| 1 |
280 |
jeremybenn |
/* Loop autoparallelization.
|
| 2 |
|
|
Copyright (C) 2006, 2007, 2008, 2009, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
Contributed by Sebastian Pop <pop@cri.ensmp.fr> and
|
| 5 |
|
|
Zdenek Dvorak <dvorakz@suse.cz>.
|
| 6 |
|
|
|
| 7 |
|
|
This file is part of GCC.
|
| 8 |
|
|
|
| 9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 10 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 12 |
|
|
version.
|
| 13 |
|
|
|
| 14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 17 |
|
|
for more details.
|
| 18 |
|
|
|
| 19 |
|
|
You should have received a copy of the GNU General Public License
|
| 20 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 21 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 22 |
|
|
|
| 23 |
|
|
#include "config.h"
|
| 24 |
|
|
#include "system.h"
|
| 25 |
|
|
#include "coretypes.h"
|
| 26 |
|
|
#include "tm.h"
|
| 27 |
|
|
#include "tree.h"
|
| 28 |
|
|
#include "rtl.h"
|
| 29 |
|
|
#include "tree-flow.h"
|
| 30 |
|
|
#include "cfgloop.h"
|
| 31 |
|
|
#include "ggc.h"
|
| 32 |
|
|
#include "tree-data-ref.h"
|
| 33 |
|
|
#include "diagnostic.h"
|
| 34 |
|
|
#include "tree-pass.h"
|
| 35 |
|
|
#include "tree-scalar-evolution.h"
|
| 36 |
|
|
#include "hashtab.h"
|
| 37 |
|
|
#include "langhooks.h"
|
| 38 |
|
|
#include "tree-vectorizer.h"
|
| 39 |
|
|
|
| 40 |
|
|
/* This pass tries to distribute iterations of loops into several threads.
|
| 41 |
|
|
The implementation is straightforward -- for each loop we test whether its
|
| 42 |
|
|
iterations are independent, and if it is the case (and some additional
|
| 43 |
|
|
conditions regarding profitability and correctness are satisfied), we
|
| 44 |
|
|
add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
|
| 45 |
|
|
machinery do its job.
|
| 46 |
|
|
|
| 47 |
|
|
The most of the complexity is in bringing the code into shape expected
|
| 48 |
|
|
by the omp expanders:
|
| 49 |
|
|
-- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
|
| 50 |
|
|
variable and that the exit test is at the start of the loop body
|
| 51 |
|
|
-- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
|
| 52 |
|
|
variables by accesses through pointers, and breaking up ssa chains
|
| 53 |
|
|
by storing the values incoming to the parallelized loop to a structure
|
| 54 |
|
|
passed to the new function as an argument (something similar is done
|
| 55 |
|
|
in omp gimplification, unfortunately only a small part of the code
|
| 56 |
|
|
can be shared).
|
| 57 |
|
|
|
| 58 |
|
|
TODO:
|
| 59 |
|
|
-- if there are several parallelizable loops in a function, it may be
|
| 60 |
|
|
possible to generate the threads just once (using synchronization to
|
| 61 |
|
|
ensure that cross-loop dependences are obeyed).
|
| 62 |
|
|
-- handling of common scalar dependence patterns (accumulation, ...)
|
| 63 |
|
|
-- handling of non-innermost loops */
|
| 64 |
|
|
|
| 65 |
|
|
/*
|
| 66 |
|
|
Reduction handling:
|
| 67 |
|
|
currently we use vect_is_simple_reduction() to detect reduction patterns.
|
| 68 |
|
|
The code transformation will be introduced by an example.
|
| 69 |
|
|
|
| 70 |
|
|
|
| 71 |
|
|
parloop
|
| 72 |
|
|
{
|
| 73 |
|
|
int sum=1;
|
| 74 |
|
|
|
| 75 |
|
|
for (i = 0; i < N; i++)
|
| 76 |
|
|
{
|
| 77 |
|
|
x[i] = i + 3;
|
| 78 |
|
|
sum+=x[i];
|
| 79 |
|
|
}
|
| 80 |
|
|
}
|
| 81 |
|
|
|
| 82 |
|
|
gimple-like code:
|
| 83 |
|
|
header_bb:
|
| 84 |
|
|
|
| 85 |
|
|
# sum_29 = PHI <sum_11(5), 1(3)>
|
| 86 |
|
|
# i_28 = PHI <i_12(5), 0(3)>
|
| 87 |
|
|
D.1795_8 = i_28 + 3;
|
| 88 |
|
|
x[i_28] = D.1795_8;
|
| 89 |
|
|
sum_11 = D.1795_8 + sum_29;
|
| 90 |
|
|
i_12 = i_28 + 1;
|
| 91 |
|
|
if (N_6(D) > i_12)
|
| 92 |
|
|
goto header_bb;
|
| 93 |
|
|
|
| 94 |
|
|
|
| 95 |
|
|
exit_bb:
|
| 96 |
|
|
|
| 97 |
|
|
# sum_21 = PHI <sum_11(4)>
|
| 98 |
|
|
printf (&"%d"[0], sum_21);
|
| 99 |
|
|
|
| 100 |
|
|
|
| 101 |
|
|
after reduction transformation (only relevant parts):
|
| 102 |
|
|
|
| 103 |
|
|
parloop
|
| 104 |
|
|
{
|
| 105 |
|
|
|
| 106 |
|
|
....
|
| 107 |
|
|
|
| 108 |
|
|
|
| 109 |
|
|
# Storing the initial value given by the user. #
|
| 110 |
|
|
|
| 111 |
|
|
.paral_data_store.32.sum.27 = 1;
|
| 112 |
|
|
|
| 113 |
|
|
#pragma omp parallel num_threads(4)
|
| 114 |
|
|
|
| 115 |
|
|
#pragma omp for schedule(static)
|
| 116 |
|
|
|
| 117 |
|
|
# The neutral element corresponding to the particular
|
| 118 |
|
|
reduction's operation, e.g. 0 for PLUS_EXPR,
|
| 119 |
|
|
1 for MULT_EXPR, etc. replaces the user's initial value. #
|
| 120 |
|
|
|
| 121 |
|
|
# sum.27_29 = PHI <sum.27_11, 0>
|
| 122 |
|
|
|
| 123 |
|
|
sum.27_11 = D.1827_8 + sum.27_29;
|
| 124 |
|
|
|
| 125 |
|
|
GIMPLE_OMP_CONTINUE
|
| 126 |
|
|
|
| 127 |
|
|
# Adding this reduction phi is done at create_phi_for_local_result() #
|
| 128 |
|
|
# sum.27_56 = PHI <sum.27_11, 0>
|
| 129 |
|
|
GIMPLE_OMP_RETURN
|
| 130 |
|
|
|
| 131 |
|
|
# Creating the atomic operation is done at
|
| 132 |
|
|
create_call_for_reduction_1() #
|
| 133 |
|
|
|
| 134 |
|
|
#pragma omp atomic_load
|
| 135 |
|
|
D.1839_59 = *&.paral_data_load.33_51->reduction.23;
|
| 136 |
|
|
D.1840_60 = sum.27_56 + D.1839_59;
|
| 137 |
|
|
#pragma omp atomic_store (D.1840_60);
|
| 138 |
|
|
|
| 139 |
|
|
GIMPLE_OMP_RETURN
|
| 140 |
|
|
|
| 141 |
|
|
# collecting the result after the join of the threads is done at
|
| 142 |
|
|
create_loads_for_reductions().
|
| 143 |
|
|
The value computed by the threads is loaded from the
|
| 144 |
|
|
shared struct. #
|
| 145 |
|
|
|
| 146 |
|
|
|
| 147 |
|
|
.paral_data_load.33_52 = &.paral_data_store.32;
|
| 148 |
|
|
sum_37 = .paral_data_load.33_52->sum.27;
|
| 149 |
|
|
sum_43 = D.1795_41 + sum_37;
|
| 150 |
|
|
|
| 151 |
|
|
exit bb:
|
| 152 |
|
|
# sum_21 = PHI <sum_43, sum_26>
|
| 153 |
|
|
printf (&"%d"[0], sum_21);
|
| 154 |
|
|
|
| 155 |
|
|
...
|
| 156 |
|
|
|
| 157 |
|
|
}
|
| 158 |
|
|
|
| 159 |
|
|
*/
|
| 160 |
|
|
|
| 161 |
|
|
/* Minimal number of iterations of a loop that should be executed in each
|
| 162 |
|
|
thread. */
|
| 163 |
|
|
#define MIN_PER_THREAD 100
|
| 164 |
|
|
|
| 165 |
|
|
/* Element of the hashtable, representing a
|
| 166 |
|
|
reduction in the current loop. */
|
| 167 |
|
|
struct reduction_info
|
| 168 |
|
|
{
|
| 169 |
|
|
gimple reduc_stmt; /* reduction statement. */
|
| 170 |
|
|
gimple reduc_phi; /* The phi node defining the reduction. */
|
| 171 |
|
|
enum tree_code reduction_code;/* code for the reduction operation. */
|
| 172 |
|
|
gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
|
| 173 |
|
|
of the reduction variable when existing the loop. */
|
| 174 |
|
|
tree initial_value; /* The initial value of the reduction var before entering the loop. */
|
| 175 |
|
|
tree field; /* the name of the field in the parloop data structure intended for reduction. */
|
| 176 |
|
|
tree init; /* reduction initialization value. */
|
| 177 |
|
|
gimple new_phi; /* (helper field) Newly created phi node whose result
|
| 178 |
|
|
will be passed to the atomic operation. Represents
|
| 179 |
|
|
the local result each thread computed for the reduction
|
| 180 |
|
|
operation. */
|
| 181 |
|
|
};
|
| 182 |
|
|
|
| 183 |
|
|
/* Equality and hash functions for hashtab code. */
|
| 184 |
|
|
|
| 185 |
|
|
static int
|
| 186 |
|
|
reduction_info_eq (const void *aa, const void *bb)
|
| 187 |
|
|
{
|
| 188 |
|
|
const struct reduction_info *a = (const struct reduction_info *) aa;
|
| 189 |
|
|
const struct reduction_info *b = (const struct reduction_info *) bb;
|
| 190 |
|
|
|
| 191 |
|
|
return (a->reduc_phi == b->reduc_phi);
|
| 192 |
|
|
}
|
| 193 |
|
|
|
| 194 |
|
|
static hashval_t
|
| 195 |
|
|
reduction_info_hash (const void *aa)
|
| 196 |
|
|
{
|
| 197 |
|
|
const struct reduction_info *a = (const struct reduction_info *) aa;
|
| 198 |
|
|
|
| 199 |
|
|
return htab_hash_pointer (a->reduc_phi);
|
| 200 |
|
|
}
|
| 201 |
|
|
|
| 202 |
|
|
static struct reduction_info *
|
| 203 |
|
|
reduction_phi (htab_t reduction_list, gimple phi)
|
| 204 |
|
|
{
|
| 205 |
|
|
struct reduction_info tmpred, *red;
|
| 206 |
|
|
|
| 207 |
|
|
if (htab_elements (reduction_list) == 0)
|
| 208 |
|
|
return NULL;
|
| 209 |
|
|
|
| 210 |
|
|
tmpred.reduc_phi = phi;
|
| 211 |
|
|
red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
|
| 212 |
|
|
|
| 213 |
|
|
return red;
|
| 214 |
|
|
}
|
| 215 |
|
|
|
| 216 |
|
|
/* Element of hashtable of names to copy. */
|
| 217 |
|
|
|
| 218 |
|
|
struct name_to_copy_elt
|
| 219 |
|
|
{
|
| 220 |
|
|
unsigned version; /* The version of the name to copy. */
|
| 221 |
|
|
tree new_name; /* The new name used in the copy. */
|
| 222 |
|
|
tree field; /* The field of the structure used to pass the
|
| 223 |
|
|
value. */
|
| 224 |
|
|
};
|
| 225 |
|
|
|
| 226 |
|
|
/* Equality and hash functions for hashtab code. */
|
| 227 |
|
|
|
| 228 |
|
|
static int
|
| 229 |
|
|
name_to_copy_elt_eq (const void *aa, const void *bb)
|
| 230 |
|
|
{
|
| 231 |
|
|
const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
|
| 232 |
|
|
const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
|
| 233 |
|
|
|
| 234 |
|
|
return a->version == b->version;
|
| 235 |
|
|
}
|
| 236 |
|
|
|
| 237 |
|
|
static hashval_t
|
| 238 |
|
|
name_to_copy_elt_hash (const void *aa)
|
| 239 |
|
|
{
|
| 240 |
|
|
const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
|
| 241 |
|
|
|
| 242 |
|
|
return (hashval_t) a->version;
|
| 243 |
|
|
}
|
| 244 |
|
|
|
| 245 |
|
|
|
| 246 |
|
|
/* Data dependency analysis. Returns true if the iterations of LOOP
|
| 247 |
|
|
are independent on each other (that is, if we can execute them
|
| 248 |
|
|
in parallel). */
|
| 249 |
|
|
|
| 250 |
|
|
static bool
|
| 251 |
|
|
loop_parallel_p (struct loop *loop)
|
| 252 |
|
|
{
|
| 253 |
|
|
VEC (ddr_p, heap) * dependence_relations;
|
| 254 |
|
|
VEC (data_reference_p, heap) *datarefs;
|
| 255 |
|
|
lambda_trans_matrix trans;
|
| 256 |
|
|
bool ret = false;
|
| 257 |
|
|
|
| 258 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 259 |
|
|
{
|
| 260 |
|
|
fprintf (dump_file, "Considering loop %d\n", loop->num);
|
| 261 |
|
|
if (!loop->inner)
|
| 262 |
|
|
fprintf (dump_file, "loop is innermost\n");
|
| 263 |
|
|
else
|
| 264 |
|
|
fprintf (dump_file, "loop NOT innermost\n");
|
| 265 |
|
|
}
|
| 266 |
|
|
|
| 267 |
|
|
/* Check for problems with dependences. If the loop can be reversed,
|
| 268 |
|
|
the iterations are independent. */
|
| 269 |
|
|
datarefs = VEC_alloc (data_reference_p, heap, 10);
|
| 270 |
|
|
dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
|
| 271 |
|
|
compute_data_dependences_for_loop (loop, true, &datarefs,
|
| 272 |
|
|
&dependence_relations);
|
| 273 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 274 |
|
|
dump_data_dependence_relations (dump_file, dependence_relations);
|
| 275 |
|
|
|
| 276 |
|
|
trans = lambda_trans_matrix_new (1, 1);
|
| 277 |
|
|
LTM_MATRIX (trans)[0][0] = -1;
|
| 278 |
|
|
|
| 279 |
|
|
if (lambda_transform_legal_p (trans, 1, dependence_relations))
|
| 280 |
|
|
{
|
| 281 |
|
|
ret = true;
|
| 282 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 283 |
|
|
fprintf (dump_file, " SUCCESS: may be parallelized\n");
|
| 284 |
|
|
}
|
| 285 |
|
|
else if (dump_file && (dump_flags & TDF_DETAILS))
|
| 286 |
|
|
fprintf (dump_file,
|
| 287 |
|
|
" FAILED: data dependencies exist across iterations\n");
|
| 288 |
|
|
|
| 289 |
|
|
free_dependence_relations (dependence_relations);
|
| 290 |
|
|
free_data_refs (datarefs);
|
| 291 |
|
|
|
| 292 |
|
|
return ret;
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
/* Return true when LOOP contains basic blocks marked with the
|
| 296 |
|
|
BB_IRREDUCIBLE_LOOP flag. */
|
| 297 |
|
|
|
| 298 |
|
|
static inline bool
|
| 299 |
|
|
loop_has_blocks_with_irreducible_flag (struct loop *loop)
|
| 300 |
|
|
{
|
| 301 |
|
|
unsigned i;
|
| 302 |
|
|
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
| 303 |
|
|
bool res = true;
|
| 304 |
|
|
|
| 305 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 306 |
|
|
if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
|
| 307 |
|
|
goto end;
|
| 308 |
|
|
|
| 309 |
|
|
res = false;
|
| 310 |
|
|
end:
|
| 311 |
|
|
free (bbs);
|
| 312 |
|
|
return res;
|
| 313 |
|
|
}
|
| 314 |
|
|
|
| 315 |
|
|
/* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
|
| 316 |
|
|
The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
|
| 317 |
|
|
to their addresses that can be reused. The address of OBJ is known to
|
| 318 |
|
|
be invariant in the whole function. */
|
| 319 |
|
|
|
| 320 |
|
|
static tree
|
| 321 |
|
|
take_address_of (tree obj, tree type, edge entry, htab_t decl_address)
|
| 322 |
|
|
{
|
| 323 |
|
|
int uid;
|
| 324 |
|
|
void **dslot;
|
| 325 |
|
|
struct int_tree_map ielt, *nielt;
|
| 326 |
|
|
tree *var_p, name, bvar, addr;
|
| 327 |
|
|
gimple stmt;
|
| 328 |
|
|
gimple_seq stmts;
|
| 329 |
|
|
|
| 330 |
|
|
/* Since the address of OBJ is invariant, the trees may be shared.
|
| 331 |
|
|
Avoid rewriting unrelated parts of the code. */
|
| 332 |
|
|
obj = unshare_expr (obj);
|
| 333 |
|
|
for (var_p = &obj;
|
| 334 |
|
|
handled_component_p (*var_p);
|
| 335 |
|
|
var_p = &TREE_OPERAND (*var_p, 0))
|
| 336 |
|
|
continue;
|
| 337 |
|
|
uid = DECL_UID (*var_p);
|
| 338 |
|
|
|
| 339 |
|
|
ielt.uid = uid;
|
| 340 |
|
|
dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
|
| 341 |
|
|
if (!*dslot)
|
| 342 |
|
|
{
|
| 343 |
|
|
addr = build_addr (*var_p, current_function_decl);
|
| 344 |
|
|
bvar = create_tmp_var (TREE_TYPE (addr), get_name (*var_p));
|
| 345 |
|
|
add_referenced_var (bvar);
|
| 346 |
|
|
stmt = gimple_build_assign (bvar, addr);
|
| 347 |
|
|
name = make_ssa_name (bvar, stmt);
|
| 348 |
|
|
gimple_assign_set_lhs (stmt, name);
|
| 349 |
|
|
gsi_insert_on_edge_immediate (entry, stmt);
|
| 350 |
|
|
|
| 351 |
|
|
nielt = XNEW (struct int_tree_map);
|
| 352 |
|
|
nielt->uid = uid;
|
| 353 |
|
|
nielt->to = name;
|
| 354 |
|
|
*dslot = nielt;
|
| 355 |
|
|
}
|
| 356 |
|
|
else
|
| 357 |
|
|
name = ((struct int_tree_map *) *dslot)->to;
|
| 358 |
|
|
|
| 359 |
|
|
if (var_p != &obj)
|
| 360 |
|
|
{
|
| 361 |
|
|
*var_p = build1 (INDIRECT_REF, TREE_TYPE (*var_p), name);
|
| 362 |
|
|
name = force_gimple_operand (build_addr (obj, current_function_decl),
|
| 363 |
|
|
&stmts, true, NULL_TREE);
|
| 364 |
|
|
if (!gimple_seq_empty_p (stmts))
|
| 365 |
|
|
gsi_insert_seq_on_edge_immediate (entry, stmts);
|
| 366 |
|
|
}
|
| 367 |
|
|
|
| 368 |
|
|
if (TREE_TYPE (name) != type)
|
| 369 |
|
|
{
|
| 370 |
|
|
name = force_gimple_operand (fold_convert (type, name), &stmts, true,
|
| 371 |
|
|
NULL_TREE);
|
| 372 |
|
|
if (!gimple_seq_empty_p (stmts))
|
| 373 |
|
|
gsi_insert_seq_on_edge_immediate (entry, stmts);
|
| 374 |
|
|
}
|
| 375 |
|
|
|
| 376 |
|
|
return name;
|
| 377 |
|
|
}
|
| 378 |
|
|
|
| 379 |
|
|
/* Callback for htab_traverse. Create the initialization statement
|
| 380 |
|
|
for reduction described in SLOT, and place it at the preheader of
|
| 381 |
|
|
the loop described in DATA. */
|
| 382 |
|
|
|
| 383 |
|
|
static int
|
| 384 |
|
|
initialize_reductions (void **slot, void *data)
|
| 385 |
|
|
{
|
| 386 |
|
|
tree init, c;
|
| 387 |
|
|
tree bvar, type, arg;
|
| 388 |
|
|
edge e;
|
| 389 |
|
|
|
| 390 |
|
|
struct reduction_info *const reduc = (struct reduction_info *) *slot;
|
| 391 |
|
|
struct loop *loop = (struct loop *) data;
|
| 392 |
|
|
|
| 393 |
|
|
/* Create initialization in preheader:
|
| 394 |
|
|
reduction_variable = initialization value of reduction. */
|
| 395 |
|
|
|
| 396 |
|
|
/* In the phi node at the header, replace the argument coming
|
| 397 |
|
|
from the preheader with the reduction initialization value. */
|
| 398 |
|
|
|
| 399 |
|
|
/* Create a new variable to initialize the reduction. */
|
| 400 |
|
|
type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
|
| 401 |
|
|
bvar = create_tmp_var (type, "reduction");
|
| 402 |
|
|
add_referenced_var (bvar);
|
| 403 |
|
|
|
| 404 |
|
|
c = build_omp_clause (gimple_location (reduc->reduc_stmt),
|
| 405 |
|
|
OMP_CLAUSE_REDUCTION);
|
| 406 |
|
|
OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
|
| 407 |
|
|
OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
|
| 408 |
|
|
|
| 409 |
|
|
init = omp_reduction_init (c, TREE_TYPE (bvar));
|
| 410 |
|
|
reduc->init = init;
|
| 411 |
|
|
|
| 412 |
|
|
/* Replace the argument representing the initialization value
|
| 413 |
|
|
with the initialization value for the reduction (neutral
|
| 414 |
|
|
element for the particular operation, e.g. 0 for PLUS_EXPR,
|
| 415 |
|
|
1 for MULT_EXPR, etc).
|
| 416 |
|
|
Keep the old value in a new variable "reduction_initial",
|
| 417 |
|
|
that will be taken in consideration after the parallel
|
| 418 |
|
|
computing is done. */
|
| 419 |
|
|
|
| 420 |
|
|
e = loop_preheader_edge (loop);
|
| 421 |
|
|
arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
|
| 422 |
|
|
/* Create new variable to hold the initial value. */
|
| 423 |
|
|
|
| 424 |
|
|
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
|
| 425 |
|
|
(reduc->reduc_phi, loop_preheader_edge (loop)), init);
|
| 426 |
|
|
reduc->initial_value = arg;
|
| 427 |
|
|
return 1;
|
| 428 |
|
|
}
|
| 429 |
|
|
|
| 430 |
|
|
struct elv_data
|
| 431 |
|
|
{
|
| 432 |
|
|
struct walk_stmt_info info;
|
| 433 |
|
|
edge entry;
|
| 434 |
|
|
htab_t decl_address;
|
| 435 |
|
|
bool changed;
|
| 436 |
|
|
};
|
| 437 |
|
|
|
| 438 |
|
|
/* Eliminates references to local variables in *TP out of the single
|
| 439 |
|
|
entry single exit region starting at DTA->ENTRY.
|
| 440 |
|
|
DECL_ADDRESS contains addresses of the references that had their
|
| 441 |
|
|
address taken already. If the expression is changed, CHANGED is
|
| 442 |
|
|
set to true. Callback for walk_tree. */
|
| 443 |
|
|
|
| 444 |
|
|
static tree
|
| 445 |
|
|
eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
|
| 446 |
|
|
{
|
| 447 |
|
|
struct elv_data *const dta = (struct elv_data *) data;
|
| 448 |
|
|
tree t = *tp, var, addr, addr_type, type, obj;
|
| 449 |
|
|
|
| 450 |
|
|
if (DECL_P (t))
|
| 451 |
|
|
{
|
| 452 |
|
|
*walk_subtrees = 0;
|
| 453 |
|
|
|
| 454 |
|
|
if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
|
| 455 |
|
|
return NULL_TREE;
|
| 456 |
|
|
|
| 457 |
|
|
type = TREE_TYPE (t);
|
| 458 |
|
|
addr_type = build_pointer_type (type);
|
| 459 |
|
|
addr = take_address_of (t, addr_type, dta->entry, dta->decl_address);
|
| 460 |
|
|
*tp = build1 (INDIRECT_REF, TREE_TYPE (*tp), addr);
|
| 461 |
|
|
|
| 462 |
|
|
dta->changed = true;
|
| 463 |
|
|
return NULL_TREE;
|
| 464 |
|
|
}
|
| 465 |
|
|
|
| 466 |
|
|
if (TREE_CODE (t) == ADDR_EXPR)
|
| 467 |
|
|
{
|
| 468 |
|
|
/* ADDR_EXPR may appear in two contexts:
|
| 469 |
|
|
-- as a gimple operand, when the address taken is a function invariant
|
| 470 |
|
|
-- as gimple rhs, when the resulting address in not a function
|
| 471 |
|
|
invariant
|
| 472 |
|
|
We do not need to do anything special in the latter case (the base of
|
| 473 |
|
|
the memory reference whose address is taken may be replaced in the
|
| 474 |
|
|
DECL_P case). The former case is more complicated, as we need to
|
| 475 |
|
|
ensure that the new address is still a gimple operand. Thus, it
|
| 476 |
|
|
is not sufficient to replace just the base of the memory reference --
|
| 477 |
|
|
we need to move the whole computation of the address out of the
|
| 478 |
|
|
loop. */
|
| 479 |
|
|
if (!is_gimple_val (t))
|
| 480 |
|
|
return NULL_TREE;
|
| 481 |
|
|
|
| 482 |
|
|
*walk_subtrees = 0;
|
| 483 |
|
|
obj = TREE_OPERAND (t, 0);
|
| 484 |
|
|
var = get_base_address (obj);
|
| 485 |
|
|
if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
|
| 486 |
|
|
return NULL_TREE;
|
| 487 |
|
|
|
| 488 |
|
|
addr_type = TREE_TYPE (t);
|
| 489 |
|
|
addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address);
|
| 490 |
|
|
*tp = addr;
|
| 491 |
|
|
|
| 492 |
|
|
dta->changed = true;
|
| 493 |
|
|
return NULL_TREE;
|
| 494 |
|
|
}
|
| 495 |
|
|
|
| 496 |
|
|
if (!EXPR_P (t))
|
| 497 |
|
|
*walk_subtrees = 0;
|
| 498 |
|
|
|
| 499 |
|
|
return NULL_TREE;
|
| 500 |
|
|
}
|
| 501 |
|
|
|
| 502 |
|
|
/* Moves the references to local variables in STMT out of the single
|
| 503 |
|
|
entry single exit region starting at ENTRY. DECL_ADDRESS contains
|
| 504 |
|
|
addresses of the references that had their address taken
|
| 505 |
|
|
already. */
|
| 506 |
|
|
|
| 507 |
|
|
static void
|
| 508 |
|
|
eliminate_local_variables_stmt (edge entry, gimple stmt,
|
| 509 |
|
|
htab_t decl_address)
|
| 510 |
|
|
{
|
| 511 |
|
|
struct elv_data dta;
|
| 512 |
|
|
|
| 513 |
|
|
memset (&dta.info, '\0', sizeof (dta.info));
|
| 514 |
|
|
dta.entry = entry;
|
| 515 |
|
|
dta.decl_address = decl_address;
|
| 516 |
|
|
dta.changed = false;
|
| 517 |
|
|
|
| 518 |
|
|
if (gimple_debug_bind_p (stmt))
|
| 519 |
|
|
walk_tree (gimple_debug_bind_get_value_ptr (stmt),
|
| 520 |
|
|
eliminate_local_variables_1, &dta.info, NULL);
|
| 521 |
|
|
else
|
| 522 |
|
|
walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
|
| 523 |
|
|
|
| 524 |
|
|
if (dta.changed)
|
| 525 |
|
|
update_stmt (stmt);
|
| 526 |
|
|
}
|
| 527 |
|
|
|
| 528 |
|
|
/* Eliminates the references to local variables from the single entry
|
| 529 |
|
|
single exit region between the ENTRY and EXIT edges.
|
| 530 |
|
|
|
| 531 |
|
|
This includes:
|
| 532 |
|
|
1) Taking address of a local variable -- these are moved out of the
|
| 533 |
|
|
region (and temporary variable is created to hold the address if
|
| 534 |
|
|
necessary).
|
| 535 |
|
|
|
| 536 |
|
|
2) Dereferencing a local variable -- these are replaced with indirect
|
| 537 |
|
|
references. */
|
| 538 |
|
|
|
| 539 |
|
|
static void
|
| 540 |
|
|
eliminate_local_variables (edge entry, edge exit)
|
| 541 |
|
|
{
|
| 542 |
|
|
basic_block bb;
|
| 543 |
|
|
VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
|
| 544 |
|
|
unsigned i;
|
| 545 |
|
|
gimple_stmt_iterator gsi;
|
| 546 |
|
|
htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
|
| 547 |
|
|
free);
|
| 548 |
|
|
basic_block entry_bb = entry->src;
|
| 549 |
|
|
basic_block exit_bb = exit->dest;
|
| 550 |
|
|
|
| 551 |
|
|
gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
|
| 552 |
|
|
|
| 553 |
|
|
for (i = 0; VEC_iterate (basic_block, body, i, bb); i++)
|
| 554 |
|
|
if (bb != entry_bb && bb != exit_bb)
|
| 555 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 556 |
|
|
eliminate_local_variables_stmt (entry, gsi_stmt (gsi),
|
| 557 |
|
|
decl_address);
|
| 558 |
|
|
|
| 559 |
|
|
htab_delete (decl_address);
|
| 560 |
|
|
VEC_free (basic_block, heap, body);
|
| 561 |
|
|
}
|
| 562 |
|
|
|
| 563 |
|
|
/* Returns true if expression EXPR is not defined between ENTRY and
|
| 564 |
|
|
EXIT, i.e. if all its operands are defined outside of the region. */
|
| 565 |
|
|
|
| 566 |
|
|
static bool
|
| 567 |
|
|
expr_invariant_in_region_p (edge entry, edge exit, tree expr)
|
| 568 |
|
|
{
|
| 569 |
|
|
basic_block entry_bb = entry->src;
|
| 570 |
|
|
basic_block exit_bb = exit->dest;
|
| 571 |
|
|
basic_block def_bb;
|
| 572 |
|
|
|
| 573 |
|
|
if (is_gimple_min_invariant (expr))
|
| 574 |
|
|
return true;
|
| 575 |
|
|
|
| 576 |
|
|
if (TREE_CODE (expr) == SSA_NAME)
|
| 577 |
|
|
{
|
| 578 |
|
|
def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
|
| 579 |
|
|
if (def_bb
|
| 580 |
|
|
&& dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
|
| 581 |
|
|
&& !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
|
| 582 |
|
|
return false;
|
| 583 |
|
|
|
| 584 |
|
|
return true;
|
| 585 |
|
|
}
|
| 586 |
|
|
|
| 587 |
|
|
return false;
|
| 588 |
|
|
}
|
| 589 |
|
|
|
| 590 |
|
|
/* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
|
| 591 |
|
|
The copies are stored to NAME_COPIES, if NAME was already duplicated,
|
| 592 |
|
|
its duplicate stored in NAME_COPIES is returned.
|
| 593 |
|
|
|
| 594 |
|
|
Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
|
| 595 |
|
|
duplicated, storing the copies in DECL_COPIES. */
|
| 596 |
|
|
|
| 597 |
|
|
static tree
|
| 598 |
|
|
separate_decls_in_region_name (tree name,
|
| 599 |
|
|
htab_t name_copies, htab_t decl_copies,
|
| 600 |
|
|
bool copy_name_p)
|
| 601 |
|
|
{
|
| 602 |
|
|
tree copy, var, var_copy;
|
| 603 |
|
|
unsigned idx, uid, nuid;
|
| 604 |
|
|
struct int_tree_map ielt, *nielt;
|
| 605 |
|
|
struct name_to_copy_elt elt, *nelt;
|
| 606 |
|
|
void **slot, **dslot;
|
| 607 |
|
|
|
| 608 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
| 609 |
|
|
return name;
|
| 610 |
|
|
|
| 611 |
|
|
idx = SSA_NAME_VERSION (name);
|
| 612 |
|
|
elt.version = idx;
|
| 613 |
|
|
slot = htab_find_slot_with_hash (name_copies, &elt, idx,
|
| 614 |
|
|
copy_name_p ? INSERT : NO_INSERT);
|
| 615 |
|
|
if (slot && *slot)
|
| 616 |
|
|
return ((struct name_to_copy_elt *) *slot)->new_name;
|
| 617 |
|
|
|
| 618 |
|
|
var = SSA_NAME_VAR (name);
|
| 619 |
|
|
uid = DECL_UID (var);
|
| 620 |
|
|
ielt.uid = uid;
|
| 621 |
|
|
dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
|
| 622 |
|
|
if (!*dslot)
|
| 623 |
|
|
{
|
| 624 |
|
|
var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
|
| 625 |
|
|
DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
|
| 626 |
|
|
add_referenced_var (var_copy);
|
| 627 |
|
|
nielt = XNEW (struct int_tree_map);
|
| 628 |
|
|
nielt->uid = uid;
|
| 629 |
|
|
nielt->to = var_copy;
|
| 630 |
|
|
*dslot = nielt;
|
| 631 |
|
|
|
| 632 |
|
|
/* Ensure that when we meet this decl next time, we won't duplicate
|
| 633 |
|
|
it again. */
|
| 634 |
|
|
nuid = DECL_UID (var_copy);
|
| 635 |
|
|
ielt.uid = nuid;
|
| 636 |
|
|
dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
|
| 637 |
|
|
gcc_assert (!*dslot);
|
| 638 |
|
|
nielt = XNEW (struct int_tree_map);
|
| 639 |
|
|
nielt->uid = nuid;
|
| 640 |
|
|
nielt->to = var_copy;
|
| 641 |
|
|
*dslot = nielt;
|
| 642 |
|
|
}
|
| 643 |
|
|
else
|
| 644 |
|
|
var_copy = ((struct int_tree_map *) *dslot)->to;
|
| 645 |
|
|
|
| 646 |
|
|
if (copy_name_p)
|
| 647 |
|
|
{
|
| 648 |
|
|
copy = duplicate_ssa_name (name, NULL);
|
| 649 |
|
|
nelt = XNEW (struct name_to_copy_elt);
|
| 650 |
|
|
nelt->version = idx;
|
| 651 |
|
|
nelt->new_name = copy;
|
| 652 |
|
|
nelt->field = NULL_TREE;
|
| 653 |
|
|
*slot = nelt;
|
| 654 |
|
|
}
|
| 655 |
|
|
else
|
| 656 |
|
|
{
|
| 657 |
|
|
gcc_assert (!slot);
|
| 658 |
|
|
copy = name;
|
| 659 |
|
|
}
|
| 660 |
|
|
|
| 661 |
|
|
SSA_NAME_VAR (copy) = var_copy;
|
| 662 |
|
|
return copy;
|
| 663 |
|
|
}
|
| 664 |
|
|
|
| 665 |
|
|
/* Finds the ssa names used in STMT that are defined outside the
|
| 666 |
|
|
region between ENTRY and EXIT and replaces such ssa names with
|
| 667 |
|
|
their duplicates. The duplicates are stored to NAME_COPIES. Base
|
| 668 |
|
|
decls of all ssa names used in STMT (including those defined in
|
| 669 |
|
|
LOOP) are replaced with the new temporary variables; the
|
| 670 |
|
|
replacement decls are stored in DECL_COPIES. */
|
| 671 |
|
|
|
| 672 |
|
|
static void
|
| 673 |
|
|
separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
|
| 674 |
|
|
htab_t name_copies, htab_t decl_copies)
|
| 675 |
|
|
{
|
| 676 |
|
|
use_operand_p use;
|
| 677 |
|
|
def_operand_p def;
|
| 678 |
|
|
ssa_op_iter oi;
|
| 679 |
|
|
tree name, copy;
|
| 680 |
|
|
bool copy_name_p;
|
| 681 |
|
|
|
| 682 |
|
|
mark_virtual_ops_for_renaming (stmt);
|
| 683 |
|
|
|
| 684 |
|
|
FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
|
| 685 |
|
|
{
|
| 686 |
|
|
name = DEF_FROM_PTR (def);
|
| 687 |
|
|
gcc_assert (TREE_CODE (name) == SSA_NAME);
|
| 688 |
|
|
copy = separate_decls_in_region_name (name, name_copies, decl_copies,
|
| 689 |
|
|
false);
|
| 690 |
|
|
gcc_assert (copy == name);
|
| 691 |
|
|
}
|
| 692 |
|
|
|
| 693 |
|
|
FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
|
| 694 |
|
|
{
|
| 695 |
|
|
name = USE_FROM_PTR (use);
|
| 696 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
| 697 |
|
|
continue;
|
| 698 |
|
|
|
| 699 |
|
|
copy_name_p = expr_invariant_in_region_p (entry, exit, name);
|
| 700 |
|
|
copy = separate_decls_in_region_name (name, name_copies, decl_copies,
|
| 701 |
|
|
copy_name_p);
|
| 702 |
|
|
SET_USE (use, copy);
|
| 703 |
|
|
}
|
| 704 |
|
|
}
|
| 705 |
|
|
|
| 706 |
|
|
/* Finds the ssa names used in STMT that are defined outside the
|
| 707 |
|
|
region between ENTRY and EXIT and replaces such ssa names with
|
| 708 |
|
|
their duplicates. The duplicates are stored to NAME_COPIES. Base
|
| 709 |
|
|
decls of all ssa names used in STMT (including those defined in
|
| 710 |
|
|
LOOP) are replaced with the new temporary variables; the
|
| 711 |
|
|
replacement decls are stored in DECL_COPIES. */
|
| 712 |
|
|
|
| 713 |
|
|
static bool
|
| 714 |
|
|
separate_decls_in_region_debug_bind (gimple stmt,
|
| 715 |
|
|
htab_t name_copies, htab_t decl_copies)
|
| 716 |
|
|
{
|
| 717 |
|
|
use_operand_p use;
|
| 718 |
|
|
ssa_op_iter oi;
|
| 719 |
|
|
tree var, name;
|
| 720 |
|
|
struct int_tree_map ielt;
|
| 721 |
|
|
struct name_to_copy_elt elt;
|
| 722 |
|
|
void **slot, **dslot;
|
| 723 |
|
|
|
| 724 |
|
|
var = gimple_debug_bind_get_var (stmt);
|
| 725 |
|
|
if (TREE_CODE (var) == DEBUG_EXPR_DECL)
|
| 726 |
|
|
return true;
|
| 727 |
|
|
gcc_assert (DECL_P (var) && SSA_VAR_P (var));
|
| 728 |
|
|
ielt.uid = DECL_UID (var);
|
| 729 |
|
|
dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
|
| 730 |
|
|
if (!dslot)
|
| 731 |
|
|
return true;
|
| 732 |
|
|
gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
|
| 733 |
|
|
|
| 734 |
|
|
FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
|
| 735 |
|
|
{
|
| 736 |
|
|
name = USE_FROM_PTR (use);
|
| 737 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
| 738 |
|
|
continue;
|
| 739 |
|
|
|
| 740 |
|
|
elt.version = SSA_NAME_VERSION (name);
|
| 741 |
|
|
slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
|
| 742 |
|
|
if (!slot)
|
| 743 |
|
|
{
|
| 744 |
|
|
gimple_debug_bind_reset_value (stmt);
|
| 745 |
|
|
update_stmt (stmt);
|
| 746 |
|
|
break;
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
|
| 750 |
|
|
}
|
| 751 |
|
|
|
| 752 |
|
|
return false;
|
| 753 |
|
|
}
|
| 754 |
|
|
|
| 755 |
|
|
/* Callback for htab_traverse. Adds a field corresponding to the reduction
|
| 756 |
|
|
specified in SLOT. The type is passed in DATA. */
|
| 757 |
|
|
|
| 758 |
|
|
static int
|
| 759 |
|
|
add_field_for_reduction (void **slot, void *data)
|
| 760 |
|
|
{
|
| 761 |
|
|
|
| 762 |
|
|
struct reduction_info *const red = (struct reduction_info *) *slot;
|
| 763 |
|
|
tree const type = (tree) data;
|
| 764 |
|
|
tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
|
| 765 |
|
|
tree field = build_decl (gimple_location (red->reduc_stmt),
|
| 766 |
|
|
FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
|
| 767 |
|
|
|
| 768 |
|
|
insert_field_into_struct (type, field);
|
| 769 |
|
|
|
| 770 |
|
|
red->field = field;
|
| 771 |
|
|
|
| 772 |
|
|
return 1;
|
| 773 |
|
|
}
|
| 774 |
|
|
|
| 775 |
|
|
/* Callback for htab_traverse. Adds a field corresponding to a ssa name
|
| 776 |
|
|
described in SLOT. The type is passed in DATA. */
|
| 777 |
|
|
|
| 778 |
|
|
static int
|
| 779 |
|
|
add_field_for_name (void **slot, void *data)
|
| 780 |
|
|
{
|
| 781 |
|
|
struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
|
| 782 |
|
|
tree type = (tree) data;
|
| 783 |
|
|
tree name = ssa_name (elt->version);
|
| 784 |
|
|
tree var = SSA_NAME_VAR (name);
|
| 785 |
|
|
tree field = build_decl (DECL_SOURCE_LOCATION (var),
|
| 786 |
|
|
FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
|
| 787 |
|
|
|
| 788 |
|
|
insert_field_into_struct (type, field);
|
| 789 |
|
|
elt->field = field;
|
| 790 |
|
|
|
| 791 |
|
|
return 1;
|
| 792 |
|
|
}
|
| 793 |
|
|
|
| 794 |
|
|
/* Callback for htab_traverse. A local result is the intermediate result
|
| 795 |
|
|
computed by a single
|
| 796 |
|
|
thread, or the initial value in case no iteration was executed.
|
| 797 |
|
|
This function creates a phi node reflecting these values.
|
| 798 |
|
|
The phi's result will be stored in NEW_PHI field of the
|
| 799 |
|
|
reduction's data structure. */
|
| 800 |
|
|
|
| 801 |
|
|
static int
|
| 802 |
|
|
create_phi_for_local_result (void **slot, void *data)
|
| 803 |
|
|
{
|
| 804 |
|
|
struct reduction_info *const reduc = (struct reduction_info *) *slot;
|
| 805 |
|
|
const struct loop *const loop = (const struct loop *) data;
|
| 806 |
|
|
edge e;
|
| 807 |
|
|
gimple new_phi;
|
| 808 |
|
|
basic_block store_bb;
|
| 809 |
|
|
tree local_res;
|
| 810 |
|
|
source_location locus;
|
| 811 |
|
|
|
| 812 |
|
|
/* STORE_BB is the block where the phi
|
| 813 |
|
|
should be stored. It is the destination of the loop exit.
|
| 814 |
|
|
(Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
|
| 815 |
|
|
store_bb = FALLTHRU_EDGE (loop->latch)->dest;
|
| 816 |
|
|
|
| 817 |
|
|
/* STORE_BB has two predecessors. One coming from the loop
|
| 818 |
|
|
(the reduction's result is computed at the loop),
|
| 819 |
|
|
and another coming from a block preceding the loop,
|
| 820 |
|
|
when no iterations
|
| 821 |
|
|
are executed (the initial value should be taken). */
|
| 822 |
|
|
if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
|
| 823 |
|
|
e = EDGE_PRED (store_bb, 1);
|
| 824 |
|
|
else
|
| 825 |
|
|
e = EDGE_PRED (store_bb, 0);
|
| 826 |
|
|
local_res
|
| 827 |
|
|
= make_ssa_name (SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)),
|
| 828 |
|
|
NULL);
|
| 829 |
|
|
locus = gimple_location (reduc->reduc_stmt);
|
| 830 |
|
|
new_phi = create_phi_node (local_res, store_bb);
|
| 831 |
|
|
SSA_NAME_DEF_STMT (local_res) = new_phi;
|
| 832 |
|
|
add_phi_arg (new_phi, reduc->init, e, locus);
|
| 833 |
|
|
add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
|
| 834 |
|
|
FALLTHRU_EDGE (loop->latch), locus);
|
| 835 |
|
|
reduc->new_phi = new_phi;
|
| 836 |
|
|
|
| 837 |
|
|
return 1;
|
| 838 |
|
|
}
|
| 839 |
|
|
|
| 840 |
|
|
struct clsn_data
|
| 841 |
|
|
{
|
| 842 |
|
|
tree store;
|
| 843 |
|
|
tree load;
|
| 844 |
|
|
|
| 845 |
|
|
basic_block store_bb;
|
| 846 |
|
|
basic_block load_bb;
|
| 847 |
|
|
};
|
| 848 |
|
|
|
| 849 |
|
|
/* Callback for htab_traverse. Create an atomic instruction for the
|
| 850 |
|
|
reduction described in SLOT.
|
| 851 |
|
|
DATA annotates the place in memory the atomic operation relates to,
|
| 852 |
|
|
and the basic block it needs to be generated in. */
|
| 853 |
|
|
|
| 854 |
|
|
static int
|
| 855 |
|
|
create_call_for_reduction_1 (void **slot, void *data)
|
| 856 |
|
|
{
|
| 857 |
|
|
struct reduction_info *const reduc = (struct reduction_info *) *slot;
|
| 858 |
|
|
struct clsn_data *const clsn_data = (struct clsn_data *) data;
|
| 859 |
|
|
gimple_stmt_iterator gsi;
|
| 860 |
|
|
tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
|
| 861 |
|
|
tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
|
| 862 |
|
|
tree load_struct;
|
| 863 |
|
|
basic_block bb;
|
| 864 |
|
|
basic_block new_bb;
|
| 865 |
|
|
edge e;
|
| 866 |
|
|
tree t, addr, ref, x;
|
| 867 |
|
|
tree tmp_load, name;
|
| 868 |
|
|
gimple load;
|
| 869 |
|
|
|
| 870 |
|
|
load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
|
| 871 |
|
|
t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
|
| 872 |
|
|
|
| 873 |
|
|
addr = build_addr (t, current_function_decl);
|
| 874 |
|
|
|
| 875 |
|
|
/* Create phi node. */
|
| 876 |
|
|
bb = clsn_data->load_bb;
|
| 877 |
|
|
|
| 878 |
|
|
e = split_block (bb, t);
|
| 879 |
|
|
new_bb = e->dest;
|
| 880 |
|
|
|
| 881 |
|
|
tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
|
| 882 |
|
|
add_referenced_var (tmp_load);
|
| 883 |
|
|
tmp_load = make_ssa_name (tmp_load, NULL);
|
| 884 |
|
|
load = gimple_build_omp_atomic_load (tmp_load, addr);
|
| 885 |
|
|
SSA_NAME_DEF_STMT (tmp_load) = load;
|
| 886 |
|
|
gsi = gsi_start_bb (new_bb);
|
| 887 |
|
|
gsi_insert_after (&gsi, load, GSI_NEW_STMT);
|
| 888 |
|
|
|
| 889 |
|
|
e = split_block (new_bb, load);
|
| 890 |
|
|
new_bb = e->dest;
|
| 891 |
|
|
gsi = gsi_start_bb (new_bb);
|
| 892 |
|
|
ref = tmp_load;
|
| 893 |
|
|
x = fold_build2 (reduc->reduction_code,
|
| 894 |
|
|
TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
|
| 895 |
|
|
PHI_RESULT (reduc->new_phi));
|
| 896 |
|
|
|
| 897 |
|
|
name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
|
| 898 |
|
|
GSI_CONTINUE_LINKING);
|
| 899 |
|
|
|
| 900 |
|
|
gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
|
| 901 |
|
|
return 1;
|
| 902 |
|
|
}
|
| 903 |
|
|
|
| 904 |
|
|
/* Create the atomic operation at the join point of the threads.
|
| 905 |
|
|
REDUCTION_LIST describes the reductions in the LOOP.
|
| 906 |
|
|
LD_ST_DATA describes the shared data structure where
|
| 907 |
|
|
shared data is stored in and loaded from. */
|
| 908 |
|
|
static void
|
| 909 |
|
|
create_call_for_reduction (struct loop *loop, htab_t reduction_list,
|
| 910 |
|
|
struct clsn_data *ld_st_data)
|
| 911 |
|
|
{
|
| 912 |
|
|
htab_traverse (reduction_list, create_phi_for_local_result, loop);
|
| 913 |
|
|
/* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
|
| 914 |
|
|
ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
|
| 915 |
|
|
htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
|
| 916 |
|
|
}
|
| 917 |
|
|
|
| 918 |
|
|
/* Callback for htab_traverse. Loads the final reduction value at the
|
| 919 |
|
|
join point of all threads, and inserts it in the right place. */
|
| 920 |
|
|
|
| 921 |
|
|
static int
|
| 922 |
|
|
create_loads_for_reductions (void **slot, void *data)
|
| 923 |
|
|
{
|
| 924 |
|
|
struct reduction_info *const red = (struct reduction_info *) *slot;
|
| 925 |
|
|
struct clsn_data *const clsn_data = (struct clsn_data *) data;
|
| 926 |
|
|
gimple stmt;
|
| 927 |
|
|
gimple_stmt_iterator gsi;
|
| 928 |
|
|
tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
|
| 929 |
|
|
tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
|
| 930 |
|
|
tree load_struct;
|
| 931 |
|
|
tree name;
|
| 932 |
|
|
tree x;
|
| 933 |
|
|
|
| 934 |
|
|
gsi = gsi_after_labels (clsn_data->load_bb);
|
| 935 |
|
|
load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
|
| 936 |
|
|
load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
|
| 937 |
|
|
NULL_TREE);
|
| 938 |
|
|
|
| 939 |
|
|
x = load_struct;
|
| 940 |
|
|
name = PHI_RESULT (red->keep_res);
|
| 941 |
|
|
stmt = gimple_build_assign (name, x);
|
| 942 |
|
|
SSA_NAME_DEF_STMT (name) = stmt;
|
| 943 |
|
|
|
| 944 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 945 |
|
|
|
| 946 |
|
|
for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
|
| 947 |
|
|
!gsi_end_p (gsi); gsi_next (&gsi))
|
| 948 |
|
|
if (gsi_stmt (gsi) == red->keep_res)
|
| 949 |
|
|
{
|
| 950 |
|
|
remove_phi_node (&gsi, false);
|
| 951 |
|
|
return 1;
|
| 952 |
|
|
}
|
| 953 |
|
|
gcc_unreachable ();
|
| 954 |
|
|
}
|
| 955 |
|
|
|
| 956 |
|
|
/* Load the reduction result that was stored in LD_ST_DATA.
|
| 957 |
|
|
REDUCTION_LIST describes the list of reductions that the
|
| 958 |
|
|
loads should be generated for. */
|
| 959 |
|
|
static void
|
| 960 |
|
|
create_final_loads_for_reduction (htab_t reduction_list,
|
| 961 |
|
|
struct clsn_data *ld_st_data)
|
| 962 |
|
|
{
|
| 963 |
|
|
gimple_stmt_iterator gsi;
|
| 964 |
|
|
tree t;
|
| 965 |
|
|
gimple stmt;
|
| 966 |
|
|
|
| 967 |
|
|
gsi = gsi_after_labels (ld_st_data->load_bb);
|
| 968 |
|
|
t = build_fold_addr_expr (ld_st_data->store);
|
| 969 |
|
|
stmt = gimple_build_assign (ld_st_data->load, t);
|
| 970 |
|
|
|
| 971 |
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
| 972 |
|
|
SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
|
| 973 |
|
|
|
| 974 |
|
|
htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
|
| 975 |
|
|
|
| 976 |
|
|
}
|
| 977 |
|
|
|
| 978 |
|
|
/* Callback for htab_traverse. Store the neutral value for the
|
| 979 |
|
|
particular reduction's operation, e.g. 0 for PLUS_EXPR,
|
| 980 |
|
|
1 for MULT_EXPR, etc. into the reduction field.
|
| 981 |
|
|
The reduction is specified in SLOT. The store information is
|
| 982 |
|
|
passed in DATA. */
|
| 983 |
|
|
|
| 984 |
|
|
static int
|
| 985 |
|
|
create_stores_for_reduction (void **slot, void *data)
|
| 986 |
|
|
{
|
| 987 |
|
|
struct reduction_info *const red = (struct reduction_info *) *slot;
|
| 988 |
|
|
struct clsn_data *const clsn_data = (struct clsn_data *) data;
|
| 989 |
|
|
tree t;
|
| 990 |
|
|
gimple stmt;
|
| 991 |
|
|
gimple_stmt_iterator gsi;
|
| 992 |
|
|
tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
|
| 993 |
|
|
|
| 994 |
|
|
gsi = gsi_last_bb (clsn_data->store_bb);
|
| 995 |
|
|
t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
|
| 996 |
|
|
stmt = gimple_build_assign (t, red->initial_value);
|
| 997 |
|
|
mark_virtual_ops_for_renaming (stmt);
|
| 998 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 999 |
|
|
|
| 1000 |
|
|
return 1;
|
| 1001 |
|
|
}
|
| 1002 |
|
|
|
| 1003 |
|
|
/* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
|
| 1004 |
|
|
store to a field of STORE in STORE_BB for the ssa name and its duplicate
|
| 1005 |
|
|
specified in SLOT. */
|
| 1006 |
|
|
|
| 1007 |
|
|
static int
|
| 1008 |
|
|
create_loads_and_stores_for_name (void **slot, void *data)
|
| 1009 |
|
|
{
|
| 1010 |
|
|
struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
|
| 1011 |
|
|
struct clsn_data *const clsn_data = (struct clsn_data *) data;
|
| 1012 |
|
|
tree t;
|
| 1013 |
|
|
gimple stmt;
|
| 1014 |
|
|
gimple_stmt_iterator gsi;
|
| 1015 |
|
|
tree type = TREE_TYPE (elt->new_name);
|
| 1016 |
|
|
tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
|
| 1017 |
|
|
tree load_struct;
|
| 1018 |
|
|
|
| 1019 |
|
|
gsi = gsi_last_bb (clsn_data->store_bb);
|
| 1020 |
|
|
t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
|
| 1021 |
|
|
stmt = gimple_build_assign (t, ssa_name (elt->version));
|
| 1022 |
|
|
mark_virtual_ops_for_renaming (stmt);
|
| 1023 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 1024 |
|
|
|
| 1025 |
|
|
gsi = gsi_last_bb (clsn_data->load_bb);
|
| 1026 |
|
|
load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
|
| 1027 |
|
|
t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
|
| 1028 |
|
|
stmt = gimple_build_assign (elt->new_name, t);
|
| 1029 |
|
|
SSA_NAME_DEF_STMT (elt->new_name) = stmt;
|
| 1030 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 1031 |
|
|
|
| 1032 |
|
|
return 1;
|
| 1033 |
|
|
}
|
| 1034 |
|
|
|
| 1035 |
|
|
/* Moves all the variables used in LOOP and defined outside of it (including
|
| 1036 |
|
|
the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
|
| 1037 |
|
|
name) to a structure created for this purpose. The code
|
| 1038 |
|
|
|
| 1039 |
|
|
while (1)
|
| 1040 |
|
|
{
|
| 1041 |
|
|
use (a);
|
| 1042 |
|
|
use (b);
|
| 1043 |
|
|
}
|
| 1044 |
|
|
|
| 1045 |
|
|
is transformed this way:
|
| 1046 |
|
|
|
| 1047 |
|
|
bb0:
|
| 1048 |
|
|
old.a = a;
|
| 1049 |
|
|
old.b = b;
|
| 1050 |
|
|
|
| 1051 |
|
|
bb1:
|
| 1052 |
|
|
a' = new->a;
|
| 1053 |
|
|
b' = new->b;
|
| 1054 |
|
|
while (1)
|
| 1055 |
|
|
{
|
| 1056 |
|
|
use (a');
|
| 1057 |
|
|
use (b');
|
| 1058 |
|
|
}
|
| 1059 |
|
|
|
| 1060 |
|
|
`old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
|
| 1061 |
|
|
pointer `new' is intentionally not initialized (the loop will be split to a
|
| 1062 |
|
|
separate function later, and `new' will be initialized from its arguments).
|
| 1063 |
|
|
LD_ST_DATA holds information about the shared data structure used to pass
|
| 1064 |
|
|
information among the threads. It is initialized here, and
|
| 1065 |
|
|
gen_parallel_loop will pass it to create_call_for_reduction that
|
| 1066 |
|
|
needs this information. REDUCTION_LIST describes the reductions
|
| 1067 |
|
|
in LOOP. */
|
| 1068 |
|
|
|
| 1069 |
|
|
static void
|
| 1070 |
|
|
separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
|
| 1071 |
|
|
tree *arg_struct, tree *new_arg_struct,
|
| 1072 |
|
|
struct clsn_data *ld_st_data)
|
| 1073 |
|
|
|
| 1074 |
|
|
{
|
| 1075 |
|
|
basic_block bb1 = split_edge (entry);
|
| 1076 |
|
|
basic_block bb0 = single_pred (bb1);
|
| 1077 |
|
|
htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
|
| 1078 |
|
|
name_to_copy_elt_eq, free);
|
| 1079 |
|
|
htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
|
| 1080 |
|
|
free);
|
| 1081 |
|
|
unsigned i;
|
| 1082 |
|
|
tree type, type_name, nvar;
|
| 1083 |
|
|
gimple_stmt_iterator gsi;
|
| 1084 |
|
|
struct clsn_data clsn_data;
|
| 1085 |
|
|
VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
|
| 1086 |
|
|
basic_block bb;
|
| 1087 |
|
|
basic_block entry_bb = bb1;
|
| 1088 |
|
|
basic_block exit_bb = exit->dest;
|
| 1089 |
|
|
bool has_debug_stmt = false;
|
| 1090 |
|
|
|
| 1091 |
|
|
entry = single_succ_edge (entry_bb);
|
| 1092 |
|
|
gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
|
| 1093 |
|
|
|
| 1094 |
|
|
for (i = 0; VEC_iterate (basic_block, body, i, bb); i++)
|
| 1095 |
|
|
{
|
| 1096 |
|
|
if (bb != entry_bb && bb != exit_bb)
|
| 1097 |
|
|
{
|
| 1098 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1099 |
|
|
separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
|
| 1100 |
|
|
name_copies, decl_copies);
|
| 1101 |
|
|
|
| 1102 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1103 |
|
|
{
|
| 1104 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 1105 |
|
|
|
| 1106 |
|
|
if (is_gimple_debug (stmt))
|
| 1107 |
|
|
has_debug_stmt = true;
|
| 1108 |
|
|
else
|
| 1109 |
|
|
separate_decls_in_region_stmt (entry, exit, stmt,
|
| 1110 |
|
|
name_copies, decl_copies);
|
| 1111 |
|
|
}
|
| 1112 |
|
|
}
|
| 1113 |
|
|
}
|
| 1114 |
|
|
|
| 1115 |
|
|
/* Now process debug bind stmts. We must not create decls while
|
| 1116 |
|
|
processing debug stmts, so we defer their processing so as to
|
| 1117 |
|
|
make sure we will have debug info for as many variables as
|
| 1118 |
|
|
possible (all of those that were dealt with in the loop above),
|
| 1119 |
|
|
and discard those for which we know there's nothing we can
|
| 1120 |
|
|
do. */
|
| 1121 |
|
|
if (has_debug_stmt)
|
| 1122 |
|
|
for (i = 0; VEC_iterate (basic_block, body, i, bb); i++)
|
| 1123 |
|
|
if (bb != entry_bb && bb != exit_bb)
|
| 1124 |
|
|
{
|
| 1125 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
|
| 1126 |
|
|
{
|
| 1127 |
|
|
gimple stmt = gsi_stmt (gsi);
|
| 1128 |
|
|
|
| 1129 |
|
|
if (gimple_debug_bind_p (stmt))
|
| 1130 |
|
|
{
|
| 1131 |
|
|
if (separate_decls_in_region_debug_bind (stmt,
|
| 1132 |
|
|
name_copies,
|
| 1133 |
|
|
decl_copies))
|
| 1134 |
|
|
{
|
| 1135 |
|
|
gsi_remove (&gsi, true);
|
| 1136 |
|
|
continue;
|
| 1137 |
|
|
}
|
| 1138 |
|
|
}
|
| 1139 |
|
|
|
| 1140 |
|
|
gsi_next (&gsi);
|
| 1141 |
|
|
}
|
| 1142 |
|
|
}
|
| 1143 |
|
|
|
| 1144 |
|
|
VEC_free (basic_block, heap, body);
|
| 1145 |
|
|
|
| 1146 |
|
|
if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
|
| 1147 |
|
|
{
|
| 1148 |
|
|
/* It may happen that there is nothing to copy (if there are only
|
| 1149 |
|
|
loop carried and external variables in the loop). */
|
| 1150 |
|
|
*arg_struct = NULL;
|
| 1151 |
|
|
*new_arg_struct = NULL;
|
| 1152 |
|
|
}
|
| 1153 |
|
|
else
|
| 1154 |
|
|
{
|
| 1155 |
|
|
/* Create the type for the structure to store the ssa names to. */
|
| 1156 |
|
|
type = lang_hooks.types.make_type (RECORD_TYPE);
|
| 1157 |
|
|
type_name = build_decl (BUILTINS_LOCATION,
|
| 1158 |
|
|
TYPE_DECL, create_tmp_var_name (".paral_data"),
|
| 1159 |
|
|
type);
|
| 1160 |
|
|
TYPE_NAME (type) = type_name;
|
| 1161 |
|
|
|
| 1162 |
|
|
htab_traverse (name_copies, add_field_for_name, type);
|
| 1163 |
|
|
if (reduction_list && htab_elements (reduction_list) > 0)
|
| 1164 |
|
|
{
|
| 1165 |
|
|
/* Create the fields for reductions. */
|
| 1166 |
|
|
htab_traverse (reduction_list, add_field_for_reduction,
|
| 1167 |
|
|
type);
|
| 1168 |
|
|
}
|
| 1169 |
|
|
layout_type (type);
|
| 1170 |
|
|
|
| 1171 |
|
|
/* Create the loads and stores. */
|
| 1172 |
|
|
*arg_struct = create_tmp_var (type, ".paral_data_store");
|
| 1173 |
|
|
add_referenced_var (*arg_struct);
|
| 1174 |
|
|
nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
|
| 1175 |
|
|
add_referenced_var (nvar);
|
| 1176 |
|
|
*new_arg_struct = make_ssa_name (nvar, NULL);
|
| 1177 |
|
|
|
| 1178 |
|
|
ld_st_data->store = *arg_struct;
|
| 1179 |
|
|
ld_st_data->load = *new_arg_struct;
|
| 1180 |
|
|
ld_st_data->store_bb = bb0;
|
| 1181 |
|
|
ld_st_data->load_bb = bb1;
|
| 1182 |
|
|
|
| 1183 |
|
|
htab_traverse (name_copies, create_loads_and_stores_for_name,
|
| 1184 |
|
|
ld_st_data);
|
| 1185 |
|
|
|
| 1186 |
|
|
/* Load the calculation from memory (after the join of the threads). */
|
| 1187 |
|
|
|
| 1188 |
|
|
if (reduction_list && htab_elements (reduction_list) > 0)
|
| 1189 |
|
|
{
|
| 1190 |
|
|
htab_traverse (reduction_list, create_stores_for_reduction,
|
| 1191 |
|
|
ld_st_data);
|
| 1192 |
|
|
clsn_data.load = make_ssa_name (nvar, NULL);
|
| 1193 |
|
|
clsn_data.load_bb = exit->dest;
|
| 1194 |
|
|
clsn_data.store = ld_st_data->store;
|
| 1195 |
|
|
create_final_loads_for_reduction (reduction_list, &clsn_data);
|
| 1196 |
|
|
}
|
| 1197 |
|
|
}
|
| 1198 |
|
|
|
| 1199 |
|
|
htab_delete (decl_copies);
|
| 1200 |
|
|
htab_delete (name_copies);
|
| 1201 |
|
|
}
|
| 1202 |
|
|
|
| 1203 |
|
|
/* Bitmap containing uids of functions created by parallelization. We cannot
|
| 1204 |
|
|
allocate it from the default obstack, as it must live across compilation
|
| 1205 |
|
|
of several functions; we make it gc allocated instead. */
|
| 1206 |
|
|
|
| 1207 |
|
|
static GTY(()) bitmap parallelized_functions;
|
| 1208 |
|
|
|
| 1209 |
|
|
/* Returns true if FN was created by create_loop_fn. */
|
| 1210 |
|
|
|
| 1211 |
|
|
static bool
|
| 1212 |
|
|
parallelized_function_p (tree fn)
|
| 1213 |
|
|
{
|
| 1214 |
|
|
if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
|
| 1215 |
|
|
return false;
|
| 1216 |
|
|
|
| 1217 |
|
|
return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
|
| 1218 |
|
|
}
|
| 1219 |
|
|
|
| 1220 |
|
|
/* Creates and returns an empty function that will receive the body of
|
| 1221 |
|
|
a parallelized loop. */
|
| 1222 |
|
|
|
| 1223 |
|
|
static tree
|
| 1224 |
|
|
create_loop_fn (void)
|
| 1225 |
|
|
{
|
| 1226 |
|
|
char buf[100];
|
| 1227 |
|
|
char *tname;
|
| 1228 |
|
|
tree decl, type, name, t;
|
| 1229 |
|
|
struct function *act_cfun = cfun;
|
| 1230 |
|
|
static unsigned loopfn_num;
|
| 1231 |
|
|
|
| 1232 |
|
|
snprintf (buf, 100, "%s.$loopfn", current_function_name ());
|
| 1233 |
|
|
ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
|
| 1234 |
|
|
clean_symbol_name (tname);
|
| 1235 |
|
|
name = get_identifier (tname);
|
| 1236 |
|
|
type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
| 1237 |
|
|
|
| 1238 |
|
|
decl = build_decl (BUILTINS_LOCATION,
|
| 1239 |
|
|
FUNCTION_DECL, name, type);
|
| 1240 |
|
|
if (!parallelized_functions)
|
| 1241 |
|
|
parallelized_functions = BITMAP_GGC_ALLOC ();
|
| 1242 |
|
|
bitmap_set_bit (parallelized_functions, DECL_UID (decl));
|
| 1243 |
|
|
|
| 1244 |
|
|
TREE_STATIC (decl) = 1;
|
| 1245 |
|
|
TREE_USED (decl) = 1;
|
| 1246 |
|
|
DECL_ARTIFICIAL (decl) = 1;
|
| 1247 |
|
|
DECL_IGNORED_P (decl) = 0;
|
| 1248 |
|
|
TREE_PUBLIC (decl) = 0;
|
| 1249 |
|
|
DECL_UNINLINABLE (decl) = 1;
|
| 1250 |
|
|
DECL_EXTERNAL (decl) = 0;
|
| 1251 |
|
|
DECL_CONTEXT (decl) = NULL_TREE;
|
| 1252 |
|
|
DECL_INITIAL (decl) = make_node (BLOCK);
|
| 1253 |
|
|
|
| 1254 |
|
|
t = build_decl (BUILTINS_LOCATION,
|
| 1255 |
|
|
RESULT_DECL, NULL_TREE, void_type_node);
|
| 1256 |
|
|
DECL_ARTIFICIAL (t) = 1;
|
| 1257 |
|
|
DECL_IGNORED_P (t) = 1;
|
| 1258 |
|
|
DECL_RESULT (decl) = t;
|
| 1259 |
|
|
|
| 1260 |
|
|
t = build_decl (BUILTINS_LOCATION,
|
| 1261 |
|
|
PARM_DECL, get_identifier (".paral_data_param"),
|
| 1262 |
|
|
ptr_type_node);
|
| 1263 |
|
|
DECL_ARTIFICIAL (t) = 1;
|
| 1264 |
|
|
DECL_ARG_TYPE (t) = ptr_type_node;
|
| 1265 |
|
|
DECL_CONTEXT (t) = decl;
|
| 1266 |
|
|
TREE_USED (t) = 1;
|
| 1267 |
|
|
DECL_ARGUMENTS (decl) = t;
|
| 1268 |
|
|
|
| 1269 |
|
|
allocate_struct_function (decl, false);
|
| 1270 |
|
|
|
| 1271 |
|
|
/* The call to allocate_struct_function clobbers CFUN, so we need to restore
|
| 1272 |
|
|
it. */
|
| 1273 |
|
|
set_cfun (act_cfun);
|
| 1274 |
|
|
|
| 1275 |
|
|
return decl;
|
| 1276 |
|
|
}
|
| 1277 |
|
|
|
| 1278 |
|
|
/* Moves the exit condition of LOOP to the beginning of its header, and
|
| 1279 |
|
|
duplicates the part of the last iteration that gets disabled to the
|
| 1280 |
|
|
exit of the loop. NIT is the number of iterations of the loop
|
| 1281 |
|
|
(used to initialize the variables in the duplicated part).
|
| 1282 |
|
|
|
| 1283 |
|
|
TODO: the common case is that latch of the loop is empty and immediately
|
| 1284 |
|
|
follows the loop exit. In this case, it would be better not to copy the
|
| 1285 |
|
|
body of the loop, but only move the entry of the loop directly before the
|
| 1286 |
|
|
exit check and increase the number of iterations of the loop by one.
|
| 1287 |
|
|
This may need some additional preconditioning in case NIT = ~0.
|
| 1288 |
|
|
REDUCTION_LIST describes the reductions in LOOP. */
|
| 1289 |
|
|
|
| 1290 |
|
|
static void
|
| 1291 |
|
|
transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
|
| 1292 |
|
|
{
|
| 1293 |
|
|
basic_block *bbs, *nbbs, ex_bb, orig_header;
|
| 1294 |
|
|
unsigned n;
|
| 1295 |
|
|
bool ok;
|
| 1296 |
|
|
edge exit = single_dom_exit (loop), hpred;
|
| 1297 |
|
|
tree control, control_name, res, t;
|
| 1298 |
|
|
gimple phi, nphi, cond_stmt, stmt, cond_nit;
|
| 1299 |
|
|
gimple_stmt_iterator gsi;
|
| 1300 |
|
|
tree nit_1;
|
| 1301 |
|
|
|
| 1302 |
|
|
split_block_after_labels (loop->header);
|
| 1303 |
|
|
orig_header = single_succ (loop->header);
|
| 1304 |
|
|
hpred = single_succ_edge (loop->header);
|
| 1305 |
|
|
|
| 1306 |
|
|
cond_stmt = last_stmt (exit->src);
|
| 1307 |
|
|
control = gimple_cond_lhs (cond_stmt);
|
| 1308 |
|
|
gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
|
| 1309 |
|
|
|
| 1310 |
|
|
/* Make sure that we have phi nodes on exit for all loop header phis
|
| 1311 |
|
|
(create_parallel_loop requires that). */
|
| 1312 |
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1313 |
|
|
{
|
| 1314 |
|
|
phi = gsi_stmt (gsi);
|
| 1315 |
|
|
res = PHI_RESULT (phi);
|
| 1316 |
|
|
t = make_ssa_name (SSA_NAME_VAR (res), phi);
|
| 1317 |
|
|
SET_PHI_RESULT (phi, t);
|
| 1318 |
|
|
nphi = create_phi_node (res, orig_header);
|
| 1319 |
|
|
SSA_NAME_DEF_STMT (res) = nphi;
|
| 1320 |
|
|
add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
|
| 1321 |
|
|
|
| 1322 |
|
|
if (res == control)
|
| 1323 |
|
|
{
|
| 1324 |
|
|
gimple_cond_set_lhs (cond_stmt, t);
|
| 1325 |
|
|
update_stmt (cond_stmt);
|
| 1326 |
|
|
control = t;
|
| 1327 |
|
|
}
|
| 1328 |
|
|
}
|
| 1329 |
|
|
bbs = get_loop_body_in_dom_order (loop);
|
| 1330 |
|
|
|
| 1331 |
|
|
for (n = 0; bbs[n] != loop->latch; n++)
|
| 1332 |
|
|
continue;
|
| 1333 |
|
|
nbbs = XNEWVEC (basic_block, n);
|
| 1334 |
|
|
ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
|
| 1335 |
|
|
bbs + 1, n, nbbs);
|
| 1336 |
|
|
gcc_assert (ok);
|
| 1337 |
|
|
free (bbs);
|
| 1338 |
|
|
ex_bb = nbbs[0];
|
| 1339 |
|
|
free (nbbs);
|
| 1340 |
|
|
|
| 1341 |
|
|
/* Other than reductions, the only gimple reg that should be copied
|
| 1342 |
|
|
out of the loop is the control variable. */
|
| 1343 |
|
|
|
| 1344 |
|
|
control_name = NULL_TREE;
|
| 1345 |
|
|
for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
|
| 1346 |
|
|
{
|
| 1347 |
|
|
phi = gsi_stmt (gsi);
|
| 1348 |
|
|
res = PHI_RESULT (phi);
|
| 1349 |
|
|
if (!is_gimple_reg (res))
|
| 1350 |
|
|
{
|
| 1351 |
|
|
gsi_next (&gsi);
|
| 1352 |
|
|
continue;
|
| 1353 |
|
|
}
|
| 1354 |
|
|
|
| 1355 |
|
|
/* Check if it is a part of reduction. If it is,
|
| 1356 |
|
|
keep the phi at the reduction's keep_res field. The
|
| 1357 |
|
|
PHI_RESULT of this phi is the resulting value of the reduction
|
| 1358 |
|
|
variable when exiting the loop. */
|
| 1359 |
|
|
|
| 1360 |
|
|
exit = single_dom_exit (loop);
|
| 1361 |
|
|
|
| 1362 |
|
|
if (htab_elements (reduction_list) > 0)
|
| 1363 |
|
|
{
|
| 1364 |
|
|
struct reduction_info *red;
|
| 1365 |
|
|
|
| 1366 |
|
|
tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
| 1367 |
|
|
red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
|
| 1368 |
|
|
if (red)
|
| 1369 |
|
|
{
|
| 1370 |
|
|
red->keep_res = phi;
|
| 1371 |
|
|
gsi_next (&gsi);
|
| 1372 |
|
|
continue;
|
| 1373 |
|
|
}
|
| 1374 |
|
|
}
|
| 1375 |
|
|
gcc_assert (control_name == NULL_TREE
|
| 1376 |
|
|
&& SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
|
| 1377 |
|
|
control_name = res;
|
| 1378 |
|
|
remove_phi_node (&gsi, false);
|
| 1379 |
|
|
}
|
| 1380 |
|
|
gcc_assert (control_name != NULL_TREE);
|
| 1381 |
|
|
|
| 1382 |
|
|
/* Initialize the control variable to number of iterations
|
| 1383 |
|
|
according to the rhs of the exit condition. */
|
| 1384 |
|
|
gsi = gsi_after_labels (ex_bb);
|
| 1385 |
|
|
cond_nit = last_stmt (exit->src);
|
| 1386 |
|
|
nit_1 = gimple_cond_rhs (cond_nit);
|
| 1387 |
|
|
nit_1 = force_gimple_operand_gsi (&gsi,
|
| 1388 |
|
|
fold_convert (TREE_TYPE (control_name), nit_1),
|
| 1389 |
|
|
false, NULL_TREE, false, GSI_SAME_STMT);
|
| 1390 |
|
|
stmt = gimple_build_assign (control_name, nit_1);
|
| 1391 |
|
|
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
|
| 1392 |
|
|
SSA_NAME_DEF_STMT (control_name) = stmt;
|
| 1393 |
|
|
}
|
| 1394 |
|
|
|
| 1395 |
|
|
/* Create the parallel constructs for LOOP as described in gen_parallel_loop.
|
| 1396 |
|
|
LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
|
| 1397 |
|
|
NEW_DATA is the variable that should be initialized from the argument
|
| 1398 |
|
|
of LOOP_FN. N_THREADS is the requested number of threads. Returns the
|
| 1399 |
|
|
basic block containing GIMPLE_OMP_PARALLEL tree. */
|
| 1400 |
|
|
|
| 1401 |
|
|
static basic_block
|
| 1402 |
|
|
create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
|
| 1403 |
|
|
tree new_data, unsigned n_threads)
|
| 1404 |
|
|
{
|
| 1405 |
|
|
gimple_stmt_iterator gsi;
|
| 1406 |
|
|
basic_block bb, paral_bb, for_bb, ex_bb;
|
| 1407 |
|
|
tree t, param;
|
| 1408 |
|
|
gimple stmt, for_stmt, phi, cond_stmt;
|
| 1409 |
|
|
tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
|
| 1410 |
|
|
edge exit, nexit, guard, end, e;
|
| 1411 |
|
|
|
| 1412 |
|
|
/* Prepare the GIMPLE_OMP_PARALLEL statement. */
|
| 1413 |
|
|
bb = loop_preheader_edge (loop)->src;
|
| 1414 |
|
|
paral_bb = single_pred (bb);
|
| 1415 |
|
|
gsi = gsi_last_bb (paral_bb);
|
| 1416 |
|
|
|
| 1417 |
|
|
t = build_omp_clause (BUILTINS_LOCATION, OMP_CLAUSE_NUM_THREADS);
|
| 1418 |
|
|
OMP_CLAUSE_NUM_THREADS_EXPR (t)
|
| 1419 |
|
|
= build_int_cst (integer_type_node, n_threads);
|
| 1420 |
|
|
stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
|
| 1421 |
|
|
|
| 1422 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 1423 |
|
|
|
| 1424 |
|
|
/* Initialize NEW_DATA. */
|
| 1425 |
|
|
if (data)
|
| 1426 |
|
|
{
|
| 1427 |
|
|
gsi = gsi_after_labels (bb);
|
| 1428 |
|
|
|
| 1429 |
|
|
param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
|
| 1430 |
|
|
stmt = gimple_build_assign (param, build_fold_addr_expr (data));
|
| 1431 |
|
|
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
| 1432 |
|
|
SSA_NAME_DEF_STMT (param) = stmt;
|
| 1433 |
|
|
|
| 1434 |
|
|
stmt = gimple_build_assign (new_data,
|
| 1435 |
|
|
fold_convert (TREE_TYPE (new_data), param));
|
| 1436 |
|
|
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
|
| 1437 |
|
|
SSA_NAME_DEF_STMT (new_data) = stmt;
|
| 1438 |
|
|
}
|
| 1439 |
|
|
|
| 1440 |
|
|
/* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
|
| 1441 |
|
|
bb = split_loop_exit_edge (single_dom_exit (loop));
|
| 1442 |
|
|
gsi = gsi_last_bb (bb);
|
| 1443 |
|
|
gsi_insert_after (&gsi, gimple_build_omp_return (false), GSI_NEW_STMT);
|
| 1444 |
|
|
|
| 1445 |
|
|
/* Extract data for GIMPLE_OMP_FOR. */
|
| 1446 |
|
|
gcc_assert (loop->header == single_dom_exit (loop)->src);
|
| 1447 |
|
|
cond_stmt = last_stmt (loop->header);
|
| 1448 |
|
|
|
| 1449 |
|
|
cvar = gimple_cond_lhs (cond_stmt);
|
| 1450 |
|
|
cvar_base = SSA_NAME_VAR (cvar);
|
| 1451 |
|
|
phi = SSA_NAME_DEF_STMT (cvar);
|
| 1452 |
|
|
cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
|
| 1453 |
|
|
initvar = make_ssa_name (cvar_base, NULL);
|
| 1454 |
|
|
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
|
| 1455 |
|
|
initvar);
|
| 1456 |
|
|
cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
|
| 1457 |
|
|
|
| 1458 |
|
|
gsi = gsi_last_bb (loop->latch);
|
| 1459 |
|
|
gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
|
| 1460 |
|
|
gsi_remove (&gsi, true);
|
| 1461 |
|
|
|
| 1462 |
|
|
/* Prepare cfg. */
|
| 1463 |
|
|
for_bb = split_edge (loop_preheader_edge (loop));
|
| 1464 |
|
|
ex_bb = split_loop_exit_edge (single_dom_exit (loop));
|
| 1465 |
|
|
extract_true_false_edges_from_block (loop->header, &nexit, &exit);
|
| 1466 |
|
|
gcc_assert (exit == single_dom_exit (loop));
|
| 1467 |
|
|
|
| 1468 |
|
|
guard = make_edge (for_bb, ex_bb, 0);
|
| 1469 |
|
|
single_succ_edge (loop->latch)->flags = 0;
|
| 1470 |
|
|
end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
|
| 1471 |
|
|
for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1472 |
|
|
{
|
| 1473 |
|
|
source_location locus;
|
| 1474 |
|
|
tree def;
|
| 1475 |
|
|
phi = gsi_stmt (gsi);
|
| 1476 |
|
|
stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
|
| 1477 |
|
|
|
| 1478 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
|
| 1479 |
|
|
locus = gimple_phi_arg_location_from_edge (stmt,
|
| 1480 |
|
|
loop_preheader_edge (loop));
|
| 1481 |
|
|
add_phi_arg (phi, def, guard, locus);
|
| 1482 |
|
|
|
| 1483 |
|
|
def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
|
| 1484 |
|
|
locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
|
| 1485 |
|
|
add_phi_arg (phi, def, end, locus);
|
| 1486 |
|
|
}
|
| 1487 |
|
|
e = redirect_edge_and_branch (exit, nexit->dest);
|
| 1488 |
|
|
PENDING_STMT (e) = NULL;
|
| 1489 |
|
|
|
| 1490 |
|
|
/* Emit GIMPLE_OMP_FOR. */
|
| 1491 |
|
|
gimple_cond_set_lhs (cond_stmt, cvar_base);
|
| 1492 |
|
|
type = TREE_TYPE (cvar);
|
| 1493 |
|
|
t = build_omp_clause (BUILTINS_LOCATION, OMP_CLAUSE_SCHEDULE);
|
| 1494 |
|
|
OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
|
| 1495 |
|
|
|
| 1496 |
|
|
for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
|
| 1497 |
|
|
gimple_omp_for_set_index (for_stmt, 0, initvar);
|
| 1498 |
|
|
gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
|
| 1499 |
|
|
gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
|
| 1500 |
|
|
gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
|
| 1501 |
|
|
gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
|
| 1502 |
|
|
cvar_base,
|
| 1503 |
|
|
build_int_cst (type, 1)));
|
| 1504 |
|
|
|
| 1505 |
|
|
gsi = gsi_last_bb (for_bb);
|
| 1506 |
|
|
gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
|
| 1507 |
|
|
SSA_NAME_DEF_STMT (initvar) = for_stmt;
|
| 1508 |
|
|
|
| 1509 |
|
|
/* Emit GIMPLE_OMP_CONTINUE. */
|
| 1510 |
|
|
gsi = gsi_last_bb (loop->latch);
|
| 1511 |
|
|
stmt = gimple_build_omp_continue (cvar_next, cvar);
|
| 1512 |
|
|
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
|
| 1513 |
|
|
SSA_NAME_DEF_STMT (cvar_next) = stmt;
|
| 1514 |
|
|
|
| 1515 |
|
|
/* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
|
| 1516 |
|
|
gsi = gsi_last_bb (ex_bb);
|
| 1517 |
|
|
gsi_insert_after (&gsi, gimple_build_omp_return (true), GSI_NEW_STMT);
|
| 1518 |
|
|
|
| 1519 |
|
|
return paral_bb;
|
| 1520 |
|
|
}
|
| 1521 |
|
|
|
| 1522 |
|
|
/* Generates code to execute the iterations of LOOP in N_THREADS
|
| 1523 |
|
|
threads in parallel.
|
| 1524 |
|
|
|
| 1525 |
|
|
NITER describes number of iterations of LOOP.
|
| 1526 |
|
|
REDUCTION_LIST describes the reductions existent in the LOOP. */
|
| 1527 |
|
|
|
| 1528 |
|
|
static void
|
| 1529 |
|
|
gen_parallel_loop (struct loop *loop, htab_t reduction_list,
|
| 1530 |
|
|
unsigned n_threads, struct tree_niter_desc *niter)
|
| 1531 |
|
|
{
|
| 1532 |
|
|
loop_iterator li;
|
| 1533 |
|
|
tree many_iterations_cond, type, nit;
|
| 1534 |
|
|
tree arg_struct, new_arg_struct;
|
| 1535 |
|
|
gimple_seq stmts;
|
| 1536 |
|
|
basic_block parallel_head;
|
| 1537 |
|
|
edge entry, exit;
|
| 1538 |
|
|
struct clsn_data clsn_data;
|
| 1539 |
|
|
unsigned prob;
|
| 1540 |
|
|
|
| 1541 |
|
|
/* From
|
| 1542 |
|
|
|
| 1543 |
|
|
---------------------------------------------------------------------
|
| 1544 |
|
|
loop
|
| 1545 |
|
|
{
|
| 1546 |
|
|
IV = phi (INIT, IV + STEP)
|
| 1547 |
|
|
BODY1;
|
| 1548 |
|
|
if (COND)
|
| 1549 |
|
|
break;
|
| 1550 |
|
|
BODY2;
|
| 1551 |
|
|
}
|
| 1552 |
|
|
---------------------------------------------------------------------
|
| 1553 |
|
|
|
| 1554 |
|
|
with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
|
| 1555 |
|
|
we generate the following code:
|
| 1556 |
|
|
|
| 1557 |
|
|
---------------------------------------------------------------------
|
| 1558 |
|
|
|
| 1559 |
|
|
if (MAY_BE_ZERO
|
| 1560 |
|
|
|| NITER < MIN_PER_THREAD * N_THREADS)
|
| 1561 |
|
|
goto original;
|
| 1562 |
|
|
|
| 1563 |
|
|
BODY1;
|
| 1564 |
|
|
store all local loop-invariant variables used in body of the loop to DATA.
|
| 1565 |
|
|
GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
|
| 1566 |
|
|
load the variables from DATA.
|
| 1567 |
|
|
GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
|
| 1568 |
|
|
BODY2;
|
| 1569 |
|
|
BODY1;
|
| 1570 |
|
|
GIMPLE_OMP_CONTINUE;
|
| 1571 |
|
|
GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
|
| 1572 |
|
|
GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
|
| 1573 |
|
|
goto end;
|
| 1574 |
|
|
|
| 1575 |
|
|
original:
|
| 1576 |
|
|
loop
|
| 1577 |
|
|
{
|
| 1578 |
|
|
IV = phi (INIT, IV + STEP)
|
| 1579 |
|
|
BODY1;
|
| 1580 |
|
|
if (COND)
|
| 1581 |
|
|
break;
|
| 1582 |
|
|
BODY2;
|
| 1583 |
|
|
}
|
| 1584 |
|
|
|
| 1585 |
|
|
end:
|
| 1586 |
|
|
|
| 1587 |
|
|
*/
|
| 1588 |
|
|
|
| 1589 |
|
|
/* Create two versions of the loop -- in the old one, we know that the
|
| 1590 |
|
|
number of iterations is large enough, and we will transform it into the
|
| 1591 |
|
|
loop that will be split to loop_fn, the new one will be used for the
|
| 1592 |
|
|
remaining iterations. */
|
| 1593 |
|
|
|
| 1594 |
|
|
type = TREE_TYPE (niter->niter);
|
| 1595 |
|
|
nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
|
| 1596 |
|
|
NULL_TREE);
|
| 1597 |
|
|
if (stmts)
|
| 1598 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
| 1599 |
|
|
|
| 1600 |
|
|
many_iterations_cond =
|
| 1601 |
|
|
fold_build2 (GE_EXPR, boolean_type_node,
|
| 1602 |
|
|
nit, build_int_cst (type, MIN_PER_THREAD * n_threads));
|
| 1603 |
|
|
many_iterations_cond
|
| 1604 |
|
|
= fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
| 1605 |
|
|
invert_truthvalue (unshare_expr (niter->may_be_zero)),
|
| 1606 |
|
|
many_iterations_cond);
|
| 1607 |
|
|
many_iterations_cond
|
| 1608 |
|
|
= force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
|
| 1609 |
|
|
if (stmts)
|
| 1610 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
| 1611 |
|
|
if (!is_gimple_condexpr (many_iterations_cond))
|
| 1612 |
|
|
{
|
| 1613 |
|
|
many_iterations_cond
|
| 1614 |
|
|
= force_gimple_operand (many_iterations_cond, &stmts,
|
| 1615 |
|
|
true, NULL_TREE);
|
| 1616 |
|
|
if (stmts)
|
| 1617 |
|
|
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
| 1618 |
|
|
}
|
| 1619 |
|
|
|
| 1620 |
|
|
initialize_original_copy_tables ();
|
| 1621 |
|
|
|
| 1622 |
|
|
/* We assume that the loop usually iterates a lot. */
|
| 1623 |
|
|
prob = 4 * REG_BR_PROB_BASE / 5;
|
| 1624 |
|
|
loop_version (loop, many_iterations_cond, NULL,
|
| 1625 |
|
|
prob, prob, REG_BR_PROB_BASE - prob, true);
|
| 1626 |
|
|
update_ssa (TODO_update_ssa);
|
| 1627 |
|
|
free_original_copy_tables ();
|
| 1628 |
|
|
|
| 1629 |
|
|
/* Base all the induction variables in LOOP on a single control one. */
|
| 1630 |
|
|
canonicalize_loop_ivs (loop, &nit, true);
|
| 1631 |
|
|
|
| 1632 |
|
|
/* Ensure that the exit condition is the first statement in the loop. */
|
| 1633 |
|
|
transform_to_exit_first_loop (loop, reduction_list, nit);
|
| 1634 |
|
|
|
| 1635 |
|
|
/* Generate initializations for reductions. */
|
| 1636 |
|
|
if (htab_elements (reduction_list) > 0)
|
| 1637 |
|
|
htab_traverse (reduction_list, initialize_reductions, loop);
|
| 1638 |
|
|
|
| 1639 |
|
|
/* Eliminate the references to local variables from the loop. */
|
| 1640 |
|
|
gcc_assert (single_exit (loop));
|
| 1641 |
|
|
entry = loop_preheader_edge (loop);
|
| 1642 |
|
|
exit = single_dom_exit (loop);
|
| 1643 |
|
|
|
| 1644 |
|
|
eliminate_local_variables (entry, exit);
|
| 1645 |
|
|
/* In the old loop, move all variables non-local to the loop to a structure
|
| 1646 |
|
|
and back, and create separate decls for the variables used in loop. */
|
| 1647 |
|
|
separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
|
| 1648 |
|
|
&new_arg_struct, &clsn_data);
|
| 1649 |
|
|
|
| 1650 |
|
|
/* Create the parallel constructs. */
|
| 1651 |
|
|
parallel_head = create_parallel_loop (loop, create_loop_fn (), arg_struct,
|
| 1652 |
|
|
new_arg_struct, n_threads);
|
| 1653 |
|
|
if (htab_elements (reduction_list) > 0)
|
| 1654 |
|
|
create_call_for_reduction (loop, reduction_list, &clsn_data);
|
| 1655 |
|
|
|
| 1656 |
|
|
scev_reset ();
|
| 1657 |
|
|
|
| 1658 |
|
|
/* Cancel the loop (it is simpler to do it here rather than to teach the
|
| 1659 |
|
|
expander to do it). */
|
| 1660 |
|
|
cancel_loop_tree (loop);
|
| 1661 |
|
|
|
| 1662 |
|
|
/* Free loop bound estimations that could contain references to
|
| 1663 |
|
|
removed statements. */
|
| 1664 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 1665 |
|
|
free_numbers_of_iterations_estimates_loop (loop);
|
| 1666 |
|
|
|
| 1667 |
|
|
/* Expand the parallel constructs. We do it directly here instead of running
|
| 1668 |
|
|
a separate expand_omp pass, since it is more efficient, and less likely to
|
| 1669 |
|
|
cause troubles with further analyses not being able to deal with the
|
| 1670 |
|
|
OMP trees. */
|
| 1671 |
|
|
|
| 1672 |
|
|
omp_expand_local (parallel_head);
|
| 1673 |
|
|
}
|
| 1674 |
|
|
|
| 1675 |
|
|
/* Returns true when LOOP contains vector phi nodes. */
|
| 1676 |
|
|
|
| 1677 |
|
|
static bool
|
| 1678 |
|
|
loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
|
| 1679 |
|
|
{
|
| 1680 |
|
|
unsigned i;
|
| 1681 |
|
|
basic_block *bbs = get_loop_body_in_dom_order (loop);
|
| 1682 |
|
|
gimple_stmt_iterator gsi;
|
| 1683 |
|
|
bool res = true;
|
| 1684 |
|
|
|
| 1685 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 1686 |
|
|
for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1687 |
|
|
if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
|
| 1688 |
|
|
goto end;
|
| 1689 |
|
|
|
| 1690 |
|
|
res = false;
|
| 1691 |
|
|
end:
|
| 1692 |
|
|
free (bbs);
|
| 1693 |
|
|
return res;
|
| 1694 |
|
|
}
|
| 1695 |
|
|
|
| 1696 |
|
|
/* Create a reduction_info struct, initialize it with REDUC_STMT
|
| 1697 |
|
|
and PHI, insert it to the REDUCTION_LIST. */
|
| 1698 |
|
|
|
| 1699 |
|
|
static void
|
| 1700 |
|
|
build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
|
| 1701 |
|
|
{
|
| 1702 |
|
|
PTR *slot;
|
| 1703 |
|
|
struct reduction_info *new_reduction;
|
| 1704 |
|
|
|
| 1705 |
|
|
gcc_assert (reduc_stmt);
|
| 1706 |
|
|
|
| 1707 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1708 |
|
|
{
|
| 1709 |
|
|
fprintf (dump_file,
|
| 1710 |
|
|
"Detected reduction. reduction stmt is: \n");
|
| 1711 |
|
|
print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
|
| 1712 |
|
|
fprintf (dump_file, "\n");
|
| 1713 |
|
|
}
|
| 1714 |
|
|
|
| 1715 |
|
|
new_reduction = XCNEW (struct reduction_info);
|
| 1716 |
|
|
|
| 1717 |
|
|
new_reduction->reduc_stmt = reduc_stmt;
|
| 1718 |
|
|
new_reduction->reduc_phi = phi;
|
| 1719 |
|
|
new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
|
| 1720 |
|
|
slot = htab_find_slot (reduction_list, new_reduction, INSERT);
|
| 1721 |
|
|
*slot = new_reduction;
|
| 1722 |
|
|
}
|
| 1723 |
|
|
|
| 1724 |
|
|
/* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
|
| 1725 |
|
|
|
| 1726 |
|
|
static void
|
| 1727 |
|
|
gather_scalar_reductions (loop_p loop, htab_t reduction_list)
|
| 1728 |
|
|
{
|
| 1729 |
|
|
gimple_stmt_iterator gsi;
|
| 1730 |
|
|
loop_vec_info simple_loop_info;
|
| 1731 |
|
|
|
| 1732 |
|
|
vect_dump = NULL;
|
| 1733 |
|
|
simple_loop_info = vect_analyze_loop_form (loop);
|
| 1734 |
|
|
|
| 1735 |
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1736 |
|
|
{
|
| 1737 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1738 |
|
|
affine_iv iv;
|
| 1739 |
|
|
tree res = PHI_RESULT (phi);
|
| 1740 |
|
|
bool double_reduc;
|
| 1741 |
|
|
|
| 1742 |
|
|
if (!is_gimple_reg (res))
|
| 1743 |
|
|
continue;
|
| 1744 |
|
|
|
| 1745 |
|
|
if (!simple_iv (loop, loop, res, &iv, true)
|
| 1746 |
|
|
&& simple_loop_info)
|
| 1747 |
|
|
{
|
| 1748 |
|
|
gimple reduc_stmt = vect_is_simple_reduction (simple_loop_info, phi, true, &double_reduc);
|
| 1749 |
|
|
if (reduc_stmt && !double_reduc)
|
| 1750 |
|
|
build_new_reduction (reduction_list, reduc_stmt, phi);
|
| 1751 |
|
|
}
|
| 1752 |
|
|
}
|
| 1753 |
|
|
destroy_loop_vec_info (simple_loop_info, true);
|
| 1754 |
|
|
}
|
| 1755 |
|
|
|
| 1756 |
|
|
/* Try to initialize NITER for code generation part. */
|
| 1757 |
|
|
|
| 1758 |
|
|
static bool
|
| 1759 |
|
|
try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
|
| 1760 |
|
|
{
|
| 1761 |
|
|
edge exit = single_dom_exit (loop);
|
| 1762 |
|
|
|
| 1763 |
|
|
gcc_assert (exit);
|
| 1764 |
|
|
|
| 1765 |
|
|
/* We need to know # of iterations, and there should be no uses of values
|
| 1766 |
|
|
defined inside loop outside of it, unless the values are invariants of
|
| 1767 |
|
|
the loop. */
|
| 1768 |
|
|
if (!number_of_iterations_exit (loop, exit, niter, false))
|
| 1769 |
|
|
{
|
| 1770 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1771 |
|
|
fprintf (dump_file, " FAILED: number of iterations not known\n");
|
| 1772 |
|
|
return false;
|
| 1773 |
|
|
}
|
| 1774 |
|
|
|
| 1775 |
|
|
return true;
|
| 1776 |
|
|
}
|
| 1777 |
|
|
|
| 1778 |
|
|
/* Try to initialize REDUCTION_LIST for code generation part.
|
| 1779 |
|
|
REDUCTION_LIST describes the reductions. */
|
| 1780 |
|
|
|
| 1781 |
|
|
static bool
|
| 1782 |
|
|
try_create_reduction_list (loop_p loop, htab_t reduction_list)
|
| 1783 |
|
|
{
|
| 1784 |
|
|
edge exit = single_dom_exit (loop);
|
| 1785 |
|
|
gimple_stmt_iterator gsi;
|
| 1786 |
|
|
|
| 1787 |
|
|
gcc_assert (exit);
|
| 1788 |
|
|
|
| 1789 |
|
|
gather_scalar_reductions (loop, reduction_list);
|
| 1790 |
|
|
|
| 1791 |
|
|
|
| 1792 |
|
|
for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1793 |
|
|
{
|
| 1794 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1795 |
|
|
struct reduction_info *red;
|
| 1796 |
|
|
imm_use_iterator imm_iter;
|
| 1797 |
|
|
use_operand_p use_p;
|
| 1798 |
|
|
gimple reduc_phi;
|
| 1799 |
|
|
tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
| 1800 |
|
|
|
| 1801 |
|
|
if (is_gimple_reg (val))
|
| 1802 |
|
|
{
|
| 1803 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1804 |
|
|
{
|
| 1805 |
|
|
fprintf (dump_file, "phi is ");
|
| 1806 |
|
|
print_gimple_stmt (dump_file, phi, 0, 0);
|
| 1807 |
|
|
fprintf (dump_file, "arg of phi to exit: value ");
|
| 1808 |
|
|
print_generic_expr (dump_file, val, 0);
|
| 1809 |
|
|
fprintf (dump_file, " used outside loop\n");
|
| 1810 |
|
|
fprintf (dump_file,
|
| 1811 |
|
|
" checking if it a part of reduction pattern: \n");
|
| 1812 |
|
|
}
|
| 1813 |
|
|
if (htab_elements (reduction_list) == 0)
|
| 1814 |
|
|
{
|
| 1815 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1816 |
|
|
fprintf (dump_file,
|
| 1817 |
|
|
" FAILED: it is not a part of reduction.\n");
|
| 1818 |
|
|
return false;
|
| 1819 |
|
|
}
|
| 1820 |
|
|
reduc_phi = NULL;
|
| 1821 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
|
| 1822 |
|
|
{
|
| 1823 |
|
|
if (flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
|
| 1824 |
|
|
{
|
| 1825 |
|
|
reduc_phi = USE_STMT (use_p);
|
| 1826 |
|
|
break;
|
| 1827 |
|
|
}
|
| 1828 |
|
|
}
|
| 1829 |
|
|
red = reduction_phi (reduction_list, reduc_phi);
|
| 1830 |
|
|
if (red == NULL)
|
| 1831 |
|
|
{
|
| 1832 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1833 |
|
|
fprintf (dump_file,
|
| 1834 |
|
|
" FAILED: it is not a part of reduction.\n");
|
| 1835 |
|
|
return false;
|
| 1836 |
|
|
}
|
| 1837 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1838 |
|
|
{
|
| 1839 |
|
|
fprintf (dump_file, "reduction phi is ");
|
| 1840 |
|
|
print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
|
| 1841 |
|
|
fprintf (dump_file, "reduction stmt is ");
|
| 1842 |
|
|
print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
|
| 1843 |
|
|
}
|
| 1844 |
|
|
}
|
| 1845 |
|
|
}
|
| 1846 |
|
|
|
| 1847 |
|
|
/* The iterations of the loop may communicate only through bivs whose
|
| 1848 |
|
|
iteration space can be distributed efficiently. */
|
| 1849 |
|
|
for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 1850 |
|
|
{
|
| 1851 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 1852 |
|
|
tree def = PHI_RESULT (phi);
|
| 1853 |
|
|
affine_iv iv;
|
| 1854 |
|
|
|
| 1855 |
|
|
if (is_gimple_reg (def) && !simple_iv (loop, loop, def, &iv, true))
|
| 1856 |
|
|
{
|
| 1857 |
|
|
struct reduction_info *red;
|
| 1858 |
|
|
|
| 1859 |
|
|
red = reduction_phi (reduction_list, phi);
|
| 1860 |
|
|
if (red == NULL)
|
| 1861 |
|
|
{
|
| 1862 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1863 |
|
|
fprintf (dump_file,
|
| 1864 |
|
|
" FAILED: scalar dependency between iterations\n");
|
| 1865 |
|
|
return false;
|
| 1866 |
|
|
}
|
| 1867 |
|
|
}
|
| 1868 |
|
|
}
|
| 1869 |
|
|
|
| 1870 |
|
|
|
| 1871 |
|
|
return true;
|
| 1872 |
|
|
}
|
| 1873 |
|
|
|
| 1874 |
|
|
/* Detect parallel loops and generate parallel code using libgomp
|
| 1875 |
|
|
primitives. Returns true if some loop was parallelized, false
|
| 1876 |
|
|
otherwise. */
|
| 1877 |
|
|
|
| 1878 |
|
|
bool
|
| 1879 |
|
|
parallelize_loops (void)
|
| 1880 |
|
|
{
|
| 1881 |
|
|
unsigned n_threads = flag_tree_parallelize_loops;
|
| 1882 |
|
|
bool changed = false;
|
| 1883 |
|
|
struct loop *loop;
|
| 1884 |
|
|
struct tree_niter_desc niter_desc;
|
| 1885 |
|
|
loop_iterator li;
|
| 1886 |
|
|
htab_t reduction_list;
|
| 1887 |
|
|
HOST_WIDE_INT estimated;
|
| 1888 |
|
|
LOC loop_loc;
|
| 1889 |
|
|
|
| 1890 |
|
|
/* Do not parallelize loops in the functions created by parallelization. */
|
| 1891 |
|
|
if (parallelized_function_p (cfun->decl))
|
| 1892 |
|
|
return false;
|
| 1893 |
|
|
if (cfun->has_nonlocal_label)
|
| 1894 |
|
|
return false;
|
| 1895 |
|
|
|
| 1896 |
|
|
reduction_list = htab_create (10, reduction_info_hash,
|
| 1897 |
|
|
reduction_info_eq, free);
|
| 1898 |
|
|
init_stmt_vec_info_vec ();
|
| 1899 |
|
|
|
| 1900 |
|
|
FOR_EACH_LOOP (li, loop, 0)
|
| 1901 |
|
|
{
|
| 1902 |
|
|
htab_empty (reduction_list);
|
| 1903 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1904 |
|
|
{
|
| 1905 |
|
|
fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
|
| 1906 |
|
|
if (loop->inner)
|
| 1907 |
|
|
fprintf (dump_file, "loop %d is not innermost\n",loop->num);
|
| 1908 |
|
|
else
|
| 1909 |
|
|
fprintf (dump_file, "loop %d is innermost\n",loop->num);
|
| 1910 |
|
|
}
|
| 1911 |
|
|
|
| 1912 |
|
|
/* If we use autopar in graphite pass, we use its marked dependency
|
| 1913 |
|
|
checking results. */
|
| 1914 |
|
|
if (flag_loop_parallelize_all && !loop->can_be_parallel)
|
| 1915 |
|
|
{
|
| 1916 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1917 |
|
|
fprintf (dump_file, "loop is not parallel according to graphite\n");
|
| 1918 |
|
|
continue;
|
| 1919 |
|
|
}
|
| 1920 |
|
|
|
| 1921 |
|
|
if (!single_dom_exit (loop))
|
| 1922 |
|
|
{
|
| 1923 |
|
|
|
| 1924 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1925 |
|
|
fprintf (dump_file, "loop is !single_dom_exit\n");
|
| 1926 |
|
|
|
| 1927 |
|
|
continue;
|
| 1928 |
|
|
}
|
| 1929 |
|
|
|
| 1930 |
|
|
if (/* And of course, the loop must be parallelizable. */
|
| 1931 |
|
|
!can_duplicate_loop_p (loop)
|
| 1932 |
|
|
|| loop_has_blocks_with_irreducible_flag (loop)
|
| 1933 |
|
|
|| (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
|
| 1934 |
|
|
/* FIXME: the check for vector phi nodes could be removed. */
|
| 1935 |
|
|
|| loop_has_vector_phi_nodes (loop))
|
| 1936 |
|
|
continue;
|
| 1937 |
|
|
estimated = estimated_loop_iterations_int (loop, false);
|
| 1938 |
|
|
/* FIXME: Bypass this check as graphite doesn't update the
|
| 1939 |
|
|
count and frequency correctly now. */
|
| 1940 |
|
|
if (!flag_loop_parallelize_all
|
| 1941 |
|
|
&& ((estimated !=-1
|
| 1942 |
|
|
&& estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
|
| 1943 |
|
|
/* Do not bother with loops in cold areas. */
|
| 1944 |
|
|
|| optimize_loop_nest_for_size_p (loop)))
|
| 1945 |
|
|
continue;
|
| 1946 |
|
|
|
| 1947 |
|
|
if (!try_get_loop_niter (loop, &niter_desc))
|
| 1948 |
|
|
continue;
|
| 1949 |
|
|
|
| 1950 |
|
|
if (!try_create_reduction_list (loop, reduction_list))
|
| 1951 |
|
|
continue;
|
| 1952 |
|
|
|
| 1953 |
|
|
if (!flag_loop_parallelize_all && !loop_parallel_p (loop))
|
| 1954 |
|
|
continue;
|
| 1955 |
|
|
|
| 1956 |
|
|
changed = true;
|
| 1957 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1958 |
|
|
{
|
| 1959 |
|
|
if (loop->inner)
|
| 1960 |
|
|
fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
|
| 1961 |
|
|
else
|
| 1962 |
|
|
fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
|
| 1963 |
|
|
loop_loc = find_loop_location (loop);
|
| 1964 |
|
|
if (loop_loc != UNKNOWN_LOC)
|
| 1965 |
|
|
fprintf (dump_file, "\nloop at %s:%d: ",
|
| 1966 |
|
|
LOC_FILE (loop_loc), LOC_LINE (loop_loc));
|
| 1967 |
|
|
}
|
| 1968 |
|
|
gen_parallel_loop (loop, reduction_list,
|
| 1969 |
|
|
n_threads, &niter_desc);
|
| 1970 |
|
|
verify_flow_info ();
|
| 1971 |
|
|
verify_dominators (CDI_DOMINATORS);
|
| 1972 |
|
|
verify_loop_structure ();
|
| 1973 |
|
|
verify_loop_closed_ssa ();
|
| 1974 |
|
|
}
|
| 1975 |
|
|
|
| 1976 |
|
|
free_stmt_vec_info_vec ();
|
| 1977 |
|
|
htab_delete (reduction_list);
|
| 1978 |
|
|
|
| 1979 |
|
|
/* Parallelization will cause new function calls to be inserted through
|
| 1980 |
|
|
which local variables will escape. Reset the points-to solutions
|
| 1981 |
|
|
for ESCAPED and CALLUSED. */
|
| 1982 |
|
|
if (changed)
|
| 1983 |
|
|
{
|
| 1984 |
|
|
pt_solution_reset (&cfun->gimple_df->escaped);
|
| 1985 |
|
|
pt_solution_reset (&cfun->gimple_df->callused);
|
| 1986 |
|
|
}
|
| 1987 |
|
|
|
| 1988 |
|
|
return changed;
|
| 1989 |
|
|
}
|
| 1990 |
|
|
|
| 1991 |
|
|
#include "gt-tree-parloops.h"
|