1 |
280 |
jeremybenn |
/* Rewrite a program in Normal form into SSA.
|
2 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "flags.h"
|
28 |
|
|
#include "rtl.h"
|
29 |
|
|
#include "tm_p.h"
|
30 |
|
|
#include "langhooks.h"
|
31 |
|
|
#include "hard-reg-set.h"
|
32 |
|
|
#include "basic-block.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "expr.h"
|
35 |
|
|
#include "function.h"
|
36 |
|
|
#include "diagnostic.h"
|
37 |
|
|
#include "bitmap.h"
|
38 |
|
|
#include "tree-flow.h"
|
39 |
|
|
#include "gimple.h"
|
40 |
|
|
#include "tree-inline.h"
|
41 |
|
|
#include "varray.h"
|
42 |
|
|
#include "timevar.h"
|
43 |
|
|
#include "hashtab.h"
|
44 |
|
|
#include "tree-dump.h"
|
45 |
|
|
#include "tree-pass.h"
|
46 |
|
|
#include "cfgloop.h"
|
47 |
|
|
#include "domwalk.h"
|
48 |
|
|
#include "ggc.h"
|
49 |
|
|
#include "params.h"
|
50 |
|
|
#include "vecprim.h"
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
/* This file builds the SSA form for a function as described in:
|
54 |
|
|
R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
|
55 |
|
|
Computing Static Single Assignment Form and the Control Dependence
|
56 |
|
|
Graph. ACM Transactions on Programming Languages and Systems,
|
57 |
|
|
13(4):451-490, October 1991. */
|
58 |
|
|
|
59 |
|
|
/* Structure to map a variable VAR to the set of blocks that contain
|
60 |
|
|
definitions for VAR. */
|
61 |
|
|
struct def_blocks_d
|
62 |
|
|
{
|
63 |
|
|
/* The variable. */
|
64 |
|
|
tree var;
|
65 |
|
|
|
66 |
|
|
/* Blocks that contain definitions of VAR. Bit I will be set if the
|
67 |
|
|
Ith block contains a definition of VAR. */
|
68 |
|
|
bitmap def_blocks;
|
69 |
|
|
|
70 |
|
|
/* Blocks that contain a PHI node for VAR. */
|
71 |
|
|
bitmap phi_blocks;
|
72 |
|
|
|
73 |
|
|
/* Blocks where VAR is live-on-entry. Similar semantics as
|
74 |
|
|
DEF_BLOCKS. */
|
75 |
|
|
bitmap livein_blocks;
|
76 |
|
|
};
|
77 |
|
|
|
78 |
|
|
|
79 |
|
|
/* Each entry in DEF_BLOCKS contains an element of type STRUCT
|
80 |
|
|
DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
|
81 |
|
|
basic blocks where VAR is defined (assigned a new value). It also
|
82 |
|
|
contains a bitmap of all the blocks where VAR is live-on-entry
|
83 |
|
|
(i.e., there is a use of VAR in block B without a preceding
|
84 |
|
|
definition in B). The live-on-entry information is used when
|
85 |
|
|
computing PHI pruning heuristics. */
|
86 |
|
|
static htab_t def_blocks;
|
87 |
|
|
|
88 |
|
|
/* Stack of trees used to restore the global currdefs to its original
|
89 |
|
|
state after completing rewriting of a block and its dominator
|
90 |
|
|
children. Its elements have the following properties:
|
91 |
|
|
|
92 |
|
|
- An SSA_NAME (N) indicates that the current definition of the
|
93 |
|
|
underlying variable should be set to the given SSA_NAME. If the
|
94 |
|
|
symbol associated with the SSA_NAME is not a GIMPLE register, the
|
95 |
|
|
next slot in the stack must be a _DECL node (SYM). In this case,
|
96 |
|
|
the name N in the previous slot is the current reaching
|
97 |
|
|
definition for SYM.
|
98 |
|
|
|
99 |
|
|
- A _DECL node indicates that the underlying variable has no
|
100 |
|
|
current definition.
|
101 |
|
|
|
102 |
|
|
- A NULL node at the top entry is used to mark the last slot
|
103 |
|
|
associated with the current block. */
|
104 |
|
|
static VEC(tree,heap) *block_defs_stack;
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
/* Set of existing SSA names being replaced by update_ssa. */
|
108 |
|
|
static sbitmap old_ssa_names;
|
109 |
|
|
|
110 |
|
|
/* Set of new SSA names being added by update_ssa. Note that both
|
111 |
|
|
NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
|
112 |
|
|
the operations done on them are presence tests. */
|
113 |
|
|
static sbitmap new_ssa_names;
|
114 |
|
|
|
115 |
|
|
sbitmap interesting_blocks;
|
116 |
|
|
|
117 |
|
|
/* Set of SSA names that have been marked to be released after they
|
118 |
|
|
were registered in the replacement table. They will be finally
|
119 |
|
|
released after we finish updating the SSA web. */
|
120 |
|
|
static bitmap names_to_release;
|
121 |
|
|
|
122 |
|
|
static VEC(gimple_vec, heap) *phis_to_rewrite;
|
123 |
|
|
|
124 |
|
|
/* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
|
125 |
|
|
static bitmap blocks_with_phis_to_rewrite;
|
126 |
|
|
|
127 |
|
|
/* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
|
128 |
|
|
to grow as the callers to register_new_name_mapping will typically
|
129 |
|
|
create new names on the fly. FIXME. Currently set to 1/3 to avoid
|
130 |
|
|
frequent reallocations but still need to find a reasonable growth
|
131 |
|
|
strategy. */
|
132 |
|
|
#define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
|
133 |
|
|
|
134 |
|
|
/* Tuple used to represent replacement mappings. */
|
135 |
|
|
struct repl_map_d
|
136 |
|
|
{
|
137 |
|
|
tree name;
|
138 |
|
|
bitmap set;
|
139 |
|
|
};
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
/* NEW -> OLD_SET replacement table. If we are replacing several
|
143 |
|
|
existing SSA names O_1, O_2, ..., O_j with a new name N_i,
|
144 |
|
|
then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
|
145 |
|
|
static htab_t repl_tbl;
|
146 |
|
|
|
147 |
|
|
/* The function the SSA updating data structures have been initialized for.
|
148 |
|
|
NULL if they need to be initialized by register_new_name_mapping. */
|
149 |
|
|
static struct function *update_ssa_initialized_fn = NULL;
|
150 |
|
|
|
151 |
|
|
/* Statistics kept by update_ssa to use in the virtual mapping
|
152 |
|
|
heuristic. If the number of virtual mappings is beyond certain
|
153 |
|
|
threshold, the updater will switch from using the mappings into
|
154 |
|
|
renaming the virtual symbols from scratch. In some cases, the
|
155 |
|
|
large number of name mappings for virtual names causes significant
|
156 |
|
|
slowdowns in the PHI insertion code. */
|
157 |
|
|
struct update_ssa_stats_d
|
158 |
|
|
{
|
159 |
|
|
unsigned num_virtual_mappings;
|
160 |
|
|
unsigned num_total_mappings;
|
161 |
|
|
bitmap virtual_symbols;
|
162 |
|
|
unsigned num_virtual_symbols;
|
163 |
|
|
};
|
164 |
|
|
static struct update_ssa_stats_d update_ssa_stats;
|
165 |
|
|
|
166 |
|
|
/* Global data to attach to the main dominator walk structure. */
|
167 |
|
|
struct mark_def_sites_global_data
|
168 |
|
|
{
|
169 |
|
|
/* This bitmap contains the variables which are set before they
|
170 |
|
|
are used in a basic block. */
|
171 |
|
|
bitmap kills;
|
172 |
|
|
};
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
/* Information stored for SSA names. */
|
176 |
|
|
struct ssa_name_info
|
177 |
|
|
{
|
178 |
|
|
/* The current reaching definition replacing this SSA name. */
|
179 |
|
|
tree current_def;
|
180 |
|
|
|
181 |
|
|
/* This field indicates whether or not the variable may need PHI nodes.
|
182 |
|
|
See the enum's definition for more detailed information about the
|
183 |
|
|
states. */
|
184 |
|
|
ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
|
185 |
|
|
|
186 |
|
|
/* Age of this record (so that info_for_ssa_name table can be cleared
|
187 |
|
|
quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
|
188 |
|
|
are assumed to be null. */
|
189 |
|
|
unsigned age;
|
190 |
|
|
};
|
191 |
|
|
|
192 |
|
|
/* The information associated with names. */
|
193 |
|
|
typedef struct ssa_name_info *ssa_name_info_p;
|
194 |
|
|
DEF_VEC_P (ssa_name_info_p);
|
195 |
|
|
DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
|
196 |
|
|
|
197 |
|
|
static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
|
198 |
|
|
static unsigned current_info_for_ssa_name_age;
|
199 |
|
|
|
200 |
|
|
/* The set of blocks affected by update_ssa. */
|
201 |
|
|
static bitmap blocks_to_update;
|
202 |
|
|
|
203 |
|
|
/* The main entry point to the SSA renamer (rewrite_blocks) may be
|
204 |
|
|
called several times to do different, but related, tasks.
|
205 |
|
|
Initially, we need it to rename the whole program into SSA form.
|
206 |
|
|
At other times, we may need it to only rename into SSA newly
|
207 |
|
|
exposed symbols. Finally, we can also call it to incrementally fix
|
208 |
|
|
an already built SSA web. */
|
209 |
|
|
enum rewrite_mode {
|
210 |
|
|
/* Convert the whole function into SSA form. */
|
211 |
|
|
REWRITE_ALL,
|
212 |
|
|
|
213 |
|
|
/* Incrementally update the SSA web by replacing existing SSA
|
214 |
|
|
names with new ones. See update_ssa for details. */
|
215 |
|
|
REWRITE_UPDATE
|
216 |
|
|
};
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
|
220 |
|
|
|
221 |
|
|
/* Prototypes for debugging functions. */
|
222 |
|
|
extern void dump_tree_ssa (FILE *);
|
223 |
|
|
extern void debug_tree_ssa (void);
|
224 |
|
|
extern void debug_def_blocks (void);
|
225 |
|
|
extern void dump_tree_ssa_stats (FILE *);
|
226 |
|
|
extern void debug_tree_ssa_stats (void);
|
227 |
|
|
extern void dump_update_ssa (FILE *);
|
228 |
|
|
extern void debug_update_ssa (void);
|
229 |
|
|
extern void dump_names_replaced_by (FILE *, tree);
|
230 |
|
|
extern void debug_names_replaced_by (tree);
|
231 |
|
|
extern void dump_def_blocks (FILE *);
|
232 |
|
|
extern void debug_def_blocks (void);
|
233 |
|
|
extern void dump_defs_stack (FILE *, int);
|
234 |
|
|
extern void debug_defs_stack (int);
|
235 |
|
|
extern void dump_currdefs (FILE *);
|
236 |
|
|
extern void debug_currdefs (void);
|
237 |
|
|
|
238 |
|
|
/* Return true if STMT needs to be rewritten. When renaming a subset
|
239 |
|
|
of the variables, not all statements will be processed. This is
|
240 |
|
|
decided in mark_def_sites. */
|
241 |
|
|
|
242 |
|
|
static inline bool
|
243 |
|
|
rewrite_uses_p (gimple stmt)
|
244 |
|
|
{
|
245 |
|
|
return gimple_visited_p (stmt);
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
|
249 |
|
|
/* Set the rewrite marker on STMT to the value given by REWRITE_P. */
|
250 |
|
|
|
251 |
|
|
static inline void
|
252 |
|
|
set_rewrite_uses (gimple stmt, bool rewrite_p)
|
253 |
|
|
{
|
254 |
|
|
gimple_set_visited (stmt, rewrite_p);
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
|
258 |
|
|
/* Return true if the DEFs created by statement STMT should be
|
259 |
|
|
registered when marking new definition sites. This is slightly
|
260 |
|
|
different than rewrite_uses_p: it's used by update_ssa to
|
261 |
|
|
distinguish statements that need to have both uses and defs
|
262 |
|
|
processed from those that only need to have their defs processed.
|
263 |
|
|
Statements that define new SSA names only need to have their defs
|
264 |
|
|
registered, but they don't need to have their uses renamed. */
|
265 |
|
|
|
266 |
|
|
static inline bool
|
267 |
|
|
register_defs_p (gimple stmt)
|
268 |
|
|
{
|
269 |
|
|
return gimple_plf (stmt, GF_PLF_1) != 0;
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
|
273 |
|
|
/* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
|
274 |
|
|
|
275 |
|
|
static inline void
|
276 |
|
|
set_register_defs (gimple stmt, bool register_defs_p)
|
277 |
|
|
{
|
278 |
|
|
gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
/* Get the information associated with NAME. */
|
283 |
|
|
|
284 |
|
|
static inline ssa_name_info_p
|
285 |
|
|
get_ssa_name_ann (tree name)
|
286 |
|
|
{
|
287 |
|
|
unsigned ver = SSA_NAME_VERSION (name);
|
288 |
|
|
unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
|
289 |
|
|
struct ssa_name_info *info;
|
290 |
|
|
|
291 |
|
|
if (ver >= len)
|
292 |
|
|
{
|
293 |
|
|
unsigned new_len = num_ssa_names;
|
294 |
|
|
|
295 |
|
|
VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
|
296 |
|
|
while (len++ < new_len)
|
297 |
|
|
{
|
298 |
|
|
struct ssa_name_info *info = XCNEW (struct ssa_name_info);
|
299 |
|
|
info->age = current_info_for_ssa_name_age;
|
300 |
|
|
VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
|
301 |
|
|
}
|
302 |
|
|
}
|
303 |
|
|
|
304 |
|
|
info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
|
305 |
|
|
if (info->age < current_info_for_ssa_name_age)
|
306 |
|
|
{
|
307 |
|
|
info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
|
308 |
|
|
info->current_def = NULL_TREE;
|
309 |
|
|
info->age = current_info_for_ssa_name_age;
|
310 |
|
|
}
|
311 |
|
|
|
312 |
|
|
return info;
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
/* Clears info for SSA names. */
|
317 |
|
|
|
318 |
|
|
static void
|
319 |
|
|
clear_ssa_name_info (void)
|
320 |
|
|
{
|
321 |
|
|
current_info_for_ssa_name_age++;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
|
325 |
|
|
/* Get phi_state field for VAR. */
|
326 |
|
|
|
327 |
|
|
static inline enum need_phi_state
|
328 |
|
|
get_phi_state (tree var)
|
329 |
|
|
{
|
330 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
331 |
|
|
return get_ssa_name_ann (var)->need_phi_state;
|
332 |
|
|
else
|
333 |
|
|
return var_ann (var)->need_phi_state;
|
334 |
|
|
}
|
335 |
|
|
|
336 |
|
|
|
337 |
|
|
/* Sets phi_state field for VAR to STATE. */
|
338 |
|
|
|
339 |
|
|
static inline void
|
340 |
|
|
set_phi_state (tree var, enum need_phi_state state)
|
341 |
|
|
{
|
342 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
343 |
|
|
get_ssa_name_ann (var)->need_phi_state = state;
|
344 |
|
|
else
|
345 |
|
|
var_ann (var)->need_phi_state = state;
|
346 |
|
|
}
|
347 |
|
|
|
348 |
|
|
|
349 |
|
|
/* Return the current definition for VAR. */
|
350 |
|
|
|
351 |
|
|
tree
|
352 |
|
|
get_current_def (tree var)
|
353 |
|
|
{
|
354 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
355 |
|
|
return get_ssa_name_ann (var)->current_def;
|
356 |
|
|
else
|
357 |
|
|
return var_ann (var)->current_def;
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
|
361 |
|
|
/* Sets current definition of VAR to DEF. */
|
362 |
|
|
|
363 |
|
|
void
|
364 |
|
|
set_current_def (tree var, tree def)
|
365 |
|
|
{
|
366 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
367 |
|
|
get_ssa_name_ann (var)->current_def = def;
|
368 |
|
|
else
|
369 |
|
|
var_ann (var)->current_def = def;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
|
373 |
|
|
/* Compute global livein information given the set of blocks where
|
374 |
|
|
an object is locally live at the start of the block (LIVEIN)
|
375 |
|
|
and the set of blocks where the object is defined (DEF_BLOCKS).
|
376 |
|
|
|
377 |
|
|
Note: This routine augments the existing local livein information
|
378 |
|
|
to include global livein (i.e., it modifies the underlying bitmap
|
379 |
|
|
for LIVEIN). */
|
380 |
|
|
|
381 |
|
|
void
|
382 |
|
|
compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
|
383 |
|
|
{
|
384 |
|
|
basic_block bb, *worklist, *tos;
|
385 |
|
|
unsigned i;
|
386 |
|
|
bitmap_iterator bi;
|
387 |
|
|
|
388 |
|
|
tos = worklist
|
389 |
|
|
= (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
|
390 |
|
|
|
391 |
|
|
EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
|
392 |
|
|
*tos++ = BASIC_BLOCK (i);
|
393 |
|
|
|
394 |
|
|
/* Iterate until the worklist is empty. */
|
395 |
|
|
while (tos != worklist)
|
396 |
|
|
{
|
397 |
|
|
edge e;
|
398 |
|
|
edge_iterator ei;
|
399 |
|
|
|
400 |
|
|
/* Pull a block off the worklist. */
|
401 |
|
|
bb = *--tos;
|
402 |
|
|
|
403 |
|
|
/* For each predecessor block. */
|
404 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
405 |
|
|
{
|
406 |
|
|
basic_block pred = e->src;
|
407 |
|
|
int pred_index = pred->index;
|
408 |
|
|
|
409 |
|
|
/* None of this is necessary for the entry block. */
|
410 |
|
|
if (pred != ENTRY_BLOCK_PTR
|
411 |
|
|
&& ! bitmap_bit_p (livein, pred_index)
|
412 |
|
|
&& ! bitmap_bit_p (def_blocks, pred_index))
|
413 |
|
|
{
|
414 |
|
|
*tos++ = pred;
|
415 |
|
|
bitmap_set_bit (livein, pred_index);
|
416 |
|
|
}
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
|
420 |
|
|
free (worklist);
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
|
424 |
|
|
/* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
|
425 |
|
|
all statements in basic block BB. */
|
426 |
|
|
|
427 |
|
|
static void
|
428 |
|
|
initialize_flags_in_bb (basic_block bb)
|
429 |
|
|
{
|
430 |
|
|
gimple stmt;
|
431 |
|
|
gimple_stmt_iterator gsi;
|
432 |
|
|
|
433 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
434 |
|
|
{
|
435 |
|
|
gimple phi = gsi_stmt (gsi);
|
436 |
|
|
set_rewrite_uses (phi, false);
|
437 |
|
|
set_register_defs (phi, false);
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
441 |
|
|
{
|
442 |
|
|
stmt = gsi_stmt (gsi);
|
443 |
|
|
|
444 |
|
|
/* We are going to use the operand cache API, such as
|
445 |
|
|
SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
|
446 |
|
|
cache for each statement should be up-to-date. */
|
447 |
|
|
gcc_assert (!gimple_modified_p (stmt));
|
448 |
|
|
set_rewrite_uses (stmt, false);
|
449 |
|
|
set_register_defs (stmt, false);
|
450 |
|
|
}
|
451 |
|
|
}
|
452 |
|
|
|
453 |
|
|
/* Mark block BB as interesting for update_ssa. */
|
454 |
|
|
|
455 |
|
|
static void
|
456 |
|
|
mark_block_for_update (basic_block bb)
|
457 |
|
|
{
|
458 |
|
|
gcc_assert (blocks_to_update != NULL);
|
459 |
|
|
if (bitmap_bit_p (blocks_to_update, bb->index))
|
460 |
|
|
return;
|
461 |
|
|
bitmap_set_bit (blocks_to_update, bb->index);
|
462 |
|
|
initialize_flags_in_bb (bb);
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
/* Return the set of blocks where variable VAR is defined and the blocks
|
466 |
|
|
where VAR is live on entry (livein). If no entry is found in
|
467 |
|
|
DEF_BLOCKS, a new one is created and returned. */
|
468 |
|
|
|
469 |
|
|
static inline struct def_blocks_d *
|
470 |
|
|
get_def_blocks_for (tree var)
|
471 |
|
|
{
|
472 |
|
|
struct def_blocks_d db, *db_p;
|
473 |
|
|
void **slot;
|
474 |
|
|
|
475 |
|
|
db.var = var;
|
476 |
|
|
slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
|
477 |
|
|
if (*slot == NULL)
|
478 |
|
|
{
|
479 |
|
|
db_p = XNEW (struct def_blocks_d);
|
480 |
|
|
db_p->var = var;
|
481 |
|
|
db_p->def_blocks = BITMAP_ALLOC (NULL);
|
482 |
|
|
db_p->phi_blocks = BITMAP_ALLOC (NULL);
|
483 |
|
|
db_p->livein_blocks = BITMAP_ALLOC (NULL);
|
484 |
|
|
*slot = (void *) db_p;
|
485 |
|
|
}
|
486 |
|
|
else
|
487 |
|
|
db_p = (struct def_blocks_d *) *slot;
|
488 |
|
|
|
489 |
|
|
return db_p;
|
490 |
|
|
}
|
491 |
|
|
|
492 |
|
|
|
493 |
|
|
/* Mark block BB as the definition site for variable VAR. PHI_P is true if
|
494 |
|
|
VAR is defined by a PHI node. */
|
495 |
|
|
|
496 |
|
|
static void
|
497 |
|
|
set_def_block (tree var, basic_block bb, bool phi_p)
|
498 |
|
|
{
|
499 |
|
|
struct def_blocks_d *db_p;
|
500 |
|
|
enum need_phi_state state;
|
501 |
|
|
|
502 |
|
|
state = get_phi_state (var);
|
503 |
|
|
db_p = get_def_blocks_for (var);
|
504 |
|
|
|
505 |
|
|
/* Set the bit corresponding to the block where VAR is defined. */
|
506 |
|
|
bitmap_set_bit (db_p->def_blocks, bb->index);
|
507 |
|
|
if (phi_p)
|
508 |
|
|
bitmap_set_bit (db_p->phi_blocks, bb->index);
|
509 |
|
|
|
510 |
|
|
/* Keep track of whether or not we may need to insert PHI nodes.
|
511 |
|
|
|
512 |
|
|
If we are in the UNKNOWN state, then this is the first definition
|
513 |
|
|
of VAR. Additionally, we have not seen any uses of VAR yet, so
|
514 |
|
|
we do not need a PHI node for this variable at this time (i.e.,
|
515 |
|
|
transition to NEED_PHI_STATE_NO).
|
516 |
|
|
|
517 |
|
|
If we are in any other state, then we either have multiple definitions
|
518 |
|
|
of this variable occurring in different blocks or we saw a use of the
|
519 |
|
|
variable which was not dominated by the block containing the
|
520 |
|
|
definition(s). In this case we may need a PHI node, so enter
|
521 |
|
|
state NEED_PHI_STATE_MAYBE. */
|
522 |
|
|
if (state == NEED_PHI_STATE_UNKNOWN)
|
523 |
|
|
set_phi_state (var, NEED_PHI_STATE_NO);
|
524 |
|
|
else
|
525 |
|
|
set_phi_state (var, NEED_PHI_STATE_MAYBE);
|
526 |
|
|
}
|
527 |
|
|
|
528 |
|
|
|
529 |
|
|
/* Mark block BB as having VAR live at the entry to BB. */
|
530 |
|
|
|
531 |
|
|
static void
|
532 |
|
|
set_livein_block (tree var, basic_block bb)
|
533 |
|
|
{
|
534 |
|
|
struct def_blocks_d *db_p;
|
535 |
|
|
enum need_phi_state state = get_phi_state (var);
|
536 |
|
|
|
537 |
|
|
db_p = get_def_blocks_for (var);
|
538 |
|
|
|
539 |
|
|
/* Set the bit corresponding to the block where VAR is live in. */
|
540 |
|
|
bitmap_set_bit (db_p->livein_blocks, bb->index);
|
541 |
|
|
|
542 |
|
|
/* Keep track of whether or not we may need to insert PHI nodes.
|
543 |
|
|
|
544 |
|
|
If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
|
545 |
|
|
by the single block containing the definition(s) of this variable. If
|
546 |
|
|
it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
|
547 |
|
|
NEED_PHI_STATE_MAYBE. */
|
548 |
|
|
if (state == NEED_PHI_STATE_NO)
|
549 |
|
|
{
|
550 |
|
|
int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
|
551 |
|
|
|
552 |
|
|
if (def_block_index == -1
|
553 |
|
|
|| ! dominated_by_p (CDI_DOMINATORS, bb,
|
554 |
|
|
BASIC_BLOCK (def_block_index)))
|
555 |
|
|
set_phi_state (var, NEED_PHI_STATE_MAYBE);
|
556 |
|
|
}
|
557 |
|
|
else
|
558 |
|
|
set_phi_state (var, NEED_PHI_STATE_MAYBE);
|
559 |
|
|
}
|
560 |
|
|
|
561 |
|
|
|
562 |
|
|
/* Return true if symbol SYM is marked for renaming. */
|
563 |
|
|
|
564 |
|
|
static inline bool
|
565 |
|
|
symbol_marked_for_renaming (tree sym)
|
566 |
|
|
{
|
567 |
|
|
return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
|
571 |
|
|
/* Return true if NAME is in OLD_SSA_NAMES. */
|
572 |
|
|
|
573 |
|
|
static inline bool
|
574 |
|
|
is_old_name (tree name)
|
575 |
|
|
{
|
576 |
|
|
unsigned ver = SSA_NAME_VERSION (name);
|
577 |
|
|
if (!new_ssa_names)
|
578 |
|
|
return false;
|
579 |
|
|
return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
|
583 |
|
|
/* Return true if NAME is in NEW_SSA_NAMES. */
|
584 |
|
|
|
585 |
|
|
static inline bool
|
586 |
|
|
is_new_name (tree name)
|
587 |
|
|
{
|
588 |
|
|
unsigned ver = SSA_NAME_VERSION (name);
|
589 |
|
|
if (!new_ssa_names)
|
590 |
|
|
return false;
|
591 |
|
|
return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
|
592 |
|
|
}
|
593 |
|
|
|
594 |
|
|
|
595 |
|
|
/* Hashing and equality functions for REPL_TBL. */
|
596 |
|
|
|
597 |
|
|
static hashval_t
|
598 |
|
|
repl_map_hash (const void *p)
|
599 |
|
|
{
|
600 |
|
|
return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
|
601 |
|
|
}
|
602 |
|
|
|
603 |
|
|
static int
|
604 |
|
|
repl_map_eq (const void *p1, const void *p2)
|
605 |
|
|
{
|
606 |
|
|
return ((const struct repl_map_d *)p1)->name
|
607 |
|
|
== ((const struct repl_map_d *)p2)->name;
|
608 |
|
|
}
|
609 |
|
|
|
610 |
|
|
static void
|
611 |
|
|
repl_map_free (void *p)
|
612 |
|
|
{
|
613 |
|
|
BITMAP_FREE (((struct repl_map_d *)p)->set);
|
614 |
|
|
free (p);
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
|
618 |
|
|
/* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
|
619 |
|
|
|
620 |
|
|
static inline bitmap
|
621 |
|
|
names_replaced_by (tree new_tree)
|
622 |
|
|
{
|
623 |
|
|
struct repl_map_d m;
|
624 |
|
|
void **slot;
|
625 |
|
|
|
626 |
|
|
m.name = new_tree;
|
627 |
|
|
slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
|
628 |
|
|
|
629 |
|
|
/* If N was not registered in the replacement table, return NULL. */
|
630 |
|
|
if (slot == NULL || *slot == NULL)
|
631 |
|
|
return NULL;
|
632 |
|
|
|
633 |
|
|
return ((struct repl_map_d *) *slot)->set;
|
634 |
|
|
}
|
635 |
|
|
|
636 |
|
|
|
637 |
|
|
/* Add OLD to REPL_TBL[NEW_TREE].SET. */
|
638 |
|
|
|
639 |
|
|
static inline void
|
640 |
|
|
add_to_repl_tbl (tree new_tree, tree old)
|
641 |
|
|
{
|
642 |
|
|
struct repl_map_d m, *mp;
|
643 |
|
|
void **slot;
|
644 |
|
|
|
645 |
|
|
m.name = new_tree;
|
646 |
|
|
slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
|
647 |
|
|
if (*slot == NULL)
|
648 |
|
|
{
|
649 |
|
|
mp = XNEW (struct repl_map_d);
|
650 |
|
|
mp->name = new_tree;
|
651 |
|
|
mp->set = BITMAP_ALLOC (NULL);
|
652 |
|
|
*slot = (void *) mp;
|
653 |
|
|
}
|
654 |
|
|
else
|
655 |
|
|
mp = (struct repl_map_d *) *slot;
|
656 |
|
|
|
657 |
|
|
bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
|
661 |
|
|
/* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
|
662 |
|
|
represents the set of names O_1 ... O_j replaced by N_i. This is
|
663 |
|
|
used by update_ssa and its helpers to introduce new SSA names in an
|
664 |
|
|
already formed SSA web. */
|
665 |
|
|
|
666 |
|
|
static void
|
667 |
|
|
add_new_name_mapping (tree new_tree, tree old)
|
668 |
|
|
{
|
669 |
|
|
timevar_push (TV_TREE_SSA_INCREMENTAL);
|
670 |
|
|
|
671 |
|
|
/* OLD and NEW_TREE must be different SSA names for the same symbol. */
|
672 |
|
|
gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
|
673 |
|
|
|
674 |
|
|
/* If this mapping is for virtual names, we will need to update
|
675 |
|
|
virtual operands. If this is a mapping for .MEM, then we gather
|
676 |
|
|
the symbols associated with each name. */
|
677 |
|
|
if (!is_gimple_reg (new_tree))
|
678 |
|
|
{
|
679 |
|
|
tree sym;
|
680 |
|
|
|
681 |
|
|
update_ssa_stats.num_virtual_mappings++;
|
682 |
|
|
update_ssa_stats.num_virtual_symbols++;
|
683 |
|
|
|
684 |
|
|
/* Keep counts of virtual mappings and symbols to use in the
|
685 |
|
|
virtual mapping heuristic. If we have large numbers of
|
686 |
|
|
virtual mappings for a relatively low number of symbols, it
|
687 |
|
|
will make more sense to rename the symbols from scratch.
|
688 |
|
|
Otherwise, the insertion of PHI nodes for each of the old
|
689 |
|
|
names in these mappings will be very slow. */
|
690 |
|
|
sym = SSA_NAME_VAR (new_tree);
|
691 |
|
|
bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
|
692 |
|
|
}
|
693 |
|
|
|
694 |
|
|
/* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
|
695 |
|
|
caller may have created new names since the set was created. */
|
696 |
|
|
if (new_ssa_names->n_bits <= num_ssa_names - 1)
|
697 |
|
|
{
|
698 |
|
|
unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
|
699 |
|
|
new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
|
700 |
|
|
old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
|
701 |
|
|
}
|
702 |
|
|
|
703 |
|
|
/* Update the REPL_TBL table. */
|
704 |
|
|
add_to_repl_tbl (new_tree, old);
|
705 |
|
|
|
706 |
|
|
/* If OLD had already been registered as a new name, then all the
|
707 |
|
|
names that OLD replaces should also be replaced by NEW_TREE. */
|
708 |
|
|
if (is_new_name (old))
|
709 |
|
|
bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
|
710 |
|
|
|
711 |
|
|
/* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
|
712 |
|
|
respectively. */
|
713 |
|
|
SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
|
714 |
|
|
SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
|
715 |
|
|
|
716 |
|
|
/* Update mapping counter to use in the virtual mapping heuristic. */
|
717 |
|
|
update_ssa_stats.num_total_mappings++;
|
718 |
|
|
|
719 |
|
|
timevar_pop (TV_TREE_SSA_INCREMENTAL);
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
|
723 |
|
|
/* Call back for walk_dominator_tree used to collect definition sites
|
724 |
|
|
for every variable in the function. For every statement S in block
|
725 |
|
|
BB:
|
726 |
|
|
|
727 |
|
|
1- Variables defined by S in the DEFS of S are marked in the bitmap
|
728 |
|
|
KILLS.
|
729 |
|
|
|
730 |
|
|
2- If S uses a variable VAR and there is no preceding kill of VAR,
|
731 |
|
|
then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
|
732 |
|
|
|
733 |
|
|
This information is used to determine which variables are live
|
734 |
|
|
across block boundaries to reduce the number of PHI nodes
|
735 |
|
|
we create. */
|
736 |
|
|
|
737 |
|
|
static void
|
738 |
|
|
mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
|
739 |
|
|
{
|
740 |
|
|
tree def;
|
741 |
|
|
use_operand_p use_p;
|
742 |
|
|
ssa_op_iter iter;
|
743 |
|
|
|
744 |
|
|
/* Since this is the first time that we rewrite the program into SSA
|
745 |
|
|
form, force an operand scan on every statement. */
|
746 |
|
|
update_stmt (stmt);
|
747 |
|
|
|
748 |
|
|
gcc_assert (blocks_to_update == NULL);
|
749 |
|
|
set_register_defs (stmt, false);
|
750 |
|
|
set_rewrite_uses (stmt, false);
|
751 |
|
|
|
752 |
|
|
if (is_gimple_debug (stmt))
|
753 |
|
|
return;
|
754 |
|
|
|
755 |
|
|
/* If a variable is used before being set, then the variable is live
|
756 |
|
|
across a block boundary, so mark it live-on-entry to BB. */
|
757 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
|
758 |
|
|
{
|
759 |
|
|
tree sym = USE_FROM_PTR (use_p);
|
760 |
|
|
gcc_assert (DECL_P (sym));
|
761 |
|
|
if (!bitmap_bit_p (kills, DECL_UID (sym)))
|
762 |
|
|
set_livein_block (sym, bb);
|
763 |
|
|
set_rewrite_uses (stmt, true);
|
764 |
|
|
}
|
765 |
|
|
|
766 |
|
|
/* Now process the defs. Mark BB as the definition block and add
|
767 |
|
|
each def to the set of killed symbols. */
|
768 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
|
769 |
|
|
{
|
770 |
|
|
gcc_assert (DECL_P (def));
|
771 |
|
|
set_def_block (def, bb, false);
|
772 |
|
|
bitmap_set_bit (kills, DECL_UID (def));
|
773 |
|
|
set_register_defs (stmt, true);
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
/* If we found the statement interesting then also mark the block BB
|
777 |
|
|
as interesting. */
|
778 |
|
|
if (rewrite_uses_p (stmt) || register_defs_p (stmt))
|
779 |
|
|
SET_BIT (interesting_blocks, bb->index);
|
780 |
|
|
}
|
781 |
|
|
|
782 |
|
|
/* Structure used by prune_unused_phi_nodes to record bounds of the intervals
|
783 |
|
|
in the dfs numbering of the dominance tree. */
|
784 |
|
|
|
785 |
|
|
struct dom_dfsnum
|
786 |
|
|
{
|
787 |
|
|
/* Basic block whose index this entry corresponds to. */
|
788 |
|
|
unsigned bb_index;
|
789 |
|
|
|
790 |
|
|
/* The dfs number of this node. */
|
791 |
|
|
unsigned dfs_num;
|
792 |
|
|
};
|
793 |
|
|
|
794 |
|
|
/* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
|
795 |
|
|
for qsort. */
|
796 |
|
|
|
797 |
|
|
static int
|
798 |
|
|
cmp_dfsnum (const void *a, const void *b)
|
799 |
|
|
{
|
800 |
|
|
const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
|
801 |
|
|
const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
|
802 |
|
|
|
803 |
|
|
return (int) da->dfs_num - (int) db->dfs_num;
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
/* Among the intervals starting at the N points specified in DEFS, find
|
807 |
|
|
the one that contains S, and return its bb_index. */
|
808 |
|
|
|
809 |
|
|
static unsigned
|
810 |
|
|
find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
|
811 |
|
|
{
|
812 |
|
|
unsigned f = 0, t = n, m;
|
813 |
|
|
|
814 |
|
|
while (t > f + 1)
|
815 |
|
|
{
|
816 |
|
|
m = (f + t) / 2;
|
817 |
|
|
if (defs[m].dfs_num <= s)
|
818 |
|
|
f = m;
|
819 |
|
|
else
|
820 |
|
|
t = m;
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
return defs[f].bb_index;
|
824 |
|
|
}
|
825 |
|
|
|
826 |
|
|
/* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
|
827 |
|
|
KILLS is a bitmap of blocks where the value is defined before any use. */
|
828 |
|
|
|
829 |
|
|
static void
|
830 |
|
|
prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
|
831 |
|
|
{
|
832 |
|
|
VEC(int, heap) *worklist;
|
833 |
|
|
bitmap_iterator bi;
|
834 |
|
|
unsigned i, b, p, u, top;
|
835 |
|
|
bitmap live_phis;
|
836 |
|
|
basic_block def_bb, use_bb;
|
837 |
|
|
edge e;
|
838 |
|
|
edge_iterator ei;
|
839 |
|
|
bitmap to_remove;
|
840 |
|
|
struct dom_dfsnum *defs;
|
841 |
|
|
unsigned n_defs, adef;
|
842 |
|
|
|
843 |
|
|
if (bitmap_empty_p (uses))
|
844 |
|
|
{
|
845 |
|
|
bitmap_clear (phis);
|
846 |
|
|
return;
|
847 |
|
|
}
|
848 |
|
|
|
849 |
|
|
/* The phi must dominate a use, or an argument of a live phi. Also, we
|
850 |
|
|
do not create any phi nodes in def blocks, unless they are also livein. */
|
851 |
|
|
to_remove = BITMAP_ALLOC (NULL);
|
852 |
|
|
bitmap_and_compl (to_remove, kills, uses);
|
853 |
|
|
bitmap_and_compl_into (phis, to_remove);
|
854 |
|
|
if (bitmap_empty_p (phis))
|
855 |
|
|
{
|
856 |
|
|
BITMAP_FREE (to_remove);
|
857 |
|
|
return;
|
858 |
|
|
}
|
859 |
|
|
|
860 |
|
|
/* We want to remove the unnecessary phi nodes, but we do not want to compute
|
861 |
|
|
liveness information, as that may be linear in the size of CFG, and if
|
862 |
|
|
there are lot of different variables to rewrite, this may lead to quadratic
|
863 |
|
|
behavior.
|
864 |
|
|
|
865 |
|
|
Instead, we basically emulate standard dce. We put all uses to worklist,
|
866 |
|
|
then for each of them find the nearest def that dominates them. If this
|
867 |
|
|
def is a phi node, we mark it live, and if it was not live before, we
|
868 |
|
|
add the predecessors of its basic block to the worklist.
|
869 |
|
|
|
870 |
|
|
To quickly locate the nearest def that dominates use, we use dfs numbering
|
871 |
|
|
of the dominance tree (that is already available in order to speed up
|
872 |
|
|
queries). For each def, we have the interval given by the dfs number on
|
873 |
|
|
entry to and on exit from the corresponding subtree in the dominance tree.
|
874 |
|
|
The nearest dominator for a given use is the smallest of these intervals
|
875 |
|
|
that contains entry and exit dfs numbers for the basic block with the use.
|
876 |
|
|
If we store the bounds for all the uses to an array and sort it, we can
|
877 |
|
|
locate the nearest dominating def in logarithmic time by binary search.*/
|
878 |
|
|
bitmap_ior (to_remove, kills, phis);
|
879 |
|
|
n_defs = bitmap_count_bits (to_remove);
|
880 |
|
|
defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
|
881 |
|
|
defs[0].bb_index = 1;
|
882 |
|
|
defs[0].dfs_num = 0;
|
883 |
|
|
adef = 1;
|
884 |
|
|
EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
|
885 |
|
|
{
|
886 |
|
|
def_bb = BASIC_BLOCK (i);
|
887 |
|
|
defs[adef].bb_index = i;
|
888 |
|
|
defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
|
889 |
|
|
defs[adef + 1].bb_index = i;
|
890 |
|
|
defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
|
891 |
|
|
adef += 2;
|
892 |
|
|
}
|
893 |
|
|
BITMAP_FREE (to_remove);
|
894 |
|
|
gcc_assert (adef == 2 * n_defs + 1);
|
895 |
|
|
qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
|
896 |
|
|
gcc_assert (defs[0].bb_index == 1);
|
897 |
|
|
|
898 |
|
|
/* Now each DEFS entry contains the number of the basic block to that the
|
899 |
|
|
dfs number corresponds. Change them to the number of basic block that
|
900 |
|
|
corresponds to the interval following the dfs number. Also, for the
|
901 |
|
|
dfs_out numbers, increase the dfs number by one (so that it corresponds
|
902 |
|
|
to the start of the following interval, not to the end of the current
|
903 |
|
|
one). We use WORKLIST as a stack. */
|
904 |
|
|
worklist = VEC_alloc (int, heap, n_defs + 1);
|
905 |
|
|
VEC_quick_push (int, worklist, 1);
|
906 |
|
|
top = 1;
|
907 |
|
|
n_defs = 1;
|
908 |
|
|
for (i = 1; i < adef; i++)
|
909 |
|
|
{
|
910 |
|
|
b = defs[i].bb_index;
|
911 |
|
|
if (b == top)
|
912 |
|
|
{
|
913 |
|
|
/* This is a closing element. Interval corresponding to the top
|
914 |
|
|
of the stack after removing it follows. */
|
915 |
|
|
VEC_pop (int, worklist);
|
916 |
|
|
top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
|
917 |
|
|
defs[n_defs].bb_index = top;
|
918 |
|
|
defs[n_defs].dfs_num = defs[i].dfs_num + 1;
|
919 |
|
|
}
|
920 |
|
|
else
|
921 |
|
|
{
|
922 |
|
|
/* Opening element. Nothing to do, just push it to the stack and move
|
923 |
|
|
it to the correct position. */
|
924 |
|
|
defs[n_defs].bb_index = defs[i].bb_index;
|
925 |
|
|
defs[n_defs].dfs_num = defs[i].dfs_num;
|
926 |
|
|
VEC_quick_push (int, worklist, b);
|
927 |
|
|
top = b;
|
928 |
|
|
}
|
929 |
|
|
|
930 |
|
|
/* If this interval starts at the same point as the previous one, cancel
|
931 |
|
|
the previous one. */
|
932 |
|
|
if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
|
933 |
|
|
defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
|
934 |
|
|
else
|
935 |
|
|
n_defs++;
|
936 |
|
|
}
|
937 |
|
|
VEC_pop (int, worklist);
|
938 |
|
|
gcc_assert (VEC_empty (int, worklist));
|
939 |
|
|
|
940 |
|
|
/* Now process the uses. */
|
941 |
|
|
live_phis = BITMAP_ALLOC (NULL);
|
942 |
|
|
EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
|
943 |
|
|
{
|
944 |
|
|
VEC_safe_push (int, heap, worklist, i);
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
while (!VEC_empty (int, worklist))
|
948 |
|
|
{
|
949 |
|
|
b = VEC_pop (int, worklist);
|
950 |
|
|
if (b == ENTRY_BLOCK)
|
951 |
|
|
continue;
|
952 |
|
|
|
953 |
|
|
/* If there is a phi node in USE_BB, it is made live. Otherwise,
|
954 |
|
|
find the def that dominates the immediate dominator of USE_BB
|
955 |
|
|
(the kill in USE_BB does not dominate the use). */
|
956 |
|
|
if (bitmap_bit_p (phis, b))
|
957 |
|
|
p = b;
|
958 |
|
|
else
|
959 |
|
|
{
|
960 |
|
|
use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
|
961 |
|
|
p = find_dfsnum_interval (defs, n_defs,
|
962 |
|
|
bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
|
963 |
|
|
if (!bitmap_bit_p (phis, p))
|
964 |
|
|
continue;
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
/* If the phi node is already live, there is nothing to do. */
|
968 |
|
|
if (bitmap_bit_p (live_phis, p))
|
969 |
|
|
continue;
|
970 |
|
|
|
971 |
|
|
/* Mark the phi as live, and add the new uses to the worklist. */
|
972 |
|
|
bitmap_set_bit (live_phis, p);
|
973 |
|
|
def_bb = BASIC_BLOCK (p);
|
974 |
|
|
FOR_EACH_EDGE (e, ei, def_bb->preds)
|
975 |
|
|
{
|
976 |
|
|
u = e->src->index;
|
977 |
|
|
if (bitmap_bit_p (uses, u))
|
978 |
|
|
continue;
|
979 |
|
|
|
980 |
|
|
/* In case there is a kill directly in the use block, do not record
|
981 |
|
|
the use (this is also necessary for correctness, as we assume that
|
982 |
|
|
uses dominated by a def directly in their block have been filtered
|
983 |
|
|
out before). */
|
984 |
|
|
if (bitmap_bit_p (kills, u))
|
985 |
|
|
continue;
|
986 |
|
|
|
987 |
|
|
bitmap_set_bit (uses, u);
|
988 |
|
|
VEC_safe_push (int, heap, worklist, u);
|
989 |
|
|
}
|
990 |
|
|
}
|
991 |
|
|
|
992 |
|
|
VEC_free (int, heap, worklist);
|
993 |
|
|
bitmap_copy (phis, live_phis);
|
994 |
|
|
BITMAP_FREE (live_phis);
|
995 |
|
|
free (defs);
|
996 |
|
|
}
|
997 |
|
|
|
998 |
|
|
/* Return the set of blocks where variable VAR is defined and the blocks
|
999 |
|
|
where VAR is live on entry (livein). Return NULL, if no entry is
|
1000 |
|
|
found in DEF_BLOCKS. */
|
1001 |
|
|
|
1002 |
|
|
static inline struct def_blocks_d *
|
1003 |
|
|
find_def_blocks_for (tree var)
|
1004 |
|
|
{
|
1005 |
|
|
struct def_blocks_d dm;
|
1006 |
|
|
dm.var = var;
|
1007 |
|
|
return (struct def_blocks_d *) htab_find (def_blocks, &dm);
|
1008 |
|
|
}
|
1009 |
|
|
|
1010 |
|
|
|
1011 |
|
|
/* Retrieve or create a default definition for symbol SYM. */
|
1012 |
|
|
|
1013 |
|
|
static inline tree
|
1014 |
|
|
get_default_def_for (tree sym)
|
1015 |
|
|
{
|
1016 |
|
|
tree ddef = gimple_default_def (cfun, sym);
|
1017 |
|
|
|
1018 |
|
|
if (ddef == NULL_TREE)
|
1019 |
|
|
{
|
1020 |
|
|
ddef = make_ssa_name (sym, gimple_build_nop ());
|
1021 |
|
|
set_default_def (sym, ddef);
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
return ddef;
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
|
1028 |
|
|
/* Marks phi node PHI in basic block BB for rewrite. */
|
1029 |
|
|
|
1030 |
|
|
static void
|
1031 |
|
|
mark_phi_for_rewrite (basic_block bb, gimple phi)
|
1032 |
|
|
{
|
1033 |
|
|
gimple_vec phis;
|
1034 |
|
|
unsigned i, idx = bb->index;
|
1035 |
|
|
|
1036 |
|
|
if (rewrite_uses_p (phi))
|
1037 |
|
|
return;
|
1038 |
|
|
|
1039 |
|
|
set_rewrite_uses (phi, true);
|
1040 |
|
|
|
1041 |
|
|
if (!blocks_with_phis_to_rewrite)
|
1042 |
|
|
return;
|
1043 |
|
|
|
1044 |
|
|
bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
|
1045 |
|
|
VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
|
1046 |
|
|
for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
|
1047 |
|
|
VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
|
1048 |
|
|
|
1049 |
|
|
phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
|
1050 |
|
|
if (!phis)
|
1051 |
|
|
phis = VEC_alloc (gimple, heap, 10);
|
1052 |
|
|
|
1053 |
|
|
VEC_safe_push (gimple, heap, phis, phi);
|
1054 |
|
|
VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
|
1055 |
|
|
}
|
1056 |
|
|
|
1057 |
|
|
/* Insert PHI nodes for variable VAR using the iterated dominance
|
1058 |
|
|
frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
|
1059 |
|
|
function assumes that the caller is incrementally updating the
|
1060 |
|
|
existing SSA form, in which case VAR may be an SSA name instead of
|
1061 |
|
|
a symbol.
|
1062 |
|
|
|
1063 |
|
|
PHI_INSERTION_POINTS is updated to reflect nodes that already had a
|
1064 |
|
|
PHI node for VAR. On exit, only the nodes that received a PHI node
|
1065 |
|
|
for VAR will be present in PHI_INSERTION_POINTS. */
|
1066 |
|
|
|
1067 |
|
|
static void
|
1068 |
|
|
insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
|
1069 |
|
|
{
|
1070 |
|
|
unsigned bb_index;
|
1071 |
|
|
edge e;
|
1072 |
|
|
gimple phi;
|
1073 |
|
|
basic_block bb;
|
1074 |
|
|
bitmap_iterator bi;
|
1075 |
|
|
struct def_blocks_d *def_map;
|
1076 |
|
|
|
1077 |
|
|
def_map = find_def_blocks_for (var);
|
1078 |
|
|
gcc_assert (def_map);
|
1079 |
|
|
|
1080 |
|
|
/* Remove the blocks where we already have PHI nodes for VAR. */
|
1081 |
|
|
bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
|
1082 |
|
|
|
1083 |
|
|
/* Remove obviously useless phi nodes. */
|
1084 |
|
|
prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
|
1085 |
|
|
def_map->livein_blocks);
|
1086 |
|
|
|
1087 |
|
|
/* And insert the PHI nodes. */
|
1088 |
|
|
EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
|
1089 |
|
|
{
|
1090 |
|
|
bb = BASIC_BLOCK (bb_index);
|
1091 |
|
|
if (update_p)
|
1092 |
|
|
mark_block_for_update (bb);
|
1093 |
|
|
|
1094 |
|
|
phi = NULL;
|
1095 |
|
|
|
1096 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
1097 |
|
|
{
|
1098 |
|
|
/* If we are rewriting SSA names, create the LHS of the PHI
|
1099 |
|
|
node by duplicating VAR. This is useful in the case of
|
1100 |
|
|
pointers, to also duplicate pointer attributes (alias
|
1101 |
|
|
information, in particular). */
|
1102 |
|
|
edge_iterator ei;
|
1103 |
|
|
tree new_lhs;
|
1104 |
|
|
|
1105 |
|
|
gcc_assert (update_p);
|
1106 |
|
|
phi = create_phi_node (var, bb);
|
1107 |
|
|
|
1108 |
|
|
new_lhs = duplicate_ssa_name (var, phi);
|
1109 |
|
|
gimple_phi_set_result (phi, new_lhs);
|
1110 |
|
|
add_new_name_mapping (new_lhs, var);
|
1111 |
|
|
|
1112 |
|
|
/* Add VAR to every argument slot of PHI. We need VAR in
|
1113 |
|
|
every argument so that rewrite_update_phi_arguments knows
|
1114 |
|
|
which name is this PHI node replacing. If VAR is a
|
1115 |
|
|
symbol marked for renaming, this is not necessary, the
|
1116 |
|
|
renamer will use the symbol on the LHS to get its
|
1117 |
|
|
reaching definition. */
|
1118 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
1119 |
|
|
add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
|
1120 |
|
|
}
|
1121 |
|
|
else
|
1122 |
|
|
{
|
1123 |
|
|
tree tracked_var;
|
1124 |
|
|
|
1125 |
|
|
gcc_assert (DECL_P (var));
|
1126 |
|
|
phi = create_phi_node (var, bb);
|
1127 |
|
|
|
1128 |
|
|
tracked_var = target_for_debug_bind (var);
|
1129 |
|
|
if (tracked_var)
|
1130 |
|
|
{
|
1131 |
|
|
gimple note = gimple_build_debug_bind (tracked_var,
|
1132 |
|
|
PHI_RESULT (phi),
|
1133 |
|
|
phi);
|
1134 |
|
|
gimple_stmt_iterator si = gsi_after_labels (bb);
|
1135 |
|
|
gsi_insert_before (&si, note, GSI_SAME_STMT);
|
1136 |
|
|
}
|
1137 |
|
|
}
|
1138 |
|
|
|
1139 |
|
|
/* Mark this PHI node as interesting for update_ssa. */
|
1140 |
|
|
set_register_defs (phi, true);
|
1141 |
|
|
mark_phi_for_rewrite (bb, phi);
|
1142 |
|
|
}
|
1143 |
|
|
}
|
1144 |
|
|
|
1145 |
|
|
|
1146 |
|
|
/* Insert PHI nodes at the dominance frontier of blocks with variable
|
1147 |
|
|
definitions. DFS contains the dominance frontier information for
|
1148 |
|
|
the flowgraph. */
|
1149 |
|
|
|
1150 |
|
|
static void
|
1151 |
|
|
insert_phi_nodes (bitmap *dfs)
|
1152 |
|
|
{
|
1153 |
|
|
referenced_var_iterator rvi;
|
1154 |
|
|
bitmap_iterator bi;
|
1155 |
|
|
tree var;
|
1156 |
|
|
bitmap vars;
|
1157 |
|
|
unsigned uid;
|
1158 |
|
|
|
1159 |
|
|
timevar_push (TV_TREE_INSERT_PHI_NODES);
|
1160 |
|
|
|
1161 |
|
|
/* Do two stages to avoid code generation differences for UID
|
1162 |
|
|
differences but no UID ordering differences. */
|
1163 |
|
|
|
1164 |
|
|
vars = BITMAP_ALLOC (NULL);
|
1165 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
1166 |
|
|
{
|
1167 |
|
|
struct def_blocks_d *def_map;
|
1168 |
|
|
|
1169 |
|
|
def_map = find_def_blocks_for (var);
|
1170 |
|
|
if (def_map == NULL)
|
1171 |
|
|
continue;
|
1172 |
|
|
|
1173 |
|
|
if (get_phi_state (var) != NEED_PHI_STATE_NO)
|
1174 |
|
|
bitmap_set_bit (vars, DECL_UID (var));
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
|
1178 |
|
|
{
|
1179 |
|
|
tree var = referenced_var (uid);
|
1180 |
|
|
struct def_blocks_d *def_map;
|
1181 |
|
|
bitmap idf;
|
1182 |
|
|
|
1183 |
|
|
def_map = find_def_blocks_for (var);
|
1184 |
|
|
idf = compute_idf (def_map->def_blocks, dfs);
|
1185 |
|
|
insert_phi_nodes_for (var, idf, false);
|
1186 |
|
|
BITMAP_FREE (idf);
|
1187 |
|
|
}
|
1188 |
|
|
|
1189 |
|
|
BITMAP_FREE (vars);
|
1190 |
|
|
|
1191 |
|
|
timevar_pop (TV_TREE_INSERT_PHI_NODES);
|
1192 |
|
|
}
|
1193 |
|
|
|
1194 |
|
|
|
1195 |
|
|
/* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
|
1196 |
|
|
register DEF (an SSA_NAME) to be a new definition for SYM. */
|
1197 |
|
|
|
1198 |
|
|
static void
|
1199 |
|
|
register_new_def (tree def, tree sym)
|
1200 |
|
|
{
|
1201 |
|
|
tree currdef;
|
1202 |
|
|
|
1203 |
|
|
/* If this variable is set in a single basic block and all uses are
|
1204 |
|
|
dominated by the set(s) in that single basic block, then there is
|
1205 |
|
|
no reason to record anything for this variable in the block local
|
1206 |
|
|
definition stacks. Doing so just wastes time and memory.
|
1207 |
|
|
|
1208 |
|
|
This is the same test to prune the set of variables which may
|
1209 |
|
|
need PHI nodes. So we just use that information since it's already
|
1210 |
|
|
computed and available for us to use. */
|
1211 |
|
|
if (get_phi_state (sym) == NEED_PHI_STATE_NO)
|
1212 |
|
|
{
|
1213 |
|
|
set_current_def (sym, def);
|
1214 |
|
|
return;
|
1215 |
|
|
}
|
1216 |
|
|
|
1217 |
|
|
currdef = get_current_def (sym);
|
1218 |
|
|
|
1219 |
|
|
/* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
|
1220 |
|
|
SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
|
1221 |
|
|
in the stack so that we know which symbol is being defined by
|
1222 |
|
|
this SSA name when we unwind the stack. */
|
1223 |
|
|
if (currdef && !is_gimple_reg (sym))
|
1224 |
|
|
VEC_safe_push (tree, heap, block_defs_stack, sym);
|
1225 |
|
|
|
1226 |
|
|
/* Push the current reaching definition into BLOCK_DEFS_STACK. This
|
1227 |
|
|
stack is later used by the dominator tree callbacks to restore
|
1228 |
|
|
the reaching definitions for all the variables defined in the
|
1229 |
|
|
block after a recursive visit to all its immediately dominated
|
1230 |
|
|
blocks. If there is no current reaching definition, then just
|
1231 |
|
|
record the underlying _DECL node. */
|
1232 |
|
|
VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
|
1233 |
|
|
|
1234 |
|
|
/* Set the current reaching definition for SYM to be DEF. */
|
1235 |
|
|
set_current_def (sym, def);
|
1236 |
|
|
}
|
1237 |
|
|
|
1238 |
|
|
|
1239 |
|
|
/* Perform a depth-first traversal of the dominator tree looking for
|
1240 |
|
|
variables to rename. BB is the block where to start searching.
|
1241 |
|
|
Renaming is a five step process:
|
1242 |
|
|
|
1243 |
|
|
1- Every definition made by PHI nodes at the start of the blocks is
|
1244 |
|
|
registered as the current definition for the corresponding variable.
|
1245 |
|
|
|
1246 |
|
|
2- Every statement in BB is rewritten. USE and VUSE operands are
|
1247 |
|
|
rewritten with their corresponding reaching definition. DEF and
|
1248 |
|
|
VDEF targets are registered as new definitions.
|
1249 |
|
|
|
1250 |
|
|
3- All the PHI nodes in successor blocks of BB are visited. The
|
1251 |
|
|
argument corresponding to BB is replaced with its current reaching
|
1252 |
|
|
definition.
|
1253 |
|
|
|
1254 |
|
|
4- Recursively rewrite every dominator child block of BB.
|
1255 |
|
|
|
1256 |
|
|
5- Restore (in reverse order) the current reaching definition for every
|
1257 |
|
|
new definition introduced in this block. This is done so that when
|
1258 |
|
|
we return from the recursive call, all the current reaching
|
1259 |
|
|
definitions are restored to the names that were valid in the
|
1260 |
|
|
dominator parent of BB. */
|
1261 |
|
|
|
1262 |
|
|
/* Return the current definition for variable VAR. If none is found,
|
1263 |
|
|
create a new SSA name to act as the zeroth definition for VAR. */
|
1264 |
|
|
|
1265 |
|
|
static tree
|
1266 |
|
|
get_reaching_def (tree var)
|
1267 |
|
|
{
|
1268 |
|
|
tree currdef;
|
1269 |
|
|
|
1270 |
|
|
/* Lookup the current reaching definition for VAR. */
|
1271 |
|
|
currdef = get_current_def (var);
|
1272 |
|
|
|
1273 |
|
|
/* If there is no reaching definition for VAR, create and register a
|
1274 |
|
|
default definition for it (if needed). */
|
1275 |
|
|
if (currdef == NULL_TREE)
|
1276 |
|
|
{
|
1277 |
|
|
tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
|
1278 |
|
|
currdef = get_default_def_for (sym);
|
1279 |
|
|
set_current_def (var, currdef);
|
1280 |
|
|
}
|
1281 |
|
|
|
1282 |
|
|
/* Return the current reaching definition for VAR, or the default
|
1283 |
|
|
definition, if we had to create one. */
|
1284 |
|
|
return currdef;
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
|
1288 |
|
|
/* SSA Rewriting Step 2. Rewrite every variable used in each statement in
|
1289 |
|
|
the block with its immediate reaching definitions. Update the current
|
1290 |
|
|
definition of a variable when a new real or virtual definition is found. */
|
1291 |
|
|
|
1292 |
|
|
static void
|
1293 |
|
|
rewrite_stmt (gimple_stmt_iterator si)
|
1294 |
|
|
{
|
1295 |
|
|
use_operand_p use_p;
|
1296 |
|
|
def_operand_p def_p;
|
1297 |
|
|
ssa_op_iter iter;
|
1298 |
|
|
gimple stmt = gsi_stmt (si);
|
1299 |
|
|
|
1300 |
|
|
/* If mark_def_sites decided that we don't need to rewrite this
|
1301 |
|
|
statement, ignore it. */
|
1302 |
|
|
gcc_assert (blocks_to_update == NULL);
|
1303 |
|
|
if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
|
1304 |
|
|
return;
|
1305 |
|
|
|
1306 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1307 |
|
|
{
|
1308 |
|
|
fprintf (dump_file, "Renaming statement ");
|
1309 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
1310 |
|
|
fprintf (dump_file, "\n");
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
/* Step 1. Rewrite USES in the statement. */
|
1314 |
|
|
if (rewrite_uses_p (stmt))
|
1315 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
|
1316 |
|
|
{
|
1317 |
|
|
tree var = USE_FROM_PTR (use_p);
|
1318 |
|
|
gcc_assert (DECL_P (var));
|
1319 |
|
|
SET_USE (use_p, get_reaching_def (var));
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
/* Step 2. Register the statement's DEF operands. */
|
1323 |
|
|
if (register_defs_p (stmt))
|
1324 |
|
|
FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
|
1325 |
|
|
{
|
1326 |
|
|
tree var = DEF_FROM_PTR (def_p);
|
1327 |
|
|
tree name = make_ssa_name (var, stmt);
|
1328 |
|
|
tree tracked_var;
|
1329 |
|
|
gcc_assert (DECL_P (var));
|
1330 |
|
|
SET_DEF (def_p, name);
|
1331 |
|
|
register_new_def (DEF_FROM_PTR (def_p), var);
|
1332 |
|
|
|
1333 |
|
|
tracked_var = target_for_debug_bind (var);
|
1334 |
|
|
if (tracked_var)
|
1335 |
|
|
{
|
1336 |
|
|
gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
|
1337 |
|
|
gsi_insert_after (&si, note, GSI_SAME_STMT);
|
1338 |
|
|
}
|
1339 |
|
|
}
|
1340 |
|
|
}
|
1341 |
|
|
|
1342 |
|
|
|
1343 |
|
|
/* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
|
1344 |
|
|
PHI nodes. For every PHI node found, add a new argument containing the
|
1345 |
|
|
current reaching definition for the variable and the edge through which
|
1346 |
|
|
that definition is reaching the PHI node. */
|
1347 |
|
|
|
1348 |
|
|
static void
|
1349 |
|
|
rewrite_add_phi_arguments (basic_block bb)
|
1350 |
|
|
{
|
1351 |
|
|
edge e;
|
1352 |
|
|
edge_iterator ei;
|
1353 |
|
|
|
1354 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1355 |
|
|
{
|
1356 |
|
|
gimple phi;
|
1357 |
|
|
gimple_stmt_iterator gsi;
|
1358 |
|
|
|
1359 |
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
|
1360 |
|
|
gsi_next (&gsi))
|
1361 |
|
|
{
|
1362 |
|
|
tree currdef;
|
1363 |
|
|
gimple stmt;
|
1364 |
|
|
|
1365 |
|
|
phi = gsi_stmt (gsi);
|
1366 |
|
|
currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
|
1367 |
|
|
stmt = SSA_NAME_DEF_STMT (currdef);
|
1368 |
|
|
add_phi_arg (phi, currdef, e, gimple_location (stmt));
|
1369 |
|
|
}
|
1370 |
|
|
}
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
/* SSA Rewriting Step 1. Initialization, create a block local stack
|
1374 |
|
|
of reaching definitions for new SSA names produced in this block
|
1375 |
|
|
(BLOCK_DEFS). Register new definitions for every PHI node in the
|
1376 |
|
|
block. */
|
1377 |
|
|
|
1378 |
|
|
static void
|
1379 |
|
|
rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
1380 |
|
|
basic_block bb)
|
1381 |
|
|
{
|
1382 |
|
|
gimple phi;
|
1383 |
|
|
gimple_stmt_iterator gsi;
|
1384 |
|
|
|
1385 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1386 |
|
|
fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
|
1387 |
|
|
|
1388 |
|
|
/* Mark the unwind point for this block. */
|
1389 |
|
|
VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
|
1390 |
|
|
|
1391 |
|
|
/* Step 1. Register new definitions for every PHI node in the block.
|
1392 |
|
|
Conceptually, all the PHI nodes are executed in parallel and each PHI
|
1393 |
|
|
node introduces a new version for the associated variable. */
|
1394 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1395 |
|
|
{
|
1396 |
|
|
tree result;
|
1397 |
|
|
|
1398 |
|
|
phi = gsi_stmt (gsi);
|
1399 |
|
|
result = gimple_phi_result (phi);
|
1400 |
|
|
gcc_assert (is_gimple_reg (result));
|
1401 |
|
|
register_new_def (result, SSA_NAME_VAR (result));
|
1402 |
|
|
}
|
1403 |
|
|
|
1404 |
|
|
/* Step 2. Rewrite every variable used in each statement in the block
|
1405 |
|
|
with its immediate reaching definitions. Update the current definition
|
1406 |
|
|
of a variable when a new real or virtual definition is found. */
|
1407 |
|
|
if (TEST_BIT (interesting_blocks, bb->index))
|
1408 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1409 |
|
|
rewrite_stmt (gsi);
|
1410 |
|
|
|
1411 |
|
|
/* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
|
1412 |
|
|
For every PHI node found, add a new argument containing the current
|
1413 |
|
|
reaching definition for the variable and the edge through which that
|
1414 |
|
|
definition is reaching the PHI node. */
|
1415 |
|
|
rewrite_add_phi_arguments (bb);
|
1416 |
|
|
}
|
1417 |
|
|
|
1418 |
|
|
|
1419 |
|
|
|
1420 |
|
|
/* Called after visiting all the statements in basic block BB and all
|
1421 |
|
|
of its dominator children. Restore CURRDEFS to its original value. */
|
1422 |
|
|
|
1423 |
|
|
static void
|
1424 |
|
|
rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
1425 |
|
|
basic_block bb ATTRIBUTE_UNUSED)
|
1426 |
|
|
{
|
1427 |
|
|
/* Restore CURRDEFS to its original state. */
|
1428 |
|
|
while (VEC_length (tree, block_defs_stack) > 0)
|
1429 |
|
|
{
|
1430 |
|
|
tree tmp = VEC_pop (tree, block_defs_stack);
|
1431 |
|
|
tree saved_def, var;
|
1432 |
|
|
|
1433 |
|
|
if (tmp == NULL_TREE)
|
1434 |
|
|
break;
|
1435 |
|
|
|
1436 |
|
|
if (TREE_CODE (tmp) == SSA_NAME)
|
1437 |
|
|
{
|
1438 |
|
|
/* If we recorded an SSA_NAME, then make the SSA_NAME the
|
1439 |
|
|
current definition of its underlying variable. Note that
|
1440 |
|
|
if the SSA_NAME is not for a GIMPLE register, the symbol
|
1441 |
|
|
being defined is stored in the next slot in the stack.
|
1442 |
|
|
This mechanism is needed because an SSA name for a
|
1443 |
|
|
non-register symbol may be the definition for more than
|
1444 |
|
|
one symbol (e.g., SFTs, aliased variables, etc). */
|
1445 |
|
|
saved_def = tmp;
|
1446 |
|
|
var = SSA_NAME_VAR (saved_def);
|
1447 |
|
|
if (!is_gimple_reg (var))
|
1448 |
|
|
var = VEC_pop (tree, block_defs_stack);
|
1449 |
|
|
}
|
1450 |
|
|
else
|
1451 |
|
|
{
|
1452 |
|
|
/* If we recorded anything else, it must have been a _DECL
|
1453 |
|
|
node and its current reaching definition must have been
|
1454 |
|
|
NULL. */
|
1455 |
|
|
saved_def = NULL;
|
1456 |
|
|
var = tmp;
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
set_current_def (var, saved_def);
|
1460 |
|
|
}
|
1461 |
|
|
}
|
1462 |
|
|
|
1463 |
|
|
|
1464 |
|
|
/* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
|
1465 |
|
|
|
1466 |
|
|
void
|
1467 |
|
|
dump_decl_set (FILE *file, bitmap set)
|
1468 |
|
|
{
|
1469 |
|
|
if (set)
|
1470 |
|
|
{
|
1471 |
|
|
bitmap_iterator bi;
|
1472 |
|
|
unsigned i;
|
1473 |
|
|
|
1474 |
|
|
fprintf (file, "{ ");
|
1475 |
|
|
|
1476 |
|
|
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
|
1477 |
|
|
{
|
1478 |
|
|
print_generic_expr (file, referenced_var (i), 0);
|
1479 |
|
|
fprintf (file, " ");
|
1480 |
|
|
}
|
1481 |
|
|
|
1482 |
|
|
fprintf (file, "}");
|
1483 |
|
|
}
|
1484 |
|
|
else
|
1485 |
|
|
fprintf (file, "NIL");
|
1486 |
|
|
}
|
1487 |
|
|
|
1488 |
|
|
|
1489 |
|
|
/* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
|
1490 |
|
|
|
1491 |
|
|
void
|
1492 |
|
|
debug_decl_set (bitmap set)
|
1493 |
|
|
{
|
1494 |
|
|
dump_decl_set (stderr, set);
|
1495 |
|
|
fprintf (stderr, "\n");
|
1496 |
|
|
}
|
1497 |
|
|
|
1498 |
|
|
|
1499 |
|
|
/* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
|
1500 |
|
|
stack up to a maximum of N levels. If N is -1, the whole stack is
|
1501 |
|
|
dumped. New levels are created when the dominator tree traversal
|
1502 |
|
|
used for renaming enters a new sub-tree. */
|
1503 |
|
|
|
1504 |
|
|
void
|
1505 |
|
|
dump_defs_stack (FILE *file, int n)
|
1506 |
|
|
{
|
1507 |
|
|
int i, j;
|
1508 |
|
|
|
1509 |
|
|
fprintf (file, "\n\nRenaming stack");
|
1510 |
|
|
if (n > 0)
|
1511 |
|
|
fprintf (file, " (up to %d levels)", n);
|
1512 |
|
|
fprintf (file, "\n\n");
|
1513 |
|
|
|
1514 |
|
|
i = 1;
|
1515 |
|
|
fprintf (file, "Level %d (current level)\n", i);
|
1516 |
|
|
for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
|
1517 |
|
|
{
|
1518 |
|
|
tree name, var;
|
1519 |
|
|
|
1520 |
|
|
name = VEC_index (tree, block_defs_stack, j);
|
1521 |
|
|
if (name == NULL_TREE)
|
1522 |
|
|
{
|
1523 |
|
|
i++;
|
1524 |
|
|
if (n > 0 && i > n)
|
1525 |
|
|
break;
|
1526 |
|
|
fprintf (file, "\nLevel %d\n", i);
|
1527 |
|
|
continue;
|
1528 |
|
|
}
|
1529 |
|
|
|
1530 |
|
|
if (DECL_P (name))
|
1531 |
|
|
{
|
1532 |
|
|
var = name;
|
1533 |
|
|
name = NULL_TREE;
|
1534 |
|
|
}
|
1535 |
|
|
else
|
1536 |
|
|
{
|
1537 |
|
|
var = SSA_NAME_VAR (name);
|
1538 |
|
|
if (!is_gimple_reg (var))
|
1539 |
|
|
{
|
1540 |
|
|
j--;
|
1541 |
|
|
var = VEC_index (tree, block_defs_stack, j);
|
1542 |
|
|
}
|
1543 |
|
|
}
|
1544 |
|
|
|
1545 |
|
|
fprintf (file, " Previous CURRDEF (");
|
1546 |
|
|
print_generic_expr (file, var, 0);
|
1547 |
|
|
fprintf (file, ") = ");
|
1548 |
|
|
if (name)
|
1549 |
|
|
print_generic_expr (file, name, 0);
|
1550 |
|
|
else
|
1551 |
|
|
fprintf (file, "<NIL>");
|
1552 |
|
|
fprintf (file, "\n");
|
1553 |
|
|
}
|
1554 |
|
|
}
|
1555 |
|
|
|
1556 |
|
|
|
1557 |
|
|
/* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
|
1558 |
|
|
stack up to a maximum of N levels. If N is -1, the whole stack is
|
1559 |
|
|
dumped. New levels are created when the dominator tree traversal
|
1560 |
|
|
used for renaming enters a new sub-tree. */
|
1561 |
|
|
|
1562 |
|
|
void
|
1563 |
|
|
debug_defs_stack (int n)
|
1564 |
|
|
{
|
1565 |
|
|
dump_defs_stack (stderr, n);
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
|
1569 |
|
|
/* Dump the current reaching definition of every symbol to FILE. */
|
1570 |
|
|
|
1571 |
|
|
void
|
1572 |
|
|
dump_currdefs (FILE *file)
|
1573 |
|
|
{
|
1574 |
|
|
referenced_var_iterator i;
|
1575 |
|
|
tree var;
|
1576 |
|
|
|
1577 |
|
|
fprintf (file, "\n\nCurrent reaching definitions\n\n");
|
1578 |
|
|
FOR_EACH_REFERENCED_VAR (var, i)
|
1579 |
|
|
if (SYMS_TO_RENAME (cfun) == NULL
|
1580 |
|
|
|| bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
|
1581 |
|
|
{
|
1582 |
|
|
fprintf (file, "CURRDEF (");
|
1583 |
|
|
print_generic_expr (file, var, 0);
|
1584 |
|
|
fprintf (file, ") = ");
|
1585 |
|
|
if (get_current_def (var))
|
1586 |
|
|
print_generic_expr (file, get_current_def (var), 0);
|
1587 |
|
|
else
|
1588 |
|
|
fprintf (file, "<NIL>");
|
1589 |
|
|
fprintf (file, "\n");
|
1590 |
|
|
}
|
1591 |
|
|
}
|
1592 |
|
|
|
1593 |
|
|
|
1594 |
|
|
/* Dump the current reaching definition of every symbol to stderr. */
|
1595 |
|
|
|
1596 |
|
|
void
|
1597 |
|
|
debug_currdefs (void)
|
1598 |
|
|
{
|
1599 |
|
|
dump_currdefs (stderr);
|
1600 |
|
|
}
|
1601 |
|
|
|
1602 |
|
|
|
1603 |
|
|
/* Dump SSA information to FILE. */
|
1604 |
|
|
|
1605 |
|
|
void
|
1606 |
|
|
dump_tree_ssa (FILE *file)
|
1607 |
|
|
{
|
1608 |
|
|
const char *funcname
|
1609 |
|
|
= lang_hooks.decl_printable_name (current_function_decl, 2);
|
1610 |
|
|
|
1611 |
|
|
fprintf (file, "SSA renaming information for %s\n\n", funcname);
|
1612 |
|
|
|
1613 |
|
|
dump_def_blocks (file);
|
1614 |
|
|
dump_defs_stack (file, -1);
|
1615 |
|
|
dump_currdefs (file);
|
1616 |
|
|
dump_tree_ssa_stats (file);
|
1617 |
|
|
}
|
1618 |
|
|
|
1619 |
|
|
|
1620 |
|
|
/* Dump SSA information to stderr. */
|
1621 |
|
|
|
1622 |
|
|
void
|
1623 |
|
|
debug_tree_ssa (void)
|
1624 |
|
|
{
|
1625 |
|
|
dump_tree_ssa (stderr);
|
1626 |
|
|
}
|
1627 |
|
|
|
1628 |
|
|
|
1629 |
|
|
/* Dump statistics for the hash table HTAB. */
|
1630 |
|
|
|
1631 |
|
|
static void
|
1632 |
|
|
htab_statistics (FILE *file, htab_t htab)
|
1633 |
|
|
{
|
1634 |
|
|
fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
|
1635 |
|
|
(long) htab_size (htab),
|
1636 |
|
|
(long) htab_elements (htab),
|
1637 |
|
|
htab_collisions (htab));
|
1638 |
|
|
}
|
1639 |
|
|
|
1640 |
|
|
|
1641 |
|
|
/* Dump SSA statistics on FILE. */
|
1642 |
|
|
|
1643 |
|
|
void
|
1644 |
|
|
dump_tree_ssa_stats (FILE *file)
|
1645 |
|
|
{
|
1646 |
|
|
if (def_blocks || repl_tbl)
|
1647 |
|
|
fprintf (file, "\nHash table statistics:\n");
|
1648 |
|
|
|
1649 |
|
|
if (def_blocks)
|
1650 |
|
|
{
|
1651 |
|
|
fprintf (file, " def_blocks: ");
|
1652 |
|
|
htab_statistics (file, def_blocks);
|
1653 |
|
|
}
|
1654 |
|
|
|
1655 |
|
|
if (repl_tbl)
|
1656 |
|
|
{
|
1657 |
|
|
fprintf (file, " repl_tbl: ");
|
1658 |
|
|
htab_statistics (file, repl_tbl);
|
1659 |
|
|
}
|
1660 |
|
|
|
1661 |
|
|
if (def_blocks || repl_tbl)
|
1662 |
|
|
fprintf (file, "\n");
|
1663 |
|
|
}
|
1664 |
|
|
|
1665 |
|
|
|
1666 |
|
|
/* Dump SSA statistics on stderr. */
|
1667 |
|
|
|
1668 |
|
|
void
|
1669 |
|
|
debug_tree_ssa_stats (void)
|
1670 |
|
|
{
|
1671 |
|
|
dump_tree_ssa_stats (stderr);
|
1672 |
|
|
}
|
1673 |
|
|
|
1674 |
|
|
|
1675 |
|
|
/* Hashing and equality functions for DEF_BLOCKS. */
|
1676 |
|
|
|
1677 |
|
|
static hashval_t
|
1678 |
|
|
def_blocks_hash (const void *p)
|
1679 |
|
|
{
|
1680 |
|
|
return htab_hash_pointer
|
1681 |
|
|
((const void *)((const struct def_blocks_d *)p)->var);
|
1682 |
|
|
}
|
1683 |
|
|
|
1684 |
|
|
static int
|
1685 |
|
|
def_blocks_eq (const void *p1, const void *p2)
|
1686 |
|
|
{
|
1687 |
|
|
return ((const struct def_blocks_d *)p1)->var
|
1688 |
|
|
== ((const struct def_blocks_d *)p2)->var;
|
1689 |
|
|
}
|
1690 |
|
|
|
1691 |
|
|
|
1692 |
|
|
/* Free memory allocated by one entry in DEF_BLOCKS. */
|
1693 |
|
|
|
1694 |
|
|
static void
|
1695 |
|
|
def_blocks_free (void *p)
|
1696 |
|
|
{
|
1697 |
|
|
struct def_blocks_d *entry = (struct def_blocks_d *) p;
|
1698 |
|
|
BITMAP_FREE (entry->def_blocks);
|
1699 |
|
|
BITMAP_FREE (entry->phi_blocks);
|
1700 |
|
|
BITMAP_FREE (entry->livein_blocks);
|
1701 |
|
|
free (entry);
|
1702 |
|
|
}
|
1703 |
|
|
|
1704 |
|
|
|
1705 |
|
|
/* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
|
1706 |
|
|
|
1707 |
|
|
static int
|
1708 |
|
|
debug_def_blocks_r (void **slot, void *data)
|
1709 |
|
|
{
|
1710 |
|
|
FILE *file = (FILE *) data;
|
1711 |
|
|
struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
|
1712 |
|
|
|
1713 |
|
|
fprintf (file, "VAR: ");
|
1714 |
|
|
print_generic_expr (file, db_p->var, dump_flags);
|
1715 |
|
|
bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
|
1716 |
|
|
bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
|
1717 |
|
|
bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
|
1718 |
|
|
|
1719 |
|
|
return 1;
|
1720 |
|
|
}
|
1721 |
|
|
|
1722 |
|
|
|
1723 |
|
|
/* Dump the DEF_BLOCKS hash table on FILE. */
|
1724 |
|
|
|
1725 |
|
|
void
|
1726 |
|
|
dump_def_blocks (FILE *file)
|
1727 |
|
|
{
|
1728 |
|
|
fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
|
1729 |
|
|
if (def_blocks)
|
1730 |
|
|
htab_traverse (def_blocks, debug_def_blocks_r, file);
|
1731 |
|
|
}
|
1732 |
|
|
|
1733 |
|
|
|
1734 |
|
|
/* Dump the DEF_BLOCKS hash table on stderr. */
|
1735 |
|
|
|
1736 |
|
|
void
|
1737 |
|
|
debug_def_blocks (void)
|
1738 |
|
|
{
|
1739 |
|
|
dump_def_blocks (stderr);
|
1740 |
|
|
}
|
1741 |
|
|
|
1742 |
|
|
|
1743 |
|
|
/* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
|
1744 |
|
|
|
1745 |
|
|
static inline void
|
1746 |
|
|
register_new_update_single (tree new_name, tree old_name)
|
1747 |
|
|
{
|
1748 |
|
|
tree currdef = get_current_def (old_name);
|
1749 |
|
|
|
1750 |
|
|
/* Push the current reaching definition into BLOCK_DEFS_STACK.
|
1751 |
|
|
This stack is later used by the dominator tree callbacks to
|
1752 |
|
|
restore the reaching definitions for all the variables
|
1753 |
|
|
defined in the block after a recursive visit to all its
|
1754 |
|
|
immediately dominated blocks. */
|
1755 |
|
|
VEC_reserve (tree, heap, block_defs_stack, 2);
|
1756 |
|
|
VEC_quick_push (tree, block_defs_stack, currdef);
|
1757 |
|
|
VEC_quick_push (tree, block_defs_stack, old_name);
|
1758 |
|
|
|
1759 |
|
|
/* Set the current reaching definition for OLD_NAME to be
|
1760 |
|
|
NEW_NAME. */
|
1761 |
|
|
set_current_def (old_name, new_name);
|
1762 |
|
|
}
|
1763 |
|
|
|
1764 |
|
|
|
1765 |
|
|
/* Register NEW_NAME to be the new reaching definition for all the
|
1766 |
|
|
names in OLD_NAMES. Used by the incremental SSA update routines to
|
1767 |
|
|
replace old SSA names with new ones. */
|
1768 |
|
|
|
1769 |
|
|
static inline void
|
1770 |
|
|
register_new_update_set (tree new_name, bitmap old_names)
|
1771 |
|
|
{
|
1772 |
|
|
bitmap_iterator bi;
|
1773 |
|
|
unsigned i;
|
1774 |
|
|
|
1775 |
|
|
EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
|
1776 |
|
|
register_new_update_single (new_name, ssa_name (i));
|
1777 |
|
|
}
|
1778 |
|
|
|
1779 |
|
|
|
1780 |
|
|
|
1781 |
|
|
/* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
|
1782 |
|
|
it is a symbol marked for renaming, replace it with USE_P's current
|
1783 |
|
|
reaching definition. */
|
1784 |
|
|
|
1785 |
|
|
static inline void
|
1786 |
|
|
maybe_replace_use (use_operand_p use_p)
|
1787 |
|
|
{
|
1788 |
|
|
tree rdef = NULL_TREE;
|
1789 |
|
|
tree use = USE_FROM_PTR (use_p);
|
1790 |
|
|
tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
|
1791 |
|
|
|
1792 |
|
|
if (symbol_marked_for_renaming (sym))
|
1793 |
|
|
rdef = get_reaching_def (sym);
|
1794 |
|
|
else if (is_old_name (use))
|
1795 |
|
|
rdef = get_reaching_def (use);
|
1796 |
|
|
|
1797 |
|
|
if (rdef && rdef != use)
|
1798 |
|
|
SET_USE (use_p, rdef);
|
1799 |
|
|
}
|
1800 |
|
|
|
1801 |
|
|
|
1802 |
|
|
/* Same as maybe_replace_use, but without introducing default stmts,
|
1803 |
|
|
returning false to indicate a need to do so. */
|
1804 |
|
|
|
1805 |
|
|
static inline bool
|
1806 |
|
|
maybe_replace_use_in_debug_stmt (use_operand_p use_p)
|
1807 |
|
|
{
|
1808 |
|
|
tree rdef = NULL_TREE;
|
1809 |
|
|
tree use = USE_FROM_PTR (use_p);
|
1810 |
|
|
tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
|
1811 |
|
|
|
1812 |
|
|
if (symbol_marked_for_renaming (sym))
|
1813 |
|
|
rdef = get_current_def (sym);
|
1814 |
|
|
else if (is_old_name (use))
|
1815 |
|
|
{
|
1816 |
|
|
rdef = get_current_def (use);
|
1817 |
|
|
/* We can't assume that, if there's no current definition, the
|
1818 |
|
|
default one should be used. It could be the case that we've
|
1819 |
|
|
rearranged blocks so that the earlier definition no longer
|
1820 |
|
|
dominates the use. */
|
1821 |
|
|
if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
|
1822 |
|
|
rdef = use;
|
1823 |
|
|
}
|
1824 |
|
|
else
|
1825 |
|
|
rdef = use;
|
1826 |
|
|
|
1827 |
|
|
if (rdef && rdef != use)
|
1828 |
|
|
SET_USE (use_p, rdef);
|
1829 |
|
|
|
1830 |
|
|
return rdef != NULL_TREE;
|
1831 |
|
|
}
|
1832 |
|
|
|
1833 |
|
|
|
1834 |
|
|
/* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
|
1835 |
|
|
or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
|
1836 |
|
|
register it as the current definition for the names replaced by
|
1837 |
|
|
DEF_P. */
|
1838 |
|
|
|
1839 |
|
|
static inline void
|
1840 |
|
|
maybe_register_def (def_operand_p def_p, gimple stmt,
|
1841 |
|
|
gimple_stmt_iterator gsi)
|
1842 |
|
|
{
|
1843 |
|
|
tree def = DEF_FROM_PTR (def_p);
|
1844 |
|
|
tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
|
1845 |
|
|
|
1846 |
|
|
/* If DEF is a naked symbol that needs renaming, create a new
|
1847 |
|
|
name for it. */
|
1848 |
|
|
if (symbol_marked_for_renaming (sym))
|
1849 |
|
|
{
|
1850 |
|
|
if (DECL_P (def))
|
1851 |
|
|
{
|
1852 |
|
|
tree tracked_var;
|
1853 |
|
|
|
1854 |
|
|
def = make_ssa_name (def, stmt);
|
1855 |
|
|
SET_DEF (def_p, def);
|
1856 |
|
|
|
1857 |
|
|
tracked_var = target_for_debug_bind (sym);
|
1858 |
|
|
if (tracked_var)
|
1859 |
|
|
{
|
1860 |
|
|
gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
|
1861 |
|
|
/* If stmt ends the bb, insert the debug stmt on the single
|
1862 |
|
|
non-EH edge from the stmt. */
|
1863 |
|
|
if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
|
1864 |
|
|
{
|
1865 |
|
|
basic_block bb = gsi_bb (gsi);
|
1866 |
|
|
edge_iterator ei;
|
1867 |
|
|
edge e, ef = NULL;
|
1868 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1869 |
|
|
if (!(e->flags & EDGE_EH))
|
1870 |
|
|
{
|
1871 |
|
|
gcc_assert (!ef);
|
1872 |
|
|
ef = e;
|
1873 |
|
|
}
|
1874 |
|
|
gcc_assert (ef
|
1875 |
|
|
&& single_pred_p (ef->dest)
|
1876 |
|
|
&& !phi_nodes (ef->dest)
|
1877 |
|
|
&& ef->dest != EXIT_BLOCK_PTR);
|
1878 |
|
|
gsi_insert_on_edge_immediate (ef, note);
|
1879 |
|
|
}
|
1880 |
|
|
else
|
1881 |
|
|
gsi_insert_after (&gsi, note, GSI_SAME_STMT);
|
1882 |
|
|
}
|
1883 |
|
|
}
|
1884 |
|
|
|
1885 |
|
|
register_new_update_single (def, sym);
|
1886 |
|
|
}
|
1887 |
|
|
else
|
1888 |
|
|
{
|
1889 |
|
|
/* If DEF is a new name, register it as a new definition
|
1890 |
|
|
for all the names replaced by DEF. */
|
1891 |
|
|
if (is_new_name (def))
|
1892 |
|
|
register_new_update_set (def, names_replaced_by (def));
|
1893 |
|
|
|
1894 |
|
|
/* If DEF is an old name, register DEF as a new
|
1895 |
|
|
definition for itself. */
|
1896 |
|
|
if (is_old_name (def))
|
1897 |
|
|
register_new_update_single (def, def);
|
1898 |
|
|
}
|
1899 |
|
|
}
|
1900 |
|
|
|
1901 |
|
|
|
1902 |
|
|
/* Update every variable used in the statement pointed-to by SI. The
|
1903 |
|
|
statement is assumed to be in SSA form already. Names in
|
1904 |
|
|
OLD_SSA_NAMES used by SI will be updated to their current reaching
|
1905 |
|
|
definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
|
1906 |
|
|
will be registered as a new definition for their corresponding name
|
1907 |
|
|
in OLD_SSA_NAMES. */
|
1908 |
|
|
|
1909 |
|
|
static void
|
1910 |
|
|
rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
|
1911 |
|
|
{
|
1912 |
|
|
use_operand_p use_p;
|
1913 |
|
|
def_operand_p def_p;
|
1914 |
|
|
ssa_op_iter iter;
|
1915 |
|
|
|
1916 |
|
|
/* Only update marked statements. */
|
1917 |
|
|
if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
|
1918 |
|
|
return;
|
1919 |
|
|
|
1920 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1921 |
|
|
{
|
1922 |
|
|
fprintf (dump_file, "Updating SSA information for statement ");
|
1923 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
1924 |
|
|
fprintf (dump_file, "\n");
|
1925 |
|
|
}
|
1926 |
|
|
|
1927 |
|
|
/* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
|
1928 |
|
|
symbol is marked for renaming. */
|
1929 |
|
|
if (rewrite_uses_p (stmt))
|
1930 |
|
|
{
|
1931 |
|
|
if (is_gimple_debug (stmt))
|
1932 |
|
|
{
|
1933 |
|
|
bool failed = false;
|
1934 |
|
|
|
1935 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
|
1936 |
|
|
if (!maybe_replace_use_in_debug_stmt (use_p))
|
1937 |
|
|
{
|
1938 |
|
|
failed = true;
|
1939 |
|
|
break;
|
1940 |
|
|
}
|
1941 |
|
|
|
1942 |
|
|
if (failed)
|
1943 |
|
|
{
|
1944 |
|
|
/* DOM sometimes threads jumps in such a way that a
|
1945 |
|
|
debug stmt ends up referencing a SSA variable that no
|
1946 |
|
|
longer dominates the debug stmt, but such that all
|
1947 |
|
|
incoming definitions refer to the same definition in
|
1948 |
|
|
an earlier dominator. We could try to recover that
|
1949 |
|
|
definition somehow, but this will have to do for now.
|
1950 |
|
|
|
1951 |
|
|
Introducing a default definition, which is what
|
1952 |
|
|
maybe_replace_use() would do in such cases, may
|
1953 |
|
|
modify code generation, for the otherwise-unused
|
1954 |
|
|
default definition would never go away, modifying SSA
|
1955 |
|
|
version numbers all over. */
|
1956 |
|
|
gimple_debug_bind_reset_value (stmt);
|
1957 |
|
|
update_stmt (stmt);
|
1958 |
|
|
}
|
1959 |
|
|
}
|
1960 |
|
|
else
|
1961 |
|
|
{
|
1962 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
|
1963 |
|
|
maybe_replace_use (use_p);
|
1964 |
|
|
}
|
1965 |
|
|
}
|
1966 |
|
|
|
1967 |
|
|
/* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
|
1968 |
|
|
Also register definitions for names whose underlying symbol is
|
1969 |
|
|
marked for renaming. */
|
1970 |
|
|
if (register_defs_p (stmt))
|
1971 |
|
|
FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
|
1972 |
|
|
maybe_register_def (def_p, stmt, gsi);
|
1973 |
|
|
}
|
1974 |
|
|
|
1975 |
|
|
|
1976 |
|
|
/* Visit all the successor blocks of BB looking for PHI nodes. For
|
1977 |
|
|
every PHI node found, check if any of its arguments is in
|
1978 |
|
|
OLD_SSA_NAMES. If so, and if the argument has a current reaching
|
1979 |
|
|
definition, replace it. */
|
1980 |
|
|
|
1981 |
|
|
static void
|
1982 |
|
|
rewrite_update_phi_arguments (basic_block bb)
|
1983 |
|
|
{
|
1984 |
|
|
edge e;
|
1985 |
|
|
edge_iterator ei;
|
1986 |
|
|
unsigned i;
|
1987 |
|
|
|
1988 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1989 |
|
|
{
|
1990 |
|
|
gimple phi;
|
1991 |
|
|
gimple_vec phis;
|
1992 |
|
|
|
1993 |
|
|
if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
|
1994 |
|
|
continue;
|
1995 |
|
|
|
1996 |
|
|
phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
|
1997 |
|
|
for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
|
1998 |
|
|
{
|
1999 |
|
|
tree arg, lhs_sym, reaching_def = NULL;
|
2000 |
|
|
use_operand_p arg_p;
|
2001 |
|
|
|
2002 |
|
|
gcc_assert (rewrite_uses_p (phi));
|
2003 |
|
|
|
2004 |
|
|
arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
|
2005 |
|
|
arg = USE_FROM_PTR (arg_p);
|
2006 |
|
|
|
2007 |
|
|
if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
|
2008 |
|
|
continue;
|
2009 |
|
|
|
2010 |
|
|
lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
|
2011 |
|
|
|
2012 |
|
|
if (arg == NULL_TREE)
|
2013 |
|
|
{
|
2014 |
|
|
/* When updating a PHI node for a recently introduced
|
2015 |
|
|
symbol we may find NULL arguments. That's why we
|
2016 |
|
|
take the symbol from the LHS of the PHI node. */
|
2017 |
|
|
reaching_def = get_reaching_def (lhs_sym);
|
2018 |
|
|
|
2019 |
|
|
}
|
2020 |
|
|
else
|
2021 |
|
|
{
|
2022 |
|
|
tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
|
2023 |
|
|
|
2024 |
|
|
if (symbol_marked_for_renaming (sym))
|
2025 |
|
|
reaching_def = get_reaching_def (sym);
|
2026 |
|
|
else if (is_old_name (arg))
|
2027 |
|
|
reaching_def = get_reaching_def (arg);
|
2028 |
|
|
}
|
2029 |
|
|
|
2030 |
|
|
/* Update the argument if there is a reaching def. */
|
2031 |
|
|
if (reaching_def)
|
2032 |
|
|
{
|
2033 |
|
|
gimple stmt;
|
2034 |
|
|
source_location locus;
|
2035 |
|
|
int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
|
2036 |
|
|
|
2037 |
|
|
SET_USE (arg_p, reaching_def);
|
2038 |
|
|
stmt = SSA_NAME_DEF_STMT (reaching_def);
|
2039 |
|
|
|
2040 |
|
|
/* Single element PHI nodes behave like copies, so get the
|
2041 |
|
|
location from the phi argument. */
|
2042 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI &&
|
2043 |
|
|
gimple_phi_num_args (stmt) == 1)
|
2044 |
|
|
locus = gimple_phi_arg_location (stmt, 0);
|
2045 |
|
|
else
|
2046 |
|
|
locus = gimple_location (stmt);
|
2047 |
|
|
|
2048 |
|
|
gimple_phi_arg_set_location (phi, arg_i, locus);
|
2049 |
|
|
}
|
2050 |
|
|
|
2051 |
|
|
|
2052 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
2053 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
|
2054 |
|
|
}
|
2055 |
|
|
}
|
2056 |
|
|
}
|
2057 |
|
|
|
2058 |
|
|
|
2059 |
|
|
/* Initialization of block data structures for the incremental SSA
|
2060 |
|
|
update pass. Create a block local stack of reaching definitions
|
2061 |
|
|
for new SSA names produced in this block (BLOCK_DEFS). Register
|
2062 |
|
|
new definitions for every PHI node in the block. */
|
2063 |
|
|
|
2064 |
|
|
static void
|
2065 |
|
|
rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
2066 |
|
|
basic_block bb)
|
2067 |
|
|
{
|
2068 |
|
|
edge e;
|
2069 |
|
|
edge_iterator ei;
|
2070 |
|
|
bool is_abnormal_phi;
|
2071 |
|
|
gimple_stmt_iterator gsi;
|
2072 |
|
|
|
2073 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2074 |
|
|
fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
|
2075 |
|
|
bb->index);
|
2076 |
|
|
|
2077 |
|
|
/* Mark the unwind point for this block. */
|
2078 |
|
|
VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
|
2079 |
|
|
|
2080 |
|
|
if (!bitmap_bit_p (blocks_to_update, bb->index))
|
2081 |
|
|
return;
|
2082 |
|
|
|
2083 |
|
|
/* Mark the LHS if any of the arguments flows through an abnormal
|
2084 |
|
|
edge. */
|
2085 |
|
|
is_abnormal_phi = false;
|
2086 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2087 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
2088 |
|
|
{
|
2089 |
|
|
is_abnormal_phi = true;
|
2090 |
|
|
break;
|
2091 |
|
|
}
|
2092 |
|
|
|
2093 |
|
|
/* If any of the PHI nodes is a replacement for a name in
|
2094 |
|
|
OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
|
2095 |
|
|
register it as a new definition for its corresponding name. Also
|
2096 |
|
|
register definitions for names whose underlying symbols are
|
2097 |
|
|
marked for renaming. */
|
2098 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
2099 |
|
|
{
|
2100 |
|
|
tree lhs, lhs_sym;
|
2101 |
|
|
gimple phi = gsi_stmt (gsi);
|
2102 |
|
|
|
2103 |
|
|
if (!register_defs_p (phi))
|
2104 |
|
|
continue;
|
2105 |
|
|
|
2106 |
|
|
lhs = gimple_phi_result (phi);
|
2107 |
|
|
lhs_sym = SSA_NAME_VAR (lhs);
|
2108 |
|
|
|
2109 |
|
|
if (symbol_marked_for_renaming (lhs_sym))
|
2110 |
|
|
register_new_update_single (lhs, lhs_sym);
|
2111 |
|
|
else
|
2112 |
|
|
{
|
2113 |
|
|
|
2114 |
|
|
/* If LHS is a new name, register a new definition for all
|
2115 |
|
|
the names replaced by LHS. */
|
2116 |
|
|
if (is_new_name (lhs))
|
2117 |
|
|
register_new_update_set (lhs, names_replaced_by (lhs));
|
2118 |
|
|
|
2119 |
|
|
/* If LHS is an OLD name, register it as a new definition
|
2120 |
|
|
for itself. */
|
2121 |
|
|
if (is_old_name (lhs))
|
2122 |
|
|
register_new_update_single (lhs, lhs);
|
2123 |
|
|
}
|
2124 |
|
|
|
2125 |
|
|
if (is_abnormal_phi)
|
2126 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
|
2127 |
|
|
}
|
2128 |
|
|
|
2129 |
|
|
/* Step 2. Rewrite every variable used in each statement in the block. */
|
2130 |
|
|
if (TEST_BIT (interesting_blocks, bb->index))
|
2131 |
|
|
{
|
2132 |
|
|
gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
|
2133 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
2134 |
|
|
rewrite_update_stmt (gsi_stmt (gsi), gsi);
|
2135 |
|
|
}
|
2136 |
|
|
|
2137 |
|
|
/* Step 3. Update PHI nodes. */
|
2138 |
|
|
rewrite_update_phi_arguments (bb);
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
/* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
|
2142 |
|
|
the current reaching definition of every name re-written in BB to
|
2143 |
|
|
the original reaching definition before visiting BB. This
|
2144 |
|
|
unwinding must be done in the opposite order to what is done in
|
2145 |
|
|
register_new_update_set. */
|
2146 |
|
|
|
2147 |
|
|
static void
|
2148 |
|
|
rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
2149 |
|
|
basic_block bb ATTRIBUTE_UNUSED)
|
2150 |
|
|
{
|
2151 |
|
|
while (VEC_length (tree, block_defs_stack) > 0)
|
2152 |
|
|
{
|
2153 |
|
|
tree var = VEC_pop (tree, block_defs_stack);
|
2154 |
|
|
tree saved_def;
|
2155 |
|
|
|
2156 |
|
|
/* NULL indicates the unwind stop point for this block (see
|
2157 |
|
|
rewrite_update_enter_block). */
|
2158 |
|
|
if (var == NULL)
|
2159 |
|
|
return;
|
2160 |
|
|
|
2161 |
|
|
saved_def = VEC_pop (tree, block_defs_stack);
|
2162 |
|
|
set_current_def (var, saved_def);
|
2163 |
|
|
}
|
2164 |
|
|
}
|
2165 |
|
|
|
2166 |
|
|
|
2167 |
|
|
/* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
|
2168 |
|
|
form.
|
2169 |
|
|
|
2170 |
|
|
ENTRY indicates the block where to start. Every block dominated by
|
2171 |
|
|
ENTRY will be rewritten.
|
2172 |
|
|
|
2173 |
|
|
WHAT indicates what actions will be taken by the renamer (see enum
|
2174 |
|
|
rewrite_mode).
|
2175 |
|
|
|
2176 |
|
|
BLOCKS are the set of interesting blocks for the dominator walker
|
2177 |
|
|
to process. If this set is NULL, then all the nodes dominated
|
2178 |
|
|
by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
|
2179 |
|
|
are not present in BLOCKS are ignored. */
|
2180 |
|
|
|
2181 |
|
|
static void
|
2182 |
|
|
rewrite_blocks (basic_block entry, enum rewrite_mode what)
|
2183 |
|
|
{
|
2184 |
|
|
struct dom_walk_data walk_data;
|
2185 |
|
|
|
2186 |
|
|
/* Rewrite all the basic blocks in the program. */
|
2187 |
|
|
timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
|
2188 |
|
|
|
2189 |
|
|
/* Setup callbacks for the generic dominator tree walker. */
|
2190 |
|
|
memset (&walk_data, 0, sizeof (walk_data));
|
2191 |
|
|
|
2192 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
2193 |
|
|
|
2194 |
|
|
if (what == REWRITE_ALL)
|
2195 |
|
|
{
|
2196 |
|
|
walk_data.before_dom_children = rewrite_enter_block;
|
2197 |
|
|
walk_data.after_dom_children = rewrite_leave_block;
|
2198 |
|
|
}
|
2199 |
|
|
else if (what == REWRITE_UPDATE)
|
2200 |
|
|
{
|
2201 |
|
|
walk_data.before_dom_children = rewrite_update_enter_block;
|
2202 |
|
|
walk_data.after_dom_children = rewrite_update_leave_block;
|
2203 |
|
|
}
|
2204 |
|
|
else
|
2205 |
|
|
gcc_unreachable ();
|
2206 |
|
|
|
2207 |
|
|
block_defs_stack = VEC_alloc (tree, heap, 10);
|
2208 |
|
|
|
2209 |
|
|
/* Initialize the dominator walker. */
|
2210 |
|
|
init_walk_dominator_tree (&walk_data);
|
2211 |
|
|
|
2212 |
|
|
/* Recursively walk the dominator tree rewriting each statement in
|
2213 |
|
|
each basic block. */
|
2214 |
|
|
walk_dominator_tree (&walk_data, entry);
|
2215 |
|
|
|
2216 |
|
|
/* Finalize the dominator walker. */
|
2217 |
|
|
fini_walk_dominator_tree (&walk_data);
|
2218 |
|
|
|
2219 |
|
|
/* Debugging dumps. */
|
2220 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
2221 |
|
|
{
|
2222 |
|
|
dump_dfa_stats (dump_file);
|
2223 |
|
|
if (def_blocks)
|
2224 |
|
|
dump_tree_ssa_stats (dump_file);
|
2225 |
|
|
}
|
2226 |
|
|
|
2227 |
|
|
VEC_free (tree, heap, block_defs_stack);
|
2228 |
|
|
|
2229 |
|
|
timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
|
2230 |
|
|
}
|
2231 |
|
|
|
2232 |
|
|
|
2233 |
|
|
/* Block processing routine for mark_def_sites. Clear the KILLS bitmap
|
2234 |
|
|
at the start of each block, and call mark_def_sites for each statement. */
|
2235 |
|
|
|
2236 |
|
|
static void
|
2237 |
|
|
mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
|
2238 |
|
|
{
|
2239 |
|
|
struct mark_def_sites_global_data *gd;
|
2240 |
|
|
bitmap kills;
|
2241 |
|
|
gimple_stmt_iterator gsi;
|
2242 |
|
|
|
2243 |
|
|
gd = (struct mark_def_sites_global_data *) walk_data->global_data;
|
2244 |
|
|
kills = gd->kills;
|
2245 |
|
|
|
2246 |
|
|
bitmap_clear (kills);
|
2247 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
2248 |
|
|
mark_def_sites (bb, gsi_stmt (gsi), kills);
|
2249 |
|
|
}
|
2250 |
|
|
|
2251 |
|
|
|
2252 |
|
|
/* Mark the definition site blocks for each variable, so that we know
|
2253 |
|
|
where the variable is actually live.
|
2254 |
|
|
|
2255 |
|
|
The INTERESTING_BLOCKS global will be filled in with all the blocks
|
2256 |
|
|
that should be processed by the renamer. It is assumed that the
|
2257 |
|
|
caller has already initialized and zeroed it. */
|
2258 |
|
|
|
2259 |
|
|
static void
|
2260 |
|
|
mark_def_site_blocks (void)
|
2261 |
|
|
{
|
2262 |
|
|
struct dom_walk_data walk_data;
|
2263 |
|
|
struct mark_def_sites_global_data mark_def_sites_global_data;
|
2264 |
|
|
|
2265 |
|
|
/* Setup callbacks for the generic dominator tree walker to find and
|
2266 |
|
|
mark definition sites. */
|
2267 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
2268 |
|
|
walk_data.initialize_block_local_data = NULL;
|
2269 |
|
|
walk_data.before_dom_children = mark_def_sites_block;
|
2270 |
|
|
walk_data.after_dom_children = NULL;
|
2271 |
|
|
|
2272 |
|
|
/* Notice that this bitmap is indexed using variable UIDs, so it must be
|
2273 |
|
|
large enough to accommodate all the variables referenced in the
|
2274 |
|
|
function, not just the ones we are renaming. */
|
2275 |
|
|
mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
|
2276 |
|
|
walk_data.global_data = &mark_def_sites_global_data;
|
2277 |
|
|
|
2278 |
|
|
/* We do not have any local data. */
|
2279 |
|
|
walk_data.block_local_data_size = 0;
|
2280 |
|
|
|
2281 |
|
|
/* Initialize the dominator walker. */
|
2282 |
|
|
init_walk_dominator_tree (&walk_data);
|
2283 |
|
|
|
2284 |
|
|
/* Recursively walk the dominator tree. */
|
2285 |
|
|
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
|
2286 |
|
|
|
2287 |
|
|
/* Finalize the dominator walker. */
|
2288 |
|
|
fini_walk_dominator_tree (&walk_data);
|
2289 |
|
|
|
2290 |
|
|
/* We no longer need this bitmap, clear and free it. */
|
2291 |
|
|
BITMAP_FREE (mark_def_sites_global_data.kills);
|
2292 |
|
|
}
|
2293 |
|
|
|
2294 |
|
|
|
2295 |
|
|
/* Initialize internal data needed during renaming. */
|
2296 |
|
|
|
2297 |
|
|
static void
|
2298 |
|
|
init_ssa_renamer (void)
|
2299 |
|
|
{
|
2300 |
|
|
tree var;
|
2301 |
|
|
referenced_var_iterator rvi;
|
2302 |
|
|
|
2303 |
|
|
cfun->gimple_df->in_ssa_p = false;
|
2304 |
|
|
|
2305 |
|
|
/* Allocate memory for the DEF_BLOCKS hash table. */
|
2306 |
|
|
gcc_assert (def_blocks == NULL);
|
2307 |
|
|
def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
|
2308 |
|
|
def_blocks_eq, def_blocks_free);
|
2309 |
|
|
|
2310 |
|
|
FOR_EACH_REFERENCED_VAR(var, rvi)
|
2311 |
|
|
set_current_def (var, NULL_TREE);
|
2312 |
|
|
}
|
2313 |
|
|
|
2314 |
|
|
|
2315 |
|
|
/* Deallocate internal data structures used by the renamer. */
|
2316 |
|
|
|
2317 |
|
|
static void
|
2318 |
|
|
fini_ssa_renamer (void)
|
2319 |
|
|
{
|
2320 |
|
|
if (def_blocks)
|
2321 |
|
|
{
|
2322 |
|
|
htab_delete (def_blocks);
|
2323 |
|
|
def_blocks = NULL;
|
2324 |
|
|
}
|
2325 |
|
|
|
2326 |
|
|
cfun->gimple_df->in_ssa_p = true;
|
2327 |
|
|
}
|
2328 |
|
|
|
2329 |
|
|
/* Main entry point into the SSA builder. The renaming process
|
2330 |
|
|
proceeds in four main phases:
|
2331 |
|
|
|
2332 |
|
|
1- Compute dominance frontier and immediate dominators, needed to
|
2333 |
|
|
insert PHI nodes and rename the function in dominator tree
|
2334 |
|
|
order.
|
2335 |
|
|
|
2336 |
|
|
2- Find and mark all the blocks that define variables
|
2337 |
|
|
(mark_def_site_blocks).
|
2338 |
|
|
|
2339 |
|
|
3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
|
2340 |
|
|
|
2341 |
|
|
4- Rename all the blocks (rewrite_blocks) and statements in the program.
|
2342 |
|
|
|
2343 |
|
|
Steps 3 and 4 are done using the dominator tree walker
|
2344 |
|
|
(walk_dominator_tree). */
|
2345 |
|
|
|
2346 |
|
|
static unsigned int
|
2347 |
|
|
rewrite_into_ssa (void)
|
2348 |
|
|
{
|
2349 |
|
|
bitmap *dfs;
|
2350 |
|
|
basic_block bb;
|
2351 |
|
|
|
2352 |
|
|
timevar_push (TV_TREE_SSA_OTHER);
|
2353 |
|
|
|
2354 |
|
|
/* Initialize operand data structures. */
|
2355 |
|
|
init_ssa_operands ();
|
2356 |
|
|
|
2357 |
|
|
/* Initialize internal data needed by the renamer. */
|
2358 |
|
|
init_ssa_renamer ();
|
2359 |
|
|
|
2360 |
|
|
/* Initialize the set of interesting blocks. The callback
|
2361 |
|
|
mark_def_sites will add to this set those blocks that the renamer
|
2362 |
|
|
should process. */
|
2363 |
|
|
interesting_blocks = sbitmap_alloc (last_basic_block);
|
2364 |
|
|
sbitmap_zero (interesting_blocks);
|
2365 |
|
|
|
2366 |
|
|
/* Initialize dominance frontier. */
|
2367 |
|
|
dfs = XNEWVEC (bitmap, last_basic_block);
|
2368 |
|
|
FOR_EACH_BB (bb)
|
2369 |
|
|
dfs[bb->index] = BITMAP_ALLOC (NULL);
|
2370 |
|
|
|
2371 |
|
|
/* 1- Compute dominance frontiers. */
|
2372 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
2373 |
|
|
compute_dominance_frontiers (dfs);
|
2374 |
|
|
|
2375 |
|
|
/* 2- Find and mark definition sites. */
|
2376 |
|
|
mark_def_site_blocks ();
|
2377 |
|
|
|
2378 |
|
|
/* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
|
2379 |
|
|
insert_phi_nodes (dfs);
|
2380 |
|
|
|
2381 |
|
|
/* 4- Rename all the blocks. */
|
2382 |
|
|
rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
|
2383 |
|
|
|
2384 |
|
|
/* Free allocated memory. */
|
2385 |
|
|
FOR_EACH_BB (bb)
|
2386 |
|
|
BITMAP_FREE (dfs[bb->index]);
|
2387 |
|
|
free (dfs);
|
2388 |
|
|
|
2389 |
|
|
sbitmap_free (interesting_blocks);
|
2390 |
|
|
|
2391 |
|
|
fini_ssa_renamer ();
|
2392 |
|
|
|
2393 |
|
|
timevar_pop (TV_TREE_SSA_OTHER);
|
2394 |
|
|
return 0;
|
2395 |
|
|
}
|
2396 |
|
|
|
2397 |
|
|
|
2398 |
|
|
struct gimple_opt_pass pass_build_ssa =
|
2399 |
|
|
{
|
2400 |
|
|
{
|
2401 |
|
|
GIMPLE_PASS,
|
2402 |
|
|
"ssa", /* name */
|
2403 |
|
|
NULL, /* gate */
|
2404 |
|
|
rewrite_into_ssa, /* execute */
|
2405 |
|
|
NULL, /* sub */
|
2406 |
|
|
NULL, /* next */
|
2407 |
|
|
0, /* static_pass_number */
|
2408 |
|
|
TV_NONE, /* tv_id */
|
2409 |
|
|
PROP_cfg | PROP_referenced_vars, /* properties_required */
|
2410 |
|
|
PROP_ssa, /* properties_provided */
|
2411 |
|
|
0, /* properties_destroyed */
|
2412 |
|
|
0, /* todo_flags_start */
|
2413 |
|
|
TODO_dump_func
|
2414 |
|
|
| TODO_update_ssa_only_virtuals
|
2415 |
|
|
| TODO_verify_ssa
|
2416 |
|
|
| TODO_remove_unused_locals /* todo_flags_finish */
|
2417 |
|
|
}
|
2418 |
|
|
};
|
2419 |
|
|
|
2420 |
|
|
|
2421 |
|
|
/* Mark the definition of VAR at STMT and BB as interesting for the
|
2422 |
|
|
renamer. BLOCKS is the set of blocks that need updating. */
|
2423 |
|
|
|
2424 |
|
|
static void
|
2425 |
|
|
mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
|
2426 |
|
|
{
|
2427 |
|
|
gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
|
2428 |
|
|
set_register_defs (stmt, true);
|
2429 |
|
|
|
2430 |
|
|
if (insert_phi_p)
|
2431 |
|
|
{
|
2432 |
|
|
bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
|
2433 |
|
|
|
2434 |
|
|
set_def_block (var, bb, is_phi_p);
|
2435 |
|
|
|
2436 |
|
|
/* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
|
2437 |
|
|
site for both itself and all the old names replaced by it. */
|
2438 |
|
|
if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
|
2439 |
|
|
{
|
2440 |
|
|
bitmap_iterator bi;
|
2441 |
|
|
unsigned i;
|
2442 |
|
|
bitmap set = names_replaced_by (var);
|
2443 |
|
|
if (set)
|
2444 |
|
|
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
|
2445 |
|
|
set_def_block (ssa_name (i), bb, is_phi_p);
|
2446 |
|
|
}
|
2447 |
|
|
}
|
2448 |
|
|
}
|
2449 |
|
|
|
2450 |
|
|
|
2451 |
|
|
/* Mark the use of VAR at STMT and BB as interesting for the
|
2452 |
|
|
renamer. INSERT_PHI_P is true if we are going to insert new PHI
|
2453 |
|
|
nodes. */
|
2454 |
|
|
|
2455 |
|
|
static inline void
|
2456 |
|
|
mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
|
2457 |
|
|
{
|
2458 |
|
|
basic_block def_bb = gimple_bb (stmt);
|
2459 |
|
|
|
2460 |
|
|
mark_block_for_update (def_bb);
|
2461 |
|
|
mark_block_for_update (bb);
|
2462 |
|
|
|
2463 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2464 |
|
|
mark_phi_for_rewrite (def_bb, stmt);
|
2465 |
|
|
else
|
2466 |
|
|
{
|
2467 |
|
|
set_rewrite_uses (stmt, true);
|
2468 |
|
|
|
2469 |
|
|
if (is_gimple_debug (stmt))
|
2470 |
|
|
return;
|
2471 |
|
|
}
|
2472 |
|
|
|
2473 |
|
|
/* If VAR has not been defined in BB, then it is live-on-entry
|
2474 |
|
|
to BB. Note that we cannot just use the block holding VAR's
|
2475 |
|
|
definition because if VAR is one of the names in OLD_SSA_NAMES,
|
2476 |
|
|
it will have several definitions (itself and all the names that
|
2477 |
|
|
replace it). */
|
2478 |
|
|
if (insert_phi_p)
|
2479 |
|
|
{
|
2480 |
|
|
struct def_blocks_d *db_p = get_def_blocks_for (var);
|
2481 |
|
|
if (!bitmap_bit_p (db_p->def_blocks, bb->index))
|
2482 |
|
|
set_livein_block (var, bb);
|
2483 |
|
|
}
|
2484 |
|
|
}
|
2485 |
|
|
|
2486 |
|
|
|
2487 |
|
|
/* Do a dominator walk starting at BB processing statements that
|
2488 |
|
|
reference symbols in SYMS_TO_RENAME. This is very similar to
|
2489 |
|
|
mark_def_sites, but the scan handles statements whose operands may
|
2490 |
|
|
already be SSA names.
|
2491 |
|
|
|
2492 |
|
|
If INSERT_PHI_P is true, mark those uses as live in the
|
2493 |
|
|
corresponding block. This is later used by the PHI placement
|
2494 |
|
|
algorithm to make PHI pruning decisions.
|
2495 |
|
|
|
2496 |
|
|
FIXME. Most of this would be unnecessary if we could associate a
|
2497 |
|
|
symbol to all the SSA names that reference it. But that
|
2498 |
|
|
sounds like it would be expensive to maintain. Still, it
|
2499 |
|
|
would be interesting to see if it makes better sense to do
|
2500 |
|
|
that. */
|
2501 |
|
|
|
2502 |
|
|
static void
|
2503 |
|
|
prepare_block_for_update (basic_block bb, bool insert_phi_p)
|
2504 |
|
|
{
|
2505 |
|
|
basic_block son;
|
2506 |
|
|
gimple_stmt_iterator si;
|
2507 |
|
|
edge e;
|
2508 |
|
|
edge_iterator ei;
|
2509 |
|
|
|
2510 |
|
|
mark_block_for_update (bb);
|
2511 |
|
|
|
2512 |
|
|
/* Process PHI nodes marking interesting those that define or use
|
2513 |
|
|
the symbols that we are interested in. */
|
2514 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
2515 |
|
|
{
|
2516 |
|
|
gimple phi = gsi_stmt (si);
|
2517 |
|
|
tree lhs_sym, lhs = gimple_phi_result (phi);
|
2518 |
|
|
|
2519 |
|
|
lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
|
2520 |
|
|
|
2521 |
|
|
if (!symbol_marked_for_renaming (lhs_sym))
|
2522 |
|
|
continue;
|
2523 |
|
|
|
2524 |
|
|
mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
|
2525 |
|
|
|
2526 |
|
|
/* Mark the uses in phi nodes as interesting. It would be more correct
|
2527 |
|
|
to process the arguments of the phi nodes of the successor edges of
|
2528 |
|
|
BB at the end of prepare_block_for_update, however, that turns out
|
2529 |
|
|
to be significantly more expensive. Doing it here is conservatively
|
2530 |
|
|
correct -- it may only cause us to believe a value to be live in a
|
2531 |
|
|
block that also contains its definition, and thus insert a few more
|
2532 |
|
|
phi nodes for it. */
|
2533 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2534 |
|
|
mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
|
2535 |
|
|
}
|
2536 |
|
|
|
2537 |
|
|
/* Process the statements. */
|
2538 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
2539 |
|
|
{
|
2540 |
|
|
gimple stmt;
|
2541 |
|
|
ssa_op_iter i;
|
2542 |
|
|
use_operand_p use_p;
|
2543 |
|
|
def_operand_p def_p;
|
2544 |
|
|
|
2545 |
|
|
stmt = gsi_stmt (si);
|
2546 |
|
|
|
2547 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
|
2548 |
|
|
{
|
2549 |
|
|
tree use = USE_FROM_PTR (use_p);
|
2550 |
|
|
tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
|
2551 |
|
|
if (symbol_marked_for_renaming (sym))
|
2552 |
|
|
mark_use_interesting (sym, stmt, bb, insert_phi_p);
|
2553 |
|
|
}
|
2554 |
|
|
|
2555 |
|
|
FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
|
2556 |
|
|
{
|
2557 |
|
|
tree def = DEF_FROM_PTR (def_p);
|
2558 |
|
|
tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
|
2559 |
|
|
if (symbol_marked_for_renaming (sym))
|
2560 |
|
|
mark_def_interesting (sym, stmt, bb, insert_phi_p);
|
2561 |
|
|
}
|
2562 |
|
|
}
|
2563 |
|
|
|
2564 |
|
|
/* Now visit all the blocks dominated by BB. */
|
2565 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
2566 |
|
|
son;
|
2567 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
2568 |
|
|
prepare_block_for_update (son, insert_phi_p);
|
2569 |
|
|
}
|
2570 |
|
|
|
2571 |
|
|
|
2572 |
|
|
/* Helper for prepare_names_to_update. Mark all the use sites for
|
2573 |
|
|
NAME as interesting. BLOCKS and INSERT_PHI_P are as in
|
2574 |
|
|
prepare_names_to_update. */
|
2575 |
|
|
|
2576 |
|
|
static void
|
2577 |
|
|
prepare_use_sites_for (tree name, bool insert_phi_p)
|
2578 |
|
|
{
|
2579 |
|
|
use_operand_p use_p;
|
2580 |
|
|
imm_use_iterator iter;
|
2581 |
|
|
|
2582 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, name)
|
2583 |
|
|
{
|
2584 |
|
|
gimple stmt = USE_STMT (use_p);
|
2585 |
|
|
basic_block bb = gimple_bb (stmt);
|
2586 |
|
|
|
2587 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2588 |
|
|
{
|
2589 |
|
|
int ix = PHI_ARG_INDEX_FROM_USE (use_p);
|
2590 |
|
|
edge e = gimple_phi_arg_edge (stmt, ix);
|
2591 |
|
|
mark_use_interesting (name, stmt, e->src, insert_phi_p);
|
2592 |
|
|
}
|
2593 |
|
|
else
|
2594 |
|
|
{
|
2595 |
|
|
/* For regular statements, mark this as an interesting use
|
2596 |
|
|
for NAME. */
|
2597 |
|
|
mark_use_interesting (name, stmt, bb, insert_phi_p);
|
2598 |
|
|
}
|
2599 |
|
|
}
|
2600 |
|
|
}
|
2601 |
|
|
|
2602 |
|
|
|
2603 |
|
|
/* Helper for prepare_names_to_update. Mark the definition site for
|
2604 |
|
|
NAME as interesting. BLOCKS and INSERT_PHI_P are as in
|
2605 |
|
|
prepare_names_to_update. */
|
2606 |
|
|
|
2607 |
|
|
static void
|
2608 |
|
|
prepare_def_site_for (tree name, bool insert_phi_p)
|
2609 |
|
|
{
|
2610 |
|
|
gimple stmt;
|
2611 |
|
|
basic_block bb;
|
2612 |
|
|
|
2613 |
|
|
gcc_assert (names_to_release == NULL
|
2614 |
|
|
|| !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
|
2615 |
|
|
|
2616 |
|
|
stmt = SSA_NAME_DEF_STMT (name);
|
2617 |
|
|
bb = gimple_bb (stmt);
|
2618 |
|
|
if (bb)
|
2619 |
|
|
{
|
2620 |
|
|
gcc_assert (bb->index < last_basic_block);
|
2621 |
|
|
mark_block_for_update (bb);
|
2622 |
|
|
mark_def_interesting (name, stmt, bb, insert_phi_p);
|
2623 |
|
|
}
|
2624 |
|
|
}
|
2625 |
|
|
|
2626 |
|
|
|
2627 |
|
|
/* Mark definition and use sites of names in NEW_SSA_NAMES and
|
2628 |
|
|
OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
|
2629 |
|
|
PHI nodes for newly created names. */
|
2630 |
|
|
|
2631 |
|
|
static void
|
2632 |
|
|
prepare_names_to_update (bool insert_phi_p)
|
2633 |
|
|
{
|
2634 |
|
|
unsigned i = 0;
|
2635 |
|
|
bitmap_iterator bi;
|
2636 |
|
|
sbitmap_iterator sbi;
|
2637 |
|
|
|
2638 |
|
|
/* If a name N from NEW_SSA_NAMES is also marked to be released,
|
2639 |
|
|
remove it from NEW_SSA_NAMES so that we don't try to visit its
|
2640 |
|
|
defining basic block (which most likely doesn't exist). Notice
|
2641 |
|
|
that we cannot do the same with names in OLD_SSA_NAMES because we
|
2642 |
|
|
want to replace existing instances. */
|
2643 |
|
|
if (names_to_release)
|
2644 |
|
|
EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
|
2645 |
|
|
RESET_BIT (new_ssa_names, i);
|
2646 |
|
|
|
2647 |
|
|
/* First process names in NEW_SSA_NAMES. Otherwise, uses of old
|
2648 |
|
|
names may be considered to be live-in on blocks that contain
|
2649 |
|
|
definitions for their replacements. */
|
2650 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
|
2651 |
|
|
prepare_def_site_for (ssa_name (i), insert_phi_p);
|
2652 |
|
|
|
2653 |
|
|
/* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
|
2654 |
|
|
OLD_SSA_NAMES, but we have to ignore its definition site. */
|
2655 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
|
2656 |
|
|
{
|
2657 |
|
|
if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
|
2658 |
|
|
prepare_def_site_for (ssa_name (i), insert_phi_p);
|
2659 |
|
|
prepare_use_sites_for (ssa_name (i), insert_phi_p);
|
2660 |
|
|
}
|
2661 |
|
|
}
|
2662 |
|
|
|
2663 |
|
|
|
2664 |
|
|
/* Dump all the names replaced by NAME to FILE. */
|
2665 |
|
|
|
2666 |
|
|
void
|
2667 |
|
|
dump_names_replaced_by (FILE *file, tree name)
|
2668 |
|
|
{
|
2669 |
|
|
unsigned i;
|
2670 |
|
|
bitmap old_set;
|
2671 |
|
|
bitmap_iterator bi;
|
2672 |
|
|
|
2673 |
|
|
print_generic_expr (file, name, 0);
|
2674 |
|
|
fprintf (file, " -> { ");
|
2675 |
|
|
|
2676 |
|
|
old_set = names_replaced_by (name);
|
2677 |
|
|
EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
|
2678 |
|
|
{
|
2679 |
|
|
print_generic_expr (file, ssa_name (i), 0);
|
2680 |
|
|
fprintf (file, " ");
|
2681 |
|
|
}
|
2682 |
|
|
|
2683 |
|
|
fprintf (file, "}\n");
|
2684 |
|
|
}
|
2685 |
|
|
|
2686 |
|
|
|
2687 |
|
|
/* Dump all the names replaced by NAME to stderr. */
|
2688 |
|
|
|
2689 |
|
|
void
|
2690 |
|
|
debug_names_replaced_by (tree name)
|
2691 |
|
|
{
|
2692 |
|
|
dump_names_replaced_by (stderr, name);
|
2693 |
|
|
}
|
2694 |
|
|
|
2695 |
|
|
|
2696 |
|
|
/* Dump SSA update information to FILE. */
|
2697 |
|
|
|
2698 |
|
|
void
|
2699 |
|
|
dump_update_ssa (FILE *file)
|
2700 |
|
|
{
|
2701 |
|
|
unsigned i = 0;
|
2702 |
|
|
bitmap_iterator bi;
|
2703 |
|
|
|
2704 |
|
|
if (!need_ssa_update_p (cfun))
|
2705 |
|
|
return;
|
2706 |
|
|
|
2707 |
|
|
if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
|
2708 |
|
|
{
|
2709 |
|
|
sbitmap_iterator sbi;
|
2710 |
|
|
|
2711 |
|
|
fprintf (file, "\nSSA replacement table\n");
|
2712 |
|
|
fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
|
2713 |
|
|
"O_1, ..., O_j\n\n");
|
2714 |
|
|
|
2715 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
|
2716 |
|
|
dump_names_replaced_by (file, ssa_name (i));
|
2717 |
|
|
|
2718 |
|
|
fprintf (file, "\n");
|
2719 |
|
|
fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
|
2720 |
|
|
update_ssa_stats.num_virtual_mappings);
|
2721 |
|
|
fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
|
2722 |
|
|
update_ssa_stats.num_total_mappings
|
2723 |
|
|
- update_ssa_stats.num_virtual_mappings);
|
2724 |
|
|
fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
|
2725 |
|
|
update_ssa_stats.num_total_mappings);
|
2726 |
|
|
|
2727 |
|
|
fprintf (file, "\nNumber of virtual symbols: %u\n",
|
2728 |
|
|
update_ssa_stats.num_virtual_symbols);
|
2729 |
|
|
}
|
2730 |
|
|
|
2731 |
|
|
if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
|
2732 |
|
|
{
|
2733 |
|
|
fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
|
2734 |
|
|
dump_decl_set (file, SYMS_TO_RENAME (cfun));
|
2735 |
|
|
fprintf (file, "\n");
|
2736 |
|
|
}
|
2737 |
|
|
|
2738 |
|
|
if (names_to_release && !bitmap_empty_p (names_to_release))
|
2739 |
|
|
{
|
2740 |
|
|
fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
|
2741 |
|
|
EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
|
2742 |
|
|
{
|
2743 |
|
|
print_generic_expr (file, ssa_name (i), 0);
|
2744 |
|
|
fprintf (file, " ");
|
2745 |
|
|
}
|
2746 |
|
|
}
|
2747 |
|
|
|
2748 |
|
|
fprintf (file, "\n\n");
|
2749 |
|
|
}
|
2750 |
|
|
|
2751 |
|
|
|
2752 |
|
|
/* Dump SSA update information to stderr. */
|
2753 |
|
|
|
2754 |
|
|
void
|
2755 |
|
|
debug_update_ssa (void)
|
2756 |
|
|
{
|
2757 |
|
|
dump_update_ssa (stderr);
|
2758 |
|
|
}
|
2759 |
|
|
|
2760 |
|
|
|
2761 |
|
|
/* Initialize data structures used for incremental SSA updates. */
|
2762 |
|
|
|
2763 |
|
|
static void
|
2764 |
|
|
init_update_ssa (struct function *fn)
|
2765 |
|
|
{
|
2766 |
|
|
/* Reserve more space than the current number of names. The calls to
|
2767 |
|
|
add_new_name_mapping are typically done after creating new SSA
|
2768 |
|
|
names, so we'll need to reallocate these arrays. */
|
2769 |
|
|
old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
|
2770 |
|
|
sbitmap_zero (old_ssa_names);
|
2771 |
|
|
|
2772 |
|
|
new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
|
2773 |
|
|
sbitmap_zero (new_ssa_names);
|
2774 |
|
|
|
2775 |
|
|
repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
|
2776 |
|
|
names_to_release = NULL;
|
2777 |
|
|
memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
|
2778 |
|
|
update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
|
2779 |
|
|
update_ssa_initialized_fn = fn;
|
2780 |
|
|
}
|
2781 |
|
|
|
2782 |
|
|
|
2783 |
|
|
/* Deallocate data structures used for incremental SSA updates. */
|
2784 |
|
|
|
2785 |
|
|
void
|
2786 |
|
|
delete_update_ssa (void)
|
2787 |
|
|
{
|
2788 |
|
|
unsigned i;
|
2789 |
|
|
bitmap_iterator bi;
|
2790 |
|
|
|
2791 |
|
|
sbitmap_free (old_ssa_names);
|
2792 |
|
|
old_ssa_names = NULL;
|
2793 |
|
|
|
2794 |
|
|
sbitmap_free (new_ssa_names);
|
2795 |
|
|
new_ssa_names = NULL;
|
2796 |
|
|
|
2797 |
|
|
htab_delete (repl_tbl);
|
2798 |
|
|
repl_tbl = NULL;
|
2799 |
|
|
|
2800 |
|
|
bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
|
2801 |
|
|
BITMAP_FREE (update_ssa_stats.virtual_symbols);
|
2802 |
|
|
|
2803 |
|
|
if (names_to_release)
|
2804 |
|
|
{
|
2805 |
|
|
EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
|
2806 |
|
|
release_ssa_name (ssa_name (i));
|
2807 |
|
|
BITMAP_FREE (names_to_release);
|
2808 |
|
|
}
|
2809 |
|
|
|
2810 |
|
|
clear_ssa_name_info ();
|
2811 |
|
|
|
2812 |
|
|
fini_ssa_renamer ();
|
2813 |
|
|
|
2814 |
|
|
if (blocks_with_phis_to_rewrite)
|
2815 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
|
2816 |
|
|
{
|
2817 |
|
|
gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
|
2818 |
|
|
|
2819 |
|
|
VEC_free (gimple, heap, phis);
|
2820 |
|
|
VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
|
2821 |
|
|
}
|
2822 |
|
|
|
2823 |
|
|
BITMAP_FREE (blocks_with_phis_to_rewrite);
|
2824 |
|
|
BITMAP_FREE (blocks_to_update);
|
2825 |
|
|
update_ssa_initialized_fn = NULL;
|
2826 |
|
|
}
|
2827 |
|
|
|
2828 |
|
|
|
2829 |
|
|
/* Create a new name for OLD_NAME in statement STMT and replace the
|
2830 |
|
|
operand pointed to by DEF_P with the newly created name. Return
|
2831 |
|
|
the new name and register the replacement mapping <NEW, OLD> in
|
2832 |
|
|
update_ssa's tables. */
|
2833 |
|
|
|
2834 |
|
|
tree
|
2835 |
|
|
create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
|
2836 |
|
|
{
|
2837 |
|
|
tree new_name = duplicate_ssa_name (old_name, stmt);
|
2838 |
|
|
|
2839 |
|
|
SET_DEF (def, new_name);
|
2840 |
|
|
|
2841 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2842 |
|
|
{
|
2843 |
|
|
edge e;
|
2844 |
|
|
edge_iterator ei;
|
2845 |
|
|
basic_block bb = gimple_bb (stmt);
|
2846 |
|
|
|
2847 |
|
|
/* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
|
2848 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
2849 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
2850 |
|
|
{
|
2851 |
|
|
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
|
2852 |
|
|
break;
|
2853 |
|
|
}
|
2854 |
|
|
}
|
2855 |
|
|
|
2856 |
|
|
register_new_name_mapping (new_name, old_name);
|
2857 |
|
|
|
2858 |
|
|
/* For the benefit of passes that will be updating the SSA form on
|
2859 |
|
|
their own, set the current reaching definition of OLD_NAME to be
|
2860 |
|
|
NEW_NAME. */
|
2861 |
|
|
set_current_def (old_name, new_name);
|
2862 |
|
|
|
2863 |
|
|
return new_name;
|
2864 |
|
|
}
|
2865 |
|
|
|
2866 |
|
|
|
2867 |
|
|
/* Register name NEW to be a replacement for name OLD. This function
|
2868 |
|
|
must be called for every replacement that should be performed by
|
2869 |
|
|
update_ssa. */
|
2870 |
|
|
|
2871 |
|
|
void
|
2872 |
|
|
register_new_name_mapping (tree new_tree, tree old)
|
2873 |
|
|
{
|
2874 |
|
|
if (!update_ssa_initialized_fn)
|
2875 |
|
|
init_update_ssa (cfun);
|
2876 |
|
|
|
2877 |
|
|
gcc_assert (update_ssa_initialized_fn == cfun);
|
2878 |
|
|
|
2879 |
|
|
add_new_name_mapping (new_tree, old);
|
2880 |
|
|
}
|
2881 |
|
|
|
2882 |
|
|
|
2883 |
|
|
/* Register symbol SYM to be renamed by update_ssa. */
|
2884 |
|
|
|
2885 |
|
|
void
|
2886 |
|
|
mark_sym_for_renaming (tree sym)
|
2887 |
|
|
{
|
2888 |
|
|
bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
|
2889 |
|
|
}
|
2890 |
|
|
|
2891 |
|
|
|
2892 |
|
|
/* Register all the symbols in SET to be renamed by update_ssa. */
|
2893 |
|
|
|
2894 |
|
|
void
|
2895 |
|
|
mark_set_for_renaming (bitmap set)
|
2896 |
|
|
{
|
2897 |
|
|
bitmap_iterator bi;
|
2898 |
|
|
unsigned i;
|
2899 |
|
|
|
2900 |
|
|
if (set == NULL || bitmap_empty_p (set))
|
2901 |
|
|
return;
|
2902 |
|
|
|
2903 |
|
|
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
|
2904 |
|
|
mark_sym_for_renaming (referenced_var (i));
|
2905 |
|
|
}
|
2906 |
|
|
|
2907 |
|
|
|
2908 |
|
|
/* Return true if there is any work to be done by update_ssa
|
2909 |
|
|
for function FN. */
|
2910 |
|
|
|
2911 |
|
|
bool
|
2912 |
|
|
need_ssa_update_p (struct function *fn)
|
2913 |
|
|
{
|
2914 |
|
|
gcc_assert (fn != NULL);
|
2915 |
|
|
return (update_ssa_initialized_fn == fn
|
2916 |
|
|
|| (fn->gimple_df
|
2917 |
|
|
&& !bitmap_empty_p (SYMS_TO_RENAME (fn))));
|
2918 |
|
|
}
|
2919 |
|
|
|
2920 |
|
|
/* Return true if SSA name mappings have been registered for SSA updating. */
|
2921 |
|
|
|
2922 |
|
|
bool
|
2923 |
|
|
name_mappings_registered_p (void)
|
2924 |
|
|
{
|
2925 |
|
|
if (!update_ssa_initialized_fn)
|
2926 |
|
|
return false;
|
2927 |
|
|
|
2928 |
|
|
gcc_assert (update_ssa_initialized_fn == cfun);
|
2929 |
|
|
|
2930 |
|
|
return repl_tbl && htab_elements (repl_tbl) > 0;
|
2931 |
|
|
}
|
2932 |
|
|
|
2933 |
|
|
/* Return true if name N has been registered in the replacement table. */
|
2934 |
|
|
|
2935 |
|
|
bool
|
2936 |
|
|
name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
|
2937 |
|
|
{
|
2938 |
|
|
if (!update_ssa_initialized_fn)
|
2939 |
|
|
return false;
|
2940 |
|
|
|
2941 |
|
|
gcc_assert (update_ssa_initialized_fn == cfun);
|
2942 |
|
|
|
2943 |
|
|
return is_new_name (n) || is_old_name (n);
|
2944 |
|
|
}
|
2945 |
|
|
|
2946 |
|
|
|
2947 |
|
|
/* Return the set of all the SSA names marked to be replaced. */
|
2948 |
|
|
|
2949 |
|
|
bitmap
|
2950 |
|
|
ssa_names_to_replace (void)
|
2951 |
|
|
{
|
2952 |
|
|
unsigned i = 0;
|
2953 |
|
|
bitmap ret;
|
2954 |
|
|
sbitmap_iterator sbi;
|
2955 |
|
|
|
2956 |
|
|
gcc_assert (update_ssa_initialized_fn == NULL
|
2957 |
|
|
|| update_ssa_initialized_fn == cfun);
|
2958 |
|
|
|
2959 |
|
|
ret = BITMAP_ALLOC (NULL);
|
2960 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
|
2961 |
|
|
bitmap_set_bit (ret, i);
|
2962 |
|
|
|
2963 |
|
|
return ret;
|
2964 |
|
|
}
|
2965 |
|
|
|
2966 |
|
|
|
2967 |
|
|
/* Mark NAME to be released after update_ssa has finished. */
|
2968 |
|
|
|
2969 |
|
|
void
|
2970 |
|
|
release_ssa_name_after_update_ssa (tree name)
|
2971 |
|
|
{
|
2972 |
|
|
gcc_assert (cfun && update_ssa_initialized_fn == cfun);
|
2973 |
|
|
|
2974 |
|
|
if (names_to_release == NULL)
|
2975 |
|
|
names_to_release = BITMAP_ALLOC (NULL);
|
2976 |
|
|
|
2977 |
|
|
bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
|
2978 |
|
|
}
|
2979 |
|
|
|
2980 |
|
|
|
2981 |
|
|
/* Insert new PHI nodes to replace VAR. DFS contains dominance
|
2982 |
|
|
frontier information. BLOCKS is the set of blocks to be updated.
|
2983 |
|
|
|
2984 |
|
|
This is slightly different than the regular PHI insertion
|
2985 |
|
|
algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
|
2986 |
|
|
real names (i.e., GIMPLE registers) are inserted:
|
2987 |
|
|
|
2988 |
|
|
- If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
|
2989 |
|
|
nodes inside the region affected by the block that defines VAR
|
2990 |
|
|
and the blocks that define all its replacements. All these
|
2991 |
|
|
definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
|
2992 |
|
|
|
2993 |
|
|
First, we compute the entry point to the region (ENTRY). This is
|
2994 |
|
|
given by the nearest common dominator to all the definition
|
2995 |
|
|
blocks. When computing the iterated dominance frontier (IDF), any
|
2996 |
|
|
block not strictly dominated by ENTRY is ignored.
|
2997 |
|
|
|
2998 |
|
|
We then call the standard PHI insertion algorithm with the pruned
|
2999 |
|
|
IDF.
|
3000 |
|
|
|
3001 |
|
|
- If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
|
3002 |
|
|
names is not pruned. PHI nodes are inserted at every IDF block. */
|
3003 |
|
|
|
3004 |
|
|
static void
|
3005 |
|
|
insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
|
3006 |
|
|
unsigned update_flags)
|
3007 |
|
|
{
|
3008 |
|
|
basic_block entry;
|
3009 |
|
|
struct def_blocks_d *db;
|
3010 |
|
|
bitmap idf, pruned_idf;
|
3011 |
|
|
bitmap_iterator bi;
|
3012 |
|
|
unsigned i;
|
3013 |
|
|
|
3014 |
|
|
#if defined ENABLE_CHECKING
|
3015 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
3016 |
|
|
gcc_assert (is_old_name (var));
|
3017 |
|
|
else
|
3018 |
|
|
gcc_assert (symbol_marked_for_renaming (var));
|
3019 |
|
|
#endif
|
3020 |
|
|
|
3021 |
|
|
/* Get all the definition sites for VAR. */
|
3022 |
|
|
db = find_def_blocks_for (var);
|
3023 |
|
|
|
3024 |
|
|
/* No need to do anything if there were no definitions to VAR. */
|
3025 |
|
|
if (db == NULL || bitmap_empty_p (db->def_blocks))
|
3026 |
|
|
return;
|
3027 |
|
|
|
3028 |
|
|
/* Compute the initial iterated dominance frontier. */
|
3029 |
|
|
idf = compute_idf (db->def_blocks, dfs);
|
3030 |
|
|
pruned_idf = BITMAP_ALLOC (NULL);
|
3031 |
|
|
|
3032 |
|
|
if (TREE_CODE (var) == SSA_NAME)
|
3033 |
|
|
{
|
3034 |
|
|
if (update_flags == TODO_update_ssa)
|
3035 |
|
|
{
|
3036 |
|
|
/* If doing regular SSA updates for GIMPLE registers, we are
|
3037 |
|
|
only interested in IDF blocks dominated by the nearest
|
3038 |
|
|
common dominator of all the definition blocks. */
|
3039 |
|
|
entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
|
3040 |
|
|
db->def_blocks);
|
3041 |
|
|
if (entry != ENTRY_BLOCK_PTR)
|
3042 |
|
|
EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
|
3043 |
|
|
if (BASIC_BLOCK (i) != entry
|
3044 |
|
|
&& dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
|
3045 |
|
|
bitmap_set_bit (pruned_idf, i);
|
3046 |
|
|
}
|
3047 |
|
|
else
|
3048 |
|
|
{
|
3049 |
|
|
/* Otherwise, do not prune the IDF for VAR. */
|
3050 |
|
|
gcc_assert (update_flags == TODO_update_ssa_full_phi);
|
3051 |
|
|
bitmap_copy (pruned_idf, idf);
|
3052 |
|
|
}
|
3053 |
|
|
}
|
3054 |
|
|
else
|
3055 |
|
|
{
|
3056 |
|
|
/* Otherwise, VAR is a symbol that needs to be put into SSA form
|
3057 |
|
|
for the first time, so we need to compute the full IDF for
|
3058 |
|
|
it. */
|
3059 |
|
|
bitmap_copy (pruned_idf, idf);
|
3060 |
|
|
}
|
3061 |
|
|
|
3062 |
|
|
if (!bitmap_empty_p (pruned_idf))
|
3063 |
|
|
{
|
3064 |
|
|
/* Make sure that PRUNED_IDF blocks and all their feeding blocks
|
3065 |
|
|
are included in the region to be updated. The feeding blocks
|
3066 |
|
|
are important to guarantee that the PHI arguments are renamed
|
3067 |
|
|
properly. */
|
3068 |
|
|
|
3069 |
|
|
/* FIXME, this is not needed if we are updating symbols. We are
|
3070 |
|
|
already starting at the ENTRY block anyway. */
|
3071 |
|
|
bitmap_ior_into (blocks, pruned_idf);
|
3072 |
|
|
EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
|
3073 |
|
|
{
|
3074 |
|
|
edge e;
|
3075 |
|
|
edge_iterator ei;
|
3076 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
3077 |
|
|
|
3078 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
3079 |
|
|
if (e->src->index >= 0)
|
3080 |
|
|
bitmap_set_bit (blocks, e->src->index);
|
3081 |
|
|
}
|
3082 |
|
|
|
3083 |
|
|
insert_phi_nodes_for (var, pruned_idf, true);
|
3084 |
|
|
}
|
3085 |
|
|
|
3086 |
|
|
BITMAP_FREE (pruned_idf);
|
3087 |
|
|
BITMAP_FREE (idf);
|
3088 |
|
|
}
|
3089 |
|
|
|
3090 |
|
|
|
3091 |
|
|
/* Heuristic to determine whether SSA name mappings for virtual names
|
3092 |
|
|
should be discarded and their symbols rewritten from scratch. When
|
3093 |
|
|
there is a large number of mappings for virtual names, the
|
3094 |
|
|
insertion of PHI nodes for the old names in the mappings takes
|
3095 |
|
|
considerable more time than if we inserted PHI nodes for the
|
3096 |
|
|
symbols instead.
|
3097 |
|
|
|
3098 |
|
|
Currently the heuristic takes these stats into account:
|
3099 |
|
|
|
3100 |
|
|
- Number of mappings for virtual SSA names.
|
3101 |
|
|
- Number of distinct virtual symbols involved in those mappings.
|
3102 |
|
|
|
3103 |
|
|
If the number of virtual mappings is much larger than the number of
|
3104 |
|
|
virtual symbols, then it will be faster to compute PHI insertion
|
3105 |
|
|
spots for the symbols. Even if this involves traversing the whole
|
3106 |
|
|
CFG, which is what happens when symbols are renamed from scratch. */
|
3107 |
|
|
|
3108 |
|
|
static bool
|
3109 |
|
|
switch_virtuals_to_full_rewrite_p (void)
|
3110 |
|
|
{
|
3111 |
|
|
if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
|
3112 |
|
|
return false;
|
3113 |
|
|
|
3114 |
|
|
if (update_ssa_stats.num_virtual_mappings
|
3115 |
|
|
> (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
|
3116 |
|
|
* update_ssa_stats.num_virtual_symbols)
|
3117 |
|
|
return true;
|
3118 |
|
|
|
3119 |
|
|
return false;
|
3120 |
|
|
}
|
3121 |
|
|
|
3122 |
|
|
|
3123 |
|
|
/* Remove every virtual mapping and mark all the affected virtual
|
3124 |
|
|
symbols for renaming. */
|
3125 |
|
|
|
3126 |
|
|
static void
|
3127 |
|
|
switch_virtuals_to_full_rewrite (void)
|
3128 |
|
|
{
|
3129 |
|
|
unsigned i = 0;
|
3130 |
|
|
sbitmap_iterator sbi;
|
3131 |
|
|
|
3132 |
|
|
if (dump_file)
|
3133 |
|
|
{
|
3134 |
|
|
fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
|
3135 |
|
|
fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
|
3136 |
|
|
update_ssa_stats.num_virtual_mappings);
|
3137 |
|
|
fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
|
3138 |
|
|
update_ssa_stats.num_virtual_symbols);
|
3139 |
|
|
fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
|
3140 |
|
|
"faster than processing\nthe name mappings.\n\n");
|
3141 |
|
|
}
|
3142 |
|
|
|
3143 |
|
|
/* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
|
3144 |
|
|
Note that it is not really necessary to remove the mappings from
|
3145 |
|
|
REPL_TBL, that would only waste time. */
|
3146 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
|
3147 |
|
|
if (!is_gimple_reg (ssa_name (i)))
|
3148 |
|
|
RESET_BIT (new_ssa_names, i);
|
3149 |
|
|
|
3150 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
|
3151 |
|
|
if (!is_gimple_reg (ssa_name (i)))
|
3152 |
|
|
RESET_BIT (old_ssa_names, i);
|
3153 |
|
|
|
3154 |
|
|
mark_set_for_renaming (update_ssa_stats.virtual_symbols);
|
3155 |
|
|
}
|
3156 |
|
|
|
3157 |
|
|
|
3158 |
|
|
/* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
|
3159 |
|
|
existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
|
3160 |
|
|
|
3161 |
|
|
1- The names in OLD_SSA_NAMES dominated by the definitions of
|
3162 |
|
|
NEW_SSA_NAMES are all re-written to be reached by the
|
3163 |
|
|
appropriate definition from NEW_SSA_NAMES.
|
3164 |
|
|
|
3165 |
|
|
2- If needed, new PHI nodes are added to the iterated dominance
|
3166 |
|
|
frontier of the blocks where each of NEW_SSA_NAMES are defined.
|
3167 |
|
|
|
3168 |
|
|
The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
|
3169 |
|
|
calling register_new_name_mapping for every pair of names that the
|
3170 |
|
|
caller wants to replace.
|
3171 |
|
|
|
3172 |
|
|
The caller identifies the new names that have been inserted and the
|
3173 |
|
|
names that need to be replaced by calling register_new_name_mapping
|
3174 |
|
|
for every pair <NEW, OLD>. Note that the function assumes that the
|
3175 |
|
|
new names have already been inserted in the IL.
|
3176 |
|
|
|
3177 |
|
|
For instance, given the following code:
|
3178 |
|
|
|
3179 |
|
|
1 L0:
|
3180 |
|
|
2 x_1 = PHI (0, x_5)
|
3181 |
|
|
3 if (x_1 < 10)
|
3182 |
|
|
4 if (x_1 > 7)
|
3183 |
|
|
5 y_2 = 0
|
3184 |
|
|
6 else
|
3185 |
|
|
7 y_3 = x_1 + x_7
|
3186 |
|
|
8 endif
|
3187 |
|
|
9 x_5 = x_1 + 1
|
3188 |
|
|
10 goto L0;
|
3189 |
|
|
11 endif
|
3190 |
|
|
|
3191 |
|
|
Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
|
3192 |
|
|
|
3193 |
|
|
1 L0:
|
3194 |
|
|
2 x_1 = PHI (0, x_5)
|
3195 |
|
|
3 if (x_1 < 10)
|
3196 |
|
|
4 x_10 = ...
|
3197 |
|
|
5 if (x_1 > 7)
|
3198 |
|
|
6 y_2 = 0
|
3199 |
|
|
7 else
|
3200 |
|
|
8 x_11 = ...
|
3201 |
|
|
9 y_3 = x_1 + x_7
|
3202 |
|
|
10 endif
|
3203 |
|
|
11 x_5 = x_1 + 1
|
3204 |
|
|
12 goto L0;
|
3205 |
|
|
13 endif
|
3206 |
|
|
|
3207 |
|
|
We want to replace all the uses of x_1 with the new definitions of
|
3208 |
|
|
x_10 and x_11. Note that the only uses that should be replaced are
|
3209 |
|
|
those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
|
3210 |
|
|
*not* be replaced (this is why we cannot just mark symbol 'x' for
|
3211 |
|
|
renaming).
|
3212 |
|
|
|
3213 |
|
|
Additionally, we may need to insert a PHI node at line 11 because
|
3214 |
|
|
that is a merge point for x_10 and x_11. So the use of x_1 at line
|
3215 |
|
|
11 will be replaced with the new PHI node. The insertion of PHI
|
3216 |
|
|
nodes is optional. They are not strictly necessary to preserve the
|
3217 |
|
|
SSA form, and depending on what the caller inserted, they may not
|
3218 |
|
|
even be useful for the optimizers. UPDATE_FLAGS controls various
|
3219 |
|
|
aspects of how update_ssa operates, see the documentation for
|
3220 |
|
|
TODO_update_ssa*. */
|
3221 |
|
|
|
3222 |
|
|
void
|
3223 |
|
|
update_ssa (unsigned update_flags)
|
3224 |
|
|
{
|
3225 |
|
|
basic_block bb, start_bb;
|
3226 |
|
|
bitmap_iterator bi;
|
3227 |
|
|
unsigned i = 0;
|
3228 |
|
|
bool insert_phi_p;
|
3229 |
|
|
sbitmap_iterator sbi;
|
3230 |
|
|
|
3231 |
|
|
if (!need_ssa_update_p (cfun))
|
3232 |
|
|
return;
|
3233 |
|
|
|
3234 |
|
|
timevar_push (TV_TREE_SSA_INCREMENTAL);
|
3235 |
|
|
|
3236 |
|
|
if (!update_ssa_initialized_fn)
|
3237 |
|
|
init_update_ssa (cfun);
|
3238 |
|
|
gcc_assert (update_ssa_initialized_fn == cfun);
|
3239 |
|
|
|
3240 |
|
|
blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
|
3241 |
|
|
if (!phis_to_rewrite)
|
3242 |
|
|
phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
|
3243 |
|
|
blocks_to_update = BITMAP_ALLOC (NULL);
|
3244 |
|
|
|
3245 |
|
|
/* Ensure that the dominance information is up-to-date. */
|
3246 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
3247 |
|
|
|
3248 |
|
|
/* Only one update flag should be set. */
|
3249 |
|
|
gcc_assert (update_flags == TODO_update_ssa
|
3250 |
|
|
|| update_flags == TODO_update_ssa_no_phi
|
3251 |
|
|
|| update_flags == TODO_update_ssa_full_phi
|
3252 |
|
|
|| update_flags == TODO_update_ssa_only_virtuals);
|
3253 |
|
|
|
3254 |
|
|
/* If we only need to update virtuals, remove all the mappings for
|
3255 |
|
|
real names before proceeding. The caller is responsible for
|
3256 |
|
|
having dealt with the name mappings before calling update_ssa. */
|
3257 |
|
|
if (update_flags == TODO_update_ssa_only_virtuals)
|
3258 |
|
|
{
|
3259 |
|
|
sbitmap_zero (old_ssa_names);
|
3260 |
|
|
sbitmap_zero (new_ssa_names);
|
3261 |
|
|
htab_empty (repl_tbl);
|
3262 |
|
|
}
|
3263 |
|
|
|
3264 |
|
|
insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
|
3265 |
|
|
|
3266 |
|
|
if (insert_phi_p)
|
3267 |
|
|
{
|
3268 |
|
|
/* If the caller requested PHI nodes to be added, initialize
|
3269 |
|
|
live-in information data structures (DEF_BLOCKS). */
|
3270 |
|
|
|
3271 |
|
|
/* For each SSA name N, the DEF_BLOCKS table describes where the
|
3272 |
|
|
name is defined, which blocks have PHI nodes for N, and which
|
3273 |
|
|
blocks have uses of N (i.e., N is live-on-entry in those
|
3274 |
|
|
blocks). */
|
3275 |
|
|
def_blocks = htab_create (num_ssa_names, def_blocks_hash,
|
3276 |
|
|
def_blocks_eq, def_blocks_free);
|
3277 |
|
|
}
|
3278 |
|
|
else
|
3279 |
|
|
{
|
3280 |
|
|
def_blocks = NULL;
|
3281 |
|
|
}
|
3282 |
|
|
|
3283 |
|
|
/* Heuristic to avoid massive slow downs when the replacement
|
3284 |
|
|
mappings include lots of virtual names. */
|
3285 |
|
|
if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
|
3286 |
|
|
switch_virtuals_to_full_rewrite ();
|
3287 |
|
|
|
3288 |
|
|
/* If there are names defined in the replacement table, prepare
|
3289 |
|
|
definition and use sites for all the names in NEW_SSA_NAMES and
|
3290 |
|
|
OLD_SSA_NAMES. */
|
3291 |
|
|
if (sbitmap_first_set_bit (new_ssa_names) >= 0)
|
3292 |
|
|
{
|
3293 |
|
|
prepare_names_to_update (insert_phi_p);
|
3294 |
|
|
|
3295 |
|
|
/* If all the names in NEW_SSA_NAMES had been marked for
|
3296 |
|
|
removal, and there are no symbols to rename, then there's
|
3297 |
|
|
nothing else to do. */
|
3298 |
|
|
if (sbitmap_first_set_bit (new_ssa_names) < 0
|
3299 |
|
|
&& bitmap_empty_p (SYMS_TO_RENAME (cfun)))
|
3300 |
|
|
goto done;
|
3301 |
|
|
}
|
3302 |
|
|
|
3303 |
|
|
/* Next, determine the block at which to start the renaming process. */
|
3304 |
|
|
if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
|
3305 |
|
|
{
|
3306 |
|
|
/* If we have to rename some symbols from scratch, we need to
|
3307 |
|
|
start the process at the root of the CFG. FIXME, it should
|
3308 |
|
|
be possible to determine the nearest block that had a
|
3309 |
|
|
definition for each of the symbols that are marked for
|
3310 |
|
|
updating. For now this seems more work than it's worth. */
|
3311 |
|
|
start_bb = ENTRY_BLOCK_PTR;
|
3312 |
|
|
|
3313 |
|
|
/* Traverse the CFG looking for existing definitions and uses of
|
3314 |
|
|
symbols in SYMS_TO_RENAME. Mark interesting blocks and
|
3315 |
|
|
statements and set local live-in information for the PHI
|
3316 |
|
|
placement heuristics. */
|
3317 |
|
|
prepare_block_for_update (start_bb, insert_phi_p);
|
3318 |
|
|
}
|
3319 |
|
|
else
|
3320 |
|
|
{
|
3321 |
|
|
/* Otherwise, the entry block to the region is the nearest
|
3322 |
|
|
common dominator for the blocks in BLOCKS. */
|
3323 |
|
|
start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
|
3324 |
|
|
blocks_to_update);
|
3325 |
|
|
}
|
3326 |
|
|
|
3327 |
|
|
/* If requested, insert PHI nodes at the iterated dominance frontier
|
3328 |
|
|
of every block, creating new definitions for names in OLD_SSA_NAMES
|
3329 |
|
|
and for symbols in SYMS_TO_RENAME. */
|
3330 |
|
|
if (insert_phi_p)
|
3331 |
|
|
{
|
3332 |
|
|
bitmap *dfs;
|
3333 |
|
|
|
3334 |
|
|
/* If the caller requested PHI nodes to be added, compute
|
3335 |
|
|
dominance frontiers. */
|
3336 |
|
|
dfs = XNEWVEC (bitmap, last_basic_block);
|
3337 |
|
|
FOR_EACH_BB (bb)
|
3338 |
|
|
dfs[bb->index] = BITMAP_ALLOC (NULL);
|
3339 |
|
|
compute_dominance_frontiers (dfs);
|
3340 |
|
|
|
3341 |
|
|
if (sbitmap_first_set_bit (old_ssa_names) >= 0)
|
3342 |
|
|
{
|
3343 |
|
|
sbitmap_iterator sbi;
|
3344 |
|
|
|
3345 |
|
|
/* insert_update_phi_nodes_for will call add_new_name_mapping
|
3346 |
|
|
when inserting new PHI nodes, so the set OLD_SSA_NAMES
|
3347 |
|
|
will grow while we are traversing it (but it will not
|
3348 |
|
|
gain any new members). Copy OLD_SSA_NAMES to a temporary
|
3349 |
|
|
for traversal. */
|
3350 |
|
|
sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
|
3351 |
|
|
sbitmap_copy (tmp, old_ssa_names);
|
3352 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
|
3353 |
|
|
insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
|
3354 |
|
|
update_flags);
|
3355 |
|
|
sbitmap_free (tmp);
|
3356 |
|
|
}
|
3357 |
|
|
|
3358 |
|
|
EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
|
3359 |
|
|
insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
|
3360 |
|
|
update_flags);
|
3361 |
|
|
|
3362 |
|
|
FOR_EACH_BB (bb)
|
3363 |
|
|
BITMAP_FREE (dfs[bb->index]);
|
3364 |
|
|
free (dfs);
|
3365 |
|
|
|
3366 |
|
|
/* Insertion of PHI nodes may have added blocks to the region.
|
3367 |
|
|
We need to re-compute START_BB to include the newly added
|
3368 |
|
|
blocks. */
|
3369 |
|
|
if (start_bb != ENTRY_BLOCK_PTR)
|
3370 |
|
|
start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
|
3371 |
|
|
blocks_to_update);
|
3372 |
|
|
}
|
3373 |
|
|
|
3374 |
|
|
/* Reset the current definition for name and symbol before renaming
|
3375 |
|
|
the sub-graph. */
|
3376 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
|
3377 |
|
|
set_current_def (ssa_name (i), NULL_TREE);
|
3378 |
|
|
|
3379 |
|
|
EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
|
3380 |
|
|
set_current_def (referenced_var (i), NULL_TREE);
|
3381 |
|
|
|
3382 |
|
|
/* Now start the renaming process at START_BB. */
|
3383 |
|
|
interesting_blocks = sbitmap_alloc (last_basic_block);
|
3384 |
|
|
sbitmap_zero (interesting_blocks);
|
3385 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
|
3386 |
|
|
SET_BIT (interesting_blocks, i);
|
3387 |
|
|
|
3388 |
|
|
rewrite_blocks (start_bb, REWRITE_UPDATE);
|
3389 |
|
|
|
3390 |
|
|
sbitmap_free (interesting_blocks);
|
3391 |
|
|
|
3392 |
|
|
/* Debugging dumps. */
|
3393 |
|
|
if (dump_file)
|
3394 |
|
|
{
|
3395 |
|
|
int c;
|
3396 |
|
|
unsigned i;
|
3397 |
|
|
|
3398 |
|
|
dump_update_ssa (dump_file);
|
3399 |
|
|
|
3400 |
|
|
fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
|
3401 |
|
|
start_bb->index);
|
3402 |
|
|
|
3403 |
|
|
c = 0;
|
3404 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
|
3405 |
|
|
c++;
|
3406 |
|
|
fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
|
3407 |
|
|
fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
|
3408 |
|
|
c, PERCENT (c, last_basic_block));
|
3409 |
|
|
|
3410 |
|
|
if (dump_flags & TDF_DETAILS)
|
3411 |
|
|
{
|
3412 |
|
|
fprintf (dump_file, "Affected blocks: ");
|
3413 |
|
|
EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
|
3414 |
|
|
fprintf (dump_file, "%u ", i);
|
3415 |
|
|
fprintf (dump_file, "\n");
|
3416 |
|
|
}
|
3417 |
|
|
|
3418 |
|
|
fprintf (dump_file, "\n\n");
|
3419 |
|
|
}
|
3420 |
|
|
|
3421 |
|
|
/* Free allocated memory. */
|
3422 |
|
|
done:
|
3423 |
|
|
delete_update_ssa ();
|
3424 |
|
|
|
3425 |
|
|
timevar_pop (TV_TREE_SSA_INCREMENTAL);
|
3426 |
|
|
}
|