1 |
280 |
jeremybenn |
/* Scalar Replacement of Aggregates (SRA) converts some structure
|
2 |
|
|
references into scalar references, exposing them to the scalar
|
3 |
|
|
optimizers.
|
4 |
|
|
Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
|
5 |
|
|
Contributed by Martin Jambor <mjambor@suse.cz>
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
15 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
16 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
17 |
|
|
for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
/* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
|
24 |
|
|
twice, once in the early stages of compilation (early SRA) and once in the
|
25 |
|
|
late stages (late SRA). The aim of both is to turn references to scalar
|
26 |
|
|
parts of aggregates into uses of independent scalar variables.
|
27 |
|
|
|
28 |
|
|
The two passes are nearly identical, the only difference is that early SRA
|
29 |
|
|
does not scalarize unions which are used as the result in a GIMPLE_RETURN
|
30 |
|
|
statement because together with inlining this can lead to weird type
|
31 |
|
|
conversions.
|
32 |
|
|
|
33 |
|
|
Both passes operate in four stages:
|
34 |
|
|
|
35 |
|
|
1. The declarations that have properties which make them candidates for
|
36 |
|
|
scalarization are identified in function find_var_candidates(). The
|
37 |
|
|
candidates are stored in candidate_bitmap.
|
38 |
|
|
|
39 |
|
|
2. The function body is scanned. In the process, declarations which are
|
40 |
|
|
used in a manner that prevent their scalarization are removed from the
|
41 |
|
|
candidate bitmap. More importantly, for every access into an aggregate,
|
42 |
|
|
an access structure (struct access) is created by create_access() and
|
43 |
|
|
stored in a vector associated with the aggregate. Among other
|
44 |
|
|
information, the aggregate declaration, the offset and size of the access
|
45 |
|
|
and its type are stored in the structure.
|
46 |
|
|
|
47 |
|
|
On a related note, assign_link structures are created for every assign
|
48 |
|
|
statement between candidate aggregates and attached to the related
|
49 |
|
|
accesses.
|
50 |
|
|
|
51 |
|
|
3. The vectors of accesses are analyzed. They are first sorted according to
|
52 |
|
|
their offset and size and then scanned for partially overlapping accesses
|
53 |
|
|
(i.e. those which overlap but one is not entirely within another). Such
|
54 |
|
|
an access disqualifies the whole aggregate from being scalarized.
|
55 |
|
|
|
56 |
|
|
If there is no such inhibiting overlap, a representative access structure
|
57 |
|
|
is chosen for every unique combination of offset and size. Afterwards,
|
58 |
|
|
the pass builds a set of trees from these structures, in which children
|
59 |
|
|
of an access are within their parent (in terms of offset and size).
|
60 |
|
|
|
61 |
|
|
Then accesses are propagated whenever possible (i.e. in cases when it
|
62 |
|
|
does not create a partially overlapping access) across assign_links from
|
63 |
|
|
the right hand side to the left hand side.
|
64 |
|
|
|
65 |
|
|
Then the set of trees for each declaration is traversed again and those
|
66 |
|
|
accesses which should be replaced by a scalar are identified.
|
67 |
|
|
|
68 |
|
|
4. The function is traversed again, and for every reference into an
|
69 |
|
|
aggregate that has some component which is about to be scalarized,
|
70 |
|
|
statements are amended and new statements are created as necessary.
|
71 |
|
|
Finally, if a parameter got scalarized, the scalar replacements are
|
72 |
|
|
initialized with values from respective parameter aggregates. */
|
73 |
|
|
|
74 |
|
|
#include "config.h"
|
75 |
|
|
#include "system.h"
|
76 |
|
|
#include "coretypes.h"
|
77 |
|
|
#include "alloc-pool.h"
|
78 |
|
|
#include "tm.h"
|
79 |
|
|
#include "tree.h"
|
80 |
|
|
#include "expr.h"
|
81 |
|
|
#include "gimple.h"
|
82 |
|
|
#include "cgraph.h"
|
83 |
|
|
#include "tree-flow.h"
|
84 |
|
|
#include "ipa-prop.h"
|
85 |
|
|
#include "diagnostic.h"
|
86 |
|
|
#include "statistics.h"
|
87 |
|
|
#include "tree-dump.h"
|
88 |
|
|
#include "timevar.h"
|
89 |
|
|
#include "params.h"
|
90 |
|
|
#include "target.h"
|
91 |
|
|
#include "flags.h"
|
92 |
|
|
#include "tree-inline.h"
|
93 |
|
|
|
94 |
|
|
/* Enumeration of all aggregate reductions we can do. */
|
95 |
|
|
enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
|
96 |
|
|
SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
|
97 |
|
|
SRA_MODE_INTRA }; /* late intraprocedural SRA */
|
98 |
|
|
|
99 |
|
|
/* Global variable describing which aggregate reduction we are performing at
|
100 |
|
|
the moment. */
|
101 |
|
|
static enum sra_mode sra_mode;
|
102 |
|
|
|
103 |
|
|
struct assign_link;
|
104 |
|
|
|
105 |
|
|
/* ACCESS represents each access to an aggregate variable (as a whole or a
|
106 |
|
|
part). It can also represent a group of accesses that refer to exactly the
|
107 |
|
|
same fragment of an aggregate (i.e. those that have exactly the same offset
|
108 |
|
|
and size). Such representatives for a single aggregate, once determined,
|
109 |
|
|
are linked in a linked list and have the group fields set.
|
110 |
|
|
|
111 |
|
|
Moreover, when doing intraprocedural SRA, a tree is built from those
|
112 |
|
|
representatives (by the means of first_child and next_sibling pointers), in
|
113 |
|
|
which all items in a subtree are "within" the root, i.e. their offset is
|
114 |
|
|
greater or equal to offset of the root and offset+size is smaller or equal
|
115 |
|
|
to offset+size of the root. Children of an access are sorted by offset.
|
116 |
|
|
|
117 |
|
|
Note that accesses to parts of vector and complex number types always
|
118 |
|
|
represented by an access to the whole complex number or a vector. It is a
|
119 |
|
|
duty of the modifying functions to replace them appropriately. */
|
120 |
|
|
|
121 |
|
|
struct access
|
122 |
|
|
{
|
123 |
|
|
/* Values returned by `get_ref_base_and_extent' for each component reference
|
124 |
|
|
If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
|
125 |
|
|
`SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
|
126 |
|
|
HOST_WIDE_INT offset;
|
127 |
|
|
HOST_WIDE_INT size;
|
128 |
|
|
tree base;
|
129 |
|
|
|
130 |
|
|
/* Expression. It is context dependent so do not use it to create new
|
131 |
|
|
expressions to access the original aggregate. See PR 42154 for a
|
132 |
|
|
testcase. */
|
133 |
|
|
tree expr;
|
134 |
|
|
/* Type. */
|
135 |
|
|
tree type;
|
136 |
|
|
|
137 |
|
|
/* The statement this access belongs to. */
|
138 |
|
|
gimple stmt;
|
139 |
|
|
|
140 |
|
|
/* Next group representative for this aggregate. */
|
141 |
|
|
struct access *next_grp;
|
142 |
|
|
|
143 |
|
|
/* Pointer to the group representative. Pointer to itself if the struct is
|
144 |
|
|
the representative. */
|
145 |
|
|
struct access *group_representative;
|
146 |
|
|
|
147 |
|
|
/* If this access has any children (in terms of the definition above), this
|
148 |
|
|
points to the first one. */
|
149 |
|
|
struct access *first_child;
|
150 |
|
|
|
151 |
|
|
/* In intraprocedural SRA, pointer to the next sibling in the access tree as
|
152 |
|
|
described above. In IPA-SRA this is a pointer to the next access
|
153 |
|
|
belonging to the same group (having the same representative). */
|
154 |
|
|
struct access *next_sibling;
|
155 |
|
|
|
156 |
|
|
/* Pointers to the first and last element in the linked list of assign
|
157 |
|
|
links. */
|
158 |
|
|
struct assign_link *first_link, *last_link;
|
159 |
|
|
|
160 |
|
|
/* Pointer to the next access in the work queue. */
|
161 |
|
|
struct access *next_queued;
|
162 |
|
|
|
163 |
|
|
/* Replacement variable for this access "region." Never to be accessed
|
164 |
|
|
directly, always only by the means of get_access_replacement() and only
|
165 |
|
|
when grp_to_be_replaced flag is set. */
|
166 |
|
|
tree replacement_decl;
|
167 |
|
|
|
168 |
|
|
/* Is this particular access write access? */
|
169 |
|
|
unsigned write : 1;
|
170 |
|
|
|
171 |
|
|
/* Is this access an artificial one created to scalarize some record
|
172 |
|
|
entirely? */
|
173 |
|
|
unsigned total_scalarization : 1;
|
174 |
|
|
|
175 |
|
|
/* Is this access currently in the work queue? */
|
176 |
|
|
unsigned grp_queued : 1;
|
177 |
|
|
|
178 |
|
|
/* Does this group contain a write access? This flag is propagated down the
|
179 |
|
|
access tree. */
|
180 |
|
|
unsigned grp_write : 1;
|
181 |
|
|
|
182 |
|
|
/* Does this group contain a read access? This flag is propagated down the
|
183 |
|
|
access tree. */
|
184 |
|
|
unsigned grp_read : 1;
|
185 |
|
|
|
186 |
|
|
/* Does this group contain a read access that comes from an assignment
|
187 |
|
|
statement? This flag is propagated down the access tree. */
|
188 |
|
|
unsigned grp_assignment_read : 1;
|
189 |
|
|
|
190 |
|
|
/* Other passes of the analysis use this bit to make function
|
191 |
|
|
analyze_access_subtree create scalar replacements for this group if
|
192 |
|
|
possible. */
|
193 |
|
|
unsigned grp_hint : 1;
|
194 |
|
|
|
195 |
|
|
/* Is the subtree rooted in this access fully covered by scalar
|
196 |
|
|
replacements? */
|
197 |
|
|
unsigned grp_covered : 1;
|
198 |
|
|
|
199 |
|
|
/* If set to true, this access and all below it in an access tree must not be
|
200 |
|
|
scalarized. */
|
201 |
|
|
unsigned grp_unscalarizable_region : 1;
|
202 |
|
|
|
203 |
|
|
/* Whether data have been written to parts of the aggregate covered by this
|
204 |
|
|
access which is not to be scalarized. This flag is propagated up in the
|
205 |
|
|
access tree. */
|
206 |
|
|
unsigned grp_unscalarized_data : 1;
|
207 |
|
|
|
208 |
|
|
/* Does this access and/or group contain a write access through a
|
209 |
|
|
BIT_FIELD_REF? */
|
210 |
|
|
unsigned grp_partial_lhs : 1;
|
211 |
|
|
|
212 |
|
|
/* Set when a scalar replacement should be created for this variable. We do
|
213 |
|
|
the decision and creation at different places because create_tmp_var
|
214 |
|
|
cannot be called from within FOR_EACH_REFERENCED_VAR. */
|
215 |
|
|
unsigned grp_to_be_replaced : 1;
|
216 |
|
|
|
217 |
|
|
/* Is it possible that the group refers to data which might be (directly or
|
218 |
|
|
otherwise) modified? */
|
219 |
|
|
unsigned grp_maybe_modified : 1;
|
220 |
|
|
|
221 |
|
|
/* Set when this is a representative of a pointer to scalar (i.e. by
|
222 |
|
|
reference) parameter which we consider for turning into a plain scalar
|
223 |
|
|
(i.e. a by value parameter). */
|
224 |
|
|
unsigned grp_scalar_ptr : 1;
|
225 |
|
|
|
226 |
|
|
/* Set when we discover that this pointer is not safe to dereference in the
|
227 |
|
|
caller. */
|
228 |
|
|
unsigned grp_not_necessarilly_dereferenced : 1;
|
229 |
|
|
};
|
230 |
|
|
|
231 |
|
|
typedef struct access *access_p;
|
232 |
|
|
|
233 |
|
|
DEF_VEC_P (access_p);
|
234 |
|
|
DEF_VEC_ALLOC_P (access_p, heap);
|
235 |
|
|
|
236 |
|
|
/* Alloc pool for allocating access structures. */
|
237 |
|
|
static alloc_pool access_pool;
|
238 |
|
|
|
239 |
|
|
/* A structure linking lhs and rhs accesses from an aggregate assignment. They
|
240 |
|
|
are used to propagate subaccesses from rhs to lhs as long as they don't
|
241 |
|
|
conflict with what is already there. */
|
242 |
|
|
struct assign_link
|
243 |
|
|
{
|
244 |
|
|
struct access *lacc, *racc;
|
245 |
|
|
struct assign_link *next;
|
246 |
|
|
};
|
247 |
|
|
|
248 |
|
|
/* Alloc pool for allocating assign link structures. */
|
249 |
|
|
static alloc_pool link_pool;
|
250 |
|
|
|
251 |
|
|
/* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
|
252 |
|
|
static struct pointer_map_t *base_access_vec;
|
253 |
|
|
|
254 |
|
|
/* Bitmap of candidates. */
|
255 |
|
|
static bitmap candidate_bitmap;
|
256 |
|
|
|
257 |
|
|
/* Bitmap of candidates which we should try to entirely scalarize away and
|
258 |
|
|
those which cannot be (because they are and need be used as a whole). */
|
259 |
|
|
static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
|
260 |
|
|
|
261 |
|
|
/* Obstack for creation of fancy names. */
|
262 |
|
|
static struct obstack name_obstack;
|
263 |
|
|
|
264 |
|
|
/* Head of a linked list of accesses that need to have its subaccesses
|
265 |
|
|
propagated to their assignment counterparts. */
|
266 |
|
|
static struct access *work_queue_head;
|
267 |
|
|
|
268 |
|
|
/* Number of parameters of the analyzed function when doing early ipa SRA. */
|
269 |
|
|
static int func_param_count;
|
270 |
|
|
|
271 |
|
|
/* scan_function sets the following to true if it encounters a call to
|
272 |
|
|
__builtin_apply_args. */
|
273 |
|
|
static bool encountered_apply_args;
|
274 |
|
|
|
275 |
|
|
/* Set by scan_function when it finds a recursive call with less actual
|
276 |
|
|
arguments than formal parameters.. */
|
277 |
|
|
static bool encountered_unchangable_recursive_call;
|
278 |
|
|
|
279 |
|
|
/* This is a table in which for each basic block and parameter there is a
|
280 |
|
|
distance (offset + size) in that parameter which is dereferenced and
|
281 |
|
|
accessed in that BB. */
|
282 |
|
|
static HOST_WIDE_INT *bb_dereferences;
|
283 |
|
|
/* Bitmap of BBs that can cause the function to "stop" progressing by
|
284 |
|
|
returning, throwing externally, looping infinitely or calling a function
|
285 |
|
|
which might abort etc.. */
|
286 |
|
|
static bitmap final_bbs;
|
287 |
|
|
|
288 |
|
|
/* Representative of no accesses at all. */
|
289 |
|
|
static struct access no_accesses_representant;
|
290 |
|
|
|
291 |
|
|
/* Predicate to test the special value. */
|
292 |
|
|
|
293 |
|
|
static inline bool
|
294 |
|
|
no_accesses_p (struct access *access)
|
295 |
|
|
{
|
296 |
|
|
return access == &no_accesses_representant;
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
/* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
|
300 |
|
|
representative fields are dumped, otherwise those which only describe the
|
301 |
|
|
individual access are. */
|
302 |
|
|
|
303 |
|
|
static struct
|
304 |
|
|
{
|
305 |
|
|
/* Number of processed aggregates is readily available in
|
306 |
|
|
analyze_all_variable_accesses and so is not stored here. */
|
307 |
|
|
|
308 |
|
|
/* Number of created scalar replacements. */
|
309 |
|
|
int replacements;
|
310 |
|
|
|
311 |
|
|
/* Number of times sra_modify_expr or sra_modify_assign themselves changed an
|
312 |
|
|
expression. */
|
313 |
|
|
int exprs;
|
314 |
|
|
|
315 |
|
|
/* Number of statements created by generate_subtree_copies. */
|
316 |
|
|
int subtree_copies;
|
317 |
|
|
|
318 |
|
|
/* Number of statements created by load_assign_lhs_subreplacements. */
|
319 |
|
|
int subreplacements;
|
320 |
|
|
|
321 |
|
|
/* Number of times sra_modify_assign has deleted a statement. */
|
322 |
|
|
int deleted;
|
323 |
|
|
|
324 |
|
|
/* Number of times sra_modify_assign has to deal with subaccesses of LHS and
|
325 |
|
|
RHS reparately due to type conversions or nonexistent matching
|
326 |
|
|
references. */
|
327 |
|
|
int separate_lhs_rhs_handling;
|
328 |
|
|
|
329 |
|
|
/* Number of parameters that were removed because they were unused. */
|
330 |
|
|
int deleted_unused_parameters;
|
331 |
|
|
|
332 |
|
|
/* Number of scalars passed as parameters by reference that have been
|
333 |
|
|
converted to be passed by value. */
|
334 |
|
|
int scalar_by_ref_to_by_val;
|
335 |
|
|
|
336 |
|
|
/* Number of aggregate parameters that were replaced by one or more of their
|
337 |
|
|
components. */
|
338 |
|
|
int aggregate_params_reduced;
|
339 |
|
|
|
340 |
|
|
/* Numbber of components created when splitting aggregate parameters. */
|
341 |
|
|
int param_reductions_created;
|
342 |
|
|
} sra_stats;
|
343 |
|
|
|
344 |
|
|
static void
|
345 |
|
|
dump_access (FILE *f, struct access *access, bool grp)
|
346 |
|
|
{
|
347 |
|
|
fprintf (f, "access { ");
|
348 |
|
|
fprintf (f, "base = (%d)'", DECL_UID (access->base));
|
349 |
|
|
print_generic_expr (f, access->base, 0);
|
350 |
|
|
fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
|
351 |
|
|
fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
|
352 |
|
|
fprintf (f, ", expr = ");
|
353 |
|
|
print_generic_expr (f, access->expr, 0);
|
354 |
|
|
fprintf (f, ", type = ");
|
355 |
|
|
print_generic_expr (f, access->type, 0);
|
356 |
|
|
if (grp)
|
357 |
|
|
fprintf (f, ", grp_write = %d, total_scalarization = %d, "
|
358 |
|
|
"grp_read = %d, grp_hint = %d, grp_assignment_read = %d,"
|
359 |
|
|
"grp_covered = %d, grp_unscalarizable_region = %d, "
|
360 |
|
|
"grp_unscalarized_data = %d, grp_partial_lhs = %d, "
|
361 |
|
|
"grp_to_be_replaced = %d, grp_maybe_modified = %d, "
|
362 |
|
|
"grp_not_necessarilly_dereferenced = %d\n",
|
363 |
|
|
access->grp_write, access->total_scalarization,
|
364 |
|
|
access->grp_read, access->grp_hint, access->grp_assignment_read,
|
365 |
|
|
access->grp_covered, access->grp_unscalarizable_region,
|
366 |
|
|
access->grp_unscalarized_data, access->grp_partial_lhs,
|
367 |
|
|
access->grp_to_be_replaced, access->grp_maybe_modified,
|
368 |
|
|
access->grp_not_necessarilly_dereferenced);
|
369 |
|
|
else
|
370 |
|
|
fprintf (f, ", write = %d, total_scalarization = %d, "
|
371 |
|
|
"grp_partial_lhs = %d\n",
|
372 |
|
|
access->write, access->total_scalarization,
|
373 |
|
|
access->grp_partial_lhs);
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
/* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
|
377 |
|
|
|
378 |
|
|
static void
|
379 |
|
|
dump_access_tree_1 (FILE *f, struct access *access, int level)
|
380 |
|
|
{
|
381 |
|
|
do
|
382 |
|
|
{
|
383 |
|
|
int i;
|
384 |
|
|
|
385 |
|
|
for (i = 0; i < level; i++)
|
386 |
|
|
fputs ("* ", dump_file);
|
387 |
|
|
|
388 |
|
|
dump_access (f, access, true);
|
389 |
|
|
|
390 |
|
|
if (access->first_child)
|
391 |
|
|
dump_access_tree_1 (f, access->first_child, level + 1);
|
392 |
|
|
|
393 |
|
|
access = access->next_sibling;
|
394 |
|
|
}
|
395 |
|
|
while (access);
|
396 |
|
|
}
|
397 |
|
|
|
398 |
|
|
/* Dump all access trees for a variable, given the pointer to the first root in
|
399 |
|
|
ACCESS. */
|
400 |
|
|
|
401 |
|
|
static void
|
402 |
|
|
dump_access_tree (FILE *f, struct access *access)
|
403 |
|
|
{
|
404 |
|
|
for (; access; access = access->next_grp)
|
405 |
|
|
dump_access_tree_1 (f, access, 0);
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
/* Return true iff ACC is non-NULL and has subaccesses. */
|
409 |
|
|
|
410 |
|
|
static inline bool
|
411 |
|
|
access_has_children_p (struct access *acc)
|
412 |
|
|
{
|
413 |
|
|
return acc && acc->first_child;
|
414 |
|
|
}
|
415 |
|
|
|
416 |
|
|
/* Return a vector of pointers to accesses for the variable given in BASE or
|
417 |
|
|
NULL if there is none. */
|
418 |
|
|
|
419 |
|
|
static VEC (access_p, heap) *
|
420 |
|
|
get_base_access_vector (tree base)
|
421 |
|
|
{
|
422 |
|
|
void **slot;
|
423 |
|
|
|
424 |
|
|
slot = pointer_map_contains (base_access_vec, base);
|
425 |
|
|
if (!slot)
|
426 |
|
|
return NULL;
|
427 |
|
|
else
|
428 |
|
|
return *(VEC (access_p, heap) **) slot;
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
/* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
|
432 |
|
|
in ACCESS. Return NULL if it cannot be found. */
|
433 |
|
|
|
434 |
|
|
static struct access *
|
435 |
|
|
find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
|
436 |
|
|
HOST_WIDE_INT size)
|
437 |
|
|
{
|
438 |
|
|
while (access && (access->offset != offset || access->size != size))
|
439 |
|
|
{
|
440 |
|
|
struct access *child = access->first_child;
|
441 |
|
|
|
442 |
|
|
while (child && (child->offset + child->size <= offset))
|
443 |
|
|
child = child->next_sibling;
|
444 |
|
|
access = child;
|
445 |
|
|
}
|
446 |
|
|
|
447 |
|
|
return access;
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
/* Return the first group representative for DECL or NULL if none exists. */
|
451 |
|
|
|
452 |
|
|
static struct access *
|
453 |
|
|
get_first_repr_for_decl (tree base)
|
454 |
|
|
{
|
455 |
|
|
VEC (access_p, heap) *access_vec;
|
456 |
|
|
|
457 |
|
|
access_vec = get_base_access_vector (base);
|
458 |
|
|
if (!access_vec)
|
459 |
|
|
return NULL;
|
460 |
|
|
|
461 |
|
|
return VEC_index (access_p, access_vec, 0);
|
462 |
|
|
}
|
463 |
|
|
|
464 |
|
|
/* Find an access representative for the variable BASE and given OFFSET and
|
465 |
|
|
SIZE. Requires that access trees have already been built. Return NULL if
|
466 |
|
|
it cannot be found. */
|
467 |
|
|
|
468 |
|
|
static struct access *
|
469 |
|
|
get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
|
470 |
|
|
HOST_WIDE_INT size)
|
471 |
|
|
{
|
472 |
|
|
struct access *access;
|
473 |
|
|
|
474 |
|
|
access = get_first_repr_for_decl (base);
|
475 |
|
|
while (access && (access->offset + access->size <= offset))
|
476 |
|
|
access = access->next_grp;
|
477 |
|
|
if (!access)
|
478 |
|
|
return NULL;
|
479 |
|
|
|
480 |
|
|
return find_access_in_subtree (access, offset, size);
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
/* Add LINK to the linked list of assign links of RACC. */
|
484 |
|
|
static void
|
485 |
|
|
add_link_to_rhs (struct access *racc, struct assign_link *link)
|
486 |
|
|
{
|
487 |
|
|
gcc_assert (link->racc == racc);
|
488 |
|
|
|
489 |
|
|
if (!racc->first_link)
|
490 |
|
|
{
|
491 |
|
|
gcc_assert (!racc->last_link);
|
492 |
|
|
racc->first_link = link;
|
493 |
|
|
}
|
494 |
|
|
else
|
495 |
|
|
racc->last_link->next = link;
|
496 |
|
|
|
497 |
|
|
racc->last_link = link;
|
498 |
|
|
link->next = NULL;
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
/* Move all link structures in their linked list in OLD_RACC to the linked list
|
502 |
|
|
in NEW_RACC. */
|
503 |
|
|
static void
|
504 |
|
|
relink_to_new_repr (struct access *new_racc, struct access *old_racc)
|
505 |
|
|
{
|
506 |
|
|
if (!old_racc->first_link)
|
507 |
|
|
{
|
508 |
|
|
gcc_assert (!old_racc->last_link);
|
509 |
|
|
return;
|
510 |
|
|
}
|
511 |
|
|
|
512 |
|
|
if (new_racc->first_link)
|
513 |
|
|
{
|
514 |
|
|
gcc_assert (!new_racc->last_link->next);
|
515 |
|
|
gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
|
516 |
|
|
|
517 |
|
|
new_racc->last_link->next = old_racc->first_link;
|
518 |
|
|
new_racc->last_link = old_racc->last_link;
|
519 |
|
|
}
|
520 |
|
|
else
|
521 |
|
|
{
|
522 |
|
|
gcc_assert (!new_racc->last_link);
|
523 |
|
|
|
524 |
|
|
new_racc->first_link = old_racc->first_link;
|
525 |
|
|
new_racc->last_link = old_racc->last_link;
|
526 |
|
|
}
|
527 |
|
|
old_racc->first_link = old_racc->last_link = NULL;
|
528 |
|
|
}
|
529 |
|
|
|
530 |
|
|
/* Add ACCESS to the work queue (which is actually a stack). */
|
531 |
|
|
|
532 |
|
|
static void
|
533 |
|
|
add_access_to_work_queue (struct access *access)
|
534 |
|
|
{
|
535 |
|
|
if (!access->grp_queued)
|
536 |
|
|
{
|
537 |
|
|
gcc_assert (!access->next_queued);
|
538 |
|
|
access->next_queued = work_queue_head;
|
539 |
|
|
access->grp_queued = 1;
|
540 |
|
|
work_queue_head = access;
|
541 |
|
|
}
|
542 |
|
|
}
|
543 |
|
|
|
544 |
|
|
/* Pop an access from the work queue, and return it, assuming there is one. */
|
545 |
|
|
|
546 |
|
|
static struct access *
|
547 |
|
|
pop_access_from_work_queue (void)
|
548 |
|
|
{
|
549 |
|
|
struct access *access = work_queue_head;
|
550 |
|
|
|
551 |
|
|
work_queue_head = access->next_queued;
|
552 |
|
|
access->next_queued = NULL;
|
553 |
|
|
access->grp_queued = 0;
|
554 |
|
|
return access;
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
|
558 |
|
|
/* Allocate necessary structures. */
|
559 |
|
|
|
560 |
|
|
static void
|
561 |
|
|
sra_initialize (void)
|
562 |
|
|
{
|
563 |
|
|
candidate_bitmap = BITMAP_ALLOC (NULL);
|
564 |
|
|
should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
|
565 |
|
|
cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
|
566 |
|
|
gcc_obstack_init (&name_obstack);
|
567 |
|
|
access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
|
568 |
|
|
link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
|
569 |
|
|
base_access_vec = pointer_map_create ();
|
570 |
|
|
memset (&sra_stats, 0, sizeof (sra_stats));
|
571 |
|
|
encountered_apply_args = false;
|
572 |
|
|
encountered_unchangable_recursive_call = false;
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
/* Hook fed to pointer_map_traverse, deallocate stored vectors. */
|
576 |
|
|
|
577 |
|
|
static bool
|
578 |
|
|
delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
|
579 |
|
|
void *data ATTRIBUTE_UNUSED)
|
580 |
|
|
{
|
581 |
|
|
VEC (access_p, heap) *access_vec;
|
582 |
|
|
access_vec = (VEC (access_p, heap) *) *value;
|
583 |
|
|
VEC_free (access_p, heap, access_vec);
|
584 |
|
|
|
585 |
|
|
return true;
|
586 |
|
|
}
|
587 |
|
|
|
588 |
|
|
/* Deallocate all general structures. */
|
589 |
|
|
|
590 |
|
|
static void
|
591 |
|
|
sra_deinitialize (void)
|
592 |
|
|
{
|
593 |
|
|
BITMAP_FREE (candidate_bitmap);
|
594 |
|
|
BITMAP_FREE (should_scalarize_away_bitmap);
|
595 |
|
|
BITMAP_FREE (cannot_scalarize_away_bitmap);
|
596 |
|
|
free_alloc_pool (access_pool);
|
597 |
|
|
free_alloc_pool (link_pool);
|
598 |
|
|
obstack_free (&name_obstack, NULL);
|
599 |
|
|
|
600 |
|
|
pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
|
601 |
|
|
pointer_map_destroy (base_access_vec);
|
602 |
|
|
}
|
603 |
|
|
|
604 |
|
|
/* Remove DECL from candidates for SRA and write REASON to the dump file if
|
605 |
|
|
there is one. */
|
606 |
|
|
static void
|
607 |
|
|
disqualify_candidate (tree decl, const char *reason)
|
608 |
|
|
{
|
609 |
|
|
bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
|
610 |
|
|
|
611 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
612 |
|
|
{
|
613 |
|
|
fprintf (dump_file, "! Disqualifying ");
|
614 |
|
|
print_generic_expr (dump_file, decl, 0);
|
615 |
|
|
fprintf (dump_file, " - %s\n", reason);
|
616 |
|
|
}
|
617 |
|
|
}
|
618 |
|
|
|
619 |
|
|
/* Return true iff the type contains a field or an element which does not allow
|
620 |
|
|
scalarization. */
|
621 |
|
|
|
622 |
|
|
static bool
|
623 |
|
|
type_internals_preclude_sra_p (tree type)
|
624 |
|
|
{
|
625 |
|
|
tree fld;
|
626 |
|
|
tree et;
|
627 |
|
|
|
628 |
|
|
switch (TREE_CODE (type))
|
629 |
|
|
{
|
630 |
|
|
case RECORD_TYPE:
|
631 |
|
|
case UNION_TYPE:
|
632 |
|
|
case QUAL_UNION_TYPE:
|
633 |
|
|
for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
|
634 |
|
|
if (TREE_CODE (fld) == FIELD_DECL)
|
635 |
|
|
{
|
636 |
|
|
tree ft = TREE_TYPE (fld);
|
637 |
|
|
|
638 |
|
|
if (TREE_THIS_VOLATILE (fld)
|
639 |
|
|
|| !DECL_FIELD_OFFSET (fld) || !DECL_SIZE (fld)
|
640 |
|
|
|| !host_integerp (DECL_FIELD_OFFSET (fld), 1)
|
641 |
|
|
|| !host_integerp (DECL_SIZE (fld), 1))
|
642 |
|
|
return true;
|
643 |
|
|
|
644 |
|
|
if (AGGREGATE_TYPE_P (ft)
|
645 |
|
|
&& type_internals_preclude_sra_p (ft))
|
646 |
|
|
return true;
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
return false;
|
650 |
|
|
|
651 |
|
|
case ARRAY_TYPE:
|
652 |
|
|
et = TREE_TYPE (type);
|
653 |
|
|
|
654 |
|
|
if (AGGREGATE_TYPE_P (et))
|
655 |
|
|
return type_internals_preclude_sra_p (et);
|
656 |
|
|
else
|
657 |
|
|
return false;
|
658 |
|
|
|
659 |
|
|
default:
|
660 |
|
|
return false;
|
661 |
|
|
}
|
662 |
|
|
}
|
663 |
|
|
|
664 |
|
|
/* If T is an SSA_NAME, return NULL if it is not a default def or return its
|
665 |
|
|
base variable if it is. Return T if it is not an SSA_NAME. */
|
666 |
|
|
|
667 |
|
|
static tree
|
668 |
|
|
get_ssa_base_param (tree t)
|
669 |
|
|
{
|
670 |
|
|
if (TREE_CODE (t) == SSA_NAME)
|
671 |
|
|
{
|
672 |
|
|
if (SSA_NAME_IS_DEFAULT_DEF (t))
|
673 |
|
|
return SSA_NAME_VAR (t);
|
674 |
|
|
else
|
675 |
|
|
return NULL_TREE;
|
676 |
|
|
}
|
677 |
|
|
return t;
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
/* Mark a dereference of BASE of distance DIST in a basic block tht STMT
|
681 |
|
|
belongs to, unless the BB has already been marked as a potentially
|
682 |
|
|
final. */
|
683 |
|
|
|
684 |
|
|
static void
|
685 |
|
|
mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
|
686 |
|
|
{
|
687 |
|
|
basic_block bb = gimple_bb (stmt);
|
688 |
|
|
int idx, parm_index = 0;
|
689 |
|
|
tree parm;
|
690 |
|
|
|
691 |
|
|
if (bitmap_bit_p (final_bbs, bb->index))
|
692 |
|
|
return;
|
693 |
|
|
|
694 |
|
|
for (parm = DECL_ARGUMENTS (current_function_decl);
|
695 |
|
|
parm && parm != base;
|
696 |
|
|
parm = TREE_CHAIN (parm))
|
697 |
|
|
parm_index++;
|
698 |
|
|
|
699 |
|
|
gcc_assert (parm_index < func_param_count);
|
700 |
|
|
|
701 |
|
|
idx = bb->index * func_param_count + parm_index;
|
702 |
|
|
if (bb_dereferences[idx] < dist)
|
703 |
|
|
bb_dereferences[idx] = dist;
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
|
707 |
|
|
the three fields. Also add it to the vector of accesses corresponding to
|
708 |
|
|
the base. Finally, return the new access. */
|
709 |
|
|
|
710 |
|
|
static struct access *
|
711 |
|
|
create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
|
712 |
|
|
{
|
713 |
|
|
VEC (access_p, heap) *vec;
|
714 |
|
|
struct access *access;
|
715 |
|
|
void **slot;
|
716 |
|
|
|
717 |
|
|
access = (struct access *) pool_alloc (access_pool);
|
718 |
|
|
memset (access, 0, sizeof (struct access));
|
719 |
|
|
access->base = base;
|
720 |
|
|
access->offset = offset;
|
721 |
|
|
access->size = size;
|
722 |
|
|
|
723 |
|
|
slot = pointer_map_contains (base_access_vec, base);
|
724 |
|
|
if (slot)
|
725 |
|
|
vec = (VEC (access_p, heap) *) *slot;
|
726 |
|
|
else
|
727 |
|
|
vec = VEC_alloc (access_p, heap, 32);
|
728 |
|
|
|
729 |
|
|
VEC_safe_push (access_p, heap, vec, access);
|
730 |
|
|
|
731 |
|
|
*((struct VEC (access_p,heap) **)
|
732 |
|
|
pointer_map_insert (base_access_vec, base)) = vec;
|
733 |
|
|
|
734 |
|
|
return access;
|
735 |
|
|
}
|
736 |
|
|
|
737 |
|
|
/* Create and insert access for EXPR. Return created access, or NULL if it is
|
738 |
|
|
not possible. */
|
739 |
|
|
|
740 |
|
|
static struct access *
|
741 |
|
|
create_access (tree expr, gimple stmt, bool write)
|
742 |
|
|
{
|
743 |
|
|
struct access *access;
|
744 |
|
|
HOST_WIDE_INT offset, size, max_size;
|
745 |
|
|
tree base = expr;
|
746 |
|
|
bool ptr, unscalarizable_region = false;
|
747 |
|
|
|
748 |
|
|
base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
|
749 |
|
|
|
750 |
|
|
if (sra_mode == SRA_MODE_EARLY_IPA && INDIRECT_REF_P (base))
|
751 |
|
|
{
|
752 |
|
|
base = get_ssa_base_param (TREE_OPERAND (base, 0));
|
753 |
|
|
if (!base)
|
754 |
|
|
return NULL;
|
755 |
|
|
ptr = true;
|
756 |
|
|
}
|
757 |
|
|
else
|
758 |
|
|
ptr = false;
|
759 |
|
|
|
760 |
|
|
if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
|
761 |
|
|
return NULL;
|
762 |
|
|
|
763 |
|
|
if (sra_mode == SRA_MODE_EARLY_IPA)
|
764 |
|
|
{
|
765 |
|
|
if (size < 0 || size != max_size)
|
766 |
|
|
{
|
767 |
|
|
disqualify_candidate (base, "Encountered a variable sized access.");
|
768 |
|
|
return NULL;
|
769 |
|
|
}
|
770 |
|
|
if ((offset % BITS_PER_UNIT) != 0 || (size % BITS_PER_UNIT) != 0)
|
771 |
|
|
{
|
772 |
|
|
disqualify_candidate (base,
|
773 |
|
|
"Encountered an acces not aligned to a byte.");
|
774 |
|
|
return NULL;
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
if (ptr)
|
778 |
|
|
mark_parm_dereference (base, offset + size, stmt);
|
779 |
|
|
}
|
780 |
|
|
else
|
781 |
|
|
{
|
782 |
|
|
if (size != max_size)
|
783 |
|
|
{
|
784 |
|
|
size = max_size;
|
785 |
|
|
unscalarizable_region = true;
|
786 |
|
|
}
|
787 |
|
|
if (size < 0)
|
788 |
|
|
{
|
789 |
|
|
disqualify_candidate (base, "Encountered an unconstrained access.");
|
790 |
|
|
return NULL;
|
791 |
|
|
}
|
792 |
|
|
}
|
793 |
|
|
|
794 |
|
|
access = create_access_1 (base, offset, size);
|
795 |
|
|
access->expr = expr;
|
796 |
|
|
access->type = TREE_TYPE (expr);
|
797 |
|
|
access->write = write;
|
798 |
|
|
access->grp_unscalarizable_region = unscalarizable_region;
|
799 |
|
|
access->stmt = stmt;
|
800 |
|
|
|
801 |
|
|
return access;
|
802 |
|
|
}
|
803 |
|
|
|
804 |
|
|
|
805 |
|
|
/* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
|
806 |
|
|
register types or (recursively) records with only these two kinds of fields.
|
807 |
|
|
It also returns false if any of these records has a zero-size field as its
|
808 |
|
|
last field. */
|
809 |
|
|
|
810 |
|
|
static bool
|
811 |
|
|
type_consists_of_records_p (tree type)
|
812 |
|
|
{
|
813 |
|
|
tree fld;
|
814 |
|
|
bool last_fld_has_zero_size = false;
|
815 |
|
|
|
816 |
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
817 |
|
|
return false;
|
818 |
|
|
|
819 |
|
|
for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
|
820 |
|
|
if (TREE_CODE (fld) == FIELD_DECL)
|
821 |
|
|
{
|
822 |
|
|
tree ft = TREE_TYPE (fld);
|
823 |
|
|
|
824 |
|
|
if (!is_gimple_reg_type (ft)
|
825 |
|
|
&& !type_consists_of_records_p (ft))
|
826 |
|
|
return false;
|
827 |
|
|
|
828 |
|
|
last_fld_has_zero_size = tree_low_cst (DECL_SIZE (fld), 1) == 0;
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
if (last_fld_has_zero_size)
|
832 |
|
|
return false;
|
833 |
|
|
|
834 |
|
|
return true;
|
835 |
|
|
}
|
836 |
|
|
|
837 |
|
|
/* Create total_scalarization accesses for all scalar type fields in DECL that
|
838 |
|
|
must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
|
839 |
|
|
must be the top-most VAR_DECL representing the variable, OFFSET must be the
|
840 |
|
|
offset of DECL within BASE. */
|
841 |
|
|
|
842 |
|
|
static void
|
843 |
|
|
completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset)
|
844 |
|
|
{
|
845 |
|
|
tree fld, decl_type = TREE_TYPE (decl);
|
846 |
|
|
|
847 |
|
|
for (fld = TYPE_FIELDS (decl_type); fld; fld = TREE_CHAIN (fld))
|
848 |
|
|
if (TREE_CODE (fld) == FIELD_DECL)
|
849 |
|
|
{
|
850 |
|
|
HOST_WIDE_INT pos = offset + int_bit_position (fld);
|
851 |
|
|
tree ft = TREE_TYPE (fld);
|
852 |
|
|
|
853 |
|
|
if (is_gimple_reg_type (ft))
|
854 |
|
|
{
|
855 |
|
|
struct access *access;
|
856 |
|
|
HOST_WIDE_INT size;
|
857 |
|
|
tree expr;
|
858 |
|
|
bool ok;
|
859 |
|
|
|
860 |
|
|
size = tree_low_cst (DECL_SIZE (fld), 1);
|
861 |
|
|
expr = base;
|
862 |
|
|
ok = build_ref_for_offset (&expr, TREE_TYPE (base), pos,
|
863 |
|
|
ft, false);
|
864 |
|
|
gcc_assert (ok);
|
865 |
|
|
|
866 |
|
|
access = create_access_1 (base, pos, size);
|
867 |
|
|
access->expr = expr;
|
868 |
|
|
access->type = ft;
|
869 |
|
|
access->total_scalarization = 1;
|
870 |
|
|
/* Accesses for intraprocedural SRA can have their stmt NULL. */
|
871 |
|
|
}
|
872 |
|
|
else
|
873 |
|
|
completely_scalarize_record (base, fld, pos);
|
874 |
|
|
}
|
875 |
|
|
}
|
876 |
|
|
|
877 |
|
|
|
878 |
|
|
/* Search the given tree for a declaration by skipping handled components and
|
879 |
|
|
exclude it from the candidates. */
|
880 |
|
|
|
881 |
|
|
static void
|
882 |
|
|
disqualify_base_of_expr (tree t, const char *reason)
|
883 |
|
|
{
|
884 |
|
|
while (handled_component_p (t))
|
885 |
|
|
t = TREE_OPERAND (t, 0);
|
886 |
|
|
|
887 |
|
|
if (sra_mode == SRA_MODE_EARLY_IPA)
|
888 |
|
|
{
|
889 |
|
|
if (INDIRECT_REF_P (t))
|
890 |
|
|
t = TREE_OPERAND (t, 0);
|
891 |
|
|
t = get_ssa_base_param (t);
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
if (t && DECL_P (t))
|
895 |
|
|
disqualify_candidate (t, reason);
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
/* Scan expression EXPR and create access structures for all accesses to
|
899 |
|
|
candidates for scalarization. Return the created access or NULL if none is
|
900 |
|
|
created. */
|
901 |
|
|
|
902 |
|
|
static struct access *
|
903 |
|
|
build_access_from_expr_1 (tree *expr_ptr, gimple stmt, bool write)
|
904 |
|
|
{
|
905 |
|
|
struct access *ret = NULL;
|
906 |
|
|
tree expr = *expr_ptr;
|
907 |
|
|
bool partial_ref;
|
908 |
|
|
|
909 |
|
|
if (TREE_CODE (expr) == BIT_FIELD_REF
|
910 |
|
|
|| TREE_CODE (expr) == IMAGPART_EXPR
|
911 |
|
|
|| TREE_CODE (expr) == REALPART_EXPR)
|
912 |
|
|
{
|
913 |
|
|
expr = TREE_OPERAND (expr, 0);
|
914 |
|
|
partial_ref = true;
|
915 |
|
|
}
|
916 |
|
|
else
|
917 |
|
|
partial_ref = false;
|
918 |
|
|
|
919 |
|
|
/* We need to dive through V_C_Es in order to get the size of its parameter
|
920 |
|
|
and not the result type. Ada produces such statements. We are also
|
921 |
|
|
capable of handling the topmost V_C_E but not any of those buried in other
|
922 |
|
|
handled components. */
|
923 |
|
|
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
|
924 |
|
|
expr = TREE_OPERAND (expr, 0);
|
925 |
|
|
|
926 |
|
|
if (contains_view_convert_expr_p (expr))
|
927 |
|
|
{
|
928 |
|
|
disqualify_base_of_expr (expr, "V_C_E under a different handled "
|
929 |
|
|
"component.");
|
930 |
|
|
return NULL;
|
931 |
|
|
}
|
932 |
|
|
|
933 |
|
|
switch (TREE_CODE (expr))
|
934 |
|
|
{
|
935 |
|
|
case INDIRECT_REF:
|
936 |
|
|
if (sra_mode != SRA_MODE_EARLY_IPA)
|
937 |
|
|
return NULL;
|
938 |
|
|
/* fall through */
|
939 |
|
|
case VAR_DECL:
|
940 |
|
|
case PARM_DECL:
|
941 |
|
|
case RESULT_DECL:
|
942 |
|
|
case COMPONENT_REF:
|
943 |
|
|
case ARRAY_REF:
|
944 |
|
|
case ARRAY_RANGE_REF:
|
945 |
|
|
ret = create_access (expr, stmt, write);
|
946 |
|
|
break;
|
947 |
|
|
|
948 |
|
|
default:
|
949 |
|
|
break;
|
950 |
|
|
}
|
951 |
|
|
|
952 |
|
|
if (write && partial_ref && ret)
|
953 |
|
|
ret->grp_partial_lhs = 1;
|
954 |
|
|
|
955 |
|
|
return ret;
|
956 |
|
|
}
|
957 |
|
|
|
958 |
|
|
/* Callback of scan_function. Scan expression EXPR and create access
|
959 |
|
|
structures for all accesses to candidates for scalarization. Return true if
|
960 |
|
|
any access has been inserted. */
|
961 |
|
|
|
962 |
|
|
static bool
|
963 |
|
|
build_access_from_expr (tree *expr_ptr,
|
964 |
|
|
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED, bool write,
|
965 |
|
|
void *data ATTRIBUTE_UNUSED)
|
966 |
|
|
{
|
967 |
|
|
struct access *access;
|
968 |
|
|
|
969 |
|
|
access = build_access_from_expr_1 (expr_ptr, gsi_stmt (*gsi), write);
|
970 |
|
|
if (access)
|
971 |
|
|
{
|
972 |
|
|
/* This means the aggregate is accesses as a whole in a way other than an
|
973 |
|
|
assign statement and thus cannot be removed even if we had a scalar
|
974 |
|
|
replacement for everything. */
|
975 |
|
|
if (cannot_scalarize_away_bitmap)
|
976 |
|
|
bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
|
977 |
|
|
return true;
|
978 |
|
|
}
|
979 |
|
|
return false;
|
980 |
|
|
}
|
981 |
|
|
|
982 |
|
|
/* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
|
983 |
|
|
modes in which it matters, return true iff they have been disqualified. RHS
|
984 |
|
|
may be NULL, in that case ignore it. If we scalarize an aggregate in
|
985 |
|
|
intra-SRA we may need to add statements after each statement. This is not
|
986 |
|
|
possible if a statement unconditionally has to end the basic block. */
|
987 |
|
|
static bool
|
988 |
|
|
disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
|
989 |
|
|
{
|
990 |
|
|
if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
|
991 |
|
|
&& (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
|
992 |
|
|
{
|
993 |
|
|
disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
|
994 |
|
|
if (rhs)
|
995 |
|
|
disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
|
996 |
|
|
return true;
|
997 |
|
|
}
|
998 |
|
|
return false;
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
|
1002 |
|
|
/* Result code for scan_assign callback for scan_function. */
|
1003 |
|
|
enum scan_assign_result { SRA_SA_NONE, /* nothing done for the stmt */
|
1004 |
|
|
SRA_SA_PROCESSED, /* stmt analyzed/changed */
|
1005 |
|
|
SRA_SA_REMOVED }; /* stmt redundant and eliminated */
|
1006 |
|
|
|
1007 |
|
|
|
1008 |
|
|
/* Callback of scan_function. Scan expressions occuring in the statement
|
1009 |
|
|
pointed to by STMT_EXPR, create access structures for all accesses to
|
1010 |
|
|
candidates for scalarization and remove those candidates which occur in
|
1011 |
|
|
statements or expressions that prevent them from being split apart. Return
|
1012 |
|
|
true if any access has been inserted. */
|
1013 |
|
|
|
1014 |
|
|
static enum scan_assign_result
|
1015 |
|
|
build_accesses_from_assign (gimple *stmt_ptr,
|
1016 |
|
|
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
1017 |
|
|
void *data ATTRIBUTE_UNUSED)
|
1018 |
|
|
{
|
1019 |
|
|
gimple stmt = *stmt_ptr;
|
1020 |
|
|
tree *lhs_ptr, *rhs_ptr;
|
1021 |
|
|
struct access *lacc, *racc;
|
1022 |
|
|
|
1023 |
|
|
if (!gimple_assign_single_p (stmt))
|
1024 |
|
|
return SRA_SA_NONE;
|
1025 |
|
|
|
1026 |
|
|
lhs_ptr = gimple_assign_lhs_ptr (stmt);
|
1027 |
|
|
rhs_ptr = gimple_assign_rhs1_ptr (stmt);
|
1028 |
|
|
|
1029 |
|
|
if (disqualify_ops_if_throwing_stmt (stmt, *lhs_ptr, *rhs_ptr))
|
1030 |
|
|
return SRA_SA_NONE;
|
1031 |
|
|
|
1032 |
|
|
racc = build_access_from_expr_1 (rhs_ptr, stmt, false);
|
1033 |
|
|
lacc = build_access_from_expr_1 (lhs_ptr, stmt, true);
|
1034 |
|
|
|
1035 |
|
|
if (racc)
|
1036 |
|
|
{
|
1037 |
|
|
racc->grp_assignment_read = 1;
|
1038 |
|
|
if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
|
1039 |
|
|
&& !is_gimple_reg_type (racc->type))
|
1040 |
|
|
bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
if (lacc && racc
|
1044 |
|
|
&& (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
|
1045 |
|
|
&& !lacc->grp_unscalarizable_region
|
1046 |
|
|
&& !racc->grp_unscalarizable_region
|
1047 |
|
|
&& AGGREGATE_TYPE_P (TREE_TYPE (*lhs_ptr))
|
1048 |
|
|
/* FIXME: Turn the following line into an assert after PR 40058 is
|
1049 |
|
|
fixed. */
|
1050 |
|
|
&& lacc->size == racc->size
|
1051 |
|
|
&& useless_type_conversion_p (lacc->type, racc->type))
|
1052 |
|
|
{
|
1053 |
|
|
struct assign_link *link;
|
1054 |
|
|
|
1055 |
|
|
link = (struct assign_link *) pool_alloc (link_pool);
|
1056 |
|
|
memset (link, 0, sizeof (struct assign_link));
|
1057 |
|
|
|
1058 |
|
|
link->lacc = lacc;
|
1059 |
|
|
link->racc = racc;
|
1060 |
|
|
|
1061 |
|
|
add_link_to_rhs (racc, link);
|
1062 |
|
|
}
|
1063 |
|
|
|
1064 |
|
|
return (lacc || racc) ? SRA_SA_PROCESSED : SRA_SA_NONE;
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
/* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
|
1068 |
|
|
GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
|
1069 |
|
|
|
1070 |
|
|
static bool
|
1071 |
|
|
asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
|
1072 |
|
|
void *data ATTRIBUTE_UNUSED)
|
1073 |
|
|
{
|
1074 |
|
|
if (DECL_P (op))
|
1075 |
|
|
disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
|
1076 |
|
|
|
1077 |
|
|
return false;
|
1078 |
|
|
}
|
1079 |
|
|
|
1080 |
|
|
/* Return true iff callsite CALL has at least as many actual arguments as there
|
1081 |
|
|
are formal parameters of the function currently processed by IPA-SRA. */
|
1082 |
|
|
|
1083 |
|
|
static inline bool
|
1084 |
|
|
callsite_has_enough_arguments_p (gimple call)
|
1085 |
|
|
{
|
1086 |
|
|
return gimple_call_num_args (call) >= (unsigned) func_param_count;
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
/* Scan function and look for interesting statements. Return true if any has
|
1090 |
|
|
been found or processed, as indicated by callbacks. SCAN_EXPR is a callback
|
1091 |
|
|
called on all expressions within statements except assign statements and
|
1092 |
|
|
those deemed entirely unsuitable for some reason (all operands in such
|
1093 |
|
|
statements and expression are removed from candidate_bitmap). SCAN_ASSIGN
|
1094 |
|
|
is a callback called on all assign statements, HANDLE_SSA_DEFS is a callback
|
1095 |
|
|
called on assign statements and those call statements which have a lhs, it
|
1096 |
|
|
can be NULL. ANALYSIS_STAGE is true when running in the analysis stage of a
|
1097 |
|
|
pass and thus no statement is being modified. DATA is a pointer passed to
|
1098 |
|
|
all callbacks. If any single callback returns true, this function also
|
1099 |
|
|
returns true, otherwise it returns false. */
|
1100 |
|
|
|
1101 |
|
|
static bool
|
1102 |
|
|
scan_function (bool (*scan_expr) (tree *, gimple_stmt_iterator *, bool, void *),
|
1103 |
|
|
enum scan_assign_result (*scan_assign) (gimple *,
|
1104 |
|
|
gimple_stmt_iterator *,
|
1105 |
|
|
void *),
|
1106 |
|
|
bool (*handle_ssa_defs)(gimple, void *),
|
1107 |
|
|
bool analysis_stage, void *data)
|
1108 |
|
|
{
|
1109 |
|
|
gimple_stmt_iterator gsi;
|
1110 |
|
|
basic_block bb;
|
1111 |
|
|
unsigned i;
|
1112 |
|
|
tree *t;
|
1113 |
|
|
bool ret = false;
|
1114 |
|
|
|
1115 |
|
|
FOR_EACH_BB (bb)
|
1116 |
|
|
{
|
1117 |
|
|
bool bb_changed = false;
|
1118 |
|
|
|
1119 |
|
|
if (handle_ssa_defs)
|
1120 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1121 |
|
|
ret |= handle_ssa_defs (gsi_stmt (gsi), data);
|
1122 |
|
|
|
1123 |
|
|
gsi = gsi_start_bb (bb);
|
1124 |
|
|
while (!gsi_end_p (gsi))
|
1125 |
|
|
{
|
1126 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1127 |
|
|
enum scan_assign_result assign_result;
|
1128 |
|
|
bool any = false, deleted = false;
|
1129 |
|
|
|
1130 |
|
|
if (analysis_stage && final_bbs && stmt_can_throw_external (stmt))
|
1131 |
|
|
bitmap_set_bit (final_bbs, bb->index);
|
1132 |
|
|
switch (gimple_code (stmt))
|
1133 |
|
|
{
|
1134 |
|
|
case GIMPLE_RETURN:
|
1135 |
|
|
t = gimple_return_retval_ptr (stmt);
|
1136 |
|
|
if (*t != NULL_TREE)
|
1137 |
|
|
any |= scan_expr (t, &gsi, false, data);
|
1138 |
|
|
if (analysis_stage && final_bbs)
|
1139 |
|
|
bitmap_set_bit (final_bbs, bb->index);
|
1140 |
|
|
break;
|
1141 |
|
|
|
1142 |
|
|
case GIMPLE_ASSIGN:
|
1143 |
|
|
assign_result = scan_assign (&stmt, &gsi, data);
|
1144 |
|
|
any |= assign_result == SRA_SA_PROCESSED;
|
1145 |
|
|
deleted = assign_result == SRA_SA_REMOVED;
|
1146 |
|
|
if (handle_ssa_defs && assign_result != SRA_SA_REMOVED)
|
1147 |
|
|
any |= handle_ssa_defs (stmt, data);
|
1148 |
|
|
break;
|
1149 |
|
|
|
1150 |
|
|
case GIMPLE_CALL:
|
1151 |
|
|
/* Operands must be processed before the lhs. */
|
1152 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); i++)
|
1153 |
|
|
{
|
1154 |
|
|
tree *argp = gimple_call_arg_ptr (stmt, i);
|
1155 |
|
|
any |= scan_expr (argp, &gsi, false, data);
|
1156 |
|
|
}
|
1157 |
|
|
|
1158 |
|
|
if (analysis_stage && sra_mode == SRA_MODE_EARLY_IPA)
|
1159 |
|
|
{
|
1160 |
|
|
tree dest = gimple_call_fndecl (stmt);
|
1161 |
|
|
int flags = gimple_call_flags (stmt);
|
1162 |
|
|
|
1163 |
|
|
if (dest)
|
1164 |
|
|
{
|
1165 |
|
|
if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
|
1166 |
|
|
&& DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
|
1167 |
|
|
encountered_apply_args = true;
|
1168 |
|
|
if (cgraph_get_node (dest)
|
1169 |
|
|
== cgraph_get_node (current_function_decl)
|
1170 |
|
|
&& !callsite_has_enough_arguments_p (stmt))
|
1171 |
|
|
encountered_unchangable_recursive_call = true;
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
if (final_bbs
|
1175 |
|
|
&& (flags & (ECF_CONST | ECF_PURE)) == 0)
|
1176 |
|
|
bitmap_set_bit (final_bbs, bb->index);
|
1177 |
|
|
}
|
1178 |
|
|
|
1179 |
|
|
if (gimple_call_lhs (stmt))
|
1180 |
|
|
{
|
1181 |
|
|
tree *lhs_ptr = gimple_call_lhs_ptr (stmt);
|
1182 |
|
|
if (!analysis_stage
|
1183 |
|
|
|| !disqualify_ops_if_throwing_stmt (stmt,
|
1184 |
|
|
*lhs_ptr, NULL))
|
1185 |
|
|
{
|
1186 |
|
|
any |= scan_expr (lhs_ptr, &gsi, true, data);
|
1187 |
|
|
if (handle_ssa_defs)
|
1188 |
|
|
any |= handle_ssa_defs (stmt, data);
|
1189 |
|
|
}
|
1190 |
|
|
}
|
1191 |
|
|
break;
|
1192 |
|
|
|
1193 |
|
|
case GIMPLE_ASM:
|
1194 |
|
|
if (analysis_stage)
|
1195 |
|
|
{
|
1196 |
|
|
walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
|
1197 |
|
|
asm_visit_addr);
|
1198 |
|
|
if (final_bbs)
|
1199 |
|
|
bitmap_set_bit (final_bbs, bb->index);
|
1200 |
|
|
}
|
1201 |
|
|
for (i = 0; i < gimple_asm_ninputs (stmt); i++)
|
1202 |
|
|
{
|
1203 |
|
|
tree *op = &TREE_VALUE (gimple_asm_input_op (stmt, i));
|
1204 |
|
|
any |= scan_expr (op, &gsi, false, data);
|
1205 |
|
|
}
|
1206 |
|
|
for (i = 0; i < gimple_asm_noutputs (stmt); i++)
|
1207 |
|
|
{
|
1208 |
|
|
tree *op = &TREE_VALUE (gimple_asm_output_op (stmt, i));
|
1209 |
|
|
any |= scan_expr (op, &gsi, true, data);
|
1210 |
|
|
}
|
1211 |
|
|
break;
|
1212 |
|
|
|
1213 |
|
|
default:
|
1214 |
|
|
break;
|
1215 |
|
|
}
|
1216 |
|
|
|
1217 |
|
|
if (any)
|
1218 |
|
|
{
|
1219 |
|
|
ret = true;
|
1220 |
|
|
|
1221 |
|
|
if (!analysis_stage)
|
1222 |
|
|
{
|
1223 |
|
|
bb_changed = true;
|
1224 |
|
|
update_stmt (stmt);
|
1225 |
|
|
maybe_clean_eh_stmt (stmt);
|
1226 |
|
|
}
|
1227 |
|
|
}
|
1228 |
|
|
if (deleted)
|
1229 |
|
|
bb_changed = true;
|
1230 |
|
|
else
|
1231 |
|
|
{
|
1232 |
|
|
gsi_next (&gsi);
|
1233 |
|
|
ret = true;
|
1234 |
|
|
}
|
1235 |
|
|
}
|
1236 |
|
|
if (!analysis_stage && bb_changed && sra_mode == SRA_MODE_EARLY_IPA)
|
1237 |
|
|
gimple_purge_dead_eh_edges (bb);
|
1238 |
|
|
}
|
1239 |
|
|
|
1240 |
|
|
return ret;
|
1241 |
|
|
}
|
1242 |
|
|
|
1243 |
|
|
/* Helper of QSORT function. There are pointers to accesses in the array. An
|
1244 |
|
|
access is considered smaller than another if it has smaller offset or if the
|
1245 |
|
|
offsets are the same but is size is bigger. */
|
1246 |
|
|
|
1247 |
|
|
static int
|
1248 |
|
|
compare_access_positions (const void *a, const void *b)
|
1249 |
|
|
{
|
1250 |
|
|
const access_p *fp1 = (const access_p *) a;
|
1251 |
|
|
const access_p *fp2 = (const access_p *) b;
|
1252 |
|
|
const access_p f1 = *fp1;
|
1253 |
|
|
const access_p f2 = *fp2;
|
1254 |
|
|
|
1255 |
|
|
if (f1->offset != f2->offset)
|
1256 |
|
|
return f1->offset < f2->offset ? -1 : 1;
|
1257 |
|
|
|
1258 |
|
|
if (f1->size == f2->size)
|
1259 |
|
|
{
|
1260 |
|
|
if (f1->type == f2->type)
|
1261 |
|
|
return 0;
|
1262 |
|
|
/* Put any non-aggregate type before any aggregate type. */
|
1263 |
|
|
else if (!is_gimple_reg_type (f1->type)
|
1264 |
|
|
&& is_gimple_reg_type (f2->type))
|
1265 |
|
|
return 1;
|
1266 |
|
|
else if (is_gimple_reg_type (f1->type)
|
1267 |
|
|
&& !is_gimple_reg_type (f2->type))
|
1268 |
|
|
return -1;
|
1269 |
|
|
/* Put any complex or vector type before any other scalar type. */
|
1270 |
|
|
else if (TREE_CODE (f1->type) != COMPLEX_TYPE
|
1271 |
|
|
&& TREE_CODE (f1->type) != VECTOR_TYPE
|
1272 |
|
|
&& (TREE_CODE (f2->type) == COMPLEX_TYPE
|
1273 |
|
|
|| TREE_CODE (f2->type) == VECTOR_TYPE))
|
1274 |
|
|
return 1;
|
1275 |
|
|
else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
|
1276 |
|
|
|| TREE_CODE (f1->type) == VECTOR_TYPE)
|
1277 |
|
|
&& TREE_CODE (f2->type) != COMPLEX_TYPE
|
1278 |
|
|
&& TREE_CODE (f2->type) != VECTOR_TYPE)
|
1279 |
|
|
return -1;
|
1280 |
|
|
/* Put the integral type with the bigger precision first. */
|
1281 |
|
|
else if (INTEGRAL_TYPE_P (f1->type)
|
1282 |
|
|
&& INTEGRAL_TYPE_P (f2->type))
|
1283 |
|
|
return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
|
1284 |
|
|
/* Put any integral type with non-full precision last. */
|
1285 |
|
|
else if (INTEGRAL_TYPE_P (f1->type)
|
1286 |
|
|
&& (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
|
1287 |
|
|
!= TYPE_PRECISION (f1->type)))
|
1288 |
|
|
return 1;
|
1289 |
|
|
else if (INTEGRAL_TYPE_P (f2->type)
|
1290 |
|
|
&& (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
|
1291 |
|
|
!= TYPE_PRECISION (f2->type)))
|
1292 |
|
|
return -1;
|
1293 |
|
|
/* Stabilize the sort. */
|
1294 |
|
|
return TYPE_UID (f1->type) - TYPE_UID (f2->type);
|
1295 |
|
|
}
|
1296 |
|
|
|
1297 |
|
|
/* We want the bigger accesses first, thus the opposite operator in the next
|
1298 |
|
|
line: */
|
1299 |
|
|
return f1->size > f2->size ? -1 : 1;
|
1300 |
|
|
}
|
1301 |
|
|
|
1302 |
|
|
|
1303 |
|
|
/* Append a name of the declaration to the name obstack. A helper function for
|
1304 |
|
|
make_fancy_name. */
|
1305 |
|
|
|
1306 |
|
|
static void
|
1307 |
|
|
make_fancy_decl_name (tree decl)
|
1308 |
|
|
{
|
1309 |
|
|
char buffer[32];
|
1310 |
|
|
|
1311 |
|
|
tree name = DECL_NAME (decl);
|
1312 |
|
|
if (name)
|
1313 |
|
|
obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
|
1314 |
|
|
IDENTIFIER_LENGTH (name));
|
1315 |
|
|
else
|
1316 |
|
|
{
|
1317 |
|
|
sprintf (buffer, "D%u", DECL_UID (decl));
|
1318 |
|
|
obstack_grow (&name_obstack, buffer, strlen (buffer));
|
1319 |
|
|
}
|
1320 |
|
|
}
|
1321 |
|
|
|
1322 |
|
|
/* Helper for make_fancy_name. */
|
1323 |
|
|
|
1324 |
|
|
static void
|
1325 |
|
|
make_fancy_name_1 (tree expr)
|
1326 |
|
|
{
|
1327 |
|
|
char buffer[32];
|
1328 |
|
|
tree index;
|
1329 |
|
|
|
1330 |
|
|
if (DECL_P (expr))
|
1331 |
|
|
{
|
1332 |
|
|
make_fancy_decl_name (expr);
|
1333 |
|
|
return;
|
1334 |
|
|
}
|
1335 |
|
|
|
1336 |
|
|
switch (TREE_CODE (expr))
|
1337 |
|
|
{
|
1338 |
|
|
case COMPONENT_REF:
|
1339 |
|
|
make_fancy_name_1 (TREE_OPERAND (expr, 0));
|
1340 |
|
|
obstack_1grow (&name_obstack, '$');
|
1341 |
|
|
make_fancy_decl_name (TREE_OPERAND (expr, 1));
|
1342 |
|
|
break;
|
1343 |
|
|
|
1344 |
|
|
case ARRAY_REF:
|
1345 |
|
|
make_fancy_name_1 (TREE_OPERAND (expr, 0));
|
1346 |
|
|
obstack_1grow (&name_obstack, '$');
|
1347 |
|
|
/* Arrays with only one element may not have a constant as their
|
1348 |
|
|
index. */
|
1349 |
|
|
index = TREE_OPERAND (expr, 1);
|
1350 |
|
|
if (TREE_CODE (index) != INTEGER_CST)
|
1351 |
|
|
break;
|
1352 |
|
|
sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
|
1353 |
|
|
obstack_grow (&name_obstack, buffer, strlen (buffer));
|
1354 |
|
|
|
1355 |
|
|
break;
|
1356 |
|
|
|
1357 |
|
|
case BIT_FIELD_REF:
|
1358 |
|
|
case REALPART_EXPR:
|
1359 |
|
|
case IMAGPART_EXPR:
|
1360 |
|
|
gcc_unreachable (); /* we treat these as scalars. */
|
1361 |
|
|
break;
|
1362 |
|
|
default:
|
1363 |
|
|
break;
|
1364 |
|
|
}
|
1365 |
|
|
}
|
1366 |
|
|
|
1367 |
|
|
/* Create a human readable name for replacement variable of ACCESS. */
|
1368 |
|
|
|
1369 |
|
|
static char *
|
1370 |
|
|
make_fancy_name (tree expr)
|
1371 |
|
|
{
|
1372 |
|
|
make_fancy_name_1 (expr);
|
1373 |
|
|
obstack_1grow (&name_obstack, '\0');
|
1374 |
|
|
return XOBFINISH (&name_obstack, char *);
|
1375 |
|
|
}
|
1376 |
|
|
|
1377 |
|
|
/* Helper function for build_ref_for_offset. */
|
1378 |
|
|
|
1379 |
|
|
static bool
|
1380 |
|
|
build_ref_for_offset_1 (tree *res, tree type, HOST_WIDE_INT offset,
|
1381 |
|
|
tree exp_type)
|
1382 |
|
|
{
|
1383 |
|
|
while (1)
|
1384 |
|
|
{
|
1385 |
|
|
tree fld;
|
1386 |
|
|
tree tr_size, index, minidx;
|
1387 |
|
|
HOST_WIDE_INT el_size;
|
1388 |
|
|
|
1389 |
|
|
if (offset == 0 && exp_type
|
1390 |
|
|
&& types_compatible_p (exp_type, type))
|
1391 |
|
|
return true;
|
1392 |
|
|
|
1393 |
|
|
switch (TREE_CODE (type))
|
1394 |
|
|
{
|
1395 |
|
|
case UNION_TYPE:
|
1396 |
|
|
case QUAL_UNION_TYPE:
|
1397 |
|
|
case RECORD_TYPE:
|
1398 |
|
|
for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
|
1399 |
|
|
{
|
1400 |
|
|
HOST_WIDE_INT pos, size;
|
1401 |
|
|
tree expr, *expr_ptr;
|
1402 |
|
|
|
1403 |
|
|
if (TREE_CODE (fld) != FIELD_DECL)
|
1404 |
|
|
continue;
|
1405 |
|
|
|
1406 |
|
|
pos = int_bit_position (fld);
|
1407 |
|
|
gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
|
1408 |
|
|
tr_size = DECL_SIZE (fld);
|
1409 |
|
|
if (!tr_size || !host_integerp (tr_size, 1))
|
1410 |
|
|
continue;
|
1411 |
|
|
size = tree_low_cst (tr_size, 1);
|
1412 |
|
|
if (size == 0)
|
1413 |
|
|
{
|
1414 |
|
|
if (pos != offset)
|
1415 |
|
|
continue;
|
1416 |
|
|
}
|
1417 |
|
|
else if (pos > offset || (pos + size) <= offset)
|
1418 |
|
|
continue;
|
1419 |
|
|
|
1420 |
|
|
if (res)
|
1421 |
|
|
{
|
1422 |
|
|
expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
|
1423 |
|
|
NULL_TREE);
|
1424 |
|
|
expr_ptr = &expr;
|
1425 |
|
|
}
|
1426 |
|
|
else
|
1427 |
|
|
expr_ptr = NULL;
|
1428 |
|
|
if (build_ref_for_offset_1 (expr_ptr, TREE_TYPE (fld),
|
1429 |
|
|
offset - pos, exp_type))
|
1430 |
|
|
{
|
1431 |
|
|
if (res)
|
1432 |
|
|
*res = expr;
|
1433 |
|
|
return true;
|
1434 |
|
|
}
|
1435 |
|
|
}
|
1436 |
|
|
return false;
|
1437 |
|
|
|
1438 |
|
|
case ARRAY_TYPE:
|
1439 |
|
|
tr_size = TYPE_SIZE (TREE_TYPE (type));
|
1440 |
|
|
if (!tr_size || !host_integerp (tr_size, 1))
|
1441 |
|
|
return false;
|
1442 |
|
|
el_size = tree_low_cst (tr_size, 1);
|
1443 |
|
|
|
1444 |
|
|
minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
|
1445 |
|
|
if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
|
1446 |
|
|
return false;
|
1447 |
|
|
if (res)
|
1448 |
|
|
{
|
1449 |
|
|
index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
|
1450 |
|
|
if (!integer_zerop (minidx))
|
1451 |
|
|
index = int_const_binop (PLUS_EXPR, index, minidx, 0);
|
1452 |
|
|
*res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
|
1453 |
|
|
NULL_TREE, NULL_TREE);
|
1454 |
|
|
}
|
1455 |
|
|
offset = offset % el_size;
|
1456 |
|
|
type = TREE_TYPE (type);
|
1457 |
|
|
break;
|
1458 |
|
|
|
1459 |
|
|
default:
|
1460 |
|
|
if (offset != 0)
|
1461 |
|
|
return false;
|
1462 |
|
|
|
1463 |
|
|
if (exp_type)
|
1464 |
|
|
return false;
|
1465 |
|
|
else
|
1466 |
|
|
return true;
|
1467 |
|
|
}
|
1468 |
|
|
}
|
1469 |
|
|
}
|
1470 |
|
|
|
1471 |
|
|
/* Construct an expression that would reference a part of aggregate *EXPR of
|
1472 |
|
|
type TYPE at the given OFFSET of the type EXP_TYPE. If EXPR is NULL, the
|
1473 |
|
|
function only determines whether it can build such a reference without
|
1474 |
|
|
actually doing it, otherwise, the tree it points to is unshared first and
|
1475 |
|
|
then used as a base for furhter sub-references.
|
1476 |
|
|
|
1477 |
|
|
FIXME: Eventually this should be replaced with
|
1478 |
|
|
maybe_fold_offset_to_reference() from tree-ssa-ccp.c but that requires a
|
1479 |
|
|
minor rewrite of fold_stmt.
|
1480 |
|
|
*/
|
1481 |
|
|
|
1482 |
|
|
bool
|
1483 |
|
|
build_ref_for_offset (tree *expr, tree type, HOST_WIDE_INT offset,
|
1484 |
|
|
tree exp_type, bool allow_ptr)
|
1485 |
|
|
{
|
1486 |
|
|
location_t loc = expr ? EXPR_LOCATION (*expr) : UNKNOWN_LOCATION;
|
1487 |
|
|
|
1488 |
|
|
if (expr)
|
1489 |
|
|
*expr = unshare_expr (*expr);
|
1490 |
|
|
|
1491 |
|
|
if (allow_ptr && POINTER_TYPE_P (type))
|
1492 |
|
|
{
|
1493 |
|
|
type = TREE_TYPE (type);
|
1494 |
|
|
if (expr)
|
1495 |
|
|
*expr = fold_build1_loc (loc, INDIRECT_REF, type, *expr);
|
1496 |
|
|
}
|
1497 |
|
|
|
1498 |
|
|
return build_ref_for_offset_1 (expr, type, offset, exp_type);
|
1499 |
|
|
}
|
1500 |
|
|
|
1501 |
|
|
/* Return true iff TYPE is stdarg va_list type. */
|
1502 |
|
|
|
1503 |
|
|
static inline bool
|
1504 |
|
|
is_va_list_type (tree type)
|
1505 |
|
|
{
|
1506 |
|
|
return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
|
1507 |
|
|
}
|
1508 |
|
|
|
1509 |
|
|
/* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
|
1510 |
|
|
those with type which is suitable for scalarization. */
|
1511 |
|
|
|
1512 |
|
|
static bool
|
1513 |
|
|
find_var_candidates (void)
|
1514 |
|
|
{
|
1515 |
|
|
tree var, type;
|
1516 |
|
|
referenced_var_iterator rvi;
|
1517 |
|
|
bool ret = false;
|
1518 |
|
|
|
1519 |
|
|
FOR_EACH_REFERENCED_VAR (var, rvi)
|
1520 |
|
|
{
|
1521 |
|
|
if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
|
1522 |
|
|
continue;
|
1523 |
|
|
type = TREE_TYPE (var);
|
1524 |
|
|
|
1525 |
|
|
if (!AGGREGATE_TYPE_P (type)
|
1526 |
|
|
|| needs_to_live_in_memory (var)
|
1527 |
|
|
|| TREE_THIS_VOLATILE (var)
|
1528 |
|
|
|| !COMPLETE_TYPE_P (type)
|
1529 |
|
|
|| !host_integerp (TYPE_SIZE (type), 1)
|
1530 |
|
|
|| tree_low_cst (TYPE_SIZE (type), 1) == 0
|
1531 |
|
|
|| type_internals_preclude_sra_p (type)
|
1532 |
|
|
/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
|
1533 |
|
|
we also want to schedule it rather late. Thus we ignore it in
|
1534 |
|
|
the early pass. */
|
1535 |
|
|
|| (sra_mode == SRA_MODE_EARLY_INTRA
|
1536 |
|
|
&& is_va_list_type (type)))
|
1537 |
|
|
continue;
|
1538 |
|
|
|
1539 |
|
|
bitmap_set_bit (candidate_bitmap, DECL_UID (var));
|
1540 |
|
|
|
1541 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1542 |
|
|
{
|
1543 |
|
|
fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
|
1544 |
|
|
print_generic_expr (dump_file, var, 0);
|
1545 |
|
|
fprintf (dump_file, "\n");
|
1546 |
|
|
}
|
1547 |
|
|
ret = true;
|
1548 |
|
|
}
|
1549 |
|
|
|
1550 |
|
|
return ret;
|
1551 |
|
|
}
|
1552 |
|
|
|
1553 |
|
|
/* Sort all accesses for the given variable, check for partial overlaps and
|
1554 |
|
|
return NULL if there are any. If there are none, pick a representative for
|
1555 |
|
|
each combination of offset and size and create a linked list out of them.
|
1556 |
|
|
Return the pointer to the first representative and make sure it is the first
|
1557 |
|
|
one in the vector of accesses. */
|
1558 |
|
|
|
1559 |
|
|
static struct access *
|
1560 |
|
|
sort_and_splice_var_accesses (tree var)
|
1561 |
|
|
{
|
1562 |
|
|
int i, j, access_count;
|
1563 |
|
|
struct access *res, **prev_acc_ptr = &res;
|
1564 |
|
|
VEC (access_p, heap) *access_vec;
|
1565 |
|
|
bool first = true;
|
1566 |
|
|
HOST_WIDE_INT low = -1, high = 0;
|
1567 |
|
|
|
1568 |
|
|
access_vec = get_base_access_vector (var);
|
1569 |
|
|
if (!access_vec)
|
1570 |
|
|
return NULL;
|
1571 |
|
|
access_count = VEC_length (access_p, access_vec);
|
1572 |
|
|
|
1573 |
|
|
/* Sort by <OFFSET, SIZE>. */
|
1574 |
|
|
qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
|
1575 |
|
|
compare_access_positions);
|
1576 |
|
|
|
1577 |
|
|
i = 0;
|
1578 |
|
|
while (i < access_count)
|
1579 |
|
|
{
|
1580 |
|
|
struct access *access = VEC_index (access_p, access_vec, i);
|
1581 |
|
|
bool grp_write = access->write;
|
1582 |
|
|
bool grp_read = !access->write;
|
1583 |
|
|
bool grp_assignment_read = access->grp_assignment_read;
|
1584 |
|
|
bool multiple_reads = false;
|
1585 |
|
|
bool total_scalarization = access->total_scalarization;
|
1586 |
|
|
bool grp_partial_lhs = access->grp_partial_lhs;
|
1587 |
|
|
bool first_scalar = is_gimple_reg_type (access->type);
|
1588 |
|
|
bool unscalarizable_region = access->grp_unscalarizable_region;
|
1589 |
|
|
|
1590 |
|
|
if (first || access->offset >= high)
|
1591 |
|
|
{
|
1592 |
|
|
first = false;
|
1593 |
|
|
low = access->offset;
|
1594 |
|
|
high = access->offset + access->size;
|
1595 |
|
|
}
|
1596 |
|
|
else if (access->offset > low && access->offset + access->size > high)
|
1597 |
|
|
return NULL;
|
1598 |
|
|
else
|
1599 |
|
|
gcc_assert (access->offset >= low
|
1600 |
|
|
&& access->offset + access->size <= high);
|
1601 |
|
|
|
1602 |
|
|
j = i + 1;
|
1603 |
|
|
while (j < access_count)
|
1604 |
|
|
{
|
1605 |
|
|
struct access *ac2 = VEC_index (access_p, access_vec, j);
|
1606 |
|
|
if (ac2->offset != access->offset || ac2->size != access->size)
|
1607 |
|
|
break;
|
1608 |
|
|
if (ac2->write)
|
1609 |
|
|
grp_write = true;
|
1610 |
|
|
else
|
1611 |
|
|
{
|
1612 |
|
|
if (grp_read)
|
1613 |
|
|
multiple_reads = true;
|
1614 |
|
|
else
|
1615 |
|
|
grp_read = true;
|
1616 |
|
|
}
|
1617 |
|
|
grp_assignment_read |= ac2->grp_assignment_read;
|
1618 |
|
|
grp_partial_lhs |= ac2->grp_partial_lhs;
|
1619 |
|
|
unscalarizable_region |= ac2->grp_unscalarizable_region;
|
1620 |
|
|
total_scalarization |= ac2->total_scalarization;
|
1621 |
|
|
relink_to_new_repr (access, ac2);
|
1622 |
|
|
|
1623 |
|
|
/* If there are both aggregate-type and scalar-type accesses with
|
1624 |
|
|
this combination of size and offset, the comparison function
|
1625 |
|
|
should have put the scalars first. */
|
1626 |
|
|
gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
|
1627 |
|
|
ac2->group_representative = access;
|
1628 |
|
|
j++;
|
1629 |
|
|
}
|
1630 |
|
|
|
1631 |
|
|
i = j;
|
1632 |
|
|
|
1633 |
|
|
access->group_representative = access;
|
1634 |
|
|
access->grp_write = grp_write;
|
1635 |
|
|
access->grp_read = grp_read;
|
1636 |
|
|
access->grp_assignment_read = grp_assignment_read;
|
1637 |
|
|
access->grp_hint = multiple_reads || total_scalarization;
|
1638 |
|
|
access->grp_partial_lhs = grp_partial_lhs;
|
1639 |
|
|
access->grp_unscalarizable_region = unscalarizable_region;
|
1640 |
|
|
if (access->first_link)
|
1641 |
|
|
add_access_to_work_queue (access);
|
1642 |
|
|
|
1643 |
|
|
*prev_acc_ptr = access;
|
1644 |
|
|
prev_acc_ptr = &access->next_grp;
|
1645 |
|
|
}
|
1646 |
|
|
|
1647 |
|
|
gcc_assert (res == VEC_index (access_p, access_vec, 0));
|
1648 |
|
|
return res;
|
1649 |
|
|
}
|
1650 |
|
|
|
1651 |
|
|
/* Create a variable for the given ACCESS which determines the type, name and a
|
1652 |
|
|
few other properties. Return the variable declaration and store it also to
|
1653 |
|
|
ACCESS->replacement. */
|
1654 |
|
|
|
1655 |
|
|
static tree
|
1656 |
|
|
create_access_replacement (struct access *access, bool rename)
|
1657 |
|
|
{
|
1658 |
|
|
tree repl;
|
1659 |
|
|
|
1660 |
|
|
repl = create_tmp_var (access->type, "SR");
|
1661 |
|
|
get_var_ann (repl);
|
1662 |
|
|
add_referenced_var (repl);
|
1663 |
|
|
if (rename)
|
1664 |
|
|
mark_sym_for_renaming (repl);
|
1665 |
|
|
|
1666 |
|
|
if (!access->grp_partial_lhs
|
1667 |
|
|
&& (TREE_CODE (access->type) == COMPLEX_TYPE
|
1668 |
|
|
|| TREE_CODE (access->type) == VECTOR_TYPE))
|
1669 |
|
|
DECL_GIMPLE_REG_P (repl) = 1;
|
1670 |
|
|
|
1671 |
|
|
DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
|
1672 |
|
|
DECL_ARTIFICIAL (repl) = 1;
|
1673 |
|
|
DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
|
1674 |
|
|
|
1675 |
|
|
if (DECL_NAME (access->base)
|
1676 |
|
|
&& !DECL_IGNORED_P (access->base)
|
1677 |
|
|
&& !DECL_ARTIFICIAL (access->base))
|
1678 |
|
|
{
|
1679 |
|
|
char *pretty_name = make_fancy_name (access->expr);
|
1680 |
|
|
|
1681 |
|
|
DECL_NAME (repl) = get_identifier (pretty_name);
|
1682 |
|
|
obstack_free (&name_obstack, pretty_name);
|
1683 |
|
|
|
1684 |
|
|
SET_DECL_DEBUG_EXPR (repl, access->expr);
|
1685 |
|
|
DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
|
1686 |
|
|
TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
|
1687 |
|
|
}
|
1688 |
|
|
else
|
1689 |
|
|
TREE_NO_WARNING (repl) = 1;
|
1690 |
|
|
|
1691 |
|
|
if (dump_file)
|
1692 |
|
|
{
|
1693 |
|
|
fprintf (dump_file, "Created a replacement for ");
|
1694 |
|
|
print_generic_expr (dump_file, access->base, 0);
|
1695 |
|
|
fprintf (dump_file, " offset: %u, size: %u: ",
|
1696 |
|
|
(unsigned) access->offset, (unsigned) access->size);
|
1697 |
|
|
print_generic_expr (dump_file, repl, 0);
|
1698 |
|
|
fprintf (dump_file, "\n");
|
1699 |
|
|
}
|
1700 |
|
|
sra_stats.replacements++;
|
1701 |
|
|
|
1702 |
|
|
return repl;
|
1703 |
|
|
}
|
1704 |
|
|
|
1705 |
|
|
/* Return ACCESS scalar replacement, create it if it does not exist yet. */
|
1706 |
|
|
|
1707 |
|
|
static inline tree
|
1708 |
|
|
get_access_replacement (struct access *access)
|
1709 |
|
|
{
|
1710 |
|
|
gcc_assert (access->grp_to_be_replaced);
|
1711 |
|
|
|
1712 |
|
|
if (!access->replacement_decl)
|
1713 |
|
|
access->replacement_decl = create_access_replacement (access, true);
|
1714 |
|
|
return access->replacement_decl;
|
1715 |
|
|
}
|
1716 |
|
|
|
1717 |
|
|
/* Return ACCESS scalar replacement, create it if it does not exist yet but do
|
1718 |
|
|
not mark it for renaming. */
|
1719 |
|
|
|
1720 |
|
|
static inline tree
|
1721 |
|
|
get_unrenamed_access_replacement (struct access *access)
|
1722 |
|
|
{
|
1723 |
|
|
gcc_assert (!access->grp_to_be_replaced);
|
1724 |
|
|
|
1725 |
|
|
if (!access->replacement_decl)
|
1726 |
|
|
access->replacement_decl = create_access_replacement (access, false);
|
1727 |
|
|
return access->replacement_decl;
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
/* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
|
1731 |
|
|
linked list along the way. Stop when *ACCESS is NULL or the access pointed
|
1732 |
|
|
to it is not "within" the root. Return false iff some accesses partially
|
1733 |
|
|
overlap. */
|
1734 |
|
|
|
1735 |
|
|
static bool
|
1736 |
|
|
build_access_subtree (struct access **access)
|
1737 |
|
|
{
|
1738 |
|
|
struct access *root = *access, *last_child = NULL;
|
1739 |
|
|
HOST_WIDE_INT limit = root->offset + root->size;
|
1740 |
|
|
|
1741 |
|
|
*access = (*access)->next_grp;
|
1742 |
|
|
while (*access && (*access)->offset + (*access)->size <= limit)
|
1743 |
|
|
{
|
1744 |
|
|
if (!last_child)
|
1745 |
|
|
root->first_child = *access;
|
1746 |
|
|
else
|
1747 |
|
|
last_child->next_sibling = *access;
|
1748 |
|
|
last_child = *access;
|
1749 |
|
|
|
1750 |
|
|
if (!build_access_subtree (access))
|
1751 |
|
|
return false;
|
1752 |
|
|
}
|
1753 |
|
|
|
1754 |
|
|
if (*access && (*access)->offset < limit)
|
1755 |
|
|
return false;
|
1756 |
|
|
|
1757 |
|
|
return true;
|
1758 |
|
|
}
|
1759 |
|
|
|
1760 |
|
|
/* Build a tree of access representatives, ACCESS is the pointer to the first
|
1761 |
|
|
one, others are linked in a list by the next_grp field. Return false iff
|
1762 |
|
|
some accesses partially overlap. */
|
1763 |
|
|
|
1764 |
|
|
static bool
|
1765 |
|
|
build_access_trees (struct access *access)
|
1766 |
|
|
{
|
1767 |
|
|
while (access)
|
1768 |
|
|
{
|
1769 |
|
|
struct access *root = access;
|
1770 |
|
|
|
1771 |
|
|
if (!build_access_subtree (&access))
|
1772 |
|
|
return false;
|
1773 |
|
|
root->next_grp = access;
|
1774 |
|
|
}
|
1775 |
|
|
return true;
|
1776 |
|
|
}
|
1777 |
|
|
|
1778 |
|
|
/* Return true if expr contains some ARRAY_REFs into a variable bounded
|
1779 |
|
|
array. */
|
1780 |
|
|
|
1781 |
|
|
static bool
|
1782 |
|
|
expr_with_var_bounded_array_refs_p (tree expr)
|
1783 |
|
|
{
|
1784 |
|
|
while (handled_component_p (expr))
|
1785 |
|
|
{
|
1786 |
|
|
if (TREE_CODE (expr) == ARRAY_REF
|
1787 |
|
|
&& !host_integerp (array_ref_low_bound (expr), 0))
|
1788 |
|
|
return true;
|
1789 |
|
|
expr = TREE_OPERAND (expr, 0);
|
1790 |
|
|
}
|
1791 |
|
|
return false;
|
1792 |
|
|
}
|
1793 |
|
|
|
1794 |
|
|
enum mark_read_status { SRA_MR_NOT_READ, SRA_MR_READ, SRA_MR_ASSIGN_READ};
|
1795 |
|
|
|
1796 |
|
|
/* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
|
1797 |
|
|
both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
|
1798 |
|
|
sorts of access flags appropriately along the way, notably always set
|
1799 |
|
|
grp_read and grp_assign_read according to MARK_READ and grp_write when
|
1800 |
|
|
MARK_WRITE is true. */
|
1801 |
|
|
|
1802 |
|
|
static bool
|
1803 |
|
|
analyze_access_subtree (struct access *root, bool allow_replacements,
|
1804 |
|
|
enum mark_read_status mark_read, bool mark_write)
|
1805 |
|
|
{
|
1806 |
|
|
struct access *child;
|
1807 |
|
|
HOST_WIDE_INT limit = root->offset + root->size;
|
1808 |
|
|
HOST_WIDE_INT covered_to = root->offset;
|
1809 |
|
|
bool scalar = is_gimple_reg_type (root->type);
|
1810 |
|
|
bool hole = false, sth_created = false;
|
1811 |
|
|
bool direct_read = root->grp_read;
|
1812 |
|
|
|
1813 |
|
|
if (mark_read == SRA_MR_ASSIGN_READ)
|
1814 |
|
|
{
|
1815 |
|
|
root->grp_read = 1;
|
1816 |
|
|
root->grp_assignment_read = 1;
|
1817 |
|
|
}
|
1818 |
|
|
if (mark_read == SRA_MR_READ)
|
1819 |
|
|
root->grp_read = 1;
|
1820 |
|
|
else if (root->grp_assignment_read)
|
1821 |
|
|
mark_read = SRA_MR_ASSIGN_READ;
|
1822 |
|
|
else if (root->grp_read)
|
1823 |
|
|
mark_read = SRA_MR_READ;
|
1824 |
|
|
|
1825 |
|
|
if (mark_write)
|
1826 |
|
|
root->grp_write = true;
|
1827 |
|
|
else if (root->grp_write)
|
1828 |
|
|
mark_write = true;
|
1829 |
|
|
|
1830 |
|
|
if (root->grp_unscalarizable_region)
|
1831 |
|
|
allow_replacements = false;
|
1832 |
|
|
|
1833 |
|
|
if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
|
1834 |
|
|
allow_replacements = false;
|
1835 |
|
|
|
1836 |
|
|
for (child = root->first_child; child; child = child->next_sibling)
|
1837 |
|
|
{
|
1838 |
|
|
if (!hole && child->offset < covered_to)
|
1839 |
|
|
hole = true;
|
1840 |
|
|
else
|
1841 |
|
|
covered_to += child->size;
|
1842 |
|
|
|
1843 |
|
|
sth_created |= analyze_access_subtree (child,
|
1844 |
|
|
allow_replacements && !scalar,
|
1845 |
|
|
mark_read, mark_write);
|
1846 |
|
|
|
1847 |
|
|
root->grp_unscalarized_data |= child->grp_unscalarized_data;
|
1848 |
|
|
hole |= !child->grp_covered;
|
1849 |
|
|
}
|
1850 |
|
|
|
1851 |
|
|
if (allow_replacements && scalar && !root->first_child
|
1852 |
|
|
&& (root->grp_hint
|
1853 |
|
|
|| (root->grp_write && (direct_read || root->grp_assignment_read)))
|
1854 |
|
|
/* We must not ICE later on when trying to build an access to the
|
1855 |
|
|
original data within the aggregate even when it is impossible to do in
|
1856 |
|
|
a defined way like in the PR 42703 testcase. Therefore we check
|
1857 |
|
|
pre-emptively here that we will be able to do that. */
|
1858 |
|
|
&& build_ref_for_offset (NULL, TREE_TYPE (root->base), root->offset,
|
1859 |
|
|
root->type, false))
|
1860 |
|
|
{
|
1861 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1862 |
|
|
{
|
1863 |
|
|
fprintf (dump_file, "Marking ");
|
1864 |
|
|
print_generic_expr (dump_file, root->base, 0);
|
1865 |
|
|
fprintf (dump_file, " offset: %u, size: %u: ",
|
1866 |
|
|
(unsigned) root->offset, (unsigned) root->size);
|
1867 |
|
|
fprintf (dump_file, " to be replaced.\n");
|
1868 |
|
|
}
|
1869 |
|
|
|
1870 |
|
|
root->grp_to_be_replaced = 1;
|
1871 |
|
|
sth_created = true;
|
1872 |
|
|
hole = false;
|
1873 |
|
|
}
|
1874 |
|
|
else if (covered_to < limit)
|
1875 |
|
|
hole = true;
|
1876 |
|
|
|
1877 |
|
|
if (sth_created && !hole)
|
1878 |
|
|
{
|
1879 |
|
|
root->grp_covered = 1;
|
1880 |
|
|
return true;
|
1881 |
|
|
}
|
1882 |
|
|
if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
|
1883 |
|
|
root->grp_unscalarized_data = 1; /* not covered and written to */
|
1884 |
|
|
if (sth_created)
|
1885 |
|
|
return true;
|
1886 |
|
|
return false;
|
1887 |
|
|
}
|
1888 |
|
|
|
1889 |
|
|
/* Analyze all access trees linked by next_grp by the means of
|
1890 |
|
|
analyze_access_subtree. */
|
1891 |
|
|
static bool
|
1892 |
|
|
analyze_access_trees (struct access *access)
|
1893 |
|
|
{
|
1894 |
|
|
bool ret = false;
|
1895 |
|
|
|
1896 |
|
|
while (access)
|
1897 |
|
|
{
|
1898 |
|
|
if (analyze_access_subtree (access, true, SRA_MR_NOT_READ, false))
|
1899 |
|
|
ret = true;
|
1900 |
|
|
access = access->next_grp;
|
1901 |
|
|
}
|
1902 |
|
|
|
1903 |
|
|
return ret;
|
1904 |
|
|
}
|
1905 |
|
|
|
1906 |
|
|
/* Return true iff a potential new child of LACC at offset OFFSET and with size
|
1907 |
|
|
SIZE would conflict with an already existing one. If exactly such a child
|
1908 |
|
|
already exists in LACC, store a pointer to it in EXACT_MATCH. */
|
1909 |
|
|
|
1910 |
|
|
static bool
|
1911 |
|
|
child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
|
1912 |
|
|
HOST_WIDE_INT size, struct access **exact_match)
|
1913 |
|
|
{
|
1914 |
|
|
struct access *child;
|
1915 |
|
|
|
1916 |
|
|
for (child = lacc->first_child; child; child = child->next_sibling)
|
1917 |
|
|
{
|
1918 |
|
|
if (child->offset == norm_offset && child->size == size)
|
1919 |
|
|
{
|
1920 |
|
|
*exact_match = child;
|
1921 |
|
|
return true;
|
1922 |
|
|
}
|
1923 |
|
|
|
1924 |
|
|
if (child->offset < norm_offset + size
|
1925 |
|
|
&& child->offset + child->size > norm_offset)
|
1926 |
|
|
return true;
|
1927 |
|
|
}
|
1928 |
|
|
|
1929 |
|
|
return false;
|
1930 |
|
|
}
|
1931 |
|
|
|
1932 |
|
|
/* Create a new child access of PARENT, with all properties just like MODEL
|
1933 |
|
|
except for its offset and with its grp_write false and grp_read true.
|
1934 |
|
|
Return the new access or NULL if it cannot be created. Note that this access
|
1935 |
|
|
is created long after all splicing and sorting, it's not located in any
|
1936 |
|
|
access vector and is automatically a representative of its group. */
|
1937 |
|
|
|
1938 |
|
|
static struct access *
|
1939 |
|
|
create_artificial_child_access (struct access *parent, struct access *model,
|
1940 |
|
|
HOST_WIDE_INT new_offset)
|
1941 |
|
|
{
|
1942 |
|
|
struct access *access;
|
1943 |
|
|
struct access **child;
|
1944 |
|
|
tree expr = parent->base;;
|
1945 |
|
|
|
1946 |
|
|
gcc_assert (!model->grp_unscalarizable_region);
|
1947 |
|
|
|
1948 |
|
|
if (!build_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
|
1949 |
|
|
model->type, false))
|
1950 |
|
|
return NULL;
|
1951 |
|
|
|
1952 |
|
|
access = (struct access *) pool_alloc (access_pool);
|
1953 |
|
|
memset (access, 0, sizeof (struct access));
|
1954 |
|
|
access->base = parent->base;
|
1955 |
|
|
access->expr = expr;
|
1956 |
|
|
access->offset = new_offset;
|
1957 |
|
|
access->size = model->size;
|
1958 |
|
|
access->type = model->type;
|
1959 |
|
|
access->grp_write = true;
|
1960 |
|
|
access->grp_read = false;
|
1961 |
|
|
|
1962 |
|
|
child = &parent->first_child;
|
1963 |
|
|
while (*child && (*child)->offset < new_offset)
|
1964 |
|
|
child = &(*child)->next_sibling;
|
1965 |
|
|
|
1966 |
|
|
access->next_sibling = *child;
|
1967 |
|
|
*child = access;
|
1968 |
|
|
|
1969 |
|
|
return access;
|
1970 |
|
|
}
|
1971 |
|
|
|
1972 |
|
|
|
1973 |
|
|
/* Propagate all subaccesses of RACC across an assignment link to LACC. Return
|
1974 |
|
|
true if any new subaccess was created. Additionally, if RACC is a scalar
|
1975 |
|
|
access but LACC is not, change the type of the latter, if possible. */
|
1976 |
|
|
|
1977 |
|
|
static bool
|
1978 |
|
|
propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
|
1979 |
|
|
{
|
1980 |
|
|
struct access *rchild;
|
1981 |
|
|
HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
|
1982 |
|
|
bool ret = false;
|
1983 |
|
|
|
1984 |
|
|
if (is_gimple_reg_type (lacc->type)
|
1985 |
|
|
|| lacc->grp_unscalarizable_region
|
1986 |
|
|
|| racc->grp_unscalarizable_region)
|
1987 |
|
|
return false;
|
1988 |
|
|
|
1989 |
|
|
if (!lacc->first_child && !racc->first_child
|
1990 |
|
|
&& is_gimple_reg_type (racc->type))
|
1991 |
|
|
{
|
1992 |
|
|
tree t = lacc->base;
|
1993 |
|
|
|
1994 |
|
|
if (build_ref_for_offset (&t, TREE_TYPE (t), lacc->offset, racc->type,
|
1995 |
|
|
false))
|
1996 |
|
|
{
|
1997 |
|
|
lacc->expr = t;
|
1998 |
|
|
lacc->type = racc->type;
|
1999 |
|
|
}
|
2000 |
|
|
return false;
|
2001 |
|
|
}
|
2002 |
|
|
|
2003 |
|
|
for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
|
2004 |
|
|
{
|
2005 |
|
|
struct access *new_acc = NULL;
|
2006 |
|
|
HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
|
2007 |
|
|
|
2008 |
|
|
if (rchild->grp_unscalarizable_region)
|
2009 |
|
|
continue;
|
2010 |
|
|
|
2011 |
|
|
if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
|
2012 |
|
|
&new_acc))
|
2013 |
|
|
{
|
2014 |
|
|
if (new_acc)
|
2015 |
|
|
{
|
2016 |
|
|
rchild->grp_hint = 1;
|
2017 |
|
|
new_acc->grp_hint |= new_acc->grp_read;
|
2018 |
|
|
if (rchild->first_child)
|
2019 |
|
|
ret |= propagate_subaccesses_across_link (new_acc, rchild);
|
2020 |
|
|
}
|
2021 |
|
|
continue;
|
2022 |
|
|
}
|
2023 |
|
|
|
2024 |
|
|
/* If a (part of) a union field is on the RHS of an assignment, it can
|
2025 |
|
|
have sub-accesses which do not make sense on the LHS (PR 40351).
|
2026 |
|
|
Check that this is not the case. */
|
2027 |
|
|
if (!build_ref_for_offset (NULL, TREE_TYPE (lacc->base), norm_offset,
|
2028 |
|
|
rchild->type, false))
|
2029 |
|
|
continue;
|
2030 |
|
|
|
2031 |
|
|
rchild->grp_hint = 1;
|
2032 |
|
|
new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
|
2033 |
|
|
if (new_acc)
|
2034 |
|
|
{
|
2035 |
|
|
ret = true;
|
2036 |
|
|
if (racc->first_child)
|
2037 |
|
|
propagate_subaccesses_across_link (new_acc, rchild);
|
2038 |
|
|
}
|
2039 |
|
|
}
|
2040 |
|
|
|
2041 |
|
|
return ret;
|
2042 |
|
|
}
|
2043 |
|
|
|
2044 |
|
|
/* Propagate all subaccesses across assignment links. */
|
2045 |
|
|
|
2046 |
|
|
static void
|
2047 |
|
|
propagate_all_subaccesses (void)
|
2048 |
|
|
{
|
2049 |
|
|
while (work_queue_head)
|
2050 |
|
|
{
|
2051 |
|
|
struct access *racc = pop_access_from_work_queue ();
|
2052 |
|
|
struct assign_link *link;
|
2053 |
|
|
|
2054 |
|
|
gcc_assert (racc->first_link);
|
2055 |
|
|
|
2056 |
|
|
for (link = racc->first_link; link; link = link->next)
|
2057 |
|
|
{
|
2058 |
|
|
struct access *lacc = link->lacc;
|
2059 |
|
|
|
2060 |
|
|
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
|
2061 |
|
|
continue;
|
2062 |
|
|
lacc = lacc->group_representative;
|
2063 |
|
|
if (propagate_subaccesses_across_link (lacc, racc)
|
2064 |
|
|
&& lacc->first_link)
|
2065 |
|
|
add_access_to_work_queue (lacc);
|
2066 |
|
|
}
|
2067 |
|
|
}
|
2068 |
|
|
}
|
2069 |
|
|
|
2070 |
|
|
/* Go through all accesses collected throughout the (intraprocedural) analysis
|
2071 |
|
|
stage, exclude overlapping ones, identify representatives and build trees
|
2072 |
|
|
out of them, making decisions about scalarization on the way. Return true
|
2073 |
|
|
iff there are any to-be-scalarized variables after this stage. */
|
2074 |
|
|
|
2075 |
|
|
static bool
|
2076 |
|
|
analyze_all_variable_accesses (void)
|
2077 |
|
|
{
|
2078 |
|
|
int res = 0;
|
2079 |
|
|
bitmap tmp = BITMAP_ALLOC (NULL);
|
2080 |
|
|
bitmap_iterator bi;
|
2081 |
|
|
unsigned i, max_total_scalarization_size;
|
2082 |
|
|
|
2083 |
|
|
max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
|
2084 |
|
|
* MOVE_RATIO (optimize_function_for_speed_p (cfun));
|
2085 |
|
|
|
2086 |
|
|
EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
|
2087 |
|
|
if (bitmap_bit_p (should_scalarize_away_bitmap, i)
|
2088 |
|
|
&& !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
|
2089 |
|
|
{
|
2090 |
|
|
tree var = referenced_var (i);
|
2091 |
|
|
|
2092 |
|
|
if (TREE_CODE (var) == VAR_DECL
|
2093 |
|
|
&& ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
|
2094 |
|
|
<= max_total_scalarization_size)
|
2095 |
|
|
&& type_consists_of_records_p (TREE_TYPE (var)))
|
2096 |
|
|
{
|
2097 |
|
|
completely_scalarize_record (var, var, 0);
|
2098 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2099 |
|
|
{
|
2100 |
|
|
fprintf (dump_file, "Will attempt to totally scalarize ");
|
2101 |
|
|
print_generic_expr (dump_file, var, 0);
|
2102 |
|
|
fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
|
2103 |
|
|
}
|
2104 |
|
|
}
|
2105 |
|
|
}
|
2106 |
|
|
|
2107 |
|
|
bitmap_copy (tmp, candidate_bitmap);
|
2108 |
|
|
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
|
2109 |
|
|
{
|
2110 |
|
|
tree var = referenced_var (i);
|
2111 |
|
|
struct access *access;
|
2112 |
|
|
|
2113 |
|
|
access = sort_and_splice_var_accesses (var);
|
2114 |
|
|
if (!access || !build_access_trees (access))
|
2115 |
|
|
disqualify_candidate (var,
|
2116 |
|
|
"No or inhibitingly overlapping accesses.");
|
2117 |
|
|
}
|
2118 |
|
|
|
2119 |
|
|
propagate_all_subaccesses ();
|
2120 |
|
|
|
2121 |
|
|
bitmap_copy (tmp, candidate_bitmap);
|
2122 |
|
|
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
|
2123 |
|
|
{
|
2124 |
|
|
tree var = referenced_var (i);
|
2125 |
|
|
struct access *access = get_first_repr_for_decl (var);
|
2126 |
|
|
|
2127 |
|
|
if (analyze_access_trees (access))
|
2128 |
|
|
{
|
2129 |
|
|
res++;
|
2130 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2131 |
|
|
{
|
2132 |
|
|
fprintf (dump_file, "\nAccess trees for ");
|
2133 |
|
|
print_generic_expr (dump_file, var, 0);
|
2134 |
|
|
fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
|
2135 |
|
|
dump_access_tree (dump_file, access);
|
2136 |
|
|
fprintf (dump_file, "\n");
|
2137 |
|
|
}
|
2138 |
|
|
}
|
2139 |
|
|
else
|
2140 |
|
|
disqualify_candidate (var, "No scalar replacements to be created.");
|
2141 |
|
|
}
|
2142 |
|
|
|
2143 |
|
|
BITMAP_FREE (tmp);
|
2144 |
|
|
|
2145 |
|
|
if (res)
|
2146 |
|
|
{
|
2147 |
|
|
statistics_counter_event (cfun, "Scalarized aggregates", res);
|
2148 |
|
|
return true;
|
2149 |
|
|
}
|
2150 |
|
|
else
|
2151 |
|
|
return false;
|
2152 |
|
|
}
|
2153 |
|
|
|
2154 |
|
|
/* Return true iff a reference statement into aggregate AGG can be built for
|
2155 |
|
|
every single to-be-replaced accesses that is a child of ACCESS, its sibling
|
2156 |
|
|
or a child of its sibling. TOP_OFFSET is the offset from the processed
|
2157 |
|
|
access subtree that has to be subtracted from offset of each access. */
|
2158 |
|
|
|
2159 |
|
|
static bool
|
2160 |
|
|
ref_expr_for_all_replacements_p (struct access *access, tree agg,
|
2161 |
|
|
HOST_WIDE_INT top_offset)
|
2162 |
|
|
{
|
2163 |
|
|
do
|
2164 |
|
|
{
|
2165 |
|
|
if (access->grp_to_be_replaced
|
2166 |
|
|
&& !build_ref_for_offset (NULL, TREE_TYPE (agg),
|
2167 |
|
|
access->offset - top_offset,
|
2168 |
|
|
access->type, false))
|
2169 |
|
|
return false;
|
2170 |
|
|
|
2171 |
|
|
if (access->first_child
|
2172 |
|
|
&& !ref_expr_for_all_replacements_p (access->first_child, agg,
|
2173 |
|
|
top_offset))
|
2174 |
|
|
return false;
|
2175 |
|
|
|
2176 |
|
|
access = access->next_sibling;
|
2177 |
|
|
}
|
2178 |
|
|
while (access);
|
2179 |
|
|
|
2180 |
|
|
return true;
|
2181 |
|
|
}
|
2182 |
|
|
|
2183 |
|
|
/* Generate statements copying scalar replacements of accesses within a subtree
|
2184 |
|
|
into or out of AGG. ACCESS is the first child of the root of the subtree to
|
2185 |
|
|
be processed. AGG is an aggregate type expression (can be a declaration but
|
2186 |
|
|
does not have to be, it can for example also be an indirect_ref).
|
2187 |
|
|
TOP_OFFSET is the offset of the processed subtree which has to be subtracted
|
2188 |
|
|
from offsets of individual accesses to get corresponding offsets for AGG.
|
2189 |
|
|
If CHUNK_SIZE is non-null, copy only replacements in the interval
|
2190 |
|
|
<start_offset, start_offset + chunk_size>, otherwise copy all. GSI is a
|
2191 |
|
|
statement iterator used to place the new statements. WRITE should be true
|
2192 |
|
|
when the statements should write from AGG to the replacement and false if
|
2193 |
|
|
vice versa. if INSERT_AFTER is true, new statements will be added after the
|
2194 |
|
|
current statement in GSI, they will be added before the statement
|
2195 |
|
|
otherwise. */
|
2196 |
|
|
|
2197 |
|
|
static void
|
2198 |
|
|
generate_subtree_copies (struct access *access, tree agg,
|
2199 |
|
|
HOST_WIDE_INT top_offset,
|
2200 |
|
|
HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
|
2201 |
|
|
gimple_stmt_iterator *gsi, bool write,
|
2202 |
|
|
bool insert_after)
|
2203 |
|
|
{
|
2204 |
|
|
do
|
2205 |
|
|
{
|
2206 |
|
|
tree expr = agg;
|
2207 |
|
|
|
2208 |
|
|
if (chunk_size && access->offset >= start_offset + chunk_size)
|
2209 |
|
|
return;
|
2210 |
|
|
|
2211 |
|
|
if (access->grp_to_be_replaced
|
2212 |
|
|
&& (chunk_size == 0
|
2213 |
|
|
|| access->offset + access->size > start_offset))
|
2214 |
|
|
{
|
2215 |
|
|
tree repl = get_access_replacement (access);
|
2216 |
|
|
bool ref_found;
|
2217 |
|
|
gimple stmt;
|
2218 |
|
|
|
2219 |
|
|
ref_found = build_ref_for_offset (&expr, TREE_TYPE (agg),
|
2220 |
|
|
access->offset - top_offset,
|
2221 |
|
|
access->type, false);
|
2222 |
|
|
gcc_assert (ref_found);
|
2223 |
|
|
|
2224 |
|
|
if (write)
|
2225 |
|
|
{
|
2226 |
|
|
if (access->grp_partial_lhs)
|
2227 |
|
|
expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
|
2228 |
|
|
!insert_after,
|
2229 |
|
|
insert_after ? GSI_NEW_STMT
|
2230 |
|
|
: GSI_SAME_STMT);
|
2231 |
|
|
stmt = gimple_build_assign (repl, expr);
|
2232 |
|
|
}
|
2233 |
|
|
else
|
2234 |
|
|
{
|
2235 |
|
|
TREE_NO_WARNING (repl) = 1;
|
2236 |
|
|
if (access->grp_partial_lhs)
|
2237 |
|
|
repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
|
2238 |
|
|
!insert_after,
|
2239 |
|
|
insert_after ? GSI_NEW_STMT
|
2240 |
|
|
: GSI_SAME_STMT);
|
2241 |
|
|
stmt = gimple_build_assign (expr, repl);
|
2242 |
|
|
}
|
2243 |
|
|
|
2244 |
|
|
if (insert_after)
|
2245 |
|
|
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
|
2246 |
|
|
else
|
2247 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
2248 |
|
|
update_stmt (stmt);
|
2249 |
|
|
sra_stats.subtree_copies++;
|
2250 |
|
|
}
|
2251 |
|
|
|
2252 |
|
|
if (access->first_child)
|
2253 |
|
|
generate_subtree_copies (access->first_child, agg, top_offset,
|
2254 |
|
|
start_offset, chunk_size, gsi,
|
2255 |
|
|
write, insert_after);
|
2256 |
|
|
|
2257 |
|
|
access = access->next_sibling;
|
2258 |
|
|
}
|
2259 |
|
|
while (access);
|
2260 |
|
|
}
|
2261 |
|
|
|
2262 |
|
|
/* Assign zero to all scalar replacements in an access subtree. ACCESS is the
|
2263 |
|
|
the root of the subtree to be processed. GSI is the statement iterator used
|
2264 |
|
|
for inserting statements which are added after the current statement if
|
2265 |
|
|
INSERT_AFTER is true or before it otherwise. */
|
2266 |
|
|
|
2267 |
|
|
static void
|
2268 |
|
|
init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
|
2269 |
|
|
bool insert_after)
|
2270 |
|
|
|
2271 |
|
|
{
|
2272 |
|
|
struct access *child;
|
2273 |
|
|
|
2274 |
|
|
if (access->grp_to_be_replaced)
|
2275 |
|
|
{
|
2276 |
|
|
gimple stmt;
|
2277 |
|
|
|
2278 |
|
|
stmt = gimple_build_assign (get_access_replacement (access),
|
2279 |
|
|
fold_convert (access->type,
|
2280 |
|
|
integer_zero_node));
|
2281 |
|
|
if (insert_after)
|
2282 |
|
|
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
|
2283 |
|
|
else
|
2284 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
2285 |
|
|
update_stmt (stmt);
|
2286 |
|
|
}
|
2287 |
|
|
|
2288 |
|
|
for (child = access->first_child; child; child = child->next_sibling)
|
2289 |
|
|
init_subtree_with_zero (child, gsi, insert_after);
|
2290 |
|
|
}
|
2291 |
|
|
|
2292 |
|
|
/* Search for an access representative for the given expression EXPR and
|
2293 |
|
|
return it or NULL if it cannot be found. */
|
2294 |
|
|
|
2295 |
|
|
static struct access *
|
2296 |
|
|
get_access_for_expr (tree expr)
|
2297 |
|
|
{
|
2298 |
|
|
HOST_WIDE_INT offset, size, max_size;
|
2299 |
|
|
tree base;
|
2300 |
|
|
|
2301 |
|
|
/* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
|
2302 |
|
|
a different size than the size of its argument and we need the latter
|
2303 |
|
|
one. */
|
2304 |
|
|
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
|
2305 |
|
|
expr = TREE_OPERAND (expr, 0);
|
2306 |
|
|
|
2307 |
|
|
base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
|
2308 |
|
|
if (max_size == -1 || !DECL_P (base))
|
2309 |
|
|
return NULL;
|
2310 |
|
|
|
2311 |
|
|
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
|
2312 |
|
|
return NULL;
|
2313 |
|
|
|
2314 |
|
|
return get_var_base_offset_size_access (base, offset, max_size);
|
2315 |
|
|
}
|
2316 |
|
|
|
2317 |
|
|
/* Callback for scan_function. Replace the expression EXPR with a scalar
|
2318 |
|
|
replacement if there is one and generate other statements to do type
|
2319 |
|
|
conversion or subtree copying if necessary. GSI is used to place newly
|
2320 |
|
|
created statements, WRITE is true if the expression is being written to (it
|
2321 |
|
|
is on a LHS of a statement or output in an assembly statement). */
|
2322 |
|
|
|
2323 |
|
|
static bool
|
2324 |
|
|
sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write,
|
2325 |
|
|
void *data ATTRIBUTE_UNUSED)
|
2326 |
|
|
{
|
2327 |
|
|
struct access *access;
|
2328 |
|
|
tree type, bfr;
|
2329 |
|
|
|
2330 |
|
|
if (TREE_CODE (*expr) == BIT_FIELD_REF)
|
2331 |
|
|
{
|
2332 |
|
|
bfr = *expr;
|
2333 |
|
|
expr = &TREE_OPERAND (*expr, 0);
|
2334 |
|
|
}
|
2335 |
|
|
else
|
2336 |
|
|
bfr = NULL_TREE;
|
2337 |
|
|
|
2338 |
|
|
if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
|
2339 |
|
|
expr = &TREE_OPERAND (*expr, 0);
|
2340 |
|
|
access = get_access_for_expr (*expr);
|
2341 |
|
|
if (!access)
|
2342 |
|
|
return false;
|
2343 |
|
|
type = TREE_TYPE (*expr);
|
2344 |
|
|
|
2345 |
|
|
if (access->grp_to_be_replaced)
|
2346 |
|
|
{
|
2347 |
|
|
tree repl = get_access_replacement (access);
|
2348 |
|
|
/* If we replace a non-register typed access simply use the original
|
2349 |
|
|
access expression to extract the scalar component afterwards.
|
2350 |
|
|
This happens if scalarizing a function return value or parameter
|
2351 |
|
|
like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
|
2352 |
|
|
gcc.c-torture/compile/20011217-1.c.
|
2353 |
|
|
|
2354 |
|
|
We also want to use this when accessing a complex or vector which can
|
2355 |
|
|
be accessed as a different type too, potentially creating a need for
|
2356 |
|
|
type conversion (see PR42196) and when scalarized unions are involved
|
2357 |
|
|
in assembler statements (see PR42398). */
|
2358 |
|
|
if (!useless_type_conversion_p (type, access->type))
|
2359 |
|
|
{
|
2360 |
|
|
tree ref = access->base;
|
2361 |
|
|
bool ok;
|
2362 |
|
|
|
2363 |
|
|
ok = build_ref_for_offset (&ref, TREE_TYPE (ref),
|
2364 |
|
|
access->offset, access->type, false);
|
2365 |
|
|
gcc_assert (ok);
|
2366 |
|
|
|
2367 |
|
|
if (write)
|
2368 |
|
|
{
|
2369 |
|
|
gimple stmt;
|
2370 |
|
|
|
2371 |
|
|
if (access->grp_partial_lhs)
|
2372 |
|
|
ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
|
2373 |
|
|
false, GSI_NEW_STMT);
|
2374 |
|
|
stmt = gimple_build_assign (repl, ref);
|
2375 |
|
|
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
|
2376 |
|
|
}
|
2377 |
|
|
else
|
2378 |
|
|
{
|
2379 |
|
|
gimple stmt;
|
2380 |
|
|
|
2381 |
|
|
if (access->grp_partial_lhs)
|
2382 |
|
|
repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
|
2383 |
|
|
true, GSI_SAME_STMT);
|
2384 |
|
|
stmt = gimple_build_assign (ref, repl);
|
2385 |
|
|
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
|
2386 |
|
|
}
|
2387 |
|
|
}
|
2388 |
|
|
else
|
2389 |
|
|
*expr = repl;
|
2390 |
|
|
sra_stats.exprs++;
|
2391 |
|
|
}
|
2392 |
|
|
|
2393 |
|
|
if (access->first_child)
|
2394 |
|
|
{
|
2395 |
|
|
HOST_WIDE_INT start_offset, chunk_size;
|
2396 |
|
|
if (bfr
|
2397 |
|
|
&& host_integerp (TREE_OPERAND (bfr, 1), 1)
|
2398 |
|
|
&& host_integerp (TREE_OPERAND (bfr, 2), 1))
|
2399 |
|
|
{
|
2400 |
|
|
chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
|
2401 |
|
|
start_offset = access->offset
|
2402 |
|
|
+ tree_low_cst (TREE_OPERAND (bfr, 2), 1);
|
2403 |
|
|
}
|
2404 |
|
|
else
|
2405 |
|
|
start_offset = chunk_size = 0;
|
2406 |
|
|
|
2407 |
|
|
generate_subtree_copies (access->first_child, access->base, 0,
|
2408 |
|
|
start_offset, chunk_size, gsi, write, write);
|
2409 |
|
|
}
|
2410 |
|
|
return true;
|
2411 |
|
|
}
|
2412 |
|
|
|
2413 |
|
|
/* Where scalar replacements of the RHS have been written to when a replacement
|
2414 |
|
|
of a LHS of an assigments cannot be direclty loaded from a replacement of
|
2415 |
|
|
the RHS. */
|
2416 |
|
|
enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
|
2417 |
|
|
SRA_UDH_RIGHT, /* Data flushed to the RHS. */
|
2418 |
|
|
SRA_UDH_LEFT }; /* Data flushed to the LHS. */
|
2419 |
|
|
|
2420 |
|
|
/* Store all replacements in the access tree rooted in TOP_RACC either to their
|
2421 |
|
|
base aggregate if there are unscalarized data or directly to LHS
|
2422 |
|
|
otherwise. */
|
2423 |
|
|
|
2424 |
|
|
static enum unscalarized_data_handling
|
2425 |
|
|
handle_unscalarized_data_in_subtree (struct access *top_racc, tree lhs,
|
2426 |
|
|
gimple_stmt_iterator *gsi)
|
2427 |
|
|
{
|
2428 |
|
|
if (top_racc->grp_unscalarized_data)
|
2429 |
|
|
{
|
2430 |
|
|
generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
|
2431 |
|
|
gsi, false, false);
|
2432 |
|
|
return SRA_UDH_RIGHT;
|
2433 |
|
|
}
|
2434 |
|
|
else
|
2435 |
|
|
{
|
2436 |
|
|
generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
|
2437 |
|
|
0, 0, gsi, false, false);
|
2438 |
|
|
return SRA_UDH_LEFT;
|
2439 |
|
|
}
|
2440 |
|
|
}
|
2441 |
|
|
|
2442 |
|
|
|
2443 |
|
|
/* Try to generate statements to load all sub-replacements in an access
|
2444 |
|
|
(sub)tree (LACC is the first child) from scalar replacements in the TOP_RACC
|
2445 |
|
|
(sub)tree. If that is not possible, refresh the TOP_RACC base aggregate and
|
2446 |
|
|
load the accesses from it. LEFT_OFFSET is the offset of the left whole
|
2447 |
|
|
subtree being copied, RIGHT_OFFSET is the same thing for the right subtree.
|
2448 |
|
|
NEW_GSI is stmt iterator used for statement insertions after the original
|
2449 |
|
|
assignment, OLD_GSI is used to insert statements before the assignment.
|
2450 |
|
|
*REFRESHED keeps the information whether we have needed to refresh
|
2451 |
|
|
replacements of the LHS and from which side of the assignments this takes
|
2452 |
|
|
place. */
|
2453 |
|
|
|
2454 |
|
|
static void
|
2455 |
|
|
load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
|
2456 |
|
|
HOST_WIDE_INT left_offset,
|
2457 |
|
|
HOST_WIDE_INT right_offset,
|
2458 |
|
|
gimple_stmt_iterator *old_gsi,
|
2459 |
|
|
gimple_stmt_iterator *new_gsi,
|
2460 |
|
|
enum unscalarized_data_handling *refreshed,
|
2461 |
|
|
tree lhs)
|
2462 |
|
|
{
|
2463 |
|
|
location_t loc = EXPR_LOCATION (lacc->expr);
|
2464 |
|
|
do
|
2465 |
|
|
{
|
2466 |
|
|
if (lacc->grp_to_be_replaced)
|
2467 |
|
|
{
|
2468 |
|
|
struct access *racc;
|
2469 |
|
|
HOST_WIDE_INT offset = lacc->offset - left_offset + right_offset;
|
2470 |
|
|
gimple stmt;
|
2471 |
|
|
tree rhs;
|
2472 |
|
|
|
2473 |
|
|
racc = find_access_in_subtree (top_racc, offset, lacc->size);
|
2474 |
|
|
if (racc && racc->grp_to_be_replaced)
|
2475 |
|
|
{
|
2476 |
|
|
rhs = get_access_replacement (racc);
|
2477 |
|
|
if (!useless_type_conversion_p (lacc->type, racc->type))
|
2478 |
|
|
rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
|
2479 |
|
|
}
|
2480 |
|
|
else
|
2481 |
|
|
{
|
2482 |
|
|
/* No suitable access on the right hand side, need to load from
|
2483 |
|
|
the aggregate. See if we have to update it first... */
|
2484 |
|
|
if (*refreshed == SRA_UDH_NONE)
|
2485 |
|
|
*refreshed = handle_unscalarized_data_in_subtree (top_racc,
|
2486 |
|
|
lhs, old_gsi);
|
2487 |
|
|
|
2488 |
|
|
if (*refreshed == SRA_UDH_LEFT)
|
2489 |
|
|
{
|
2490 |
|
|
bool repl_found;
|
2491 |
|
|
|
2492 |
|
|
rhs = lacc->base;
|
2493 |
|
|
repl_found = build_ref_for_offset (&rhs, TREE_TYPE (rhs),
|
2494 |
|
|
lacc->offset, lacc->type,
|
2495 |
|
|
false);
|
2496 |
|
|
gcc_assert (repl_found);
|
2497 |
|
|
}
|
2498 |
|
|
else
|
2499 |
|
|
{
|
2500 |
|
|
bool repl_found;
|
2501 |
|
|
|
2502 |
|
|
rhs = top_racc->base;
|
2503 |
|
|
repl_found = build_ref_for_offset (&rhs,
|
2504 |
|
|
TREE_TYPE (top_racc->base),
|
2505 |
|
|
offset, lacc->type, false);
|
2506 |
|
|
gcc_assert (repl_found);
|
2507 |
|
|
}
|
2508 |
|
|
}
|
2509 |
|
|
|
2510 |
|
|
stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
|
2511 |
|
|
gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
|
2512 |
|
|
update_stmt (stmt);
|
2513 |
|
|
sra_stats.subreplacements++;
|
2514 |
|
|
}
|
2515 |
|
|
else if (*refreshed == SRA_UDH_NONE
|
2516 |
|
|
&& lacc->grp_read && !lacc->grp_covered)
|
2517 |
|
|
*refreshed = handle_unscalarized_data_in_subtree (top_racc, lhs,
|
2518 |
|
|
old_gsi);
|
2519 |
|
|
|
2520 |
|
|
if (lacc->first_child)
|
2521 |
|
|
load_assign_lhs_subreplacements (lacc->first_child, top_racc,
|
2522 |
|
|
left_offset, right_offset,
|
2523 |
|
|
old_gsi, new_gsi, refreshed, lhs);
|
2524 |
|
|
lacc = lacc->next_sibling;
|
2525 |
|
|
}
|
2526 |
|
|
while (lacc);
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
/* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
|
2530 |
|
|
to the assignment and GSI is the statement iterator pointing at it. Returns
|
2531 |
|
|
the same values as sra_modify_assign. */
|
2532 |
|
|
|
2533 |
|
|
static enum scan_assign_result
|
2534 |
|
|
sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
|
2535 |
|
|
{
|
2536 |
|
|
tree lhs = gimple_assign_lhs (*stmt);
|
2537 |
|
|
struct access *acc;
|
2538 |
|
|
|
2539 |
|
|
acc = get_access_for_expr (lhs);
|
2540 |
|
|
if (!acc)
|
2541 |
|
|
return SRA_SA_NONE;
|
2542 |
|
|
|
2543 |
|
|
if (VEC_length (constructor_elt,
|
2544 |
|
|
CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
|
2545 |
|
|
{
|
2546 |
|
|
/* I have never seen this code path trigger but if it can happen the
|
2547 |
|
|
following should handle it gracefully. */
|
2548 |
|
|
if (access_has_children_p (acc))
|
2549 |
|
|
generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
|
2550 |
|
|
true, true);
|
2551 |
|
|
return SRA_SA_PROCESSED;
|
2552 |
|
|
}
|
2553 |
|
|
|
2554 |
|
|
if (acc->grp_covered)
|
2555 |
|
|
{
|
2556 |
|
|
init_subtree_with_zero (acc, gsi, false);
|
2557 |
|
|
unlink_stmt_vdef (*stmt);
|
2558 |
|
|
gsi_remove (gsi, true);
|
2559 |
|
|
return SRA_SA_REMOVED;
|
2560 |
|
|
}
|
2561 |
|
|
else
|
2562 |
|
|
{
|
2563 |
|
|
init_subtree_with_zero (acc, gsi, true);
|
2564 |
|
|
return SRA_SA_PROCESSED;
|
2565 |
|
|
}
|
2566 |
|
|
}
|
2567 |
|
|
|
2568 |
|
|
/* Create a new suitable default definition SSA_NAME and replace all uses of
|
2569 |
|
|
SSA with it, RACC is access describing the uninitialized part of an
|
2570 |
|
|
aggregate that is being loaded. */
|
2571 |
|
|
|
2572 |
|
|
static void
|
2573 |
|
|
replace_uses_with_default_def_ssa_name (tree ssa, struct access *racc)
|
2574 |
|
|
{
|
2575 |
|
|
tree repl, decl;
|
2576 |
|
|
|
2577 |
|
|
decl = get_unrenamed_access_replacement (racc);
|
2578 |
|
|
|
2579 |
|
|
repl = gimple_default_def (cfun, decl);
|
2580 |
|
|
if (!repl)
|
2581 |
|
|
{
|
2582 |
|
|
repl = make_ssa_name (decl, gimple_build_nop ());
|
2583 |
|
|
set_default_def (decl, repl);
|
2584 |
|
|
}
|
2585 |
|
|
|
2586 |
|
|
replace_uses_by (ssa, repl);
|
2587 |
|
|
}
|
2588 |
|
|
|
2589 |
|
|
/* Callback of scan_function to process assign statements. It examines both
|
2590 |
|
|
sides of the statement, replaces them with a scalare replacement if there is
|
2591 |
|
|
one and generating copying of replacements if scalarized aggregates have been
|
2592 |
|
|
used in the assignment. STMT is a pointer to the assign statement, GSI is
|
2593 |
|
|
used to hold generated statements for type conversions and subtree
|
2594 |
|
|
copying. */
|
2595 |
|
|
|
2596 |
|
|
static enum scan_assign_result
|
2597 |
|
|
sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi,
|
2598 |
|
|
void *data ATTRIBUTE_UNUSED)
|
2599 |
|
|
{
|
2600 |
|
|
struct access *lacc, *racc;
|
2601 |
|
|
tree lhs, rhs;
|
2602 |
|
|
bool modify_this_stmt = false;
|
2603 |
|
|
bool force_gimple_rhs = false;
|
2604 |
|
|
location_t loc = gimple_location (*stmt);
|
2605 |
|
|
gimple_stmt_iterator orig_gsi = *gsi;
|
2606 |
|
|
|
2607 |
|
|
if (!gimple_assign_single_p (*stmt))
|
2608 |
|
|
return SRA_SA_NONE;
|
2609 |
|
|
lhs = gimple_assign_lhs (*stmt);
|
2610 |
|
|
rhs = gimple_assign_rhs1 (*stmt);
|
2611 |
|
|
|
2612 |
|
|
if (TREE_CODE (rhs) == CONSTRUCTOR)
|
2613 |
|
|
return sra_modify_constructor_assign (stmt, gsi);
|
2614 |
|
|
|
2615 |
|
|
if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
|
2616 |
|
|
|| TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
|
2617 |
|
|
|| TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
|
2618 |
|
|
{
|
2619 |
|
|
modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
|
2620 |
|
|
gsi, false, data);
|
2621 |
|
|
modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
|
2622 |
|
|
gsi, true, data);
|
2623 |
|
|
return modify_this_stmt ? SRA_SA_PROCESSED : SRA_SA_NONE;
|
2624 |
|
|
}
|
2625 |
|
|
|
2626 |
|
|
lacc = get_access_for_expr (lhs);
|
2627 |
|
|
racc = get_access_for_expr (rhs);
|
2628 |
|
|
if (!lacc && !racc)
|
2629 |
|
|
return SRA_SA_NONE;
|
2630 |
|
|
|
2631 |
|
|
if (lacc && lacc->grp_to_be_replaced)
|
2632 |
|
|
{
|
2633 |
|
|
lhs = get_access_replacement (lacc);
|
2634 |
|
|
gimple_assign_set_lhs (*stmt, lhs);
|
2635 |
|
|
modify_this_stmt = true;
|
2636 |
|
|
if (lacc->grp_partial_lhs)
|
2637 |
|
|
force_gimple_rhs = true;
|
2638 |
|
|
sra_stats.exprs++;
|
2639 |
|
|
}
|
2640 |
|
|
|
2641 |
|
|
if (racc && racc->grp_to_be_replaced)
|
2642 |
|
|
{
|
2643 |
|
|
rhs = get_access_replacement (racc);
|
2644 |
|
|
modify_this_stmt = true;
|
2645 |
|
|
if (racc->grp_partial_lhs)
|
2646 |
|
|
force_gimple_rhs = true;
|
2647 |
|
|
sra_stats.exprs++;
|
2648 |
|
|
}
|
2649 |
|
|
|
2650 |
|
|
if (modify_this_stmt)
|
2651 |
|
|
{
|
2652 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
|
2653 |
|
|
{
|
2654 |
|
|
/* If we can avoid creating a VIEW_CONVERT_EXPR do so.
|
2655 |
|
|
??? This should move to fold_stmt which we simply should
|
2656 |
|
|
call after building a VIEW_CONVERT_EXPR here. */
|
2657 |
|
|
if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
|
2658 |
|
|
&& !access_has_children_p (lacc))
|
2659 |
|
|
{
|
2660 |
|
|
tree expr = lhs;
|
2661 |
|
|
if (build_ref_for_offset (&expr, TREE_TYPE (lhs), 0,
|
2662 |
|
|
TREE_TYPE (rhs), false))
|
2663 |
|
|
{
|
2664 |
|
|
lhs = expr;
|
2665 |
|
|
gimple_assign_set_lhs (*stmt, expr);
|
2666 |
|
|
}
|
2667 |
|
|
}
|
2668 |
|
|
else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
|
2669 |
|
|
&& !access_has_children_p (racc))
|
2670 |
|
|
{
|
2671 |
|
|
tree expr = rhs;
|
2672 |
|
|
if (build_ref_for_offset (&expr, TREE_TYPE (rhs), 0,
|
2673 |
|
|
TREE_TYPE (lhs), false))
|
2674 |
|
|
rhs = expr;
|
2675 |
|
|
}
|
2676 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
|
2677 |
|
|
{
|
2678 |
|
|
rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
|
2679 |
|
|
if (is_gimple_reg_type (TREE_TYPE (lhs))
|
2680 |
|
|
&& TREE_CODE (lhs) != SSA_NAME)
|
2681 |
|
|
force_gimple_rhs = true;
|
2682 |
|
|
}
|
2683 |
|
|
}
|
2684 |
|
|
}
|
2685 |
|
|
|
2686 |
|
|
/* From this point on, the function deals with assignments in between
|
2687 |
|
|
aggregates when at least one has scalar reductions of some of its
|
2688 |
|
|
components. There are three possible scenarios: Both the LHS and RHS have
|
2689 |
|
|
to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
|
2690 |
|
|
|
2691 |
|
|
In the first case, we would like to load the LHS components from RHS
|
2692 |
|
|
components whenever possible. If that is not possible, we would like to
|
2693 |
|
|
read it directly from the RHS (after updating it by storing in it its own
|
2694 |
|
|
components). If there are some necessary unscalarized data in the LHS,
|
2695 |
|
|
those will be loaded by the original assignment too. If neither of these
|
2696 |
|
|
cases happen, the original statement can be removed. Most of this is done
|
2697 |
|
|
by load_assign_lhs_subreplacements.
|
2698 |
|
|
|
2699 |
|
|
In the second case, we would like to store all RHS scalarized components
|
2700 |
|
|
directly into LHS and if they cover the aggregate completely, remove the
|
2701 |
|
|
statement too. In the third case, we want the LHS components to be loaded
|
2702 |
|
|
directly from the RHS (DSE will remove the original statement if it
|
2703 |
|
|
becomes redundant).
|
2704 |
|
|
|
2705 |
|
|
This is a bit complex but manageable when types match and when unions do
|
2706 |
|
|
not cause confusion in a way that we cannot really load a component of LHS
|
2707 |
|
|
from the RHS or vice versa (the access representing this level can have
|
2708 |
|
|
subaccesses that are accessible only through a different union field at a
|
2709 |
|
|
higher level - different from the one used in the examined expression).
|
2710 |
|
|
Unions are fun.
|
2711 |
|
|
|
2712 |
|
|
Therefore, I specially handle a fourth case, happening when there is a
|
2713 |
|
|
specific type cast or it is impossible to locate a scalarized subaccess on
|
2714 |
|
|
the other side of the expression. If that happens, I simply "refresh" the
|
2715 |
|
|
RHS by storing in it is scalarized components leave the original statement
|
2716 |
|
|
there to do the copying and then load the scalar replacements of the LHS.
|
2717 |
|
|
This is what the first branch does. */
|
2718 |
|
|
|
2719 |
|
|
if (gimple_has_volatile_ops (*stmt)
|
2720 |
|
|
|| contains_view_convert_expr_p (rhs)
|
2721 |
|
|
|| contains_view_convert_expr_p (lhs)
|
2722 |
|
|
|| (access_has_children_p (racc)
|
2723 |
|
|
&& !ref_expr_for_all_replacements_p (racc, lhs, racc->offset))
|
2724 |
|
|
|| (access_has_children_p (lacc)
|
2725 |
|
|
&& !ref_expr_for_all_replacements_p (lacc, rhs, lacc->offset)))
|
2726 |
|
|
{
|
2727 |
|
|
if (access_has_children_p (racc))
|
2728 |
|
|
generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
|
2729 |
|
|
gsi, false, false);
|
2730 |
|
|
if (access_has_children_p (lacc))
|
2731 |
|
|
generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
|
2732 |
|
|
gsi, true, true);
|
2733 |
|
|
sra_stats.separate_lhs_rhs_handling++;
|
2734 |
|
|
}
|
2735 |
|
|
else
|
2736 |
|
|
{
|
2737 |
|
|
if (access_has_children_p (lacc) && access_has_children_p (racc))
|
2738 |
|
|
{
|
2739 |
|
|
gimple_stmt_iterator orig_gsi = *gsi;
|
2740 |
|
|
enum unscalarized_data_handling refreshed;
|
2741 |
|
|
|
2742 |
|
|
if (lacc->grp_read && !lacc->grp_covered)
|
2743 |
|
|
refreshed = handle_unscalarized_data_in_subtree (racc, lhs, gsi);
|
2744 |
|
|
else
|
2745 |
|
|
refreshed = SRA_UDH_NONE;
|
2746 |
|
|
|
2747 |
|
|
load_assign_lhs_subreplacements (lacc->first_child, racc,
|
2748 |
|
|
lacc->offset, racc->offset,
|
2749 |
|
|
&orig_gsi, gsi, &refreshed, lhs);
|
2750 |
|
|
if (refreshed != SRA_UDH_RIGHT)
|
2751 |
|
|
{
|
2752 |
|
|
gsi_next (gsi);
|
2753 |
|
|
unlink_stmt_vdef (*stmt);
|
2754 |
|
|
gsi_remove (&orig_gsi, true);
|
2755 |
|
|
sra_stats.deleted++;
|
2756 |
|
|
return SRA_SA_REMOVED;
|
2757 |
|
|
}
|
2758 |
|
|
}
|
2759 |
|
|
else
|
2760 |
|
|
{
|
2761 |
|
|
if (racc)
|
2762 |
|
|
{
|
2763 |
|
|
if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data)
|
2764 |
|
|
{
|
2765 |
|
|
if (racc->first_child)
|
2766 |
|
|
generate_subtree_copies (racc->first_child, lhs,
|
2767 |
|
|
racc->offset, 0, 0, gsi,
|
2768 |
|
|
false, false);
|
2769 |
|
|
gcc_assert (*stmt == gsi_stmt (*gsi));
|
2770 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
2771 |
|
|
replace_uses_with_default_def_ssa_name (lhs, racc);
|
2772 |
|
|
|
2773 |
|
|
unlink_stmt_vdef (*stmt);
|
2774 |
|
|
gsi_remove (gsi, true);
|
2775 |
|
|
sra_stats.deleted++;
|
2776 |
|
|
return SRA_SA_REMOVED;
|
2777 |
|
|
}
|
2778 |
|
|
else if (racc->first_child)
|
2779 |
|
|
generate_subtree_copies (racc->first_child, lhs,
|
2780 |
|
|
racc->offset, 0, 0, gsi, false, true);
|
2781 |
|
|
}
|
2782 |
|
|
if (access_has_children_p (lacc))
|
2783 |
|
|
generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
|
2784 |
|
|
0, 0, gsi, true, true);
|
2785 |
|
|
}
|
2786 |
|
|
}
|
2787 |
|
|
|
2788 |
|
|
/* This gimplification must be done after generate_subtree_copies, lest we
|
2789 |
|
|
insert the subtree copies in the middle of the gimplified sequence. */
|
2790 |
|
|
if (force_gimple_rhs)
|
2791 |
|
|
rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
|
2792 |
|
|
true, GSI_SAME_STMT);
|
2793 |
|
|
if (gimple_assign_rhs1 (*stmt) != rhs)
|
2794 |
|
|
{
|
2795 |
|
|
gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
|
2796 |
|
|
gcc_assert (*stmt == gsi_stmt (orig_gsi));
|
2797 |
|
|
}
|
2798 |
|
|
|
2799 |
|
|
return modify_this_stmt ? SRA_SA_PROCESSED : SRA_SA_NONE;
|
2800 |
|
|
}
|
2801 |
|
|
|
2802 |
|
|
/* Generate statements initializing scalar replacements of parts of function
|
2803 |
|
|
parameters. */
|
2804 |
|
|
|
2805 |
|
|
static void
|
2806 |
|
|
initialize_parameter_reductions (void)
|
2807 |
|
|
{
|
2808 |
|
|
gimple_stmt_iterator gsi;
|
2809 |
|
|
gimple_seq seq = NULL;
|
2810 |
|
|
tree parm;
|
2811 |
|
|
|
2812 |
|
|
for (parm = DECL_ARGUMENTS (current_function_decl);
|
2813 |
|
|
parm;
|
2814 |
|
|
parm = TREE_CHAIN (parm))
|
2815 |
|
|
{
|
2816 |
|
|
VEC (access_p, heap) *access_vec;
|
2817 |
|
|
struct access *access;
|
2818 |
|
|
|
2819 |
|
|
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
|
2820 |
|
|
continue;
|
2821 |
|
|
access_vec = get_base_access_vector (parm);
|
2822 |
|
|
if (!access_vec)
|
2823 |
|
|
continue;
|
2824 |
|
|
|
2825 |
|
|
if (!seq)
|
2826 |
|
|
{
|
2827 |
|
|
seq = gimple_seq_alloc ();
|
2828 |
|
|
gsi = gsi_start (seq);
|
2829 |
|
|
}
|
2830 |
|
|
|
2831 |
|
|
for (access = VEC_index (access_p, access_vec, 0);
|
2832 |
|
|
access;
|
2833 |
|
|
access = access->next_grp)
|
2834 |
|
|
generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true);
|
2835 |
|
|
}
|
2836 |
|
|
|
2837 |
|
|
if (seq)
|
2838 |
|
|
gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
|
2839 |
|
|
}
|
2840 |
|
|
|
2841 |
|
|
/* The "main" function of intraprocedural SRA passes. Runs the analysis and if
|
2842 |
|
|
it reveals there are components of some aggregates to be scalarized, it runs
|
2843 |
|
|
the required transformations. */
|
2844 |
|
|
static unsigned int
|
2845 |
|
|
perform_intra_sra (void)
|
2846 |
|
|
{
|
2847 |
|
|
int ret = 0;
|
2848 |
|
|
sra_initialize ();
|
2849 |
|
|
|
2850 |
|
|
if (!find_var_candidates ())
|
2851 |
|
|
goto out;
|
2852 |
|
|
|
2853 |
|
|
if (!scan_function (build_access_from_expr, build_accesses_from_assign, NULL,
|
2854 |
|
|
true, NULL))
|
2855 |
|
|
goto out;
|
2856 |
|
|
|
2857 |
|
|
if (!analyze_all_variable_accesses ())
|
2858 |
|
|
goto out;
|
2859 |
|
|
|
2860 |
|
|
scan_function (sra_modify_expr, sra_modify_assign, NULL, false, NULL);
|
2861 |
|
|
initialize_parameter_reductions ();
|
2862 |
|
|
|
2863 |
|
|
statistics_counter_event (cfun, "Scalar replacements created",
|
2864 |
|
|
sra_stats.replacements);
|
2865 |
|
|
statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
|
2866 |
|
|
statistics_counter_event (cfun, "Subtree copy stmts",
|
2867 |
|
|
sra_stats.subtree_copies);
|
2868 |
|
|
statistics_counter_event (cfun, "Subreplacement stmts",
|
2869 |
|
|
sra_stats.subreplacements);
|
2870 |
|
|
statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
|
2871 |
|
|
statistics_counter_event (cfun, "Separate LHS and RHS handling",
|
2872 |
|
|
sra_stats.separate_lhs_rhs_handling);
|
2873 |
|
|
|
2874 |
|
|
ret = TODO_update_ssa;
|
2875 |
|
|
|
2876 |
|
|
out:
|
2877 |
|
|
sra_deinitialize ();
|
2878 |
|
|
return ret;
|
2879 |
|
|
}
|
2880 |
|
|
|
2881 |
|
|
/* Perform early intraprocedural SRA. */
|
2882 |
|
|
static unsigned int
|
2883 |
|
|
early_intra_sra (void)
|
2884 |
|
|
{
|
2885 |
|
|
sra_mode = SRA_MODE_EARLY_INTRA;
|
2886 |
|
|
return perform_intra_sra ();
|
2887 |
|
|
}
|
2888 |
|
|
|
2889 |
|
|
/* Perform "late" intraprocedural SRA. */
|
2890 |
|
|
static unsigned int
|
2891 |
|
|
late_intra_sra (void)
|
2892 |
|
|
{
|
2893 |
|
|
sra_mode = SRA_MODE_INTRA;
|
2894 |
|
|
return perform_intra_sra ();
|
2895 |
|
|
}
|
2896 |
|
|
|
2897 |
|
|
|
2898 |
|
|
static bool
|
2899 |
|
|
gate_intra_sra (void)
|
2900 |
|
|
{
|
2901 |
|
|
return flag_tree_sra != 0;
|
2902 |
|
|
}
|
2903 |
|
|
|
2904 |
|
|
|
2905 |
|
|
struct gimple_opt_pass pass_sra_early =
|
2906 |
|
|
{
|
2907 |
|
|
{
|
2908 |
|
|
GIMPLE_PASS,
|
2909 |
|
|
"esra", /* name */
|
2910 |
|
|
gate_intra_sra, /* gate */
|
2911 |
|
|
early_intra_sra, /* execute */
|
2912 |
|
|
NULL, /* sub */
|
2913 |
|
|
NULL, /* next */
|
2914 |
|
|
0, /* static_pass_number */
|
2915 |
|
|
TV_TREE_SRA, /* tv_id */
|
2916 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
2917 |
|
|
0, /* properties_provided */
|
2918 |
|
|
0, /* properties_destroyed */
|
2919 |
|
|
0, /* todo_flags_start */
|
2920 |
|
|
TODO_dump_func
|
2921 |
|
|
| TODO_update_ssa
|
2922 |
|
|
| TODO_ggc_collect
|
2923 |
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
2924 |
|
|
}
|
2925 |
|
|
};
|
2926 |
|
|
|
2927 |
|
|
struct gimple_opt_pass pass_sra =
|
2928 |
|
|
{
|
2929 |
|
|
{
|
2930 |
|
|
GIMPLE_PASS,
|
2931 |
|
|
"sra", /* name */
|
2932 |
|
|
gate_intra_sra, /* gate */
|
2933 |
|
|
late_intra_sra, /* execute */
|
2934 |
|
|
NULL, /* sub */
|
2935 |
|
|
NULL, /* next */
|
2936 |
|
|
0, /* static_pass_number */
|
2937 |
|
|
TV_TREE_SRA, /* tv_id */
|
2938 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
2939 |
|
|
0, /* properties_provided */
|
2940 |
|
|
0, /* properties_destroyed */
|
2941 |
|
|
TODO_update_address_taken, /* todo_flags_start */
|
2942 |
|
|
TODO_dump_func
|
2943 |
|
|
| TODO_update_ssa
|
2944 |
|
|
| TODO_ggc_collect
|
2945 |
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
2946 |
|
|
}
|
2947 |
|
|
};
|
2948 |
|
|
|
2949 |
|
|
|
2950 |
|
|
/* Return true iff PARM (which must be a parm_decl) is an unused scalar
|
2951 |
|
|
parameter. */
|
2952 |
|
|
|
2953 |
|
|
static bool
|
2954 |
|
|
is_unused_scalar_param (tree parm)
|
2955 |
|
|
{
|
2956 |
|
|
tree name;
|
2957 |
|
|
return (is_gimple_reg (parm)
|
2958 |
|
|
&& (!(name = gimple_default_def (cfun, parm))
|
2959 |
|
|
|| has_zero_uses (name)));
|
2960 |
|
|
}
|
2961 |
|
|
|
2962 |
|
|
/* Scan immediate uses of a default definition SSA name of a parameter PARM and
|
2963 |
|
|
examine whether there are any direct or otherwise infeasible ones. If so,
|
2964 |
|
|
return true, otherwise return false. PARM must be a gimple register with a
|
2965 |
|
|
non-NULL default definition. */
|
2966 |
|
|
|
2967 |
|
|
static bool
|
2968 |
|
|
ptr_parm_has_direct_uses (tree parm)
|
2969 |
|
|
{
|
2970 |
|
|
imm_use_iterator ui;
|
2971 |
|
|
gimple stmt;
|
2972 |
|
|
tree name = gimple_default_def (cfun, parm);
|
2973 |
|
|
bool ret = false;
|
2974 |
|
|
|
2975 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, ui, name)
|
2976 |
|
|
{
|
2977 |
|
|
int uses_ok = 0;
|
2978 |
|
|
use_operand_p use_p;
|
2979 |
|
|
|
2980 |
|
|
if (is_gimple_debug (stmt))
|
2981 |
|
|
continue;
|
2982 |
|
|
|
2983 |
|
|
/* Valid uses include dereferences on the lhs and the rhs. */
|
2984 |
|
|
if (gimple_has_lhs (stmt))
|
2985 |
|
|
{
|
2986 |
|
|
tree lhs = gimple_get_lhs (stmt);
|
2987 |
|
|
while (handled_component_p (lhs))
|
2988 |
|
|
lhs = TREE_OPERAND (lhs, 0);
|
2989 |
|
|
if (INDIRECT_REF_P (lhs)
|
2990 |
|
|
&& TREE_OPERAND (lhs, 0) == name)
|
2991 |
|
|
uses_ok++;
|
2992 |
|
|
}
|
2993 |
|
|
if (gimple_assign_single_p (stmt))
|
2994 |
|
|
{
|
2995 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
2996 |
|
|
while (handled_component_p (rhs))
|
2997 |
|
|
rhs = TREE_OPERAND (rhs, 0);
|
2998 |
|
|
if (INDIRECT_REF_P (rhs)
|
2999 |
|
|
&& TREE_OPERAND (rhs, 0) == name)
|
3000 |
|
|
uses_ok++;
|
3001 |
|
|
}
|
3002 |
|
|
else if (is_gimple_call (stmt))
|
3003 |
|
|
{
|
3004 |
|
|
unsigned i;
|
3005 |
|
|
for (i = 0; i < gimple_call_num_args (stmt); ++i)
|
3006 |
|
|
{
|
3007 |
|
|
tree arg = gimple_call_arg (stmt, i);
|
3008 |
|
|
while (handled_component_p (arg))
|
3009 |
|
|
arg = TREE_OPERAND (arg, 0);
|
3010 |
|
|
if (INDIRECT_REF_P (arg)
|
3011 |
|
|
&& TREE_OPERAND (arg, 0) == name)
|
3012 |
|
|
uses_ok++;
|
3013 |
|
|
}
|
3014 |
|
|
}
|
3015 |
|
|
|
3016 |
|
|
/* If the number of valid uses does not match the number of
|
3017 |
|
|
uses in this stmt there is an unhandled use. */
|
3018 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
|
3019 |
|
|
--uses_ok;
|
3020 |
|
|
|
3021 |
|
|
if (uses_ok != 0)
|
3022 |
|
|
ret = true;
|
3023 |
|
|
|
3024 |
|
|
if (ret)
|
3025 |
|
|
BREAK_FROM_IMM_USE_STMT (ui);
|
3026 |
|
|
}
|
3027 |
|
|
|
3028 |
|
|
return ret;
|
3029 |
|
|
}
|
3030 |
|
|
|
3031 |
|
|
/* Identify candidates for reduction for IPA-SRA based on their type and mark
|
3032 |
|
|
them in candidate_bitmap. Note that these do not necessarily include
|
3033 |
|
|
parameter which are unused and thus can be removed. Return true iff any
|
3034 |
|
|
such candidate has been found. */
|
3035 |
|
|
|
3036 |
|
|
static bool
|
3037 |
|
|
find_param_candidates (void)
|
3038 |
|
|
{
|
3039 |
|
|
tree parm;
|
3040 |
|
|
int count = 0;
|
3041 |
|
|
bool ret = false;
|
3042 |
|
|
|
3043 |
|
|
for (parm = DECL_ARGUMENTS (current_function_decl);
|
3044 |
|
|
parm;
|
3045 |
|
|
parm = TREE_CHAIN (parm))
|
3046 |
|
|
{
|
3047 |
|
|
tree type = TREE_TYPE (parm);
|
3048 |
|
|
|
3049 |
|
|
count++;
|
3050 |
|
|
|
3051 |
|
|
if (TREE_THIS_VOLATILE (parm)
|
3052 |
|
|
|| TREE_ADDRESSABLE (parm)
|
3053 |
|
|
|| is_va_list_type (type))
|
3054 |
|
|
continue;
|
3055 |
|
|
|
3056 |
|
|
if (is_unused_scalar_param (parm))
|
3057 |
|
|
{
|
3058 |
|
|
ret = true;
|
3059 |
|
|
continue;
|
3060 |
|
|
}
|
3061 |
|
|
|
3062 |
|
|
if (POINTER_TYPE_P (type))
|
3063 |
|
|
{
|
3064 |
|
|
type = TREE_TYPE (type);
|
3065 |
|
|
|
3066 |
|
|
if (TREE_CODE (type) == FUNCTION_TYPE
|
3067 |
|
|
|| TYPE_VOLATILE (type)
|
3068 |
|
|
|| !is_gimple_reg (parm)
|
3069 |
|
|
|| is_va_list_type (type)
|
3070 |
|
|
|| ptr_parm_has_direct_uses (parm))
|
3071 |
|
|
continue;
|
3072 |
|
|
}
|
3073 |
|
|
else if (!AGGREGATE_TYPE_P (type))
|
3074 |
|
|
continue;
|
3075 |
|
|
|
3076 |
|
|
if (!COMPLETE_TYPE_P (type)
|
3077 |
|
|
|| !host_integerp (TYPE_SIZE (type), 1)
|
3078 |
|
|
|| tree_low_cst (TYPE_SIZE (type), 1) == 0
|
3079 |
|
|
|| (AGGREGATE_TYPE_P (type)
|
3080 |
|
|
&& type_internals_preclude_sra_p (type)))
|
3081 |
|
|
continue;
|
3082 |
|
|
|
3083 |
|
|
bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
|
3084 |
|
|
ret = true;
|
3085 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3086 |
|
|
{
|
3087 |
|
|
fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
|
3088 |
|
|
print_generic_expr (dump_file, parm, 0);
|
3089 |
|
|
fprintf (dump_file, "\n");
|
3090 |
|
|
}
|
3091 |
|
|
}
|
3092 |
|
|
|
3093 |
|
|
func_param_count = count;
|
3094 |
|
|
return ret;
|
3095 |
|
|
}
|
3096 |
|
|
|
3097 |
|
|
/* Callback of walk_aliased_vdefs, marks the access passed as DATA as
|
3098 |
|
|
maybe_modified. */
|
3099 |
|
|
|
3100 |
|
|
static bool
|
3101 |
|
|
mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
|
3102 |
|
|
void *data)
|
3103 |
|
|
{
|
3104 |
|
|
struct access *repr = (struct access *) data;
|
3105 |
|
|
|
3106 |
|
|
repr->grp_maybe_modified = 1;
|
3107 |
|
|
return true;
|
3108 |
|
|
}
|
3109 |
|
|
|
3110 |
|
|
/* Analyze what representatives (in linked lists accessible from
|
3111 |
|
|
REPRESENTATIVES) can be modified by side effects of statements in the
|
3112 |
|
|
current function. */
|
3113 |
|
|
|
3114 |
|
|
static void
|
3115 |
|
|
analyze_modified_params (VEC (access_p, heap) *representatives)
|
3116 |
|
|
{
|
3117 |
|
|
int i;
|
3118 |
|
|
|
3119 |
|
|
for (i = 0; i < func_param_count; i++)
|
3120 |
|
|
{
|
3121 |
|
|
struct access *repr;
|
3122 |
|
|
|
3123 |
|
|
for (repr = VEC_index (access_p, representatives, i);
|
3124 |
|
|
repr;
|
3125 |
|
|
repr = repr->next_grp)
|
3126 |
|
|
{
|
3127 |
|
|
struct access *access;
|
3128 |
|
|
bitmap visited;
|
3129 |
|
|
ao_ref ar;
|
3130 |
|
|
|
3131 |
|
|
if (no_accesses_p (repr))
|
3132 |
|
|
continue;
|
3133 |
|
|
if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
|
3134 |
|
|
|| repr->grp_maybe_modified)
|
3135 |
|
|
continue;
|
3136 |
|
|
|
3137 |
|
|
ao_ref_init (&ar, repr->expr);
|
3138 |
|
|
visited = BITMAP_ALLOC (NULL);
|
3139 |
|
|
for (access = repr; access; access = access->next_sibling)
|
3140 |
|
|
{
|
3141 |
|
|
/* All accesses are read ones, otherwise grp_maybe_modified would
|
3142 |
|
|
be trivially set. */
|
3143 |
|
|
walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
|
3144 |
|
|
mark_maybe_modified, repr, &visited);
|
3145 |
|
|
if (repr->grp_maybe_modified)
|
3146 |
|
|
break;
|
3147 |
|
|
}
|
3148 |
|
|
BITMAP_FREE (visited);
|
3149 |
|
|
}
|
3150 |
|
|
}
|
3151 |
|
|
}
|
3152 |
|
|
|
3153 |
|
|
/* Propagate distances in bb_dereferences in the opposite direction than the
|
3154 |
|
|
control flow edges, in each step storing the maximum of the current value
|
3155 |
|
|
and the minimum of all successors. These steps are repeated until the table
|
3156 |
|
|
stabilizes. Note that BBs which might terminate the functions (according to
|
3157 |
|
|
final_bbs bitmap) never updated in this way. */
|
3158 |
|
|
|
3159 |
|
|
static void
|
3160 |
|
|
propagate_dereference_distances (void)
|
3161 |
|
|
{
|
3162 |
|
|
VEC (basic_block, heap) *queue;
|
3163 |
|
|
basic_block bb;
|
3164 |
|
|
|
3165 |
|
|
queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
|
3166 |
|
|
VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
|
3167 |
|
|
FOR_EACH_BB (bb)
|
3168 |
|
|
{
|
3169 |
|
|
VEC_quick_push (basic_block, queue, bb);
|
3170 |
|
|
bb->aux = bb;
|
3171 |
|
|
}
|
3172 |
|
|
|
3173 |
|
|
while (!VEC_empty (basic_block, queue))
|
3174 |
|
|
{
|
3175 |
|
|
edge_iterator ei;
|
3176 |
|
|
edge e;
|
3177 |
|
|
bool change = false;
|
3178 |
|
|
int i;
|
3179 |
|
|
|
3180 |
|
|
bb = VEC_pop (basic_block, queue);
|
3181 |
|
|
bb->aux = NULL;
|
3182 |
|
|
|
3183 |
|
|
if (bitmap_bit_p (final_bbs, bb->index))
|
3184 |
|
|
continue;
|
3185 |
|
|
|
3186 |
|
|
for (i = 0; i < func_param_count; i++)
|
3187 |
|
|
{
|
3188 |
|
|
int idx = bb->index * func_param_count + i;
|
3189 |
|
|
bool first = true;
|
3190 |
|
|
HOST_WIDE_INT inh = 0;
|
3191 |
|
|
|
3192 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
3193 |
|
|
{
|
3194 |
|
|
int succ_idx = e->dest->index * func_param_count + i;
|
3195 |
|
|
|
3196 |
|
|
if (e->src == EXIT_BLOCK_PTR)
|
3197 |
|
|
continue;
|
3198 |
|
|
|
3199 |
|
|
if (first)
|
3200 |
|
|
{
|
3201 |
|
|
first = false;
|
3202 |
|
|
inh = bb_dereferences [succ_idx];
|
3203 |
|
|
}
|
3204 |
|
|
else if (bb_dereferences [succ_idx] < inh)
|
3205 |
|
|
inh = bb_dereferences [succ_idx];
|
3206 |
|
|
}
|
3207 |
|
|
|
3208 |
|
|
if (!first && bb_dereferences[idx] < inh)
|
3209 |
|
|
{
|
3210 |
|
|
bb_dereferences[idx] = inh;
|
3211 |
|
|
change = true;
|
3212 |
|
|
}
|
3213 |
|
|
}
|
3214 |
|
|
|
3215 |
|
|
if (change && !bitmap_bit_p (final_bbs, bb->index))
|
3216 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
3217 |
|
|
{
|
3218 |
|
|
if (e->src->aux)
|
3219 |
|
|
continue;
|
3220 |
|
|
|
3221 |
|
|
e->src->aux = e->src;
|
3222 |
|
|
VEC_quick_push (basic_block, queue, e->src);
|
3223 |
|
|
}
|
3224 |
|
|
}
|
3225 |
|
|
|
3226 |
|
|
VEC_free (basic_block, heap, queue);
|
3227 |
|
|
}
|
3228 |
|
|
|
3229 |
|
|
/* Dump a dereferences TABLE with heading STR to file F. */
|
3230 |
|
|
|
3231 |
|
|
static void
|
3232 |
|
|
dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
|
3233 |
|
|
{
|
3234 |
|
|
basic_block bb;
|
3235 |
|
|
|
3236 |
|
|
fprintf (dump_file, str);
|
3237 |
|
|
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
|
3238 |
|
|
{
|
3239 |
|
|
fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
|
3240 |
|
|
if (bb != EXIT_BLOCK_PTR)
|
3241 |
|
|
{
|
3242 |
|
|
int i;
|
3243 |
|
|
for (i = 0; i < func_param_count; i++)
|
3244 |
|
|
{
|
3245 |
|
|
int idx = bb->index * func_param_count + i;
|
3246 |
|
|
fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
|
3247 |
|
|
}
|
3248 |
|
|
}
|
3249 |
|
|
fprintf (f, "\n");
|
3250 |
|
|
}
|
3251 |
|
|
fprintf (dump_file, "\n");
|
3252 |
|
|
}
|
3253 |
|
|
|
3254 |
|
|
/* Determine what (parts of) parameters passed by reference that are not
|
3255 |
|
|
assigned to are not certainly dereferenced in this function and thus the
|
3256 |
|
|
dereferencing cannot be safely moved to the caller without potentially
|
3257 |
|
|
introducing a segfault. Mark such REPRESENTATIVES as
|
3258 |
|
|
grp_not_necessarilly_dereferenced.
|
3259 |
|
|
|
3260 |
|
|
The dereferenced maximum "distance," i.e. the offset + size of the accessed
|
3261 |
|
|
part is calculated rather than simple booleans are calculated for each
|
3262 |
|
|
pointer parameter to handle cases when only a fraction of the whole
|
3263 |
|
|
aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
|
3264 |
|
|
an example).
|
3265 |
|
|
|
3266 |
|
|
The maximum dereference distances for each pointer parameter and BB are
|
3267 |
|
|
already stored in bb_dereference. This routine simply propagates these
|
3268 |
|
|
values upwards by propagate_dereference_distances and then compares the
|
3269 |
|
|
distances of individual parameters in the ENTRY BB to the equivalent
|
3270 |
|
|
distances of each representative of a (fraction of a) parameter. */
|
3271 |
|
|
|
3272 |
|
|
static void
|
3273 |
|
|
analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
|
3274 |
|
|
{
|
3275 |
|
|
int i;
|
3276 |
|
|
|
3277 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3278 |
|
|
dump_dereferences_table (dump_file,
|
3279 |
|
|
"Dereference table before propagation:\n",
|
3280 |
|
|
bb_dereferences);
|
3281 |
|
|
|
3282 |
|
|
propagate_dereference_distances ();
|
3283 |
|
|
|
3284 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3285 |
|
|
dump_dereferences_table (dump_file,
|
3286 |
|
|
"Dereference table after propagation:\n",
|
3287 |
|
|
bb_dereferences);
|
3288 |
|
|
|
3289 |
|
|
for (i = 0; i < func_param_count; i++)
|
3290 |
|
|
{
|
3291 |
|
|
struct access *repr = VEC_index (access_p, representatives, i);
|
3292 |
|
|
int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
|
3293 |
|
|
|
3294 |
|
|
if (!repr || no_accesses_p (repr))
|
3295 |
|
|
continue;
|
3296 |
|
|
|
3297 |
|
|
do
|
3298 |
|
|
{
|
3299 |
|
|
if ((repr->offset + repr->size) > bb_dereferences[idx])
|
3300 |
|
|
repr->grp_not_necessarilly_dereferenced = 1;
|
3301 |
|
|
repr = repr->next_grp;
|
3302 |
|
|
}
|
3303 |
|
|
while (repr);
|
3304 |
|
|
}
|
3305 |
|
|
}
|
3306 |
|
|
|
3307 |
|
|
/* Return the representative access for the parameter declaration PARM if it is
|
3308 |
|
|
a scalar passed by reference which is not written to and the pointer value
|
3309 |
|
|
is not used directly. Thus, if it is legal to dereference it in the caller
|
3310 |
|
|
and we can rule out modifications through aliases, such parameter should be
|
3311 |
|
|
turned into one passed by value. Return NULL otherwise. */
|
3312 |
|
|
|
3313 |
|
|
static struct access *
|
3314 |
|
|
unmodified_by_ref_scalar_representative (tree parm)
|
3315 |
|
|
{
|
3316 |
|
|
int i, access_count;
|
3317 |
|
|
struct access *repr;
|
3318 |
|
|
VEC (access_p, heap) *access_vec;
|
3319 |
|
|
|
3320 |
|
|
access_vec = get_base_access_vector (parm);
|
3321 |
|
|
gcc_assert (access_vec);
|
3322 |
|
|
repr = VEC_index (access_p, access_vec, 0);
|
3323 |
|
|
if (repr->write)
|
3324 |
|
|
return NULL;
|
3325 |
|
|
repr->group_representative = repr;
|
3326 |
|
|
|
3327 |
|
|
access_count = VEC_length (access_p, access_vec);
|
3328 |
|
|
for (i = 1; i < access_count; i++)
|
3329 |
|
|
{
|
3330 |
|
|
struct access *access = VEC_index (access_p, access_vec, i);
|
3331 |
|
|
if (access->write)
|
3332 |
|
|
return NULL;
|
3333 |
|
|
access->group_representative = repr;
|
3334 |
|
|
access->next_sibling = repr->next_sibling;
|
3335 |
|
|
repr->next_sibling = access;
|
3336 |
|
|
}
|
3337 |
|
|
|
3338 |
|
|
repr->grp_read = 1;
|
3339 |
|
|
repr->grp_scalar_ptr = 1;
|
3340 |
|
|
return repr;
|
3341 |
|
|
}
|
3342 |
|
|
|
3343 |
|
|
/* Return true iff this access precludes IPA-SRA of the parameter it is
|
3344 |
|
|
associated with. */
|
3345 |
|
|
|
3346 |
|
|
static bool
|
3347 |
|
|
access_precludes_ipa_sra_p (struct access *access)
|
3348 |
|
|
{
|
3349 |
|
|
/* Avoid issues such as the second simple testcase in PR 42025. The problem
|
3350 |
|
|
is incompatible assign in a call statement (and possibly even in asm
|
3351 |
|
|
statements). This can be relaxed by using a new temporary but only for
|
3352 |
|
|
non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
|
3353 |
|
|
intraprocedural SRA we deal with this by keeping the old aggregate around,
|
3354 |
|
|
something we cannot do in IPA-SRA.) */
|
3355 |
|
|
if (access->write
|
3356 |
|
|
&& (is_gimple_call (access->stmt)
|
3357 |
|
|
|| gimple_code (access->stmt) == GIMPLE_ASM))
|
3358 |
|
|
return true;
|
3359 |
|
|
|
3360 |
|
|
return false;
|
3361 |
|
|
}
|
3362 |
|
|
|
3363 |
|
|
|
3364 |
|
|
/* Sort collected accesses for parameter PARM, identify representatives for
|
3365 |
|
|
each accessed region and link them together. Return NULL if there are
|
3366 |
|
|
different but overlapping accesses, return the special ptr value meaning
|
3367 |
|
|
there are no accesses for this parameter if that is the case and return the
|
3368 |
|
|
first representative otherwise. Set *RO_GRP if there is a group of accesses
|
3369 |
|
|
with only read (i.e. no write) accesses. */
|
3370 |
|
|
|
3371 |
|
|
static struct access *
|
3372 |
|
|
splice_param_accesses (tree parm, bool *ro_grp)
|
3373 |
|
|
{
|
3374 |
|
|
int i, j, access_count, group_count;
|
3375 |
|
|
int agg_size, total_size = 0;
|
3376 |
|
|
struct access *access, *res, **prev_acc_ptr = &res;
|
3377 |
|
|
VEC (access_p, heap) *access_vec;
|
3378 |
|
|
|
3379 |
|
|
access_vec = get_base_access_vector (parm);
|
3380 |
|
|
if (!access_vec)
|
3381 |
|
|
return &no_accesses_representant;
|
3382 |
|
|
access_count = VEC_length (access_p, access_vec);
|
3383 |
|
|
|
3384 |
|
|
qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
|
3385 |
|
|
compare_access_positions);
|
3386 |
|
|
|
3387 |
|
|
i = 0;
|
3388 |
|
|
total_size = 0;
|
3389 |
|
|
group_count = 0;
|
3390 |
|
|
while (i < access_count)
|
3391 |
|
|
{
|
3392 |
|
|
bool modification;
|
3393 |
|
|
access = VEC_index (access_p, access_vec, i);
|
3394 |
|
|
modification = access->write;
|
3395 |
|
|
if (access_precludes_ipa_sra_p (access))
|
3396 |
|
|
return NULL;
|
3397 |
|
|
|
3398 |
|
|
/* Access is about to become group representative unless we find some
|
3399 |
|
|
nasty overlap which would preclude us from breaking this parameter
|
3400 |
|
|
apart. */
|
3401 |
|
|
|
3402 |
|
|
j = i + 1;
|
3403 |
|
|
while (j < access_count)
|
3404 |
|
|
{
|
3405 |
|
|
struct access *ac2 = VEC_index (access_p, access_vec, j);
|
3406 |
|
|
if (ac2->offset != access->offset)
|
3407 |
|
|
{
|
3408 |
|
|
/* All or nothing law for parameters. */
|
3409 |
|
|
if (access->offset + access->size > ac2->offset)
|
3410 |
|
|
return NULL;
|
3411 |
|
|
else
|
3412 |
|
|
break;
|
3413 |
|
|
}
|
3414 |
|
|
else if (ac2->size != access->size)
|
3415 |
|
|
return NULL;
|
3416 |
|
|
|
3417 |
|
|
if (access_precludes_ipa_sra_p (ac2))
|
3418 |
|
|
return NULL;
|
3419 |
|
|
|
3420 |
|
|
modification |= ac2->write;
|
3421 |
|
|
ac2->group_representative = access;
|
3422 |
|
|
ac2->next_sibling = access->next_sibling;
|
3423 |
|
|
access->next_sibling = ac2;
|
3424 |
|
|
j++;
|
3425 |
|
|
}
|
3426 |
|
|
|
3427 |
|
|
group_count++;
|
3428 |
|
|
access->grp_maybe_modified = modification;
|
3429 |
|
|
if (!modification)
|
3430 |
|
|
*ro_grp = true;
|
3431 |
|
|
*prev_acc_ptr = access;
|
3432 |
|
|
prev_acc_ptr = &access->next_grp;
|
3433 |
|
|
total_size += access->size;
|
3434 |
|
|
i = j;
|
3435 |
|
|
}
|
3436 |
|
|
|
3437 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (parm)))
|
3438 |
|
|
agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
|
3439 |
|
|
else
|
3440 |
|
|
agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
|
3441 |
|
|
if (total_size >= agg_size)
|
3442 |
|
|
return NULL;
|
3443 |
|
|
|
3444 |
|
|
gcc_assert (group_count > 0);
|
3445 |
|
|
return res;
|
3446 |
|
|
}
|
3447 |
|
|
|
3448 |
|
|
/* Decide whether parameters with representative accesses given by REPR should
|
3449 |
|
|
be reduced into components. */
|
3450 |
|
|
|
3451 |
|
|
static int
|
3452 |
|
|
decide_one_param_reduction (struct access *repr)
|
3453 |
|
|
{
|
3454 |
|
|
int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
|
3455 |
|
|
bool by_ref;
|
3456 |
|
|
tree parm;
|
3457 |
|
|
|
3458 |
|
|
parm = repr->base;
|
3459 |
|
|
cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
|
3460 |
|
|
gcc_assert (cur_parm_size > 0);
|
3461 |
|
|
|
3462 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (parm)))
|
3463 |
|
|
{
|
3464 |
|
|
by_ref = true;
|
3465 |
|
|
agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
|
3466 |
|
|
}
|
3467 |
|
|
else
|
3468 |
|
|
{
|
3469 |
|
|
by_ref = false;
|
3470 |
|
|
agg_size = cur_parm_size;
|
3471 |
|
|
}
|
3472 |
|
|
|
3473 |
|
|
if (dump_file)
|
3474 |
|
|
{
|
3475 |
|
|
struct access *acc;
|
3476 |
|
|
fprintf (dump_file, "Evaluating PARAM group sizes for ");
|
3477 |
|
|
print_generic_expr (dump_file, parm, 0);
|
3478 |
|
|
fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
|
3479 |
|
|
for (acc = repr; acc; acc = acc->next_grp)
|
3480 |
|
|
dump_access (dump_file, acc, true);
|
3481 |
|
|
}
|
3482 |
|
|
|
3483 |
|
|
total_size = 0;
|
3484 |
|
|
new_param_count = 0;
|
3485 |
|
|
|
3486 |
|
|
for (; repr; repr = repr->next_grp)
|
3487 |
|
|
{
|
3488 |
|
|
gcc_assert (parm == repr->base);
|
3489 |
|
|
new_param_count++;
|
3490 |
|
|
|
3491 |
|
|
if (!by_ref || (!repr->grp_maybe_modified
|
3492 |
|
|
&& !repr->grp_not_necessarilly_dereferenced))
|
3493 |
|
|
total_size += repr->size;
|
3494 |
|
|
else
|
3495 |
|
|
total_size += cur_parm_size;
|
3496 |
|
|
}
|
3497 |
|
|
|
3498 |
|
|
gcc_assert (new_param_count > 0);
|
3499 |
|
|
|
3500 |
|
|
if (optimize_function_for_size_p (cfun))
|
3501 |
|
|
parm_size_limit = cur_parm_size;
|
3502 |
|
|
else
|
3503 |
|
|
parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
|
3504 |
|
|
* cur_parm_size);
|
3505 |
|
|
|
3506 |
|
|
if (total_size < agg_size
|
3507 |
|
|
&& total_size <= parm_size_limit)
|
3508 |
|
|
{
|
3509 |
|
|
if (dump_file)
|
3510 |
|
|
fprintf (dump_file, " ....will be split into %i components\n",
|
3511 |
|
|
new_param_count);
|
3512 |
|
|
return new_param_count;
|
3513 |
|
|
}
|
3514 |
|
|
else
|
3515 |
|
|
return 0;
|
3516 |
|
|
}
|
3517 |
|
|
|
3518 |
|
|
/* The order of the following enums is important, we need to do extra work for
|
3519 |
|
|
UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
|
3520 |
|
|
enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
|
3521 |
|
|
MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
|
3522 |
|
|
|
3523 |
|
|
/* Identify representatives of all accesses to all candidate parameters for
|
3524 |
|
|
IPA-SRA. Return result based on what representatives have been found. */
|
3525 |
|
|
|
3526 |
|
|
static enum ipa_splicing_result
|
3527 |
|
|
splice_all_param_accesses (VEC (access_p, heap) **representatives)
|
3528 |
|
|
{
|
3529 |
|
|
enum ipa_splicing_result result = NO_GOOD_ACCESS;
|
3530 |
|
|
tree parm;
|
3531 |
|
|
struct access *repr;
|
3532 |
|
|
|
3533 |
|
|
*representatives = VEC_alloc (access_p, heap, func_param_count);
|
3534 |
|
|
|
3535 |
|
|
for (parm = DECL_ARGUMENTS (current_function_decl);
|
3536 |
|
|
parm;
|
3537 |
|
|
parm = TREE_CHAIN (parm))
|
3538 |
|
|
{
|
3539 |
|
|
if (is_unused_scalar_param (parm))
|
3540 |
|
|
{
|
3541 |
|
|
VEC_quick_push (access_p, *representatives,
|
3542 |
|
|
&no_accesses_representant);
|
3543 |
|
|
if (result == NO_GOOD_ACCESS)
|
3544 |
|
|
result = UNUSED_PARAMS;
|
3545 |
|
|
}
|
3546 |
|
|
else if (POINTER_TYPE_P (TREE_TYPE (parm))
|
3547 |
|
|
&& is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
|
3548 |
|
|
&& bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
|
3549 |
|
|
{
|
3550 |
|
|
repr = unmodified_by_ref_scalar_representative (parm);
|
3551 |
|
|
VEC_quick_push (access_p, *representatives, repr);
|
3552 |
|
|
if (repr)
|
3553 |
|
|
result = UNMODIF_BY_REF_ACCESSES;
|
3554 |
|
|
}
|
3555 |
|
|
else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
|
3556 |
|
|
{
|
3557 |
|
|
bool ro_grp = false;
|
3558 |
|
|
repr = splice_param_accesses (parm, &ro_grp);
|
3559 |
|
|
VEC_quick_push (access_p, *representatives, repr);
|
3560 |
|
|
|
3561 |
|
|
if (repr && !no_accesses_p (repr))
|
3562 |
|
|
{
|
3563 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (parm)))
|
3564 |
|
|
{
|
3565 |
|
|
if (ro_grp)
|
3566 |
|
|
result = UNMODIF_BY_REF_ACCESSES;
|
3567 |
|
|
else if (result < MODIF_BY_REF_ACCESSES)
|
3568 |
|
|
result = MODIF_BY_REF_ACCESSES;
|
3569 |
|
|
}
|
3570 |
|
|
else if (result < BY_VAL_ACCESSES)
|
3571 |
|
|
result = BY_VAL_ACCESSES;
|
3572 |
|
|
}
|
3573 |
|
|
else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
|
3574 |
|
|
result = UNUSED_PARAMS;
|
3575 |
|
|
}
|
3576 |
|
|
else
|
3577 |
|
|
VEC_quick_push (access_p, *representatives, NULL);
|
3578 |
|
|
}
|
3579 |
|
|
|
3580 |
|
|
if (result == NO_GOOD_ACCESS)
|
3581 |
|
|
{
|
3582 |
|
|
VEC_free (access_p, heap, *representatives);
|
3583 |
|
|
*representatives = NULL;
|
3584 |
|
|
return NO_GOOD_ACCESS;
|
3585 |
|
|
}
|
3586 |
|
|
|
3587 |
|
|
return result;
|
3588 |
|
|
}
|
3589 |
|
|
|
3590 |
|
|
/* Return the index of BASE in PARMS. Abort if it is not found. */
|
3591 |
|
|
|
3592 |
|
|
static inline int
|
3593 |
|
|
get_param_index (tree base, VEC(tree, heap) *parms)
|
3594 |
|
|
{
|
3595 |
|
|
int i, len;
|
3596 |
|
|
|
3597 |
|
|
len = VEC_length (tree, parms);
|
3598 |
|
|
for (i = 0; i < len; i++)
|
3599 |
|
|
if (VEC_index (tree, parms, i) == base)
|
3600 |
|
|
return i;
|
3601 |
|
|
gcc_unreachable ();
|
3602 |
|
|
}
|
3603 |
|
|
|
3604 |
|
|
/* Convert the decisions made at the representative level into compact
|
3605 |
|
|
parameter adjustments. REPRESENTATIVES are pointers to first
|
3606 |
|
|
representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
|
3607 |
|
|
final number of adjustments. */
|
3608 |
|
|
|
3609 |
|
|
static ipa_parm_adjustment_vec
|
3610 |
|
|
turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
|
3611 |
|
|
int adjustments_count)
|
3612 |
|
|
{
|
3613 |
|
|
VEC (tree, heap) *parms;
|
3614 |
|
|
ipa_parm_adjustment_vec adjustments;
|
3615 |
|
|
tree parm;
|
3616 |
|
|
int i;
|
3617 |
|
|
|
3618 |
|
|
gcc_assert (adjustments_count > 0);
|
3619 |
|
|
parms = ipa_get_vector_of_formal_parms (current_function_decl);
|
3620 |
|
|
adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
|
3621 |
|
|
parm = DECL_ARGUMENTS (current_function_decl);
|
3622 |
|
|
for (i = 0; i < func_param_count; i++, parm = TREE_CHAIN (parm))
|
3623 |
|
|
{
|
3624 |
|
|
struct access *repr = VEC_index (access_p, representatives, i);
|
3625 |
|
|
|
3626 |
|
|
if (!repr || no_accesses_p (repr))
|
3627 |
|
|
{
|
3628 |
|
|
struct ipa_parm_adjustment *adj;
|
3629 |
|
|
|
3630 |
|
|
adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
|
3631 |
|
|
memset (adj, 0, sizeof (*adj));
|
3632 |
|
|
adj->base_index = get_param_index (parm, parms);
|
3633 |
|
|
adj->base = parm;
|
3634 |
|
|
if (!repr)
|
3635 |
|
|
adj->copy_param = 1;
|
3636 |
|
|
else
|
3637 |
|
|
adj->remove_param = 1;
|
3638 |
|
|
}
|
3639 |
|
|
else
|
3640 |
|
|
{
|
3641 |
|
|
struct ipa_parm_adjustment *adj;
|
3642 |
|
|
int index = get_param_index (parm, parms);
|
3643 |
|
|
|
3644 |
|
|
for (; repr; repr = repr->next_grp)
|
3645 |
|
|
{
|
3646 |
|
|
adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
|
3647 |
|
|
memset (adj, 0, sizeof (*adj));
|
3648 |
|
|
gcc_assert (repr->base == parm);
|
3649 |
|
|
adj->base_index = index;
|
3650 |
|
|
adj->base = repr->base;
|
3651 |
|
|
adj->type = repr->type;
|
3652 |
|
|
adj->offset = repr->offset;
|
3653 |
|
|
adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
|
3654 |
|
|
&& (repr->grp_maybe_modified
|
3655 |
|
|
|| repr->grp_not_necessarilly_dereferenced));
|
3656 |
|
|
|
3657 |
|
|
}
|
3658 |
|
|
}
|
3659 |
|
|
}
|
3660 |
|
|
VEC_free (tree, heap, parms);
|
3661 |
|
|
return adjustments;
|
3662 |
|
|
}
|
3663 |
|
|
|
3664 |
|
|
/* Analyze the collected accesses and produce a plan what to do with the
|
3665 |
|
|
parameters in the form of adjustments, NULL meaning nothing. */
|
3666 |
|
|
|
3667 |
|
|
static ipa_parm_adjustment_vec
|
3668 |
|
|
analyze_all_param_acesses (void)
|
3669 |
|
|
{
|
3670 |
|
|
enum ipa_splicing_result repr_state;
|
3671 |
|
|
bool proceed = false;
|
3672 |
|
|
int i, adjustments_count = 0;
|
3673 |
|
|
VEC (access_p, heap) *representatives;
|
3674 |
|
|
ipa_parm_adjustment_vec adjustments;
|
3675 |
|
|
|
3676 |
|
|
repr_state = splice_all_param_accesses (&representatives);
|
3677 |
|
|
if (repr_state == NO_GOOD_ACCESS)
|
3678 |
|
|
return NULL;
|
3679 |
|
|
|
3680 |
|
|
/* If there are any parameters passed by reference which are not modified
|
3681 |
|
|
directly, we need to check whether they can be modified indirectly. */
|
3682 |
|
|
if (repr_state == UNMODIF_BY_REF_ACCESSES)
|
3683 |
|
|
{
|
3684 |
|
|
analyze_caller_dereference_legality (representatives);
|
3685 |
|
|
analyze_modified_params (representatives);
|
3686 |
|
|
}
|
3687 |
|
|
|
3688 |
|
|
for (i = 0; i < func_param_count; i++)
|
3689 |
|
|
{
|
3690 |
|
|
struct access *repr = VEC_index (access_p, representatives, i);
|
3691 |
|
|
|
3692 |
|
|
if (repr && !no_accesses_p (repr))
|
3693 |
|
|
{
|
3694 |
|
|
if (repr->grp_scalar_ptr)
|
3695 |
|
|
{
|
3696 |
|
|
adjustments_count++;
|
3697 |
|
|
if (repr->grp_not_necessarilly_dereferenced
|
3698 |
|
|
|| repr->grp_maybe_modified)
|
3699 |
|
|
VEC_replace (access_p, representatives, i, NULL);
|
3700 |
|
|
else
|
3701 |
|
|
{
|
3702 |
|
|
proceed = true;
|
3703 |
|
|
sra_stats.scalar_by_ref_to_by_val++;
|
3704 |
|
|
}
|
3705 |
|
|
}
|
3706 |
|
|
else
|
3707 |
|
|
{
|
3708 |
|
|
int new_components = decide_one_param_reduction (repr);
|
3709 |
|
|
|
3710 |
|
|
if (new_components == 0)
|
3711 |
|
|
{
|
3712 |
|
|
VEC_replace (access_p, representatives, i, NULL);
|
3713 |
|
|
adjustments_count++;
|
3714 |
|
|
}
|
3715 |
|
|
else
|
3716 |
|
|
{
|
3717 |
|
|
adjustments_count += new_components;
|
3718 |
|
|
sra_stats.aggregate_params_reduced++;
|
3719 |
|
|
sra_stats.param_reductions_created += new_components;
|
3720 |
|
|
proceed = true;
|
3721 |
|
|
}
|
3722 |
|
|
}
|
3723 |
|
|
}
|
3724 |
|
|
else
|
3725 |
|
|
{
|
3726 |
|
|
if (no_accesses_p (repr))
|
3727 |
|
|
{
|
3728 |
|
|
proceed = true;
|
3729 |
|
|
sra_stats.deleted_unused_parameters++;
|
3730 |
|
|
}
|
3731 |
|
|
adjustments_count++;
|
3732 |
|
|
}
|
3733 |
|
|
}
|
3734 |
|
|
|
3735 |
|
|
if (!proceed && dump_file)
|
3736 |
|
|
fprintf (dump_file, "NOT proceeding to change params.\n");
|
3737 |
|
|
|
3738 |
|
|
if (proceed)
|
3739 |
|
|
adjustments = turn_representatives_into_adjustments (representatives,
|
3740 |
|
|
adjustments_count);
|
3741 |
|
|
else
|
3742 |
|
|
adjustments = NULL;
|
3743 |
|
|
|
3744 |
|
|
VEC_free (access_p, heap, representatives);
|
3745 |
|
|
return adjustments;
|
3746 |
|
|
}
|
3747 |
|
|
|
3748 |
|
|
/* If a parameter replacement identified by ADJ does not yet exist in the form
|
3749 |
|
|
of declaration, create it and record it, otherwise return the previously
|
3750 |
|
|
created one. */
|
3751 |
|
|
|
3752 |
|
|
static tree
|
3753 |
|
|
get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
|
3754 |
|
|
{
|
3755 |
|
|
tree repl;
|
3756 |
|
|
if (!adj->new_ssa_base)
|
3757 |
|
|
{
|
3758 |
|
|
char *pretty_name = make_fancy_name (adj->base);
|
3759 |
|
|
|
3760 |
|
|
repl = create_tmp_var (TREE_TYPE (adj->base), "ISR");
|
3761 |
|
|
if (TREE_CODE (TREE_TYPE (repl)) == COMPLEX_TYPE
|
3762 |
|
|
|| TREE_CODE (TREE_TYPE (repl)) == VECTOR_TYPE)
|
3763 |
|
|
DECL_GIMPLE_REG_P (repl) = 1;
|
3764 |
|
|
DECL_NAME (repl) = get_identifier (pretty_name);
|
3765 |
|
|
obstack_free (&name_obstack, pretty_name);
|
3766 |
|
|
|
3767 |
|
|
get_var_ann (repl);
|
3768 |
|
|
add_referenced_var (repl);
|
3769 |
|
|
adj->new_ssa_base = repl;
|
3770 |
|
|
}
|
3771 |
|
|
else
|
3772 |
|
|
repl = adj->new_ssa_base;
|
3773 |
|
|
return repl;
|
3774 |
|
|
}
|
3775 |
|
|
|
3776 |
|
|
/* Find the first adjustment for a particular parameter BASE in a vector of
|
3777 |
|
|
ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
|
3778 |
|
|
adjustment. */
|
3779 |
|
|
|
3780 |
|
|
static struct ipa_parm_adjustment *
|
3781 |
|
|
get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
|
3782 |
|
|
{
|
3783 |
|
|
int i, len;
|
3784 |
|
|
|
3785 |
|
|
len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
3786 |
|
|
for (i = 0; i < len; i++)
|
3787 |
|
|
{
|
3788 |
|
|
struct ipa_parm_adjustment *adj;
|
3789 |
|
|
|
3790 |
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
3791 |
|
|
if (!adj->copy_param && adj->base == base)
|
3792 |
|
|
return adj;
|
3793 |
|
|
}
|
3794 |
|
|
|
3795 |
|
|
return NULL;
|
3796 |
|
|
}
|
3797 |
|
|
|
3798 |
|
|
/* Callback for scan_function. If the statement STMT defines an SSA_NAME of a
|
3799 |
|
|
parameter which is to be removed because its value is not used, replace the
|
3800 |
|
|
SSA_NAME with a one relating to a created VAR_DECL and replace all of its
|
3801 |
|
|
uses too and return true (update_stmt is then issued for the statement by
|
3802 |
|
|
the caller). DATA is a pointer to an adjustments vector. */
|
3803 |
|
|
|
3804 |
|
|
static bool
|
3805 |
|
|
replace_removed_params_ssa_names (gimple stmt, void *data)
|
3806 |
|
|
{
|
3807 |
|
|
VEC (ipa_parm_adjustment_t, heap) *adjustments;
|
3808 |
|
|
struct ipa_parm_adjustment *adj;
|
3809 |
|
|
tree lhs, decl, repl, name;
|
3810 |
|
|
|
3811 |
|
|
adjustments = (VEC (ipa_parm_adjustment_t, heap) *) data;
|
3812 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
3813 |
|
|
lhs = gimple_phi_result (stmt);
|
3814 |
|
|
else if (is_gimple_assign (stmt))
|
3815 |
|
|
lhs = gimple_assign_lhs (stmt);
|
3816 |
|
|
else if (is_gimple_call (stmt))
|
3817 |
|
|
lhs = gimple_call_lhs (stmt);
|
3818 |
|
|
else
|
3819 |
|
|
gcc_unreachable ();
|
3820 |
|
|
|
3821 |
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
3822 |
|
|
return false;
|
3823 |
|
|
decl = SSA_NAME_VAR (lhs);
|
3824 |
|
|
if (TREE_CODE (decl) != PARM_DECL)
|
3825 |
|
|
return false;
|
3826 |
|
|
|
3827 |
|
|
adj = get_adjustment_for_base (adjustments, decl);
|
3828 |
|
|
if (!adj)
|
3829 |
|
|
return false;
|
3830 |
|
|
|
3831 |
|
|
repl = get_replaced_param_substitute (adj);
|
3832 |
|
|
name = make_ssa_name (repl, stmt);
|
3833 |
|
|
|
3834 |
|
|
if (dump_file)
|
3835 |
|
|
{
|
3836 |
|
|
fprintf (dump_file, "replacing an SSA name of a removed param ");
|
3837 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
3838 |
|
|
fprintf (dump_file, " with ");
|
3839 |
|
|
print_generic_expr (dump_file, name, 0);
|
3840 |
|
|
fprintf (dump_file, "\n");
|
3841 |
|
|
}
|
3842 |
|
|
|
3843 |
|
|
if (is_gimple_assign (stmt))
|
3844 |
|
|
gimple_assign_set_lhs (stmt, name);
|
3845 |
|
|
else if (is_gimple_call (stmt))
|
3846 |
|
|
gimple_call_set_lhs (stmt, name);
|
3847 |
|
|
else
|
3848 |
|
|
gimple_phi_set_result (stmt, name);
|
3849 |
|
|
|
3850 |
|
|
replace_uses_by (lhs, name);
|
3851 |
|
|
release_ssa_name (lhs);
|
3852 |
|
|
return true;
|
3853 |
|
|
}
|
3854 |
|
|
|
3855 |
|
|
/* Callback for scan_function and helper to sra_ipa_modify_assign. If the
|
3856 |
|
|
expression *EXPR should be replaced by a reduction of a parameter, do so.
|
3857 |
|
|
DATA is a pointer to a vector of adjustments. DONT_CONVERT specifies
|
3858 |
|
|
whether the function should care about type incompatibility the current and
|
3859 |
|
|
new expressions. If it is true, the function will leave incompatibility
|
3860 |
|
|
issues to the caller.
|
3861 |
|
|
|
3862 |
|
|
When called directly by scan_function, DONT_CONVERT is true when the EXPR is
|
3863 |
|
|
a write (LHS) expression. */
|
3864 |
|
|
|
3865 |
|
|
static bool
|
3866 |
|
|
sra_ipa_modify_expr (tree *expr, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
|
3867 |
|
|
bool dont_convert, void *data)
|
3868 |
|
|
{
|
3869 |
|
|
ipa_parm_adjustment_vec adjustments;
|
3870 |
|
|
int i, len;
|
3871 |
|
|
struct ipa_parm_adjustment *adj, *cand = NULL;
|
3872 |
|
|
HOST_WIDE_INT offset, size, max_size;
|
3873 |
|
|
tree base, src;
|
3874 |
|
|
|
3875 |
|
|
adjustments = (VEC (ipa_parm_adjustment_t, heap) *) data;
|
3876 |
|
|
len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
3877 |
|
|
|
3878 |
|
|
if (TREE_CODE (*expr) == BIT_FIELD_REF
|
3879 |
|
|
|| TREE_CODE (*expr) == IMAGPART_EXPR
|
3880 |
|
|
|| TREE_CODE (*expr) == REALPART_EXPR)
|
3881 |
|
|
{
|
3882 |
|
|
expr = &TREE_OPERAND (*expr, 0);
|
3883 |
|
|
dont_convert = false;
|
3884 |
|
|
}
|
3885 |
|
|
|
3886 |
|
|
base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
|
3887 |
|
|
if (!base || size == -1 || max_size == -1)
|
3888 |
|
|
return false;
|
3889 |
|
|
|
3890 |
|
|
if (INDIRECT_REF_P (base))
|
3891 |
|
|
base = TREE_OPERAND (base, 0);
|
3892 |
|
|
|
3893 |
|
|
base = get_ssa_base_param (base);
|
3894 |
|
|
if (!base || TREE_CODE (base) != PARM_DECL)
|
3895 |
|
|
return false;
|
3896 |
|
|
|
3897 |
|
|
for (i = 0; i < len; i++)
|
3898 |
|
|
{
|
3899 |
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
3900 |
|
|
|
3901 |
|
|
if (adj->base == base &&
|
3902 |
|
|
(adj->offset == offset || adj->remove_param))
|
3903 |
|
|
{
|
3904 |
|
|
cand = adj;
|
3905 |
|
|
break;
|
3906 |
|
|
}
|
3907 |
|
|
}
|
3908 |
|
|
if (!cand || cand->copy_param || cand->remove_param)
|
3909 |
|
|
return false;
|
3910 |
|
|
|
3911 |
|
|
if (cand->by_ref)
|
3912 |
|
|
{
|
3913 |
|
|
tree folded;
|
3914 |
|
|
src = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (cand->reduction)),
|
3915 |
|
|
cand->reduction);
|
3916 |
|
|
folded = gimple_fold_indirect_ref (src);
|
3917 |
|
|
if (folded)
|
3918 |
|
|
src = folded;
|
3919 |
|
|
}
|
3920 |
|
|
else
|
3921 |
|
|
src = cand->reduction;
|
3922 |
|
|
|
3923 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
3924 |
|
|
{
|
3925 |
|
|
fprintf (dump_file, "About to replace expr ");
|
3926 |
|
|
print_generic_expr (dump_file, *expr, 0);
|
3927 |
|
|
fprintf (dump_file, " with ");
|
3928 |
|
|
print_generic_expr (dump_file, src, 0);
|
3929 |
|
|
fprintf (dump_file, "\n");
|
3930 |
|
|
}
|
3931 |
|
|
|
3932 |
|
|
if (!dont_convert
|
3933 |
|
|
&& !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
|
3934 |
|
|
{
|
3935 |
|
|
tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
|
3936 |
|
|
*expr = vce;
|
3937 |
|
|
}
|
3938 |
|
|
else
|
3939 |
|
|
*expr = src;
|
3940 |
|
|
return true;
|
3941 |
|
|
}
|
3942 |
|
|
|
3943 |
|
|
/* Callback for scan_function to process assign statements. Performs
|
3944 |
|
|
essentially the same function like sra_ipa_modify_expr. */
|
3945 |
|
|
|
3946 |
|
|
static enum scan_assign_result
|
3947 |
|
|
sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi, void *data)
|
3948 |
|
|
{
|
3949 |
|
|
gimple stmt = *stmt_ptr;
|
3950 |
|
|
tree *lhs_p, *rhs_p;
|
3951 |
|
|
bool any;
|
3952 |
|
|
|
3953 |
|
|
if (!gimple_assign_single_p (stmt))
|
3954 |
|
|
return SRA_SA_NONE;
|
3955 |
|
|
|
3956 |
|
|
rhs_p = gimple_assign_rhs1_ptr (stmt);
|
3957 |
|
|
lhs_p = gimple_assign_lhs_ptr (stmt);
|
3958 |
|
|
|
3959 |
|
|
any = sra_ipa_modify_expr (rhs_p, gsi, true, data);
|
3960 |
|
|
any |= sra_ipa_modify_expr (lhs_p, gsi, true, data);
|
3961 |
|
|
if (any)
|
3962 |
|
|
{
|
3963 |
|
|
tree new_rhs = NULL_TREE;
|
3964 |
|
|
|
3965 |
|
|
if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
|
3966 |
|
|
{
|
3967 |
|
|
if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
|
3968 |
|
|
{
|
3969 |
|
|
/* V_C_Es of constructors can cause trouble (PR 42714). */
|
3970 |
|
|
if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
|
3971 |
|
|
*rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
|
3972 |
|
|
else
|
3973 |
|
|
*rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
|
3974 |
|
|
}
|
3975 |
|
|
else
|
3976 |
|
|
new_rhs = fold_build1_loc (gimple_location (stmt),
|
3977 |
|
|
VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
|
3978 |
|
|
*rhs_p);
|
3979 |
|
|
}
|
3980 |
|
|
else if (REFERENCE_CLASS_P (*rhs_p)
|
3981 |
|
|
&& is_gimple_reg_type (TREE_TYPE (*lhs_p))
|
3982 |
|
|
&& !is_gimple_reg (*lhs_p))
|
3983 |
|
|
/* This can happen when an assignment in between two single field
|
3984 |
|
|
structures is turned into an assignment in between two pointers to
|
3985 |
|
|
scalars (PR 42237). */
|
3986 |
|
|
new_rhs = *rhs_p;
|
3987 |
|
|
|
3988 |
|
|
if (new_rhs)
|
3989 |
|
|
{
|
3990 |
|
|
tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
|
3991 |
|
|
true, GSI_SAME_STMT);
|
3992 |
|
|
|
3993 |
|
|
gimple_assign_set_rhs_from_tree (gsi, tmp);
|
3994 |
|
|
}
|
3995 |
|
|
|
3996 |
|
|
return SRA_SA_PROCESSED;
|
3997 |
|
|
}
|
3998 |
|
|
|
3999 |
|
|
return SRA_SA_NONE;
|
4000 |
|
|
}
|
4001 |
|
|
|
4002 |
|
|
/* Call gimple_debug_bind_reset_value on all debug statements describing
|
4003 |
|
|
gimple register parameters that are being removed or replaced. */
|
4004 |
|
|
|
4005 |
|
|
static void
|
4006 |
|
|
sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
|
4007 |
|
|
{
|
4008 |
|
|
int i, len;
|
4009 |
|
|
|
4010 |
|
|
len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
4011 |
|
|
for (i = 0; i < len; i++)
|
4012 |
|
|
{
|
4013 |
|
|
struct ipa_parm_adjustment *adj;
|
4014 |
|
|
imm_use_iterator ui;
|
4015 |
|
|
gimple stmt;
|
4016 |
|
|
tree name;
|
4017 |
|
|
|
4018 |
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
4019 |
|
|
if (adj->copy_param || !is_gimple_reg (adj->base))
|
4020 |
|
|
continue;
|
4021 |
|
|
name = gimple_default_def (cfun, adj->base);
|
4022 |
|
|
if (!name)
|
4023 |
|
|
continue;
|
4024 |
|
|
FOR_EACH_IMM_USE_STMT (stmt, ui, name)
|
4025 |
|
|
{
|
4026 |
|
|
/* All other users must have been removed by scan_function. */
|
4027 |
|
|
gcc_assert (is_gimple_debug (stmt));
|
4028 |
|
|
gimple_debug_bind_reset_value (stmt);
|
4029 |
|
|
update_stmt (stmt);
|
4030 |
|
|
}
|
4031 |
|
|
}
|
4032 |
|
|
}
|
4033 |
|
|
|
4034 |
|
|
/* Return true iff all callers have at least as many actual arguments as there
|
4035 |
|
|
are formal parameters in the current function. */
|
4036 |
|
|
|
4037 |
|
|
static bool
|
4038 |
|
|
all_callers_have_enough_arguments_p (struct cgraph_node *node)
|
4039 |
|
|
{
|
4040 |
|
|
struct cgraph_edge *cs;
|
4041 |
|
|
for (cs = node->callers; cs; cs = cs->next_caller)
|
4042 |
|
|
if (!callsite_has_enough_arguments_p (cs->call_stmt))
|
4043 |
|
|
return false;
|
4044 |
|
|
|
4045 |
|
|
return true;
|
4046 |
|
|
}
|
4047 |
|
|
|
4048 |
|
|
|
4049 |
|
|
/* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
|
4050 |
|
|
|
4051 |
|
|
static void
|
4052 |
|
|
convert_callers (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
|
4053 |
|
|
{
|
4054 |
|
|
tree old_cur_fndecl = current_function_decl;
|
4055 |
|
|
struct cgraph_edge *cs;
|
4056 |
|
|
bitmap recomputed_callers = BITMAP_ALLOC (NULL);
|
4057 |
|
|
|
4058 |
|
|
for (cs = node->callers; cs; cs = cs->next_caller)
|
4059 |
|
|
{
|
4060 |
|
|
current_function_decl = cs->caller->decl;
|
4061 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
|
4062 |
|
|
|
4063 |
|
|
if (dump_file)
|
4064 |
|
|
fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
|
4065 |
|
|
cs->caller->uid, cs->callee->uid,
|
4066 |
|
|
cgraph_node_name (cs->caller),
|
4067 |
|
|
cgraph_node_name (cs->callee));
|
4068 |
|
|
|
4069 |
|
|
ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
|
4070 |
|
|
|
4071 |
|
|
pop_cfun ();
|
4072 |
|
|
}
|
4073 |
|
|
|
4074 |
|
|
for (cs = node->callers; cs; cs = cs->next_caller)
|
4075 |
|
|
if (cs->caller != node
|
4076 |
|
|
&& !bitmap_bit_p (recomputed_callers, cs->caller->uid))
|
4077 |
|
|
{
|
4078 |
|
|
compute_inline_parameters (cs->caller);
|
4079 |
|
|
bitmap_set_bit (recomputed_callers, cs->caller->uid);
|
4080 |
|
|
}
|
4081 |
|
|
BITMAP_FREE (recomputed_callers);
|
4082 |
|
|
|
4083 |
|
|
current_function_decl = old_cur_fndecl;
|
4084 |
|
|
return;
|
4085 |
|
|
}
|
4086 |
|
|
|
4087 |
|
|
/* Perform all the modification required in IPA-SRA for NODE to have parameters
|
4088 |
|
|
as given in ADJUSTMENTS. */
|
4089 |
|
|
|
4090 |
|
|
static void
|
4091 |
|
|
modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
|
4092 |
|
|
{
|
4093 |
|
|
struct cgraph_node *new_node;
|
4094 |
|
|
struct cgraph_edge *cs;
|
4095 |
|
|
VEC (cgraph_edge_p, heap) * redirect_callers;
|
4096 |
|
|
int node_callers;
|
4097 |
|
|
|
4098 |
|
|
node_callers = 0;
|
4099 |
|
|
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
|
4100 |
|
|
node_callers++;
|
4101 |
|
|
redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
|
4102 |
|
|
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
|
4103 |
|
|
VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
|
4104 |
|
|
|
4105 |
|
|
rebuild_cgraph_edges ();
|
4106 |
|
|
pop_cfun ();
|
4107 |
|
|
current_function_decl = NULL_TREE;
|
4108 |
|
|
|
4109 |
|
|
new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL);
|
4110 |
|
|
current_function_decl = new_node->decl;
|
4111 |
|
|
push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
|
4112 |
|
|
|
4113 |
|
|
ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
|
4114 |
|
|
scan_function (sra_ipa_modify_expr, sra_ipa_modify_assign,
|
4115 |
|
|
replace_removed_params_ssa_names, false, adjustments);
|
4116 |
|
|
sra_ipa_reset_debug_stmts (adjustments);
|
4117 |
|
|
convert_callers (new_node, adjustments);
|
4118 |
|
|
cgraph_make_node_local (new_node);
|
4119 |
|
|
return;
|
4120 |
|
|
}
|
4121 |
|
|
|
4122 |
|
|
/* Return false the function is apparently unsuitable for IPA-SRA based on it's
|
4123 |
|
|
attributes, return true otherwise. NODE is the cgraph node of the current
|
4124 |
|
|
function. */
|
4125 |
|
|
|
4126 |
|
|
static bool
|
4127 |
|
|
ipa_sra_preliminary_function_checks (struct cgraph_node *node)
|
4128 |
|
|
{
|
4129 |
|
|
if (!cgraph_node_can_be_local_p (node))
|
4130 |
|
|
{
|
4131 |
|
|
if (dump_file)
|
4132 |
|
|
fprintf (dump_file, "Function not local to this compilation unit.\n");
|
4133 |
|
|
return false;
|
4134 |
|
|
}
|
4135 |
|
|
|
4136 |
|
|
if (!tree_versionable_function_p (node->decl))
|
4137 |
|
|
{
|
4138 |
|
|
if (dump_file)
|
4139 |
|
|
fprintf (dump_file, "Function not local to this compilation unit.\n");
|
4140 |
|
|
return false;
|
4141 |
|
|
}
|
4142 |
|
|
|
4143 |
|
|
if (DECL_VIRTUAL_P (current_function_decl))
|
4144 |
|
|
{
|
4145 |
|
|
if (dump_file)
|
4146 |
|
|
fprintf (dump_file, "Function is a virtual method.\n");
|
4147 |
|
|
return false;
|
4148 |
|
|
}
|
4149 |
|
|
|
4150 |
|
|
if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
|
4151 |
|
|
&& node->global.size >= MAX_INLINE_INSNS_AUTO)
|
4152 |
|
|
{
|
4153 |
|
|
if (dump_file)
|
4154 |
|
|
fprintf (dump_file, "Function too big to be made truly local.\n");
|
4155 |
|
|
return false;
|
4156 |
|
|
}
|
4157 |
|
|
|
4158 |
|
|
if (!node->callers)
|
4159 |
|
|
{
|
4160 |
|
|
if (dump_file)
|
4161 |
|
|
fprintf (dump_file,
|
4162 |
|
|
"Function has no callers in this compilation unit.\n");
|
4163 |
|
|
return false;
|
4164 |
|
|
}
|
4165 |
|
|
|
4166 |
|
|
if (cfun->stdarg)
|
4167 |
|
|
{
|
4168 |
|
|
if (dump_file)
|
4169 |
|
|
fprintf (dump_file, "Function uses stdarg. \n");
|
4170 |
|
|
return false;
|
4171 |
|
|
}
|
4172 |
|
|
|
4173 |
|
|
if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
|
4174 |
|
|
return false;
|
4175 |
|
|
|
4176 |
|
|
return true;
|
4177 |
|
|
}
|
4178 |
|
|
|
4179 |
|
|
/* Perform early interprocedural SRA. */
|
4180 |
|
|
|
4181 |
|
|
static unsigned int
|
4182 |
|
|
ipa_early_sra (void)
|
4183 |
|
|
{
|
4184 |
|
|
struct cgraph_node *node = cgraph_node (current_function_decl);
|
4185 |
|
|
ipa_parm_adjustment_vec adjustments;
|
4186 |
|
|
int ret = 0;
|
4187 |
|
|
|
4188 |
|
|
if (!ipa_sra_preliminary_function_checks (node))
|
4189 |
|
|
return 0;
|
4190 |
|
|
|
4191 |
|
|
sra_initialize ();
|
4192 |
|
|
sra_mode = SRA_MODE_EARLY_IPA;
|
4193 |
|
|
|
4194 |
|
|
if (!find_param_candidates ())
|
4195 |
|
|
{
|
4196 |
|
|
if (dump_file)
|
4197 |
|
|
fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
|
4198 |
|
|
goto simple_out;
|
4199 |
|
|
}
|
4200 |
|
|
|
4201 |
|
|
if (!all_callers_have_enough_arguments_p (node))
|
4202 |
|
|
{
|
4203 |
|
|
if (dump_file)
|
4204 |
|
|
fprintf (dump_file, "There are callers with insufficient number of "
|
4205 |
|
|
"arguments.\n");
|
4206 |
|
|
goto simple_out;
|
4207 |
|
|
}
|
4208 |
|
|
|
4209 |
|
|
bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
|
4210 |
|
|
func_param_count
|
4211 |
|
|
* last_basic_block_for_function (cfun));
|
4212 |
|
|
final_bbs = BITMAP_ALLOC (NULL);
|
4213 |
|
|
|
4214 |
|
|
scan_function (build_access_from_expr, build_accesses_from_assign,
|
4215 |
|
|
NULL, true, NULL);
|
4216 |
|
|
if (encountered_apply_args)
|
4217 |
|
|
{
|
4218 |
|
|
if (dump_file)
|
4219 |
|
|
fprintf (dump_file, "Function calls __builtin_apply_args().\n");
|
4220 |
|
|
goto out;
|
4221 |
|
|
}
|
4222 |
|
|
|
4223 |
|
|
if (encountered_unchangable_recursive_call)
|
4224 |
|
|
{
|
4225 |
|
|
if (dump_file)
|
4226 |
|
|
fprintf (dump_file, "Function calls itself with insufficient "
|
4227 |
|
|
"number of arguments.\n");
|
4228 |
|
|
goto out;
|
4229 |
|
|
}
|
4230 |
|
|
|
4231 |
|
|
adjustments = analyze_all_param_acesses ();
|
4232 |
|
|
if (!adjustments)
|
4233 |
|
|
goto out;
|
4234 |
|
|
if (dump_file)
|
4235 |
|
|
ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
|
4236 |
|
|
|
4237 |
|
|
modify_function (node, adjustments);
|
4238 |
|
|
VEC_free (ipa_parm_adjustment_t, heap, adjustments);
|
4239 |
|
|
ret = TODO_update_ssa;
|
4240 |
|
|
|
4241 |
|
|
statistics_counter_event (cfun, "Unused parameters deleted",
|
4242 |
|
|
sra_stats.deleted_unused_parameters);
|
4243 |
|
|
statistics_counter_event (cfun, "Scalar parameters converted to by-value",
|
4244 |
|
|
sra_stats.scalar_by_ref_to_by_val);
|
4245 |
|
|
statistics_counter_event (cfun, "Aggregate parameters broken up",
|
4246 |
|
|
sra_stats.aggregate_params_reduced);
|
4247 |
|
|
statistics_counter_event (cfun, "Aggregate parameter components created",
|
4248 |
|
|
sra_stats.param_reductions_created);
|
4249 |
|
|
|
4250 |
|
|
out:
|
4251 |
|
|
BITMAP_FREE (final_bbs);
|
4252 |
|
|
free (bb_dereferences);
|
4253 |
|
|
simple_out:
|
4254 |
|
|
sra_deinitialize ();
|
4255 |
|
|
return ret;
|
4256 |
|
|
}
|
4257 |
|
|
|
4258 |
|
|
/* Return if early ipa sra shall be performed. */
|
4259 |
|
|
static bool
|
4260 |
|
|
ipa_early_sra_gate (void)
|
4261 |
|
|
{
|
4262 |
|
|
return flag_ipa_sra;
|
4263 |
|
|
}
|
4264 |
|
|
|
4265 |
|
|
struct gimple_opt_pass pass_early_ipa_sra =
|
4266 |
|
|
{
|
4267 |
|
|
{
|
4268 |
|
|
GIMPLE_PASS,
|
4269 |
|
|
"eipa_sra", /* name */
|
4270 |
|
|
ipa_early_sra_gate, /* gate */
|
4271 |
|
|
ipa_early_sra, /* execute */
|
4272 |
|
|
NULL, /* sub */
|
4273 |
|
|
NULL, /* next */
|
4274 |
|
|
0, /* static_pass_number */
|
4275 |
|
|
TV_IPA_SRA, /* tv_id */
|
4276 |
|
|
0, /* properties_required */
|
4277 |
|
|
0, /* properties_provided */
|
4278 |
|
|
0, /* properties_destroyed */
|
4279 |
|
|
0, /* todo_flags_start */
|
4280 |
|
|
TODO_dump_func | TODO_dump_cgraph /* todo_flags_finish */
|
4281 |
|
|
}
|
4282 |
|
|
};
|
4283 |
|
|
|
4284 |
|
|
|