1 |
280 |
jeremybenn |
/* Loop distribution.
|
2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
|
5 |
|
|
and Sebastian Pop <sebastian.pop@amd.com>.
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
10 |
|
|
under the terms of the GNU General Public License as published by the
|
11 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
12 |
|
|
later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
15 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
/* This pass performs loop distribution: for example, the loop
|
24 |
|
|
|
25 |
|
|
|DO I = 2, N
|
26 |
|
|
| A(I) = B(I) + C
|
27 |
|
|
| D(I) = A(I-1)*E
|
28 |
|
|
|ENDDO
|
29 |
|
|
|
30 |
|
|
is transformed to
|
31 |
|
|
|
32 |
|
|
|DOALL I = 2, N
|
33 |
|
|
| A(I) = B(I) + C
|
34 |
|
|
|ENDDO
|
35 |
|
|
|
|
36 |
|
|
|DOALL I = 2, N
|
37 |
|
|
| D(I) = A(I-1)*E
|
38 |
|
|
|ENDDO
|
39 |
|
|
|
40 |
|
|
This pass uses an RDG, Reduced Dependence Graph built on top of the
|
41 |
|
|
data dependence relations. The RDG is then topologically sorted to
|
42 |
|
|
obtain a map of information producers/consumers based on which it
|
43 |
|
|
generates the new loops. */
|
44 |
|
|
|
45 |
|
|
#include "config.h"
|
46 |
|
|
#include "system.h"
|
47 |
|
|
#include "coretypes.h"
|
48 |
|
|
#include "tm.h"
|
49 |
|
|
#include "ggc.h"
|
50 |
|
|
#include "tree.h"
|
51 |
|
|
#include "target.h"
|
52 |
|
|
|
53 |
|
|
#include "rtl.h"
|
54 |
|
|
#include "basic-block.h"
|
55 |
|
|
#include "diagnostic.h"
|
56 |
|
|
#include "tree-flow.h"
|
57 |
|
|
#include "tree-dump.h"
|
58 |
|
|
#include "timevar.h"
|
59 |
|
|
#include "cfgloop.h"
|
60 |
|
|
#include "expr.h"
|
61 |
|
|
#include "optabs.h"
|
62 |
|
|
#include "tree-chrec.h"
|
63 |
|
|
#include "tree-data-ref.h"
|
64 |
|
|
#include "tree-scalar-evolution.h"
|
65 |
|
|
#include "tree-pass.h"
|
66 |
|
|
#include "lambda.h"
|
67 |
|
|
#include "langhooks.h"
|
68 |
|
|
#include "tree-vectorizer.h"
|
69 |
|
|
|
70 |
|
|
/* If bit I is not set, it means that this node represents an
|
71 |
|
|
operation that has already been performed, and that should not be
|
72 |
|
|
performed again. This is the subgraph of remaining important
|
73 |
|
|
computations that is passed to the DFS algorithm for avoiding to
|
74 |
|
|
include several times the same stores in different loops. */
|
75 |
|
|
static bitmap remaining_stmts;
|
76 |
|
|
|
77 |
|
|
/* A node of the RDG is marked in this bitmap when it has as a
|
78 |
|
|
predecessor a node that writes to memory. */
|
79 |
|
|
static bitmap upstream_mem_writes;
|
80 |
|
|
|
81 |
|
|
/* Update the PHI nodes of NEW_LOOP. NEW_LOOP is a duplicate of
|
82 |
|
|
ORIG_LOOP. */
|
83 |
|
|
|
84 |
|
|
static void
|
85 |
|
|
update_phis_for_loop_copy (struct loop *orig_loop, struct loop *new_loop)
|
86 |
|
|
{
|
87 |
|
|
tree new_ssa_name;
|
88 |
|
|
gimple_stmt_iterator si_new, si_orig;
|
89 |
|
|
edge orig_loop_latch = loop_latch_edge (orig_loop);
|
90 |
|
|
edge orig_entry_e = loop_preheader_edge (orig_loop);
|
91 |
|
|
edge new_loop_entry_e = loop_preheader_edge (new_loop);
|
92 |
|
|
|
93 |
|
|
/* Scan the phis in the headers of the old and new loops
|
94 |
|
|
(they are organized in exactly the same order). */
|
95 |
|
|
for (si_new = gsi_start_phis (new_loop->header),
|
96 |
|
|
si_orig = gsi_start_phis (orig_loop->header);
|
97 |
|
|
!gsi_end_p (si_new) && !gsi_end_p (si_orig);
|
98 |
|
|
gsi_next (&si_new), gsi_next (&si_orig))
|
99 |
|
|
{
|
100 |
|
|
tree def;
|
101 |
|
|
source_location locus;
|
102 |
|
|
gimple phi_new = gsi_stmt (si_new);
|
103 |
|
|
gimple phi_orig = gsi_stmt (si_orig);
|
104 |
|
|
|
105 |
|
|
/* Add the first phi argument for the phi in NEW_LOOP (the one
|
106 |
|
|
associated with the entry of NEW_LOOP) */
|
107 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_entry_e);
|
108 |
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_entry_e);
|
109 |
|
|
add_phi_arg (phi_new, def, new_loop_entry_e, locus);
|
110 |
|
|
|
111 |
|
|
/* Add the second phi argument for the phi in NEW_LOOP (the one
|
112 |
|
|
associated with the latch of NEW_LOOP) */
|
113 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
|
114 |
|
|
locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
|
115 |
|
|
|
116 |
|
|
if (TREE_CODE (def) == SSA_NAME)
|
117 |
|
|
{
|
118 |
|
|
new_ssa_name = get_current_def (def);
|
119 |
|
|
|
120 |
|
|
if (!new_ssa_name)
|
121 |
|
|
/* This only happens if there are no definitions inside the
|
122 |
|
|
loop. Use the the invariant in the new loop as is. */
|
123 |
|
|
new_ssa_name = def;
|
124 |
|
|
}
|
125 |
|
|
else
|
126 |
|
|
/* Could be an integer. */
|
127 |
|
|
new_ssa_name = def;
|
128 |
|
|
|
129 |
|
|
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
|
130 |
|
|
}
|
131 |
|
|
}
|
132 |
|
|
|
133 |
|
|
/* Return a copy of LOOP placed before LOOP. */
|
134 |
|
|
|
135 |
|
|
static struct loop *
|
136 |
|
|
copy_loop_before (struct loop *loop)
|
137 |
|
|
{
|
138 |
|
|
struct loop *res;
|
139 |
|
|
edge preheader = loop_preheader_edge (loop);
|
140 |
|
|
|
141 |
|
|
if (!single_exit (loop))
|
142 |
|
|
return NULL;
|
143 |
|
|
|
144 |
|
|
initialize_original_copy_tables ();
|
145 |
|
|
res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, preheader);
|
146 |
|
|
free_original_copy_tables ();
|
147 |
|
|
|
148 |
|
|
if (!res)
|
149 |
|
|
return NULL;
|
150 |
|
|
|
151 |
|
|
update_phis_for_loop_copy (loop, res);
|
152 |
|
|
rename_variables_in_loop (res);
|
153 |
|
|
|
154 |
|
|
return res;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
/* Creates an empty basic block after LOOP. */
|
158 |
|
|
|
159 |
|
|
static void
|
160 |
|
|
create_bb_after_loop (struct loop *loop)
|
161 |
|
|
{
|
162 |
|
|
edge exit = single_exit (loop);
|
163 |
|
|
|
164 |
|
|
if (!exit)
|
165 |
|
|
return;
|
166 |
|
|
|
167 |
|
|
split_edge (exit);
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
/* Generate code for PARTITION from the code in LOOP. The loop is
|
171 |
|
|
copied when COPY_P is true. All the statements not flagged in the
|
172 |
|
|
PARTITION bitmap are removed from the loop or from its copy. The
|
173 |
|
|
statements are indexed in sequence inside a basic block, and the
|
174 |
|
|
basic blocks of a loop are taken in dom order. Returns true when
|
175 |
|
|
the code gen succeeded. */
|
176 |
|
|
|
177 |
|
|
static bool
|
178 |
|
|
generate_loops_for_partition (struct loop *loop, bitmap partition, bool copy_p)
|
179 |
|
|
{
|
180 |
|
|
unsigned i, x;
|
181 |
|
|
gimple_stmt_iterator bsi;
|
182 |
|
|
basic_block *bbs;
|
183 |
|
|
|
184 |
|
|
if (copy_p)
|
185 |
|
|
{
|
186 |
|
|
loop = copy_loop_before (loop);
|
187 |
|
|
create_preheader (loop, CP_SIMPLE_PREHEADERS);
|
188 |
|
|
create_bb_after_loop (loop);
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
if (loop == NULL)
|
192 |
|
|
return false;
|
193 |
|
|
|
194 |
|
|
/* Remove stmts not in the PARTITION bitmap. The order in which we
|
195 |
|
|
visit the phi nodes and the statements is exactly as in
|
196 |
|
|
stmts_from_loop. */
|
197 |
|
|
bbs = get_loop_body_in_dom_order (loop);
|
198 |
|
|
|
199 |
|
|
for (x = 0, i = 0; i < loop->num_nodes; i++)
|
200 |
|
|
{
|
201 |
|
|
basic_block bb = bbs[i];
|
202 |
|
|
|
203 |
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
|
204 |
|
|
if (!bitmap_bit_p (partition, x++))
|
205 |
|
|
{
|
206 |
|
|
gimple phi = gsi_stmt (bsi);
|
207 |
|
|
if (!is_gimple_reg (gimple_phi_result (phi)))
|
208 |
|
|
mark_virtual_phi_result_for_renaming (phi);
|
209 |
|
|
remove_phi_node (&bsi, true);
|
210 |
|
|
}
|
211 |
|
|
else
|
212 |
|
|
gsi_next (&bsi);
|
213 |
|
|
|
214 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
|
215 |
|
|
{
|
216 |
|
|
gimple stmt = gsi_stmt (bsi);
|
217 |
|
|
if (gimple_code (gsi_stmt (bsi)) != GIMPLE_LABEL
|
218 |
|
|
&& !bitmap_bit_p (partition, x++))
|
219 |
|
|
{
|
220 |
|
|
unlink_stmt_vdef (stmt);
|
221 |
|
|
gsi_remove (&bsi, true);
|
222 |
|
|
release_defs (stmt);
|
223 |
|
|
}
|
224 |
|
|
else
|
225 |
|
|
gsi_next (&bsi);
|
226 |
|
|
}
|
227 |
|
|
}
|
228 |
|
|
|
229 |
|
|
free (bbs);
|
230 |
|
|
return true;
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/* Build the size argument for a memset call. */
|
234 |
|
|
|
235 |
|
|
static inline tree
|
236 |
|
|
build_size_arg_loc (location_t loc, tree nb_iter, tree op,
|
237 |
|
|
gimple_seq *stmt_list)
|
238 |
|
|
{
|
239 |
|
|
gimple_seq stmts;
|
240 |
|
|
tree x;
|
241 |
|
|
|
242 |
|
|
x = fold_build2_loc (loc, MULT_EXPR, size_type_node,
|
243 |
|
|
fold_convert_loc (loc, size_type_node, nb_iter),
|
244 |
|
|
fold_convert_loc (loc, size_type_node,
|
245 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op))));
|
246 |
|
|
x = force_gimple_operand (x, &stmts, true, NULL);
|
247 |
|
|
gimple_seq_add_seq (stmt_list, stmts);
|
248 |
|
|
|
249 |
|
|
return x;
|
250 |
|
|
}
|
251 |
|
|
|
252 |
|
|
/* Generate a call to memset. Return true when the operation succeeded. */
|
253 |
|
|
|
254 |
|
|
static bool
|
255 |
|
|
generate_memset_zero (gimple stmt, tree op0, tree nb_iter,
|
256 |
|
|
gimple_stmt_iterator bsi)
|
257 |
|
|
{
|
258 |
|
|
tree addr_base, nb_bytes;
|
259 |
|
|
bool res = false;
|
260 |
|
|
gimple_seq stmt_list = NULL, stmts;
|
261 |
|
|
gimple fn_call;
|
262 |
|
|
tree mem, fn;
|
263 |
|
|
struct data_reference *dr = XCNEW (struct data_reference);
|
264 |
|
|
location_t loc = gimple_location (stmt);
|
265 |
|
|
|
266 |
|
|
DR_STMT (dr) = stmt;
|
267 |
|
|
DR_REF (dr) = op0;
|
268 |
|
|
if (!dr_analyze_innermost (dr))
|
269 |
|
|
goto end;
|
270 |
|
|
|
271 |
|
|
/* Test for a positive stride, iterating over every element. */
|
272 |
|
|
if (integer_zerop (size_binop (MINUS_EXPR,
|
273 |
|
|
fold_convert (sizetype, DR_STEP (dr)),
|
274 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op0)))))
|
275 |
|
|
{
|
276 |
|
|
addr_base = fold_convert_loc (loc, sizetype,
|
277 |
|
|
size_binop_loc (loc, PLUS_EXPR,
|
278 |
|
|
DR_OFFSET (dr),
|
279 |
|
|
DR_INIT (dr)));
|
280 |
|
|
addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
|
281 |
|
|
TREE_TYPE (DR_BASE_ADDRESS (dr)),
|
282 |
|
|
DR_BASE_ADDRESS (dr), addr_base);
|
283 |
|
|
|
284 |
|
|
nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
/* Test for a negative stride, iterating over every element. */
|
288 |
|
|
else if (integer_zerop (size_binop (PLUS_EXPR,
|
289 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op0)),
|
290 |
|
|
fold_convert (sizetype, DR_STEP (dr)))))
|
291 |
|
|
{
|
292 |
|
|
nb_bytes = build_size_arg_loc (loc, nb_iter, op0, &stmt_list);
|
293 |
|
|
|
294 |
|
|
addr_base = size_binop_loc (loc, PLUS_EXPR, DR_OFFSET (dr), DR_INIT (dr));
|
295 |
|
|
addr_base = fold_convert_loc (loc, sizetype, addr_base);
|
296 |
|
|
addr_base = size_binop_loc (loc, MINUS_EXPR, addr_base,
|
297 |
|
|
fold_convert_loc (loc, sizetype, nb_bytes));
|
298 |
|
|
addr_base = size_binop_loc (loc, PLUS_EXPR, addr_base,
|
299 |
|
|
TYPE_SIZE_UNIT (TREE_TYPE (op0)));
|
300 |
|
|
addr_base = fold_build2_loc (loc, POINTER_PLUS_EXPR,
|
301 |
|
|
TREE_TYPE (DR_BASE_ADDRESS (dr)),
|
302 |
|
|
DR_BASE_ADDRESS (dr), addr_base);
|
303 |
|
|
}
|
304 |
|
|
else
|
305 |
|
|
goto end;
|
306 |
|
|
|
307 |
|
|
mem = force_gimple_operand (addr_base, &stmts, true, NULL);
|
308 |
|
|
gimple_seq_add_seq (&stmt_list, stmts);
|
309 |
|
|
|
310 |
|
|
fn = build_fold_addr_expr (implicit_built_in_decls [BUILT_IN_MEMSET]);
|
311 |
|
|
fn_call = gimple_build_call (fn, 3, mem, integer_zero_node, nb_bytes);
|
312 |
|
|
gimple_seq_add_stmt (&stmt_list, fn_call);
|
313 |
|
|
gsi_insert_seq_after (&bsi, stmt_list, GSI_CONTINUE_LINKING);
|
314 |
|
|
res = true;
|
315 |
|
|
|
316 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
317 |
|
|
fprintf (dump_file, "generated memset zero\n");
|
318 |
|
|
|
319 |
|
|
end:
|
320 |
|
|
free_data_ref (dr);
|
321 |
|
|
return res;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
/* Propagate phis in BB b to their uses and remove them. */
|
325 |
|
|
|
326 |
|
|
static void
|
327 |
|
|
prop_phis (basic_block b)
|
328 |
|
|
{
|
329 |
|
|
gimple_stmt_iterator psi;
|
330 |
|
|
gimple_seq phis = phi_nodes (b);
|
331 |
|
|
|
332 |
|
|
for (psi = gsi_start (phis); !gsi_end_p (psi); )
|
333 |
|
|
{
|
334 |
|
|
gimple phi = gsi_stmt (psi);
|
335 |
|
|
tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
|
336 |
|
|
|
337 |
|
|
gcc_assert (gimple_phi_num_args (phi) == 1);
|
338 |
|
|
|
339 |
|
|
if (!is_gimple_reg (def))
|
340 |
|
|
{
|
341 |
|
|
imm_use_iterator iter;
|
342 |
|
|
use_operand_p use_p;
|
343 |
|
|
gimple stmt;
|
344 |
|
|
|
345 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, iter, def)
|
346 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
347 |
|
|
SET_USE (use_p, use);
|
348 |
|
|
}
|
349 |
|
|
else
|
350 |
|
|
replace_uses_by (def, use);
|
351 |
|
|
|
352 |
|
|
remove_phi_node (&psi, true);
|
353 |
|
|
}
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
/* Tries to generate a builtin function for the instructions of LOOP
|
357 |
|
|
pointed to by the bits set in PARTITION. Returns true when the
|
358 |
|
|
operation succeeded. */
|
359 |
|
|
|
360 |
|
|
static bool
|
361 |
|
|
generate_builtin (struct loop *loop, bitmap partition, bool copy_p)
|
362 |
|
|
{
|
363 |
|
|
bool res = false;
|
364 |
|
|
unsigned i, x = 0;
|
365 |
|
|
basic_block *bbs;
|
366 |
|
|
gimple write = NULL;
|
367 |
|
|
tree op0, op1;
|
368 |
|
|
gimple_stmt_iterator bsi;
|
369 |
|
|
tree nb_iter = number_of_exit_cond_executions (loop);
|
370 |
|
|
|
371 |
|
|
if (!nb_iter || nb_iter == chrec_dont_know)
|
372 |
|
|
return false;
|
373 |
|
|
|
374 |
|
|
bbs = get_loop_body_in_dom_order (loop);
|
375 |
|
|
|
376 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
377 |
|
|
{
|
378 |
|
|
basic_block bb = bbs[i];
|
379 |
|
|
|
380 |
|
|
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
381 |
|
|
x++;
|
382 |
|
|
|
383 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
384 |
|
|
{
|
385 |
|
|
gimple stmt = gsi_stmt (bsi);
|
386 |
|
|
|
387 |
|
|
if (bitmap_bit_p (partition, x++)
|
388 |
|
|
&& is_gimple_assign (stmt)
|
389 |
|
|
&& !is_gimple_reg (gimple_assign_lhs (stmt)))
|
390 |
|
|
{
|
391 |
|
|
/* Don't generate the builtins when there are more than
|
392 |
|
|
one memory write. */
|
393 |
|
|
if (write != NULL)
|
394 |
|
|
goto end;
|
395 |
|
|
|
396 |
|
|
write = stmt;
|
397 |
|
|
if (bb == loop->latch)
|
398 |
|
|
nb_iter = number_of_latch_executions (loop);
|
399 |
|
|
}
|
400 |
|
|
}
|
401 |
|
|
}
|
402 |
|
|
|
403 |
|
|
if (!write)
|
404 |
|
|
goto end;
|
405 |
|
|
|
406 |
|
|
op0 = gimple_assign_lhs (write);
|
407 |
|
|
op1 = gimple_assign_rhs1 (write);
|
408 |
|
|
|
409 |
|
|
if (!(TREE_CODE (op0) == ARRAY_REF
|
410 |
|
|
|| TREE_CODE (op0) == INDIRECT_REF))
|
411 |
|
|
goto end;
|
412 |
|
|
|
413 |
|
|
/* The new statements will be placed before LOOP. */
|
414 |
|
|
bsi = gsi_last_bb (loop_preheader_edge (loop)->src);
|
415 |
|
|
|
416 |
|
|
if (gimple_assign_rhs_code (write) == INTEGER_CST
|
417 |
|
|
&& (integer_zerop (op1) || real_zerop (op1)))
|
418 |
|
|
res = generate_memset_zero (write, op0, nb_iter, bsi);
|
419 |
|
|
|
420 |
|
|
/* If this is the last partition for which we generate code, we have
|
421 |
|
|
to destroy the loop. */
|
422 |
|
|
if (res && !copy_p)
|
423 |
|
|
{
|
424 |
|
|
unsigned nbbs = loop->num_nodes;
|
425 |
|
|
basic_block src = loop_preheader_edge (loop)->src;
|
426 |
|
|
basic_block dest = single_exit (loop)->dest;
|
427 |
|
|
prop_phis (dest);
|
428 |
|
|
make_edge (src, dest, EDGE_FALLTHRU);
|
429 |
|
|
cancel_loop_tree (loop);
|
430 |
|
|
|
431 |
|
|
for (i = 0; i < nbbs; i++)
|
432 |
|
|
delete_basic_block (bbs[i]);
|
433 |
|
|
|
434 |
|
|
set_immediate_dominator (CDI_DOMINATORS, dest,
|
435 |
|
|
recompute_dominator (CDI_DOMINATORS, dest));
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
end:
|
439 |
|
|
free (bbs);
|
440 |
|
|
return res;
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
/* Generates code for PARTITION. For simple loops, this function can
|
444 |
|
|
generate a built-in. */
|
445 |
|
|
|
446 |
|
|
static bool
|
447 |
|
|
generate_code_for_partition (struct loop *loop, bitmap partition, bool copy_p)
|
448 |
|
|
{
|
449 |
|
|
if (generate_builtin (loop, partition, copy_p))
|
450 |
|
|
return true;
|
451 |
|
|
|
452 |
|
|
return generate_loops_for_partition (loop, partition, copy_p);
|
453 |
|
|
}
|
454 |
|
|
|
455 |
|
|
|
456 |
|
|
/* Returns true if the node V of RDG cannot be recomputed. */
|
457 |
|
|
|
458 |
|
|
static bool
|
459 |
|
|
rdg_cannot_recompute_vertex_p (struct graph *rdg, int v)
|
460 |
|
|
{
|
461 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, v))
|
462 |
|
|
return true;
|
463 |
|
|
|
464 |
|
|
return false;
|
465 |
|
|
}
|
466 |
|
|
|
467 |
|
|
/* Returns true when the vertex V has already been generated in the
|
468 |
|
|
current partition (V is in PROCESSED), or when V belongs to another
|
469 |
|
|
partition and cannot be recomputed (V is not in REMAINING_STMTS). */
|
470 |
|
|
|
471 |
|
|
static inline bool
|
472 |
|
|
already_processed_vertex_p (bitmap processed, int v)
|
473 |
|
|
{
|
474 |
|
|
return (bitmap_bit_p (processed, v)
|
475 |
|
|
|| !bitmap_bit_p (remaining_stmts, v));
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
/* Returns NULL when there is no anti-dependence among the successors
|
479 |
|
|
of vertex V, otherwise returns the edge with the anti-dep. */
|
480 |
|
|
|
481 |
|
|
static struct graph_edge *
|
482 |
|
|
has_anti_dependence (struct vertex *v)
|
483 |
|
|
{
|
484 |
|
|
struct graph_edge *e;
|
485 |
|
|
|
486 |
|
|
if (v->succ)
|
487 |
|
|
for (e = v->succ; e; e = e->succ_next)
|
488 |
|
|
if (RDGE_TYPE (e) == anti_dd)
|
489 |
|
|
return e;
|
490 |
|
|
|
491 |
|
|
return NULL;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/* Returns true when V has an anti-dependence edge among its successors. */
|
495 |
|
|
|
496 |
|
|
static bool
|
497 |
|
|
predecessor_has_mem_write (struct graph *rdg, struct vertex *v)
|
498 |
|
|
{
|
499 |
|
|
struct graph_edge *e;
|
500 |
|
|
|
501 |
|
|
if (v->pred)
|
502 |
|
|
for (e = v->pred; e; e = e->pred_next)
|
503 |
|
|
if (bitmap_bit_p (upstream_mem_writes, e->src)
|
504 |
|
|
/* Don't consider flow channels: a write to memory followed
|
505 |
|
|
by a read from memory. These channels allow the split of
|
506 |
|
|
the RDG in different partitions. */
|
507 |
|
|
&& !RDG_MEM_WRITE_STMT (rdg, e->src))
|
508 |
|
|
return true;
|
509 |
|
|
|
510 |
|
|
return false;
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
/* Initializes the upstream_mem_writes bitmap following the
|
514 |
|
|
information from RDG. */
|
515 |
|
|
|
516 |
|
|
static void
|
517 |
|
|
mark_nodes_having_upstream_mem_writes (struct graph *rdg)
|
518 |
|
|
{
|
519 |
|
|
int v, x;
|
520 |
|
|
bitmap seen = BITMAP_ALLOC (NULL);
|
521 |
|
|
|
522 |
|
|
for (v = rdg->n_vertices - 1; v >= 0; v--)
|
523 |
|
|
if (!bitmap_bit_p (seen, v))
|
524 |
|
|
{
|
525 |
|
|
unsigned i;
|
526 |
|
|
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
|
527 |
|
|
|
528 |
|
|
graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
|
529 |
|
|
|
530 |
|
|
for (i = 0; VEC_iterate (int, nodes, i, x); i++)
|
531 |
|
|
{
|
532 |
|
|
if (bitmap_bit_p (seen, x))
|
533 |
|
|
continue;
|
534 |
|
|
|
535 |
|
|
bitmap_set_bit (seen, x);
|
536 |
|
|
|
537 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, x)
|
538 |
|
|
|| predecessor_has_mem_write (rdg, &(rdg->vertices[x]))
|
539 |
|
|
/* In anti dependences the read should occur before
|
540 |
|
|
the write, this is why both the read and the write
|
541 |
|
|
should be placed in the same partition. */
|
542 |
|
|
|| has_anti_dependence (&(rdg->vertices[x])))
|
543 |
|
|
{
|
544 |
|
|
bitmap_set_bit (upstream_mem_writes, x);
|
545 |
|
|
}
|
546 |
|
|
}
|
547 |
|
|
|
548 |
|
|
VEC_free (int, heap, nodes);
|
549 |
|
|
}
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
/* Returns true when vertex u has a memory write node as a predecessor
|
553 |
|
|
in RDG. */
|
554 |
|
|
|
555 |
|
|
static bool
|
556 |
|
|
has_upstream_mem_writes (int u)
|
557 |
|
|
{
|
558 |
|
|
return bitmap_bit_p (upstream_mem_writes, u);
|
559 |
|
|
}
|
560 |
|
|
|
561 |
|
|
static void rdg_flag_vertex_and_dependent (struct graph *, int, bitmap, bitmap,
|
562 |
|
|
bitmap, bool *);
|
563 |
|
|
|
564 |
|
|
/* Flag all the uses of U. */
|
565 |
|
|
|
566 |
|
|
static void
|
567 |
|
|
rdg_flag_all_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
|
568 |
|
|
bitmap processed, bool *part_has_writes)
|
569 |
|
|
{
|
570 |
|
|
struct graph_edge *e;
|
571 |
|
|
|
572 |
|
|
for (e = rdg->vertices[u].succ; e; e = e->succ_next)
|
573 |
|
|
if (!bitmap_bit_p (processed, e->dest))
|
574 |
|
|
{
|
575 |
|
|
rdg_flag_vertex_and_dependent (rdg, e->dest, partition, loops,
|
576 |
|
|
processed, part_has_writes);
|
577 |
|
|
rdg_flag_all_uses (rdg, e->dest, partition, loops, processed,
|
578 |
|
|
part_has_writes);
|
579 |
|
|
}
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
/* Flag the uses of U stopping following the information from
|
583 |
|
|
upstream_mem_writes. */
|
584 |
|
|
|
585 |
|
|
static void
|
586 |
|
|
rdg_flag_uses (struct graph *rdg, int u, bitmap partition, bitmap loops,
|
587 |
|
|
bitmap processed, bool *part_has_writes)
|
588 |
|
|
{
|
589 |
|
|
use_operand_p use_p;
|
590 |
|
|
struct vertex *x = &(rdg->vertices[u]);
|
591 |
|
|
gimple stmt = RDGV_STMT (x);
|
592 |
|
|
struct graph_edge *anti_dep = has_anti_dependence (x);
|
593 |
|
|
|
594 |
|
|
/* Keep in the same partition the destination of an antidependence,
|
595 |
|
|
because this is a store to the exact same location. Putting this
|
596 |
|
|
in another partition is bad for cache locality. */
|
597 |
|
|
if (anti_dep)
|
598 |
|
|
{
|
599 |
|
|
int v = anti_dep->dest;
|
600 |
|
|
|
601 |
|
|
if (!already_processed_vertex_p (processed, v))
|
602 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
603 |
|
|
processed, part_has_writes);
|
604 |
|
|
}
|
605 |
|
|
|
606 |
|
|
if (gimple_code (stmt) != GIMPLE_PHI)
|
607 |
|
|
{
|
608 |
|
|
if ((use_p = gimple_vuse_op (stmt)) != NULL_USE_OPERAND_P)
|
609 |
|
|
{
|
610 |
|
|
tree use = USE_FROM_PTR (use_p);
|
611 |
|
|
|
612 |
|
|
if (TREE_CODE (use) == SSA_NAME)
|
613 |
|
|
{
|
614 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (use);
|
615 |
|
|
int v = rdg_vertex_for_stmt (rdg, def_stmt);
|
616 |
|
|
|
617 |
|
|
if (v >= 0
|
618 |
|
|
&& !already_processed_vertex_p (processed, v))
|
619 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
620 |
|
|
processed, part_has_writes);
|
621 |
|
|
}
|
622 |
|
|
}
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
if (is_gimple_assign (stmt) && has_upstream_mem_writes (u))
|
626 |
|
|
{
|
627 |
|
|
tree op0 = gimple_assign_lhs (stmt);
|
628 |
|
|
|
629 |
|
|
/* Scalar channels don't have enough space for transmitting data
|
630 |
|
|
between tasks, unless we add more storage by privatizing. */
|
631 |
|
|
if (is_gimple_reg (op0))
|
632 |
|
|
{
|
633 |
|
|
use_operand_p use_p;
|
634 |
|
|
imm_use_iterator iter;
|
635 |
|
|
|
636 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, op0)
|
637 |
|
|
{
|
638 |
|
|
int v = rdg_vertex_for_stmt (rdg, USE_STMT (use_p));
|
639 |
|
|
|
640 |
|
|
if (!already_processed_vertex_p (processed, v))
|
641 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops,
|
642 |
|
|
processed, part_has_writes);
|
643 |
|
|
}
|
644 |
|
|
}
|
645 |
|
|
}
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
/* Flag V from RDG as part of PARTITION, and also flag its loop number
|
649 |
|
|
in LOOPS. */
|
650 |
|
|
|
651 |
|
|
static void
|
652 |
|
|
rdg_flag_vertex (struct graph *rdg, int v, bitmap partition, bitmap loops,
|
653 |
|
|
bool *part_has_writes)
|
654 |
|
|
{
|
655 |
|
|
struct loop *loop;
|
656 |
|
|
|
657 |
|
|
if (bitmap_bit_p (partition, v))
|
658 |
|
|
return;
|
659 |
|
|
|
660 |
|
|
loop = loop_containing_stmt (RDG_STMT (rdg, v));
|
661 |
|
|
bitmap_set_bit (loops, loop->num);
|
662 |
|
|
bitmap_set_bit (partition, v);
|
663 |
|
|
|
664 |
|
|
if (rdg_cannot_recompute_vertex_p (rdg, v))
|
665 |
|
|
{
|
666 |
|
|
*part_has_writes = true;
|
667 |
|
|
bitmap_clear_bit (remaining_stmts, v);
|
668 |
|
|
}
|
669 |
|
|
}
|
670 |
|
|
|
671 |
|
|
/* Flag in the bitmap PARTITION the vertex V and all its predecessors.
|
672 |
|
|
Also flag their loop number in LOOPS. */
|
673 |
|
|
|
674 |
|
|
static void
|
675 |
|
|
rdg_flag_vertex_and_dependent (struct graph *rdg, int v, bitmap partition,
|
676 |
|
|
bitmap loops, bitmap processed,
|
677 |
|
|
bool *part_has_writes)
|
678 |
|
|
{
|
679 |
|
|
unsigned i;
|
680 |
|
|
VEC (int, heap) *nodes = VEC_alloc (int, heap, 3);
|
681 |
|
|
int x;
|
682 |
|
|
|
683 |
|
|
bitmap_set_bit (processed, v);
|
684 |
|
|
rdg_flag_uses (rdg, v, partition, loops, processed, part_has_writes);
|
685 |
|
|
graphds_dfs (rdg, &v, 1, &nodes, false, remaining_stmts);
|
686 |
|
|
rdg_flag_vertex (rdg, v, partition, loops, part_has_writes);
|
687 |
|
|
|
688 |
|
|
for (i = 0; VEC_iterate (int, nodes, i, x); i++)
|
689 |
|
|
if (!already_processed_vertex_p (processed, x))
|
690 |
|
|
rdg_flag_vertex_and_dependent (rdg, x, partition, loops, processed,
|
691 |
|
|
part_has_writes);
|
692 |
|
|
|
693 |
|
|
VEC_free (int, heap, nodes);
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
/* Initialize CONDS with all the condition statements from the basic
|
697 |
|
|
blocks of LOOP. */
|
698 |
|
|
|
699 |
|
|
static void
|
700 |
|
|
collect_condition_stmts (struct loop *loop, VEC (gimple, heap) **conds)
|
701 |
|
|
{
|
702 |
|
|
unsigned i;
|
703 |
|
|
edge e;
|
704 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
705 |
|
|
|
706 |
|
|
for (i = 0; VEC_iterate (edge, exits, i, e); i++)
|
707 |
|
|
{
|
708 |
|
|
gimple cond = last_stmt (e->src);
|
709 |
|
|
|
710 |
|
|
if (cond)
|
711 |
|
|
VEC_safe_push (gimple, heap, *conds, cond);
|
712 |
|
|
}
|
713 |
|
|
|
714 |
|
|
VEC_free (edge, heap, exits);
|
715 |
|
|
}
|
716 |
|
|
|
717 |
|
|
/* Add to PARTITION all the exit condition statements for LOOPS
|
718 |
|
|
together with all their dependent statements determined from
|
719 |
|
|
RDG. */
|
720 |
|
|
|
721 |
|
|
static void
|
722 |
|
|
rdg_flag_loop_exits (struct graph *rdg, bitmap loops, bitmap partition,
|
723 |
|
|
bitmap processed, bool *part_has_writes)
|
724 |
|
|
{
|
725 |
|
|
unsigned i;
|
726 |
|
|
bitmap_iterator bi;
|
727 |
|
|
VEC (gimple, heap) *conds = VEC_alloc (gimple, heap, 3);
|
728 |
|
|
|
729 |
|
|
EXECUTE_IF_SET_IN_BITMAP (loops, 0, i, bi)
|
730 |
|
|
collect_condition_stmts (get_loop (i), &conds);
|
731 |
|
|
|
732 |
|
|
while (!VEC_empty (gimple, conds))
|
733 |
|
|
{
|
734 |
|
|
gimple cond = VEC_pop (gimple, conds);
|
735 |
|
|
int v = rdg_vertex_for_stmt (rdg, cond);
|
736 |
|
|
bitmap new_loops = BITMAP_ALLOC (NULL);
|
737 |
|
|
|
738 |
|
|
if (!already_processed_vertex_p (processed, v))
|
739 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, new_loops, processed,
|
740 |
|
|
part_has_writes);
|
741 |
|
|
|
742 |
|
|
EXECUTE_IF_SET_IN_BITMAP (new_loops, 0, i, bi)
|
743 |
|
|
if (!bitmap_bit_p (loops, i))
|
744 |
|
|
{
|
745 |
|
|
bitmap_set_bit (loops, i);
|
746 |
|
|
collect_condition_stmts (get_loop (i), &conds);
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
BITMAP_FREE (new_loops);
|
750 |
|
|
}
|
751 |
|
|
}
|
752 |
|
|
|
753 |
|
|
/* Flag all the nodes of RDG containing memory accesses that could
|
754 |
|
|
potentially belong to arrays already accessed in the current
|
755 |
|
|
PARTITION. */
|
756 |
|
|
|
757 |
|
|
static void
|
758 |
|
|
rdg_flag_similar_memory_accesses (struct graph *rdg, bitmap partition,
|
759 |
|
|
bitmap loops, bitmap processed,
|
760 |
|
|
VEC (int, heap) **other_stores)
|
761 |
|
|
{
|
762 |
|
|
bool foo;
|
763 |
|
|
unsigned i, n;
|
764 |
|
|
int j, k, kk;
|
765 |
|
|
bitmap_iterator ii;
|
766 |
|
|
struct graph_edge *e;
|
767 |
|
|
|
768 |
|
|
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
|
769 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, i)
|
770 |
|
|
|| RDG_MEM_READS_STMT (rdg, i))
|
771 |
|
|
{
|
772 |
|
|
for (j = 0; j < rdg->n_vertices; j++)
|
773 |
|
|
if (!bitmap_bit_p (processed, j)
|
774 |
|
|
&& (RDG_MEM_WRITE_STMT (rdg, j)
|
775 |
|
|
|| RDG_MEM_READS_STMT (rdg, j))
|
776 |
|
|
&& rdg_has_similar_memory_accesses (rdg, i, j))
|
777 |
|
|
{
|
778 |
|
|
/* Flag first the node J itself, and all the nodes that
|
779 |
|
|
are needed to compute J. */
|
780 |
|
|
rdg_flag_vertex_and_dependent (rdg, j, partition, loops,
|
781 |
|
|
processed, &foo);
|
782 |
|
|
|
783 |
|
|
/* When J is a read, we want to coalesce in the same
|
784 |
|
|
PARTITION all the nodes that are using J: this is
|
785 |
|
|
needed for better cache locality. */
|
786 |
|
|
rdg_flag_all_uses (rdg, j, partition, loops, processed, &foo);
|
787 |
|
|
|
788 |
|
|
/* Remove from OTHER_STORES the vertex that we flagged. */
|
789 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, j))
|
790 |
|
|
for (k = 0; VEC_iterate (int, *other_stores, k, kk); k++)
|
791 |
|
|
if (kk == j)
|
792 |
|
|
{
|
793 |
|
|
VEC_unordered_remove (int, *other_stores, k);
|
794 |
|
|
break;
|
795 |
|
|
}
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
/* If the node I has two uses, then keep these together in the
|
799 |
|
|
same PARTITION. */
|
800 |
|
|
for (n = 0, e = rdg->vertices[i].succ; e; e = e->succ_next, n++);
|
801 |
|
|
|
802 |
|
|
if (n > 1)
|
803 |
|
|
rdg_flag_all_uses (rdg, i, partition, loops, processed, &foo);
|
804 |
|
|
}
|
805 |
|
|
}
|
806 |
|
|
|
807 |
|
|
/* Returns a bitmap in which all the statements needed for computing
|
808 |
|
|
the strongly connected component C of the RDG are flagged, also
|
809 |
|
|
including the loop exit conditions. */
|
810 |
|
|
|
811 |
|
|
static bitmap
|
812 |
|
|
build_rdg_partition_for_component (struct graph *rdg, rdgc c,
|
813 |
|
|
bool *part_has_writes,
|
814 |
|
|
VEC (int, heap) **other_stores)
|
815 |
|
|
{
|
816 |
|
|
int i, v;
|
817 |
|
|
bitmap partition = BITMAP_ALLOC (NULL);
|
818 |
|
|
bitmap loops = BITMAP_ALLOC (NULL);
|
819 |
|
|
bitmap processed = BITMAP_ALLOC (NULL);
|
820 |
|
|
|
821 |
|
|
for (i = 0; VEC_iterate (int, c->vertices, i, v); i++)
|
822 |
|
|
if (!already_processed_vertex_p (processed, v))
|
823 |
|
|
rdg_flag_vertex_and_dependent (rdg, v, partition, loops, processed,
|
824 |
|
|
part_has_writes);
|
825 |
|
|
|
826 |
|
|
/* Also iterate on the array of stores not in the starting vertices,
|
827 |
|
|
and determine those vertices that have some memory affinity with
|
828 |
|
|
the current nodes in the component: these are stores to the same
|
829 |
|
|
arrays, i.e. we're taking care of cache locality. */
|
830 |
|
|
rdg_flag_similar_memory_accesses (rdg, partition, loops, processed,
|
831 |
|
|
other_stores);
|
832 |
|
|
|
833 |
|
|
rdg_flag_loop_exits (rdg, loops, partition, processed, part_has_writes);
|
834 |
|
|
|
835 |
|
|
BITMAP_FREE (processed);
|
836 |
|
|
BITMAP_FREE (loops);
|
837 |
|
|
return partition;
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
/* Free memory for COMPONENTS. */
|
841 |
|
|
|
842 |
|
|
static void
|
843 |
|
|
free_rdg_components (VEC (rdgc, heap) *components)
|
844 |
|
|
{
|
845 |
|
|
int i;
|
846 |
|
|
rdgc x;
|
847 |
|
|
|
848 |
|
|
for (i = 0; VEC_iterate (rdgc, components, i, x); i++)
|
849 |
|
|
{
|
850 |
|
|
VEC_free (int, heap, x->vertices);
|
851 |
|
|
free (x);
|
852 |
|
|
}
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
/* Build the COMPONENTS vector with the strongly connected components
|
856 |
|
|
of RDG in which the STARTING_VERTICES occur. */
|
857 |
|
|
|
858 |
|
|
static void
|
859 |
|
|
rdg_build_components (struct graph *rdg, VEC (int, heap) *starting_vertices,
|
860 |
|
|
VEC (rdgc, heap) **components)
|
861 |
|
|
{
|
862 |
|
|
int i, v;
|
863 |
|
|
bitmap saved_components = BITMAP_ALLOC (NULL);
|
864 |
|
|
int n_components = graphds_scc (rdg, NULL);
|
865 |
|
|
VEC (int, heap) **all_components = XNEWVEC (VEC (int, heap) *, n_components);
|
866 |
|
|
|
867 |
|
|
for (i = 0; i < n_components; i++)
|
868 |
|
|
all_components[i] = VEC_alloc (int, heap, 3);
|
869 |
|
|
|
870 |
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
871 |
|
|
VEC_safe_push (int, heap, all_components[rdg->vertices[i].component], i);
|
872 |
|
|
|
873 |
|
|
for (i = 0; VEC_iterate (int, starting_vertices, i, v); i++)
|
874 |
|
|
{
|
875 |
|
|
int c = rdg->vertices[v].component;
|
876 |
|
|
|
877 |
|
|
if (!bitmap_bit_p (saved_components, c))
|
878 |
|
|
{
|
879 |
|
|
rdgc x = XCNEW (struct rdg_component);
|
880 |
|
|
x->num = c;
|
881 |
|
|
x->vertices = all_components[c];
|
882 |
|
|
|
883 |
|
|
VEC_safe_push (rdgc, heap, *components, x);
|
884 |
|
|
bitmap_set_bit (saved_components, c);
|
885 |
|
|
}
|
886 |
|
|
}
|
887 |
|
|
|
888 |
|
|
for (i = 0; i < n_components; i++)
|
889 |
|
|
if (!bitmap_bit_p (saved_components, i))
|
890 |
|
|
VEC_free (int, heap, all_components[i]);
|
891 |
|
|
|
892 |
|
|
free (all_components);
|
893 |
|
|
BITMAP_FREE (saved_components);
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
/* Aggregate several components into a useful partition that is
|
897 |
|
|
registered in the PARTITIONS vector. Partitions will be
|
898 |
|
|
distributed in different loops. */
|
899 |
|
|
|
900 |
|
|
static void
|
901 |
|
|
rdg_build_partitions (struct graph *rdg, VEC (rdgc, heap) *components,
|
902 |
|
|
VEC (int, heap) **other_stores,
|
903 |
|
|
VEC (bitmap, heap) **partitions, bitmap processed)
|
904 |
|
|
{
|
905 |
|
|
int i;
|
906 |
|
|
rdgc x;
|
907 |
|
|
bitmap partition = BITMAP_ALLOC (NULL);
|
908 |
|
|
|
909 |
|
|
for (i = 0; VEC_iterate (rdgc, components, i, x); i++)
|
910 |
|
|
{
|
911 |
|
|
bitmap np;
|
912 |
|
|
bool part_has_writes = false;
|
913 |
|
|
int v = VEC_index (int, x->vertices, 0);
|
914 |
|
|
|
915 |
|
|
if (bitmap_bit_p (processed, v))
|
916 |
|
|
continue;
|
917 |
|
|
|
918 |
|
|
np = build_rdg_partition_for_component (rdg, x, &part_has_writes,
|
919 |
|
|
other_stores);
|
920 |
|
|
bitmap_ior_into (partition, np);
|
921 |
|
|
bitmap_ior_into (processed, np);
|
922 |
|
|
BITMAP_FREE (np);
|
923 |
|
|
|
924 |
|
|
if (part_has_writes)
|
925 |
|
|
{
|
926 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
927 |
|
|
{
|
928 |
|
|
fprintf (dump_file, "ldist useful partition:\n");
|
929 |
|
|
dump_bitmap (dump_file, partition);
|
930 |
|
|
}
|
931 |
|
|
|
932 |
|
|
VEC_safe_push (bitmap, heap, *partitions, partition);
|
933 |
|
|
partition = BITMAP_ALLOC (NULL);
|
934 |
|
|
}
|
935 |
|
|
}
|
936 |
|
|
|
937 |
|
|
/* Add the nodes from the RDG that were not marked as processed, and
|
938 |
|
|
that are used outside the current loop. These are scalar
|
939 |
|
|
computations that are not yet part of previous partitions. */
|
940 |
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
941 |
|
|
if (!bitmap_bit_p (processed, i)
|
942 |
|
|
&& rdg_defs_used_in_other_loops_p (rdg, i))
|
943 |
|
|
VEC_safe_push (int, heap, *other_stores, i);
|
944 |
|
|
|
945 |
|
|
/* If there are still statements left in the OTHER_STORES array,
|
946 |
|
|
create other components and partitions with these stores and
|
947 |
|
|
their dependences. */
|
948 |
|
|
if (VEC_length (int, *other_stores) > 0)
|
949 |
|
|
{
|
950 |
|
|
VEC (rdgc, heap) *comps = VEC_alloc (rdgc, heap, 3);
|
951 |
|
|
VEC (int, heap) *foo = VEC_alloc (int, heap, 3);
|
952 |
|
|
|
953 |
|
|
rdg_build_components (rdg, *other_stores, &comps);
|
954 |
|
|
rdg_build_partitions (rdg, comps, &foo, partitions, processed);
|
955 |
|
|
|
956 |
|
|
VEC_free (int, heap, foo);
|
957 |
|
|
free_rdg_components (comps);
|
958 |
|
|
}
|
959 |
|
|
|
960 |
|
|
/* If there is something left in the last partition, save it. */
|
961 |
|
|
if (bitmap_count_bits (partition) > 0)
|
962 |
|
|
VEC_safe_push (bitmap, heap, *partitions, partition);
|
963 |
|
|
else
|
964 |
|
|
BITMAP_FREE (partition);
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
/* Dump to FILE the PARTITIONS. */
|
968 |
|
|
|
969 |
|
|
static void
|
970 |
|
|
dump_rdg_partitions (FILE *file, VEC (bitmap, heap) *partitions)
|
971 |
|
|
{
|
972 |
|
|
int i;
|
973 |
|
|
bitmap partition;
|
974 |
|
|
|
975 |
|
|
for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
|
976 |
|
|
debug_bitmap_file (file, partition);
|
977 |
|
|
}
|
978 |
|
|
|
979 |
|
|
/* Debug PARTITIONS. */
|
980 |
|
|
extern void debug_rdg_partitions (VEC (bitmap, heap) *);
|
981 |
|
|
|
982 |
|
|
void
|
983 |
|
|
debug_rdg_partitions (VEC (bitmap, heap) *partitions)
|
984 |
|
|
{
|
985 |
|
|
dump_rdg_partitions (stderr, partitions);
|
986 |
|
|
}
|
987 |
|
|
|
988 |
|
|
/* Returns the number of read and write operations in the RDG. */
|
989 |
|
|
|
990 |
|
|
static int
|
991 |
|
|
number_of_rw_in_rdg (struct graph *rdg)
|
992 |
|
|
{
|
993 |
|
|
int i, res = 0;
|
994 |
|
|
|
995 |
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
996 |
|
|
{
|
997 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
998 |
|
|
++res;
|
999 |
|
|
|
1000 |
|
|
if (RDG_MEM_READS_STMT (rdg, i))
|
1001 |
|
|
++res;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
|
|
return res;
|
1005 |
|
|
}
|
1006 |
|
|
|
1007 |
|
|
/* Returns the number of read and write operations in a PARTITION of
|
1008 |
|
|
the RDG. */
|
1009 |
|
|
|
1010 |
|
|
static int
|
1011 |
|
|
number_of_rw_in_partition (struct graph *rdg, bitmap partition)
|
1012 |
|
|
{
|
1013 |
|
|
int res = 0;
|
1014 |
|
|
unsigned i;
|
1015 |
|
|
bitmap_iterator ii;
|
1016 |
|
|
|
1017 |
|
|
EXECUTE_IF_SET_IN_BITMAP (partition, 0, i, ii)
|
1018 |
|
|
{
|
1019 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
1020 |
|
|
++res;
|
1021 |
|
|
|
1022 |
|
|
if (RDG_MEM_READS_STMT (rdg, i))
|
1023 |
|
|
++res;
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
return res;
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
/* Returns true when one of the PARTITIONS contains all the read or
|
1030 |
|
|
write operations of RDG. */
|
1031 |
|
|
|
1032 |
|
|
static bool
|
1033 |
|
|
partition_contains_all_rw (struct graph *rdg, VEC (bitmap, heap) *partitions)
|
1034 |
|
|
{
|
1035 |
|
|
int i;
|
1036 |
|
|
bitmap partition;
|
1037 |
|
|
int nrw = number_of_rw_in_rdg (rdg);
|
1038 |
|
|
|
1039 |
|
|
for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
|
1040 |
|
|
if (nrw == number_of_rw_in_partition (rdg, partition))
|
1041 |
|
|
return true;
|
1042 |
|
|
|
1043 |
|
|
return false;
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
/* Generate code from STARTING_VERTICES in RDG. Returns the number of
|
1047 |
|
|
distributed loops. */
|
1048 |
|
|
|
1049 |
|
|
static int
|
1050 |
|
|
ldist_gen (struct loop *loop, struct graph *rdg,
|
1051 |
|
|
VEC (int, heap) *starting_vertices)
|
1052 |
|
|
{
|
1053 |
|
|
int i, nbp;
|
1054 |
|
|
VEC (rdgc, heap) *components = VEC_alloc (rdgc, heap, 3);
|
1055 |
|
|
VEC (bitmap, heap) *partitions = VEC_alloc (bitmap, heap, 3);
|
1056 |
|
|
VEC (int, heap) *other_stores = VEC_alloc (int, heap, 3);
|
1057 |
|
|
bitmap partition, processed = BITMAP_ALLOC (NULL);
|
1058 |
|
|
|
1059 |
|
|
remaining_stmts = BITMAP_ALLOC (NULL);
|
1060 |
|
|
upstream_mem_writes = BITMAP_ALLOC (NULL);
|
1061 |
|
|
|
1062 |
|
|
for (i = 0; i < rdg->n_vertices; i++)
|
1063 |
|
|
{
|
1064 |
|
|
bitmap_set_bit (remaining_stmts, i);
|
1065 |
|
|
|
1066 |
|
|
/* Save in OTHER_STORES all the memory writes that are not in
|
1067 |
|
|
STARTING_VERTICES. */
|
1068 |
|
|
if (RDG_MEM_WRITE_STMT (rdg, i))
|
1069 |
|
|
{
|
1070 |
|
|
int v;
|
1071 |
|
|
unsigned j;
|
1072 |
|
|
bool found = false;
|
1073 |
|
|
|
1074 |
|
|
for (j = 0; VEC_iterate (int, starting_vertices, j, v); j++)
|
1075 |
|
|
if (i == v)
|
1076 |
|
|
{
|
1077 |
|
|
found = true;
|
1078 |
|
|
break;
|
1079 |
|
|
}
|
1080 |
|
|
|
1081 |
|
|
if (!found)
|
1082 |
|
|
VEC_safe_push (int, heap, other_stores, i);
|
1083 |
|
|
}
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
mark_nodes_having_upstream_mem_writes (rdg);
|
1087 |
|
|
rdg_build_components (rdg, starting_vertices, &components);
|
1088 |
|
|
rdg_build_partitions (rdg, components, &other_stores, &partitions,
|
1089 |
|
|
processed);
|
1090 |
|
|
BITMAP_FREE (processed);
|
1091 |
|
|
nbp = VEC_length (bitmap, partitions);
|
1092 |
|
|
|
1093 |
|
|
if (nbp <= 1
|
1094 |
|
|
|| partition_contains_all_rw (rdg, partitions))
|
1095 |
|
|
goto ldist_done;
|
1096 |
|
|
|
1097 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1098 |
|
|
dump_rdg_partitions (dump_file, partitions);
|
1099 |
|
|
|
1100 |
|
|
for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
|
1101 |
|
|
if (!generate_code_for_partition (loop, partition, i < nbp - 1))
|
1102 |
|
|
goto ldist_done;
|
1103 |
|
|
|
1104 |
|
|
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
|
1105 |
|
|
update_ssa (TODO_update_ssa_only_virtuals | TODO_update_ssa);
|
1106 |
|
|
|
1107 |
|
|
ldist_done:
|
1108 |
|
|
|
1109 |
|
|
BITMAP_FREE (remaining_stmts);
|
1110 |
|
|
BITMAP_FREE (upstream_mem_writes);
|
1111 |
|
|
|
1112 |
|
|
for (i = 0; VEC_iterate (bitmap, partitions, i, partition); i++)
|
1113 |
|
|
BITMAP_FREE (partition);
|
1114 |
|
|
|
1115 |
|
|
VEC_free (int, heap, other_stores);
|
1116 |
|
|
VEC_free (bitmap, heap, partitions);
|
1117 |
|
|
free_rdg_components (components);
|
1118 |
|
|
return nbp;
|
1119 |
|
|
}
|
1120 |
|
|
|
1121 |
|
|
/* Distributes the code from LOOP in such a way that producer
|
1122 |
|
|
statements are placed before consumer statements. When STMTS is
|
1123 |
|
|
NULL, performs the maximal distribution, if STMTS is not NULL,
|
1124 |
|
|
tries to separate only these statements from the LOOP's body.
|
1125 |
|
|
Returns the number of distributed loops. */
|
1126 |
|
|
|
1127 |
|
|
static int
|
1128 |
|
|
distribute_loop (struct loop *loop, VEC (gimple, heap) *stmts)
|
1129 |
|
|
{
|
1130 |
|
|
int res = 0;
|
1131 |
|
|
struct graph *rdg;
|
1132 |
|
|
gimple s;
|
1133 |
|
|
unsigned i;
|
1134 |
|
|
VEC (int, heap) *vertices;
|
1135 |
|
|
|
1136 |
|
|
if (loop->num_nodes > 2)
|
1137 |
|
|
{
|
1138 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1139 |
|
|
fprintf (dump_file,
|
1140 |
|
|
"FIXME: Loop %d not distributed: it has more than two basic blocks.\n",
|
1141 |
|
|
loop->num);
|
1142 |
|
|
|
1143 |
|
|
return res;
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
rdg = build_rdg (loop);
|
1147 |
|
|
|
1148 |
|
|
if (!rdg)
|
1149 |
|
|
{
|
1150 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1151 |
|
|
fprintf (dump_file,
|
1152 |
|
|
"FIXME: Loop %d not distributed: failed to build the RDG.\n",
|
1153 |
|
|
loop->num);
|
1154 |
|
|
|
1155 |
|
|
return res;
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
vertices = VEC_alloc (int, heap, 3);
|
1159 |
|
|
|
1160 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1161 |
|
|
dump_rdg (dump_file, rdg);
|
1162 |
|
|
|
1163 |
|
|
for (i = 0; VEC_iterate (gimple, stmts, i, s); i++)
|
1164 |
|
|
{
|
1165 |
|
|
int v = rdg_vertex_for_stmt (rdg, s);
|
1166 |
|
|
|
1167 |
|
|
if (v >= 0)
|
1168 |
|
|
{
|
1169 |
|
|
VEC_safe_push (int, heap, vertices, v);
|
1170 |
|
|
|
1171 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1172 |
|
|
fprintf (dump_file,
|
1173 |
|
|
"ldist asked to generate code for vertex %d\n", v);
|
1174 |
|
|
}
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
res = ldist_gen (loop, rdg, vertices);
|
1178 |
|
|
VEC_free (int, heap, vertices);
|
1179 |
|
|
free_rdg (rdg);
|
1180 |
|
|
|
1181 |
|
|
return res;
|
1182 |
|
|
}
|
1183 |
|
|
|
1184 |
|
|
/* Distribute all loops in the current function. */
|
1185 |
|
|
|
1186 |
|
|
static unsigned int
|
1187 |
|
|
tree_loop_distribution (void)
|
1188 |
|
|
{
|
1189 |
|
|
struct loop *loop;
|
1190 |
|
|
loop_iterator li;
|
1191 |
|
|
int nb_generated_loops = 0;
|
1192 |
|
|
|
1193 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
1194 |
|
|
{
|
1195 |
|
|
VEC (gimple, heap) *work_list = VEC_alloc (gimple, heap, 3);
|
1196 |
|
|
|
1197 |
|
|
/* With the following working list, we're asking distribute_loop
|
1198 |
|
|
to separate the stores of the loop: when dependences allow,
|
1199 |
|
|
it will end on having one store per loop. */
|
1200 |
|
|
stores_from_loop (loop, &work_list);
|
1201 |
|
|
|
1202 |
|
|
/* A simple heuristic for cache locality is to not split stores
|
1203 |
|
|
to the same array. Without this call, an unrolled loop would
|
1204 |
|
|
be split into as many loops as unroll factor, each loop
|
1205 |
|
|
storing in the same array. */
|
1206 |
|
|
remove_similar_memory_refs (&work_list);
|
1207 |
|
|
|
1208 |
|
|
nb_generated_loops = distribute_loop (loop, work_list);
|
1209 |
|
|
|
1210 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1211 |
|
|
{
|
1212 |
|
|
if (nb_generated_loops > 1)
|
1213 |
|
|
fprintf (dump_file, "Loop %d distributed: split to %d loops.\n",
|
1214 |
|
|
loop->num, nb_generated_loops);
|
1215 |
|
|
else
|
1216 |
|
|
fprintf (dump_file, "Loop %d is the same.\n", loop->num);
|
1217 |
|
|
}
|
1218 |
|
|
|
1219 |
|
|
verify_loop_structure ();
|
1220 |
|
|
|
1221 |
|
|
VEC_free (gimple, heap, work_list);
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
return 0;
|
1225 |
|
|
}
|
1226 |
|
|
|
1227 |
|
|
static bool
|
1228 |
|
|
gate_tree_loop_distribution (void)
|
1229 |
|
|
{
|
1230 |
|
|
return flag_tree_loop_distribution != 0;
|
1231 |
|
|
}
|
1232 |
|
|
|
1233 |
|
|
struct gimple_opt_pass pass_loop_distribution =
|
1234 |
|
|
{
|
1235 |
|
|
{
|
1236 |
|
|
GIMPLE_PASS,
|
1237 |
|
|
"ldist", /* name */
|
1238 |
|
|
gate_tree_loop_distribution, /* gate */
|
1239 |
|
|
tree_loop_distribution, /* execute */
|
1240 |
|
|
NULL, /* sub */
|
1241 |
|
|
NULL, /* next */
|
1242 |
|
|
0, /* static_pass_number */
|
1243 |
|
|
TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
|
1244 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
1245 |
|
|
0, /* properties_provided */
|
1246 |
|
|
0, /* properties_destroyed */
|
1247 |
|
|
0, /* todo_flags_start */
|
1248 |
|
|
TODO_dump_func | TODO_verify_loops /* todo_flags_finish */
|
1249 |
|
|
}
|
1250 |
|
|
};
|