1 |
280 |
jeremybenn |
/* Exception handling semantics and decomposition for trees.
|
2 |
|
|
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "tm_p.h"
|
28 |
|
|
#include "flags.h"
|
29 |
|
|
#include "function.h"
|
30 |
|
|
#include "except.h"
|
31 |
|
|
#include "pointer-set.h"
|
32 |
|
|
#include "tree-flow.h"
|
33 |
|
|
#include "tree-dump.h"
|
34 |
|
|
#include "tree-inline.h"
|
35 |
|
|
#include "tree-iterator.h"
|
36 |
|
|
#include "tree-pass.h"
|
37 |
|
|
#include "timevar.h"
|
38 |
|
|
#include "langhooks.h"
|
39 |
|
|
#include "ggc.h"
|
40 |
|
|
#include "toplev.h"
|
41 |
|
|
#include "gimple.h"
|
42 |
|
|
#include "target.h"
|
43 |
|
|
|
44 |
|
|
/* In some instances a tree and a gimple need to be stored in a same table,
|
45 |
|
|
i.e. in hash tables. This is a structure to do this. */
|
46 |
|
|
typedef union {tree *tp; tree t; gimple g;} treemple;
|
47 |
|
|
|
48 |
|
|
/* Nonzero if we are using EH to handle cleanups. */
|
49 |
|
|
static int using_eh_for_cleanups_p = 0;
|
50 |
|
|
|
51 |
|
|
void
|
52 |
|
|
using_eh_for_cleanups (void)
|
53 |
|
|
{
|
54 |
|
|
using_eh_for_cleanups_p = 1;
|
55 |
|
|
}
|
56 |
|
|
|
57 |
|
|
/* Misc functions used in this file. */
|
58 |
|
|
|
59 |
|
|
/* Compare and hash for any structure which begins with a canonical
|
60 |
|
|
pointer. Assumes all pointers are interchangeable, which is sort
|
61 |
|
|
of already assumed by gcc elsewhere IIRC. */
|
62 |
|
|
|
63 |
|
|
static int
|
64 |
|
|
struct_ptr_eq (const void *a, const void *b)
|
65 |
|
|
{
|
66 |
|
|
const void * const * x = (const void * const *) a;
|
67 |
|
|
const void * const * y = (const void * const *) b;
|
68 |
|
|
return *x == *y;
|
69 |
|
|
}
|
70 |
|
|
|
71 |
|
|
static hashval_t
|
72 |
|
|
struct_ptr_hash (const void *a)
|
73 |
|
|
{
|
74 |
|
|
const void * const * x = (const void * const *) a;
|
75 |
|
|
return (size_t)*x >> 4;
|
76 |
|
|
}
|
77 |
|
|
|
78 |
|
|
|
79 |
|
|
/* Remember and lookup EH landing pad data for arbitrary statements.
|
80 |
|
|
Really this means any statement that could_throw_p. We could
|
81 |
|
|
stuff this information into the stmt_ann data structure, but:
|
82 |
|
|
|
83 |
|
|
(1) We absolutely rely on this information being kept until
|
84 |
|
|
we get to rtl. Once we're done with lowering here, if we lose
|
85 |
|
|
the information there's no way to recover it!
|
86 |
|
|
|
87 |
|
|
(2) There are many more statements that *cannot* throw as
|
88 |
|
|
compared to those that can. We should be saving some amount
|
89 |
|
|
of space by only allocating memory for those that can throw. */
|
90 |
|
|
|
91 |
|
|
/* Add statement T in function IFUN to landing pad NUM. */
|
92 |
|
|
|
93 |
|
|
void
|
94 |
|
|
add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
|
95 |
|
|
{
|
96 |
|
|
struct throw_stmt_node *n;
|
97 |
|
|
void **slot;
|
98 |
|
|
|
99 |
|
|
gcc_assert (num != 0);
|
100 |
|
|
|
101 |
|
|
n = GGC_NEW (struct throw_stmt_node);
|
102 |
|
|
n->stmt = t;
|
103 |
|
|
n->lp_nr = num;
|
104 |
|
|
|
105 |
|
|
if (!get_eh_throw_stmt_table (ifun))
|
106 |
|
|
set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
|
107 |
|
|
struct_ptr_eq,
|
108 |
|
|
ggc_free));
|
109 |
|
|
|
110 |
|
|
slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
|
111 |
|
|
gcc_assert (!*slot);
|
112 |
|
|
*slot = n;
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
/* Add statement T in the current function (cfun) to EH landing pad NUM. */
|
116 |
|
|
|
117 |
|
|
void
|
118 |
|
|
add_stmt_to_eh_lp (gimple t, int num)
|
119 |
|
|
{
|
120 |
|
|
add_stmt_to_eh_lp_fn (cfun, t, num);
|
121 |
|
|
}
|
122 |
|
|
|
123 |
|
|
/* Add statement T to the single EH landing pad in REGION. */
|
124 |
|
|
|
125 |
|
|
static void
|
126 |
|
|
record_stmt_eh_region (eh_region region, gimple t)
|
127 |
|
|
{
|
128 |
|
|
if (region == NULL)
|
129 |
|
|
return;
|
130 |
|
|
if (region->type == ERT_MUST_NOT_THROW)
|
131 |
|
|
add_stmt_to_eh_lp_fn (cfun, t, -region->index);
|
132 |
|
|
else
|
133 |
|
|
{
|
134 |
|
|
eh_landing_pad lp = region->landing_pads;
|
135 |
|
|
if (lp == NULL)
|
136 |
|
|
lp = gen_eh_landing_pad (region);
|
137 |
|
|
else
|
138 |
|
|
gcc_assert (lp->next_lp == NULL);
|
139 |
|
|
add_stmt_to_eh_lp_fn (cfun, t, lp->index);
|
140 |
|
|
}
|
141 |
|
|
}
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
/* Remove statement T in function IFUN from its EH landing pad. */
|
145 |
|
|
|
146 |
|
|
bool
|
147 |
|
|
remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
|
148 |
|
|
{
|
149 |
|
|
struct throw_stmt_node dummy;
|
150 |
|
|
void **slot;
|
151 |
|
|
|
152 |
|
|
if (!get_eh_throw_stmt_table (ifun))
|
153 |
|
|
return false;
|
154 |
|
|
|
155 |
|
|
dummy.stmt = t;
|
156 |
|
|
slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
|
157 |
|
|
NO_INSERT);
|
158 |
|
|
if (slot)
|
159 |
|
|
{
|
160 |
|
|
htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
|
161 |
|
|
return true;
|
162 |
|
|
}
|
163 |
|
|
else
|
164 |
|
|
return false;
|
165 |
|
|
}
|
166 |
|
|
|
167 |
|
|
|
168 |
|
|
/* Remove statement T in the current function (cfun) from its
|
169 |
|
|
EH landing pad. */
|
170 |
|
|
|
171 |
|
|
bool
|
172 |
|
|
remove_stmt_from_eh_lp (gimple t)
|
173 |
|
|
{
|
174 |
|
|
return remove_stmt_from_eh_lp_fn (cfun, t);
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
/* Determine if statement T is inside an EH region in function IFUN.
|
178 |
|
|
Positive numbers indicate a landing pad index; negative numbers
|
179 |
|
|
indicate a MUST_NOT_THROW region index; zero indicates that the
|
180 |
|
|
statement is not recorded in the region table. */
|
181 |
|
|
|
182 |
|
|
int
|
183 |
|
|
lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
|
184 |
|
|
{
|
185 |
|
|
struct throw_stmt_node *p, n;
|
186 |
|
|
|
187 |
|
|
if (ifun->eh->throw_stmt_table == NULL)
|
188 |
|
|
return 0;
|
189 |
|
|
|
190 |
|
|
n.stmt = t;
|
191 |
|
|
p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
|
192 |
|
|
return p ? p->lp_nr : 0;
|
193 |
|
|
}
|
194 |
|
|
|
195 |
|
|
/* Likewise, but always use the current function. */
|
196 |
|
|
|
197 |
|
|
int
|
198 |
|
|
lookup_stmt_eh_lp (gimple t)
|
199 |
|
|
{
|
200 |
|
|
/* We can get called from initialized data when -fnon-call-exceptions
|
201 |
|
|
is on; prevent crash. */
|
202 |
|
|
if (!cfun)
|
203 |
|
|
return 0;
|
204 |
|
|
return lookup_stmt_eh_lp_fn (cfun, t);
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
/* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
|
208 |
|
|
nodes and LABEL_DECL nodes. We will use this during the second phase to
|
209 |
|
|
determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
|
210 |
|
|
|
211 |
|
|
struct finally_tree_node
|
212 |
|
|
{
|
213 |
|
|
/* When storing a GIMPLE_TRY, we have to record a gimple. However
|
214 |
|
|
when deciding whether a GOTO to a certain LABEL_DECL (which is a
|
215 |
|
|
tree) leaves the TRY block, its necessary to record a tree in
|
216 |
|
|
this field. Thus a treemple is used. */
|
217 |
|
|
treemple child;
|
218 |
|
|
gimple parent;
|
219 |
|
|
};
|
220 |
|
|
|
221 |
|
|
/* Note that this table is *not* marked GTY. It is short-lived. */
|
222 |
|
|
static htab_t finally_tree;
|
223 |
|
|
|
224 |
|
|
static void
|
225 |
|
|
record_in_finally_tree (treemple child, gimple parent)
|
226 |
|
|
{
|
227 |
|
|
struct finally_tree_node *n;
|
228 |
|
|
void **slot;
|
229 |
|
|
|
230 |
|
|
n = XNEW (struct finally_tree_node);
|
231 |
|
|
n->child = child;
|
232 |
|
|
n->parent = parent;
|
233 |
|
|
|
234 |
|
|
slot = htab_find_slot (finally_tree, n, INSERT);
|
235 |
|
|
gcc_assert (!*slot);
|
236 |
|
|
*slot = n;
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
static void
|
240 |
|
|
collect_finally_tree (gimple stmt, gimple region);
|
241 |
|
|
|
242 |
|
|
/* Go through the gimple sequence. Works with collect_finally_tree to
|
243 |
|
|
record all GIMPLE_LABEL and GIMPLE_TRY statements. */
|
244 |
|
|
|
245 |
|
|
static void
|
246 |
|
|
collect_finally_tree_1 (gimple_seq seq, gimple region)
|
247 |
|
|
{
|
248 |
|
|
gimple_stmt_iterator gsi;
|
249 |
|
|
|
250 |
|
|
for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
|
251 |
|
|
collect_finally_tree (gsi_stmt (gsi), region);
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
static void
|
255 |
|
|
collect_finally_tree (gimple stmt, gimple region)
|
256 |
|
|
{
|
257 |
|
|
treemple temp;
|
258 |
|
|
|
259 |
|
|
switch (gimple_code (stmt))
|
260 |
|
|
{
|
261 |
|
|
case GIMPLE_LABEL:
|
262 |
|
|
temp.t = gimple_label_label (stmt);
|
263 |
|
|
record_in_finally_tree (temp, region);
|
264 |
|
|
break;
|
265 |
|
|
|
266 |
|
|
case GIMPLE_TRY:
|
267 |
|
|
if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
|
268 |
|
|
{
|
269 |
|
|
temp.g = stmt;
|
270 |
|
|
record_in_finally_tree (temp, region);
|
271 |
|
|
collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
|
272 |
|
|
collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
|
273 |
|
|
}
|
274 |
|
|
else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
|
275 |
|
|
{
|
276 |
|
|
collect_finally_tree_1 (gimple_try_eval (stmt), region);
|
277 |
|
|
collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
|
278 |
|
|
}
|
279 |
|
|
break;
|
280 |
|
|
|
281 |
|
|
case GIMPLE_CATCH:
|
282 |
|
|
collect_finally_tree_1 (gimple_catch_handler (stmt), region);
|
283 |
|
|
break;
|
284 |
|
|
|
285 |
|
|
case GIMPLE_EH_FILTER:
|
286 |
|
|
collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
|
287 |
|
|
break;
|
288 |
|
|
|
289 |
|
|
default:
|
290 |
|
|
/* A type, a decl, or some kind of statement that we're not
|
291 |
|
|
interested in. Don't walk them. */
|
292 |
|
|
break;
|
293 |
|
|
}
|
294 |
|
|
}
|
295 |
|
|
|
296 |
|
|
|
297 |
|
|
/* Use the finally tree to determine if a jump from START to TARGET
|
298 |
|
|
would leave the try_finally node that START lives in. */
|
299 |
|
|
|
300 |
|
|
static bool
|
301 |
|
|
outside_finally_tree (treemple start, gimple target)
|
302 |
|
|
{
|
303 |
|
|
struct finally_tree_node n, *p;
|
304 |
|
|
|
305 |
|
|
do
|
306 |
|
|
{
|
307 |
|
|
n.child = start;
|
308 |
|
|
p = (struct finally_tree_node *) htab_find (finally_tree, &n);
|
309 |
|
|
if (!p)
|
310 |
|
|
return true;
|
311 |
|
|
start.g = p->parent;
|
312 |
|
|
}
|
313 |
|
|
while (start.g != target);
|
314 |
|
|
|
315 |
|
|
return false;
|
316 |
|
|
}
|
317 |
|
|
|
318 |
|
|
/* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
|
319 |
|
|
nodes into a set of gotos, magic labels, and eh regions.
|
320 |
|
|
The eh region creation is straight-forward, but frobbing all the gotos
|
321 |
|
|
and such into shape isn't. */
|
322 |
|
|
|
323 |
|
|
/* The sequence into which we record all EH stuff. This will be
|
324 |
|
|
placed at the end of the function when we're all done. */
|
325 |
|
|
static gimple_seq eh_seq;
|
326 |
|
|
|
327 |
|
|
/* Record whether an EH region contains something that can throw,
|
328 |
|
|
indexed by EH region number. */
|
329 |
|
|
static bitmap eh_region_may_contain_throw_map;
|
330 |
|
|
|
331 |
|
|
/* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
|
332 |
|
|
statements that are seen to escape this GIMPLE_TRY_FINALLY node.
|
333 |
|
|
The idea is to record a gimple statement for everything except for
|
334 |
|
|
the conditionals, which get their labels recorded. Since labels are
|
335 |
|
|
of type 'tree', we need this node to store both gimple and tree
|
336 |
|
|
objects. REPL_STMT is the sequence used to replace the goto/return
|
337 |
|
|
statement. CONT_STMT is used to store the statement that allows
|
338 |
|
|
the return/goto to jump to the original destination. */
|
339 |
|
|
|
340 |
|
|
struct goto_queue_node
|
341 |
|
|
{
|
342 |
|
|
treemple stmt;
|
343 |
|
|
gimple_seq repl_stmt;
|
344 |
|
|
gimple cont_stmt;
|
345 |
|
|
int index;
|
346 |
|
|
/* This is used when index >= 0 to indicate that stmt is a label (as
|
347 |
|
|
opposed to a goto stmt). */
|
348 |
|
|
int is_label;
|
349 |
|
|
};
|
350 |
|
|
|
351 |
|
|
/* State of the world while lowering. */
|
352 |
|
|
|
353 |
|
|
struct leh_state
|
354 |
|
|
{
|
355 |
|
|
/* What's "current" while constructing the eh region tree. These
|
356 |
|
|
correspond to variables of the same name in cfun->eh, which we
|
357 |
|
|
don't have easy access to. */
|
358 |
|
|
eh_region cur_region;
|
359 |
|
|
|
360 |
|
|
/* What's "current" for the purposes of __builtin_eh_pointer. For
|
361 |
|
|
a CATCH, this is the associated TRY. For an EH_FILTER, this is
|
362 |
|
|
the associated ALLOWED_EXCEPTIONS, etc. */
|
363 |
|
|
eh_region ehp_region;
|
364 |
|
|
|
365 |
|
|
/* Processing of TRY_FINALLY requires a bit more state. This is
|
366 |
|
|
split out into a separate structure so that we don't have to
|
367 |
|
|
copy so much when processing other nodes. */
|
368 |
|
|
struct leh_tf_state *tf;
|
369 |
|
|
};
|
370 |
|
|
|
371 |
|
|
struct leh_tf_state
|
372 |
|
|
{
|
373 |
|
|
/* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
|
374 |
|
|
try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
|
375 |
|
|
this so that outside_finally_tree can reliably reference the tree used
|
376 |
|
|
in the collect_finally_tree data structures. */
|
377 |
|
|
gimple try_finally_expr;
|
378 |
|
|
gimple top_p;
|
379 |
|
|
|
380 |
|
|
/* While lowering a top_p usually it is expanded into multiple statements,
|
381 |
|
|
thus we need the following field to store them. */
|
382 |
|
|
gimple_seq top_p_seq;
|
383 |
|
|
|
384 |
|
|
/* The state outside this try_finally node. */
|
385 |
|
|
struct leh_state *outer;
|
386 |
|
|
|
387 |
|
|
/* The exception region created for it. */
|
388 |
|
|
eh_region region;
|
389 |
|
|
|
390 |
|
|
/* The goto queue. */
|
391 |
|
|
struct goto_queue_node *goto_queue;
|
392 |
|
|
size_t goto_queue_size;
|
393 |
|
|
size_t goto_queue_active;
|
394 |
|
|
|
395 |
|
|
/* Pointer map to help in searching goto_queue when it is large. */
|
396 |
|
|
struct pointer_map_t *goto_queue_map;
|
397 |
|
|
|
398 |
|
|
/* The set of unique labels seen as entries in the goto queue. */
|
399 |
|
|
VEC(tree,heap) *dest_array;
|
400 |
|
|
|
401 |
|
|
/* A label to be added at the end of the completed transformed
|
402 |
|
|
sequence. It will be set if may_fallthru was true *at one time*,
|
403 |
|
|
though subsequent transformations may have cleared that flag. */
|
404 |
|
|
tree fallthru_label;
|
405 |
|
|
|
406 |
|
|
/* True if it is possible to fall out the bottom of the try block.
|
407 |
|
|
Cleared if the fallthru is converted to a goto. */
|
408 |
|
|
bool may_fallthru;
|
409 |
|
|
|
410 |
|
|
/* True if any entry in goto_queue is a GIMPLE_RETURN. */
|
411 |
|
|
bool may_return;
|
412 |
|
|
|
413 |
|
|
/* True if the finally block can receive an exception edge.
|
414 |
|
|
Cleared if the exception case is handled by code duplication. */
|
415 |
|
|
bool may_throw;
|
416 |
|
|
};
|
417 |
|
|
|
418 |
|
|
static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
|
419 |
|
|
|
420 |
|
|
/* Search for STMT in the goto queue. Return the replacement,
|
421 |
|
|
or null if the statement isn't in the queue. */
|
422 |
|
|
|
423 |
|
|
#define LARGE_GOTO_QUEUE 20
|
424 |
|
|
|
425 |
|
|
static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
|
426 |
|
|
|
427 |
|
|
static gimple_seq
|
428 |
|
|
find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
|
429 |
|
|
{
|
430 |
|
|
unsigned int i;
|
431 |
|
|
void **slot;
|
432 |
|
|
|
433 |
|
|
if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
|
434 |
|
|
{
|
435 |
|
|
for (i = 0; i < tf->goto_queue_active; i++)
|
436 |
|
|
if ( tf->goto_queue[i].stmt.g == stmt.g)
|
437 |
|
|
return tf->goto_queue[i].repl_stmt;
|
438 |
|
|
return NULL;
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
/* If we have a large number of entries in the goto_queue, create a
|
442 |
|
|
pointer map and use that for searching. */
|
443 |
|
|
|
444 |
|
|
if (!tf->goto_queue_map)
|
445 |
|
|
{
|
446 |
|
|
tf->goto_queue_map = pointer_map_create ();
|
447 |
|
|
for (i = 0; i < tf->goto_queue_active; i++)
|
448 |
|
|
{
|
449 |
|
|
slot = pointer_map_insert (tf->goto_queue_map,
|
450 |
|
|
tf->goto_queue[i].stmt.g);
|
451 |
|
|
gcc_assert (*slot == NULL);
|
452 |
|
|
*slot = &tf->goto_queue[i];
|
453 |
|
|
}
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
|
457 |
|
|
if (slot != NULL)
|
458 |
|
|
return (((struct goto_queue_node *) *slot)->repl_stmt);
|
459 |
|
|
|
460 |
|
|
return NULL;
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
/* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
|
464 |
|
|
lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
|
465 |
|
|
then we can just splat it in, otherwise we add the new stmts immediately
|
466 |
|
|
after the GIMPLE_COND and redirect. */
|
467 |
|
|
|
468 |
|
|
static void
|
469 |
|
|
replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
|
470 |
|
|
gimple_stmt_iterator *gsi)
|
471 |
|
|
{
|
472 |
|
|
tree label;
|
473 |
|
|
gimple_seq new_seq;
|
474 |
|
|
treemple temp;
|
475 |
|
|
location_t loc = gimple_location (gsi_stmt (*gsi));
|
476 |
|
|
|
477 |
|
|
temp.tp = tp;
|
478 |
|
|
new_seq = find_goto_replacement (tf, temp);
|
479 |
|
|
if (!new_seq)
|
480 |
|
|
return;
|
481 |
|
|
|
482 |
|
|
if (gimple_seq_singleton_p (new_seq)
|
483 |
|
|
&& gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
|
484 |
|
|
{
|
485 |
|
|
*tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
|
486 |
|
|
return;
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
label = create_artificial_label (loc);
|
490 |
|
|
/* Set the new label for the GIMPLE_COND */
|
491 |
|
|
*tp = label;
|
492 |
|
|
|
493 |
|
|
gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
|
494 |
|
|
gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
/* The real work of replace_goto_queue. Returns with TSI updated to
|
498 |
|
|
point to the next statement. */
|
499 |
|
|
|
500 |
|
|
static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
|
501 |
|
|
|
502 |
|
|
static void
|
503 |
|
|
replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
|
504 |
|
|
gimple_stmt_iterator *gsi)
|
505 |
|
|
{
|
506 |
|
|
gimple_seq seq;
|
507 |
|
|
treemple temp;
|
508 |
|
|
temp.g = NULL;
|
509 |
|
|
|
510 |
|
|
switch (gimple_code (stmt))
|
511 |
|
|
{
|
512 |
|
|
case GIMPLE_GOTO:
|
513 |
|
|
case GIMPLE_RETURN:
|
514 |
|
|
temp.g = stmt;
|
515 |
|
|
seq = find_goto_replacement (tf, temp);
|
516 |
|
|
if (seq)
|
517 |
|
|
{
|
518 |
|
|
gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
|
519 |
|
|
gsi_remove (gsi, false);
|
520 |
|
|
return;
|
521 |
|
|
}
|
522 |
|
|
break;
|
523 |
|
|
|
524 |
|
|
case GIMPLE_COND:
|
525 |
|
|
replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
|
526 |
|
|
replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
|
527 |
|
|
break;
|
528 |
|
|
|
529 |
|
|
case GIMPLE_TRY:
|
530 |
|
|
replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
|
531 |
|
|
replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
|
532 |
|
|
break;
|
533 |
|
|
case GIMPLE_CATCH:
|
534 |
|
|
replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
|
535 |
|
|
break;
|
536 |
|
|
case GIMPLE_EH_FILTER:
|
537 |
|
|
replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
|
538 |
|
|
break;
|
539 |
|
|
|
540 |
|
|
default:
|
541 |
|
|
/* These won't have gotos in them. */
|
542 |
|
|
break;
|
543 |
|
|
}
|
544 |
|
|
|
545 |
|
|
gsi_next (gsi);
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
/* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
|
549 |
|
|
|
550 |
|
|
static void
|
551 |
|
|
replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
|
552 |
|
|
{
|
553 |
|
|
gimple_stmt_iterator gsi = gsi_start (seq);
|
554 |
|
|
|
555 |
|
|
while (!gsi_end_p (gsi))
|
556 |
|
|
replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/* Replace all goto queue members. */
|
560 |
|
|
|
561 |
|
|
static void
|
562 |
|
|
replace_goto_queue (struct leh_tf_state *tf)
|
563 |
|
|
{
|
564 |
|
|
if (tf->goto_queue_active == 0)
|
565 |
|
|
return;
|
566 |
|
|
replace_goto_queue_stmt_list (tf->top_p_seq, tf);
|
567 |
|
|
replace_goto_queue_stmt_list (eh_seq, tf);
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
/* Add a new record to the goto queue contained in TF. NEW_STMT is the
|
571 |
|
|
data to be added, IS_LABEL indicates whether NEW_STMT is a label or
|
572 |
|
|
a gimple return. */
|
573 |
|
|
|
574 |
|
|
static void
|
575 |
|
|
record_in_goto_queue (struct leh_tf_state *tf,
|
576 |
|
|
treemple new_stmt,
|
577 |
|
|
int index,
|
578 |
|
|
bool is_label)
|
579 |
|
|
{
|
580 |
|
|
size_t active, size;
|
581 |
|
|
struct goto_queue_node *q;
|
582 |
|
|
|
583 |
|
|
gcc_assert (!tf->goto_queue_map);
|
584 |
|
|
|
585 |
|
|
active = tf->goto_queue_active;
|
586 |
|
|
size = tf->goto_queue_size;
|
587 |
|
|
if (active >= size)
|
588 |
|
|
{
|
589 |
|
|
size = (size ? size * 2 : 32);
|
590 |
|
|
tf->goto_queue_size = size;
|
591 |
|
|
tf->goto_queue
|
592 |
|
|
= XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
q = &tf->goto_queue[active];
|
596 |
|
|
tf->goto_queue_active = active + 1;
|
597 |
|
|
|
598 |
|
|
memset (q, 0, sizeof (*q));
|
599 |
|
|
q->stmt = new_stmt;
|
600 |
|
|
q->index = index;
|
601 |
|
|
q->is_label = is_label;
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
/* Record the LABEL label in the goto queue contained in TF.
|
605 |
|
|
TF is not null. */
|
606 |
|
|
|
607 |
|
|
static void
|
608 |
|
|
record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
|
609 |
|
|
{
|
610 |
|
|
int index;
|
611 |
|
|
treemple temp, new_stmt;
|
612 |
|
|
|
613 |
|
|
if (!label)
|
614 |
|
|
return;
|
615 |
|
|
|
616 |
|
|
/* Computed and non-local gotos do not get processed. Given
|
617 |
|
|
their nature we can neither tell whether we've escaped the
|
618 |
|
|
finally block nor redirect them if we knew. */
|
619 |
|
|
if (TREE_CODE (label) != LABEL_DECL)
|
620 |
|
|
return;
|
621 |
|
|
|
622 |
|
|
/* No need to record gotos that don't leave the try block. */
|
623 |
|
|
temp.t = label;
|
624 |
|
|
if (!outside_finally_tree (temp, tf->try_finally_expr))
|
625 |
|
|
return;
|
626 |
|
|
|
627 |
|
|
if (! tf->dest_array)
|
628 |
|
|
{
|
629 |
|
|
tf->dest_array = VEC_alloc (tree, heap, 10);
|
630 |
|
|
VEC_quick_push (tree, tf->dest_array, label);
|
631 |
|
|
index = 0;
|
632 |
|
|
}
|
633 |
|
|
else
|
634 |
|
|
{
|
635 |
|
|
int n = VEC_length (tree, tf->dest_array);
|
636 |
|
|
for (index = 0; index < n; ++index)
|
637 |
|
|
if (VEC_index (tree, tf->dest_array, index) == label)
|
638 |
|
|
break;
|
639 |
|
|
if (index == n)
|
640 |
|
|
VEC_safe_push (tree, heap, tf->dest_array, label);
|
641 |
|
|
}
|
642 |
|
|
|
643 |
|
|
/* In the case of a GOTO we want to record the destination label,
|
644 |
|
|
since with a GIMPLE_COND we have an easy access to the then/else
|
645 |
|
|
labels. */
|
646 |
|
|
new_stmt = stmt;
|
647 |
|
|
record_in_goto_queue (tf, new_stmt, index, true);
|
648 |
|
|
}
|
649 |
|
|
|
650 |
|
|
/* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
|
651 |
|
|
node, and if so record that fact in the goto queue associated with that
|
652 |
|
|
try_finally node. */
|
653 |
|
|
|
654 |
|
|
static void
|
655 |
|
|
maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
|
656 |
|
|
{
|
657 |
|
|
struct leh_tf_state *tf = state->tf;
|
658 |
|
|
treemple new_stmt;
|
659 |
|
|
|
660 |
|
|
if (!tf)
|
661 |
|
|
return;
|
662 |
|
|
|
663 |
|
|
switch (gimple_code (stmt))
|
664 |
|
|
{
|
665 |
|
|
case GIMPLE_COND:
|
666 |
|
|
new_stmt.tp = gimple_op_ptr (stmt, 2);
|
667 |
|
|
record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
|
668 |
|
|
new_stmt.tp = gimple_op_ptr (stmt, 3);
|
669 |
|
|
record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
|
670 |
|
|
break;
|
671 |
|
|
case GIMPLE_GOTO:
|
672 |
|
|
new_stmt.g = stmt;
|
673 |
|
|
record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
|
674 |
|
|
break;
|
675 |
|
|
|
676 |
|
|
case GIMPLE_RETURN:
|
677 |
|
|
tf->may_return = true;
|
678 |
|
|
new_stmt.g = stmt;
|
679 |
|
|
record_in_goto_queue (tf, new_stmt, -1, false);
|
680 |
|
|
break;
|
681 |
|
|
|
682 |
|
|
default:
|
683 |
|
|
gcc_unreachable ();
|
684 |
|
|
}
|
685 |
|
|
}
|
686 |
|
|
|
687 |
|
|
|
688 |
|
|
#ifdef ENABLE_CHECKING
|
689 |
|
|
/* We do not process GIMPLE_SWITCHes for now. As long as the original source
|
690 |
|
|
was in fact structured, and we've not yet done jump threading, then none
|
691 |
|
|
of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
|
692 |
|
|
|
693 |
|
|
static void
|
694 |
|
|
verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
|
695 |
|
|
{
|
696 |
|
|
struct leh_tf_state *tf = state->tf;
|
697 |
|
|
size_t i, n;
|
698 |
|
|
|
699 |
|
|
if (!tf)
|
700 |
|
|
return;
|
701 |
|
|
|
702 |
|
|
n = gimple_switch_num_labels (switch_expr);
|
703 |
|
|
|
704 |
|
|
for (i = 0; i < n; ++i)
|
705 |
|
|
{
|
706 |
|
|
treemple temp;
|
707 |
|
|
tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
|
708 |
|
|
temp.t = lab;
|
709 |
|
|
gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
|
710 |
|
|
}
|
711 |
|
|
}
|
712 |
|
|
#else
|
713 |
|
|
#define verify_norecord_switch_expr(state, switch_expr)
|
714 |
|
|
#endif
|
715 |
|
|
|
716 |
|
|
/* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
|
717 |
|
|
whatever is needed to finish the return. If MOD is non-null, insert it
|
718 |
|
|
before the new branch. RETURN_VALUE_P is a cache containing a temporary
|
719 |
|
|
variable to be used in manipulating the value returned from the function. */
|
720 |
|
|
|
721 |
|
|
static void
|
722 |
|
|
do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
|
723 |
|
|
tree *return_value_p)
|
724 |
|
|
{
|
725 |
|
|
tree ret_expr;
|
726 |
|
|
gimple x;
|
727 |
|
|
|
728 |
|
|
/* In the case of a return, the queue node must be a gimple statement. */
|
729 |
|
|
gcc_assert (!q->is_label);
|
730 |
|
|
|
731 |
|
|
ret_expr = gimple_return_retval (q->stmt.g);
|
732 |
|
|
|
733 |
|
|
if (ret_expr)
|
734 |
|
|
{
|
735 |
|
|
if (!*return_value_p)
|
736 |
|
|
*return_value_p = ret_expr;
|
737 |
|
|
else
|
738 |
|
|
gcc_assert (*return_value_p == ret_expr);
|
739 |
|
|
q->cont_stmt = q->stmt.g;
|
740 |
|
|
/* The nasty part about redirecting the return value is that the
|
741 |
|
|
return value itself is to be computed before the FINALLY block
|
742 |
|
|
is executed. e.g.
|
743 |
|
|
|
744 |
|
|
int x;
|
745 |
|
|
int foo (void)
|
746 |
|
|
{
|
747 |
|
|
x = 0;
|
748 |
|
|
try {
|
749 |
|
|
return x;
|
750 |
|
|
} finally {
|
751 |
|
|
x++;
|
752 |
|
|
}
|
753 |
|
|
}
|
754 |
|
|
|
755 |
|
|
should return 0, not 1. Arrange for this to happen by copying
|
756 |
|
|
computed the return value into a local temporary. This also
|
757 |
|
|
allows us to redirect multiple return statements through the
|
758 |
|
|
same destination block; whether this is a net win or not really
|
759 |
|
|
depends, I guess, but it does make generation of the switch in
|
760 |
|
|
lower_try_finally_switch easier. */
|
761 |
|
|
|
762 |
|
|
if (TREE_CODE (ret_expr) == RESULT_DECL)
|
763 |
|
|
{
|
764 |
|
|
if (!*return_value_p)
|
765 |
|
|
*return_value_p = ret_expr;
|
766 |
|
|
else
|
767 |
|
|
gcc_assert (*return_value_p == ret_expr);
|
768 |
|
|
q->cont_stmt = q->stmt.g;
|
769 |
|
|
}
|
770 |
|
|
else
|
771 |
|
|
gcc_unreachable ();
|
772 |
|
|
}
|
773 |
|
|
else
|
774 |
|
|
/* If we don't return a value, all return statements are the same. */
|
775 |
|
|
q->cont_stmt = q->stmt.g;
|
776 |
|
|
|
777 |
|
|
if (!q->repl_stmt)
|
778 |
|
|
q->repl_stmt = gimple_seq_alloc ();
|
779 |
|
|
|
780 |
|
|
if (mod)
|
781 |
|
|
gimple_seq_add_seq (&q->repl_stmt, mod);
|
782 |
|
|
|
783 |
|
|
x = gimple_build_goto (finlab);
|
784 |
|
|
gimple_seq_add_stmt (&q->repl_stmt, x);
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
/* Similar, but easier, for GIMPLE_GOTO. */
|
788 |
|
|
|
789 |
|
|
static void
|
790 |
|
|
do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
|
791 |
|
|
struct leh_tf_state *tf)
|
792 |
|
|
{
|
793 |
|
|
gimple x;
|
794 |
|
|
|
795 |
|
|
gcc_assert (q->is_label);
|
796 |
|
|
if (!q->repl_stmt)
|
797 |
|
|
q->repl_stmt = gimple_seq_alloc ();
|
798 |
|
|
|
799 |
|
|
q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
|
800 |
|
|
|
801 |
|
|
if (mod)
|
802 |
|
|
gimple_seq_add_seq (&q->repl_stmt, mod);
|
803 |
|
|
|
804 |
|
|
x = gimple_build_goto (finlab);
|
805 |
|
|
gimple_seq_add_stmt (&q->repl_stmt, x);
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
/* Emit a standard landing pad sequence into SEQ for REGION. */
|
809 |
|
|
|
810 |
|
|
static void
|
811 |
|
|
emit_post_landing_pad (gimple_seq *seq, eh_region region)
|
812 |
|
|
{
|
813 |
|
|
eh_landing_pad lp = region->landing_pads;
|
814 |
|
|
gimple x;
|
815 |
|
|
|
816 |
|
|
if (lp == NULL)
|
817 |
|
|
lp = gen_eh_landing_pad (region);
|
818 |
|
|
|
819 |
|
|
lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
|
820 |
|
|
EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
|
821 |
|
|
|
822 |
|
|
x = gimple_build_label (lp->post_landing_pad);
|
823 |
|
|
gimple_seq_add_stmt (seq, x);
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
/* Emit a RESX statement into SEQ for REGION. */
|
827 |
|
|
|
828 |
|
|
static void
|
829 |
|
|
emit_resx (gimple_seq *seq, eh_region region)
|
830 |
|
|
{
|
831 |
|
|
gimple x = gimple_build_resx (region->index);
|
832 |
|
|
gimple_seq_add_stmt (seq, x);
|
833 |
|
|
if (region->outer)
|
834 |
|
|
record_stmt_eh_region (region->outer, x);
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Emit an EH_DISPATCH statement into SEQ for REGION. */
|
838 |
|
|
|
839 |
|
|
static void
|
840 |
|
|
emit_eh_dispatch (gimple_seq *seq, eh_region region)
|
841 |
|
|
{
|
842 |
|
|
gimple x = gimple_build_eh_dispatch (region->index);
|
843 |
|
|
gimple_seq_add_stmt (seq, x);
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
/* Note that the current EH region may contain a throw, or a
|
847 |
|
|
call to a function which itself may contain a throw. */
|
848 |
|
|
|
849 |
|
|
static void
|
850 |
|
|
note_eh_region_may_contain_throw (eh_region region)
|
851 |
|
|
{
|
852 |
|
|
while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
|
853 |
|
|
{
|
854 |
|
|
bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
|
855 |
|
|
region = region->outer;
|
856 |
|
|
if (region == NULL)
|
857 |
|
|
break;
|
858 |
|
|
}
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
/* Check if REGION has been marked as containing a throw. If REGION is
|
862 |
|
|
NULL, this predicate is false. */
|
863 |
|
|
|
864 |
|
|
static inline bool
|
865 |
|
|
eh_region_may_contain_throw (eh_region r)
|
866 |
|
|
{
|
867 |
|
|
return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
|
868 |
|
|
}
|
869 |
|
|
|
870 |
|
|
/* We want to transform
|
871 |
|
|
try { body; } catch { stuff; }
|
872 |
|
|
to
|
873 |
|
|
normal_seqence:
|
874 |
|
|
body;
|
875 |
|
|
over:
|
876 |
|
|
eh_seqence:
|
877 |
|
|
landing_pad:
|
878 |
|
|
stuff;
|
879 |
|
|
goto over;
|
880 |
|
|
|
881 |
|
|
TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
|
882 |
|
|
should be placed before the second operand, or NULL. OVER is
|
883 |
|
|
an existing label that should be put at the exit, or NULL. */
|
884 |
|
|
|
885 |
|
|
static gimple_seq
|
886 |
|
|
frob_into_branch_around (gimple tp, eh_region region, tree over)
|
887 |
|
|
{
|
888 |
|
|
gimple x;
|
889 |
|
|
gimple_seq cleanup, result;
|
890 |
|
|
location_t loc = gimple_location (tp);
|
891 |
|
|
|
892 |
|
|
cleanup = gimple_try_cleanup (tp);
|
893 |
|
|
result = gimple_try_eval (tp);
|
894 |
|
|
|
895 |
|
|
if (region)
|
896 |
|
|
emit_post_landing_pad (&eh_seq, region);
|
897 |
|
|
|
898 |
|
|
if (gimple_seq_may_fallthru (cleanup))
|
899 |
|
|
{
|
900 |
|
|
if (!over)
|
901 |
|
|
over = create_artificial_label (loc);
|
902 |
|
|
x = gimple_build_goto (over);
|
903 |
|
|
gimple_seq_add_stmt (&cleanup, x);
|
904 |
|
|
}
|
905 |
|
|
gimple_seq_add_seq (&eh_seq, cleanup);
|
906 |
|
|
|
907 |
|
|
if (over)
|
908 |
|
|
{
|
909 |
|
|
x = gimple_build_label (over);
|
910 |
|
|
gimple_seq_add_stmt (&result, x);
|
911 |
|
|
}
|
912 |
|
|
return result;
|
913 |
|
|
}
|
914 |
|
|
|
915 |
|
|
/* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
|
916 |
|
|
Make sure to record all new labels found. */
|
917 |
|
|
|
918 |
|
|
static gimple_seq
|
919 |
|
|
lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
|
920 |
|
|
{
|
921 |
|
|
gimple region = NULL;
|
922 |
|
|
gimple_seq new_seq;
|
923 |
|
|
|
924 |
|
|
new_seq = copy_gimple_seq_and_replace_locals (seq);
|
925 |
|
|
|
926 |
|
|
if (outer_state->tf)
|
927 |
|
|
region = outer_state->tf->try_finally_expr;
|
928 |
|
|
collect_finally_tree_1 (new_seq, region);
|
929 |
|
|
|
930 |
|
|
return new_seq;
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
/* A subroutine of lower_try_finally. Create a fallthru label for
|
934 |
|
|
the given try_finally state. The only tricky bit here is that
|
935 |
|
|
we have to make sure to record the label in our outer context. */
|
936 |
|
|
|
937 |
|
|
static tree
|
938 |
|
|
lower_try_finally_fallthru_label (struct leh_tf_state *tf)
|
939 |
|
|
{
|
940 |
|
|
tree label = tf->fallthru_label;
|
941 |
|
|
treemple temp;
|
942 |
|
|
|
943 |
|
|
if (!label)
|
944 |
|
|
{
|
945 |
|
|
label = create_artificial_label (gimple_location (tf->try_finally_expr));
|
946 |
|
|
tf->fallthru_label = label;
|
947 |
|
|
if (tf->outer->tf)
|
948 |
|
|
{
|
949 |
|
|
temp.t = label;
|
950 |
|
|
record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
|
951 |
|
|
}
|
952 |
|
|
}
|
953 |
|
|
return label;
|
954 |
|
|
}
|
955 |
|
|
|
956 |
|
|
/* A subroutine of lower_try_finally. If lang_protect_cleanup_actions
|
957 |
|
|
returns non-null, then the language requires that the exception path out
|
958 |
|
|
of a try_finally be treated specially. To wit: the code within the
|
959 |
|
|
finally block may not itself throw an exception. We have two choices here.
|
960 |
|
|
First we can duplicate the finally block and wrap it in a must_not_throw
|
961 |
|
|
region. Second, we can generate code like
|
962 |
|
|
|
963 |
|
|
try {
|
964 |
|
|
finally_block;
|
965 |
|
|
} catch {
|
966 |
|
|
if (fintmp == eh_edge)
|
967 |
|
|
protect_cleanup_actions;
|
968 |
|
|
}
|
969 |
|
|
|
970 |
|
|
where "fintmp" is the temporary used in the switch statement generation
|
971 |
|
|
alternative considered below. For the nonce, we always choose the first
|
972 |
|
|
option.
|
973 |
|
|
|
974 |
|
|
THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
|
975 |
|
|
|
976 |
|
|
static void
|
977 |
|
|
honor_protect_cleanup_actions (struct leh_state *outer_state,
|
978 |
|
|
struct leh_state *this_state,
|
979 |
|
|
struct leh_tf_state *tf)
|
980 |
|
|
{
|
981 |
|
|
tree protect_cleanup_actions;
|
982 |
|
|
gimple_stmt_iterator gsi;
|
983 |
|
|
bool finally_may_fallthru;
|
984 |
|
|
gimple_seq finally;
|
985 |
|
|
gimple x;
|
986 |
|
|
|
987 |
|
|
/* First check for nothing to do. */
|
988 |
|
|
if (lang_protect_cleanup_actions == NULL)
|
989 |
|
|
return;
|
990 |
|
|
protect_cleanup_actions = lang_protect_cleanup_actions ();
|
991 |
|
|
if (protect_cleanup_actions == NULL)
|
992 |
|
|
return;
|
993 |
|
|
|
994 |
|
|
finally = gimple_try_cleanup (tf->top_p);
|
995 |
|
|
finally_may_fallthru = gimple_seq_may_fallthru (finally);
|
996 |
|
|
|
997 |
|
|
/* Duplicate the FINALLY block. Only need to do this for try-finally,
|
998 |
|
|
and not for cleanups. */
|
999 |
|
|
if (this_state)
|
1000 |
|
|
finally = lower_try_finally_dup_block (finally, outer_state);
|
1001 |
|
|
|
1002 |
|
|
/* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
|
1003 |
|
|
set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
|
1004 |
|
|
to be in an enclosing scope, but needs to be implemented at this level
|
1005 |
|
|
to avoid a nesting violation (see wrap_temporary_cleanups in
|
1006 |
|
|
cp/decl.c). Since it's logically at an outer level, we should call
|
1007 |
|
|
terminate before we get to it, so strip it away before adding the
|
1008 |
|
|
MUST_NOT_THROW filter. */
|
1009 |
|
|
gsi = gsi_start (finally);
|
1010 |
|
|
x = gsi_stmt (gsi);
|
1011 |
|
|
if (gimple_code (x) == GIMPLE_TRY
|
1012 |
|
|
&& gimple_try_kind (x) == GIMPLE_TRY_CATCH
|
1013 |
|
|
&& gimple_try_catch_is_cleanup (x))
|
1014 |
|
|
{
|
1015 |
|
|
gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
|
1016 |
|
|
gsi_remove (&gsi, false);
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
/* Wrap the block with protect_cleanup_actions as the action. */
|
1020 |
|
|
x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
|
1021 |
|
|
x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
|
1022 |
|
|
GIMPLE_TRY_CATCH);
|
1023 |
|
|
finally = lower_eh_must_not_throw (outer_state, x);
|
1024 |
|
|
|
1025 |
|
|
/* Drop all of this into the exception sequence. */
|
1026 |
|
|
emit_post_landing_pad (&eh_seq, tf->region);
|
1027 |
|
|
gimple_seq_add_seq (&eh_seq, finally);
|
1028 |
|
|
if (finally_may_fallthru)
|
1029 |
|
|
emit_resx (&eh_seq, tf->region);
|
1030 |
|
|
|
1031 |
|
|
/* Having now been handled, EH isn't to be considered with
|
1032 |
|
|
the rest of the outgoing edges. */
|
1033 |
|
|
tf->may_throw = false;
|
1034 |
|
|
}
|
1035 |
|
|
|
1036 |
|
|
/* A subroutine of lower_try_finally. We have determined that there is
|
1037 |
|
|
no fallthru edge out of the finally block. This means that there is
|
1038 |
|
|
no outgoing edge corresponding to any incoming edge. Restructure the
|
1039 |
|
|
try_finally node for this special case. */
|
1040 |
|
|
|
1041 |
|
|
static void
|
1042 |
|
|
lower_try_finally_nofallthru (struct leh_state *state,
|
1043 |
|
|
struct leh_tf_state *tf)
|
1044 |
|
|
{
|
1045 |
|
|
tree lab, return_val;
|
1046 |
|
|
gimple x;
|
1047 |
|
|
gimple_seq finally;
|
1048 |
|
|
struct goto_queue_node *q, *qe;
|
1049 |
|
|
|
1050 |
|
|
lab = create_artificial_label (gimple_location (tf->try_finally_expr));
|
1051 |
|
|
|
1052 |
|
|
/* We expect that tf->top_p is a GIMPLE_TRY. */
|
1053 |
|
|
finally = gimple_try_cleanup (tf->top_p);
|
1054 |
|
|
tf->top_p_seq = gimple_try_eval (tf->top_p);
|
1055 |
|
|
|
1056 |
|
|
x = gimple_build_label (lab);
|
1057 |
|
|
gimple_seq_add_stmt (&tf->top_p_seq, x);
|
1058 |
|
|
|
1059 |
|
|
return_val = NULL;
|
1060 |
|
|
q = tf->goto_queue;
|
1061 |
|
|
qe = q + tf->goto_queue_active;
|
1062 |
|
|
for (; q < qe; ++q)
|
1063 |
|
|
if (q->index < 0)
|
1064 |
|
|
do_return_redirection (q, lab, NULL, &return_val);
|
1065 |
|
|
else
|
1066 |
|
|
do_goto_redirection (q, lab, NULL, tf);
|
1067 |
|
|
|
1068 |
|
|
replace_goto_queue (tf);
|
1069 |
|
|
|
1070 |
|
|
lower_eh_constructs_1 (state, finally);
|
1071 |
|
|
gimple_seq_add_seq (&tf->top_p_seq, finally);
|
1072 |
|
|
|
1073 |
|
|
if (tf->may_throw)
|
1074 |
|
|
{
|
1075 |
|
|
emit_post_landing_pad (&eh_seq, tf->region);
|
1076 |
|
|
|
1077 |
|
|
x = gimple_build_goto (lab);
|
1078 |
|
|
gimple_seq_add_stmt (&eh_seq, x);
|
1079 |
|
|
}
|
1080 |
|
|
}
|
1081 |
|
|
|
1082 |
|
|
/* A subroutine of lower_try_finally. We have determined that there is
|
1083 |
|
|
exactly one destination of the finally block. Restructure the
|
1084 |
|
|
try_finally node for this special case. */
|
1085 |
|
|
|
1086 |
|
|
static void
|
1087 |
|
|
lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
|
1088 |
|
|
{
|
1089 |
|
|
struct goto_queue_node *q, *qe;
|
1090 |
|
|
gimple x;
|
1091 |
|
|
gimple_seq finally;
|
1092 |
|
|
tree finally_label;
|
1093 |
|
|
location_t loc = gimple_location (tf->try_finally_expr);
|
1094 |
|
|
|
1095 |
|
|
finally = gimple_try_cleanup (tf->top_p);
|
1096 |
|
|
tf->top_p_seq = gimple_try_eval (tf->top_p);
|
1097 |
|
|
|
1098 |
|
|
lower_eh_constructs_1 (state, finally);
|
1099 |
|
|
|
1100 |
|
|
if (tf->may_throw)
|
1101 |
|
|
{
|
1102 |
|
|
/* Only reachable via the exception edge. Add the given label to
|
1103 |
|
|
the head of the FINALLY block. Append a RESX at the end. */
|
1104 |
|
|
emit_post_landing_pad (&eh_seq, tf->region);
|
1105 |
|
|
gimple_seq_add_seq (&eh_seq, finally);
|
1106 |
|
|
emit_resx (&eh_seq, tf->region);
|
1107 |
|
|
return;
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
if (tf->may_fallthru)
|
1111 |
|
|
{
|
1112 |
|
|
/* Only reachable via the fallthru edge. Do nothing but let
|
1113 |
|
|
the two blocks run together; we'll fall out the bottom. */
|
1114 |
|
|
gimple_seq_add_seq (&tf->top_p_seq, finally);
|
1115 |
|
|
return;
|
1116 |
|
|
}
|
1117 |
|
|
|
1118 |
|
|
finally_label = create_artificial_label (loc);
|
1119 |
|
|
x = gimple_build_label (finally_label);
|
1120 |
|
|
gimple_seq_add_stmt (&tf->top_p_seq, x);
|
1121 |
|
|
|
1122 |
|
|
gimple_seq_add_seq (&tf->top_p_seq, finally);
|
1123 |
|
|
|
1124 |
|
|
q = tf->goto_queue;
|
1125 |
|
|
qe = q + tf->goto_queue_active;
|
1126 |
|
|
|
1127 |
|
|
if (tf->may_return)
|
1128 |
|
|
{
|
1129 |
|
|
/* Reachable by return expressions only. Redirect them. */
|
1130 |
|
|
tree return_val = NULL;
|
1131 |
|
|
for (; q < qe; ++q)
|
1132 |
|
|
do_return_redirection (q, finally_label, NULL, &return_val);
|
1133 |
|
|
replace_goto_queue (tf);
|
1134 |
|
|
}
|
1135 |
|
|
else
|
1136 |
|
|
{
|
1137 |
|
|
/* Reachable by goto expressions only. Redirect them. */
|
1138 |
|
|
for (; q < qe; ++q)
|
1139 |
|
|
do_goto_redirection (q, finally_label, NULL, tf);
|
1140 |
|
|
replace_goto_queue (tf);
|
1141 |
|
|
|
1142 |
|
|
if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
|
1143 |
|
|
{
|
1144 |
|
|
/* Reachable by goto to fallthru label only. Redirect it
|
1145 |
|
|
to the new label (already created, sadly), and do not
|
1146 |
|
|
emit the final branch out, or the fallthru label. */
|
1147 |
|
|
tf->fallthru_label = NULL;
|
1148 |
|
|
return;
|
1149 |
|
|
}
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/* Place the original return/goto to the original destination
|
1153 |
|
|
immediately after the finally block. */
|
1154 |
|
|
x = tf->goto_queue[0].cont_stmt;
|
1155 |
|
|
gimple_seq_add_stmt (&tf->top_p_seq, x);
|
1156 |
|
|
maybe_record_in_goto_queue (state, x);
|
1157 |
|
|
}
|
1158 |
|
|
|
1159 |
|
|
/* A subroutine of lower_try_finally. There are multiple edges incoming
|
1160 |
|
|
and outgoing from the finally block. Implement this by duplicating the
|
1161 |
|
|
finally block for every destination. */
|
1162 |
|
|
|
1163 |
|
|
static void
|
1164 |
|
|
lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
|
1165 |
|
|
{
|
1166 |
|
|
gimple_seq finally;
|
1167 |
|
|
gimple_seq new_stmt;
|
1168 |
|
|
gimple_seq seq;
|
1169 |
|
|
gimple x;
|
1170 |
|
|
tree tmp;
|
1171 |
|
|
location_t tf_loc = gimple_location (tf->try_finally_expr);
|
1172 |
|
|
|
1173 |
|
|
finally = gimple_try_cleanup (tf->top_p);
|
1174 |
|
|
tf->top_p_seq = gimple_try_eval (tf->top_p);
|
1175 |
|
|
new_stmt = NULL;
|
1176 |
|
|
|
1177 |
|
|
if (tf->may_fallthru)
|
1178 |
|
|
{
|
1179 |
|
|
seq = lower_try_finally_dup_block (finally, state);
|
1180 |
|
|
lower_eh_constructs_1 (state, seq);
|
1181 |
|
|
gimple_seq_add_seq (&new_stmt, seq);
|
1182 |
|
|
|
1183 |
|
|
tmp = lower_try_finally_fallthru_label (tf);
|
1184 |
|
|
x = gimple_build_goto (tmp);
|
1185 |
|
|
gimple_seq_add_stmt (&new_stmt, x);
|
1186 |
|
|
}
|
1187 |
|
|
|
1188 |
|
|
if (tf->may_throw)
|
1189 |
|
|
{
|
1190 |
|
|
seq = lower_try_finally_dup_block (finally, state);
|
1191 |
|
|
lower_eh_constructs_1 (state, seq);
|
1192 |
|
|
|
1193 |
|
|
emit_post_landing_pad (&eh_seq, tf->region);
|
1194 |
|
|
gimple_seq_add_seq (&eh_seq, seq);
|
1195 |
|
|
emit_resx (&eh_seq, tf->region);
|
1196 |
|
|
}
|
1197 |
|
|
|
1198 |
|
|
if (tf->goto_queue)
|
1199 |
|
|
{
|
1200 |
|
|
struct goto_queue_node *q, *qe;
|
1201 |
|
|
tree return_val = NULL;
|
1202 |
|
|
int return_index, index;
|
1203 |
|
|
struct labels_s
|
1204 |
|
|
{
|
1205 |
|
|
struct goto_queue_node *q;
|
1206 |
|
|
tree label;
|
1207 |
|
|
} *labels;
|
1208 |
|
|
|
1209 |
|
|
return_index = VEC_length (tree, tf->dest_array);
|
1210 |
|
|
labels = XCNEWVEC (struct labels_s, return_index + 1);
|
1211 |
|
|
|
1212 |
|
|
q = tf->goto_queue;
|
1213 |
|
|
qe = q + tf->goto_queue_active;
|
1214 |
|
|
for (; q < qe; q++)
|
1215 |
|
|
{
|
1216 |
|
|
index = q->index < 0 ? return_index : q->index;
|
1217 |
|
|
|
1218 |
|
|
if (!labels[index].q)
|
1219 |
|
|
labels[index].q = q;
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
for (index = 0; index < return_index + 1; index++)
|
1223 |
|
|
{
|
1224 |
|
|
tree lab;
|
1225 |
|
|
|
1226 |
|
|
q = labels[index].q;
|
1227 |
|
|
if (! q)
|
1228 |
|
|
continue;
|
1229 |
|
|
|
1230 |
|
|
lab = labels[index].label
|
1231 |
|
|
= create_artificial_label (tf_loc);
|
1232 |
|
|
|
1233 |
|
|
if (index == return_index)
|
1234 |
|
|
do_return_redirection (q, lab, NULL, &return_val);
|
1235 |
|
|
else
|
1236 |
|
|
do_goto_redirection (q, lab, NULL, tf);
|
1237 |
|
|
|
1238 |
|
|
x = gimple_build_label (lab);
|
1239 |
|
|
gimple_seq_add_stmt (&new_stmt, x);
|
1240 |
|
|
|
1241 |
|
|
seq = lower_try_finally_dup_block (finally, state);
|
1242 |
|
|
lower_eh_constructs_1 (state, seq);
|
1243 |
|
|
gimple_seq_add_seq (&new_stmt, seq);
|
1244 |
|
|
|
1245 |
|
|
gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
|
1246 |
|
|
maybe_record_in_goto_queue (state, q->cont_stmt);
|
1247 |
|
|
}
|
1248 |
|
|
|
1249 |
|
|
for (q = tf->goto_queue; q < qe; q++)
|
1250 |
|
|
{
|
1251 |
|
|
tree lab;
|
1252 |
|
|
|
1253 |
|
|
index = q->index < 0 ? return_index : q->index;
|
1254 |
|
|
|
1255 |
|
|
if (labels[index].q == q)
|
1256 |
|
|
continue;
|
1257 |
|
|
|
1258 |
|
|
lab = labels[index].label;
|
1259 |
|
|
|
1260 |
|
|
if (index == return_index)
|
1261 |
|
|
do_return_redirection (q, lab, NULL, &return_val);
|
1262 |
|
|
else
|
1263 |
|
|
do_goto_redirection (q, lab, NULL, tf);
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
replace_goto_queue (tf);
|
1267 |
|
|
free (labels);
|
1268 |
|
|
}
|
1269 |
|
|
|
1270 |
|
|
/* Need to link new stmts after running replace_goto_queue due
|
1271 |
|
|
to not wanting to process the same goto stmts twice. */
|
1272 |
|
|
gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
|
1273 |
|
|
}
|
1274 |
|
|
|
1275 |
|
|
/* A subroutine of lower_try_finally. There are multiple edges incoming
|
1276 |
|
|
and outgoing from the finally block. Implement this by instrumenting
|
1277 |
|
|
each incoming edge and creating a switch statement at the end of the
|
1278 |
|
|
finally block that branches to the appropriate destination. */
|
1279 |
|
|
|
1280 |
|
|
static void
|
1281 |
|
|
lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
|
1282 |
|
|
{
|
1283 |
|
|
struct goto_queue_node *q, *qe;
|
1284 |
|
|
tree return_val = NULL;
|
1285 |
|
|
tree finally_tmp, finally_label;
|
1286 |
|
|
int return_index, eh_index, fallthru_index;
|
1287 |
|
|
int nlabels, ndests, j, last_case_index;
|
1288 |
|
|
tree last_case;
|
1289 |
|
|
VEC (tree,heap) *case_label_vec;
|
1290 |
|
|
gimple_seq switch_body;
|
1291 |
|
|
gimple x;
|
1292 |
|
|
tree tmp;
|
1293 |
|
|
gimple switch_stmt;
|
1294 |
|
|
gimple_seq finally;
|
1295 |
|
|
struct pointer_map_t *cont_map = NULL;
|
1296 |
|
|
/* The location of the TRY_FINALLY stmt. */
|
1297 |
|
|
location_t tf_loc = gimple_location (tf->try_finally_expr);
|
1298 |
|
|
/* The location of the finally block. */
|
1299 |
|
|
location_t finally_loc;
|
1300 |
|
|
|
1301 |
|
|
switch_body = gimple_seq_alloc ();
|
1302 |
|
|
|
1303 |
|
|
/* Mash the TRY block to the head of the chain. */
|
1304 |
|
|
finally = gimple_try_cleanup (tf->top_p);
|
1305 |
|
|
tf->top_p_seq = gimple_try_eval (tf->top_p);
|
1306 |
|
|
|
1307 |
|
|
/* The location of the finally is either the last stmt in the finally
|
1308 |
|
|
block or the location of the TRY_FINALLY itself. */
|
1309 |
|
|
finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
|
1310 |
|
|
gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
|
1311 |
|
|
: tf_loc;
|
1312 |
|
|
|
1313 |
|
|
/* Lower the finally block itself. */
|
1314 |
|
|
lower_eh_constructs_1 (state, finally);
|
1315 |
|
|
|
1316 |
|
|
/* Prepare for switch statement generation. */
|
1317 |
|
|
nlabels = VEC_length (tree, tf->dest_array);
|
1318 |
|
|
return_index = nlabels;
|
1319 |
|
|
eh_index = return_index + tf->may_return;
|
1320 |
|
|
fallthru_index = eh_index + tf->may_throw;
|
1321 |
|
|
ndests = fallthru_index + tf->may_fallthru;
|
1322 |
|
|
|
1323 |
|
|
finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
|
1324 |
|
|
finally_label = create_artificial_label (finally_loc);
|
1325 |
|
|
|
1326 |
|
|
/* We use VEC_quick_push on case_label_vec throughout this function,
|
1327 |
|
|
since we know the size in advance and allocate precisely as muce
|
1328 |
|
|
space as needed. */
|
1329 |
|
|
case_label_vec = VEC_alloc (tree, heap, ndests);
|
1330 |
|
|
last_case = NULL;
|
1331 |
|
|
last_case_index = 0;
|
1332 |
|
|
|
1333 |
|
|
/* Begin inserting code for getting to the finally block. Things
|
1334 |
|
|
are done in this order to correspond to the sequence the code is
|
1335 |
|
|
layed out. */
|
1336 |
|
|
|
1337 |
|
|
if (tf->may_fallthru)
|
1338 |
|
|
{
|
1339 |
|
|
x = gimple_build_assign (finally_tmp,
|
1340 |
|
|
build_int_cst (NULL, fallthru_index));
|
1341 |
|
|
gimple_seq_add_stmt (&tf->top_p_seq, x);
|
1342 |
|
|
|
1343 |
|
|
last_case = build3 (CASE_LABEL_EXPR, void_type_node,
|
1344 |
|
|
build_int_cst (NULL, fallthru_index),
|
1345 |
|
|
NULL, create_artificial_label (tf_loc));
|
1346 |
|
|
VEC_quick_push (tree, case_label_vec, last_case);
|
1347 |
|
|
last_case_index++;
|
1348 |
|
|
|
1349 |
|
|
x = gimple_build_label (CASE_LABEL (last_case));
|
1350 |
|
|
gimple_seq_add_stmt (&switch_body, x);
|
1351 |
|
|
|
1352 |
|
|
tmp = lower_try_finally_fallthru_label (tf);
|
1353 |
|
|
x = gimple_build_goto (tmp);
|
1354 |
|
|
gimple_seq_add_stmt (&switch_body, x);
|
1355 |
|
|
}
|
1356 |
|
|
|
1357 |
|
|
if (tf->may_throw)
|
1358 |
|
|
{
|
1359 |
|
|
emit_post_landing_pad (&eh_seq, tf->region);
|
1360 |
|
|
|
1361 |
|
|
x = gimple_build_assign (finally_tmp,
|
1362 |
|
|
build_int_cst (NULL, eh_index));
|
1363 |
|
|
gimple_seq_add_stmt (&eh_seq, x);
|
1364 |
|
|
|
1365 |
|
|
x = gimple_build_goto (finally_label);
|
1366 |
|
|
gimple_seq_add_stmt (&eh_seq, x);
|
1367 |
|
|
|
1368 |
|
|
last_case = build3 (CASE_LABEL_EXPR, void_type_node,
|
1369 |
|
|
build_int_cst (NULL, eh_index),
|
1370 |
|
|
NULL, create_artificial_label (tf_loc));
|
1371 |
|
|
VEC_quick_push (tree, case_label_vec, last_case);
|
1372 |
|
|
last_case_index++;
|
1373 |
|
|
|
1374 |
|
|
x = gimple_build_label (CASE_LABEL (last_case));
|
1375 |
|
|
gimple_seq_add_stmt (&eh_seq, x);
|
1376 |
|
|
emit_resx (&eh_seq, tf->region);
|
1377 |
|
|
}
|
1378 |
|
|
|
1379 |
|
|
x = gimple_build_label (finally_label);
|
1380 |
|
|
gimple_seq_add_stmt (&tf->top_p_seq, x);
|
1381 |
|
|
|
1382 |
|
|
gimple_seq_add_seq (&tf->top_p_seq, finally);
|
1383 |
|
|
|
1384 |
|
|
/* Redirect each incoming goto edge. */
|
1385 |
|
|
q = tf->goto_queue;
|
1386 |
|
|
qe = q + tf->goto_queue_active;
|
1387 |
|
|
j = last_case_index + tf->may_return;
|
1388 |
|
|
/* Prepare the assignments to finally_tmp that are executed upon the
|
1389 |
|
|
entrance through a particular edge. */
|
1390 |
|
|
for (; q < qe; ++q)
|
1391 |
|
|
{
|
1392 |
|
|
gimple_seq mod;
|
1393 |
|
|
int switch_id;
|
1394 |
|
|
unsigned int case_index;
|
1395 |
|
|
|
1396 |
|
|
mod = gimple_seq_alloc ();
|
1397 |
|
|
|
1398 |
|
|
if (q->index < 0)
|
1399 |
|
|
{
|
1400 |
|
|
x = gimple_build_assign (finally_tmp,
|
1401 |
|
|
build_int_cst (NULL, return_index));
|
1402 |
|
|
gimple_seq_add_stmt (&mod, x);
|
1403 |
|
|
do_return_redirection (q, finally_label, mod, &return_val);
|
1404 |
|
|
switch_id = return_index;
|
1405 |
|
|
}
|
1406 |
|
|
else
|
1407 |
|
|
{
|
1408 |
|
|
x = gimple_build_assign (finally_tmp,
|
1409 |
|
|
build_int_cst (NULL, q->index));
|
1410 |
|
|
gimple_seq_add_stmt (&mod, x);
|
1411 |
|
|
do_goto_redirection (q, finally_label, mod, tf);
|
1412 |
|
|
switch_id = q->index;
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
case_index = j + q->index;
|
1416 |
|
|
if (VEC_length (tree, case_label_vec) <= case_index
|
1417 |
|
|
|| !VEC_index (tree, case_label_vec, case_index))
|
1418 |
|
|
{
|
1419 |
|
|
tree case_lab;
|
1420 |
|
|
void **slot;
|
1421 |
|
|
case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
|
1422 |
|
|
build_int_cst (NULL, switch_id),
|
1423 |
|
|
NULL, NULL);
|
1424 |
|
|
/* We store the cont_stmt in the pointer map, so that we can recover
|
1425 |
|
|
it in the loop below. We don't create the new label while
|
1426 |
|
|
walking the goto_queue because pointers don't offer a stable
|
1427 |
|
|
order. */
|
1428 |
|
|
if (!cont_map)
|
1429 |
|
|
cont_map = pointer_map_create ();
|
1430 |
|
|
slot = pointer_map_insert (cont_map, case_lab);
|
1431 |
|
|
*slot = q->cont_stmt;
|
1432 |
|
|
VEC_quick_push (tree, case_label_vec, case_lab);
|
1433 |
|
|
}
|
1434 |
|
|
}
|
1435 |
|
|
for (j = last_case_index; j < last_case_index + nlabels; j++)
|
1436 |
|
|
{
|
1437 |
|
|
tree label;
|
1438 |
|
|
gimple cont_stmt;
|
1439 |
|
|
void **slot;
|
1440 |
|
|
|
1441 |
|
|
last_case = VEC_index (tree, case_label_vec, j);
|
1442 |
|
|
|
1443 |
|
|
gcc_assert (last_case);
|
1444 |
|
|
gcc_assert (cont_map);
|
1445 |
|
|
|
1446 |
|
|
slot = pointer_map_contains (cont_map, last_case);
|
1447 |
|
|
/* As the comment above suggests, CASE_LABEL (last_case) was just a
|
1448 |
|
|
placeholder, it does not store an actual label, yet. */
|
1449 |
|
|
gcc_assert (slot);
|
1450 |
|
|
cont_stmt = *(gimple *) slot;
|
1451 |
|
|
|
1452 |
|
|
label = create_artificial_label (tf_loc);
|
1453 |
|
|
CASE_LABEL (last_case) = label;
|
1454 |
|
|
|
1455 |
|
|
x = gimple_build_label (label);
|
1456 |
|
|
gimple_seq_add_stmt (&switch_body, x);
|
1457 |
|
|
gimple_seq_add_stmt (&switch_body, cont_stmt);
|
1458 |
|
|
maybe_record_in_goto_queue (state, cont_stmt);
|
1459 |
|
|
}
|
1460 |
|
|
if (cont_map)
|
1461 |
|
|
pointer_map_destroy (cont_map);
|
1462 |
|
|
|
1463 |
|
|
replace_goto_queue (tf);
|
1464 |
|
|
|
1465 |
|
|
/* Make sure that the last case is the default label, as one is required.
|
1466 |
|
|
Then sort the labels, which is also required in GIMPLE. */
|
1467 |
|
|
CASE_LOW (last_case) = NULL;
|
1468 |
|
|
sort_case_labels (case_label_vec);
|
1469 |
|
|
|
1470 |
|
|
/* Build the switch statement, setting last_case to be the default
|
1471 |
|
|
label. */
|
1472 |
|
|
switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
|
1473 |
|
|
case_label_vec);
|
1474 |
|
|
gimple_set_location (switch_stmt, finally_loc);
|
1475 |
|
|
|
1476 |
|
|
/* Need to link SWITCH_STMT after running replace_goto_queue
|
1477 |
|
|
due to not wanting to process the same goto stmts twice. */
|
1478 |
|
|
gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
|
1479 |
|
|
gimple_seq_add_seq (&tf->top_p_seq, switch_body);
|
1480 |
|
|
}
|
1481 |
|
|
|
1482 |
|
|
/* Decide whether or not we are going to duplicate the finally block.
|
1483 |
|
|
There are several considerations.
|
1484 |
|
|
|
1485 |
|
|
First, if this is Java, then the finally block contains code
|
1486 |
|
|
written by the user. It has line numbers associated with it,
|
1487 |
|
|
so duplicating the block means it's difficult to set a breakpoint.
|
1488 |
|
|
Since controlling code generation via -g is verboten, we simply
|
1489 |
|
|
never duplicate code without optimization.
|
1490 |
|
|
|
1491 |
|
|
Second, we'd like to prevent egregious code growth. One way to
|
1492 |
|
|
do this is to estimate the size of the finally block, multiply
|
1493 |
|
|
that by the number of copies we'd need to make, and compare against
|
1494 |
|
|
the estimate of the size of the switch machinery we'd have to add. */
|
1495 |
|
|
|
1496 |
|
|
static bool
|
1497 |
|
|
decide_copy_try_finally (int ndests, gimple_seq finally)
|
1498 |
|
|
{
|
1499 |
|
|
int f_estimate, sw_estimate;
|
1500 |
|
|
|
1501 |
|
|
if (!optimize)
|
1502 |
|
|
return false;
|
1503 |
|
|
|
1504 |
|
|
/* Finally estimate N times, plus N gotos. */
|
1505 |
|
|
f_estimate = count_insns_seq (finally, &eni_size_weights);
|
1506 |
|
|
f_estimate = (f_estimate + 1) * ndests;
|
1507 |
|
|
|
1508 |
|
|
/* Switch statement (cost 10), N variable assignments, N gotos. */
|
1509 |
|
|
sw_estimate = 10 + 2 * ndests;
|
1510 |
|
|
|
1511 |
|
|
/* Optimize for size clearly wants our best guess. */
|
1512 |
|
|
if (optimize_function_for_size_p (cfun))
|
1513 |
|
|
return f_estimate < sw_estimate;
|
1514 |
|
|
|
1515 |
|
|
/* ??? These numbers are completely made up so far. */
|
1516 |
|
|
if (optimize > 1)
|
1517 |
|
|
return f_estimate < 100 || f_estimate < sw_estimate * 2;
|
1518 |
|
|
else
|
1519 |
|
|
return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
|
1520 |
|
|
}
|
1521 |
|
|
|
1522 |
|
|
|
1523 |
|
|
/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
|
1524 |
|
|
to a sequence of labels and blocks, plus the exception region trees
|
1525 |
|
|
that record all the magic. This is complicated by the need to
|
1526 |
|
|
arrange for the FINALLY block to be executed on all exits. */
|
1527 |
|
|
|
1528 |
|
|
static gimple_seq
|
1529 |
|
|
lower_try_finally (struct leh_state *state, gimple tp)
|
1530 |
|
|
{
|
1531 |
|
|
struct leh_tf_state this_tf;
|
1532 |
|
|
struct leh_state this_state;
|
1533 |
|
|
int ndests;
|
1534 |
|
|
gimple_seq old_eh_seq;
|
1535 |
|
|
|
1536 |
|
|
/* Process the try block. */
|
1537 |
|
|
|
1538 |
|
|
memset (&this_tf, 0, sizeof (this_tf));
|
1539 |
|
|
this_tf.try_finally_expr = tp;
|
1540 |
|
|
this_tf.top_p = tp;
|
1541 |
|
|
this_tf.outer = state;
|
1542 |
|
|
if (using_eh_for_cleanups_p)
|
1543 |
|
|
this_tf.region = gen_eh_region_cleanup (state->cur_region);
|
1544 |
|
|
else
|
1545 |
|
|
this_tf.region = NULL;
|
1546 |
|
|
|
1547 |
|
|
this_state.cur_region = this_tf.region;
|
1548 |
|
|
this_state.ehp_region = state->ehp_region;
|
1549 |
|
|
this_state.tf = &this_tf;
|
1550 |
|
|
|
1551 |
|
|
old_eh_seq = eh_seq;
|
1552 |
|
|
eh_seq = NULL;
|
1553 |
|
|
|
1554 |
|
|
lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
|
1555 |
|
|
|
1556 |
|
|
/* Determine if the try block is escaped through the bottom. */
|
1557 |
|
|
this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
|
1558 |
|
|
|
1559 |
|
|
/* Determine if any exceptions are possible within the try block. */
|
1560 |
|
|
if (using_eh_for_cleanups_p)
|
1561 |
|
|
this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
|
1562 |
|
|
if (this_tf.may_throw)
|
1563 |
|
|
honor_protect_cleanup_actions (state, &this_state, &this_tf);
|
1564 |
|
|
|
1565 |
|
|
/* Determine how many edges (still) reach the finally block. Or rather,
|
1566 |
|
|
how many destinations are reached by the finally block. Use this to
|
1567 |
|
|
determine how we process the finally block itself. */
|
1568 |
|
|
|
1569 |
|
|
ndests = VEC_length (tree, this_tf.dest_array);
|
1570 |
|
|
ndests += this_tf.may_fallthru;
|
1571 |
|
|
ndests += this_tf.may_return;
|
1572 |
|
|
ndests += this_tf.may_throw;
|
1573 |
|
|
|
1574 |
|
|
/* If the FINALLY block is not reachable, dike it out. */
|
1575 |
|
|
if (ndests == 0)
|
1576 |
|
|
{
|
1577 |
|
|
gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
|
1578 |
|
|
gimple_try_set_cleanup (tp, NULL);
|
1579 |
|
|
}
|
1580 |
|
|
/* If the finally block doesn't fall through, then any destination
|
1581 |
|
|
we might try to impose there isn't reached either. There may be
|
1582 |
|
|
some minor amount of cleanup and redirection still needed. */
|
1583 |
|
|
else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
|
1584 |
|
|
lower_try_finally_nofallthru (state, &this_tf);
|
1585 |
|
|
|
1586 |
|
|
/* We can easily special-case redirection to a single destination. */
|
1587 |
|
|
else if (ndests == 1)
|
1588 |
|
|
lower_try_finally_onedest (state, &this_tf);
|
1589 |
|
|
else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
|
1590 |
|
|
lower_try_finally_copy (state, &this_tf);
|
1591 |
|
|
else
|
1592 |
|
|
lower_try_finally_switch (state, &this_tf);
|
1593 |
|
|
|
1594 |
|
|
/* If someone requested we add a label at the end of the transformed
|
1595 |
|
|
block, do so. */
|
1596 |
|
|
if (this_tf.fallthru_label)
|
1597 |
|
|
{
|
1598 |
|
|
/* This must be reached only if ndests == 0. */
|
1599 |
|
|
gimple x = gimple_build_label (this_tf.fallthru_label);
|
1600 |
|
|
gimple_seq_add_stmt (&this_tf.top_p_seq, x);
|
1601 |
|
|
}
|
1602 |
|
|
|
1603 |
|
|
VEC_free (tree, heap, this_tf.dest_array);
|
1604 |
|
|
if (this_tf.goto_queue)
|
1605 |
|
|
free (this_tf.goto_queue);
|
1606 |
|
|
if (this_tf.goto_queue_map)
|
1607 |
|
|
pointer_map_destroy (this_tf.goto_queue_map);
|
1608 |
|
|
|
1609 |
|
|
/* If there was an old (aka outer) eh_seq, append the current eh_seq.
|
1610 |
|
|
If there was no old eh_seq, then the append is trivially already done. */
|
1611 |
|
|
if (old_eh_seq)
|
1612 |
|
|
{
|
1613 |
|
|
if (eh_seq == NULL)
|
1614 |
|
|
eh_seq = old_eh_seq;
|
1615 |
|
|
else
|
1616 |
|
|
{
|
1617 |
|
|
gimple_seq new_eh_seq = eh_seq;
|
1618 |
|
|
eh_seq = old_eh_seq;
|
1619 |
|
|
gimple_seq_add_seq(&eh_seq, new_eh_seq);
|
1620 |
|
|
}
|
1621 |
|
|
}
|
1622 |
|
|
|
1623 |
|
|
return this_tf.top_p_seq;
|
1624 |
|
|
}
|
1625 |
|
|
|
1626 |
|
|
/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
|
1627 |
|
|
list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
|
1628 |
|
|
exception region trees that records all the magic. */
|
1629 |
|
|
|
1630 |
|
|
static gimple_seq
|
1631 |
|
|
lower_catch (struct leh_state *state, gimple tp)
|
1632 |
|
|
{
|
1633 |
|
|
eh_region try_region = NULL;
|
1634 |
|
|
struct leh_state this_state = *state;
|
1635 |
|
|
gimple_stmt_iterator gsi;
|
1636 |
|
|
tree out_label;
|
1637 |
|
|
gimple_seq new_seq;
|
1638 |
|
|
gimple x;
|
1639 |
|
|
location_t try_catch_loc = gimple_location (tp);
|
1640 |
|
|
|
1641 |
|
|
if (flag_exceptions)
|
1642 |
|
|
{
|
1643 |
|
|
try_region = gen_eh_region_try (state->cur_region);
|
1644 |
|
|
this_state.cur_region = try_region;
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
|
1648 |
|
|
|
1649 |
|
|
if (!eh_region_may_contain_throw (try_region))
|
1650 |
|
|
return gimple_try_eval (tp);
|
1651 |
|
|
|
1652 |
|
|
new_seq = NULL;
|
1653 |
|
|
emit_eh_dispatch (&new_seq, try_region);
|
1654 |
|
|
emit_resx (&new_seq, try_region);
|
1655 |
|
|
|
1656 |
|
|
this_state.cur_region = state->cur_region;
|
1657 |
|
|
this_state.ehp_region = try_region;
|
1658 |
|
|
|
1659 |
|
|
out_label = NULL;
|
1660 |
|
|
for (gsi = gsi_start (gimple_try_cleanup (tp));
|
1661 |
|
|
!gsi_end_p (gsi);
|
1662 |
|
|
gsi_next (&gsi))
|
1663 |
|
|
{
|
1664 |
|
|
eh_catch c;
|
1665 |
|
|
gimple gcatch;
|
1666 |
|
|
gimple_seq handler;
|
1667 |
|
|
|
1668 |
|
|
gcatch = gsi_stmt (gsi);
|
1669 |
|
|
c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
|
1670 |
|
|
|
1671 |
|
|
handler = gimple_catch_handler (gcatch);
|
1672 |
|
|
lower_eh_constructs_1 (&this_state, handler);
|
1673 |
|
|
|
1674 |
|
|
c->label = create_artificial_label (UNKNOWN_LOCATION);
|
1675 |
|
|
x = gimple_build_label (c->label);
|
1676 |
|
|
gimple_seq_add_stmt (&new_seq, x);
|
1677 |
|
|
|
1678 |
|
|
gimple_seq_add_seq (&new_seq, handler);
|
1679 |
|
|
|
1680 |
|
|
if (gimple_seq_may_fallthru (new_seq))
|
1681 |
|
|
{
|
1682 |
|
|
if (!out_label)
|
1683 |
|
|
out_label = create_artificial_label (try_catch_loc);
|
1684 |
|
|
|
1685 |
|
|
x = gimple_build_goto (out_label);
|
1686 |
|
|
gimple_seq_add_stmt (&new_seq, x);
|
1687 |
|
|
}
|
1688 |
|
|
if (!c->type_list)
|
1689 |
|
|
break;
|
1690 |
|
|
}
|
1691 |
|
|
|
1692 |
|
|
gimple_try_set_cleanup (tp, new_seq);
|
1693 |
|
|
|
1694 |
|
|
return frob_into_branch_around (tp, try_region, out_label);
|
1695 |
|
|
}
|
1696 |
|
|
|
1697 |
|
|
/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
|
1698 |
|
|
GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
|
1699 |
|
|
region trees that record all the magic. */
|
1700 |
|
|
|
1701 |
|
|
static gimple_seq
|
1702 |
|
|
lower_eh_filter (struct leh_state *state, gimple tp)
|
1703 |
|
|
{
|
1704 |
|
|
struct leh_state this_state = *state;
|
1705 |
|
|
eh_region this_region = NULL;
|
1706 |
|
|
gimple inner, x;
|
1707 |
|
|
gimple_seq new_seq;
|
1708 |
|
|
|
1709 |
|
|
inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
|
1710 |
|
|
|
1711 |
|
|
if (flag_exceptions)
|
1712 |
|
|
{
|
1713 |
|
|
this_region = gen_eh_region_allowed (state->cur_region,
|
1714 |
|
|
gimple_eh_filter_types (inner));
|
1715 |
|
|
this_state.cur_region = this_region;
|
1716 |
|
|
}
|
1717 |
|
|
|
1718 |
|
|
lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
|
1719 |
|
|
|
1720 |
|
|
if (!eh_region_may_contain_throw (this_region))
|
1721 |
|
|
return gimple_try_eval (tp);
|
1722 |
|
|
|
1723 |
|
|
new_seq = NULL;
|
1724 |
|
|
this_state.cur_region = state->cur_region;
|
1725 |
|
|
this_state.ehp_region = this_region;
|
1726 |
|
|
|
1727 |
|
|
emit_eh_dispatch (&new_seq, this_region);
|
1728 |
|
|
emit_resx (&new_seq, this_region);
|
1729 |
|
|
|
1730 |
|
|
this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
|
1731 |
|
|
x = gimple_build_label (this_region->u.allowed.label);
|
1732 |
|
|
gimple_seq_add_stmt (&new_seq, x);
|
1733 |
|
|
|
1734 |
|
|
lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
|
1735 |
|
|
gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
|
1736 |
|
|
|
1737 |
|
|
gimple_try_set_cleanup (tp, new_seq);
|
1738 |
|
|
|
1739 |
|
|
return frob_into_branch_around (tp, this_region, NULL);
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
/* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
|
1743 |
|
|
an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
|
1744 |
|
|
plus the exception region trees that record all the magic. */
|
1745 |
|
|
|
1746 |
|
|
static gimple_seq
|
1747 |
|
|
lower_eh_must_not_throw (struct leh_state *state, gimple tp)
|
1748 |
|
|
{
|
1749 |
|
|
struct leh_state this_state = *state;
|
1750 |
|
|
|
1751 |
|
|
if (flag_exceptions)
|
1752 |
|
|
{
|
1753 |
|
|
gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
|
1754 |
|
|
eh_region this_region;
|
1755 |
|
|
|
1756 |
|
|
this_region = gen_eh_region_must_not_throw (state->cur_region);
|
1757 |
|
|
this_region->u.must_not_throw.failure_decl
|
1758 |
|
|
= gimple_eh_must_not_throw_fndecl (inner);
|
1759 |
|
|
this_region->u.must_not_throw.failure_loc = gimple_location (tp);
|
1760 |
|
|
|
1761 |
|
|
/* In order to get mangling applied to this decl, we must mark it
|
1762 |
|
|
used now. Otherwise, pass_ipa_free_lang_data won't think it
|
1763 |
|
|
needs to happen. */
|
1764 |
|
|
TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
|
1765 |
|
|
|
1766 |
|
|
this_state.cur_region = this_region;
|
1767 |
|
|
}
|
1768 |
|
|
|
1769 |
|
|
lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
|
1770 |
|
|
|
1771 |
|
|
return gimple_try_eval (tp);
|
1772 |
|
|
}
|
1773 |
|
|
|
1774 |
|
|
/* Implement a cleanup expression. This is similar to try-finally,
|
1775 |
|
|
except that we only execute the cleanup block for exception edges. */
|
1776 |
|
|
|
1777 |
|
|
static gimple_seq
|
1778 |
|
|
lower_cleanup (struct leh_state *state, gimple tp)
|
1779 |
|
|
{
|
1780 |
|
|
struct leh_state this_state = *state;
|
1781 |
|
|
eh_region this_region = NULL;
|
1782 |
|
|
struct leh_tf_state fake_tf;
|
1783 |
|
|
gimple_seq result;
|
1784 |
|
|
|
1785 |
|
|
if (flag_exceptions)
|
1786 |
|
|
{
|
1787 |
|
|
this_region = gen_eh_region_cleanup (state->cur_region);
|
1788 |
|
|
this_state.cur_region = this_region;
|
1789 |
|
|
}
|
1790 |
|
|
|
1791 |
|
|
lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
|
1792 |
|
|
|
1793 |
|
|
if (!eh_region_may_contain_throw (this_region))
|
1794 |
|
|
return gimple_try_eval (tp);
|
1795 |
|
|
|
1796 |
|
|
/* Build enough of a try-finally state so that we can reuse
|
1797 |
|
|
honor_protect_cleanup_actions. */
|
1798 |
|
|
memset (&fake_tf, 0, sizeof (fake_tf));
|
1799 |
|
|
fake_tf.top_p = fake_tf.try_finally_expr = tp;
|
1800 |
|
|
fake_tf.outer = state;
|
1801 |
|
|
fake_tf.region = this_region;
|
1802 |
|
|
fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
|
1803 |
|
|
fake_tf.may_throw = true;
|
1804 |
|
|
|
1805 |
|
|
honor_protect_cleanup_actions (state, NULL, &fake_tf);
|
1806 |
|
|
|
1807 |
|
|
if (fake_tf.may_throw)
|
1808 |
|
|
{
|
1809 |
|
|
/* In this case honor_protect_cleanup_actions had nothing to do,
|
1810 |
|
|
and we should process this normally. */
|
1811 |
|
|
lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
|
1812 |
|
|
result = frob_into_branch_around (tp, this_region,
|
1813 |
|
|
fake_tf.fallthru_label);
|
1814 |
|
|
}
|
1815 |
|
|
else
|
1816 |
|
|
{
|
1817 |
|
|
/* In this case honor_protect_cleanup_actions did nearly all of
|
1818 |
|
|
the work. All we have left is to append the fallthru_label. */
|
1819 |
|
|
|
1820 |
|
|
result = gimple_try_eval (tp);
|
1821 |
|
|
if (fake_tf.fallthru_label)
|
1822 |
|
|
{
|
1823 |
|
|
gimple x = gimple_build_label (fake_tf.fallthru_label);
|
1824 |
|
|
gimple_seq_add_stmt (&result, x);
|
1825 |
|
|
}
|
1826 |
|
|
}
|
1827 |
|
|
return result;
|
1828 |
|
|
}
|
1829 |
|
|
|
1830 |
|
|
/* Main loop for lowering eh constructs. Also moves gsi to the next
|
1831 |
|
|
statement. */
|
1832 |
|
|
|
1833 |
|
|
static void
|
1834 |
|
|
lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
|
1835 |
|
|
{
|
1836 |
|
|
gimple_seq replace;
|
1837 |
|
|
gimple x;
|
1838 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
1839 |
|
|
|
1840 |
|
|
switch (gimple_code (stmt))
|
1841 |
|
|
{
|
1842 |
|
|
case GIMPLE_CALL:
|
1843 |
|
|
{
|
1844 |
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
1845 |
|
|
tree rhs, lhs;
|
1846 |
|
|
|
1847 |
|
|
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
1848 |
|
|
switch (DECL_FUNCTION_CODE (fndecl))
|
1849 |
|
|
{
|
1850 |
|
|
case BUILT_IN_EH_POINTER:
|
1851 |
|
|
/* The front end may have generated a call to
|
1852 |
|
|
__builtin_eh_pointer (0) within a catch region. Replace
|
1853 |
|
|
this zero argument with the current catch region number. */
|
1854 |
|
|
if (state->ehp_region)
|
1855 |
|
|
{
|
1856 |
|
|
tree nr = build_int_cst (NULL, state->ehp_region->index);
|
1857 |
|
|
gimple_call_set_arg (stmt, 0, nr);
|
1858 |
|
|
}
|
1859 |
|
|
else
|
1860 |
|
|
{
|
1861 |
|
|
/* The user has dome something silly. Remove it. */
|
1862 |
|
|
rhs = build_int_cst (ptr_type_node, 0);
|
1863 |
|
|
goto do_replace;
|
1864 |
|
|
}
|
1865 |
|
|
break;
|
1866 |
|
|
|
1867 |
|
|
case BUILT_IN_EH_FILTER:
|
1868 |
|
|
/* ??? This should never appear, but since it's a builtin it
|
1869 |
|
|
is accessible to abuse by users. Just remove it and
|
1870 |
|
|
replace the use with the arbitrary value zero. */
|
1871 |
|
|
rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
|
1872 |
|
|
do_replace:
|
1873 |
|
|
lhs = gimple_call_lhs (stmt);
|
1874 |
|
|
x = gimple_build_assign (lhs, rhs);
|
1875 |
|
|
gsi_insert_before (gsi, x, GSI_SAME_STMT);
|
1876 |
|
|
/* FALLTHRU */
|
1877 |
|
|
|
1878 |
|
|
case BUILT_IN_EH_COPY_VALUES:
|
1879 |
|
|
/* Likewise this should not appear. Remove it. */
|
1880 |
|
|
gsi_remove (gsi, true);
|
1881 |
|
|
return;
|
1882 |
|
|
|
1883 |
|
|
default:
|
1884 |
|
|
break;
|
1885 |
|
|
}
|
1886 |
|
|
}
|
1887 |
|
|
/* FALLTHRU */
|
1888 |
|
|
|
1889 |
|
|
case GIMPLE_ASSIGN:
|
1890 |
|
|
/* If the stmt can throw use a new temporary for the assignment
|
1891 |
|
|
to a LHS. This makes sure the old value of the LHS is
|
1892 |
|
|
available on the EH edge. Only do so for statements that
|
1893 |
|
|
potentially fall thru (no noreturn calls e.g.), otherwise
|
1894 |
|
|
this new assignment might create fake fallthru regions. */
|
1895 |
|
|
if (stmt_could_throw_p (stmt)
|
1896 |
|
|
&& gimple_has_lhs (stmt)
|
1897 |
|
|
&& gimple_stmt_may_fallthru (stmt)
|
1898 |
|
|
&& !tree_could_throw_p (gimple_get_lhs (stmt))
|
1899 |
|
|
&& is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
|
1900 |
|
|
{
|
1901 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
1902 |
|
|
tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
|
1903 |
|
|
gimple s = gimple_build_assign (lhs, tmp);
|
1904 |
|
|
gimple_set_location (s, gimple_location (stmt));
|
1905 |
|
|
gimple_set_block (s, gimple_block (stmt));
|
1906 |
|
|
gimple_set_lhs (stmt, tmp);
|
1907 |
|
|
if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
|
1908 |
|
|
|| TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
|
1909 |
|
|
DECL_GIMPLE_REG_P (tmp) = 1;
|
1910 |
|
|
gsi_insert_after (gsi, s, GSI_SAME_STMT);
|
1911 |
|
|
}
|
1912 |
|
|
/* Look for things that can throw exceptions, and record them. */
|
1913 |
|
|
if (state->cur_region && stmt_could_throw_p (stmt))
|
1914 |
|
|
{
|
1915 |
|
|
record_stmt_eh_region (state->cur_region, stmt);
|
1916 |
|
|
note_eh_region_may_contain_throw (state->cur_region);
|
1917 |
|
|
}
|
1918 |
|
|
break;
|
1919 |
|
|
|
1920 |
|
|
case GIMPLE_COND:
|
1921 |
|
|
case GIMPLE_GOTO:
|
1922 |
|
|
case GIMPLE_RETURN:
|
1923 |
|
|
maybe_record_in_goto_queue (state, stmt);
|
1924 |
|
|
break;
|
1925 |
|
|
|
1926 |
|
|
case GIMPLE_SWITCH:
|
1927 |
|
|
verify_norecord_switch_expr (state, stmt);
|
1928 |
|
|
break;
|
1929 |
|
|
|
1930 |
|
|
case GIMPLE_TRY:
|
1931 |
|
|
if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
|
1932 |
|
|
replace = lower_try_finally (state, stmt);
|
1933 |
|
|
else
|
1934 |
|
|
{
|
1935 |
|
|
x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
|
1936 |
|
|
if (!x)
|
1937 |
|
|
{
|
1938 |
|
|
replace = gimple_try_eval (stmt);
|
1939 |
|
|
lower_eh_constructs_1 (state, replace);
|
1940 |
|
|
}
|
1941 |
|
|
else
|
1942 |
|
|
switch (gimple_code (x))
|
1943 |
|
|
{
|
1944 |
|
|
case GIMPLE_CATCH:
|
1945 |
|
|
replace = lower_catch (state, stmt);
|
1946 |
|
|
break;
|
1947 |
|
|
case GIMPLE_EH_FILTER:
|
1948 |
|
|
replace = lower_eh_filter (state, stmt);
|
1949 |
|
|
break;
|
1950 |
|
|
case GIMPLE_EH_MUST_NOT_THROW:
|
1951 |
|
|
replace = lower_eh_must_not_throw (state, stmt);
|
1952 |
|
|
break;
|
1953 |
|
|
default:
|
1954 |
|
|
replace = lower_cleanup (state, stmt);
|
1955 |
|
|
break;
|
1956 |
|
|
}
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
/* Remove the old stmt and insert the transformed sequence
|
1960 |
|
|
instead. */
|
1961 |
|
|
gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
|
1962 |
|
|
gsi_remove (gsi, true);
|
1963 |
|
|
|
1964 |
|
|
/* Return since we don't want gsi_next () */
|
1965 |
|
|
return;
|
1966 |
|
|
|
1967 |
|
|
default:
|
1968 |
|
|
/* A type, a decl, or some kind of statement that we're not
|
1969 |
|
|
interested in. Don't walk them. */
|
1970 |
|
|
break;
|
1971 |
|
|
}
|
1972 |
|
|
|
1973 |
|
|
gsi_next (gsi);
|
1974 |
|
|
}
|
1975 |
|
|
|
1976 |
|
|
/* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
|
1977 |
|
|
|
1978 |
|
|
static void
|
1979 |
|
|
lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
|
1980 |
|
|
{
|
1981 |
|
|
gimple_stmt_iterator gsi;
|
1982 |
|
|
for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
|
1983 |
|
|
lower_eh_constructs_2 (state, &gsi);
|
1984 |
|
|
}
|
1985 |
|
|
|
1986 |
|
|
static unsigned int
|
1987 |
|
|
lower_eh_constructs (void)
|
1988 |
|
|
{
|
1989 |
|
|
struct leh_state null_state;
|
1990 |
|
|
gimple_seq bodyp;
|
1991 |
|
|
|
1992 |
|
|
bodyp = gimple_body (current_function_decl);
|
1993 |
|
|
if (bodyp == NULL)
|
1994 |
|
|
return 0;
|
1995 |
|
|
|
1996 |
|
|
finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
|
1997 |
|
|
eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
|
1998 |
|
|
memset (&null_state, 0, sizeof (null_state));
|
1999 |
|
|
|
2000 |
|
|
collect_finally_tree_1 (bodyp, NULL);
|
2001 |
|
|
lower_eh_constructs_1 (&null_state, bodyp);
|
2002 |
|
|
|
2003 |
|
|
/* We assume there's a return statement, or something, at the end of
|
2004 |
|
|
the function, and thus ploping the EH sequence afterward won't
|
2005 |
|
|
change anything. */
|
2006 |
|
|
gcc_assert (!gimple_seq_may_fallthru (bodyp));
|
2007 |
|
|
gimple_seq_add_seq (&bodyp, eh_seq);
|
2008 |
|
|
|
2009 |
|
|
/* We assume that since BODYP already existed, adding EH_SEQ to it
|
2010 |
|
|
didn't change its value, and we don't have to re-set the function. */
|
2011 |
|
|
gcc_assert (bodyp == gimple_body (current_function_decl));
|
2012 |
|
|
|
2013 |
|
|
htab_delete (finally_tree);
|
2014 |
|
|
BITMAP_FREE (eh_region_may_contain_throw_map);
|
2015 |
|
|
eh_seq = NULL;
|
2016 |
|
|
|
2017 |
|
|
/* If this function needs a language specific EH personality routine
|
2018 |
|
|
and the frontend didn't already set one do so now. */
|
2019 |
|
|
if (function_needs_eh_personality (cfun) == eh_personality_lang
|
2020 |
|
|
&& !DECL_FUNCTION_PERSONALITY (current_function_decl))
|
2021 |
|
|
DECL_FUNCTION_PERSONALITY (current_function_decl)
|
2022 |
|
|
= lang_hooks.eh_personality ();
|
2023 |
|
|
|
2024 |
|
|
return 0;
|
2025 |
|
|
}
|
2026 |
|
|
|
2027 |
|
|
struct gimple_opt_pass pass_lower_eh =
|
2028 |
|
|
{
|
2029 |
|
|
{
|
2030 |
|
|
GIMPLE_PASS,
|
2031 |
|
|
"eh", /* name */
|
2032 |
|
|
NULL, /* gate */
|
2033 |
|
|
lower_eh_constructs, /* execute */
|
2034 |
|
|
NULL, /* sub */
|
2035 |
|
|
NULL, /* next */
|
2036 |
|
|
0, /* static_pass_number */
|
2037 |
|
|
TV_TREE_EH, /* tv_id */
|
2038 |
|
|
PROP_gimple_lcf, /* properties_required */
|
2039 |
|
|
PROP_gimple_leh, /* properties_provided */
|
2040 |
|
|
0, /* properties_destroyed */
|
2041 |
|
|
0, /* todo_flags_start */
|
2042 |
|
|
TODO_dump_func /* todo_flags_finish */
|
2043 |
|
|
}
|
2044 |
|
|
};
|
2045 |
|
|
|
2046 |
|
|
/* Create the multiple edges from an EH_DISPATCH statement to all of
|
2047 |
|
|
the possible handlers for its EH region. Return true if there's
|
2048 |
|
|
no fallthru edge; false if there is. */
|
2049 |
|
|
|
2050 |
|
|
bool
|
2051 |
|
|
make_eh_dispatch_edges (gimple stmt)
|
2052 |
|
|
{
|
2053 |
|
|
eh_region r;
|
2054 |
|
|
eh_catch c;
|
2055 |
|
|
basic_block src, dst;
|
2056 |
|
|
|
2057 |
|
|
r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
|
2058 |
|
|
src = gimple_bb (stmt);
|
2059 |
|
|
|
2060 |
|
|
switch (r->type)
|
2061 |
|
|
{
|
2062 |
|
|
case ERT_TRY:
|
2063 |
|
|
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
|
2064 |
|
|
{
|
2065 |
|
|
dst = label_to_block (c->label);
|
2066 |
|
|
make_edge (src, dst, 0);
|
2067 |
|
|
|
2068 |
|
|
/* A catch-all handler doesn't have a fallthru. */
|
2069 |
|
|
if (c->type_list == NULL)
|
2070 |
|
|
return false;
|
2071 |
|
|
}
|
2072 |
|
|
break;
|
2073 |
|
|
|
2074 |
|
|
case ERT_ALLOWED_EXCEPTIONS:
|
2075 |
|
|
dst = label_to_block (r->u.allowed.label);
|
2076 |
|
|
make_edge (src, dst, 0);
|
2077 |
|
|
break;
|
2078 |
|
|
|
2079 |
|
|
default:
|
2080 |
|
|
gcc_unreachable ();
|
2081 |
|
|
}
|
2082 |
|
|
|
2083 |
|
|
return true;
|
2084 |
|
|
}
|
2085 |
|
|
|
2086 |
|
|
/* Create the single EH edge from STMT to its nearest landing pad,
|
2087 |
|
|
if there is such a landing pad within the current function. */
|
2088 |
|
|
|
2089 |
|
|
void
|
2090 |
|
|
make_eh_edges (gimple stmt)
|
2091 |
|
|
{
|
2092 |
|
|
basic_block src, dst;
|
2093 |
|
|
eh_landing_pad lp;
|
2094 |
|
|
int lp_nr;
|
2095 |
|
|
|
2096 |
|
|
lp_nr = lookup_stmt_eh_lp (stmt);
|
2097 |
|
|
if (lp_nr <= 0)
|
2098 |
|
|
return;
|
2099 |
|
|
|
2100 |
|
|
lp = get_eh_landing_pad_from_number (lp_nr);
|
2101 |
|
|
gcc_assert (lp != NULL);
|
2102 |
|
|
|
2103 |
|
|
src = gimple_bb (stmt);
|
2104 |
|
|
dst = label_to_block (lp->post_landing_pad);
|
2105 |
|
|
make_edge (src, dst, EDGE_EH);
|
2106 |
|
|
}
|
2107 |
|
|
|
2108 |
|
|
/* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
|
2109 |
|
|
do not actually perform the final edge redirection.
|
2110 |
|
|
|
2111 |
|
|
CHANGE_REGION is true when we're being called from cleanup_empty_eh and
|
2112 |
|
|
we intend to change the destination EH region as well; this means
|
2113 |
|
|
EH_LANDING_PAD_NR must already be set on the destination block label.
|
2114 |
|
|
If false, we're being called from generic cfg manipulation code and we
|
2115 |
|
|
should preserve our place within the region tree. */
|
2116 |
|
|
|
2117 |
|
|
static void
|
2118 |
|
|
redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
|
2119 |
|
|
{
|
2120 |
|
|
eh_landing_pad old_lp, new_lp;
|
2121 |
|
|
basic_block old_bb;
|
2122 |
|
|
gimple throw_stmt;
|
2123 |
|
|
int old_lp_nr, new_lp_nr;
|
2124 |
|
|
tree old_label, new_label;
|
2125 |
|
|
edge_iterator ei;
|
2126 |
|
|
edge e;
|
2127 |
|
|
|
2128 |
|
|
old_bb = edge_in->dest;
|
2129 |
|
|
old_label = gimple_block_label (old_bb);
|
2130 |
|
|
old_lp_nr = EH_LANDING_PAD_NR (old_label);
|
2131 |
|
|
gcc_assert (old_lp_nr > 0);
|
2132 |
|
|
old_lp = get_eh_landing_pad_from_number (old_lp_nr);
|
2133 |
|
|
|
2134 |
|
|
throw_stmt = last_stmt (edge_in->src);
|
2135 |
|
|
gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
|
2136 |
|
|
|
2137 |
|
|
new_label = gimple_block_label (new_bb);
|
2138 |
|
|
|
2139 |
|
|
/* Look for an existing region that might be using NEW_BB already. */
|
2140 |
|
|
new_lp_nr = EH_LANDING_PAD_NR (new_label);
|
2141 |
|
|
if (new_lp_nr)
|
2142 |
|
|
{
|
2143 |
|
|
new_lp = get_eh_landing_pad_from_number (new_lp_nr);
|
2144 |
|
|
gcc_assert (new_lp);
|
2145 |
|
|
|
2146 |
|
|
/* Unless CHANGE_REGION is true, the new and old landing pad
|
2147 |
|
|
had better be associated with the same EH region. */
|
2148 |
|
|
gcc_assert (change_region || new_lp->region == old_lp->region);
|
2149 |
|
|
}
|
2150 |
|
|
else
|
2151 |
|
|
{
|
2152 |
|
|
new_lp = NULL;
|
2153 |
|
|
gcc_assert (!change_region);
|
2154 |
|
|
}
|
2155 |
|
|
|
2156 |
|
|
/* Notice when we redirect the last EH edge away from OLD_BB. */
|
2157 |
|
|
FOR_EACH_EDGE (e, ei, old_bb->preds)
|
2158 |
|
|
if (e != edge_in && (e->flags & EDGE_EH))
|
2159 |
|
|
break;
|
2160 |
|
|
|
2161 |
|
|
if (new_lp)
|
2162 |
|
|
{
|
2163 |
|
|
/* NEW_LP already exists. If there are still edges into OLD_LP,
|
2164 |
|
|
there's nothing to do with the EH tree. If there are no more
|
2165 |
|
|
edges into OLD_LP, then we want to remove OLD_LP as it is unused.
|
2166 |
|
|
If CHANGE_REGION is true, then our caller is expecting to remove
|
2167 |
|
|
the landing pad. */
|
2168 |
|
|
if (e == NULL && !change_region)
|
2169 |
|
|
remove_eh_landing_pad (old_lp);
|
2170 |
|
|
}
|
2171 |
|
|
else
|
2172 |
|
|
{
|
2173 |
|
|
/* No correct landing pad exists. If there are no more edges
|
2174 |
|
|
into OLD_LP, then we can simply re-use the existing landing pad.
|
2175 |
|
|
Otherwise, we have to create a new landing pad. */
|
2176 |
|
|
if (e == NULL)
|
2177 |
|
|
{
|
2178 |
|
|
EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
|
2179 |
|
|
new_lp = old_lp;
|
2180 |
|
|
}
|
2181 |
|
|
else
|
2182 |
|
|
new_lp = gen_eh_landing_pad (old_lp->region);
|
2183 |
|
|
new_lp->post_landing_pad = new_label;
|
2184 |
|
|
EH_LANDING_PAD_NR (new_label) = new_lp->index;
|
2185 |
|
|
}
|
2186 |
|
|
|
2187 |
|
|
/* Maybe move the throwing statement to the new region. */
|
2188 |
|
|
if (old_lp != new_lp)
|
2189 |
|
|
{
|
2190 |
|
|
remove_stmt_from_eh_lp (throw_stmt);
|
2191 |
|
|
add_stmt_to_eh_lp (throw_stmt, new_lp->index);
|
2192 |
|
|
}
|
2193 |
|
|
}
|
2194 |
|
|
|
2195 |
|
|
/* Redirect EH edge E to NEW_BB. */
|
2196 |
|
|
|
2197 |
|
|
edge
|
2198 |
|
|
redirect_eh_edge (edge edge_in, basic_block new_bb)
|
2199 |
|
|
{
|
2200 |
|
|
redirect_eh_edge_1 (edge_in, new_bb, false);
|
2201 |
|
|
return ssa_redirect_edge (edge_in, new_bb);
|
2202 |
|
|
}
|
2203 |
|
|
|
2204 |
|
|
/* This is a subroutine of gimple_redirect_edge_and_branch. Update the
|
2205 |
|
|
labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
|
2206 |
|
|
The actual edge update will happen in the caller. */
|
2207 |
|
|
|
2208 |
|
|
void
|
2209 |
|
|
redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
|
2210 |
|
|
{
|
2211 |
|
|
tree new_lab = gimple_block_label (new_bb);
|
2212 |
|
|
bool any_changed = false;
|
2213 |
|
|
basic_block old_bb;
|
2214 |
|
|
eh_region r;
|
2215 |
|
|
eh_catch c;
|
2216 |
|
|
|
2217 |
|
|
r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
|
2218 |
|
|
switch (r->type)
|
2219 |
|
|
{
|
2220 |
|
|
case ERT_TRY:
|
2221 |
|
|
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
|
2222 |
|
|
{
|
2223 |
|
|
old_bb = label_to_block (c->label);
|
2224 |
|
|
if (old_bb == e->dest)
|
2225 |
|
|
{
|
2226 |
|
|
c->label = new_lab;
|
2227 |
|
|
any_changed = true;
|
2228 |
|
|
}
|
2229 |
|
|
}
|
2230 |
|
|
break;
|
2231 |
|
|
|
2232 |
|
|
case ERT_ALLOWED_EXCEPTIONS:
|
2233 |
|
|
old_bb = label_to_block (r->u.allowed.label);
|
2234 |
|
|
gcc_assert (old_bb == e->dest);
|
2235 |
|
|
r->u.allowed.label = new_lab;
|
2236 |
|
|
any_changed = true;
|
2237 |
|
|
break;
|
2238 |
|
|
|
2239 |
|
|
default:
|
2240 |
|
|
gcc_unreachable ();
|
2241 |
|
|
}
|
2242 |
|
|
|
2243 |
|
|
gcc_assert (any_changed);
|
2244 |
|
|
}
|
2245 |
|
|
|
2246 |
|
|
/* Helper function for operation_could_trap_p and stmt_could_throw_p. */
|
2247 |
|
|
|
2248 |
|
|
bool
|
2249 |
|
|
operation_could_trap_helper_p (enum tree_code op,
|
2250 |
|
|
bool fp_operation,
|
2251 |
|
|
bool honor_trapv,
|
2252 |
|
|
bool honor_nans,
|
2253 |
|
|
bool honor_snans,
|
2254 |
|
|
tree divisor,
|
2255 |
|
|
bool *handled)
|
2256 |
|
|
{
|
2257 |
|
|
*handled = true;
|
2258 |
|
|
switch (op)
|
2259 |
|
|
{
|
2260 |
|
|
case TRUNC_DIV_EXPR:
|
2261 |
|
|
case CEIL_DIV_EXPR:
|
2262 |
|
|
case FLOOR_DIV_EXPR:
|
2263 |
|
|
case ROUND_DIV_EXPR:
|
2264 |
|
|
case EXACT_DIV_EXPR:
|
2265 |
|
|
case CEIL_MOD_EXPR:
|
2266 |
|
|
case FLOOR_MOD_EXPR:
|
2267 |
|
|
case ROUND_MOD_EXPR:
|
2268 |
|
|
case TRUNC_MOD_EXPR:
|
2269 |
|
|
case RDIV_EXPR:
|
2270 |
|
|
if (honor_snans || honor_trapv)
|
2271 |
|
|
return true;
|
2272 |
|
|
if (fp_operation)
|
2273 |
|
|
return flag_trapping_math;
|
2274 |
|
|
if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
|
2275 |
|
|
return true;
|
2276 |
|
|
return false;
|
2277 |
|
|
|
2278 |
|
|
case LT_EXPR:
|
2279 |
|
|
case LE_EXPR:
|
2280 |
|
|
case GT_EXPR:
|
2281 |
|
|
case GE_EXPR:
|
2282 |
|
|
case LTGT_EXPR:
|
2283 |
|
|
/* Some floating point comparisons may trap. */
|
2284 |
|
|
return honor_nans;
|
2285 |
|
|
|
2286 |
|
|
case EQ_EXPR:
|
2287 |
|
|
case NE_EXPR:
|
2288 |
|
|
case UNORDERED_EXPR:
|
2289 |
|
|
case ORDERED_EXPR:
|
2290 |
|
|
case UNLT_EXPR:
|
2291 |
|
|
case UNLE_EXPR:
|
2292 |
|
|
case UNGT_EXPR:
|
2293 |
|
|
case UNGE_EXPR:
|
2294 |
|
|
case UNEQ_EXPR:
|
2295 |
|
|
return honor_snans;
|
2296 |
|
|
|
2297 |
|
|
case CONVERT_EXPR:
|
2298 |
|
|
case FIX_TRUNC_EXPR:
|
2299 |
|
|
/* Conversion of floating point might trap. */
|
2300 |
|
|
return honor_nans;
|
2301 |
|
|
|
2302 |
|
|
case NEGATE_EXPR:
|
2303 |
|
|
case ABS_EXPR:
|
2304 |
|
|
case CONJ_EXPR:
|
2305 |
|
|
/* These operations don't trap with floating point. */
|
2306 |
|
|
if (honor_trapv)
|
2307 |
|
|
return true;
|
2308 |
|
|
return false;
|
2309 |
|
|
|
2310 |
|
|
case PLUS_EXPR:
|
2311 |
|
|
case MINUS_EXPR:
|
2312 |
|
|
case MULT_EXPR:
|
2313 |
|
|
/* Any floating arithmetic may trap. */
|
2314 |
|
|
if (fp_operation && flag_trapping_math)
|
2315 |
|
|
return true;
|
2316 |
|
|
if (honor_trapv)
|
2317 |
|
|
return true;
|
2318 |
|
|
return false;
|
2319 |
|
|
|
2320 |
|
|
default:
|
2321 |
|
|
/* Any floating arithmetic may trap. */
|
2322 |
|
|
if (fp_operation && flag_trapping_math)
|
2323 |
|
|
return true;
|
2324 |
|
|
|
2325 |
|
|
*handled = false;
|
2326 |
|
|
return false;
|
2327 |
|
|
}
|
2328 |
|
|
}
|
2329 |
|
|
|
2330 |
|
|
/* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
|
2331 |
|
|
on floating-point values. HONOR_TRAPV is true if OP is applied on integer
|
2332 |
|
|
type operands that may trap. If OP is a division operator, DIVISOR contains
|
2333 |
|
|
the value of the divisor. */
|
2334 |
|
|
|
2335 |
|
|
bool
|
2336 |
|
|
operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
|
2337 |
|
|
tree divisor)
|
2338 |
|
|
{
|
2339 |
|
|
bool honor_nans = (fp_operation && flag_trapping_math
|
2340 |
|
|
&& !flag_finite_math_only);
|
2341 |
|
|
bool honor_snans = fp_operation && flag_signaling_nans != 0;
|
2342 |
|
|
bool handled;
|
2343 |
|
|
|
2344 |
|
|
if (TREE_CODE_CLASS (op) != tcc_comparison
|
2345 |
|
|
&& TREE_CODE_CLASS (op) != tcc_unary
|
2346 |
|
|
&& TREE_CODE_CLASS (op) != tcc_binary)
|
2347 |
|
|
return false;
|
2348 |
|
|
|
2349 |
|
|
return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
|
2350 |
|
|
honor_nans, honor_snans, divisor,
|
2351 |
|
|
&handled);
|
2352 |
|
|
}
|
2353 |
|
|
|
2354 |
|
|
/* Return true if EXPR can trap, as in dereferencing an invalid pointer
|
2355 |
|
|
location or floating point arithmetic. C.f. the rtl version, may_trap_p.
|
2356 |
|
|
This routine expects only GIMPLE lhs or rhs input. */
|
2357 |
|
|
|
2358 |
|
|
bool
|
2359 |
|
|
tree_could_trap_p (tree expr)
|
2360 |
|
|
{
|
2361 |
|
|
enum tree_code code;
|
2362 |
|
|
bool fp_operation = false;
|
2363 |
|
|
bool honor_trapv = false;
|
2364 |
|
|
tree t, base, div = NULL_TREE;
|
2365 |
|
|
|
2366 |
|
|
if (!expr)
|
2367 |
|
|
return false;
|
2368 |
|
|
|
2369 |
|
|
code = TREE_CODE (expr);
|
2370 |
|
|
t = TREE_TYPE (expr);
|
2371 |
|
|
|
2372 |
|
|
if (t)
|
2373 |
|
|
{
|
2374 |
|
|
if (COMPARISON_CLASS_P (expr))
|
2375 |
|
|
fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
|
2376 |
|
|
else
|
2377 |
|
|
fp_operation = FLOAT_TYPE_P (t);
|
2378 |
|
|
honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
|
2379 |
|
|
}
|
2380 |
|
|
|
2381 |
|
|
if (TREE_CODE_CLASS (code) == tcc_binary)
|
2382 |
|
|
div = TREE_OPERAND (expr, 1);
|
2383 |
|
|
if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
|
2384 |
|
|
return true;
|
2385 |
|
|
|
2386 |
|
|
restart:
|
2387 |
|
|
switch (code)
|
2388 |
|
|
{
|
2389 |
|
|
case TARGET_MEM_REF:
|
2390 |
|
|
/* For TARGET_MEM_REFs use the information based on the original
|
2391 |
|
|
reference. */
|
2392 |
|
|
expr = TMR_ORIGINAL (expr);
|
2393 |
|
|
code = TREE_CODE (expr);
|
2394 |
|
|
goto restart;
|
2395 |
|
|
|
2396 |
|
|
case COMPONENT_REF:
|
2397 |
|
|
case REALPART_EXPR:
|
2398 |
|
|
case IMAGPART_EXPR:
|
2399 |
|
|
case BIT_FIELD_REF:
|
2400 |
|
|
case VIEW_CONVERT_EXPR:
|
2401 |
|
|
case WITH_SIZE_EXPR:
|
2402 |
|
|
expr = TREE_OPERAND (expr, 0);
|
2403 |
|
|
code = TREE_CODE (expr);
|
2404 |
|
|
goto restart;
|
2405 |
|
|
|
2406 |
|
|
case ARRAY_RANGE_REF:
|
2407 |
|
|
base = TREE_OPERAND (expr, 0);
|
2408 |
|
|
if (tree_could_trap_p (base))
|
2409 |
|
|
return true;
|
2410 |
|
|
if (TREE_THIS_NOTRAP (expr))
|
2411 |
|
|
return false;
|
2412 |
|
|
return !range_in_array_bounds_p (expr);
|
2413 |
|
|
|
2414 |
|
|
case ARRAY_REF:
|
2415 |
|
|
base = TREE_OPERAND (expr, 0);
|
2416 |
|
|
if (tree_could_trap_p (base))
|
2417 |
|
|
return true;
|
2418 |
|
|
if (TREE_THIS_NOTRAP (expr))
|
2419 |
|
|
return false;
|
2420 |
|
|
return !in_array_bounds_p (expr);
|
2421 |
|
|
|
2422 |
|
|
case INDIRECT_REF:
|
2423 |
|
|
case ALIGN_INDIRECT_REF:
|
2424 |
|
|
case MISALIGNED_INDIRECT_REF:
|
2425 |
|
|
return !TREE_THIS_NOTRAP (expr);
|
2426 |
|
|
|
2427 |
|
|
case ASM_EXPR:
|
2428 |
|
|
return TREE_THIS_VOLATILE (expr);
|
2429 |
|
|
|
2430 |
|
|
case CALL_EXPR:
|
2431 |
|
|
t = get_callee_fndecl (expr);
|
2432 |
|
|
/* Assume that calls to weak functions may trap. */
|
2433 |
|
|
if (!t || !DECL_P (t) || DECL_WEAK (t))
|
2434 |
|
|
return true;
|
2435 |
|
|
return false;
|
2436 |
|
|
|
2437 |
|
|
default:
|
2438 |
|
|
return false;
|
2439 |
|
|
}
|
2440 |
|
|
}
|
2441 |
|
|
|
2442 |
|
|
|
2443 |
|
|
/* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
|
2444 |
|
|
an assignment or a conditional) may throw. */
|
2445 |
|
|
|
2446 |
|
|
static bool
|
2447 |
|
|
stmt_could_throw_1_p (gimple stmt)
|
2448 |
|
|
{
|
2449 |
|
|
enum tree_code code = gimple_expr_code (stmt);
|
2450 |
|
|
bool honor_nans = false;
|
2451 |
|
|
bool honor_snans = false;
|
2452 |
|
|
bool fp_operation = false;
|
2453 |
|
|
bool honor_trapv = false;
|
2454 |
|
|
tree t;
|
2455 |
|
|
size_t i;
|
2456 |
|
|
bool handled, ret;
|
2457 |
|
|
|
2458 |
|
|
if (TREE_CODE_CLASS (code) == tcc_comparison
|
2459 |
|
|
|| TREE_CODE_CLASS (code) == tcc_unary
|
2460 |
|
|
|| TREE_CODE_CLASS (code) == tcc_binary)
|
2461 |
|
|
{
|
2462 |
|
|
t = gimple_expr_type (stmt);
|
2463 |
|
|
fp_operation = FLOAT_TYPE_P (t);
|
2464 |
|
|
if (fp_operation)
|
2465 |
|
|
{
|
2466 |
|
|
honor_nans = flag_trapping_math && !flag_finite_math_only;
|
2467 |
|
|
honor_snans = flag_signaling_nans != 0;
|
2468 |
|
|
}
|
2469 |
|
|
else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
|
2470 |
|
|
honor_trapv = true;
|
2471 |
|
|
}
|
2472 |
|
|
|
2473 |
|
|
/* Check if the main expression may trap. */
|
2474 |
|
|
t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
|
2475 |
|
|
ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
|
2476 |
|
|
honor_nans, honor_snans, t,
|
2477 |
|
|
&handled);
|
2478 |
|
|
if (handled)
|
2479 |
|
|
return ret;
|
2480 |
|
|
|
2481 |
|
|
/* If the expression does not trap, see if any of the individual operands may
|
2482 |
|
|
trap. */
|
2483 |
|
|
for (i = 0; i < gimple_num_ops (stmt); i++)
|
2484 |
|
|
if (tree_could_trap_p (gimple_op (stmt, i)))
|
2485 |
|
|
return true;
|
2486 |
|
|
|
2487 |
|
|
return false;
|
2488 |
|
|
}
|
2489 |
|
|
|
2490 |
|
|
|
2491 |
|
|
/* Return true if statement STMT could throw an exception. */
|
2492 |
|
|
|
2493 |
|
|
bool
|
2494 |
|
|
stmt_could_throw_p (gimple stmt)
|
2495 |
|
|
{
|
2496 |
|
|
if (!flag_exceptions)
|
2497 |
|
|
return false;
|
2498 |
|
|
|
2499 |
|
|
/* The only statements that can throw an exception are assignments,
|
2500 |
|
|
conditionals, calls, resx, and asms. */
|
2501 |
|
|
switch (gimple_code (stmt))
|
2502 |
|
|
{
|
2503 |
|
|
case GIMPLE_RESX:
|
2504 |
|
|
return true;
|
2505 |
|
|
|
2506 |
|
|
case GIMPLE_CALL:
|
2507 |
|
|
return !gimple_call_nothrow_p (stmt);
|
2508 |
|
|
|
2509 |
|
|
case GIMPLE_ASSIGN:
|
2510 |
|
|
case GIMPLE_COND:
|
2511 |
|
|
if (!flag_non_call_exceptions)
|
2512 |
|
|
return false;
|
2513 |
|
|
return stmt_could_throw_1_p (stmt);
|
2514 |
|
|
|
2515 |
|
|
case GIMPLE_ASM:
|
2516 |
|
|
if (!flag_non_call_exceptions)
|
2517 |
|
|
return false;
|
2518 |
|
|
return gimple_asm_volatile_p (stmt);
|
2519 |
|
|
|
2520 |
|
|
default:
|
2521 |
|
|
return false;
|
2522 |
|
|
}
|
2523 |
|
|
}
|
2524 |
|
|
|
2525 |
|
|
|
2526 |
|
|
/* Return true if expression T could throw an exception. */
|
2527 |
|
|
|
2528 |
|
|
bool
|
2529 |
|
|
tree_could_throw_p (tree t)
|
2530 |
|
|
{
|
2531 |
|
|
if (!flag_exceptions)
|
2532 |
|
|
return false;
|
2533 |
|
|
if (TREE_CODE (t) == MODIFY_EXPR)
|
2534 |
|
|
{
|
2535 |
|
|
if (flag_non_call_exceptions
|
2536 |
|
|
&& tree_could_trap_p (TREE_OPERAND (t, 0)))
|
2537 |
|
|
return true;
|
2538 |
|
|
t = TREE_OPERAND (t, 1);
|
2539 |
|
|
}
|
2540 |
|
|
|
2541 |
|
|
if (TREE_CODE (t) == WITH_SIZE_EXPR)
|
2542 |
|
|
t = TREE_OPERAND (t, 0);
|
2543 |
|
|
if (TREE_CODE (t) == CALL_EXPR)
|
2544 |
|
|
return (call_expr_flags (t) & ECF_NOTHROW) == 0;
|
2545 |
|
|
if (flag_non_call_exceptions)
|
2546 |
|
|
return tree_could_trap_p (t);
|
2547 |
|
|
return false;
|
2548 |
|
|
}
|
2549 |
|
|
|
2550 |
|
|
/* Return true if STMT can throw an exception that is not caught within
|
2551 |
|
|
the current function (CFUN). */
|
2552 |
|
|
|
2553 |
|
|
bool
|
2554 |
|
|
stmt_can_throw_external (gimple stmt)
|
2555 |
|
|
{
|
2556 |
|
|
int lp_nr;
|
2557 |
|
|
|
2558 |
|
|
if (!stmt_could_throw_p (stmt))
|
2559 |
|
|
return false;
|
2560 |
|
|
|
2561 |
|
|
lp_nr = lookup_stmt_eh_lp (stmt);
|
2562 |
|
|
return lp_nr == 0;
|
2563 |
|
|
}
|
2564 |
|
|
|
2565 |
|
|
/* Return true if STMT can throw an exception that is caught within
|
2566 |
|
|
the current function (CFUN). */
|
2567 |
|
|
|
2568 |
|
|
bool
|
2569 |
|
|
stmt_can_throw_internal (gimple stmt)
|
2570 |
|
|
{
|
2571 |
|
|
int lp_nr;
|
2572 |
|
|
|
2573 |
|
|
if (!stmt_could_throw_p (stmt))
|
2574 |
|
|
return false;
|
2575 |
|
|
|
2576 |
|
|
lp_nr = lookup_stmt_eh_lp (stmt);
|
2577 |
|
|
return lp_nr > 0;
|
2578 |
|
|
}
|
2579 |
|
|
|
2580 |
|
|
/* Given a statement STMT in IFUN, if STMT can no longer throw, then
|
2581 |
|
|
remove any entry it might have from the EH table. Return true if
|
2582 |
|
|
any change was made. */
|
2583 |
|
|
|
2584 |
|
|
bool
|
2585 |
|
|
maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
|
2586 |
|
|
{
|
2587 |
|
|
if (stmt_could_throw_p (stmt))
|
2588 |
|
|
return false;
|
2589 |
|
|
return remove_stmt_from_eh_lp_fn (ifun, stmt);
|
2590 |
|
|
}
|
2591 |
|
|
|
2592 |
|
|
/* Likewise, but always use the current function. */
|
2593 |
|
|
|
2594 |
|
|
bool
|
2595 |
|
|
maybe_clean_eh_stmt (gimple stmt)
|
2596 |
|
|
{
|
2597 |
|
|
return maybe_clean_eh_stmt_fn (cfun, stmt);
|
2598 |
|
|
}
|
2599 |
|
|
|
2600 |
|
|
/* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
|
2601 |
|
|
OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
|
2602 |
|
|
in the table if it should be in there. Return TRUE if a replacement was
|
2603 |
|
|
done that my require an EH edge purge. */
|
2604 |
|
|
|
2605 |
|
|
bool
|
2606 |
|
|
maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
|
2607 |
|
|
{
|
2608 |
|
|
int lp_nr = lookup_stmt_eh_lp (old_stmt);
|
2609 |
|
|
|
2610 |
|
|
if (lp_nr != 0)
|
2611 |
|
|
{
|
2612 |
|
|
bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
|
2613 |
|
|
|
2614 |
|
|
if (new_stmt == old_stmt && new_stmt_could_throw)
|
2615 |
|
|
return false;
|
2616 |
|
|
|
2617 |
|
|
remove_stmt_from_eh_lp (old_stmt);
|
2618 |
|
|
if (new_stmt_could_throw)
|
2619 |
|
|
{
|
2620 |
|
|
add_stmt_to_eh_lp (new_stmt, lp_nr);
|
2621 |
|
|
return false;
|
2622 |
|
|
}
|
2623 |
|
|
else
|
2624 |
|
|
return true;
|
2625 |
|
|
}
|
2626 |
|
|
|
2627 |
|
|
return false;
|
2628 |
|
|
}
|
2629 |
|
|
|
2630 |
|
|
/* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
|
2631 |
|
|
in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
|
2632 |
|
|
operand is the return value of duplicate_eh_regions. */
|
2633 |
|
|
|
2634 |
|
|
bool
|
2635 |
|
|
maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
|
2636 |
|
|
struct function *old_fun, gimple old_stmt,
|
2637 |
|
|
struct pointer_map_t *map, int default_lp_nr)
|
2638 |
|
|
{
|
2639 |
|
|
int old_lp_nr, new_lp_nr;
|
2640 |
|
|
void **slot;
|
2641 |
|
|
|
2642 |
|
|
if (!stmt_could_throw_p (new_stmt))
|
2643 |
|
|
return false;
|
2644 |
|
|
|
2645 |
|
|
old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
|
2646 |
|
|
if (old_lp_nr == 0)
|
2647 |
|
|
{
|
2648 |
|
|
if (default_lp_nr == 0)
|
2649 |
|
|
return false;
|
2650 |
|
|
new_lp_nr = default_lp_nr;
|
2651 |
|
|
}
|
2652 |
|
|
else if (old_lp_nr > 0)
|
2653 |
|
|
{
|
2654 |
|
|
eh_landing_pad old_lp, new_lp;
|
2655 |
|
|
|
2656 |
|
|
old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
|
2657 |
|
|
slot = pointer_map_contains (map, old_lp);
|
2658 |
|
|
new_lp = (eh_landing_pad) *slot;
|
2659 |
|
|
new_lp_nr = new_lp->index;
|
2660 |
|
|
}
|
2661 |
|
|
else
|
2662 |
|
|
{
|
2663 |
|
|
eh_region old_r, new_r;
|
2664 |
|
|
|
2665 |
|
|
old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
|
2666 |
|
|
slot = pointer_map_contains (map, old_r);
|
2667 |
|
|
new_r = (eh_region) *slot;
|
2668 |
|
|
new_lp_nr = -new_r->index;
|
2669 |
|
|
}
|
2670 |
|
|
|
2671 |
|
|
add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
|
2672 |
|
|
return true;
|
2673 |
|
|
}
|
2674 |
|
|
|
2675 |
|
|
/* Similar, but both OLD_STMT and NEW_STMT are within the current function,
|
2676 |
|
|
and thus no remapping is required. */
|
2677 |
|
|
|
2678 |
|
|
bool
|
2679 |
|
|
maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
|
2680 |
|
|
{
|
2681 |
|
|
int lp_nr;
|
2682 |
|
|
|
2683 |
|
|
if (!stmt_could_throw_p (new_stmt))
|
2684 |
|
|
return false;
|
2685 |
|
|
|
2686 |
|
|
lp_nr = lookup_stmt_eh_lp (old_stmt);
|
2687 |
|
|
if (lp_nr == 0)
|
2688 |
|
|
return false;
|
2689 |
|
|
|
2690 |
|
|
add_stmt_to_eh_lp (new_stmt, lp_nr);
|
2691 |
|
|
return true;
|
2692 |
|
|
}
|
2693 |
|
|
|
2694 |
|
|
/* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
|
2695 |
|
|
GIMPLE_TRY) that are similar enough to be considered the same. Currently
|
2696 |
|
|
this only handles handlers consisting of a single call, as that's the
|
2697 |
|
|
important case for C++: a destructor call for a particular object showing
|
2698 |
|
|
up in multiple handlers. */
|
2699 |
|
|
|
2700 |
|
|
static bool
|
2701 |
|
|
same_handler_p (gimple_seq oneh, gimple_seq twoh)
|
2702 |
|
|
{
|
2703 |
|
|
gimple_stmt_iterator gsi;
|
2704 |
|
|
gimple ones, twos;
|
2705 |
|
|
unsigned int ai;
|
2706 |
|
|
|
2707 |
|
|
gsi = gsi_start (oneh);
|
2708 |
|
|
if (!gsi_one_before_end_p (gsi))
|
2709 |
|
|
return false;
|
2710 |
|
|
ones = gsi_stmt (gsi);
|
2711 |
|
|
|
2712 |
|
|
gsi = gsi_start (twoh);
|
2713 |
|
|
if (!gsi_one_before_end_p (gsi))
|
2714 |
|
|
return false;
|
2715 |
|
|
twos = gsi_stmt (gsi);
|
2716 |
|
|
|
2717 |
|
|
if (!is_gimple_call (ones)
|
2718 |
|
|
|| !is_gimple_call (twos)
|
2719 |
|
|
|| gimple_call_lhs (ones)
|
2720 |
|
|
|| gimple_call_lhs (twos)
|
2721 |
|
|
|| gimple_call_chain (ones)
|
2722 |
|
|
|| gimple_call_chain (twos)
|
2723 |
|
|
|| !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
|
2724 |
|
|
|| gimple_call_num_args (ones) != gimple_call_num_args (twos))
|
2725 |
|
|
return false;
|
2726 |
|
|
|
2727 |
|
|
for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
|
2728 |
|
|
if (!operand_equal_p (gimple_call_arg (ones, ai),
|
2729 |
|
|
gimple_call_arg (twos, ai), 0))
|
2730 |
|
|
return false;
|
2731 |
|
|
|
2732 |
|
|
return true;
|
2733 |
|
|
}
|
2734 |
|
|
|
2735 |
|
|
/* Optimize
|
2736 |
|
|
try { A() } finally { try { ~B() } catch { ~A() } }
|
2737 |
|
|
try { ... } finally { ~A() }
|
2738 |
|
|
into
|
2739 |
|
|
try { A() } catch { ~B() }
|
2740 |
|
|
try { ~B() ... } finally { ~A() }
|
2741 |
|
|
|
2742 |
|
|
This occurs frequently in C++, where A is a local variable and B is a
|
2743 |
|
|
temporary used in the initializer for A. */
|
2744 |
|
|
|
2745 |
|
|
static void
|
2746 |
|
|
optimize_double_finally (gimple one, gimple two)
|
2747 |
|
|
{
|
2748 |
|
|
gimple oneh;
|
2749 |
|
|
gimple_stmt_iterator gsi;
|
2750 |
|
|
|
2751 |
|
|
gsi = gsi_start (gimple_try_cleanup (one));
|
2752 |
|
|
if (!gsi_one_before_end_p (gsi))
|
2753 |
|
|
return;
|
2754 |
|
|
|
2755 |
|
|
oneh = gsi_stmt (gsi);
|
2756 |
|
|
if (gimple_code (oneh) != GIMPLE_TRY
|
2757 |
|
|
|| gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
|
2758 |
|
|
return;
|
2759 |
|
|
|
2760 |
|
|
if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
|
2761 |
|
|
{
|
2762 |
|
|
gimple_seq seq = gimple_try_eval (oneh);
|
2763 |
|
|
|
2764 |
|
|
gimple_try_set_cleanup (one, seq);
|
2765 |
|
|
gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
|
2766 |
|
|
seq = copy_gimple_seq_and_replace_locals (seq);
|
2767 |
|
|
gimple_seq_add_seq (&seq, gimple_try_eval (two));
|
2768 |
|
|
gimple_try_set_eval (two, seq);
|
2769 |
|
|
}
|
2770 |
|
|
}
|
2771 |
|
|
|
2772 |
|
|
/* Perform EH refactoring optimizations that are simpler to do when code
|
2773 |
|
|
flow has been lowered but EH structures haven't. */
|
2774 |
|
|
|
2775 |
|
|
static void
|
2776 |
|
|
refactor_eh_r (gimple_seq seq)
|
2777 |
|
|
{
|
2778 |
|
|
gimple_stmt_iterator gsi;
|
2779 |
|
|
gimple one, two;
|
2780 |
|
|
|
2781 |
|
|
one = NULL;
|
2782 |
|
|
two = NULL;
|
2783 |
|
|
gsi = gsi_start (seq);
|
2784 |
|
|
while (1)
|
2785 |
|
|
{
|
2786 |
|
|
one = two;
|
2787 |
|
|
if (gsi_end_p (gsi))
|
2788 |
|
|
two = NULL;
|
2789 |
|
|
else
|
2790 |
|
|
two = gsi_stmt (gsi);
|
2791 |
|
|
if (one
|
2792 |
|
|
&& two
|
2793 |
|
|
&& gimple_code (one) == GIMPLE_TRY
|
2794 |
|
|
&& gimple_code (two) == GIMPLE_TRY
|
2795 |
|
|
&& gimple_try_kind (one) == GIMPLE_TRY_FINALLY
|
2796 |
|
|
&& gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
|
2797 |
|
|
optimize_double_finally (one, two);
|
2798 |
|
|
if (one)
|
2799 |
|
|
switch (gimple_code (one))
|
2800 |
|
|
{
|
2801 |
|
|
case GIMPLE_TRY:
|
2802 |
|
|
refactor_eh_r (gimple_try_eval (one));
|
2803 |
|
|
refactor_eh_r (gimple_try_cleanup (one));
|
2804 |
|
|
break;
|
2805 |
|
|
case GIMPLE_CATCH:
|
2806 |
|
|
refactor_eh_r (gimple_catch_handler (one));
|
2807 |
|
|
break;
|
2808 |
|
|
case GIMPLE_EH_FILTER:
|
2809 |
|
|
refactor_eh_r (gimple_eh_filter_failure (one));
|
2810 |
|
|
break;
|
2811 |
|
|
default:
|
2812 |
|
|
break;
|
2813 |
|
|
}
|
2814 |
|
|
if (two)
|
2815 |
|
|
gsi_next (&gsi);
|
2816 |
|
|
else
|
2817 |
|
|
break;
|
2818 |
|
|
}
|
2819 |
|
|
}
|
2820 |
|
|
|
2821 |
|
|
static unsigned
|
2822 |
|
|
refactor_eh (void)
|
2823 |
|
|
{
|
2824 |
|
|
refactor_eh_r (gimple_body (current_function_decl));
|
2825 |
|
|
return 0;
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
static bool
|
2829 |
|
|
gate_refactor_eh (void)
|
2830 |
|
|
{
|
2831 |
|
|
return flag_exceptions != 0;
|
2832 |
|
|
}
|
2833 |
|
|
|
2834 |
|
|
struct gimple_opt_pass pass_refactor_eh =
|
2835 |
|
|
{
|
2836 |
|
|
{
|
2837 |
|
|
GIMPLE_PASS,
|
2838 |
|
|
"ehopt", /* name */
|
2839 |
|
|
gate_refactor_eh, /* gate */
|
2840 |
|
|
refactor_eh, /* execute */
|
2841 |
|
|
NULL, /* sub */
|
2842 |
|
|
NULL, /* next */
|
2843 |
|
|
0, /* static_pass_number */
|
2844 |
|
|
TV_TREE_EH, /* tv_id */
|
2845 |
|
|
PROP_gimple_lcf, /* properties_required */
|
2846 |
|
|
0, /* properties_provided */
|
2847 |
|
|
0, /* properties_destroyed */
|
2848 |
|
|
0, /* todo_flags_start */
|
2849 |
|
|
TODO_dump_func /* todo_flags_finish */
|
2850 |
|
|
}
|
2851 |
|
|
};
|
2852 |
|
|
|
2853 |
|
|
/* At the end of gimple optimization, we can lower RESX. */
|
2854 |
|
|
|
2855 |
|
|
static bool
|
2856 |
|
|
lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
|
2857 |
|
|
{
|
2858 |
|
|
int lp_nr;
|
2859 |
|
|
eh_region src_r, dst_r;
|
2860 |
|
|
gimple_stmt_iterator gsi;
|
2861 |
|
|
gimple x;
|
2862 |
|
|
tree fn, src_nr;
|
2863 |
|
|
bool ret = false;
|
2864 |
|
|
|
2865 |
|
|
lp_nr = lookup_stmt_eh_lp (stmt);
|
2866 |
|
|
if (lp_nr != 0)
|
2867 |
|
|
dst_r = get_eh_region_from_lp_number (lp_nr);
|
2868 |
|
|
else
|
2869 |
|
|
dst_r = NULL;
|
2870 |
|
|
|
2871 |
|
|
src_r = get_eh_region_from_number (gimple_resx_region (stmt));
|
2872 |
|
|
gsi = gsi_last_bb (bb);
|
2873 |
|
|
|
2874 |
|
|
if (src_r == NULL)
|
2875 |
|
|
{
|
2876 |
|
|
/* We can wind up with no source region when pass_cleanup_eh shows
|
2877 |
|
|
that there are no entries into an eh region and deletes it, but
|
2878 |
|
|
then the block that contains the resx isn't removed. This can
|
2879 |
|
|
happen without optimization when the switch statement created by
|
2880 |
|
|
lower_try_finally_switch isn't simplified to remove the eh case.
|
2881 |
|
|
|
2882 |
|
|
Resolve this by expanding the resx node to an abort. */
|
2883 |
|
|
|
2884 |
|
|
fn = implicit_built_in_decls[BUILT_IN_TRAP];
|
2885 |
|
|
x = gimple_build_call (fn, 0);
|
2886 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
2887 |
|
|
|
2888 |
|
|
while (EDGE_COUNT (bb->succs) > 0)
|
2889 |
|
|
remove_edge (EDGE_SUCC (bb, 0));
|
2890 |
|
|
}
|
2891 |
|
|
else if (dst_r)
|
2892 |
|
|
{
|
2893 |
|
|
/* When we have a destination region, we resolve this by copying
|
2894 |
|
|
the excptr and filter values into place, and changing the edge
|
2895 |
|
|
to immediately after the landing pad. */
|
2896 |
|
|
edge e;
|
2897 |
|
|
|
2898 |
|
|
if (lp_nr < 0)
|
2899 |
|
|
{
|
2900 |
|
|
basic_block new_bb;
|
2901 |
|
|
void **slot;
|
2902 |
|
|
tree lab;
|
2903 |
|
|
|
2904 |
|
|
/* We are resuming into a MUST_NOT_CALL region. Expand a call to
|
2905 |
|
|
the failure decl into a new block, if needed. */
|
2906 |
|
|
gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
|
2907 |
|
|
|
2908 |
|
|
slot = pointer_map_contains (mnt_map, dst_r);
|
2909 |
|
|
if (slot == NULL)
|
2910 |
|
|
{
|
2911 |
|
|
gimple_stmt_iterator gsi2;
|
2912 |
|
|
|
2913 |
|
|
new_bb = create_empty_bb (bb);
|
2914 |
|
|
lab = gimple_block_label (new_bb);
|
2915 |
|
|
gsi2 = gsi_start_bb (new_bb);
|
2916 |
|
|
|
2917 |
|
|
fn = dst_r->u.must_not_throw.failure_decl;
|
2918 |
|
|
x = gimple_build_call (fn, 0);
|
2919 |
|
|
gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
|
2920 |
|
|
gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
|
2921 |
|
|
|
2922 |
|
|
slot = pointer_map_insert (mnt_map, dst_r);
|
2923 |
|
|
*slot = lab;
|
2924 |
|
|
}
|
2925 |
|
|
else
|
2926 |
|
|
{
|
2927 |
|
|
lab = (tree) *slot;
|
2928 |
|
|
new_bb = label_to_block (lab);
|
2929 |
|
|
}
|
2930 |
|
|
|
2931 |
|
|
gcc_assert (EDGE_COUNT (bb->succs) == 0);
|
2932 |
|
|
e = make_edge (bb, new_bb, EDGE_FALLTHRU);
|
2933 |
|
|
e->count = bb->count;
|
2934 |
|
|
e->probability = REG_BR_PROB_BASE;
|
2935 |
|
|
}
|
2936 |
|
|
else
|
2937 |
|
|
{
|
2938 |
|
|
edge_iterator ei;
|
2939 |
|
|
tree dst_nr = build_int_cst (NULL, dst_r->index);
|
2940 |
|
|
|
2941 |
|
|
fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
|
2942 |
|
|
src_nr = build_int_cst (NULL, src_r->index);
|
2943 |
|
|
x = gimple_build_call (fn, 2, dst_nr, src_nr);
|
2944 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
2945 |
|
|
|
2946 |
|
|
/* Update the flags for the outgoing edge. */
|
2947 |
|
|
e = single_succ_edge (bb);
|
2948 |
|
|
gcc_assert (e->flags & EDGE_EH);
|
2949 |
|
|
e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
|
2950 |
|
|
|
2951 |
|
|
/* If there are no more EH users of the landing pad, delete it. */
|
2952 |
|
|
FOR_EACH_EDGE (e, ei, e->dest->preds)
|
2953 |
|
|
if (e->flags & EDGE_EH)
|
2954 |
|
|
break;
|
2955 |
|
|
if (e == NULL)
|
2956 |
|
|
{
|
2957 |
|
|
eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
|
2958 |
|
|
remove_eh_landing_pad (lp);
|
2959 |
|
|
}
|
2960 |
|
|
}
|
2961 |
|
|
|
2962 |
|
|
ret = true;
|
2963 |
|
|
}
|
2964 |
|
|
else
|
2965 |
|
|
{
|
2966 |
|
|
tree var;
|
2967 |
|
|
|
2968 |
|
|
/* When we don't have a destination region, this exception escapes
|
2969 |
|
|
up the call chain. We resolve this by generating a call to the
|
2970 |
|
|
_Unwind_Resume library function. */
|
2971 |
|
|
|
2972 |
|
|
/* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
|
2973 |
|
|
with no arguments for C++ and Java. Check for that. */
|
2974 |
|
|
if (src_r->use_cxa_end_cleanup)
|
2975 |
|
|
{
|
2976 |
|
|
fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
|
2977 |
|
|
x = gimple_build_call (fn, 0);
|
2978 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
2979 |
|
|
}
|
2980 |
|
|
else
|
2981 |
|
|
{
|
2982 |
|
|
fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
|
2983 |
|
|
src_nr = build_int_cst (NULL, src_r->index);
|
2984 |
|
|
x = gimple_build_call (fn, 1, src_nr);
|
2985 |
|
|
var = create_tmp_var (ptr_type_node, NULL);
|
2986 |
|
|
var = make_ssa_name (var, x);
|
2987 |
|
|
gimple_call_set_lhs (x, var);
|
2988 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
2989 |
|
|
|
2990 |
|
|
fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
|
2991 |
|
|
x = gimple_build_call (fn, 1, var);
|
2992 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
2993 |
|
|
}
|
2994 |
|
|
|
2995 |
|
|
gcc_assert (EDGE_COUNT (bb->succs) == 0);
|
2996 |
|
|
}
|
2997 |
|
|
|
2998 |
|
|
gsi_remove (&gsi, true);
|
2999 |
|
|
|
3000 |
|
|
return ret;
|
3001 |
|
|
}
|
3002 |
|
|
|
3003 |
|
|
static unsigned
|
3004 |
|
|
execute_lower_resx (void)
|
3005 |
|
|
{
|
3006 |
|
|
basic_block bb;
|
3007 |
|
|
struct pointer_map_t *mnt_map;
|
3008 |
|
|
bool dominance_invalidated = false;
|
3009 |
|
|
bool any_rewritten = false;
|
3010 |
|
|
|
3011 |
|
|
mnt_map = pointer_map_create ();
|
3012 |
|
|
|
3013 |
|
|
FOR_EACH_BB (bb)
|
3014 |
|
|
{
|
3015 |
|
|
gimple last = last_stmt (bb);
|
3016 |
|
|
if (last && is_gimple_resx (last))
|
3017 |
|
|
{
|
3018 |
|
|
dominance_invalidated |= lower_resx (bb, last, mnt_map);
|
3019 |
|
|
any_rewritten = true;
|
3020 |
|
|
}
|
3021 |
|
|
}
|
3022 |
|
|
|
3023 |
|
|
pointer_map_destroy (mnt_map);
|
3024 |
|
|
|
3025 |
|
|
if (dominance_invalidated)
|
3026 |
|
|
{
|
3027 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
3028 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
3029 |
|
|
}
|
3030 |
|
|
|
3031 |
|
|
return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
|
3032 |
|
|
}
|
3033 |
|
|
|
3034 |
|
|
static bool
|
3035 |
|
|
gate_lower_resx (void)
|
3036 |
|
|
{
|
3037 |
|
|
return flag_exceptions != 0;
|
3038 |
|
|
}
|
3039 |
|
|
|
3040 |
|
|
struct gimple_opt_pass pass_lower_resx =
|
3041 |
|
|
{
|
3042 |
|
|
{
|
3043 |
|
|
GIMPLE_PASS,
|
3044 |
|
|
"resx", /* name */
|
3045 |
|
|
gate_lower_resx, /* gate */
|
3046 |
|
|
execute_lower_resx, /* execute */
|
3047 |
|
|
NULL, /* sub */
|
3048 |
|
|
NULL, /* next */
|
3049 |
|
|
0, /* static_pass_number */
|
3050 |
|
|
TV_TREE_EH, /* tv_id */
|
3051 |
|
|
PROP_gimple_lcf, /* properties_required */
|
3052 |
|
|
0, /* properties_provided */
|
3053 |
|
|
0, /* properties_destroyed */
|
3054 |
|
|
0, /* todo_flags_start */
|
3055 |
|
|
TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
|
3056 |
|
|
}
|
3057 |
|
|
};
|
3058 |
|
|
|
3059 |
|
|
|
3060 |
|
|
/* At the end of inlining, we can lower EH_DISPATCH. Return true when
|
3061 |
|
|
we have found some duplicate labels and removed some edges. */
|
3062 |
|
|
|
3063 |
|
|
static bool
|
3064 |
|
|
lower_eh_dispatch (basic_block src, gimple stmt)
|
3065 |
|
|
{
|
3066 |
|
|
gimple_stmt_iterator gsi;
|
3067 |
|
|
int region_nr;
|
3068 |
|
|
eh_region r;
|
3069 |
|
|
tree filter, fn;
|
3070 |
|
|
gimple x;
|
3071 |
|
|
bool redirected = false;
|
3072 |
|
|
|
3073 |
|
|
region_nr = gimple_eh_dispatch_region (stmt);
|
3074 |
|
|
r = get_eh_region_from_number (region_nr);
|
3075 |
|
|
|
3076 |
|
|
gsi = gsi_last_bb (src);
|
3077 |
|
|
|
3078 |
|
|
switch (r->type)
|
3079 |
|
|
{
|
3080 |
|
|
case ERT_TRY:
|
3081 |
|
|
{
|
3082 |
|
|
VEC (tree, heap) *labels = NULL;
|
3083 |
|
|
tree default_label = NULL;
|
3084 |
|
|
eh_catch c;
|
3085 |
|
|
edge_iterator ei;
|
3086 |
|
|
edge e;
|
3087 |
|
|
struct pointer_set_t *seen_values = pointer_set_create ();
|
3088 |
|
|
|
3089 |
|
|
/* Collect the labels for a switch. Zero the post_landing_pad
|
3090 |
|
|
field becase we'll no longer have anything keeping these labels
|
3091 |
|
|
in existance and the optimizer will be free to merge these
|
3092 |
|
|
blocks at will. */
|
3093 |
|
|
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
|
3094 |
|
|
{
|
3095 |
|
|
tree tp_node, flt_node, lab = c->label;
|
3096 |
|
|
bool have_label = false;
|
3097 |
|
|
|
3098 |
|
|
c->label = NULL;
|
3099 |
|
|
tp_node = c->type_list;
|
3100 |
|
|
flt_node = c->filter_list;
|
3101 |
|
|
|
3102 |
|
|
if (tp_node == NULL)
|
3103 |
|
|
{
|
3104 |
|
|
default_label = lab;
|
3105 |
|
|
break;
|
3106 |
|
|
}
|
3107 |
|
|
do
|
3108 |
|
|
{
|
3109 |
|
|
/* Filter out duplicate labels that arise when this handler
|
3110 |
|
|
is shadowed by an earlier one. When no labels are
|
3111 |
|
|
attached to the handler anymore, we remove
|
3112 |
|
|
the corresponding edge and then we delete unreachable
|
3113 |
|
|
blocks at the end of this pass. */
|
3114 |
|
|
if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
|
3115 |
|
|
{
|
3116 |
|
|
tree t = build3 (CASE_LABEL_EXPR, void_type_node,
|
3117 |
|
|
TREE_VALUE (flt_node), NULL, lab);
|
3118 |
|
|
VEC_safe_push (tree, heap, labels, t);
|
3119 |
|
|
pointer_set_insert (seen_values, TREE_VALUE (flt_node));
|
3120 |
|
|
have_label = true;
|
3121 |
|
|
}
|
3122 |
|
|
|
3123 |
|
|
tp_node = TREE_CHAIN (tp_node);
|
3124 |
|
|
flt_node = TREE_CHAIN (flt_node);
|
3125 |
|
|
}
|
3126 |
|
|
while (tp_node);
|
3127 |
|
|
if (! have_label)
|
3128 |
|
|
{
|
3129 |
|
|
remove_edge (find_edge (src, label_to_block (lab)));
|
3130 |
|
|
redirected = true;
|
3131 |
|
|
}
|
3132 |
|
|
}
|
3133 |
|
|
|
3134 |
|
|
/* Clean up the edge flags. */
|
3135 |
|
|
FOR_EACH_EDGE (e, ei, src->succs)
|
3136 |
|
|
{
|
3137 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
3138 |
|
|
{
|
3139 |
|
|
/* If there was no catch-all, use the fallthru edge. */
|
3140 |
|
|
if (default_label == NULL)
|
3141 |
|
|
default_label = gimple_block_label (e->dest);
|
3142 |
|
|
e->flags &= ~EDGE_FALLTHRU;
|
3143 |
|
|
}
|
3144 |
|
|
}
|
3145 |
|
|
gcc_assert (default_label != NULL);
|
3146 |
|
|
|
3147 |
|
|
/* Don't generate a switch if there's only a default case.
|
3148 |
|
|
This is common in the form of try { A; } catch (...) { B; }. */
|
3149 |
|
|
if (labels == NULL)
|
3150 |
|
|
{
|
3151 |
|
|
e = single_succ_edge (src);
|
3152 |
|
|
e->flags |= EDGE_FALLTHRU;
|
3153 |
|
|
}
|
3154 |
|
|
else
|
3155 |
|
|
{
|
3156 |
|
|
fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
|
3157 |
|
|
x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
|
3158 |
|
|
filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
|
3159 |
|
|
filter = make_ssa_name (filter, x);
|
3160 |
|
|
gimple_call_set_lhs (x, filter);
|
3161 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
3162 |
|
|
|
3163 |
|
|
/* Turn the default label into a default case. */
|
3164 |
|
|
default_label = build3 (CASE_LABEL_EXPR, void_type_node,
|
3165 |
|
|
NULL, NULL, default_label);
|
3166 |
|
|
sort_case_labels (labels);
|
3167 |
|
|
|
3168 |
|
|
x = gimple_build_switch_vec (filter, default_label, labels);
|
3169 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
3170 |
|
|
|
3171 |
|
|
VEC_free (tree, heap, labels);
|
3172 |
|
|
}
|
3173 |
|
|
pointer_set_destroy (seen_values);
|
3174 |
|
|
}
|
3175 |
|
|
break;
|
3176 |
|
|
|
3177 |
|
|
case ERT_ALLOWED_EXCEPTIONS:
|
3178 |
|
|
{
|
3179 |
|
|
edge b_e = BRANCH_EDGE (src);
|
3180 |
|
|
edge f_e = FALLTHRU_EDGE (src);
|
3181 |
|
|
|
3182 |
|
|
fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
|
3183 |
|
|
x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
|
3184 |
|
|
filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
|
3185 |
|
|
filter = make_ssa_name (filter, x);
|
3186 |
|
|
gimple_call_set_lhs (x, filter);
|
3187 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
3188 |
|
|
|
3189 |
|
|
r->u.allowed.label = NULL;
|
3190 |
|
|
x = gimple_build_cond (EQ_EXPR, filter,
|
3191 |
|
|
build_int_cst (TREE_TYPE (filter),
|
3192 |
|
|
r->u.allowed.filter),
|
3193 |
|
|
NULL_TREE, NULL_TREE);
|
3194 |
|
|
gsi_insert_before (&gsi, x, GSI_SAME_STMT);
|
3195 |
|
|
|
3196 |
|
|
b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
|
3197 |
|
|
f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
|
3198 |
|
|
}
|
3199 |
|
|
break;
|
3200 |
|
|
|
3201 |
|
|
default:
|
3202 |
|
|
gcc_unreachable ();
|
3203 |
|
|
}
|
3204 |
|
|
|
3205 |
|
|
/* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
|
3206 |
|
|
gsi_remove (&gsi, true);
|
3207 |
|
|
return redirected;
|
3208 |
|
|
}
|
3209 |
|
|
|
3210 |
|
|
static unsigned
|
3211 |
|
|
execute_lower_eh_dispatch (void)
|
3212 |
|
|
{
|
3213 |
|
|
basic_block bb;
|
3214 |
|
|
bool any_rewritten = false;
|
3215 |
|
|
bool redirected = false;
|
3216 |
|
|
|
3217 |
|
|
assign_filter_values ();
|
3218 |
|
|
|
3219 |
|
|
FOR_EACH_BB (bb)
|
3220 |
|
|
{
|
3221 |
|
|
gimple last = last_stmt (bb);
|
3222 |
|
|
if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
|
3223 |
|
|
{
|
3224 |
|
|
redirected |= lower_eh_dispatch (bb, last);
|
3225 |
|
|
any_rewritten = true;
|
3226 |
|
|
}
|
3227 |
|
|
}
|
3228 |
|
|
|
3229 |
|
|
if (redirected)
|
3230 |
|
|
delete_unreachable_blocks ();
|
3231 |
|
|
return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
|
3232 |
|
|
}
|
3233 |
|
|
|
3234 |
|
|
static bool
|
3235 |
|
|
gate_lower_eh_dispatch (void)
|
3236 |
|
|
{
|
3237 |
|
|
return cfun->eh->region_tree != NULL;
|
3238 |
|
|
}
|
3239 |
|
|
|
3240 |
|
|
struct gimple_opt_pass pass_lower_eh_dispatch =
|
3241 |
|
|
{
|
3242 |
|
|
{
|
3243 |
|
|
GIMPLE_PASS,
|
3244 |
|
|
"ehdisp", /* name */
|
3245 |
|
|
gate_lower_eh_dispatch, /* gate */
|
3246 |
|
|
execute_lower_eh_dispatch, /* execute */
|
3247 |
|
|
NULL, /* sub */
|
3248 |
|
|
NULL, /* next */
|
3249 |
|
|
0, /* static_pass_number */
|
3250 |
|
|
TV_TREE_EH, /* tv_id */
|
3251 |
|
|
PROP_gimple_lcf, /* properties_required */
|
3252 |
|
|
0, /* properties_provided */
|
3253 |
|
|
0, /* properties_destroyed */
|
3254 |
|
|
0, /* todo_flags_start */
|
3255 |
|
|
TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
|
3256 |
|
|
}
|
3257 |
|
|
};
|
3258 |
|
|
|
3259 |
|
|
/* Walk statements, see what regions are really referenced and remove
|
3260 |
|
|
those that are unused. */
|
3261 |
|
|
|
3262 |
|
|
static void
|
3263 |
|
|
remove_unreachable_handlers (void)
|
3264 |
|
|
{
|
3265 |
|
|
sbitmap r_reachable, lp_reachable;
|
3266 |
|
|
eh_region region;
|
3267 |
|
|
eh_landing_pad lp;
|
3268 |
|
|
basic_block bb;
|
3269 |
|
|
int lp_nr, r_nr;
|
3270 |
|
|
|
3271 |
|
|
r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
|
3272 |
|
|
lp_reachable
|
3273 |
|
|
= sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
|
3274 |
|
|
sbitmap_zero (r_reachable);
|
3275 |
|
|
sbitmap_zero (lp_reachable);
|
3276 |
|
|
|
3277 |
|
|
FOR_EACH_BB (bb)
|
3278 |
|
|
{
|
3279 |
|
|
gimple_stmt_iterator gsi = gsi_start_bb (bb);
|
3280 |
|
|
|
3281 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
3282 |
|
|
{
|
3283 |
|
|
gimple stmt = gsi_stmt (gsi);
|
3284 |
|
|
lp_nr = lookup_stmt_eh_lp (stmt);
|
3285 |
|
|
|
3286 |
|
|
/* Negative LP numbers are MUST_NOT_THROW regions which
|
3287 |
|
|
are not considered BB enders. */
|
3288 |
|
|
if (lp_nr < 0)
|
3289 |
|
|
SET_BIT (r_reachable, -lp_nr);
|
3290 |
|
|
|
3291 |
|
|
/* Positive LP numbers are real landing pads, are are BB enders. */
|
3292 |
|
|
else if (lp_nr > 0)
|
3293 |
|
|
{
|
3294 |
|
|
gcc_assert (gsi_one_before_end_p (gsi));
|
3295 |
|
|
region = get_eh_region_from_lp_number (lp_nr);
|
3296 |
|
|
SET_BIT (r_reachable, region->index);
|
3297 |
|
|
SET_BIT (lp_reachable, lp_nr);
|
3298 |
|
|
}
|
3299 |
|
|
}
|
3300 |
|
|
}
|
3301 |
|
|
|
3302 |
|
|
if (dump_file)
|
3303 |
|
|
{
|
3304 |
|
|
fprintf (dump_file, "Before removal of unreachable regions:\n");
|
3305 |
|
|
dump_eh_tree (dump_file, cfun);
|
3306 |
|
|
fprintf (dump_file, "Reachable regions: ");
|
3307 |
|
|
dump_sbitmap_file (dump_file, r_reachable);
|
3308 |
|
|
fprintf (dump_file, "Reachable landing pads: ");
|
3309 |
|
|
dump_sbitmap_file (dump_file, lp_reachable);
|
3310 |
|
|
}
|
3311 |
|
|
|
3312 |
|
|
for (r_nr = 1;
|
3313 |
|
|
VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
|
3314 |
|
|
if (region && !TEST_BIT (r_reachable, r_nr))
|
3315 |
|
|
{
|
3316 |
|
|
if (dump_file)
|
3317 |
|
|
fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
|
3318 |
|
|
remove_eh_handler (region);
|
3319 |
|
|
}
|
3320 |
|
|
|
3321 |
|
|
for (lp_nr = 1;
|
3322 |
|
|
VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
|
3323 |
|
|
if (lp && !TEST_BIT (lp_reachable, lp_nr))
|
3324 |
|
|
{
|
3325 |
|
|
if (dump_file)
|
3326 |
|
|
fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
|
3327 |
|
|
remove_eh_landing_pad (lp);
|
3328 |
|
|
}
|
3329 |
|
|
|
3330 |
|
|
if (dump_file)
|
3331 |
|
|
{
|
3332 |
|
|
fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
|
3333 |
|
|
dump_eh_tree (dump_file, cfun);
|
3334 |
|
|
fprintf (dump_file, "\n\n");
|
3335 |
|
|
}
|
3336 |
|
|
|
3337 |
|
|
sbitmap_free (r_reachable);
|
3338 |
|
|
sbitmap_free (lp_reachable);
|
3339 |
|
|
|
3340 |
|
|
#ifdef ENABLE_CHECKING
|
3341 |
|
|
verify_eh_tree (cfun);
|
3342 |
|
|
#endif
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
/* Remove regions that do not have landing pads. This assumes
|
3346 |
|
|
that remove_unreachable_handlers has already been run, and
|
3347 |
|
|
that we've just manipulated the landing pads since then. */
|
3348 |
|
|
|
3349 |
|
|
static void
|
3350 |
|
|
remove_unreachable_handlers_no_lp (void)
|
3351 |
|
|
{
|
3352 |
|
|
eh_region r;
|
3353 |
|
|
int i;
|
3354 |
|
|
|
3355 |
|
|
for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
|
3356 |
|
|
if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
|
3357 |
|
|
{
|
3358 |
|
|
if (dump_file)
|
3359 |
|
|
fprintf (dump_file, "Removing unreachable region %d\n", i);
|
3360 |
|
|
remove_eh_handler (r);
|
3361 |
|
|
}
|
3362 |
|
|
}
|
3363 |
|
|
|
3364 |
|
|
/* Undo critical edge splitting on an EH landing pad. Earlier, we
|
3365 |
|
|
optimisticaly split all sorts of edges, including EH edges. The
|
3366 |
|
|
optimization passes in between may not have needed them; if not,
|
3367 |
|
|
we should undo the split.
|
3368 |
|
|
|
3369 |
|
|
Recognize this case by having one EH edge incoming to the BB and
|
3370 |
|
|
one normal edge outgoing; BB should be empty apart from the
|
3371 |
|
|
post_landing_pad label.
|
3372 |
|
|
|
3373 |
|
|
Note that this is slightly different from the empty handler case
|
3374 |
|
|
handled by cleanup_empty_eh, in that the actual handler may yet
|
3375 |
|
|
have actual code but the landing pad has been separated from the
|
3376 |
|
|
handler. As such, cleanup_empty_eh relies on this transformation
|
3377 |
|
|
having been done first. */
|
3378 |
|
|
|
3379 |
|
|
static bool
|
3380 |
|
|
unsplit_eh (eh_landing_pad lp)
|
3381 |
|
|
{
|
3382 |
|
|
basic_block bb = label_to_block (lp->post_landing_pad);
|
3383 |
|
|
gimple_stmt_iterator gsi;
|
3384 |
|
|
edge e_in, e_out;
|
3385 |
|
|
|
3386 |
|
|
/* Quickly check the edge counts on BB for singularity. */
|
3387 |
|
|
if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
|
3388 |
|
|
return false;
|
3389 |
|
|
e_in = EDGE_PRED (bb, 0);
|
3390 |
|
|
e_out = EDGE_SUCC (bb, 0);
|
3391 |
|
|
|
3392 |
|
|
/* Input edge must be EH and output edge must be normal. */
|
3393 |
|
|
if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
|
3394 |
|
|
return false;
|
3395 |
|
|
|
3396 |
|
|
/* The block must be empty except for the labels and debug insns. */
|
3397 |
|
|
gsi = gsi_after_labels (bb);
|
3398 |
|
|
if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
|
3399 |
|
|
gsi_next_nondebug (&gsi);
|
3400 |
|
|
if (!gsi_end_p (gsi))
|
3401 |
|
|
return false;
|
3402 |
|
|
|
3403 |
|
|
/* The destination block must not already have a landing pad
|
3404 |
|
|
for a different region. */
|
3405 |
|
|
for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
3406 |
|
|
{
|
3407 |
|
|
gimple stmt = gsi_stmt (gsi);
|
3408 |
|
|
tree lab;
|
3409 |
|
|
int lp_nr;
|
3410 |
|
|
|
3411 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL)
|
3412 |
|
|
break;
|
3413 |
|
|
lab = gimple_label_label (stmt);
|
3414 |
|
|
lp_nr = EH_LANDING_PAD_NR (lab);
|
3415 |
|
|
if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
|
3416 |
|
|
return false;
|
3417 |
|
|
}
|
3418 |
|
|
|
3419 |
|
|
/* The new destination block must not already be a destination of
|
3420 |
|
|
the source block, lest we merge fallthru and eh edges and get
|
3421 |
|
|
all sorts of confused. */
|
3422 |
|
|
if (find_edge (e_in->src, e_out->dest))
|
3423 |
|
|
return false;
|
3424 |
|
|
|
3425 |
|
|
/* ??? We can get degenerate phis due to cfg cleanups. I would have
|
3426 |
|
|
thought this should have been cleaned up by a phicprop pass, but
|
3427 |
|
|
that doesn't appear to handle virtuals. Propagate by hand. */
|
3428 |
|
|
if (!gimple_seq_empty_p (phi_nodes (bb)))
|
3429 |
|
|
{
|
3430 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
|
3431 |
|
|
{
|
3432 |
|
|
gimple use_stmt, phi = gsi_stmt (gsi);
|
3433 |
|
|
tree lhs = gimple_phi_result (phi);
|
3434 |
|
|
tree rhs = gimple_phi_arg_def (phi, 0);
|
3435 |
|
|
use_operand_p use_p;
|
3436 |
|
|
imm_use_iterator iter;
|
3437 |
|
|
|
3438 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
|
3439 |
|
|
{
|
3440 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
3441 |
|
|
SET_USE (use_p, rhs);
|
3442 |
|
|
}
|
3443 |
|
|
|
3444 |
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
|
3445 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
|
3446 |
|
|
|
3447 |
|
|
remove_phi_node (&gsi, true);
|
3448 |
|
|
}
|
3449 |
|
|
}
|
3450 |
|
|
|
3451 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3452 |
|
|
fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
|
3453 |
|
|
lp->index, e_out->dest->index);
|
3454 |
|
|
|
3455 |
|
|
/* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
|
3456 |
|
|
a successor edge, humor it. But do the real CFG change with the
|
3457 |
|
|
predecessor of E_OUT in order to preserve the ordering of arguments
|
3458 |
|
|
to the PHI nodes in E_OUT->DEST. */
|
3459 |
|
|
redirect_eh_edge_1 (e_in, e_out->dest, false);
|
3460 |
|
|
redirect_edge_pred (e_out, e_in->src);
|
3461 |
|
|
e_out->flags = e_in->flags;
|
3462 |
|
|
e_out->probability = e_in->probability;
|
3463 |
|
|
e_out->count = e_in->count;
|
3464 |
|
|
remove_edge (e_in);
|
3465 |
|
|
|
3466 |
|
|
return true;
|
3467 |
|
|
}
|
3468 |
|
|
|
3469 |
|
|
/* Examine each landing pad block and see if it matches unsplit_eh. */
|
3470 |
|
|
|
3471 |
|
|
static bool
|
3472 |
|
|
unsplit_all_eh (void)
|
3473 |
|
|
{
|
3474 |
|
|
bool changed = false;
|
3475 |
|
|
eh_landing_pad lp;
|
3476 |
|
|
int i;
|
3477 |
|
|
|
3478 |
|
|
for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
|
3479 |
|
|
if (lp)
|
3480 |
|
|
changed |= unsplit_eh (lp);
|
3481 |
|
|
|
3482 |
|
|
return changed;
|
3483 |
|
|
}
|
3484 |
|
|
|
3485 |
|
|
/* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
|
3486 |
|
|
to OLD_BB to NEW_BB; return true on success, false on failure.
|
3487 |
|
|
|
3488 |
|
|
OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
|
3489 |
|
|
PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
|
3490 |
|
|
Virtual PHIs may be deleted and marked for renaming. */
|
3491 |
|
|
|
3492 |
|
|
static bool
|
3493 |
|
|
cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
|
3494 |
|
|
edge old_bb_out, bool change_region)
|
3495 |
|
|
{
|
3496 |
|
|
gimple_stmt_iterator ngsi, ogsi;
|
3497 |
|
|
edge_iterator ei;
|
3498 |
|
|
edge e;
|
3499 |
|
|
bitmap rename_virts;
|
3500 |
|
|
bitmap ophi_handled;
|
3501 |
|
|
|
3502 |
|
|
FOR_EACH_EDGE (e, ei, old_bb->preds)
|
3503 |
|
|
redirect_edge_var_map_clear (e);
|
3504 |
|
|
|
3505 |
|
|
ophi_handled = BITMAP_ALLOC (NULL);
|
3506 |
|
|
rename_virts = BITMAP_ALLOC (NULL);
|
3507 |
|
|
|
3508 |
|
|
/* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
|
3509 |
|
|
for the edges we're going to move. */
|
3510 |
|
|
for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
|
3511 |
|
|
{
|
3512 |
|
|
gimple ophi, nphi = gsi_stmt (ngsi);
|
3513 |
|
|
tree nresult, nop;
|
3514 |
|
|
|
3515 |
|
|
nresult = gimple_phi_result (nphi);
|
3516 |
|
|
nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
|
3517 |
|
|
|
3518 |
|
|
/* Find the corresponding PHI in OLD_BB so we can forward-propagate
|
3519 |
|
|
the source ssa_name. */
|
3520 |
|
|
ophi = NULL;
|
3521 |
|
|
for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
|
3522 |
|
|
{
|
3523 |
|
|
ophi = gsi_stmt (ogsi);
|
3524 |
|
|
if (gimple_phi_result (ophi) == nop)
|
3525 |
|
|
break;
|
3526 |
|
|
ophi = NULL;
|
3527 |
|
|
}
|
3528 |
|
|
|
3529 |
|
|
/* If we did find the corresponding PHI, copy those inputs. */
|
3530 |
|
|
if (ophi)
|
3531 |
|
|
{
|
3532 |
|
|
bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
|
3533 |
|
|
FOR_EACH_EDGE (e, ei, old_bb->preds)
|
3534 |
|
|
{
|
3535 |
|
|
location_t oloc;
|
3536 |
|
|
tree oop;
|
3537 |
|
|
|
3538 |
|
|
if ((e->flags & EDGE_EH) == 0)
|
3539 |
|
|
continue;
|
3540 |
|
|
oop = gimple_phi_arg_def (ophi, e->dest_idx);
|
3541 |
|
|
oloc = gimple_phi_arg_location (ophi, e->dest_idx);
|
3542 |
|
|
redirect_edge_var_map_add (e, nresult, oop, oloc);
|
3543 |
|
|
}
|
3544 |
|
|
}
|
3545 |
|
|
/* If we didn't find the PHI, but it's a VOP, remember to rename
|
3546 |
|
|
it later, assuming all other tests succeed. */
|
3547 |
|
|
else if (!is_gimple_reg (nresult))
|
3548 |
|
|
bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
|
3549 |
|
|
/* If we didn't find the PHI, and it's a real variable, we know
|
3550 |
|
|
from the fact that OLD_BB is tree_empty_eh_handler_p that the
|
3551 |
|
|
variable is unchanged from input to the block and we can simply
|
3552 |
|
|
re-use the input to NEW_BB from the OLD_BB_OUT edge. */
|
3553 |
|
|
else
|
3554 |
|
|
{
|
3555 |
|
|
location_t nloc
|
3556 |
|
|
= gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
|
3557 |
|
|
FOR_EACH_EDGE (e, ei, old_bb->preds)
|
3558 |
|
|
redirect_edge_var_map_add (e, nresult, nop, nloc);
|
3559 |
|
|
}
|
3560 |
|
|
}
|
3561 |
|
|
|
3562 |
|
|
/* Second, verify that all PHIs from OLD_BB have been handled. If not,
|
3563 |
|
|
we don't know what values from the other edges into NEW_BB to use. */
|
3564 |
|
|
for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
|
3565 |
|
|
{
|
3566 |
|
|
gimple ophi = gsi_stmt (ogsi);
|
3567 |
|
|
tree oresult = gimple_phi_result (ophi);
|
3568 |
|
|
if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
|
3569 |
|
|
goto fail;
|
3570 |
|
|
}
|
3571 |
|
|
|
3572 |
|
|
/* At this point we know that the merge will succeed. Remove the PHI
|
3573 |
|
|
nodes for the virtuals that we want to rename. */
|
3574 |
|
|
if (!bitmap_empty_p (rename_virts))
|
3575 |
|
|
{
|
3576 |
|
|
for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
|
3577 |
|
|
{
|
3578 |
|
|
gimple nphi = gsi_stmt (ngsi);
|
3579 |
|
|
tree nresult = gimple_phi_result (nphi);
|
3580 |
|
|
if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
|
3581 |
|
|
{
|
3582 |
|
|
mark_virtual_phi_result_for_renaming (nphi);
|
3583 |
|
|
remove_phi_node (&ngsi, true);
|
3584 |
|
|
}
|
3585 |
|
|
else
|
3586 |
|
|
gsi_next (&ngsi);
|
3587 |
|
|
}
|
3588 |
|
|
}
|
3589 |
|
|
|
3590 |
|
|
/* Finally, move the edges and update the PHIs. */
|
3591 |
|
|
for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
|
3592 |
|
|
if (e->flags & EDGE_EH)
|
3593 |
|
|
{
|
3594 |
|
|
redirect_eh_edge_1 (e, new_bb, change_region);
|
3595 |
|
|
redirect_edge_succ (e, new_bb);
|
3596 |
|
|
flush_pending_stmts (e);
|
3597 |
|
|
}
|
3598 |
|
|
else
|
3599 |
|
|
ei_next (&ei);
|
3600 |
|
|
|
3601 |
|
|
BITMAP_FREE (ophi_handled);
|
3602 |
|
|
BITMAP_FREE (rename_virts);
|
3603 |
|
|
return true;
|
3604 |
|
|
|
3605 |
|
|
fail:
|
3606 |
|
|
FOR_EACH_EDGE (e, ei, old_bb->preds)
|
3607 |
|
|
redirect_edge_var_map_clear (e);
|
3608 |
|
|
BITMAP_FREE (ophi_handled);
|
3609 |
|
|
BITMAP_FREE (rename_virts);
|
3610 |
|
|
return false;
|
3611 |
|
|
}
|
3612 |
|
|
|
3613 |
|
|
/* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
|
3614 |
|
|
old region to NEW_REGION at BB. */
|
3615 |
|
|
|
3616 |
|
|
static void
|
3617 |
|
|
cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
|
3618 |
|
|
eh_landing_pad lp, eh_region new_region)
|
3619 |
|
|
{
|
3620 |
|
|
gimple_stmt_iterator gsi;
|
3621 |
|
|
eh_landing_pad *pp;
|
3622 |
|
|
|
3623 |
|
|
for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
|
3624 |
|
|
continue;
|
3625 |
|
|
*pp = lp->next_lp;
|
3626 |
|
|
|
3627 |
|
|
lp->region = new_region;
|
3628 |
|
|
lp->next_lp = new_region->landing_pads;
|
3629 |
|
|
new_region->landing_pads = lp;
|
3630 |
|
|
|
3631 |
|
|
/* Delete the RESX that was matched within the empty handler block. */
|
3632 |
|
|
gsi = gsi_last_bb (bb);
|
3633 |
|
|
mark_virtual_ops_for_renaming (gsi_stmt (gsi));
|
3634 |
|
|
gsi_remove (&gsi, true);
|
3635 |
|
|
|
3636 |
|
|
/* Clean up E_OUT for the fallthru. */
|
3637 |
|
|
e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
|
3638 |
|
|
e_out->probability = REG_BR_PROB_BASE;
|
3639 |
|
|
}
|
3640 |
|
|
|
3641 |
|
|
/* A subroutine of cleanup_empty_eh. Handle more complex cases of
|
3642 |
|
|
unsplitting than unsplit_eh was prepared to handle, e.g. when
|
3643 |
|
|
multiple incoming edges and phis are involved. */
|
3644 |
|
|
|
3645 |
|
|
static bool
|
3646 |
|
|
cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
|
3647 |
|
|
{
|
3648 |
|
|
gimple_stmt_iterator gsi;
|
3649 |
|
|
tree lab;
|
3650 |
|
|
|
3651 |
|
|
/* We really ought not have totally lost everything following
|
3652 |
|
|
a landing pad label. Given that BB is empty, there had better
|
3653 |
|
|
be a successor. */
|
3654 |
|
|
gcc_assert (e_out != NULL);
|
3655 |
|
|
|
3656 |
|
|
/* The destination block must not already have a landing pad
|
3657 |
|
|
for a different region. */
|
3658 |
|
|
lab = NULL;
|
3659 |
|
|
for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
3660 |
|
|
{
|
3661 |
|
|
gimple stmt = gsi_stmt (gsi);
|
3662 |
|
|
int lp_nr;
|
3663 |
|
|
|
3664 |
|
|
if (gimple_code (stmt) != GIMPLE_LABEL)
|
3665 |
|
|
break;
|
3666 |
|
|
lab = gimple_label_label (stmt);
|
3667 |
|
|
lp_nr = EH_LANDING_PAD_NR (lab);
|
3668 |
|
|
if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
|
3669 |
|
|
return false;
|
3670 |
|
|
}
|
3671 |
|
|
|
3672 |
|
|
/* Attempt to move the PHIs into the successor block. */
|
3673 |
|
|
if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
|
3674 |
|
|
{
|
3675 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3676 |
|
|
fprintf (dump_file,
|
3677 |
|
|
"Unsplit EH landing pad %d to block %i "
|
3678 |
|
|
"(via cleanup_empty_eh).\n",
|
3679 |
|
|
lp->index, e_out->dest->index);
|
3680 |
|
|
return true;
|
3681 |
|
|
}
|
3682 |
|
|
|
3683 |
|
|
return false;
|
3684 |
|
|
}
|
3685 |
|
|
|
3686 |
|
|
/* Examine the block associated with LP to determine if it's an empty
|
3687 |
|
|
handler for its EH region. If so, attempt to redirect EH edges to
|
3688 |
|
|
an outer region. Return true the CFG was updated in any way. This
|
3689 |
|
|
is similar to jump forwarding, just across EH edges. */
|
3690 |
|
|
|
3691 |
|
|
static bool
|
3692 |
|
|
cleanup_empty_eh (eh_landing_pad lp)
|
3693 |
|
|
{
|
3694 |
|
|
basic_block bb = label_to_block (lp->post_landing_pad);
|
3695 |
|
|
gimple_stmt_iterator gsi;
|
3696 |
|
|
gimple resx;
|
3697 |
|
|
eh_region new_region;
|
3698 |
|
|
edge_iterator ei;
|
3699 |
|
|
edge e, e_out;
|
3700 |
|
|
bool has_non_eh_pred;
|
3701 |
|
|
int new_lp_nr;
|
3702 |
|
|
|
3703 |
|
|
/* There can be zero or one edges out of BB. This is the quickest test. */
|
3704 |
|
|
switch (EDGE_COUNT (bb->succs))
|
3705 |
|
|
{
|
3706 |
|
|
case 0:
|
3707 |
|
|
e_out = NULL;
|
3708 |
|
|
break;
|
3709 |
|
|
case 1:
|
3710 |
|
|
e_out = EDGE_SUCC (bb, 0);
|
3711 |
|
|
break;
|
3712 |
|
|
default:
|
3713 |
|
|
return false;
|
3714 |
|
|
}
|
3715 |
|
|
gsi = gsi_after_labels (bb);
|
3716 |
|
|
|
3717 |
|
|
/* Make sure to skip debug statements. */
|
3718 |
|
|
if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
|
3719 |
|
|
gsi_next_nondebug (&gsi);
|
3720 |
|
|
|
3721 |
|
|
/* If the block is totally empty, look for more unsplitting cases. */
|
3722 |
|
|
if (gsi_end_p (gsi))
|
3723 |
|
|
return cleanup_empty_eh_unsplit (bb, e_out, lp);
|
3724 |
|
|
|
3725 |
|
|
/* The block should consist only of a single RESX statement. */
|
3726 |
|
|
resx = gsi_stmt (gsi);
|
3727 |
|
|
if (!is_gimple_resx (resx))
|
3728 |
|
|
return false;
|
3729 |
|
|
gcc_assert (gsi_one_before_end_p (gsi));
|
3730 |
|
|
|
3731 |
|
|
/* Determine if there are non-EH edges, or resx edges into the handler. */
|
3732 |
|
|
has_non_eh_pred = false;
|
3733 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
3734 |
|
|
if (!(e->flags & EDGE_EH))
|
3735 |
|
|
has_non_eh_pred = true;
|
3736 |
|
|
|
3737 |
|
|
/* Find the handler that's outer of the empty handler by looking at
|
3738 |
|
|
where the RESX instruction was vectored. */
|
3739 |
|
|
new_lp_nr = lookup_stmt_eh_lp (resx);
|
3740 |
|
|
new_region = get_eh_region_from_lp_number (new_lp_nr);
|
3741 |
|
|
|
3742 |
|
|
/* If there's no destination region within the current function,
|
3743 |
|
|
redirection is trivial via removing the throwing statements from
|
3744 |
|
|
the EH region, removing the EH edges, and allowing the block
|
3745 |
|
|
to go unreachable. */
|
3746 |
|
|
if (new_region == NULL)
|
3747 |
|
|
{
|
3748 |
|
|
gcc_assert (e_out == NULL);
|
3749 |
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
3750 |
|
|
if (e->flags & EDGE_EH)
|
3751 |
|
|
{
|
3752 |
|
|
gimple stmt = last_stmt (e->src);
|
3753 |
|
|
remove_stmt_from_eh_lp (stmt);
|
3754 |
|
|
remove_edge (e);
|
3755 |
|
|
}
|
3756 |
|
|
else
|
3757 |
|
|
ei_next (&ei);
|
3758 |
|
|
goto succeed;
|
3759 |
|
|
}
|
3760 |
|
|
|
3761 |
|
|
/* If the destination region is a MUST_NOT_THROW, allow the runtime
|
3762 |
|
|
to handle the abort and allow the blocks to go unreachable. */
|
3763 |
|
|
if (new_region->type == ERT_MUST_NOT_THROW)
|
3764 |
|
|
{
|
3765 |
|
|
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
3766 |
|
|
if (e->flags & EDGE_EH)
|
3767 |
|
|
{
|
3768 |
|
|
gimple stmt = last_stmt (e->src);
|
3769 |
|
|
remove_stmt_from_eh_lp (stmt);
|
3770 |
|
|
add_stmt_to_eh_lp (stmt, new_lp_nr);
|
3771 |
|
|
remove_edge (e);
|
3772 |
|
|
}
|
3773 |
|
|
else
|
3774 |
|
|
ei_next (&ei);
|
3775 |
|
|
goto succeed;
|
3776 |
|
|
}
|
3777 |
|
|
|
3778 |
|
|
/* Try to redirect the EH edges and merge the PHIs into the destination
|
3779 |
|
|
landing pad block. If the merge succeeds, we'll already have redirected
|
3780 |
|
|
all the EH edges. The handler itself will go unreachable if there were
|
3781 |
|
|
no normal edges. */
|
3782 |
|
|
if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
|
3783 |
|
|
goto succeed;
|
3784 |
|
|
|
3785 |
|
|
/* Finally, if all input edges are EH edges, then we can (potentially)
|
3786 |
|
|
reduce the number of transfers from the runtime by moving the landing
|
3787 |
|
|
pad from the original region to the new region. This is a win when
|
3788 |
|
|
we remove the last CLEANUP region along a particular exception
|
3789 |
|
|
propagation path. Since nothing changes except for the region with
|
3790 |
|
|
which the landing pad is associated, the PHI nodes do not need to be
|
3791 |
|
|
adjusted at all. */
|
3792 |
|
|
if (!has_non_eh_pred)
|
3793 |
|
|
{
|
3794 |
|
|
cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
|
3795 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3796 |
|
|
fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
|
3797 |
|
|
lp->index, new_region->index);
|
3798 |
|
|
|
3799 |
|
|
/* ??? The CFG didn't change, but we may have rendered the
|
3800 |
|
|
old EH region unreachable. Trigger a cleanup there. */
|
3801 |
|
|
return true;
|
3802 |
|
|
}
|
3803 |
|
|
|
3804 |
|
|
return false;
|
3805 |
|
|
|
3806 |
|
|
succeed:
|
3807 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3808 |
|
|
fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
|
3809 |
|
|
remove_eh_landing_pad (lp);
|
3810 |
|
|
return true;
|
3811 |
|
|
}
|
3812 |
|
|
|
3813 |
|
|
/* Do a post-order traversal of the EH region tree. Examine each
|
3814 |
|
|
post_landing_pad block and see if we can eliminate it as empty. */
|
3815 |
|
|
|
3816 |
|
|
static bool
|
3817 |
|
|
cleanup_all_empty_eh (void)
|
3818 |
|
|
{
|
3819 |
|
|
bool changed = false;
|
3820 |
|
|
eh_landing_pad lp;
|
3821 |
|
|
int i;
|
3822 |
|
|
|
3823 |
|
|
for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
|
3824 |
|
|
if (lp)
|
3825 |
|
|
changed |= cleanup_empty_eh (lp);
|
3826 |
|
|
|
3827 |
|
|
return changed;
|
3828 |
|
|
}
|
3829 |
|
|
|
3830 |
|
|
/* Perform cleanups and lowering of exception handling
|
3831 |
|
|
1) cleanups regions with handlers doing nothing are optimized out
|
3832 |
|
|
2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
|
3833 |
|
|
3) Info about regions that are containing instructions, and regions
|
3834 |
|
|
reachable via local EH edges is collected
|
3835 |
|
|
4) Eh tree is pruned for regions no longer neccesary.
|
3836 |
|
|
|
3837 |
|
|
TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
|
3838 |
|
|
Unify those that have the same failure decl and locus.
|
3839 |
|
|
*/
|
3840 |
|
|
|
3841 |
|
|
static unsigned int
|
3842 |
|
|
execute_cleanup_eh (void)
|
3843 |
|
|
{
|
3844 |
|
|
/* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
|
3845 |
|
|
looking up unreachable landing pads. */
|
3846 |
|
|
remove_unreachable_handlers ();
|
3847 |
|
|
|
3848 |
|
|
/* Watch out for the region tree vanishing due to all unreachable. */
|
3849 |
|
|
if (cfun->eh->region_tree && optimize)
|
3850 |
|
|
{
|
3851 |
|
|
bool changed = false;
|
3852 |
|
|
|
3853 |
|
|
changed |= unsplit_all_eh ();
|
3854 |
|
|
changed |= cleanup_all_empty_eh ();
|
3855 |
|
|
|
3856 |
|
|
if (changed)
|
3857 |
|
|
{
|
3858 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
3859 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
3860 |
|
|
|
3861 |
|
|
/* We delayed all basic block deletion, as we may have performed
|
3862 |
|
|
cleanups on EH edges while non-EH edges were still present. */
|
3863 |
|
|
delete_unreachable_blocks ();
|
3864 |
|
|
|
3865 |
|
|
/* We manipulated the landing pads. Remove any region that no
|
3866 |
|
|
longer has a landing pad. */
|
3867 |
|
|
remove_unreachable_handlers_no_lp ();
|
3868 |
|
|
|
3869 |
|
|
return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
|
3870 |
|
|
}
|
3871 |
|
|
}
|
3872 |
|
|
|
3873 |
|
|
return 0;
|
3874 |
|
|
}
|
3875 |
|
|
|
3876 |
|
|
static bool
|
3877 |
|
|
gate_cleanup_eh (void)
|
3878 |
|
|
{
|
3879 |
|
|
return cfun->eh != NULL && cfun->eh->region_tree != NULL;
|
3880 |
|
|
}
|
3881 |
|
|
|
3882 |
|
|
struct gimple_opt_pass pass_cleanup_eh = {
|
3883 |
|
|
{
|
3884 |
|
|
GIMPLE_PASS,
|
3885 |
|
|
"ehcleanup", /* name */
|
3886 |
|
|
gate_cleanup_eh, /* gate */
|
3887 |
|
|
execute_cleanup_eh, /* execute */
|
3888 |
|
|
NULL, /* sub */
|
3889 |
|
|
NULL, /* next */
|
3890 |
|
|
0, /* static_pass_number */
|
3891 |
|
|
TV_TREE_EH, /* tv_id */
|
3892 |
|
|
PROP_gimple_lcf, /* properties_required */
|
3893 |
|
|
0, /* properties_provided */
|
3894 |
|
|
0, /* properties_destroyed */
|
3895 |
|
|
0, /* todo_flags_start */
|
3896 |
|
|
TODO_dump_func /* todo_flags_finish */
|
3897 |
|
|
}
|
3898 |
|
|
};
|
3899 |
|
|
|
3900 |
|
|
/* Verify that BB containing STMT as the last statement, has precisely the
|
3901 |
|
|
edge that make_eh_edges would create. */
|
3902 |
|
|
|
3903 |
|
|
bool
|
3904 |
|
|
verify_eh_edges (gimple stmt)
|
3905 |
|
|
{
|
3906 |
|
|
basic_block bb = gimple_bb (stmt);
|
3907 |
|
|
eh_landing_pad lp = NULL;
|
3908 |
|
|
int lp_nr;
|
3909 |
|
|
edge_iterator ei;
|
3910 |
|
|
edge e, eh_edge;
|
3911 |
|
|
|
3912 |
|
|
lp_nr = lookup_stmt_eh_lp (stmt);
|
3913 |
|
|
if (lp_nr > 0)
|
3914 |
|
|
lp = get_eh_landing_pad_from_number (lp_nr);
|
3915 |
|
|
|
3916 |
|
|
eh_edge = NULL;
|
3917 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
3918 |
|
|
{
|
3919 |
|
|
if (e->flags & EDGE_EH)
|
3920 |
|
|
{
|
3921 |
|
|
if (eh_edge)
|
3922 |
|
|
{
|
3923 |
|
|
error ("BB %i has multiple EH edges", bb->index);
|
3924 |
|
|
return true;
|
3925 |
|
|
}
|
3926 |
|
|
else
|
3927 |
|
|
eh_edge = e;
|
3928 |
|
|
}
|
3929 |
|
|
}
|
3930 |
|
|
|
3931 |
|
|
if (lp == NULL)
|
3932 |
|
|
{
|
3933 |
|
|
if (eh_edge)
|
3934 |
|
|
{
|
3935 |
|
|
error ("BB %i can not throw but has an EH edge", bb->index);
|
3936 |
|
|
return true;
|
3937 |
|
|
}
|
3938 |
|
|
return false;
|
3939 |
|
|
}
|
3940 |
|
|
|
3941 |
|
|
if (!stmt_could_throw_p (stmt))
|
3942 |
|
|
{
|
3943 |
|
|
error ("BB %i last statement has incorrectly set lp", bb->index);
|
3944 |
|
|
return true;
|
3945 |
|
|
}
|
3946 |
|
|
|
3947 |
|
|
if (eh_edge == NULL)
|
3948 |
|
|
{
|
3949 |
|
|
error ("BB %i is missing an EH edge", bb->index);
|
3950 |
|
|
return true;
|
3951 |
|
|
}
|
3952 |
|
|
|
3953 |
|
|
if (eh_edge->dest != label_to_block (lp->post_landing_pad))
|
3954 |
|
|
{
|
3955 |
|
|
error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
|
3956 |
|
|
return true;
|
3957 |
|
|
}
|
3958 |
|
|
|
3959 |
|
|
return false;
|
3960 |
|
|
}
|
3961 |
|
|
|
3962 |
|
|
/* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
|
3963 |
|
|
|
3964 |
|
|
bool
|
3965 |
|
|
verify_eh_dispatch_edge (gimple stmt)
|
3966 |
|
|
{
|
3967 |
|
|
eh_region r;
|
3968 |
|
|
eh_catch c;
|
3969 |
|
|
basic_block src, dst;
|
3970 |
|
|
bool want_fallthru = true;
|
3971 |
|
|
edge_iterator ei;
|
3972 |
|
|
edge e, fall_edge;
|
3973 |
|
|
|
3974 |
|
|
r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
|
3975 |
|
|
src = gimple_bb (stmt);
|
3976 |
|
|
|
3977 |
|
|
FOR_EACH_EDGE (e, ei, src->succs)
|
3978 |
|
|
gcc_assert (e->aux == NULL);
|
3979 |
|
|
|
3980 |
|
|
switch (r->type)
|
3981 |
|
|
{
|
3982 |
|
|
case ERT_TRY:
|
3983 |
|
|
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
|
3984 |
|
|
{
|
3985 |
|
|
dst = label_to_block (c->label);
|
3986 |
|
|
e = find_edge (src, dst);
|
3987 |
|
|
if (e == NULL)
|
3988 |
|
|
{
|
3989 |
|
|
error ("BB %i is missing an edge", src->index);
|
3990 |
|
|
return true;
|
3991 |
|
|
}
|
3992 |
|
|
e->aux = (void *)e;
|
3993 |
|
|
|
3994 |
|
|
/* A catch-all handler doesn't have a fallthru. */
|
3995 |
|
|
if (c->type_list == NULL)
|
3996 |
|
|
{
|
3997 |
|
|
want_fallthru = false;
|
3998 |
|
|
break;
|
3999 |
|
|
}
|
4000 |
|
|
}
|
4001 |
|
|
break;
|
4002 |
|
|
|
4003 |
|
|
case ERT_ALLOWED_EXCEPTIONS:
|
4004 |
|
|
dst = label_to_block (r->u.allowed.label);
|
4005 |
|
|
e = find_edge (src, dst);
|
4006 |
|
|
if (e == NULL)
|
4007 |
|
|
{
|
4008 |
|
|
error ("BB %i is missing an edge", src->index);
|
4009 |
|
|
return true;
|
4010 |
|
|
}
|
4011 |
|
|
e->aux = (void *)e;
|
4012 |
|
|
break;
|
4013 |
|
|
|
4014 |
|
|
default:
|
4015 |
|
|
gcc_unreachable ();
|
4016 |
|
|
}
|
4017 |
|
|
|
4018 |
|
|
fall_edge = NULL;
|
4019 |
|
|
FOR_EACH_EDGE (e, ei, src->succs)
|
4020 |
|
|
{
|
4021 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
4022 |
|
|
{
|
4023 |
|
|
if (fall_edge != NULL)
|
4024 |
|
|
{
|
4025 |
|
|
error ("BB %i too many fallthru edges", src->index);
|
4026 |
|
|
return true;
|
4027 |
|
|
}
|
4028 |
|
|
fall_edge = e;
|
4029 |
|
|
}
|
4030 |
|
|
else if (e->aux)
|
4031 |
|
|
e->aux = NULL;
|
4032 |
|
|
else
|
4033 |
|
|
{
|
4034 |
|
|
error ("BB %i has incorrect edge", src->index);
|
4035 |
|
|
return true;
|
4036 |
|
|
}
|
4037 |
|
|
}
|
4038 |
|
|
if ((fall_edge != NULL) ^ want_fallthru)
|
4039 |
|
|
{
|
4040 |
|
|
error ("BB %i has incorrect fallthru edge", src->index);
|
4041 |
|
|
return true;
|
4042 |
|
|
}
|
4043 |
|
|
|
4044 |
|
|
return false;
|
4045 |
|
|
}
|