|
update_complex_assignment (gsi, rr, ri);
|
| 1345 |
|
|
}
|
| 1346 |
|
|
|
| 1347 |
|
|
/* Expand complex conjugate to scalars:
|
| 1348 |
|
|
~a = (ar) + i(-ai)
|
| 1349 |
|
|
*/
|
| 1350 |
|
|
|
| 1351 |
|
|
static void
|
| 1352 |
|
|
expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
|
| 1353 |
|
|
tree ar, tree ai)
|
| 1354 |
|
|
{
|
| 1355 |
|
|
tree ri;
|
| 1356 |
|
|
|
| 1357 |
|
|
ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
|
| 1358 |
|
|
|
| 1359 |
|
|
update_complex_assignment (gsi, ar, ri);
|
| 1360 |
|
|
}
|
| 1361 |
|
|
|
| 1362 |
|
|
/* Expand complex comparison (EQ or NE only). */
|
| 1363 |
|
|
|
| 1364 |
|
|
static void
|
| 1365 |
|
|
expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
|
| 1366 |
|
|
tree br, tree bi, enum tree_code code)
|
| 1367 |
|
|
{
|
| 1368 |
|
|
tree cr, ci, cc, type;
|
| 1369 |
|
|
gimple stmt;
|
| 1370 |
|
|
|
| 1371 |
|
|
cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
|
| 1372 |
|
|
ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
|
| 1373 |
|
|
cc = gimplify_build2 (gsi,
|
| 1374 |
|
|
(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
|
| 1375 |
|
|
boolean_type_node, cr, ci);
|
| 1376 |
|
|
|
| 1377 |
|
|
stmt = gsi_stmt (*gsi);
|
| 1378 |
|
|
|
| 1379 |
|
|
switch (gimple_code (stmt))
|
| 1380 |
|
|
{
|
| 1381 |
|
|
case GIMPLE_RETURN:
|
| 1382 |
|
|
type = TREE_TYPE (gimple_return_retval (stmt));
|
| 1383 |
|
|
gimple_return_set_retval (stmt, fold_convert (type, cc));
|
| 1384 |
|
|
break;
|
| 1385 |
|
|
|
| 1386 |
|
|
case GIMPLE_ASSIGN:
|
| 1387 |
|
|
type = TREE_TYPE (gimple_assign_lhs (stmt));
|
| 1388 |
|
|
gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
|
| 1389 |
|
|
stmt = gsi_stmt (*gsi);
|
| 1390 |
|
|
break;
|
| 1391 |
|
|
|
| 1392 |
|
|
case GIMPLE_COND:
|
| 1393 |
|
|
gimple_cond_set_code (stmt, EQ_EXPR);
|
| 1394 |
|
|
gimple_cond_set_lhs (stmt, cc);
|
| 1395 |
|
|
gimple_cond_set_rhs (stmt, boolean_true_node);
|
| 1396 |
|
|
break;
|
| 1397 |
|
|
|
| 1398 |
|
|
default:
|
| 1399 |
|
|
gcc_unreachable ();
|
| 1400 |
|
|
}
|
| 1401 |
|
|
|
| 1402 |
|
|
update_stmt (stmt);
|
| 1403 |
|
|
}
|
| 1404 |
|
|
|
| 1405 |
|
|
|
| 1406 |
|
|
/* Process one statement. If we identify a complex operation, expand it. */
|
| 1407 |
|
|
|
| 1408 |
|
|
static void
|
| 1409 |
|
|
expand_complex_operations_1 (gimple_stmt_iterator *gsi)
|
| 1410 |
|
|
{
|
| 1411 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 1412 |
|
|
tree type, inner_type, lhs;
|
| 1413 |
|
|
tree ac, ar, ai, bc, br, bi;
|
| 1414 |
|
|
complex_lattice_t al, bl;
|
| 1415 |
|
|
enum tree_code code;
|
| 1416 |
|
|
|
| 1417 |
|
|
lhs = gimple_get_lhs (stmt);
|
| 1418 |
|
|
if (!lhs && gimple_code (stmt) != GIMPLE_COND)
|
| 1419 |
|
|
return;
|
| 1420 |
|
|
|
| 1421 |
|
|
type = TREE_TYPE (gimple_op (stmt, 0));
|
| 1422 |
|
|
code = gimple_expr_code (stmt);
|
| 1423 |
|
|
|
| 1424 |
|
|
/* Initial filter for operations we handle. */
|
| 1425 |
|
|
switch (code)
|
| 1426 |
|
|
{
|
| 1427 |
|
|
case PLUS_EXPR:
|
| 1428 |
|
|
case MINUS_EXPR:
|
| 1429 |
|
|
case MULT_EXPR:
|
| 1430 |
|
|
case TRUNC_DIV_EXPR:
|
| 1431 |
|
|
case CEIL_DIV_EXPR:
|
| 1432 |
|
|
case FLOOR_DIV_EXPR:
|
| 1433 |
|
|
case ROUND_DIV_EXPR:
|
| 1434 |
|
|
case RDIV_EXPR:
|
| 1435 |
|
|
case NEGATE_EXPR:
|
| 1436 |
|
|
case CONJ_EXPR:
|
| 1437 |
|
|
if (TREE_CODE (type) != COMPLEX_TYPE)
|
| 1438 |
|
|
return;
|
| 1439 |
|
|
inner_type = TREE_TYPE (type);
|
| 1440 |
|
|
break;
|
| 1441 |
|
|
|
| 1442 |
|
|
case EQ_EXPR:
|
| 1443 |
|
|
case NE_EXPR:
|
| 1444 |
|
|
/* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
|
| 1445 |
|
|
subocde, so we need to access the operands using gimple_op. */
|
| 1446 |
|
|
inner_type = TREE_TYPE (gimple_op (stmt, 1));
|
| 1447 |
|
|
if (TREE_CODE (inner_type) != COMPLEX_TYPE)
|
| 1448 |
|
|
return;
|
| 1449 |
|
|
break;
|
| 1450 |
|
|
|
| 1451 |
|
|
default:
|
| 1452 |
|
|
{
|
| 1453 |
|
|
tree rhs;
|
| 1454 |
|
|
|
| 1455 |
|
|
/* GIMPLE_COND may also fallthru here, but we do not need to
|
| 1456 |
|
|
do anything with it. */
|
| 1457 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
| 1458 |
|
|
return;
|
| 1459 |
|
|
|
| 1460 |
|
|
if (TREE_CODE (type) == COMPLEX_TYPE)
|
| 1461 |
|
|
expand_complex_move (gsi, type);
|
| 1462 |
|
|
else if (is_gimple_assign (stmt)
|
| 1463 |
|
|
&& (gimple_assign_rhs_code (stmt) == REALPART_EXPR
|
| 1464 |
|
|
|| gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
|
| 1465 |
|
|
&& TREE_CODE (lhs) == SSA_NAME)
|
| 1466 |
|
|
{
|
| 1467 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
| 1468 |
|
|
rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
|
| 1469 |
|
|
gimple_assign_rhs_code (stmt)
|
| 1470 |
|
|
== IMAGPART_EXPR,
|
| 1471 |
|
|
false);
|
| 1472 |
|
|
gimple_assign_set_rhs_from_tree (gsi, rhs);
|
| 1473 |
|
|
stmt = gsi_stmt (*gsi);
|
| 1474 |
|
|
update_stmt (stmt);
|
| 1475 |
|
|
}
|
| 1476 |
|
|
}
|
| 1477 |
|
|
return;
|
| 1478 |
|
|
}
|
| 1479 |
|
|
|
| 1480 |
|
|
/* Extract the components of the two complex values. Make sure and
|
| 1481 |
|
|
handle the common case of the same value used twice specially. */
|
| 1482 |
|
|
if (is_gimple_assign (stmt))
|
| 1483 |
|
|
{
|
| 1484 |
|
|
ac = gimple_assign_rhs1 (stmt);
|
| 1485 |
|
|
bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
|
| 1486 |
|
|
}
|
| 1487 |
|
|
/* GIMPLE_CALL can not get here. */
|
| 1488 |
|
|
else
|
| 1489 |
|
|
{
|
| 1490 |
|
|
ac = gimple_cond_lhs (stmt);
|
| 1491 |
|
|
bc = gimple_cond_rhs (stmt);
|
| 1492 |
|
|
}
|
| 1493 |
|
|
|
| 1494 |
|
|
ar = extract_component (gsi, ac, false, true);
|
| 1495 |
|
|
ai = extract_component (gsi, ac, true, true);
|
| 1496 |
|
|
|
| 1497 |
|
|
if (ac == bc)
|
| 1498 |
|
|
br = ar, bi = ai;
|
| 1499 |
|
|
else if (bc)
|
| 1500 |
|
|
{
|
| 1501 |
|
|
br = extract_component (gsi, bc, 0, true);
|
| 1502 |
|
|
bi = extract_component (gsi, bc, 1, true);
|
| 1503 |
|
|
}
|
| 1504 |
|
|
else
|
| 1505 |
|
|
br = bi = NULL_TREE;
|
| 1506 |
|
|
|
| 1507 |
|
|
if (gimple_in_ssa_p (cfun))
|
| 1508 |
|
|
{
|
| 1509 |
|
|
al = find_lattice_value (ac);
|
| 1510 |
|
|
if (al == UNINITIALIZED)
|
| 1511 |
|
|
al = VARYING;
|
| 1512 |
|
|
|
| 1513 |
|
|
if (TREE_CODE_CLASS (code) == tcc_unary)
|
| 1514 |
|
|
bl = UNINITIALIZED;
|
| 1515 |
|
|
else if (ac == bc)
|
| 1516 |
|
|
bl = al;
|
| 1517 |
|
|
else
|
| 1518 |
|
|
{
|
| 1519 |
|
|
bl = find_lattice_value (bc);
|
| 1520 |
|
|
if (bl == UNINITIALIZED)
|
| 1521 |
|
|
bl = VARYING;
|
| 1522 |
|
|
}
|
| 1523 |
|
|
}
|
| 1524 |
|
|
else
|
| 1525 |
|
|
al = bl = VARYING;
|
| 1526 |
|
|
|
| 1527 |
|
|
switch (code)
|
| 1528 |
|
|
{
|
| 1529 |
|
|
case PLUS_EXPR:
|
| 1530 |
|
|
case MINUS_EXPR:
|
| 1531 |
|
|
expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
|
| 1532 |
|
|
break;
|
| 1533 |
|
|
|
| 1534 |
|
|
case MULT_EXPR:
|
| 1535 |
|
|
expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
|
| 1536 |
|
|
break;
|
| 1537 |
|
|
|
| 1538 |
|
|
case TRUNC_DIV_EXPR:
|
| 1539 |
|
|
case CEIL_DIV_EXPR:
|
| 1540 |
|
|
case FLOOR_DIV_EXPR:
|
| 1541 |
|
|
case ROUND_DIV_EXPR:
|
| 1542 |
|
|
case RDIV_EXPR:
|
| 1543 |
|
|
expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
|
| 1544 |
|
|
break;
|
| 1545 |
|
|
|
| 1546 |
|
|
case NEGATE_EXPR:
|
| 1547 |
|
|
expand_complex_negation (gsi, inner_type, ar, ai);
|
| 1548 |
|
|
break;
|
| 1549 |
|
|
|
| 1550 |
|
|
case CONJ_EXPR:
|
| 1551 |
|
|
expand_complex_conjugate (gsi, inner_type, ar, ai);
|
| 1552 |
|
|
break;
|
| 1553 |
|
|
|
| 1554 |
|
|
case EQ_EXPR:
|
| 1555 |
|
|
case NE_EXPR:
|
| 1556 |
|
|
expand_complex_comparison (gsi, ar, ai, br, bi, code);
|
| 1557 |
|
|
break;
|
| 1558 |
|
|
|
| 1559 |
|
|
default:
|
| 1560 |
|
|
gcc_unreachable ();
|
| 1561 |
|
|
}
|
| 1562 |
|
|
}
|
| 1563 |
|
|
|
| 1564 |
|
|
|
| 1565 |
|
|
/* Entry point for complex operation lowering during optimization. */
|
| 1566 |
|
|
|
| 1567 |
|
|
static unsigned int
|
| 1568 |
|
|
tree_lower_complex (void)
|
| 1569 |
|
|
{
|
| 1570 |
|
|
int old_last_basic_block;
|
| 1571 |
|
|
gimple_stmt_iterator gsi;
|
| 1572 |
|
|
basic_block bb;
|
| 1573 |
|
|
|
| 1574 |
|
|
if (!init_dont_simulate_again ())
|
| 1575 |
|
|
return 0;
|
| 1576 |
|
|
|
| 1577 |
|
|
complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
|
| 1578 |
|
|
VEC_safe_grow_cleared (complex_lattice_t, heap,
|
| 1579 |
|
|
complex_lattice_values, num_ssa_names);
|
| 1580 |
|
|
|
| 1581 |
|
|
init_parameter_lattice_values ();
|
| 1582 |
|
|
ssa_propagate (complex_visit_stmt, complex_visit_phi);
|
| 1583 |
|
|
|
| 1584 |
|
|
complex_variable_components = htab_create (10, int_tree_map_hash,
|
| 1585 |
|
|
int_tree_map_eq, free);
|
| 1586 |
|
|
|
| 1587 |
|
|
complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
|
| 1588 |
|
|
VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
|
| 1589 |
|
|
2 * num_ssa_names);
|
| 1590 |
|
|
|
| 1591 |
|
|
update_parameter_components ();
|
| 1592 |
|
|
|
| 1593 |
|
|
/* ??? Ideally we'd traverse the blocks in breadth-first order. */
|
| 1594 |
|
|
old_last_basic_block = last_basic_block;
|
| 1595 |
|
|
FOR_EACH_BB (bb)
|
| 1596 |
|
|
{
|
| 1597 |
|
|
if (bb->index >= old_last_basic_block)
|
| 1598 |
|
|
continue;
|
| 1599 |
|
|
|
| 1600 |
|
|
update_phi_components (bb);
|
| 1601 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1602 |
|
|
expand_complex_operations_1 (&gsi);
|
| 1603 |
|
|
}
|
| 1604 |
|
|
|
| 1605 |
|
|
gsi_commit_edge_inserts ();
|
| 1606 |
|
|
|
| 1607 |
|
|
htab_delete (complex_variable_components);
|
| 1608 |
|
|
VEC_free (tree, heap, complex_ssa_name_components);
|
| 1609 |
|
|
VEC_free (complex_lattice_t, heap, complex_lattice_values);
|
| 1610 |
|
|
return 0;
|
| 1611 |
|
|
}
|
| 1612 |
|
|
|
| 1613 |
|
|
struct gimple_opt_pass pass_lower_complex =
|
| 1614 |
|
|
{
|
| 1615 |
|
|
{
|
| 1616 |
|
|
GIMPLE_PASS,
|
| 1617 |
|
|
"cplxlower", /* name */
|
| 1618 |
|
|
0, /* gate */
|
| 1619 |
|
|
tree_lower_complex, /* execute */
|
| 1620 |
|
|
NULL, /* sub */
|
| 1621 |
|
|
NULL, /* next */
|
| 1622 |
|
|
0, /* static_pass_number */
|
| 1623 |
|
|
TV_NONE, /* tv_id */
|
| 1624 |
|
|
PROP_ssa, /* properties_required */
|
| 1625 |
|
|
PROP_gimple_lcx, /* properties_provided */
|
| 1626 |
|
|
0, /* properties_destroyed */
|
| 1627 |
|
|
0, /* todo_flags_start */
|
| 1628 |
|
|
TODO_dump_func
|
| 1629 |
|
|
| TODO_ggc_collect
|
| 1630 |
|
|
| TODO_update_ssa
|
| 1631 |
|
|
| TODO_verify_stmts /* todo_flags_finish */
|
| 1632 |
|
|
}
|
| 1633 |
|
|
};
|
| 1634 |
|
|
|
| 1635 |
|
|
|
| 1636 |
|
|
static bool
|
| 1637 |
|
|
gate_no_optimization (void)
|
| 1638 |
|
|
{
|
| 1639 |
|
|
/* With errors, normal optimization passes are not run. If we don't
|
| 1640 |
|
|
lower complex operations at all, rtl expansion will abort. */
|
| 1641 |
|
|
return !(cfun->curr_properties & PROP_gimple_lcx);
|
| 1642 |
|
|
}
|
| 1643 |
|
|
|
| 1644 |
|
|
struct gimple_opt_pass pass_lower_complex_O0 =
|
| 1645 |
|
|
{
|
| 1646 |
|
|
{
|
| 1647 |
|
|
GIMPLE_PASS,
|
| 1648 |
|
|
"cplxlower0", /* name */
|
| 1649 |
|
|
gate_no_optimization, /* gate */
|
| 1650 |
|
|
tree_lower_complex, /* execute */
|
| 1651 |
|
|
NULL, /* sub */
|
| 1652 |
|
|
NULL, /* next */
|
| 1653 |
|
|
0, /* static_pass_number */
|
| 1654 |
|
|
TV_NONE, /* tv_id */
|
| 1655 |
|
|
PROP_cfg, /* properties_required */
|
| 1656 |
|
|
PROP_gimple_lcx, /* properties_provided */
|
| 1657 |
|
|
0, /* properties_destroyed */
|
| 1658 |
|
|
0, /* todo_flags_start */
|
| 1659 |
|
|
TODO_dump_func
|
| 1660 |
|
|
| TODO_ggc_collect
|
| 1661 |
|
|
| TODO_update_ssa
|
| 1662 |
|
|
| TODO_verify_stmts /* todo_flags_finish */
|
| 1663 |
|
|
}
|
| 1664 |
|
|
};
|