| 1 |
280 |
jeremybenn |
/* Copy propagation and SSA_NAME replacement support routines.
|
| 2 |
|
|
Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010
|
| 3 |
|
|
Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
any later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "flags.h"
|
| 27 |
|
|
#include "rtl.h"
|
| 28 |
|
|
#include "tm_p.h"
|
| 29 |
|
|
#include "ggc.h"
|
| 30 |
|
|
#include "basic-block.h"
|
| 31 |
|
|
#include "output.h"
|
| 32 |
|
|
#include "expr.h"
|
| 33 |
|
|
#include "function.h"
|
| 34 |
|
|
#include "diagnostic.h"
|
| 35 |
|
|
#include "timevar.h"
|
| 36 |
|
|
#include "tree-dump.h"
|
| 37 |
|
|
#include "tree-flow.h"
|
| 38 |
|
|
#include "tree-pass.h"
|
| 39 |
|
|
#include "tree-ssa-propagate.h"
|
| 40 |
|
|
#include "langhooks.h"
|
| 41 |
|
|
#include "cfgloop.h"
|
| 42 |
|
|
|
| 43 |
|
|
/* This file implements the copy propagation pass and provides a
|
| 44 |
|
|
handful of interfaces for performing const/copy propagation and
|
| 45 |
|
|
simple expression replacement which keep variable annotations
|
| 46 |
|
|
up-to-date.
|
| 47 |
|
|
|
| 48 |
|
|
We require that for any copy operation where the RHS and LHS have
|
| 49 |
|
|
a non-null memory tag the memory tag be the same. It is OK
|
| 50 |
|
|
for one or both of the memory tags to be NULL.
|
| 51 |
|
|
|
| 52 |
|
|
We also require tracking if a variable is dereferenced in a load or
|
| 53 |
|
|
store operation.
|
| 54 |
|
|
|
| 55 |
|
|
We enforce these requirements by having all copy propagation and
|
| 56 |
|
|
replacements of one SSA_NAME with a different SSA_NAME to use the
|
| 57 |
|
|
APIs defined in this file. */
|
| 58 |
|
|
|
| 59 |
|
|
/* Return true if we may propagate ORIG into DEST, false otherwise. */
|
| 60 |
|
|
|
| 61 |
|
|
bool
|
| 62 |
|
|
may_propagate_copy (tree dest, tree orig)
|
| 63 |
|
|
{
|
| 64 |
|
|
tree type_d = TREE_TYPE (dest);
|
| 65 |
|
|
tree type_o = TREE_TYPE (orig);
|
| 66 |
|
|
|
| 67 |
|
|
/* If ORIG flows in from an abnormal edge, it cannot be propagated. */
|
| 68 |
|
|
if (TREE_CODE (orig) == SSA_NAME
|
| 69 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
|
| 70 |
|
|
return false;
|
| 71 |
|
|
|
| 72 |
|
|
/* If DEST is an SSA_NAME that flows from an abnormal edge, then it
|
| 73 |
|
|
cannot be replaced. */
|
| 74 |
|
|
if (TREE_CODE (dest) == SSA_NAME
|
| 75 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
|
| 76 |
|
|
return false;
|
| 77 |
|
|
|
| 78 |
|
|
/* Do not copy between types for which we *do* need a conversion. */
|
| 79 |
|
|
if (!useless_type_conversion_p (type_d, type_o))
|
| 80 |
|
|
return false;
|
| 81 |
|
|
|
| 82 |
|
|
/* Propagating virtual operands is always ok. */
|
| 83 |
|
|
if (TREE_CODE (dest) == SSA_NAME && !is_gimple_reg (dest))
|
| 84 |
|
|
{
|
| 85 |
|
|
/* But only between virtual operands. */
|
| 86 |
|
|
gcc_assert (TREE_CODE (orig) == SSA_NAME && !is_gimple_reg (orig));
|
| 87 |
|
|
|
| 88 |
|
|
return true;
|
| 89 |
|
|
}
|
| 90 |
|
|
|
| 91 |
|
|
/* Anything else is OK. */
|
| 92 |
|
|
return true;
|
| 93 |
|
|
}
|
| 94 |
|
|
|
| 95 |
|
|
/* Like may_propagate_copy, but use as the destination expression
|
| 96 |
|
|
the principal expression (typically, the RHS) contained in
|
| 97 |
|
|
statement DEST. This is more efficient when working with the
|
| 98 |
|
|
gimple tuples representation. */
|
| 99 |
|
|
|
| 100 |
|
|
bool
|
| 101 |
|
|
may_propagate_copy_into_stmt (gimple dest, tree orig)
|
| 102 |
|
|
{
|
| 103 |
|
|
tree type_d;
|
| 104 |
|
|
tree type_o;
|
| 105 |
|
|
|
| 106 |
|
|
/* If the statement is a switch or a single-rhs assignment,
|
| 107 |
|
|
then the expression to be replaced by the propagation may
|
| 108 |
|
|
be an SSA_NAME. Fortunately, there is an explicit tree
|
| 109 |
|
|
for the expression, so we delegate to may_propagate_copy. */
|
| 110 |
|
|
|
| 111 |
|
|
if (gimple_assign_single_p (dest))
|
| 112 |
|
|
return may_propagate_copy (gimple_assign_rhs1 (dest), orig);
|
| 113 |
|
|
else if (gimple_code (dest) == GIMPLE_SWITCH)
|
| 114 |
|
|
return may_propagate_copy (gimple_switch_index (dest), orig);
|
| 115 |
|
|
|
| 116 |
|
|
/* In other cases, the expression is not materialized, so there
|
| 117 |
|
|
is no destination to pass to may_propagate_copy. On the other
|
| 118 |
|
|
hand, the expression cannot be an SSA_NAME, so the analysis
|
| 119 |
|
|
is much simpler. */
|
| 120 |
|
|
|
| 121 |
|
|
if (TREE_CODE (orig) == SSA_NAME
|
| 122 |
|
|
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
|
| 123 |
|
|
return false;
|
| 124 |
|
|
|
| 125 |
|
|
if (is_gimple_assign (dest))
|
| 126 |
|
|
type_d = TREE_TYPE (gimple_assign_lhs (dest));
|
| 127 |
|
|
else if (gimple_code (dest) == GIMPLE_COND)
|
| 128 |
|
|
type_d = boolean_type_node;
|
| 129 |
|
|
else if (is_gimple_call (dest)
|
| 130 |
|
|
&& gimple_call_lhs (dest) != NULL_TREE)
|
| 131 |
|
|
type_d = TREE_TYPE (gimple_call_lhs (dest));
|
| 132 |
|
|
else
|
| 133 |
|
|
gcc_unreachable ();
|
| 134 |
|
|
|
| 135 |
|
|
type_o = TREE_TYPE (orig);
|
| 136 |
|
|
|
| 137 |
|
|
if (!useless_type_conversion_p (type_d, type_o))
|
| 138 |
|
|
return false;
|
| 139 |
|
|
|
| 140 |
|
|
return true;
|
| 141 |
|
|
}
|
| 142 |
|
|
|
| 143 |
|
|
/* Similarly, but we know that we're propagating into an ASM_EXPR. */
|
| 144 |
|
|
|
| 145 |
|
|
bool
|
| 146 |
|
|
may_propagate_copy_into_asm (tree dest)
|
| 147 |
|
|
{
|
| 148 |
|
|
/* Hard register operands of asms are special. Do not bypass. */
|
| 149 |
|
|
return !(TREE_CODE (dest) == SSA_NAME
|
| 150 |
|
|
&& TREE_CODE (SSA_NAME_VAR (dest)) == VAR_DECL
|
| 151 |
|
|
&& DECL_HARD_REGISTER (SSA_NAME_VAR (dest)));
|
| 152 |
|
|
}
|
| 153 |
|
|
|
| 154 |
|
|
|
| 155 |
|
|
/* Common code for propagate_value and replace_exp.
|
| 156 |
|
|
|
| 157 |
|
|
Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
|
| 158 |
|
|
replacement is done to propagate a value or not. */
|
| 159 |
|
|
|
| 160 |
|
|
static void
|
| 161 |
|
|
replace_exp_1 (use_operand_p op_p, tree val,
|
| 162 |
|
|
bool for_propagation ATTRIBUTE_UNUSED)
|
| 163 |
|
|
{
|
| 164 |
|
|
#if defined ENABLE_CHECKING
|
| 165 |
|
|
tree op = USE_FROM_PTR (op_p);
|
| 166 |
|
|
|
| 167 |
|
|
gcc_assert (!(for_propagation
|
| 168 |
|
|
&& TREE_CODE (op) == SSA_NAME
|
| 169 |
|
|
&& TREE_CODE (val) == SSA_NAME
|
| 170 |
|
|
&& !may_propagate_copy (op, val)));
|
| 171 |
|
|
#endif
|
| 172 |
|
|
|
| 173 |
|
|
if (TREE_CODE (val) == SSA_NAME)
|
| 174 |
|
|
SET_USE (op_p, val);
|
| 175 |
|
|
else
|
| 176 |
|
|
SET_USE (op_p, unsave_expr_now (val));
|
| 177 |
|
|
}
|
| 178 |
|
|
|
| 179 |
|
|
|
| 180 |
|
|
/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
|
| 181 |
|
|
into the operand pointed to by OP_P.
|
| 182 |
|
|
|
| 183 |
|
|
Use this version for const/copy propagation as it will perform additional
|
| 184 |
|
|
checks to ensure validity of the const/copy propagation. */
|
| 185 |
|
|
|
| 186 |
|
|
void
|
| 187 |
|
|
propagate_value (use_operand_p op_p, tree val)
|
| 188 |
|
|
{
|
| 189 |
|
|
replace_exp_1 (op_p, val, true);
|
| 190 |
|
|
}
|
| 191 |
|
|
|
| 192 |
|
|
/* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
|
| 193 |
|
|
|
| 194 |
|
|
Use this version when not const/copy propagating values. For example,
|
| 195 |
|
|
PRE uses this version when building expressions as they would appear
|
| 196 |
|
|
in specific blocks taking into account actions of PHI nodes. */
|
| 197 |
|
|
|
| 198 |
|
|
void
|
| 199 |
|
|
replace_exp (use_operand_p op_p, tree val)
|
| 200 |
|
|
{
|
| 201 |
|
|
replace_exp_1 (op_p, val, false);
|
| 202 |
|
|
}
|
| 203 |
|
|
|
| 204 |
|
|
|
| 205 |
|
|
/* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
|
| 206 |
|
|
into the tree pointed to by OP_P.
|
| 207 |
|
|
|
| 208 |
|
|
Use this version for const/copy propagation when SSA operands are not
|
| 209 |
|
|
available. It will perform the additional checks to ensure validity of
|
| 210 |
|
|
the const/copy propagation, but will not update any operand information.
|
| 211 |
|
|
Be sure to mark the stmt as modified. */
|
| 212 |
|
|
|
| 213 |
|
|
void
|
| 214 |
|
|
propagate_tree_value (tree *op_p, tree val)
|
| 215 |
|
|
{
|
| 216 |
|
|
#if defined ENABLE_CHECKING
|
| 217 |
|
|
gcc_assert (!(TREE_CODE (val) == SSA_NAME
|
| 218 |
|
|
&& *op_p
|
| 219 |
|
|
&& TREE_CODE (*op_p) == SSA_NAME
|
| 220 |
|
|
&& !may_propagate_copy (*op_p, val)));
|
| 221 |
|
|
#endif
|
| 222 |
|
|
|
| 223 |
|
|
if (TREE_CODE (val) == SSA_NAME)
|
| 224 |
|
|
*op_p = val;
|
| 225 |
|
|
else
|
| 226 |
|
|
*op_p = unsave_expr_now (val);
|
| 227 |
|
|
}
|
| 228 |
|
|
|
| 229 |
|
|
|
| 230 |
|
|
/* Like propagate_tree_value, but use as the operand to replace
|
| 231 |
|
|
the principal expression (typically, the RHS) contained in the
|
| 232 |
|
|
statement referenced by iterator GSI. Note that it is not
|
| 233 |
|
|
always possible to update the statement in-place, so a new
|
| 234 |
|
|
statement may be created to replace the original. */
|
| 235 |
|
|
|
| 236 |
|
|
void
|
| 237 |
|
|
propagate_tree_value_into_stmt (gimple_stmt_iterator *gsi, tree val)
|
| 238 |
|
|
{
|
| 239 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
| 240 |
|
|
|
| 241 |
|
|
if (is_gimple_assign (stmt))
|
| 242 |
|
|
{
|
| 243 |
|
|
tree expr = NULL_TREE;
|
| 244 |
|
|
if (gimple_assign_single_p (stmt))
|
| 245 |
|
|
expr = gimple_assign_rhs1 (stmt);
|
| 246 |
|
|
propagate_tree_value (&expr, val);
|
| 247 |
|
|
gimple_assign_set_rhs_from_tree (gsi, expr);
|
| 248 |
|
|
stmt = gsi_stmt (*gsi);
|
| 249 |
|
|
}
|
| 250 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
| 251 |
|
|
{
|
| 252 |
|
|
tree lhs = NULL_TREE;
|
| 253 |
|
|
tree rhs = fold_convert (TREE_TYPE (val), integer_zero_node);
|
| 254 |
|
|
propagate_tree_value (&lhs, val);
|
| 255 |
|
|
gimple_cond_set_code (stmt, NE_EXPR);
|
| 256 |
|
|
gimple_cond_set_lhs (stmt, lhs);
|
| 257 |
|
|
gimple_cond_set_rhs (stmt, rhs);
|
| 258 |
|
|
}
|
| 259 |
|
|
else if (is_gimple_call (stmt)
|
| 260 |
|
|
&& gimple_call_lhs (stmt) != NULL_TREE)
|
| 261 |
|
|
{
|
| 262 |
|
|
gimple new_stmt;
|
| 263 |
|
|
|
| 264 |
|
|
tree expr = NULL_TREE;
|
| 265 |
|
|
propagate_tree_value (&expr, val);
|
| 266 |
|
|
new_stmt = gimple_build_assign (gimple_call_lhs (stmt), expr);
|
| 267 |
|
|
move_ssa_defining_stmt_for_defs (new_stmt, stmt);
|
| 268 |
|
|
gsi_replace (gsi, new_stmt, false);
|
| 269 |
|
|
}
|
| 270 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
| 271 |
|
|
propagate_tree_value (gimple_switch_index_ptr (stmt), val);
|
| 272 |
|
|
else
|
| 273 |
|
|
gcc_unreachable ();
|
| 274 |
|
|
}
|
| 275 |
|
|
|
| 276 |
|
|
/*---------------------------------------------------------------------------
|
| 277 |
|
|
Copy propagation
|
| 278 |
|
|
---------------------------------------------------------------------------*/
|
| 279 |
|
|
/* During propagation, we keep chains of variables that are copies of
|
| 280 |
|
|
one another. If variable X_i is a copy of X_j and X_j is a copy of
|
| 281 |
|
|
X_k, COPY_OF will contain:
|
| 282 |
|
|
|
| 283 |
|
|
COPY_OF[i].VALUE = X_j
|
| 284 |
|
|
COPY_OF[j].VALUE = X_k
|
| 285 |
|
|
COPY_OF[k].VALUE = X_k
|
| 286 |
|
|
|
| 287 |
|
|
After propagation, the copy-of value for each variable X_i is
|
| 288 |
|
|
converted into the final value by walking the copy-of chains and
|
| 289 |
|
|
updating COPY_OF[i].VALUE to be the last element of the chain. */
|
| 290 |
|
|
static prop_value_t *copy_of;
|
| 291 |
|
|
|
| 292 |
|
|
/* Used in set_copy_of_val to determine if the last link of a copy-of
|
| 293 |
|
|
chain has changed. */
|
| 294 |
|
|
static tree *cached_last_copy_of;
|
| 295 |
|
|
|
| 296 |
|
|
|
| 297 |
|
|
/* Return true if this statement may generate a useful copy. */
|
| 298 |
|
|
|
| 299 |
|
|
static bool
|
| 300 |
|
|
stmt_may_generate_copy (gimple stmt)
|
| 301 |
|
|
{
|
| 302 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
| 303 |
|
|
return !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt));
|
| 304 |
|
|
|
| 305 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
| 306 |
|
|
return false;
|
| 307 |
|
|
|
| 308 |
|
|
/* If the statement has volatile operands, it won't generate a
|
| 309 |
|
|
useful copy. */
|
| 310 |
|
|
if (gimple_has_volatile_ops (stmt))
|
| 311 |
|
|
return false;
|
| 312 |
|
|
|
| 313 |
|
|
/* Statements with loads and/or stores will never generate a useful copy. */
|
| 314 |
|
|
if (gimple_vuse (stmt))
|
| 315 |
|
|
return false;
|
| 316 |
|
|
|
| 317 |
|
|
/* Otherwise, the only statements that generate useful copies are
|
| 318 |
|
|
assignments whose RHS is just an SSA name that doesn't flow
|
| 319 |
|
|
through abnormal edges. */
|
| 320 |
|
|
return (gimple_assign_rhs_code (stmt) == SSA_NAME
|
| 321 |
|
|
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt)));
|
| 322 |
|
|
}
|
| 323 |
|
|
|
| 324 |
|
|
|
| 325 |
|
|
/* Return the copy-of value for VAR. */
|
| 326 |
|
|
|
| 327 |
|
|
static inline prop_value_t *
|
| 328 |
|
|
get_copy_of_val (tree var)
|
| 329 |
|
|
{
|
| 330 |
|
|
prop_value_t *val = ©_of[SSA_NAME_VERSION (var)];
|
| 331 |
|
|
|
| 332 |
|
|
if (val->value == NULL_TREE
|
| 333 |
|
|
&& !stmt_may_generate_copy (SSA_NAME_DEF_STMT (var)))
|
| 334 |
|
|
{
|
| 335 |
|
|
/* If the variable will never generate a useful copy relation,
|
| 336 |
|
|
make it its own copy. */
|
| 337 |
|
|
val->value = var;
|
| 338 |
|
|
}
|
| 339 |
|
|
|
| 340 |
|
|
return val;
|
| 341 |
|
|
}
|
| 342 |
|
|
|
| 343 |
|
|
|
| 344 |
|
|
/* Return last link in the copy-of chain for VAR. */
|
| 345 |
|
|
|
| 346 |
|
|
static tree
|
| 347 |
|
|
get_last_copy_of (tree var)
|
| 348 |
|
|
{
|
| 349 |
|
|
tree last;
|
| 350 |
|
|
int i;
|
| 351 |
|
|
|
| 352 |
|
|
/* Traverse COPY_OF starting at VAR until we get to the last
|
| 353 |
|
|
link in the chain. Since it is possible to have cycles in PHI
|
| 354 |
|
|
nodes, the copy-of chain may also contain cycles.
|
| 355 |
|
|
|
| 356 |
|
|
To avoid infinite loops and to avoid traversing lengthy copy-of
|
| 357 |
|
|
chains, we artificially limit the maximum number of chains we are
|
| 358 |
|
|
willing to traverse.
|
| 359 |
|
|
|
| 360 |
|
|
The value 5 was taken from a compiler and runtime library
|
| 361 |
|
|
bootstrap and a mixture of C and C++ code from various sources.
|
| 362 |
|
|
More than 82% of all copy-of chains were shorter than 5 links. */
|
| 363 |
|
|
#define LIMIT 5
|
| 364 |
|
|
|
| 365 |
|
|
last = var;
|
| 366 |
|
|
for (i = 0; i < LIMIT; i++)
|
| 367 |
|
|
{
|
| 368 |
|
|
tree copy = copy_of[SSA_NAME_VERSION (last)].value;
|
| 369 |
|
|
if (copy == NULL_TREE || copy == last)
|
| 370 |
|
|
break;
|
| 371 |
|
|
last = copy;
|
| 372 |
|
|
}
|
| 373 |
|
|
|
| 374 |
|
|
/* If we have reached the limit, then we are either in a copy-of
|
| 375 |
|
|
cycle or the copy-of chain is too long. In this case, just
|
| 376 |
|
|
return VAR so that it is not considered a copy of anything. */
|
| 377 |
|
|
return (i < LIMIT ? last : var);
|
| 378 |
|
|
}
|
| 379 |
|
|
|
| 380 |
|
|
|
| 381 |
|
|
/* Set FIRST to be the first variable in the copy-of chain for DEST.
|
| 382 |
|
|
If DEST's copy-of value or its copy-of chain has changed, return
|
| 383 |
|
|
true.
|
| 384 |
|
|
|
| 385 |
|
|
MEM_REF is the memory reference where FIRST is stored. This is
|
| 386 |
|
|
used when DEST is a non-register and we are copy propagating loads
|
| 387 |
|
|
and stores. */
|
| 388 |
|
|
|
| 389 |
|
|
static inline bool
|
| 390 |
|
|
set_copy_of_val (tree dest, tree first)
|
| 391 |
|
|
{
|
| 392 |
|
|
unsigned int dest_ver = SSA_NAME_VERSION (dest);
|
| 393 |
|
|
tree old_first, old_last, new_last;
|
| 394 |
|
|
|
| 395 |
|
|
/* Set FIRST to be the first link in COPY_OF[DEST]. If that
|
| 396 |
|
|
changed, return true. */
|
| 397 |
|
|
old_first = copy_of[dest_ver].value;
|
| 398 |
|
|
copy_of[dest_ver].value = first;
|
| 399 |
|
|
|
| 400 |
|
|
if (old_first != first)
|
| 401 |
|
|
return true;
|
| 402 |
|
|
|
| 403 |
|
|
/* If FIRST and OLD_FIRST are the same, we need to check whether the
|
| 404 |
|
|
copy-of chain starting at FIRST ends in a different variable. If
|
| 405 |
|
|
the copy-of chain starting at FIRST ends up in a different
|
| 406 |
|
|
variable than the last cached value we had for DEST, then return
|
| 407 |
|
|
true because DEST is now a copy of a different variable.
|
| 408 |
|
|
|
| 409 |
|
|
This test is necessary because even though the first link in the
|
| 410 |
|
|
copy-of chain may not have changed, if any of the variables in
|
| 411 |
|
|
the copy-of chain changed its final value, DEST will now be the
|
| 412 |
|
|
copy of a different variable, so we have to do another round of
|
| 413 |
|
|
propagation for everything that depends on DEST. */
|
| 414 |
|
|
old_last = cached_last_copy_of[dest_ver];
|
| 415 |
|
|
new_last = get_last_copy_of (dest);
|
| 416 |
|
|
cached_last_copy_of[dest_ver] = new_last;
|
| 417 |
|
|
|
| 418 |
|
|
return (old_last != new_last);
|
| 419 |
|
|
}
|
| 420 |
|
|
|
| 421 |
|
|
|
| 422 |
|
|
/* Dump the copy-of value for variable VAR to FILE. */
|
| 423 |
|
|
|
| 424 |
|
|
static void
|
| 425 |
|
|
dump_copy_of (FILE *file, tree var)
|
| 426 |
|
|
{
|
| 427 |
|
|
tree val;
|
| 428 |
|
|
sbitmap visited;
|
| 429 |
|
|
|
| 430 |
|
|
print_generic_expr (file, var, dump_flags);
|
| 431 |
|
|
|
| 432 |
|
|
if (TREE_CODE (var) != SSA_NAME)
|
| 433 |
|
|
return;
|
| 434 |
|
|
|
| 435 |
|
|
visited = sbitmap_alloc (num_ssa_names);
|
| 436 |
|
|
sbitmap_zero (visited);
|
| 437 |
|
|
SET_BIT (visited, SSA_NAME_VERSION (var));
|
| 438 |
|
|
|
| 439 |
|
|
fprintf (file, " copy-of chain: ");
|
| 440 |
|
|
|
| 441 |
|
|
val = var;
|
| 442 |
|
|
print_generic_expr (file, val, 0);
|
| 443 |
|
|
fprintf (file, " ");
|
| 444 |
|
|
while (copy_of[SSA_NAME_VERSION (val)].value)
|
| 445 |
|
|
{
|
| 446 |
|
|
fprintf (file, "-> ");
|
| 447 |
|
|
val = copy_of[SSA_NAME_VERSION (val)].value;
|
| 448 |
|
|
print_generic_expr (file, val, 0);
|
| 449 |
|
|
fprintf (file, " ");
|
| 450 |
|
|
if (TEST_BIT (visited, SSA_NAME_VERSION (val)))
|
| 451 |
|
|
break;
|
| 452 |
|
|
SET_BIT (visited, SSA_NAME_VERSION (val));
|
| 453 |
|
|
}
|
| 454 |
|
|
|
| 455 |
|
|
val = get_copy_of_val (var)->value;
|
| 456 |
|
|
if (val == NULL_TREE)
|
| 457 |
|
|
fprintf (file, "[UNDEFINED]");
|
| 458 |
|
|
else if (val != var)
|
| 459 |
|
|
fprintf (file, "[COPY]");
|
| 460 |
|
|
else
|
| 461 |
|
|
fprintf (file, "[NOT A COPY]");
|
| 462 |
|
|
|
| 463 |
|
|
sbitmap_free (visited);
|
| 464 |
|
|
}
|
| 465 |
|
|
|
| 466 |
|
|
|
| 467 |
|
|
/* Evaluate the RHS of STMT. If it produces a valid copy, set the LHS
|
| 468 |
|
|
value and store the LHS into *RESULT_P. If STMT generates more
|
| 469 |
|
|
than one name (i.e., STMT is an aliased store), it is enough to
|
| 470 |
|
|
store the first name in the VDEF list into *RESULT_P. After
|
| 471 |
|
|
all, the names generated will be VUSEd in the same statements. */
|
| 472 |
|
|
|
| 473 |
|
|
static enum ssa_prop_result
|
| 474 |
|
|
copy_prop_visit_assignment (gimple stmt, tree *result_p)
|
| 475 |
|
|
{
|
| 476 |
|
|
tree lhs, rhs;
|
| 477 |
|
|
prop_value_t *rhs_val;
|
| 478 |
|
|
|
| 479 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 480 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
| 481 |
|
|
|
| 482 |
|
|
|
| 483 |
|
|
gcc_assert (gimple_assign_rhs_code (stmt) == SSA_NAME);
|
| 484 |
|
|
|
| 485 |
|
|
rhs_val = get_copy_of_val (rhs);
|
| 486 |
|
|
|
| 487 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
| 488 |
|
|
{
|
| 489 |
|
|
/* Straight copy between two SSA names. First, make sure that
|
| 490 |
|
|
we can propagate the RHS into uses of LHS. */
|
| 491 |
|
|
if (!may_propagate_copy (lhs, rhs))
|
| 492 |
|
|
return SSA_PROP_VARYING;
|
| 493 |
|
|
|
| 494 |
|
|
/* Notice that in the case of assignments, we make the LHS be a
|
| 495 |
|
|
copy of RHS's value, not of RHS itself. This avoids keeping
|
| 496 |
|
|
unnecessary copy-of chains (assignments cannot be in a cycle
|
| 497 |
|
|
like PHI nodes), speeding up the propagation process.
|
| 498 |
|
|
This is different from what we do in copy_prop_visit_phi_node.
|
| 499 |
|
|
In those cases, we are interested in the copy-of chains. */
|
| 500 |
|
|
*result_p = lhs;
|
| 501 |
|
|
if (set_copy_of_val (*result_p, rhs_val->value))
|
| 502 |
|
|
return SSA_PROP_INTERESTING;
|
| 503 |
|
|
else
|
| 504 |
|
|
return SSA_PROP_NOT_INTERESTING;
|
| 505 |
|
|
}
|
| 506 |
|
|
|
| 507 |
|
|
return SSA_PROP_VARYING;
|
| 508 |
|
|
}
|
| 509 |
|
|
|
| 510 |
|
|
|
| 511 |
|
|
/* Visit the GIMPLE_COND STMT. Return SSA_PROP_INTERESTING
|
| 512 |
|
|
if it can determine which edge will be taken. Otherwise, return
|
| 513 |
|
|
SSA_PROP_VARYING. */
|
| 514 |
|
|
|
| 515 |
|
|
static enum ssa_prop_result
|
| 516 |
|
|
copy_prop_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
|
| 517 |
|
|
{
|
| 518 |
|
|
enum ssa_prop_result retval = SSA_PROP_VARYING;
|
| 519 |
|
|
location_t loc = gimple_location (stmt);
|
| 520 |
|
|
|
| 521 |
|
|
tree op0 = gimple_cond_lhs (stmt);
|
| 522 |
|
|
tree op1 = gimple_cond_rhs (stmt);
|
| 523 |
|
|
|
| 524 |
|
|
/* The only conditionals that we may be able to compute statically
|
| 525 |
|
|
are predicates involving two SSA_NAMEs. */
|
| 526 |
|
|
if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
|
| 527 |
|
|
{
|
| 528 |
|
|
op0 = get_last_copy_of (op0);
|
| 529 |
|
|
op1 = get_last_copy_of (op1);
|
| 530 |
|
|
|
| 531 |
|
|
/* See if we can determine the predicate's value. */
|
| 532 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 533 |
|
|
{
|
| 534 |
|
|
fprintf (dump_file, "Trying to determine truth value of ");
|
| 535 |
|
|
fprintf (dump_file, "predicate ");
|
| 536 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
| 537 |
|
|
}
|
| 538 |
|
|
|
| 539 |
|
|
/* We can fold COND and get a useful result only when we have
|
| 540 |
|
|
the same SSA_NAME on both sides of a comparison operator. */
|
| 541 |
|
|
if (op0 == op1)
|
| 542 |
|
|
{
|
| 543 |
|
|
tree folded_cond = fold_binary_loc (loc, gimple_cond_code (stmt),
|
| 544 |
|
|
boolean_type_node, op0, op1);
|
| 545 |
|
|
if (folded_cond)
|
| 546 |
|
|
{
|
| 547 |
|
|
basic_block bb = gimple_bb (stmt);
|
| 548 |
|
|
*taken_edge_p = find_taken_edge (bb, folded_cond);
|
| 549 |
|
|
if (*taken_edge_p)
|
| 550 |
|
|
retval = SSA_PROP_INTERESTING;
|
| 551 |
|
|
}
|
| 552 |
|
|
}
|
| 553 |
|
|
}
|
| 554 |
|
|
|
| 555 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS) && *taken_edge_p)
|
| 556 |
|
|
fprintf (dump_file, "\nConditional will always take edge %d->%d\n",
|
| 557 |
|
|
(*taken_edge_p)->src->index, (*taken_edge_p)->dest->index);
|
| 558 |
|
|
|
| 559 |
|
|
return retval;
|
| 560 |
|
|
}
|
| 561 |
|
|
|
| 562 |
|
|
|
| 563 |
|
|
/* Evaluate statement STMT. If the statement produces a new output
|
| 564 |
|
|
value, return SSA_PROP_INTERESTING and store the SSA_NAME holding
|
| 565 |
|
|
the new value in *RESULT_P.
|
| 566 |
|
|
|
| 567 |
|
|
If STMT is a conditional branch and we can determine its truth
|
| 568 |
|
|
value, set *TAKEN_EDGE_P accordingly.
|
| 569 |
|
|
|
| 570 |
|
|
If the new value produced by STMT is varying, return
|
| 571 |
|
|
SSA_PROP_VARYING. */
|
| 572 |
|
|
|
| 573 |
|
|
static enum ssa_prop_result
|
| 574 |
|
|
copy_prop_visit_stmt (gimple stmt, edge *taken_edge_p, tree *result_p)
|
| 575 |
|
|
{
|
| 576 |
|
|
enum ssa_prop_result retval;
|
| 577 |
|
|
|
| 578 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 579 |
|
|
{
|
| 580 |
|
|
fprintf (dump_file, "\nVisiting statement:\n");
|
| 581 |
|
|
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
|
| 582 |
|
|
fprintf (dump_file, "\n");
|
| 583 |
|
|
}
|
| 584 |
|
|
|
| 585 |
|
|
if (gimple_assign_single_p (stmt)
|
| 586 |
|
|
&& TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
|
| 587 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
| 588 |
|
|
{
|
| 589 |
|
|
/* If the statement is a copy assignment, evaluate its RHS to
|
| 590 |
|
|
see if the lattice value of its output has changed. */
|
| 591 |
|
|
retval = copy_prop_visit_assignment (stmt, result_p);
|
| 592 |
|
|
}
|
| 593 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
| 594 |
|
|
{
|
| 595 |
|
|
/* See if we can determine which edge goes out of a conditional
|
| 596 |
|
|
jump. */
|
| 597 |
|
|
retval = copy_prop_visit_cond_stmt (stmt, taken_edge_p);
|
| 598 |
|
|
}
|
| 599 |
|
|
else
|
| 600 |
|
|
retval = SSA_PROP_VARYING;
|
| 601 |
|
|
|
| 602 |
|
|
if (retval == SSA_PROP_VARYING)
|
| 603 |
|
|
{
|
| 604 |
|
|
tree def;
|
| 605 |
|
|
ssa_op_iter i;
|
| 606 |
|
|
|
| 607 |
|
|
/* Any other kind of statement is not interesting for constant
|
| 608 |
|
|
propagation and, therefore, not worth simulating. */
|
| 609 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 610 |
|
|
fprintf (dump_file, "No interesting values produced.\n");
|
| 611 |
|
|
|
| 612 |
|
|
/* The assignment is not a copy operation. Don't visit this
|
| 613 |
|
|
statement again and mark all the definitions in the statement
|
| 614 |
|
|
to be copies of nothing. */
|
| 615 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_ALL_DEFS)
|
| 616 |
|
|
set_copy_of_val (def, def);
|
| 617 |
|
|
}
|
| 618 |
|
|
|
| 619 |
|
|
return retval;
|
| 620 |
|
|
}
|
| 621 |
|
|
|
| 622 |
|
|
|
| 623 |
|
|
/* Visit PHI node PHI. If all the arguments produce the same value,
|
| 624 |
|
|
set it to be the value of the LHS of PHI. */
|
| 625 |
|
|
|
| 626 |
|
|
static enum ssa_prop_result
|
| 627 |
|
|
copy_prop_visit_phi_node (gimple phi)
|
| 628 |
|
|
{
|
| 629 |
|
|
enum ssa_prop_result retval;
|
| 630 |
|
|
unsigned i;
|
| 631 |
|
|
prop_value_t phi_val = { 0, NULL_TREE };
|
| 632 |
|
|
|
| 633 |
|
|
tree lhs = gimple_phi_result (phi);
|
| 634 |
|
|
|
| 635 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 636 |
|
|
{
|
| 637 |
|
|
fprintf (dump_file, "\nVisiting PHI node: ");
|
| 638 |
|
|
print_gimple_stmt (dump_file, phi, 0, dump_flags);
|
| 639 |
|
|
fprintf (dump_file, "\n\n");
|
| 640 |
|
|
}
|
| 641 |
|
|
|
| 642 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
| 643 |
|
|
{
|
| 644 |
|
|
prop_value_t *arg_val;
|
| 645 |
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
| 646 |
|
|
edge e = gimple_phi_arg_edge (phi, i);
|
| 647 |
|
|
|
| 648 |
|
|
/* We don't care about values flowing through non-executable
|
| 649 |
|
|
edges. */
|
| 650 |
|
|
if (!(e->flags & EDGE_EXECUTABLE))
|
| 651 |
|
|
continue;
|
| 652 |
|
|
|
| 653 |
|
|
/* Constants in the argument list never generate a useful copy.
|
| 654 |
|
|
Similarly, names that flow through abnormal edges cannot be
|
| 655 |
|
|
used to derive copies. */
|
| 656 |
|
|
if (TREE_CODE (arg) != SSA_NAME || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (arg))
|
| 657 |
|
|
{
|
| 658 |
|
|
phi_val.value = lhs;
|
| 659 |
|
|
break;
|
| 660 |
|
|
}
|
| 661 |
|
|
|
| 662 |
|
|
/* Avoid copy propagation from an inner into an outer loop.
|
| 663 |
|
|
Otherwise, this may move loop variant variables outside of
|
| 664 |
|
|
their loops and prevent coalescing opportunities. If the
|
| 665 |
|
|
value was loop invariant, it will be hoisted by LICM and
|
| 666 |
|
|
exposed for copy propagation. Not a problem for virtual
|
| 667 |
|
|
operands though. */
|
| 668 |
|
|
if (is_gimple_reg (lhs)
|
| 669 |
|
|
&& loop_depth_of_name (arg) > loop_depth_of_name (lhs))
|
| 670 |
|
|
{
|
| 671 |
|
|
phi_val.value = lhs;
|
| 672 |
|
|
break;
|
| 673 |
|
|
}
|
| 674 |
|
|
|
| 675 |
|
|
/* If the LHS appears in the argument list, ignore it. It is
|
| 676 |
|
|
irrelevant as a copy. */
|
| 677 |
|
|
if (arg == lhs || get_last_copy_of (arg) == lhs)
|
| 678 |
|
|
continue;
|
| 679 |
|
|
|
| 680 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 681 |
|
|
{
|
| 682 |
|
|
fprintf (dump_file, "\tArgument #%d: ", i);
|
| 683 |
|
|
dump_copy_of (dump_file, arg);
|
| 684 |
|
|
fprintf (dump_file, "\n");
|
| 685 |
|
|
}
|
| 686 |
|
|
|
| 687 |
|
|
arg_val = get_copy_of_val (arg);
|
| 688 |
|
|
|
| 689 |
|
|
/* If the LHS didn't have a value yet, make it a copy of the
|
| 690 |
|
|
first argument we find. Notice that while we make the LHS be
|
| 691 |
|
|
a copy of the argument itself, we take the memory reference
|
| 692 |
|
|
from the argument's value so that we can compare it to the
|
| 693 |
|
|
memory reference of all the other arguments. */
|
| 694 |
|
|
if (phi_val.value == NULL_TREE)
|
| 695 |
|
|
{
|
| 696 |
|
|
phi_val.value = arg_val->value ? arg_val->value : arg;
|
| 697 |
|
|
continue;
|
| 698 |
|
|
}
|
| 699 |
|
|
|
| 700 |
|
|
/* If PHI_VAL and ARG don't have a common copy-of chain, then
|
| 701 |
|
|
this PHI node cannot be a copy operation. Also, if we are
|
| 702 |
|
|
copy propagating stores and these two arguments came from
|
| 703 |
|
|
different memory references, they cannot be considered
|
| 704 |
|
|
copies. */
|
| 705 |
|
|
if (get_last_copy_of (phi_val.value) != get_last_copy_of (arg))
|
| 706 |
|
|
{
|
| 707 |
|
|
phi_val.value = lhs;
|
| 708 |
|
|
break;
|
| 709 |
|
|
}
|
| 710 |
|
|
}
|
| 711 |
|
|
|
| 712 |
|
|
if (phi_val.value && may_propagate_copy (lhs, phi_val.value)
|
| 713 |
|
|
&& set_copy_of_val (lhs, phi_val.value))
|
| 714 |
|
|
retval = (phi_val.value != lhs) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
|
| 715 |
|
|
else
|
| 716 |
|
|
retval = SSA_PROP_NOT_INTERESTING;
|
| 717 |
|
|
|
| 718 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 719 |
|
|
{
|
| 720 |
|
|
fprintf (dump_file, "\nPHI node ");
|
| 721 |
|
|
dump_copy_of (dump_file, lhs);
|
| 722 |
|
|
fprintf (dump_file, "\nTelling the propagator to ");
|
| 723 |
|
|
if (retval == SSA_PROP_INTERESTING)
|
| 724 |
|
|
fprintf (dump_file, "add SSA edges out of this PHI and continue.");
|
| 725 |
|
|
else if (retval == SSA_PROP_VARYING)
|
| 726 |
|
|
fprintf (dump_file, "add SSA edges out of this PHI and never visit again.");
|
| 727 |
|
|
else
|
| 728 |
|
|
fprintf (dump_file, "do nothing with SSA edges and keep iterating.");
|
| 729 |
|
|
fprintf (dump_file, "\n\n");
|
| 730 |
|
|
}
|
| 731 |
|
|
|
| 732 |
|
|
return retval;
|
| 733 |
|
|
}
|
| 734 |
|
|
|
| 735 |
|
|
|
| 736 |
|
|
/* Initialize structures used for copy propagation. PHIS_ONLY is true
|
| 737 |
|
|
if we should only consider PHI nodes as generating copy propagation
|
| 738 |
|
|
opportunities. */
|
| 739 |
|
|
|
| 740 |
|
|
static void
|
| 741 |
|
|
init_copy_prop (void)
|
| 742 |
|
|
{
|
| 743 |
|
|
basic_block bb;
|
| 744 |
|
|
|
| 745 |
|
|
copy_of = XCNEWVEC (prop_value_t, num_ssa_names);
|
| 746 |
|
|
|
| 747 |
|
|
cached_last_copy_of = XCNEWVEC (tree, num_ssa_names);
|
| 748 |
|
|
|
| 749 |
|
|
FOR_EACH_BB (bb)
|
| 750 |
|
|
{
|
| 751 |
|
|
gimple_stmt_iterator si;
|
| 752 |
|
|
int depth = bb->loop_depth;
|
| 753 |
|
|
bool loop_exit_p = false;
|
| 754 |
|
|
|
| 755 |
|
|
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
| 756 |
|
|
{
|
| 757 |
|
|
gimple stmt = gsi_stmt (si);
|
| 758 |
|
|
ssa_op_iter iter;
|
| 759 |
|
|
tree def;
|
| 760 |
|
|
|
| 761 |
|
|
/* The only statements that we care about are those that may
|
| 762 |
|
|
generate useful copies. We also need to mark conditional
|
| 763 |
|
|
jumps so that their outgoing edges are added to the work
|
| 764 |
|
|
lists of the propagator.
|
| 765 |
|
|
|
| 766 |
|
|
Avoid copy propagation from an inner into an outer loop.
|
| 767 |
|
|
Otherwise, this may move loop variant variables outside of
|
| 768 |
|
|
their loops and prevent coalescing opportunities. If the
|
| 769 |
|
|
value was loop invariant, it will be hoisted by LICM and
|
| 770 |
|
|
exposed for copy propagation. */
|
| 771 |
|
|
if (stmt_ends_bb_p (stmt))
|
| 772 |
|
|
prop_set_simulate_again (stmt, true);
|
| 773 |
|
|
else if (stmt_may_generate_copy (stmt)
|
| 774 |
|
|
/* Since we are iterating over the statements in
|
| 775 |
|
|
BB, not the phi nodes, STMT will always be an
|
| 776 |
|
|
assignment. */
|
| 777 |
|
|
&& loop_depth_of_name (gimple_assign_rhs1 (stmt)) <= depth)
|
| 778 |
|
|
prop_set_simulate_again (stmt, true);
|
| 779 |
|
|
else
|
| 780 |
|
|
prop_set_simulate_again (stmt, false);
|
| 781 |
|
|
|
| 782 |
|
|
/* Mark all the outputs of this statement as not being
|
| 783 |
|
|
the copy of anything. */
|
| 784 |
|
|
FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
|
| 785 |
|
|
if (!prop_simulate_again_p (stmt))
|
| 786 |
|
|
set_copy_of_val (def, def);
|
| 787 |
|
|
else
|
| 788 |
|
|
cached_last_copy_of[SSA_NAME_VERSION (def)] = def;
|
| 789 |
|
|
}
|
| 790 |
|
|
|
| 791 |
|
|
/* In loop-closed SSA form do not copy-propagate through
|
| 792 |
|
|
PHI nodes in blocks with a loop exit edge predecessor. */
|
| 793 |
|
|
if (current_loops
|
| 794 |
|
|
&& loops_state_satisfies_p (LOOP_CLOSED_SSA))
|
| 795 |
|
|
{
|
| 796 |
|
|
edge_iterator ei;
|
| 797 |
|
|
edge e;
|
| 798 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
| 799 |
|
|
if (loop_exit_edge_p (e->src->loop_father, e))
|
| 800 |
|
|
loop_exit_p = true;
|
| 801 |
|
|
}
|
| 802 |
|
|
|
| 803 |
|
|
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
|
| 804 |
|
|
{
|
| 805 |
|
|
gimple phi = gsi_stmt (si);
|
| 806 |
|
|
tree def;
|
| 807 |
|
|
|
| 808 |
|
|
def = gimple_phi_result (phi);
|
| 809 |
|
|
if (!is_gimple_reg (def)
|
| 810 |
|
|
|| loop_exit_p)
|
| 811 |
|
|
prop_set_simulate_again (phi, false);
|
| 812 |
|
|
else
|
| 813 |
|
|
prop_set_simulate_again (phi, true);
|
| 814 |
|
|
|
| 815 |
|
|
if (!prop_simulate_again_p (phi))
|
| 816 |
|
|
set_copy_of_val (def, def);
|
| 817 |
|
|
else
|
| 818 |
|
|
cached_last_copy_of[SSA_NAME_VERSION (def)] = def;
|
| 819 |
|
|
}
|
| 820 |
|
|
}
|
| 821 |
|
|
}
|
| 822 |
|
|
|
| 823 |
|
|
|
| 824 |
|
|
/* Deallocate memory used in copy propagation and do final
|
| 825 |
|
|
substitution. */
|
| 826 |
|
|
|
| 827 |
|
|
static void
|
| 828 |
|
|
fini_copy_prop (void)
|
| 829 |
|
|
{
|
| 830 |
|
|
size_t i;
|
| 831 |
|
|
prop_value_t *tmp;
|
| 832 |
|
|
|
| 833 |
|
|
/* Set the final copy-of value for each variable by traversing the
|
| 834 |
|
|
copy-of chains. */
|
| 835 |
|
|
tmp = XCNEWVEC (prop_value_t, num_ssa_names);
|
| 836 |
|
|
for (i = 1; i < num_ssa_names; i++)
|
| 837 |
|
|
{
|
| 838 |
|
|
tree var = ssa_name (i);
|
| 839 |
|
|
if (!var
|
| 840 |
|
|
|| !copy_of[i].value
|
| 841 |
|
|
|| copy_of[i].value == var)
|
| 842 |
|
|
continue;
|
| 843 |
|
|
|
| 844 |
|
|
tmp[i].value = get_last_copy_of (var);
|
| 845 |
|
|
|
| 846 |
|
|
/* In theory the points-to solution of all members of the
|
| 847 |
|
|
copy chain is their intersection. For now we do not bother
|
| 848 |
|
|
to compute this but only make sure we do not lose points-to
|
| 849 |
|
|
information completely by setting the points-to solution
|
| 850 |
|
|
of the representative to the first solution we find if
|
| 851 |
|
|
it doesn't have one already. */
|
| 852 |
|
|
if (tmp[i].value != var
|
| 853 |
|
|
&& POINTER_TYPE_P (TREE_TYPE (var))
|
| 854 |
|
|
&& SSA_NAME_PTR_INFO (var)
|
| 855 |
|
|
&& !SSA_NAME_PTR_INFO (tmp[i].value))
|
| 856 |
|
|
duplicate_ssa_name_ptr_info (tmp[i].value, SSA_NAME_PTR_INFO (var));
|
| 857 |
|
|
}
|
| 858 |
|
|
|
| 859 |
|
|
substitute_and_fold (tmp, NULL, true);
|
| 860 |
|
|
|
| 861 |
|
|
free (cached_last_copy_of);
|
| 862 |
|
|
free (copy_of);
|
| 863 |
|
|
free (tmp);
|
| 864 |
|
|
}
|
| 865 |
|
|
|
| 866 |
|
|
|
| 867 |
|
|
/* Main entry point to the copy propagator.
|
| 868 |
|
|
|
| 869 |
|
|
PHIS_ONLY is true if we should only consider PHI nodes as generating
|
| 870 |
|
|
copy propagation opportunities.
|
| 871 |
|
|
|
| 872 |
|
|
The algorithm propagates the value COPY-OF using ssa_propagate. For
|
| 873 |
|
|
every variable X_i, COPY-OF(X_i) indicates which variable is X_i created
|
| 874 |
|
|
from. The following example shows how the algorithm proceeds at a
|
| 875 |
|
|
high level:
|
| 876 |
|
|
|
| 877 |
|
|
1 a_24 = x_1
|
| 878 |
|
|
2 a_2 = PHI <a_24, x_1>
|
| 879 |
|
|
3 a_5 = PHI <a_2>
|
| 880 |
|
|
4 x_1 = PHI <x_298, a_5, a_2>
|
| 881 |
|
|
|
| 882 |
|
|
The end result should be that a_2, a_5, a_24 and x_1 are a copy of
|
| 883 |
|
|
x_298. Propagation proceeds as follows.
|
| 884 |
|
|
|
| 885 |
|
|
Visit #1: a_24 is copy-of x_1. Value changed.
|
| 886 |
|
|
Visit #2: a_2 is copy-of x_1. Value changed.
|
| 887 |
|
|
Visit #3: a_5 is copy-of x_1. Value changed.
|
| 888 |
|
|
Visit #4: x_1 is copy-of x_298. Value changed.
|
| 889 |
|
|
Visit #1: a_24 is copy-of x_298. Value changed.
|
| 890 |
|
|
Visit #2: a_2 is copy-of x_298. Value changed.
|
| 891 |
|
|
Visit #3: a_5 is copy-of x_298. Value changed.
|
| 892 |
|
|
Visit #4: x_1 is copy-of x_298. Stable state reached.
|
| 893 |
|
|
|
| 894 |
|
|
When visiting PHI nodes, we only consider arguments that flow
|
| 895 |
|
|
through edges marked executable by the propagation engine. So,
|
| 896 |
|
|
when visiting statement #2 for the first time, we will only look at
|
| 897 |
|
|
the first argument (a_24) and optimistically assume that its value
|
| 898 |
|
|
is the copy of a_24 (x_1).
|
| 899 |
|
|
|
| 900 |
|
|
The problem with this approach is that it may fail to discover copy
|
| 901 |
|
|
relations in PHI cycles. Instead of propagating copy-of
|
| 902 |
|
|
values, we actually propagate copy-of chains. For instance:
|
| 903 |
|
|
|
| 904 |
|
|
A_3 = B_1;
|
| 905 |
|
|
C_9 = A_3;
|
| 906 |
|
|
D_4 = C_9;
|
| 907 |
|
|
X_i = D_4;
|
| 908 |
|
|
|
| 909 |
|
|
In this code fragment, COPY-OF (X_i) = { D_4, C_9, A_3, B_1 }.
|
| 910 |
|
|
Obviously, we are only really interested in the last value of the
|
| 911 |
|
|
chain, however the propagator needs to access the copy-of chain
|
| 912 |
|
|
when visiting PHI nodes.
|
| 913 |
|
|
|
| 914 |
|
|
To represent the copy-of chain, we use the array COPY_CHAINS, which
|
| 915 |
|
|
holds the first link in the copy-of chain for every variable.
|
| 916 |
|
|
If variable X_i is a copy of X_j, which in turn is a copy of X_k,
|
| 917 |
|
|
the array will contain:
|
| 918 |
|
|
|
| 919 |
|
|
COPY_CHAINS[i] = X_j
|
| 920 |
|
|
COPY_CHAINS[j] = X_k
|
| 921 |
|
|
COPY_CHAINS[k] = X_k
|
| 922 |
|
|
|
| 923 |
|
|
Keeping copy-of chains instead of copy-of values directly becomes
|
| 924 |
|
|
important when visiting PHI nodes. Suppose that we had the
|
| 925 |
|
|
following PHI cycle, such that x_52 is already considered a copy of
|
| 926 |
|
|
x_53:
|
| 927 |
|
|
|
| 928 |
|
|
1 x_54 = PHI <x_53, x_52>
|
| 929 |
|
|
2 x_53 = PHI <x_898, x_54>
|
| 930 |
|
|
|
| 931 |
|
|
Visit #1: x_54 is copy-of x_53 (because x_52 is copy-of x_53)
|
| 932 |
|
|
Visit #2: x_53 is copy-of x_898 (because x_54 is a copy of x_53,
|
| 933 |
|
|
so it is considered irrelevant
|
| 934 |
|
|
as a copy).
|
| 935 |
|
|
Visit #1: x_54 is copy-of nothing (x_53 is a copy-of x_898 and
|
| 936 |
|
|
x_52 is a copy of x_53, so
|
| 937 |
|
|
they don't match)
|
| 938 |
|
|
Visit #2: x_53 is copy-of nothing
|
| 939 |
|
|
|
| 940 |
|
|
This problem is avoided by keeping a chain of copies, instead of
|
| 941 |
|
|
the final copy-of value. Propagation will now only keep the first
|
| 942 |
|
|
element of a variable's copy-of chain. When visiting PHI nodes,
|
| 943 |
|
|
arguments are considered equal if their copy-of chains end in the
|
| 944 |
|
|
same variable. So, as long as their copy-of chains overlap, we
|
| 945 |
|
|
know that they will be a copy of the same variable, regardless of
|
| 946 |
|
|
which variable that may be).
|
| 947 |
|
|
|
| 948 |
|
|
Propagation would then proceed as follows (the notation a -> b
|
| 949 |
|
|
means that a is a copy-of b):
|
| 950 |
|
|
|
| 951 |
|
|
Visit #1: x_54 = PHI <x_53, x_52>
|
| 952 |
|
|
x_53 -> x_53
|
| 953 |
|
|
x_52 -> x_53
|
| 954 |
|
|
Result: x_54 -> x_53. Value changed. Add SSA edges.
|
| 955 |
|
|
|
| 956 |
|
|
Visit #1: x_53 = PHI <x_898, x_54>
|
| 957 |
|
|
x_898 -> x_898
|
| 958 |
|
|
x_54 -> x_53
|
| 959 |
|
|
Result: x_53 -> x_898. Value changed. Add SSA edges.
|
| 960 |
|
|
|
| 961 |
|
|
Visit #2: x_54 = PHI <x_53, x_52>
|
| 962 |
|
|
x_53 -> x_898
|
| 963 |
|
|
x_52 -> x_53 -> x_898
|
| 964 |
|
|
Result: x_54 -> x_898. Value changed. Add SSA edges.
|
| 965 |
|
|
|
| 966 |
|
|
Visit #2: x_53 = PHI <x_898, x_54>
|
| 967 |
|
|
x_898 -> x_898
|
| 968 |
|
|
x_54 -> x_898
|
| 969 |
|
|
Result: x_53 -> x_898. Value didn't change. Stable state
|
| 970 |
|
|
|
| 971 |
|
|
Once the propagator stabilizes, we end up with the desired result
|
| 972 |
|
|
x_53 and x_54 are both copies of x_898. */
|
| 973 |
|
|
|
| 974 |
|
|
static unsigned int
|
| 975 |
|
|
execute_copy_prop (void)
|
| 976 |
|
|
{
|
| 977 |
|
|
init_copy_prop ();
|
| 978 |
|
|
ssa_propagate (copy_prop_visit_stmt, copy_prop_visit_phi_node);
|
| 979 |
|
|
fini_copy_prop ();
|
| 980 |
|
|
return 0;
|
| 981 |
|
|
}
|
| 982 |
|
|
|
| 983 |
|
|
static bool
|
| 984 |
|
|
gate_copy_prop (void)
|
| 985 |
|
|
{
|
| 986 |
|
|
return flag_tree_copy_prop != 0;
|
| 987 |
|
|
}
|
| 988 |
|
|
|
| 989 |
|
|
struct gimple_opt_pass pass_copy_prop =
|
| 990 |
|
|
{
|
| 991 |
|
|
{
|
| 992 |
|
|
GIMPLE_PASS,
|
| 993 |
|
|
"copyprop", /* name */
|
| 994 |
|
|
gate_copy_prop, /* gate */
|
| 995 |
|
|
execute_copy_prop, /* execute */
|
| 996 |
|
|
NULL, /* sub */
|
| 997 |
|
|
NULL, /* next */
|
| 998 |
|
|
0, /* static_pass_number */
|
| 999 |
|
|
TV_TREE_COPY_PROP, /* tv_id */
|
| 1000 |
|
|
PROP_ssa | PROP_cfg, /* properties_required */
|
| 1001 |
|
|
0, /* properties_provided */
|
| 1002 |
|
|
0, /* properties_destroyed */
|
| 1003 |
|
|
0, /* todo_flags_start */
|
| 1004 |
|
|
TODO_cleanup_cfg
|
| 1005 |
|
|
| TODO_dump_func
|
| 1006 |
|
|
| TODO_ggc_collect
|
| 1007 |
|
|
| TODO_verify_ssa
|
| 1008 |
|
|
| TODO_update_ssa /* todo_flags_finish */
|
| 1009 |
|
|
}
|
| 1010 |
|
|
};
|