1 |
280 |
jeremybenn |
/* SSA Dominator optimizations for trees
|
2 |
|
|
Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "flags.h"
|
28 |
|
|
#include "rtl.h"
|
29 |
|
|
#include "tm_p.h"
|
30 |
|
|
#include "ggc.h"
|
31 |
|
|
#include "basic-block.h"
|
32 |
|
|
#include "cfgloop.h"
|
33 |
|
|
#include "output.h"
|
34 |
|
|
#include "expr.h"
|
35 |
|
|
#include "function.h"
|
36 |
|
|
#include "diagnostic.h"
|
37 |
|
|
#include "timevar.h"
|
38 |
|
|
#include "tree-dump.h"
|
39 |
|
|
#include "tree-flow.h"
|
40 |
|
|
#include "domwalk.h"
|
41 |
|
|
#include "real.h"
|
42 |
|
|
#include "tree-pass.h"
|
43 |
|
|
#include "tree-ssa-propagate.h"
|
44 |
|
|
#include "langhooks.h"
|
45 |
|
|
#include "params.h"
|
46 |
|
|
|
47 |
|
|
/* This file implements optimizations on the dominator tree. */
|
48 |
|
|
|
49 |
|
|
/* Representation of a "naked" right-hand-side expression, to be used
|
50 |
|
|
in recording available expressions in the expression hash table. */
|
51 |
|
|
|
52 |
|
|
enum expr_kind
|
53 |
|
|
{
|
54 |
|
|
EXPR_SINGLE,
|
55 |
|
|
EXPR_UNARY,
|
56 |
|
|
EXPR_BINARY,
|
57 |
|
|
EXPR_CALL
|
58 |
|
|
};
|
59 |
|
|
|
60 |
|
|
struct hashable_expr
|
61 |
|
|
{
|
62 |
|
|
tree type;
|
63 |
|
|
enum expr_kind kind;
|
64 |
|
|
union {
|
65 |
|
|
struct { tree rhs; } single;
|
66 |
|
|
struct { enum tree_code op; tree opnd; } unary;
|
67 |
|
|
struct { enum tree_code op; tree opnd0; tree opnd1; } binary;
|
68 |
|
|
struct { tree fn; bool pure; size_t nargs; tree *args; } call;
|
69 |
|
|
} ops;
|
70 |
|
|
};
|
71 |
|
|
|
72 |
|
|
/* Structure for recording known values of a conditional expression
|
73 |
|
|
at the exits from its block. */
|
74 |
|
|
|
75 |
|
|
struct cond_equivalence
|
76 |
|
|
{
|
77 |
|
|
struct hashable_expr cond;
|
78 |
|
|
tree value;
|
79 |
|
|
};
|
80 |
|
|
|
81 |
|
|
/* Structure for recording edge equivalences as well as any pending
|
82 |
|
|
edge redirections during the dominator optimizer.
|
83 |
|
|
|
84 |
|
|
Computing and storing the edge equivalences instead of creating
|
85 |
|
|
them on-demand can save significant amounts of time, particularly
|
86 |
|
|
for pathological cases involving switch statements.
|
87 |
|
|
|
88 |
|
|
These structures live for a single iteration of the dominator
|
89 |
|
|
optimizer in the edge's AUX field. At the end of an iteration we
|
90 |
|
|
free each of these structures and update the AUX field to point
|
91 |
|
|
to any requested redirection target (the code for updating the
|
92 |
|
|
CFG and SSA graph for edge redirection expects redirection edge
|
93 |
|
|
targets to be in the AUX field for each edge. */
|
94 |
|
|
|
95 |
|
|
struct edge_info
|
96 |
|
|
{
|
97 |
|
|
/* If this edge creates a simple equivalence, the LHS and RHS of
|
98 |
|
|
the equivalence will be stored here. */
|
99 |
|
|
tree lhs;
|
100 |
|
|
tree rhs;
|
101 |
|
|
|
102 |
|
|
/* Traversing an edge may also indicate one or more particular conditions
|
103 |
|
|
are true or false. The number of recorded conditions can vary, but
|
104 |
|
|
can be determined by the condition's code. So we have an array
|
105 |
|
|
and its maximum index rather than use a varray. */
|
106 |
|
|
struct cond_equivalence *cond_equivalences;
|
107 |
|
|
unsigned int max_cond_equivalences;
|
108 |
|
|
};
|
109 |
|
|
|
110 |
|
|
/* Hash table with expressions made available during the renaming process.
|
111 |
|
|
When an assignment of the form X_i = EXPR is found, the statement is
|
112 |
|
|
stored in this table. If the same expression EXPR is later found on the
|
113 |
|
|
RHS of another statement, it is replaced with X_i (thus performing
|
114 |
|
|
global redundancy elimination). Similarly as we pass through conditionals
|
115 |
|
|
we record the conditional itself as having either a true or false value
|
116 |
|
|
in this table. */
|
117 |
|
|
static htab_t avail_exprs;
|
118 |
|
|
|
119 |
|
|
/* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
|
120 |
|
|
expressions it enters into the hash table along with a marker entry
|
121 |
|
|
(null). When we finish processing the block, we pop off entries and
|
122 |
|
|
remove the expressions from the global hash table until we hit the
|
123 |
|
|
marker. */
|
124 |
|
|
typedef struct expr_hash_elt * expr_hash_elt_t;
|
125 |
|
|
DEF_VEC_P(expr_hash_elt_t);
|
126 |
|
|
DEF_VEC_ALLOC_P(expr_hash_elt_t,heap);
|
127 |
|
|
|
128 |
|
|
static VEC(expr_hash_elt_t,heap) *avail_exprs_stack;
|
129 |
|
|
|
130 |
|
|
/* Structure for entries in the expression hash table. */
|
131 |
|
|
|
132 |
|
|
struct expr_hash_elt
|
133 |
|
|
{
|
134 |
|
|
/* The value (lhs) of this expression. */
|
135 |
|
|
tree lhs;
|
136 |
|
|
|
137 |
|
|
/* The expression (rhs) we want to record. */
|
138 |
|
|
struct hashable_expr expr;
|
139 |
|
|
|
140 |
|
|
/* The stmt pointer if this element corresponds to a statement. */
|
141 |
|
|
gimple stmt;
|
142 |
|
|
|
143 |
|
|
/* The hash value for RHS. */
|
144 |
|
|
hashval_t hash;
|
145 |
|
|
|
146 |
|
|
/* A unique stamp, typically the address of the hash
|
147 |
|
|
element itself, used in removing entries from the table. */
|
148 |
|
|
struct expr_hash_elt *stamp;
|
149 |
|
|
};
|
150 |
|
|
|
151 |
|
|
/* Stack of dest,src pairs that need to be restored during finalization.
|
152 |
|
|
|
153 |
|
|
A NULL entry is used to mark the end of pairs which need to be
|
154 |
|
|
restored during finalization of this block. */
|
155 |
|
|
static VEC(tree,heap) *const_and_copies_stack;
|
156 |
|
|
|
157 |
|
|
/* Track whether or not we have changed the control flow graph. */
|
158 |
|
|
static bool cfg_altered;
|
159 |
|
|
|
160 |
|
|
/* Bitmap of blocks that have had EH statements cleaned. We should
|
161 |
|
|
remove their dead edges eventually. */
|
162 |
|
|
static bitmap need_eh_cleanup;
|
163 |
|
|
|
164 |
|
|
/* Statistics for dominator optimizations. */
|
165 |
|
|
struct opt_stats_d
|
166 |
|
|
{
|
167 |
|
|
long num_stmts;
|
168 |
|
|
long num_exprs_considered;
|
169 |
|
|
long num_re;
|
170 |
|
|
long num_const_prop;
|
171 |
|
|
long num_copy_prop;
|
172 |
|
|
};
|
173 |
|
|
|
174 |
|
|
static struct opt_stats_d opt_stats;
|
175 |
|
|
|
176 |
|
|
/* Local functions. */
|
177 |
|
|
static void optimize_stmt (basic_block, gimple_stmt_iterator);
|
178 |
|
|
static tree lookup_avail_expr (gimple, bool);
|
179 |
|
|
static hashval_t avail_expr_hash (const void *);
|
180 |
|
|
static hashval_t real_avail_expr_hash (const void *);
|
181 |
|
|
static int avail_expr_eq (const void *, const void *);
|
182 |
|
|
static void htab_statistics (FILE *, htab_t);
|
183 |
|
|
static void record_cond (struct cond_equivalence *);
|
184 |
|
|
static void record_const_or_copy (tree, tree);
|
185 |
|
|
static void record_equality (tree, tree);
|
186 |
|
|
static void record_equivalences_from_phis (basic_block);
|
187 |
|
|
static void record_equivalences_from_incoming_edge (basic_block);
|
188 |
|
|
static void eliminate_redundant_computations (gimple_stmt_iterator *);
|
189 |
|
|
static void record_equivalences_from_stmt (gimple, int);
|
190 |
|
|
static void dom_thread_across_edge (struct dom_walk_data *, edge);
|
191 |
|
|
static void dom_opt_leave_block (struct dom_walk_data *, basic_block);
|
192 |
|
|
static void dom_opt_enter_block (struct dom_walk_data *, basic_block);
|
193 |
|
|
static void remove_local_expressions_from_table (void);
|
194 |
|
|
static void restore_vars_to_original_value (void);
|
195 |
|
|
static edge single_incoming_edge_ignoring_loop_edges (basic_block);
|
196 |
|
|
|
197 |
|
|
|
198 |
|
|
/* Given a statement STMT, initialize the hash table element pointed to
|
199 |
|
|
by ELEMENT. */
|
200 |
|
|
|
201 |
|
|
static void
|
202 |
|
|
initialize_hash_element (gimple stmt, tree lhs,
|
203 |
|
|
struct expr_hash_elt *element)
|
204 |
|
|
{
|
205 |
|
|
enum gimple_code code = gimple_code (stmt);
|
206 |
|
|
struct hashable_expr *expr = &element->expr;
|
207 |
|
|
|
208 |
|
|
if (code == GIMPLE_ASSIGN)
|
209 |
|
|
{
|
210 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
211 |
|
|
|
212 |
|
|
expr->type = NULL_TREE;
|
213 |
|
|
|
214 |
|
|
switch (get_gimple_rhs_class (subcode))
|
215 |
|
|
{
|
216 |
|
|
case GIMPLE_SINGLE_RHS:
|
217 |
|
|
expr->kind = EXPR_SINGLE;
|
218 |
|
|
expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
|
219 |
|
|
break;
|
220 |
|
|
case GIMPLE_UNARY_RHS:
|
221 |
|
|
expr->kind = EXPR_UNARY;
|
222 |
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
223 |
|
|
expr->ops.unary.op = subcode;
|
224 |
|
|
expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
|
225 |
|
|
break;
|
226 |
|
|
case GIMPLE_BINARY_RHS:
|
227 |
|
|
expr->kind = EXPR_BINARY;
|
228 |
|
|
expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
|
229 |
|
|
expr->ops.binary.op = subcode;
|
230 |
|
|
expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
|
231 |
|
|
expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
|
232 |
|
|
break;
|
233 |
|
|
default:
|
234 |
|
|
gcc_unreachable ();
|
235 |
|
|
}
|
236 |
|
|
}
|
237 |
|
|
else if (code == GIMPLE_COND)
|
238 |
|
|
{
|
239 |
|
|
expr->type = boolean_type_node;
|
240 |
|
|
expr->kind = EXPR_BINARY;
|
241 |
|
|
expr->ops.binary.op = gimple_cond_code (stmt);
|
242 |
|
|
expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
|
243 |
|
|
expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
|
244 |
|
|
}
|
245 |
|
|
else if (code == GIMPLE_CALL)
|
246 |
|
|
{
|
247 |
|
|
size_t nargs = gimple_call_num_args (stmt);
|
248 |
|
|
size_t i;
|
249 |
|
|
|
250 |
|
|
gcc_assert (gimple_call_lhs (stmt));
|
251 |
|
|
|
252 |
|
|
expr->type = TREE_TYPE (gimple_call_lhs (stmt));
|
253 |
|
|
expr->kind = EXPR_CALL;
|
254 |
|
|
expr->ops.call.fn = gimple_call_fn (stmt);
|
255 |
|
|
|
256 |
|
|
if (gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))
|
257 |
|
|
expr->ops.call.pure = true;
|
258 |
|
|
else
|
259 |
|
|
expr->ops.call.pure = false;
|
260 |
|
|
|
261 |
|
|
expr->ops.call.nargs = nargs;
|
262 |
|
|
expr->ops.call.args = (tree *) xcalloc (nargs, sizeof (tree));
|
263 |
|
|
for (i = 0; i < nargs; i++)
|
264 |
|
|
expr->ops.call.args[i] = gimple_call_arg (stmt, i);
|
265 |
|
|
}
|
266 |
|
|
else if (code == GIMPLE_SWITCH)
|
267 |
|
|
{
|
268 |
|
|
expr->type = TREE_TYPE (gimple_switch_index (stmt));
|
269 |
|
|
expr->kind = EXPR_SINGLE;
|
270 |
|
|
expr->ops.single.rhs = gimple_switch_index (stmt);
|
271 |
|
|
}
|
272 |
|
|
else if (code == GIMPLE_GOTO)
|
273 |
|
|
{
|
274 |
|
|
expr->type = TREE_TYPE (gimple_goto_dest (stmt));
|
275 |
|
|
expr->kind = EXPR_SINGLE;
|
276 |
|
|
expr->ops.single.rhs = gimple_goto_dest (stmt);
|
277 |
|
|
}
|
278 |
|
|
else
|
279 |
|
|
gcc_unreachable ();
|
280 |
|
|
|
281 |
|
|
element->lhs = lhs;
|
282 |
|
|
element->stmt = stmt;
|
283 |
|
|
element->hash = avail_expr_hash (element);
|
284 |
|
|
element->stamp = element;
|
285 |
|
|
}
|
286 |
|
|
|
287 |
|
|
/* Given a conditional expression COND as a tree, initialize
|
288 |
|
|
a hashable_expr expression EXPR. The conditional must be a
|
289 |
|
|
comparison or logical negation. A constant or a variable is
|
290 |
|
|
not permitted. */
|
291 |
|
|
|
292 |
|
|
static void
|
293 |
|
|
initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
|
294 |
|
|
{
|
295 |
|
|
expr->type = boolean_type_node;
|
296 |
|
|
|
297 |
|
|
if (COMPARISON_CLASS_P (cond))
|
298 |
|
|
{
|
299 |
|
|
expr->kind = EXPR_BINARY;
|
300 |
|
|
expr->ops.binary.op = TREE_CODE (cond);
|
301 |
|
|
expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
|
302 |
|
|
expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
|
303 |
|
|
}
|
304 |
|
|
else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
|
305 |
|
|
{
|
306 |
|
|
expr->kind = EXPR_UNARY;
|
307 |
|
|
expr->ops.unary.op = TRUTH_NOT_EXPR;
|
308 |
|
|
expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
|
309 |
|
|
}
|
310 |
|
|
else
|
311 |
|
|
gcc_unreachable ();
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
/* Given a hashable_expr expression EXPR and an LHS,
|
315 |
|
|
initialize the hash table element pointed to by ELEMENT. */
|
316 |
|
|
|
317 |
|
|
static void
|
318 |
|
|
initialize_hash_element_from_expr (struct hashable_expr *expr,
|
319 |
|
|
tree lhs,
|
320 |
|
|
struct expr_hash_elt *element)
|
321 |
|
|
{
|
322 |
|
|
element->expr = *expr;
|
323 |
|
|
element->lhs = lhs;
|
324 |
|
|
element->stmt = NULL;
|
325 |
|
|
element->hash = avail_expr_hash (element);
|
326 |
|
|
element->stamp = element;
|
327 |
|
|
}
|
328 |
|
|
|
329 |
|
|
/* Compare two hashable_expr structures for equivalence.
|
330 |
|
|
They are considered equivalent when the the expressions
|
331 |
|
|
they denote must necessarily be equal. The logic is intended
|
332 |
|
|
to follow that of operand_equal_p in fold-const.c */
|
333 |
|
|
|
334 |
|
|
static bool
|
335 |
|
|
hashable_expr_equal_p (const struct hashable_expr *expr0,
|
336 |
|
|
const struct hashable_expr *expr1)
|
337 |
|
|
{
|
338 |
|
|
tree type0 = expr0->type;
|
339 |
|
|
tree type1 = expr1->type;
|
340 |
|
|
|
341 |
|
|
/* If either type is NULL, there is nothing to check. */
|
342 |
|
|
if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
|
343 |
|
|
return false;
|
344 |
|
|
|
345 |
|
|
/* If both types don't have the same signedness, precision, and mode,
|
346 |
|
|
then we can't consider them equal. */
|
347 |
|
|
if (type0 != type1
|
348 |
|
|
&& (TREE_CODE (type0) == ERROR_MARK
|
349 |
|
|
|| TREE_CODE (type1) == ERROR_MARK
|
350 |
|
|
|| TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
|
351 |
|
|
|| TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
|
352 |
|
|
|| TYPE_MODE (type0) != TYPE_MODE (type1)))
|
353 |
|
|
return false;
|
354 |
|
|
|
355 |
|
|
if (expr0->kind != expr1->kind)
|
356 |
|
|
return false;
|
357 |
|
|
|
358 |
|
|
switch (expr0->kind)
|
359 |
|
|
{
|
360 |
|
|
case EXPR_SINGLE:
|
361 |
|
|
return operand_equal_p (expr0->ops.single.rhs,
|
362 |
|
|
expr1->ops.single.rhs, 0);
|
363 |
|
|
|
364 |
|
|
case EXPR_UNARY:
|
365 |
|
|
if (expr0->ops.unary.op != expr1->ops.unary.op)
|
366 |
|
|
return false;
|
367 |
|
|
|
368 |
|
|
if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
|
369 |
|
|
|| expr0->ops.unary.op == NON_LVALUE_EXPR)
|
370 |
|
|
&& TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
|
371 |
|
|
return false;
|
372 |
|
|
|
373 |
|
|
return operand_equal_p (expr0->ops.unary.opnd,
|
374 |
|
|
expr1->ops.unary.opnd, 0);
|
375 |
|
|
|
376 |
|
|
case EXPR_BINARY:
|
377 |
|
|
{
|
378 |
|
|
if (expr0->ops.binary.op != expr1->ops.binary.op)
|
379 |
|
|
return false;
|
380 |
|
|
|
381 |
|
|
if (operand_equal_p (expr0->ops.binary.opnd0,
|
382 |
|
|
expr1->ops.binary.opnd0, 0)
|
383 |
|
|
&& operand_equal_p (expr0->ops.binary.opnd1,
|
384 |
|
|
expr1->ops.binary.opnd1, 0))
|
385 |
|
|
return true;
|
386 |
|
|
|
387 |
|
|
/* For commutative ops, allow the other order. */
|
388 |
|
|
return (commutative_tree_code (expr0->ops.binary.op)
|
389 |
|
|
&& operand_equal_p (expr0->ops.binary.opnd0,
|
390 |
|
|
expr1->ops.binary.opnd1, 0)
|
391 |
|
|
&& operand_equal_p (expr0->ops.binary.opnd1,
|
392 |
|
|
expr1->ops.binary.opnd0, 0));
|
393 |
|
|
}
|
394 |
|
|
|
395 |
|
|
case EXPR_CALL:
|
396 |
|
|
{
|
397 |
|
|
size_t i;
|
398 |
|
|
|
399 |
|
|
/* If the calls are to different functions, then they
|
400 |
|
|
clearly cannot be equal. */
|
401 |
|
|
if (! operand_equal_p (expr0->ops.call.fn,
|
402 |
|
|
expr1->ops.call.fn, 0))
|
403 |
|
|
return false;
|
404 |
|
|
|
405 |
|
|
if (! expr0->ops.call.pure)
|
406 |
|
|
return false;
|
407 |
|
|
|
408 |
|
|
if (expr0->ops.call.nargs != expr1->ops.call.nargs)
|
409 |
|
|
return false;
|
410 |
|
|
|
411 |
|
|
for (i = 0; i < expr0->ops.call.nargs; i++)
|
412 |
|
|
if (! operand_equal_p (expr0->ops.call.args[i],
|
413 |
|
|
expr1->ops.call.args[i], 0))
|
414 |
|
|
return false;
|
415 |
|
|
|
416 |
|
|
return true;
|
417 |
|
|
}
|
418 |
|
|
|
419 |
|
|
default:
|
420 |
|
|
gcc_unreachable ();
|
421 |
|
|
}
|
422 |
|
|
}
|
423 |
|
|
|
424 |
|
|
/* Compute a hash value for a hashable_expr value EXPR and a
|
425 |
|
|
previously accumulated hash value VAL. If two hashable_expr
|
426 |
|
|
values compare equal with hashable_expr_equal_p, they must
|
427 |
|
|
hash to the same value, given an identical value of VAL.
|
428 |
|
|
The logic is intended to follow iterative_hash_expr in tree.c. */
|
429 |
|
|
|
430 |
|
|
static hashval_t
|
431 |
|
|
iterative_hash_hashable_expr (const struct hashable_expr *expr, hashval_t val)
|
432 |
|
|
{
|
433 |
|
|
switch (expr->kind)
|
434 |
|
|
{
|
435 |
|
|
case EXPR_SINGLE:
|
436 |
|
|
val = iterative_hash_expr (expr->ops.single.rhs, val);
|
437 |
|
|
break;
|
438 |
|
|
|
439 |
|
|
case EXPR_UNARY:
|
440 |
|
|
val = iterative_hash_object (expr->ops.unary.op, val);
|
441 |
|
|
|
442 |
|
|
/* Make sure to include signedness in the hash computation.
|
443 |
|
|
Don't hash the type, that can lead to having nodes which
|
444 |
|
|
compare equal according to operand_equal_p, but which
|
445 |
|
|
have different hash codes. */
|
446 |
|
|
if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
|
447 |
|
|
|| expr->ops.unary.op == NON_LVALUE_EXPR)
|
448 |
|
|
val += TYPE_UNSIGNED (expr->type);
|
449 |
|
|
|
450 |
|
|
val = iterative_hash_expr (expr->ops.unary.opnd, val);
|
451 |
|
|
break;
|
452 |
|
|
|
453 |
|
|
case EXPR_BINARY:
|
454 |
|
|
val = iterative_hash_object (expr->ops.binary.op, val);
|
455 |
|
|
if (commutative_tree_code (expr->ops.binary.op))
|
456 |
|
|
val = iterative_hash_exprs_commutative (expr->ops.binary.opnd0,
|
457 |
|
|
expr->ops.binary.opnd1, val);
|
458 |
|
|
else
|
459 |
|
|
{
|
460 |
|
|
val = iterative_hash_expr (expr->ops.binary.opnd0, val);
|
461 |
|
|
val = iterative_hash_expr (expr->ops.binary.opnd1, val);
|
462 |
|
|
}
|
463 |
|
|
break;
|
464 |
|
|
|
465 |
|
|
case EXPR_CALL:
|
466 |
|
|
{
|
467 |
|
|
size_t i;
|
468 |
|
|
enum tree_code code = CALL_EXPR;
|
469 |
|
|
|
470 |
|
|
val = iterative_hash_object (code, val);
|
471 |
|
|
val = iterative_hash_expr (expr->ops.call.fn, val);
|
472 |
|
|
for (i = 0; i < expr->ops.call.nargs; i++)
|
473 |
|
|
val = iterative_hash_expr (expr->ops.call.args[i], val);
|
474 |
|
|
}
|
475 |
|
|
break;
|
476 |
|
|
|
477 |
|
|
default:
|
478 |
|
|
gcc_unreachable ();
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
return val;
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
/* Print a diagnostic dump of an expression hash table entry. */
|
485 |
|
|
|
486 |
|
|
static void
|
487 |
|
|
print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
|
488 |
|
|
{
|
489 |
|
|
if (element->stmt)
|
490 |
|
|
fprintf (stream, "STMT ");
|
491 |
|
|
else
|
492 |
|
|
fprintf (stream, "COND ");
|
493 |
|
|
|
494 |
|
|
if (element->lhs)
|
495 |
|
|
{
|
496 |
|
|
print_generic_expr (stream, element->lhs, 0);
|
497 |
|
|
fprintf (stream, " = ");
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
switch (element->expr.kind)
|
501 |
|
|
{
|
502 |
|
|
case EXPR_SINGLE:
|
503 |
|
|
print_generic_expr (stream, element->expr.ops.single.rhs, 0);
|
504 |
|
|
break;
|
505 |
|
|
|
506 |
|
|
case EXPR_UNARY:
|
507 |
|
|
fprintf (stream, "%s ", tree_code_name[element->expr.ops.unary.op]);
|
508 |
|
|
print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
|
509 |
|
|
break;
|
510 |
|
|
|
511 |
|
|
case EXPR_BINARY:
|
512 |
|
|
print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
|
513 |
|
|
fprintf (stream, " %s ", tree_code_name[element->expr.ops.binary.op]);
|
514 |
|
|
print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
|
515 |
|
|
break;
|
516 |
|
|
|
517 |
|
|
case EXPR_CALL:
|
518 |
|
|
{
|
519 |
|
|
size_t i;
|
520 |
|
|
size_t nargs = element->expr.ops.call.nargs;
|
521 |
|
|
|
522 |
|
|
print_generic_expr (stream, element->expr.ops.call.fn, 0);
|
523 |
|
|
fprintf (stream, " (");
|
524 |
|
|
for (i = 0; i < nargs; i++)
|
525 |
|
|
{
|
526 |
|
|
print_generic_expr (stream, element->expr.ops.call.args[i], 0);
|
527 |
|
|
if (i + 1 < nargs)
|
528 |
|
|
fprintf (stream, ", ");
|
529 |
|
|
}
|
530 |
|
|
fprintf (stream, ")");
|
531 |
|
|
}
|
532 |
|
|
break;
|
533 |
|
|
}
|
534 |
|
|
fprintf (stream, "\n");
|
535 |
|
|
|
536 |
|
|
if (element->stmt)
|
537 |
|
|
{
|
538 |
|
|
fprintf (stream, " ");
|
539 |
|
|
print_gimple_stmt (stream, element->stmt, 0, 0);
|
540 |
|
|
}
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
/* Delete an expr_hash_elt and reclaim its storage. */
|
544 |
|
|
|
545 |
|
|
static void
|
546 |
|
|
free_expr_hash_elt (void *elt)
|
547 |
|
|
{
|
548 |
|
|
struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);
|
549 |
|
|
|
550 |
|
|
if (element->expr.kind == EXPR_CALL)
|
551 |
|
|
free (element->expr.ops.call.args);
|
552 |
|
|
|
553 |
|
|
free (element);
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
/* Allocate an EDGE_INFO for edge E and attach it to E.
|
557 |
|
|
Return the new EDGE_INFO structure. */
|
558 |
|
|
|
559 |
|
|
static struct edge_info *
|
560 |
|
|
allocate_edge_info (edge e)
|
561 |
|
|
{
|
562 |
|
|
struct edge_info *edge_info;
|
563 |
|
|
|
564 |
|
|
edge_info = XCNEW (struct edge_info);
|
565 |
|
|
|
566 |
|
|
e->aux = edge_info;
|
567 |
|
|
return edge_info;
|
568 |
|
|
}
|
569 |
|
|
|
570 |
|
|
/* Free all EDGE_INFO structures associated with edges in the CFG.
|
571 |
|
|
If a particular edge can be threaded, copy the redirection
|
572 |
|
|
target from the EDGE_INFO structure into the edge's AUX field
|
573 |
|
|
as required by code to update the CFG and SSA graph for
|
574 |
|
|
jump threading. */
|
575 |
|
|
|
576 |
|
|
static void
|
577 |
|
|
free_all_edge_infos (void)
|
578 |
|
|
{
|
579 |
|
|
basic_block bb;
|
580 |
|
|
edge_iterator ei;
|
581 |
|
|
edge e;
|
582 |
|
|
|
583 |
|
|
FOR_EACH_BB (bb)
|
584 |
|
|
{
|
585 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
586 |
|
|
{
|
587 |
|
|
struct edge_info *edge_info = (struct edge_info *) e->aux;
|
588 |
|
|
|
589 |
|
|
if (edge_info)
|
590 |
|
|
{
|
591 |
|
|
if (edge_info->cond_equivalences)
|
592 |
|
|
free (edge_info->cond_equivalences);
|
593 |
|
|
free (edge_info);
|
594 |
|
|
e->aux = NULL;
|
595 |
|
|
}
|
596 |
|
|
}
|
597 |
|
|
}
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
/* Jump threading, redundancy elimination and const/copy propagation.
|
601 |
|
|
|
602 |
|
|
This pass may expose new symbols that need to be renamed into SSA. For
|
603 |
|
|
every new symbol exposed, its corresponding bit will be set in
|
604 |
|
|
VARS_TO_RENAME. */
|
605 |
|
|
|
606 |
|
|
static unsigned int
|
607 |
|
|
tree_ssa_dominator_optimize (void)
|
608 |
|
|
{
|
609 |
|
|
struct dom_walk_data walk_data;
|
610 |
|
|
|
611 |
|
|
memset (&opt_stats, 0, sizeof (opt_stats));
|
612 |
|
|
|
613 |
|
|
/* Create our hash tables. */
|
614 |
|
|
avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free_expr_hash_elt);
|
615 |
|
|
avail_exprs_stack = VEC_alloc (expr_hash_elt_t, heap, 20);
|
616 |
|
|
const_and_copies_stack = VEC_alloc (tree, heap, 20);
|
617 |
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
618 |
|
|
|
619 |
|
|
/* Setup callbacks for the generic dominator tree walker. */
|
620 |
|
|
walk_data.dom_direction = CDI_DOMINATORS;
|
621 |
|
|
walk_data.initialize_block_local_data = NULL;
|
622 |
|
|
walk_data.before_dom_children = dom_opt_enter_block;
|
623 |
|
|
walk_data.after_dom_children = dom_opt_leave_block;
|
624 |
|
|
/* Right now we only attach a dummy COND_EXPR to the global data pointer.
|
625 |
|
|
When we attach more stuff we'll need to fill this out with a real
|
626 |
|
|
structure. */
|
627 |
|
|
walk_data.global_data = NULL;
|
628 |
|
|
walk_data.block_local_data_size = 0;
|
629 |
|
|
|
630 |
|
|
/* Now initialize the dominator walker. */
|
631 |
|
|
init_walk_dominator_tree (&walk_data);
|
632 |
|
|
|
633 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
634 |
|
|
cfg_altered = false;
|
635 |
|
|
|
636 |
|
|
/* We need to know loop structures in order to avoid destroying them
|
637 |
|
|
in jump threading. Note that we still can e.g. thread through loop
|
638 |
|
|
headers to an exit edge, or through loop header to the loop body, assuming
|
639 |
|
|
that we update the loop info. */
|
640 |
|
|
loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES);
|
641 |
|
|
|
642 |
|
|
/* Initialize the value-handle array. */
|
643 |
|
|
threadedge_initialize_values ();
|
644 |
|
|
|
645 |
|
|
/* We need accurate information regarding back edges in the CFG
|
646 |
|
|
for jump threading; this may include back edges that are not part of
|
647 |
|
|
a single loop. */
|
648 |
|
|
mark_dfs_back_edges ();
|
649 |
|
|
|
650 |
|
|
/* Recursively walk the dominator tree optimizing statements. */
|
651 |
|
|
walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
|
652 |
|
|
|
653 |
|
|
{
|
654 |
|
|
gimple_stmt_iterator gsi;
|
655 |
|
|
basic_block bb;
|
656 |
|
|
FOR_EACH_BB (bb)
|
657 |
|
|
{for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
658 |
|
|
update_stmt_if_modified (gsi_stmt (gsi));
|
659 |
|
|
}
|
660 |
|
|
}
|
661 |
|
|
|
662 |
|
|
/* If we exposed any new variables, go ahead and put them into
|
663 |
|
|
SSA form now, before we handle jump threading. This simplifies
|
664 |
|
|
interactions between rewriting of _DECL nodes into SSA form
|
665 |
|
|
and rewriting SSA_NAME nodes into SSA form after block
|
666 |
|
|
duplication and CFG manipulation. */
|
667 |
|
|
update_ssa (TODO_update_ssa);
|
668 |
|
|
|
669 |
|
|
free_all_edge_infos ();
|
670 |
|
|
|
671 |
|
|
/* Thread jumps, creating duplicate blocks as needed. */
|
672 |
|
|
cfg_altered |= thread_through_all_blocks (first_pass_instance);
|
673 |
|
|
|
674 |
|
|
if (cfg_altered)
|
675 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
676 |
|
|
|
677 |
|
|
/* Removal of statements may make some EH edges dead. Purge
|
678 |
|
|
such edges from the CFG as needed. */
|
679 |
|
|
if (!bitmap_empty_p (need_eh_cleanup))
|
680 |
|
|
{
|
681 |
|
|
unsigned i;
|
682 |
|
|
bitmap_iterator bi;
|
683 |
|
|
|
684 |
|
|
/* Jump threading may have created forwarder blocks from blocks
|
685 |
|
|
needing EH cleanup; the new successor of these blocks, which
|
686 |
|
|
has inherited from the original block, needs the cleanup. */
|
687 |
|
|
EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
|
688 |
|
|
{
|
689 |
|
|
basic_block bb = BASIC_BLOCK (i);
|
690 |
|
|
if (single_succ_p (bb) == 1
|
691 |
|
|
&& (single_succ_edge (bb)->flags & EDGE_EH) == 0)
|
692 |
|
|
{
|
693 |
|
|
bitmap_clear_bit (need_eh_cleanup, i);
|
694 |
|
|
bitmap_set_bit (need_eh_cleanup, single_succ (bb)->index);
|
695 |
|
|
}
|
696 |
|
|
}
|
697 |
|
|
|
698 |
|
|
gimple_purge_all_dead_eh_edges (need_eh_cleanup);
|
699 |
|
|
bitmap_zero (need_eh_cleanup);
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
statistics_counter_event (cfun, "Redundant expressions eliminated",
|
703 |
|
|
opt_stats.num_re);
|
704 |
|
|
statistics_counter_event (cfun, "Constants propagated",
|
705 |
|
|
opt_stats.num_const_prop);
|
706 |
|
|
statistics_counter_event (cfun, "Copies propagated",
|
707 |
|
|
opt_stats.num_copy_prop);
|
708 |
|
|
|
709 |
|
|
/* Debugging dumps. */
|
710 |
|
|
if (dump_file && (dump_flags & TDF_STATS))
|
711 |
|
|
dump_dominator_optimization_stats (dump_file);
|
712 |
|
|
|
713 |
|
|
loop_optimizer_finalize ();
|
714 |
|
|
|
715 |
|
|
/* Delete our main hashtable. */
|
716 |
|
|
htab_delete (avail_exprs);
|
717 |
|
|
|
718 |
|
|
/* And finalize the dominator walker. */
|
719 |
|
|
fini_walk_dominator_tree (&walk_data);
|
720 |
|
|
|
721 |
|
|
/* Free asserted bitmaps and stacks. */
|
722 |
|
|
BITMAP_FREE (need_eh_cleanup);
|
723 |
|
|
|
724 |
|
|
VEC_free (expr_hash_elt_t, heap, avail_exprs_stack);
|
725 |
|
|
VEC_free (tree, heap, const_and_copies_stack);
|
726 |
|
|
|
727 |
|
|
/* Free the value-handle array. */
|
728 |
|
|
threadedge_finalize_values ();
|
729 |
|
|
ssa_name_values = NULL;
|
730 |
|
|
|
731 |
|
|
return 0;
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
static bool
|
735 |
|
|
gate_dominator (void)
|
736 |
|
|
{
|
737 |
|
|
return flag_tree_dom != 0;
|
738 |
|
|
}
|
739 |
|
|
|
740 |
|
|
struct gimple_opt_pass pass_dominator =
|
741 |
|
|
{
|
742 |
|
|
{
|
743 |
|
|
GIMPLE_PASS,
|
744 |
|
|
"dom", /* name */
|
745 |
|
|
gate_dominator, /* gate */
|
746 |
|
|
tree_ssa_dominator_optimize, /* execute */
|
747 |
|
|
NULL, /* sub */
|
748 |
|
|
NULL, /* next */
|
749 |
|
|
0, /* static_pass_number */
|
750 |
|
|
TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
|
751 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
752 |
|
|
0, /* properties_provided */
|
753 |
|
|
0, /* properties_destroyed */
|
754 |
|
|
0, /* todo_flags_start */
|
755 |
|
|
TODO_dump_func
|
756 |
|
|
| TODO_update_ssa
|
757 |
|
|
| TODO_cleanup_cfg
|
758 |
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
759 |
|
|
}
|
760 |
|
|
};
|
761 |
|
|
|
762 |
|
|
|
763 |
|
|
/* Given a conditional statement CONDSTMT, convert the
|
764 |
|
|
condition to a canonical form. */
|
765 |
|
|
|
766 |
|
|
static void
|
767 |
|
|
canonicalize_comparison (gimple condstmt)
|
768 |
|
|
{
|
769 |
|
|
tree op0;
|
770 |
|
|
tree op1;
|
771 |
|
|
enum tree_code code;
|
772 |
|
|
|
773 |
|
|
gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
|
774 |
|
|
|
775 |
|
|
op0 = gimple_cond_lhs (condstmt);
|
776 |
|
|
op1 = gimple_cond_rhs (condstmt);
|
777 |
|
|
|
778 |
|
|
code = gimple_cond_code (condstmt);
|
779 |
|
|
|
780 |
|
|
/* If it would be profitable to swap the operands, then do so to
|
781 |
|
|
canonicalize the statement, enabling better optimization.
|
782 |
|
|
|
783 |
|
|
By placing canonicalization of such expressions here we
|
784 |
|
|
transparently keep statements in canonical form, even
|
785 |
|
|
when the statement is modified. */
|
786 |
|
|
if (tree_swap_operands_p (op0, op1, false))
|
787 |
|
|
{
|
788 |
|
|
/* For relationals we need to swap the operands
|
789 |
|
|
and change the code. */
|
790 |
|
|
if (code == LT_EXPR
|
791 |
|
|
|| code == GT_EXPR
|
792 |
|
|
|| code == LE_EXPR
|
793 |
|
|
|| code == GE_EXPR)
|
794 |
|
|
{
|
795 |
|
|
code = swap_tree_comparison (code);
|
796 |
|
|
|
797 |
|
|
gimple_cond_set_code (condstmt, code);
|
798 |
|
|
gimple_cond_set_lhs (condstmt, op1);
|
799 |
|
|
gimple_cond_set_rhs (condstmt, op0);
|
800 |
|
|
|
801 |
|
|
update_stmt (condstmt);
|
802 |
|
|
}
|
803 |
|
|
}
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
/* Initialize local stacks for this optimizer and record equivalences
|
807 |
|
|
upon entry to BB. Equivalences can come from the edge traversed to
|
808 |
|
|
reach BB or they may come from PHI nodes at the start of BB. */
|
809 |
|
|
|
810 |
|
|
/* Remove all the expressions in LOCALS from TABLE, stopping when there are
|
811 |
|
|
LIMIT entries left in LOCALs. */
|
812 |
|
|
|
813 |
|
|
static void
|
814 |
|
|
remove_local_expressions_from_table (void)
|
815 |
|
|
{
|
816 |
|
|
/* Remove all the expressions made available in this block. */
|
817 |
|
|
while (VEC_length (expr_hash_elt_t, avail_exprs_stack) > 0)
|
818 |
|
|
{
|
819 |
|
|
expr_hash_elt_t victim = VEC_pop (expr_hash_elt_t, avail_exprs_stack);
|
820 |
|
|
void **slot;
|
821 |
|
|
|
822 |
|
|
if (victim == NULL)
|
823 |
|
|
break;
|
824 |
|
|
|
825 |
|
|
/* This must precede the actual removal from the hash table,
|
826 |
|
|
as ELEMENT and the table entry may share a call argument
|
827 |
|
|
vector which will be freed during removal. */
|
828 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
829 |
|
|
{
|
830 |
|
|
fprintf (dump_file, "<<<< ");
|
831 |
|
|
print_expr_hash_elt (dump_file, victim);
|
832 |
|
|
}
|
833 |
|
|
|
834 |
|
|
slot = htab_find_slot_with_hash (avail_exprs,
|
835 |
|
|
victim, victim->hash, NO_INSERT);
|
836 |
|
|
gcc_assert (slot && *slot == (void *) victim);
|
837 |
|
|
htab_clear_slot (avail_exprs, slot);
|
838 |
|
|
}
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
/* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
|
842 |
|
|
CONST_AND_COPIES to its original state, stopping when we hit a
|
843 |
|
|
NULL marker. */
|
844 |
|
|
|
845 |
|
|
static void
|
846 |
|
|
restore_vars_to_original_value (void)
|
847 |
|
|
{
|
848 |
|
|
while (VEC_length (tree, const_and_copies_stack) > 0)
|
849 |
|
|
{
|
850 |
|
|
tree prev_value, dest;
|
851 |
|
|
|
852 |
|
|
dest = VEC_pop (tree, const_and_copies_stack);
|
853 |
|
|
|
854 |
|
|
if (dest == NULL)
|
855 |
|
|
break;
|
856 |
|
|
|
857 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
858 |
|
|
{
|
859 |
|
|
fprintf (dump_file, "<<<< COPY ");
|
860 |
|
|
print_generic_expr (dump_file, dest, 0);
|
861 |
|
|
fprintf (dump_file, " = ");
|
862 |
|
|
print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
|
863 |
|
|
fprintf (dump_file, "\n");
|
864 |
|
|
}
|
865 |
|
|
|
866 |
|
|
prev_value = VEC_pop (tree, const_and_copies_stack);
|
867 |
|
|
set_ssa_name_value (dest, prev_value);
|
868 |
|
|
}
|
869 |
|
|
}
|
870 |
|
|
|
871 |
|
|
/* A trivial wrapper so that we can present the generic jump
|
872 |
|
|
threading code with a simple API for simplifying statements. */
|
873 |
|
|
static tree
|
874 |
|
|
simplify_stmt_for_jump_threading (gimple stmt,
|
875 |
|
|
gimple within_stmt ATTRIBUTE_UNUSED)
|
876 |
|
|
{
|
877 |
|
|
return lookup_avail_expr (stmt, false);
|
878 |
|
|
}
|
879 |
|
|
|
880 |
|
|
/* Wrapper for common code to attempt to thread an edge. For example,
|
881 |
|
|
it handles lazily building the dummy condition and the bookkeeping
|
882 |
|
|
when jump threading is successful. */
|
883 |
|
|
|
884 |
|
|
static void
|
885 |
|
|
dom_thread_across_edge (struct dom_walk_data *walk_data, edge e)
|
886 |
|
|
{
|
887 |
|
|
if (! walk_data->global_data)
|
888 |
|
|
{
|
889 |
|
|
gimple dummy_cond =
|
890 |
|
|
gimple_build_cond (NE_EXPR,
|
891 |
|
|
integer_zero_node, integer_zero_node,
|
892 |
|
|
NULL, NULL);
|
893 |
|
|
walk_data->global_data = dummy_cond;
|
894 |
|
|
}
|
895 |
|
|
|
896 |
|
|
thread_across_edge ((gimple) walk_data->global_data, e, false,
|
897 |
|
|
&const_and_copies_stack,
|
898 |
|
|
simplify_stmt_for_jump_threading);
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
/* PHI nodes can create equivalences too.
|
902 |
|
|
|
903 |
|
|
Ignoring any alternatives which are the same as the result, if
|
904 |
|
|
all the alternatives are equal, then the PHI node creates an
|
905 |
|
|
equivalence. */
|
906 |
|
|
|
907 |
|
|
static void
|
908 |
|
|
record_equivalences_from_phis (basic_block bb)
|
909 |
|
|
{
|
910 |
|
|
gimple_stmt_iterator gsi;
|
911 |
|
|
|
912 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
913 |
|
|
{
|
914 |
|
|
gimple phi = gsi_stmt (gsi);
|
915 |
|
|
|
916 |
|
|
tree lhs = gimple_phi_result (phi);
|
917 |
|
|
tree rhs = NULL;
|
918 |
|
|
size_t i;
|
919 |
|
|
|
920 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
921 |
|
|
{
|
922 |
|
|
tree t = gimple_phi_arg_def (phi, i);
|
923 |
|
|
|
924 |
|
|
/* Ignore alternatives which are the same as our LHS. Since
|
925 |
|
|
LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
|
926 |
|
|
can simply compare pointers. */
|
927 |
|
|
if (lhs == t)
|
928 |
|
|
continue;
|
929 |
|
|
|
930 |
|
|
/* If we have not processed an alternative yet, then set
|
931 |
|
|
RHS to this alternative. */
|
932 |
|
|
if (rhs == NULL)
|
933 |
|
|
rhs = t;
|
934 |
|
|
/* If we have processed an alternative (stored in RHS), then
|
935 |
|
|
see if it is equal to this one. If it isn't, then stop
|
936 |
|
|
the search. */
|
937 |
|
|
else if (! operand_equal_for_phi_arg_p (rhs, t))
|
938 |
|
|
break;
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
/* If we had no interesting alternatives, then all the RHS alternatives
|
942 |
|
|
must have been the same as LHS. */
|
943 |
|
|
if (!rhs)
|
944 |
|
|
rhs = lhs;
|
945 |
|
|
|
946 |
|
|
/* If we managed to iterate through each PHI alternative without
|
947 |
|
|
breaking out of the loop, then we have a PHI which may create
|
948 |
|
|
a useful equivalence. We do not need to record unwind data for
|
949 |
|
|
this, since this is a true assignment and not an equivalence
|
950 |
|
|
inferred from a comparison. All uses of this ssa name are dominated
|
951 |
|
|
by this assignment, so unwinding just costs time and space. */
|
952 |
|
|
if (i == gimple_phi_num_args (phi) && may_propagate_copy (lhs, rhs))
|
953 |
|
|
set_ssa_name_value (lhs, rhs);
|
954 |
|
|
}
|
955 |
|
|
}
|
956 |
|
|
|
957 |
|
|
/* Ignoring loop backedges, if BB has precisely one incoming edge then
|
958 |
|
|
return that edge. Otherwise return NULL. */
|
959 |
|
|
static edge
|
960 |
|
|
single_incoming_edge_ignoring_loop_edges (basic_block bb)
|
961 |
|
|
{
|
962 |
|
|
edge retval = NULL;
|
963 |
|
|
edge e;
|
964 |
|
|
edge_iterator ei;
|
965 |
|
|
|
966 |
|
|
FOR_EACH_EDGE (e, ei, bb->preds)
|
967 |
|
|
{
|
968 |
|
|
/* A loop back edge can be identified by the destination of
|
969 |
|
|
the edge dominating the source of the edge. */
|
970 |
|
|
if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
|
971 |
|
|
continue;
|
972 |
|
|
|
973 |
|
|
/* If we have already seen a non-loop edge, then we must have
|
974 |
|
|
multiple incoming non-loop edges and thus we return NULL. */
|
975 |
|
|
if (retval)
|
976 |
|
|
return NULL;
|
977 |
|
|
|
978 |
|
|
/* This is the first non-loop incoming edge we have found. Record
|
979 |
|
|
it. */
|
980 |
|
|
retval = e;
|
981 |
|
|
}
|
982 |
|
|
|
983 |
|
|
return retval;
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
/* Record any equivalences created by the incoming edge to BB. If BB
|
987 |
|
|
has more than one incoming edge, then no equivalence is created. */
|
988 |
|
|
|
989 |
|
|
static void
|
990 |
|
|
record_equivalences_from_incoming_edge (basic_block bb)
|
991 |
|
|
{
|
992 |
|
|
edge e;
|
993 |
|
|
basic_block parent;
|
994 |
|
|
struct edge_info *edge_info;
|
995 |
|
|
|
996 |
|
|
/* If our parent block ended with a control statement, then we may be
|
997 |
|
|
able to record some equivalences based on which outgoing edge from
|
998 |
|
|
the parent was followed. */
|
999 |
|
|
parent = get_immediate_dominator (CDI_DOMINATORS, bb);
|
1000 |
|
|
|
1001 |
|
|
e = single_incoming_edge_ignoring_loop_edges (bb);
|
1002 |
|
|
|
1003 |
|
|
/* If we had a single incoming edge from our parent block, then enter
|
1004 |
|
|
any data associated with the edge into our tables. */
|
1005 |
|
|
if (e && e->src == parent)
|
1006 |
|
|
{
|
1007 |
|
|
unsigned int i;
|
1008 |
|
|
|
1009 |
|
|
edge_info = (struct edge_info *) e->aux;
|
1010 |
|
|
|
1011 |
|
|
if (edge_info)
|
1012 |
|
|
{
|
1013 |
|
|
tree lhs = edge_info->lhs;
|
1014 |
|
|
tree rhs = edge_info->rhs;
|
1015 |
|
|
struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;
|
1016 |
|
|
|
1017 |
|
|
if (lhs)
|
1018 |
|
|
record_equality (lhs, rhs);
|
1019 |
|
|
|
1020 |
|
|
if (cond_equivalences)
|
1021 |
|
|
for (i = 0; i < edge_info->max_cond_equivalences; i++)
|
1022 |
|
|
record_cond (&cond_equivalences[i]);
|
1023 |
|
|
}
|
1024 |
|
|
}
|
1025 |
|
|
}
|
1026 |
|
|
|
1027 |
|
|
/* Dump SSA statistics on FILE. */
|
1028 |
|
|
|
1029 |
|
|
void
|
1030 |
|
|
dump_dominator_optimization_stats (FILE *file)
|
1031 |
|
|
{
|
1032 |
|
|
fprintf (file, "Total number of statements: %6ld\n\n",
|
1033 |
|
|
opt_stats.num_stmts);
|
1034 |
|
|
fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
|
1035 |
|
|
opt_stats.num_exprs_considered);
|
1036 |
|
|
|
1037 |
|
|
fprintf (file, "\nHash table statistics:\n");
|
1038 |
|
|
|
1039 |
|
|
fprintf (file, " avail_exprs: ");
|
1040 |
|
|
htab_statistics (file, avail_exprs);
|
1041 |
|
|
}
|
1042 |
|
|
|
1043 |
|
|
|
1044 |
|
|
/* Dump SSA statistics on stderr. */
|
1045 |
|
|
|
1046 |
|
|
void
|
1047 |
|
|
debug_dominator_optimization_stats (void)
|
1048 |
|
|
{
|
1049 |
|
|
dump_dominator_optimization_stats (stderr);
|
1050 |
|
|
}
|
1051 |
|
|
|
1052 |
|
|
|
1053 |
|
|
/* Dump statistics for the hash table HTAB. */
|
1054 |
|
|
|
1055 |
|
|
static void
|
1056 |
|
|
htab_statistics (FILE *file, htab_t htab)
|
1057 |
|
|
{
|
1058 |
|
|
fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
|
1059 |
|
|
(long) htab_size (htab),
|
1060 |
|
|
(long) htab_elements (htab),
|
1061 |
|
|
htab_collisions (htab));
|
1062 |
|
|
}
|
1063 |
|
|
|
1064 |
|
|
|
1065 |
|
|
/* Enter condition equivalence into the expression hash table.
|
1066 |
|
|
This indicates that a conditional expression has a known
|
1067 |
|
|
boolean value. */
|
1068 |
|
|
|
1069 |
|
|
static void
|
1070 |
|
|
record_cond (struct cond_equivalence *p)
|
1071 |
|
|
{
|
1072 |
|
|
struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
|
1073 |
|
|
void **slot;
|
1074 |
|
|
|
1075 |
|
|
initialize_hash_element_from_expr (&p->cond, p->value, element);
|
1076 |
|
|
|
1077 |
|
|
slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
|
1078 |
|
|
element->hash, INSERT);
|
1079 |
|
|
if (*slot == NULL)
|
1080 |
|
|
{
|
1081 |
|
|
*slot = (void *) element;
|
1082 |
|
|
|
1083 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1084 |
|
|
{
|
1085 |
|
|
fprintf (dump_file, "1>>> ");
|
1086 |
|
|
print_expr_hash_elt (dump_file, element);
|
1087 |
|
|
}
|
1088 |
|
|
|
1089 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element);
|
1090 |
|
|
}
|
1091 |
|
|
else
|
1092 |
|
|
free (element);
|
1093 |
|
|
}
|
1094 |
|
|
|
1095 |
|
|
/* Build a cond_equivalence record indicating that the comparison
|
1096 |
|
|
CODE holds between operands OP0 and OP1. */
|
1097 |
|
|
|
1098 |
|
|
static void
|
1099 |
|
|
build_and_record_new_cond (enum tree_code code,
|
1100 |
|
|
tree op0, tree op1,
|
1101 |
|
|
struct cond_equivalence *p)
|
1102 |
|
|
{
|
1103 |
|
|
struct hashable_expr *cond = &p->cond;
|
1104 |
|
|
|
1105 |
|
|
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
|
1106 |
|
|
|
1107 |
|
|
cond->type = boolean_type_node;
|
1108 |
|
|
cond->kind = EXPR_BINARY;
|
1109 |
|
|
cond->ops.binary.op = code;
|
1110 |
|
|
cond->ops.binary.opnd0 = op0;
|
1111 |
|
|
cond->ops.binary.opnd1 = op1;
|
1112 |
|
|
|
1113 |
|
|
p->value = boolean_true_node;
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/* Record that COND is true and INVERTED is false into the edge information
|
1117 |
|
|
structure. Also record that any conditions dominated by COND are true
|
1118 |
|
|
as well.
|
1119 |
|
|
|
1120 |
|
|
For example, if a < b is true, then a <= b must also be true. */
|
1121 |
|
|
|
1122 |
|
|
static void
|
1123 |
|
|
record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
|
1124 |
|
|
{
|
1125 |
|
|
tree op0, op1;
|
1126 |
|
|
|
1127 |
|
|
if (!COMPARISON_CLASS_P (cond))
|
1128 |
|
|
return;
|
1129 |
|
|
|
1130 |
|
|
op0 = TREE_OPERAND (cond, 0);
|
1131 |
|
|
op1 = TREE_OPERAND (cond, 1);
|
1132 |
|
|
|
1133 |
|
|
switch (TREE_CODE (cond))
|
1134 |
|
|
{
|
1135 |
|
|
case LT_EXPR:
|
1136 |
|
|
case GT_EXPR:
|
1137 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
1138 |
|
|
{
|
1139 |
|
|
edge_info->max_cond_equivalences = 6;
|
1140 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 6);
|
1141 |
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
1142 |
|
|
&edge_info->cond_equivalences[4]);
|
1143 |
|
|
build_and_record_new_cond (LTGT_EXPR, op0, op1,
|
1144 |
|
|
&edge_info->cond_equivalences[5]);
|
1145 |
|
|
}
|
1146 |
|
|
else
|
1147 |
|
|
{
|
1148 |
|
|
edge_info->max_cond_equivalences = 4;
|
1149 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
|
1153 |
|
|
? LE_EXPR : GE_EXPR),
|
1154 |
|
|
op0, op1, &edge_info->cond_equivalences[2]);
|
1155 |
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
1156 |
|
|
&edge_info->cond_equivalences[3]);
|
1157 |
|
|
break;
|
1158 |
|
|
|
1159 |
|
|
case GE_EXPR:
|
1160 |
|
|
case LE_EXPR:
|
1161 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
1162 |
|
|
{
|
1163 |
|
|
edge_info->max_cond_equivalences = 3;
|
1164 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 3);
|
1165 |
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
1166 |
|
|
&edge_info->cond_equivalences[2]);
|
1167 |
|
|
}
|
1168 |
|
|
else
|
1169 |
|
|
{
|
1170 |
|
|
edge_info->max_cond_equivalences = 2;
|
1171 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 2);
|
1172 |
|
|
}
|
1173 |
|
|
break;
|
1174 |
|
|
|
1175 |
|
|
case EQ_EXPR:
|
1176 |
|
|
if (FLOAT_TYPE_P (TREE_TYPE (op0)))
|
1177 |
|
|
{
|
1178 |
|
|
edge_info->max_cond_equivalences = 5;
|
1179 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 5);
|
1180 |
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
1181 |
|
|
&edge_info->cond_equivalences[4]);
|
1182 |
|
|
}
|
1183 |
|
|
else
|
1184 |
|
|
{
|
1185 |
|
|
edge_info->max_cond_equivalences = 4;
|
1186 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
|
1187 |
|
|
}
|
1188 |
|
|
build_and_record_new_cond (LE_EXPR, op0, op1,
|
1189 |
|
|
&edge_info->cond_equivalences[2]);
|
1190 |
|
|
build_and_record_new_cond (GE_EXPR, op0, op1,
|
1191 |
|
|
&edge_info->cond_equivalences[3]);
|
1192 |
|
|
break;
|
1193 |
|
|
|
1194 |
|
|
case UNORDERED_EXPR:
|
1195 |
|
|
edge_info->max_cond_equivalences = 8;
|
1196 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 8);
|
1197 |
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
1198 |
|
|
&edge_info->cond_equivalences[2]);
|
1199 |
|
|
build_and_record_new_cond (UNLE_EXPR, op0, op1,
|
1200 |
|
|
&edge_info->cond_equivalences[3]);
|
1201 |
|
|
build_and_record_new_cond (UNGE_EXPR, op0, op1,
|
1202 |
|
|
&edge_info->cond_equivalences[4]);
|
1203 |
|
|
build_and_record_new_cond (UNEQ_EXPR, op0, op1,
|
1204 |
|
|
&edge_info->cond_equivalences[5]);
|
1205 |
|
|
build_and_record_new_cond (UNLT_EXPR, op0, op1,
|
1206 |
|
|
&edge_info->cond_equivalences[6]);
|
1207 |
|
|
build_and_record_new_cond (UNGT_EXPR, op0, op1,
|
1208 |
|
|
&edge_info->cond_equivalences[7]);
|
1209 |
|
|
break;
|
1210 |
|
|
|
1211 |
|
|
case UNLT_EXPR:
|
1212 |
|
|
case UNGT_EXPR:
|
1213 |
|
|
edge_info->max_cond_equivalences = 4;
|
1214 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
|
1215 |
|
|
build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
|
1216 |
|
|
? UNLE_EXPR : UNGE_EXPR),
|
1217 |
|
|
op0, op1, &edge_info->cond_equivalences[2]);
|
1218 |
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
1219 |
|
|
&edge_info->cond_equivalences[3]);
|
1220 |
|
|
break;
|
1221 |
|
|
|
1222 |
|
|
case UNEQ_EXPR:
|
1223 |
|
|
edge_info->max_cond_equivalences = 4;
|
1224 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
|
1225 |
|
|
build_and_record_new_cond (UNLE_EXPR, op0, op1,
|
1226 |
|
|
&edge_info->cond_equivalences[2]);
|
1227 |
|
|
build_and_record_new_cond (UNGE_EXPR, op0, op1,
|
1228 |
|
|
&edge_info->cond_equivalences[3]);
|
1229 |
|
|
break;
|
1230 |
|
|
|
1231 |
|
|
case LTGT_EXPR:
|
1232 |
|
|
edge_info->max_cond_equivalences = 4;
|
1233 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4);
|
1234 |
|
|
build_and_record_new_cond (NE_EXPR, op0, op1,
|
1235 |
|
|
&edge_info->cond_equivalences[2]);
|
1236 |
|
|
build_and_record_new_cond (ORDERED_EXPR, op0, op1,
|
1237 |
|
|
&edge_info->cond_equivalences[3]);
|
1238 |
|
|
break;
|
1239 |
|
|
|
1240 |
|
|
default:
|
1241 |
|
|
edge_info->max_cond_equivalences = 2;
|
1242 |
|
|
edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 2);
|
1243 |
|
|
break;
|
1244 |
|
|
}
|
1245 |
|
|
|
1246 |
|
|
/* Now store the original true and false conditions into the first
|
1247 |
|
|
two slots. */
|
1248 |
|
|
initialize_expr_from_cond (cond, &edge_info->cond_equivalences[0].cond);
|
1249 |
|
|
edge_info->cond_equivalences[0].value = boolean_true_node;
|
1250 |
|
|
|
1251 |
|
|
/* It is possible for INVERTED to be the negation of a comparison,
|
1252 |
|
|
and not a valid RHS or GIMPLE_COND condition. This happens because
|
1253 |
|
|
invert_truthvalue may return such an expression when asked to invert
|
1254 |
|
|
a floating-point comparison. These comparisons are not assumed to
|
1255 |
|
|
obey the trichotomy law. */
|
1256 |
|
|
initialize_expr_from_cond (inverted, &edge_info->cond_equivalences[1].cond);
|
1257 |
|
|
edge_info->cond_equivalences[1].value = boolean_false_node;
|
1258 |
|
|
}
|
1259 |
|
|
|
1260 |
|
|
/* A helper function for record_const_or_copy and record_equality.
|
1261 |
|
|
Do the work of recording the value and undo info. */
|
1262 |
|
|
|
1263 |
|
|
static void
|
1264 |
|
|
record_const_or_copy_1 (tree x, tree y, tree prev_x)
|
1265 |
|
|
{
|
1266 |
|
|
set_ssa_name_value (x, y);
|
1267 |
|
|
|
1268 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1269 |
|
|
{
|
1270 |
|
|
fprintf (dump_file, "0>>> COPY ");
|
1271 |
|
|
print_generic_expr (dump_file, x, 0);
|
1272 |
|
|
fprintf (dump_file, " = ");
|
1273 |
|
|
print_generic_expr (dump_file, y, 0);
|
1274 |
|
|
fprintf (dump_file, "\n");
|
1275 |
|
|
}
|
1276 |
|
|
|
1277 |
|
|
VEC_reserve (tree, heap, const_and_copies_stack, 2);
|
1278 |
|
|
VEC_quick_push (tree, const_and_copies_stack, prev_x);
|
1279 |
|
|
VEC_quick_push (tree, const_and_copies_stack, x);
|
1280 |
|
|
}
|
1281 |
|
|
|
1282 |
|
|
/* Return the loop depth of the basic block of the defining statement of X.
|
1283 |
|
|
This number should not be treated as absolutely correct because the loop
|
1284 |
|
|
information may not be completely up-to-date when dom runs. However, it
|
1285 |
|
|
will be relatively correct, and as more passes are taught to keep loop info
|
1286 |
|
|
up to date, the result will become more and more accurate. */
|
1287 |
|
|
|
1288 |
|
|
int
|
1289 |
|
|
loop_depth_of_name (tree x)
|
1290 |
|
|
{
|
1291 |
|
|
gimple defstmt;
|
1292 |
|
|
basic_block defbb;
|
1293 |
|
|
|
1294 |
|
|
/* If it's not an SSA_NAME, we have no clue where the definition is. */
|
1295 |
|
|
if (TREE_CODE (x) != SSA_NAME)
|
1296 |
|
|
return 0;
|
1297 |
|
|
|
1298 |
|
|
/* Otherwise return the loop depth of the defining statement's bb.
|
1299 |
|
|
Note that there may not actually be a bb for this statement, if the
|
1300 |
|
|
ssa_name is live on entry. */
|
1301 |
|
|
defstmt = SSA_NAME_DEF_STMT (x);
|
1302 |
|
|
defbb = gimple_bb (defstmt);
|
1303 |
|
|
if (!defbb)
|
1304 |
|
|
return 0;
|
1305 |
|
|
|
1306 |
|
|
return defbb->loop_depth;
|
1307 |
|
|
}
|
1308 |
|
|
|
1309 |
|
|
/* Record that X is equal to Y in const_and_copies. Record undo
|
1310 |
|
|
information in the block-local vector. */
|
1311 |
|
|
|
1312 |
|
|
static void
|
1313 |
|
|
record_const_or_copy (tree x, tree y)
|
1314 |
|
|
{
|
1315 |
|
|
tree prev_x = SSA_NAME_VALUE (x);
|
1316 |
|
|
|
1317 |
|
|
gcc_assert (TREE_CODE (x) == SSA_NAME);
|
1318 |
|
|
|
1319 |
|
|
if (TREE_CODE (y) == SSA_NAME)
|
1320 |
|
|
{
|
1321 |
|
|
tree tmp = SSA_NAME_VALUE (y);
|
1322 |
|
|
if (tmp)
|
1323 |
|
|
y = tmp;
|
1324 |
|
|
}
|
1325 |
|
|
|
1326 |
|
|
record_const_or_copy_1 (x, y, prev_x);
|
1327 |
|
|
}
|
1328 |
|
|
|
1329 |
|
|
/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
|
1330 |
|
|
This constrains the cases in which we may treat this as assignment. */
|
1331 |
|
|
|
1332 |
|
|
static void
|
1333 |
|
|
record_equality (tree x, tree y)
|
1334 |
|
|
{
|
1335 |
|
|
tree prev_x = NULL, prev_y = NULL;
|
1336 |
|
|
|
1337 |
|
|
if (TREE_CODE (x) == SSA_NAME)
|
1338 |
|
|
prev_x = SSA_NAME_VALUE (x);
|
1339 |
|
|
if (TREE_CODE (y) == SSA_NAME)
|
1340 |
|
|
prev_y = SSA_NAME_VALUE (y);
|
1341 |
|
|
|
1342 |
|
|
/* If one of the previous values is invariant, or invariant in more loops
|
1343 |
|
|
(by depth), then use that.
|
1344 |
|
|
Otherwise it doesn't matter which value we choose, just so
|
1345 |
|
|
long as we canonicalize on one value. */
|
1346 |
|
|
if (is_gimple_min_invariant (y))
|
1347 |
|
|
;
|
1348 |
|
|
else if (is_gimple_min_invariant (x)
|
1349 |
|
|
|| (loop_depth_of_name (x) <= loop_depth_of_name (y)))
|
1350 |
|
|
prev_x = x, x = y, y = prev_x, prev_x = prev_y;
|
1351 |
|
|
else if (prev_x && is_gimple_min_invariant (prev_x))
|
1352 |
|
|
x = y, y = prev_x, prev_x = prev_y;
|
1353 |
|
|
else if (prev_y)
|
1354 |
|
|
y = prev_y;
|
1355 |
|
|
|
1356 |
|
|
/* After the swapping, we must have one SSA_NAME. */
|
1357 |
|
|
if (TREE_CODE (x) != SSA_NAME)
|
1358 |
|
|
return;
|
1359 |
|
|
|
1360 |
|
|
/* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
|
1361 |
|
|
variable compared against zero. If we're honoring signed zeros,
|
1362 |
|
|
then we cannot record this value unless we know that the value is
|
1363 |
|
|
nonzero. */
|
1364 |
|
|
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
|
1365 |
|
|
&& (TREE_CODE (y) != REAL_CST
|
1366 |
|
|
|| REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
|
1367 |
|
|
return;
|
1368 |
|
|
|
1369 |
|
|
record_const_or_copy_1 (x, y, prev_x);
|
1370 |
|
|
}
|
1371 |
|
|
|
1372 |
|
|
/* Returns true when STMT is a simple iv increment. It detects the
|
1373 |
|
|
following situation:
|
1374 |
|
|
|
1375 |
|
|
i_1 = phi (..., i_2)
|
1376 |
|
|
i_2 = i_1 +/- ... */
|
1377 |
|
|
|
1378 |
|
|
static bool
|
1379 |
|
|
simple_iv_increment_p (gimple stmt)
|
1380 |
|
|
{
|
1381 |
|
|
tree lhs, preinc;
|
1382 |
|
|
gimple phi;
|
1383 |
|
|
size_t i;
|
1384 |
|
|
|
1385 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
1386 |
|
|
return false;
|
1387 |
|
|
|
1388 |
|
|
lhs = gimple_assign_lhs (stmt);
|
1389 |
|
|
if (TREE_CODE (lhs) != SSA_NAME)
|
1390 |
|
|
return false;
|
1391 |
|
|
|
1392 |
|
|
if (gimple_assign_rhs_code (stmt) != PLUS_EXPR
|
1393 |
|
|
&& gimple_assign_rhs_code (stmt) != MINUS_EXPR)
|
1394 |
|
|
return false;
|
1395 |
|
|
|
1396 |
|
|
preinc = gimple_assign_rhs1 (stmt);
|
1397 |
|
|
|
1398 |
|
|
if (TREE_CODE (preinc) != SSA_NAME)
|
1399 |
|
|
return false;
|
1400 |
|
|
|
1401 |
|
|
phi = SSA_NAME_DEF_STMT (preinc);
|
1402 |
|
|
if (gimple_code (phi) != GIMPLE_PHI)
|
1403 |
|
|
return false;
|
1404 |
|
|
|
1405 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
1406 |
|
|
if (gimple_phi_arg_def (phi, i) == lhs)
|
1407 |
|
|
return true;
|
1408 |
|
|
|
1409 |
|
|
return false;
|
1410 |
|
|
}
|
1411 |
|
|
|
1412 |
|
|
/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
|
1413 |
|
|
known value for that SSA_NAME (or NULL if no value is known).
|
1414 |
|
|
|
1415 |
|
|
Propagate values from CONST_AND_COPIES into the PHI nodes of the
|
1416 |
|
|
successors of BB. */
|
1417 |
|
|
|
1418 |
|
|
static void
|
1419 |
|
|
cprop_into_successor_phis (basic_block bb)
|
1420 |
|
|
{
|
1421 |
|
|
edge e;
|
1422 |
|
|
edge_iterator ei;
|
1423 |
|
|
|
1424 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1425 |
|
|
{
|
1426 |
|
|
int indx;
|
1427 |
|
|
gimple_stmt_iterator gsi;
|
1428 |
|
|
|
1429 |
|
|
/* If this is an abnormal edge, then we do not want to copy propagate
|
1430 |
|
|
into the PHI alternative associated with this edge. */
|
1431 |
|
|
if (e->flags & EDGE_ABNORMAL)
|
1432 |
|
|
continue;
|
1433 |
|
|
|
1434 |
|
|
gsi = gsi_start_phis (e->dest);
|
1435 |
|
|
if (gsi_end_p (gsi))
|
1436 |
|
|
continue;
|
1437 |
|
|
|
1438 |
|
|
indx = e->dest_idx;
|
1439 |
|
|
for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
|
1440 |
|
|
{
|
1441 |
|
|
tree new_val;
|
1442 |
|
|
use_operand_p orig_p;
|
1443 |
|
|
tree orig_val;
|
1444 |
|
|
gimple phi = gsi_stmt (gsi);
|
1445 |
|
|
|
1446 |
|
|
/* The alternative may be associated with a constant, so verify
|
1447 |
|
|
it is an SSA_NAME before doing anything with it. */
|
1448 |
|
|
orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
|
1449 |
|
|
orig_val = get_use_from_ptr (orig_p);
|
1450 |
|
|
if (TREE_CODE (orig_val) != SSA_NAME)
|
1451 |
|
|
continue;
|
1452 |
|
|
|
1453 |
|
|
/* If we have *ORIG_P in our constant/copy table, then replace
|
1454 |
|
|
ORIG_P with its value in our constant/copy table. */
|
1455 |
|
|
new_val = SSA_NAME_VALUE (orig_val);
|
1456 |
|
|
if (new_val
|
1457 |
|
|
&& new_val != orig_val
|
1458 |
|
|
&& (TREE_CODE (new_val) == SSA_NAME
|
1459 |
|
|
|| is_gimple_min_invariant (new_val))
|
1460 |
|
|
&& may_propagate_copy (orig_val, new_val))
|
1461 |
|
|
propagate_value (orig_p, new_val);
|
1462 |
|
|
}
|
1463 |
|
|
}
|
1464 |
|
|
}
|
1465 |
|
|
|
1466 |
|
|
/* We have finished optimizing BB, record any information implied by
|
1467 |
|
|
taking a specific outgoing edge from BB. */
|
1468 |
|
|
|
1469 |
|
|
static void
|
1470 |
|
|
record_edge_info (basic_block bb)
|
1471 |
|
|
{
|
1472 |
|
|
gimple_stmt_iterator gsi = gsi_last_bb (bb);
|
1473 |
|
|
struct edge_info *edge_info;
|
1474 |
|
|
|
1475 |
|
|
if (! gsi_end_p (gsi))
|
1476 |
|
|
{
|
1477 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1478 |
|
|
location_t loc = gimple_location (stmt);
|
1479 |
|
|
|
1480 |
|
|
if (gimple_code (stmt) == GIMPLE_SWITCH)
|
1481 |
|
|
{
|
1482 |
|
|
tree index = gimple_switch_index (stmt);
|
1483 |
|
|
|
1484 |
|
|
if (TREE_CODE (index) == SSA_NAME)
|
1485 |
|
|
{
|
1486 |
|
|
int i;
|
1487 |
|
|
int n_labels = gimple_switch_num_labels (stmt);
|
1488 |
|
|
tree *info = XCNEWVEC (tree, last_basic_block);
|
1489 |
|
|
edge e;
|
1490 |
|
|
edge_iterator ei;
|
1491 |
|
|
|
1492 |
|
|
for (i = 0; i < n_labels; i++)
|
1493 |
|
|
{
|
1494 |
|
|
tree label = gimple_switch_label (stmt, i);
|
1495 |
|
|
basic_block target_bb = label_to_block (CASE_LABEL (label));
|
1496 |
|
|
if (CASE_HIGH (label)
|
1497 |
|
|
|| !CASE_LOW (label)
|
1498 |
|
|
|| info[target_bb->index])
|
1499 |
|
|
info[target_bb->index] = error_mark_node;
|
1500 |
|
|
else
|
1501 |
|
|
info[target_bb->index] = label;
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
1505 |
|
|
{
|
1506 |
|
|
basic_block target_bb = e->dest;
|
1507 |
|
|
tree label = info[target_bb->index];
|
1508 |
|
|
|
1509 |
|
|
if (label != NULL && label != error_mark_node)
|
1510 |
|
|
{
|
1511 |
|
|
tree x = fold_convert_loc (loc, TREE_TYPE (index),
|
1512 |
|
|
CASE_LOW (label));
|
1513 |
|
|
edge_info = allocate_edge_info (e);
|
1514 |
|
|
edge_info->lhs = index;
|
1515 |
|
|
edge_info->rhs = x;
|
1516 |
|
|
}
|
1517 |
|
|
}
|
1518 |
|
|
free (info);
|
1519 |
|
|
}
|
1520 |
|
|
}
|
1521 |
|
|
|
1522 |
|
|
/* A COND_EXPR may create equivalences too. */
|
1523 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
1524 |
|
|
{
|
1525 |
|
|
edge true_edge;
|
1526 |
|
|
edge false_edge;
|
1527 |
|
|
|
1528 |
|
|
tree op0 = gimple_cond_lhs (stmt);
|
1529 |
|
|
tree op1 = gimple_cond_rhs (stmt);
|
1530 |
|
|
enum tree_code code = gimple_cond_code (stmt);
|
1531 |
|
|
|
1532 |
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
1533 |
|
|
|
1534 |
|
|
/* Special case comparing booleans against a constant as we
|
1535 |
|
|
know the value of OP0 on both arms of the branch. i.e., we
|
1536 |
|
|
can record an equivalence for OP0 rather than COND. */
|
1537 |
|
|
if ((code == EQ_EXPR || code == NE_EXPR)
|
1538 |
|
|
&& TREE_CODE (op0) == SSA_NAME
|
1539 |
|
|
&& TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
|
1540 |
|
|
&& is_gimple_min_invariant (op1))
|
1541 |
|
|
{
|
1542 |
|
|
if (code == EQ_EXPR)
|
1543 |
|
|
{
|
1544 |
|
|
edge_info = allocate_edge_info (true_edge);
|
1545 |
|
|
edge_info->lhs = op0;
|
1546 |
|
|
edge_info->rhs = (integer_zerop (op1)
|
1547 |
|
|
? boolean_false_node
|
1548 |
|
|
: boolean_true_node);
|
1549 |
|
|
|
1550 |
|
|
edge_info = allocate_edge_info (false_edge);
|
1551 |
|
|
edge_info->lhs = op0;
|
1552 |
|
|
edge_info->rhs = (integer_zerop (op1)
|
1553 |
|
|
? boolean_true_node
|
1554 |
|
|
: boolean_false_node);
|
1555 |
|
|
}
|
1556 |
|
|
else
|
1557 |
|
|
{
|
1558 |
|
|
edge_info = allocate_edge_info (true_edge);
|
1559 |
|
|
edge_info->lhs = op0;
|
1560 |
|
|
edge_info->rhs = (integer_zerop (op1)
|
1561 |
|
|
? boolean_true_node
|
1562 |
|
|
: boolean_false_node);
|
1563 |
|
|
|
1564 |
|
|
edge_info = allocate_edge_info (false_edge);
|
1565 |
|
|
edge_info->lhs = op0;
|
1566 |
|
|
edge_info->rhs = (integer_zerop (op1)
|
1567 |
|
|
? boolean_false_node
|
1568 |
|
|
: boolean_true_node);
|
1569 |
|
|
}
|
1570 |
|
|
}
|
1571 |
|
|
else if (is_gimple_min_invariant (op0)
|
1572 |
|
|
&& (TREE_CODE (op1) == SSA_NAME
|
1573 |
|
|
|| is_gimple_min_invariant (op1)))
|
1574 |
|
|
{
|
1575 |
|
|
tree cond = build2 (code, boolean_type_node, op0, op1);
|
1576 |
|
|
tree inverted = invert_truthvalue_loc (loc, cond);
|
1577 |
|
|
struct edge_info *edge_info;
|
1578 |
|
|
|
1579 |
|
|
edge_info = allocate_edge_info (true_edge);
|
1580 |
|
|
record_conditions (edge_info, cond, inverted);
|
1581 |
|
|
|
1582 |
|
|
if (code == EQ_EXPR)
|
1583 |
|
|
{
|
1584 |
|
|
edge_info->lhs = op1;
|
1585 |
|
|
edge_info->rhs = op0;
|
1586 |
|
|
}
|
1587 |
|
|
|
1588 |
|
|
edge_info = allocate_edge_info (false_edge);
|
1589 |
|
|
record_conditions (edge_info, inverted, cond);
|
1590 |
|
|
|
1591 |
|
|
if (TREE_CODE (inverted) == EQ_EXPR)
|
1592 |
|
|
{
|
1593 |
|
|
edge_info->lhs = op1;
|
1594 |
|
|
edge_info->rhs = op0;
|
1595 |
|
|
}
|
1596 |
|
|
}
|
1597 |
|
|
|
1598 |
|
|
else if (TREE_CODE (op0) == SSA_NAME
|
1599 |
|
|
&& (is_gimple_min_invariant (op1)
|
1600 |
|
|
|| TREE_CODE (op1) == SSA_NAME))
|
1601 |
|
|
{
|
1602 |
|
|
tree cond = build2 (code, boolean_type_node, op0, op1);
|
1603 |
|
|
tree inverted = invert_truthvalue_loc (loc, cond);
|
1604 |
|
|
struct edge_info *edge_info;
|
1605 |
|
|
|
1606 |
|
|
edge_info = allocate_edge_info (true_edge);
|
1607 |
|
|
record_conditions (edge_info, cond, inverted);
|
1608 |
|
|
|
1609 |
|
|
if (code == EQ_EXPR)
|
1610 |
|
|
{
|
1611 |
|
|
edge_info->lhs = op0;
|
1612 |
|
|
edge_info->rhs = op1;
|
1613 |
|
|
}
|
1614 |
|
|
|
1615 |
|
|
edge_info = allocate_edge_info (false_edge);
|
1616 |
|
|
record_conditions (edge_info, inverted, cond);
|
1617 |
|
|
|
1618 |
|
|
if (TREE_CODE (inverted) == EQ_EXPR)
|
1619 |
|
|
{
|
1620 |
|
|
edge_info->lhs = op0;
|
1621 |
|
|
edge_info->rhs = op1;
|
1622 |
|
|
}
|
1623 |
|
|
}
|
1624 |
|
|
}
|
1625 |
|
|
|
1626 |
|
|
/* ??? TRUTH_NOT_EXPR can create an equivalence too. */
|
1627 |
|
|
}
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
static void
|
1631 |
|
|
dom_opt_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
|
1632 |
|
|
basic_block bb)
|
1633 |
|
|
{
|
1634 |
|
|
gimple_stmt_iterator gsi;
|
1635 |
|
|
|
1636 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1637 |
|
|
fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
|
1638 |
|
|
|
1639 |
|
|
/* Push a marker on the stacks of local information so that we know how
|
1640 |
|
|
far to unwind when we finalize this block. */
|
1641 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
|
1642 |
|
|
VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
|
1643 |
|
|
|
1644 |
|
|
record_equivalences_from_incoming_edge (bb);
|
1645 |
|
|
|
1646 |
|
|
/* PHI nodes can create equivalences too. */
|
1647 |
|
|
record_equivalences_from_phis (bb);
|
1648 |
|
|
|
1649 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1650 |
|
|
optimize_stmt (bb, gsi);
|
1651 |
|
|
|
1652 |
|
|
/* Now prepare to process dominated blocks. */
|
1653 |
|
|
record_edge_info (bb);
|
1654 |
|
|
cprop_into_successor_phis (bb);
|
1655 |
|
|
}
|
1656 |
|
|
|
1657 |
|
|
/* We have finished processing the dominator children of BB, perform
|
1658 |
|
|
any finalization actions in preparation for leaving this node in
|
1659 |
|
|
the dominator tree. */
|
1660 |
|
|
|
1661 |
|
|
static void
|
1662 |
|
|
dom_opt_leave_block (struct dom_walk_data *walk_data, basic_block bb)
|
1663 |
|
|
{
|
1664 |
|
|
gimple last;
|
1665 |
|
|
|
1666 |
|
|
/* If we have an outgoing edge to a block with multiple incoming and
|
1667 |
|
|
outgoing edges, then we may be able to thread the edge, i.e., we
|
1668 |
|
|
may be able to statically determine which of the outgoing edges
|
1669 |
|
|
will be traversed when the incoming edge from BB is traversed. */
|
1670 |
|
|
if (single_succ_p (bb)
|
1671 |
|
|
&& (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
|
1672 |
|
|
&& potentially_threadable_block (single_succ (bb)))
|
1673 |
|
|
{
|
1674 |
|
|
dom_thread_across_edge (walk_data, single_succ_edge (bb));
|
1675 |
|
|
}
|
1676 |
|
|
else if ((last = last_stmt (bb))
|
1677 |
|
|
&& gimple_code (last) == GIMPLE_COND
|
1678 |
|
|
&& EDGE_COUNT (bb->succs) == 2
|
1679 |
|
|
&& (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
|
1680 |
|
|
&& (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
|
1681 |
|
|
{
|
1682 |
|
|
edge true_edge, false_edge;
|
1683 |
|
|
|
1684 |
|
|
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
|
1685 |
|
|
|
1686 |
|
|
/* Only try to thread the edge if it reaches a target block with
|
1687 |
|
|
more than one predecessor and more than one successor. */
|
1688 |
|
|
if (potentially_threadable_block (true_edge->dest))
|
1689 |
|
|
{
|
1690 |
|
|
struct edge_info *edge_info;
|
1691 |
|
|
unsigned int i;
|
1692 |
|
|
|
1693 |
|
|
/* Push a marker onto the available expression stack so that we
|
1694 |
|
|
unwind any expressions related to the TRUE arm before processing
|
1695 |
|
|
the false arm below. */
|
1696 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL);
|
1697 |
|
|
VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
|
1698 |
|
|
|
1699 |
|
|
edge_info = (struct edge_info *) true_edge->aux;
|
1700 |
|
|
|
1701 |
|
|
/* If we have info associated with this edge, record it into
|
1702 |
|
|
our equivalence tables. */
|
1703 |
|
|
if (edge_info)
|
1704 |
|
|
{
|
1705 |
|
|
struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;
|
1706 |
|
|
tree lhs = edge_info->lhs;
|
1707 |
|
|
tree rhs = edge_info->rhs;
|
1708 |
|
|
|
1709 |
|
|
/* If we have a simple NAME = VALUE equivalence, record it. */
|
1710 |
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
1711 |
|
|
record_const_or_copy (lhs, rhs);
|
1712 |
|
|
|
1713 |
|
|
/* If we have 0 = COND or 1 = COND equivalences, record them
|
1714 |
|
|
into our expression hash tables. */
|
1715 |
|
|
if (cond_equivalences)
|
1716 |
|
|
for (i = 0; i < edge_info->max_cond_equivalences; i++)
|
1717 |
|
|
record_cond (&cond_equivalences[i]);
|
1718 |
|
|
}
|
1719 |
|
|
|
1720 |
|
|
dom_thread_across_edge (walk_data, true_edge);
|
1721 |
|
|
|
1722 |
|
|
/* And restore the various tables to their state before
|
1723 |
|
|
we threaded this edge. */
|
1724 |
|
|
remove_local_expressions_from_table ();
|
1725 |
|
|
}
|
1726 |
|
|
|
1727 |
|
|
/* Similarly for the ELSE arm. */
|
1728 |
|
|
if (potentially_threadable_block (false_edge->dest))
|
1729 |
|
|
{
|
1730 |
|
|
struct edge_info *edge_info;
|
1731 |
|
|
unsigned int i;
|
1732 |
|
|
|
1733 |
|
|
VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE);
|
1734 |
|
|
edge_info = (struct edge_info *) false_edge->aux;
|
1735 |
|
|
|
1736 |
|
|
/* If we have info associated with this edge, record it into
|
1737 |
|
|
our equivalence tables. */
|
1738 |
|
|
if (edge_info)
|
1739 |
|
|
{
|
1740 |
|
|
struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences;
|
1741 |
|
|
tree lhs = edge_info->lhs;
|
1742 |
|
|
tree rhs = edge_info->rhs;
|
1743 |
|
|
|
1744 |
|
|
/* If we have a simple NAME = VALUE equivalence, record it. */
|
1745 |
|
|
if (lhs && TREE_CODE (lhs) == SSA_NAME)
|
1746 |
|
|
record_const_or_copy (lhs, rhs);
|
1747 |
|
|
|
1748 |
|
|
/* If we have 0 = COND or 1 = COND equivalences, record them
|
1749 |
|
|
into our expression hash tables. */
|
1750 |
|
|
if (cond_equivalences)
|
1751 |
|
|
for (i = 0; i < edge_info->max_cond_equivalences; i++)
|
1752 |
|
|
record_cond (&cond_equivalences[i]);
|
1753 |
|
|
}
|
1754 |
|
|
|
1755 |
|
|
/* Now thread the edge. */
|
1756 |
|
|
dom_thread_across_edge (walk_data, false_edge);
|
1757 |
|
|
|
1758 |
|
|
/* No need to remove local expressions from our tables
|
1759 |
|
|
or restore vars to their original value as that will
|
1760 |
|
|
be done immediately below. */
|
1761 |
|
|
}
|
1762 |
|
|
}
|
1763 |
|
|
|
1764 |
|
|
remove_local_expressions_from_table ();
|
1765 |
|
|
restore_vars_to_original_value ();
|
1766 |
|
|
}
|
1767 |
|
|
|
1768 |
|
|
/* Search for redundant computations in STMT. If any are found, then
|
1769 |
|
|
replace them with the variable holding the result of the computation.
|
1770 |
|
|
|
1771 |
|
|
If safe, record this expression into the available expression hash
|
1772 |
|
|
table. */
|
1773 |
|
|
|
1774 |
|
|
static void
|
1775 |
|
|
eliminate_redundant_computations (gimple_stmt_iterator* gsi)
|
1776 |
|
|
{
|
1777 |
|
|
tree expr_type;
|
1778 |
|
|
tree cached_lhs;
|
1779 |
|
|
bool insert = true;
|
1780 |
|
|
bool assigns_var_p = false;
|
1781 |
|
|
|
1782 |
|
|
gimple stmt = gsi_stmt (*gsi);
|
1783 |
|
|
|
1784 |
|
|
tree def = gimple_get_lhs (stmt);
|
1785 |
|
|
|
1786 |
|
|
/* Certain expressions on the RHS can be optimized away, but can not
|
1787 |
|
|
themselves be entered into the hash tables. */
|
1788 |
|
|
if (! def
|
1789 |
|
|
|| TREE_CODE (def) != SSA_NAME
|
1790 |
|
|
|| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
|
1791 |
|
|
|| gimple_vdef (stmt)
|
1792 |
|
|
/* Do not record equivalences for increments of ivs. This would create
|
1793 |
|
|
overlapping live ranges for a very questionable gain. */
|
1794 |
|
|
|| simple_iv_increment_p (stmt))
|
1795 |
|
|
insert = false;
|
1796 |
|
|
|
1797 |
|
|
/* Check if the expression has been computed before. */
|
1798 |
|
|
cached_lhs = lookup_avail_expr (stmt, insert);
|
1799 |
|
|
|
1800 |
|
|
opt_stats.num_exprs_considered++;
|
1801 |
|
|
|
1802 |
|
|
/* Get the type of the expression we are trying to optimize. */
|
1803 |
|
|
if (is_gimple_assign (stmt))
|
1804 |
|
|
{
|
1805 |
|
|
expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
|
1806 |
|
|
assigns_var_p = true;
|
1807 |
|
|
}
|
1808 |
|
|
else if (gimple_code (stmt) == GIMPLE_COND)
|
1809 |
|
|
expr_type = boolean_type_node;
|
1810 |
|
|
else if (is_gimple_call (stmt))
|
1811 |
|
|
{
|
1812 |
|
|
gcc_assert (gimple_call_lhs (stmt));
|
1813 |
|
|
expr_type = TREE_TYPE (gimple_call_lhs (stmt));
|
1814 |
|
|
assigns_var_p = true;
|
1815 |
|
|
}
|
1816 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
1817 |
|
|
expr_type = TREE_TYPE (gimple_switch_index (stmt));
|
1818 |
|
|
else
|
1819 |
|
|
gcc_unreachable ();
|
1820 |
|
|
|
1821 |
|
|
if (!cached_lhs)
|
1822 |
|
|
return;
|
1823 |
|
|
|
1824 |
|
|
/* It is safe to ignore types here since we have already done
|
1825 |
|
|
type checking in the hashing and equality routines. In fact
|
1826 |
|
|
type checking here merely gets in the way of constant
|
1827 |
|
|
propagation. Also, make sure that it is safe to propagate
|
1828 |
|
|
CACHED_LHS into the expression in STMT. */
|
1829 |
|
|
if ((TREE_CODE (cached_lhs) != SSA_NAME
|
1830 |
|
|
&& (assigns_var_p
|
1831 |
|
|
|| useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
|
1832 |
|
|
|| may_propagate_copy_into_stmt (stmt, cached_lhs))
|
1833 |
|
|
{
|
1834 |
|
|
#if defined ENABLE_CHECKING
|
1835 |
|
|
gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
|
1836 |
|
|
|| is_gimple_min_invariant (cached_lhs));
|
1837 |
|
|
#endif
|
1838 |
|
|
|
1839 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1840 |
|
|
{
|
1841 |
|
|
fprintf (dump_file, " Replaced redundant expr '");
|
1842 |
|
|
print_gimple_expr (dump_file, stmt, 0, dump_flags);
|
1843 |
|
|
fprintf (dump_file, "' with '");
|
1844 |
|
|
print_generic_expr (dump_file, cached_lhs, dump_flags);
|
1845 |
|
|
fprintf (dump_file, "'\n");
|
1846 |
|
|
}
|
1847 |
|
|
|
1848 |
|
|
opt_stats.num_re++;
|
1849 |
|
|
|
1850 |
|
|
if (assigns_var_p
|
1851 |
|
|
&& !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
|
1852 |
|
|
cached_lhs = fold_convert (expr_type, cached_lhs);
|
1853 |
|
|
|
1854 |
|
|
propagate_tree_value_into_stmt (gsi, cached_lhs);
|
1855 |
|
|
|
1856 |
|
|
/* Since it is always necessary to mark the result as modified,
|
1857 |
|
|
perhaps we should move this into propagate_tree_value_into_stmt
|
1858 |
|
|
itself. */
|
1859 |
|
|
gimple_set_modified (gsi_stmt (*gsi), true);
|
1860 |
|
|
}
|
1861 |
|
|
}
|
1862 |
|
|
|
1863 |
|
|
/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
|
1864 |
|
|
the available expressions table or the const_and_copies table.
|
1865 |
|
|
Detect and record those equivalences. */
|
1866 |
|
|
/* We handle only very simple copy equivalences here. The heavy
|
1867 |
|
|
lifing is done by eliminate_redundant_computations. */
|
1868 |
|
|
|
1869 |
|
|
static void
|
1870 |
|
|
record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
|
1871 |
|
|
{
|
1872 |
|
|
tree lhs;
|
1873 |
|
|
enum tree_code lhs_code;
|
1874 |
|
|
|
1875 |
|
|
gcc_assert (is_gimple_assign (stmt));
|
1876 |
|
|
|
1877 |
|
|
lhs = gimple_assign_lhs (stmt);
|
1878 |
|
|
lhs_code = TREE_CODE (lhs);
|
1879 |
|
|
|
1880 |
|
|
if (lhs_code == SSA_NAME
|
1881 |
|
|
&& gimple_assign_single_p (stmt))
|
1882 |
|
|
{
|
1883 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
1884 |
|
|
|
1885 |
|
|
/* If the RHS of the assignment is a constant or another variable that
|
1886 |
|
|
may be propagated, register it in the CONST_AND_COPIES table. We
|
1887 |
|
|
do not need to record unwind data for this, since this is a true
|
1888 |
|
|
assignment and not an equivalence inferred from a comparison. All
|
1889 |
|
|
uses of this ssa name are dominated by this assignment, so unwinding
|
1890 |
|
|
just costs time and space. */
|
1891 |
|
|
if (may_optimize_p
|
1892 |
|
|
&& (TREE_CODE (rhs) == SSA_NAME
|
1893 |
|
|
|| is_gimple_min_invariant (rhs)))
|
1894 |
|
|
{
|
1895 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1896 |
|
|
{
|
1897 |
|
|
fprintf (dump_file, "==== ASGN ");
|
1898 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
1899 |
|
|
fprintf (dump_file, " = ");
|
1900 |
|
|
print_generic_expr (dump_file, rhs, 0);
|
1901 |
|
|
fprintf (dump_file, "\n");
|
1902 |
|
|
}
|
1903 |
|
|
|
1904 |
|
|
set_ssa_name_value (lhs, rhs);
|
1905 |
|
|
}
|
1906 |
|
|
}
|
1907 |
|
|
|
1908 |
|
|
/* A memory store, even an aliased store, creates a useful
|
1909 |
|
|
equivalence. By exchanging the LHS and RHS, creating suitable
|
1910 |
|
|
vops and recording the result in the available expression table,
|
1911 |
|
|
we may be able to expose more redundant loads. */
|
1912 |
|
|
if (!gimple_has_volatile_ops (stmt)
|
1913 |
|
|
&& gimple_references_memory_p (stmt)
|
1914 |
|
|
&& gimple_assign_single_p (stmt)
|
1915 |
|
|
&& (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
1916 |
|
|
|| is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
|
1917 |
|
|
&& !is_gimple_reg (lhs))
|
1918 |
|
|
{
|
1919 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
1920 |
|
|
gimple new_stmt;
|
1921 |
|
|
|
1922 |
|
|
/* Build a new statement with the RHS and LHS exchanged. */
|
1923 |
|
|
if (TREE_CODE (rhs) == SSA_NAME)
|
1924 |
|
|
{
|
1925 |
|
|
/* NOTE tuples. The call to gimple_build_assign below replaced
|
1926 |
|
|
a call to build_gimple_modify_stmt, which did not set the
|
1927 |
|
|
SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
|
1928 |
|
|
may cause an SSA validation failure, as the LHS may be a
|
1929 |
|
|
default-initialized name and should have no definition. I'm
|
1930 |
|
|
a bit dubious of this, as the artificial statement that we
|
1931 |
|
|
generate here may in fact be ill-formed, but it is simply
|
1932 |
|
|
used as an internal device in this pass, and never becomes
|
1933 |
|
|
part of the CFG. */
|
1934 |
|
|
gimple defstmt = SSA_NAME_DEF_STMT (rhs);
|
1935 |
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
1936 |
|
|
SSA_NAME_DEF_STMT (rhs) = defstmt;
|
1937 |
|
|
}
|
1938 |
|
|
else
|
1939 |
|
|
new_stmt = gimple_build_assign (rhs, lhs);
|
1940 |
|
|
|
1941 |
|
|
gimple_set_vuse (new_stmt, gimple_vdef (stmt));
|
1942 |
|
|
|
1943 |
|
|
/* Finally enter the statement into the available expression
|
1944 |
|
|
table. */
|
1945 |
|
|
lookup_avail_expr (new_stmt, true);
|
1946 |
|
|
}
|
1947 |
|
|
}
|
1948 |
|
|
|
1949 |
|
|
/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
|
1950 |
|
|
CONST_AND_COPIES. */
|
1951 |
|
|
|
1952 |
|
|
static void
|
1953 |
|
|
cprop_operand (gimple stmt, use_operand_p op_p)
|
1954 |
|
|
{
|
1955 |
|
|
tree val;
|
1956 |
|
|
tree op = USE_FROM_PTR (op_p);
|
1957 |
|
|
|
1958 |
|
|
/* If the operand has a known constant value or it is known to be a
|
1959 |
|
|
copy of some other variable, use the value or copy stored in
|
1960 |
|
|
CONST_AND_COPIES. */
|
1961 |
|
|
val = SSA_NAME_VALUE (op);
|
1962 |
|
|
if (val && val != op)
|
1963 |
|
|
{
|
1964 |
|
|
/* Do not change the base variable in the virtual operand
|
1965 |
|
|
tables. That would make it impossible to reconstruct
|
1966 |
|
|
the renamed virtual operand if we later modify this
|
1967 |
|
|
statement. Also only allow the new value to be an SSA_NAME
|
1968 |
|
|
for propagation into virtual operands. */
|
1969 |
|
|
if (!is_gimple_reg (op)
|
1970 |
|
|
&& (TREE_CODE (val) != SSA_NAME
|
1971 |
|
|
|| is_gimple_reg (val)
|
1972 |
|
|
|| get_virtual_var (val) != get_virtual_var (op)))
|
1973 |
|
|
return;
|
1974 |
|
|
|
1975 |
|
|
/* Do not replace hard register operands in asm statements. */
|
1976 |
|
|
if (gimple_code (stmt) == GIMPLE_ASM
|
1977 |
|
|
&& !may_propagate_copy_into_asm (op))
|
1978 |
|
|
return;
|
1979 |
|
|
|
1980 |
|
|
/* Certain operands are not allowed to be copy propagated due
|
1981 |
|
|
to their interaction with exception handling and some GCC
|
1982 |
|
|
extensions. */
|
1983 |
|
|
if (!may_propagate_copy (op, val))
|
1984 |
|
|
return;
|
1985 |
|
|
|
1986 |
|
|
/* Do not propagate addresses that point to volatiles into memory
|
1987 |
|
|
stmts without volatile operands. */
|
1988 |
|
|
if (POINTER_TYPE_P (TREE_TYPE (val))
|
1989 |
|
|
&& TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val)))
|
1990 |
|
|
&& gimple_has_mem_ops (stmt)
|
1991 |
|
|
&& !gimple_has_volatile_ops (stmt))
|
1992 |
|
|
return;
|
1993 |
|
|
|
1994 |
|
|
/* Do not propagate copies if the propagated value is at a deeper loop
|
1995 |
|
|
depth than the propagatee. Otherwise, this may move loop variant
|
1996 |
|
|
variables outside of their loops and prevent coalescing
|
1997 |
|
|
opportunities. If the value was loop invariant, it will be hoisted
|
1998 |
|
|
by LICM and exposed for copy propagation. */
|
1999 |
|
|
if (loop_depth_of_name (val) > loop_depth_of_name (op))
|
2000 |
|
|
return;
|
2001 |
|
|
|
2002 |
|
|
/* Do not propagate copies into simple IV increment statements.
|
2003 |
|
|
See PR23821 for how this can disturb IV analysis. */
|
2004 |
|
|
if (TREE_CODE (val) != INTEGER_CST
|
2005 |
|
|
&& simple_iv_increment_p (stmt))
|
2006 |
|
|
return;
|
2007 |
|
|
|
2008 |
|
|
/* Dump details. */
|
2009 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2010 |
|
|
{
|
2011 |
|
|
fprintf (dump_file, " Replaced '");
|
2012 |
|
|
print_generic_expr (dump_file, op, dump_flags);
|
2013 |
|
|
fprintf (dump_file, "' with %s '",
|
2014 |
|
|
(TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
|
2015 |
|
|
print_generic_expr (dump_file, val, dump_flags);
|
2016 |
|
|
fprintf (dump_file, "'\n");
|
2017 |
|
|
}
|
2018 |
|
|
|
2019 |
|
|
if (TREE_CODE (val) != SSA_NAME)
|
2020 |
|
|
opt_stats.num_const_prop++;
|
2021 |
|
|
else
|
2022 |
|
|
opt_stats.num_copy_prop++;
|
2023 |
|
|
|
2024 |
|
|
propagate_value (op_p, val);
|
2025 |
|
|
|
2026 |
|
|
/* And note that we modified this statement. This is now
|
2027 |
|
|
safe, even if we changed virtual operands since we will
|
2028 |
|
|
rescan the statement and rewrite its operands again. */
|
2029 |
|
|
gimple_set_modified (stmt, true);
|
2030 |
|
|
}
|
2031 |
|
|
}
|
2032 |
|
|
|
2033 |
|
|
/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
|
2034 |
|
|
known value for that SSA_NAME (or NULL if no value is known).
|
2035 |
|
|
|
2036 |
|
|
Propagate values from CONST_AND_COPIES into the uses, vuses and
|
2037 |
|
|
vdef_ops of STMT. */
|
2038 |
|
|
|
2039 |
|
|
static void
|
2040 |
|
|
cprop_into_stmt (gimple stmt)
|
2041 |
|
|
{
|
2042 |
|
|
use_operand_p op_p;
|
2043 |
|
|
ssa_op_iter iter;
|
2044 |
|
|
|
2045 |
|
|
FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
|
2046 |
|
|
{
|
2047 |
|
|
if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
|
2048 |
|
|
cprop_operand (stmt, op_p);
|
2049 |
|
|
}
|
2050 |
|
|
}
|
2051 |
|
|
|
2052 |
|
|
/* Optimize the statement pointed to by iterator SI.
|
2053 |
|
|
|
2054 |
|
|
We try to perform some simplistic global redundancy elimination and
|
2055 |
|
|
constant propagation:
|
2056 |
|
|
|
2057 |
|
|
1- To detect global redundancy, we keep track of expressions that have
|
2058 |
|
|
been computed in this block and its dominators. If we find that the
|
2059 |
|
|
same expression is computed more than once, we eliminate repeated
|
2060 |
|
|
computations by using the target of the first one.
|
2061 |
|
|
|
2062 |
|
|
2- Constant values and copy assignments. This is used to do very
|
2063 |
|
|
simplistic constant and copy propagation. When a constant or copy
|
2064 |
|
|
assignment is found, we map the value on the RHS of the assignment to
|
2065 |
|
|
the variable in the LHS in the CONST_AND_COPIES table. */
|
2066 |
|
|
|
2067 |
|
|
static void
|
2068 |
|
|
optimize_stmt (basic_block bb, gimple_stmt_iterator si)
|
2069 |
|
|
{
|
2070 |
|
|
gimple stmt, old_stmt;
|
2071 |
|
|
bool may_optimize_p;
|
2072 |
|
|
bool modified_p = false;
|
2073 |
|
|
|
2074 |
|
|
old_stmt = stmt = gsi_stmt (si);
|
2075 |
|
|
|
2076 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
2077 |
|
|
canonicalize_comparison (stmt);
|
2078 |
|
|
|
2079 |
|
|
update_stmt_if_modified (stmt);
|
2080 |
|
|
opt_stats.num_stmts++;
|
2081 |
|
|
|
2082 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2083 |
|
|
{
|
2084 |
|
|
fprintf (dump_file, "Optimizing statement ");
|
2085 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
2086 |
|
|
}
|
2087 |
|
|
|
2088 |
|
|
/* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
|
2089 |
|
|
cprop_into_stmt (stmt);
|
2090 |
|
|
|
2091 |
|
|
/* If the statement has been modified with constant replacements,
|
2092 |
|
|
fold its RHS before checking for redundant computations. */
|
2093 |
|
|
if (gimple_modified_p (stmt))
|
2094 |
|
|
{
|
2095 |
|
|
tree rhs = NULL;
|
2096 |
|
|
|
2097 |
|
|
/* Try to fold the statement making sure that STMT is kept
|
2098 |
|
|
up to date. */
|
2099 |
|
|
if (fold_stmt (&si))
|
2100 |
|
|
{
|
2101 |
|
|
stmt = gsi_stmt (si);
|
2102 |
|
|
gimple_set_modified (stmt, true);
|
2103 |
|
|
|
2104 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2105 |
|
|
{
|
2106 |
|
|
fprintf (dump_file, " Folded to: ");
|
2107 |
|
|
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
2108 |
|
|
}
|
2109 |
|
|
}
|
2110 |
|
|
|
2111 |
|
|
/* We only need to consider cases that can yield a gimple operand. */
|
2112 |
|
|
if (gimple_assign_single_p (stmt))
|
2113 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
2114 |
|
|
else if (gimple_code (stmt) == GIMPLE_GOTO)
|
2115 |
|
|
rhs = gimple_goto_dest (stmt);
|
2116 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
2117 |
|
|
/* This should never be an ADDR_EXPR. */
|
2118 |
|
|
rhs = gimple_switch_index (stmt);
|
2119 |
|
|
|
2120 |
|
|
if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
|
2121 |
|
|
recompute_tree_invariant_for_addr_expr (rhs);
|
2122 |
|
|
|
2123 |
|
|
/* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
|
2124 |
|
|
even if fold_stmt updated the stmt already and thus cleared
|
2125 |
|
|
gimple_modified_p flag on it. */
|
2126 |
|
|
modified_p = true;
|
2127 |
|
|
}
|
2128 |
|
|
|
2129 |
|
|
/* Check for redundant computations. Do this optimization only
|
2130 |
|
|
for assignments that have no volatile ops and conditionals. */
|
2131 |
|
|
may_optimize_p = (!gimple_has_volatile_ops (stmt)
|
2132 |
|
|
&& ((is_gimple_assign (stmt)
|
2133 |
|
|
&& !gimple_rhs_has_side_effects (stmt))
|
2134 |
|
|
|| (is_gimple_call (stmt)
|
2135 |
|
|
&& gimple_call_lhs (stmt) != NULL_TREE
|
2136 |
|
|
&& !gimple_rhs_has_side_effects (stmt))
|
2137 |
|
|
|| gimple_code (stmt) == GIMPLE_COND
|
2138 |
|
|
|| gimple_code (stmt) == GIMPLE_SWITCH));
|
2139 |
|
|
|
2140 |
|
|
if (may_optimize_p)
|
2141 |
|
|
{
|
2142 |
|
|
if (gimple_code (stmt) == GIMPLE_CALL)
|
2143 |
|
|
{
|
2144 |
|
|
/* Resolve __builtin_constant_p. If it hasn't been
|
2145 |
|
|
folded to integer_one_node by now, it's fairly
|
2146 |
|
|
certain that the value simply isn't constant. */
|
2147 |
|
|
tree callee = gimple_call_fndecl (stmt);
|
2148 |
|
|
if (callee
|
2149 |
|
|
&& DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
|
2150 |
|
|
&& DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
|
2151 |
|
|
{
|
2152 |
|
|
propagate_tree_value_into_stmt (&si, integer_zero_node);
|
2153 |
|
|
stmt = gsi_stmt (si);
|
2154 |
|
|
}
|
2155 |
|
|
}
|
2156 |
|
|
|
2157 |
|
|
update_stmt_if_modified (stmt);
|
2158 |
|
|
eliminate_redundant_computations (&si);
|
2159 |
|
|
stmt = gsi_stmt (si);
|
2160 |
|
|
}
|
2161 |
|
|
|
2162 |
|
|
/* Record any additional equivalences created by this statement. */
|
2163 |
|
|
if (is_gimple_assign (stmt))
|
2164 |
|
|
record_equivalences_from_stmt (stmt, may_optimize_p);
|
2165 |
|
|
|
2166 |
|
|
/* If STMT is a COND_EXPR and it was modified, then we may know
|
2167 |
|
|
where it goes. If that is the case, then mark the CFG as altered.
|
2168 |
|
|
|
2169 |
|
|
This will cause us to later call remove_unreachable_blocks and
|
2170 |
|
|
cleanup_tree_cfg when it is safe to do so. It is not safe to
|
2171 |
|
|
clean things up here since removal of edges and such can trigger
|
2172 |
|
|
the removal of PHI nodes, which in turn can release SSA_NAMEs to
|
2173 |
|
|
the manager.
|
2174 |
|
|
|
2175 |
|
|
That's all fine and good, except that once SSA_NAMEs are released
|
2176 |
|
|
to the manager, we must not call create_ssa_name until all references
|
2177 |
|
|
to released SSA_NAMEs have been eliminated.
|
2178 |
|
|
|
2179 |
|
|
All references to the deleted SSA_NAMEs can not be eliminated until
|
2180 |
|
|
we remove unreachable blocks.
|
2181 |
|
|
|
2182 |
|
|
We can not remove unreachable blocks until after we have completed
|
2183 |
|
|
any queued jump threading.
|
2184 |
|
|
|
2185 |
|
|
We can not complete any queued jump threads until we have taken
|
2186 |
|
|
appropriate variables out of SSA form. Taking variables out of
|
2187 |
|
|
SSA form can call create_ssa_name and thus we lose.
|
2188 |
|
|
|
2189 |
|
|
Ultimately I suspect we're going to need to change the interface
|
2190 |
|
|
into the SSA_NAME manager. */
|
2191 |
|
|
if (gimple_modified_p (stmt) || modified_p)
|
2192 |
|
|
{
|
2193 |
|
|
tree val = NULL;
|
2194 |
|
|
|
2195 |
|
|
update_stmt_if_modified (stmt);
|
2196 |
|
|
|
2197 |
|
|
if (gimple_code (stmt) == GIMPLE_COND)
|
2198 |
|
|
val = fold_binary_loc (gimple_location (stmt),
|
2199 |
|
|
gimple_cond_code (stmt), boolean_type_node,
|
2200 |
|
|
gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
|
2201 |
|
|
else if (gimple_code (stmt) == GIMPLE_SWITCH)
|
2202 |
|
|
val = gimple_switch_index (stmt);
|
2203 |
|
|
|
2204 |
|
|
if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
|
2205 |
|
|
cfg_altered = true;
|
2206 |
|
|
|
2207 |
|
|
/* If we simplified a statement in such a way as to be shown that it
|
2208 |
|
|
cannot trap, update the eh information and the cfg to match. */
|
2209 |
|
|
if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
|
2210 |
|
|
{
|
2211 |
|
|
bitmap_set_bit (need_eh_cleanup, bb->index);
|
2212 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2213 |
|
|
fprintf (dump_file, " Flagged to clear EH edges.\n");
|
2214 |
|
|
}
|
2215 |
|
|
}
|
2216 |
|
|
}
|
2217 |
|
|
|
2218 |
|
|
/* Search for an existing instance of STMT in the AVAIL_EXPRS table.
|
2219 |
|
|
If found, return its LHS. Otherwise insert STMT in the table and
|
2220 |
|
|
return NULL_TREE.
|
2221 |
|
|
|
2222 |
|
|
Also, when an expression is first inserted in the table, it is also
|
2223 |
|
|
is also added to AVAIL_EXPRS_STACK, so that it can be removed when
|
2224 |
|
|
we finish processing this block and its children. */
|
2225 |
|
|
|
2226 |
|
|
static tree
|
2227 |
|
|
lookup_avail_expr (gimple stmt, bool insert)
|
2228 |
|
|
{
|
2229 |
|
|
void **slot;
|
2230 |
|
|
tree lhs;
|
2231 |
|
|
tree temp;
|
2232 |
|
|
struct expr_hash_elt element;
|
2233 |
|
|
|
2234 |
|
|
/* Get LHS of assignment or call, else NULL_TREE. */
|
2235 |
|
|
lhs = gimple_get_lhs (stmt);
|
2236 |
|
|
|
2237 |
|
|
initialize_hash_element (stmt, lhs, &element);
|
2238 |
|
|
|
2239 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2240 |
|
|
{
|
2241 |
|
|
fprintf (dump_file, "LKUP ");
|
2242 |
|
|
print_expr_hash_elt (dump_file, &element);
|
2243 |
|
|
}
|
2244 |
|
|
|
2245 |
|
|
/* Don't bother remembering constant assignments and copy operations.
|
2246 |
|
|
Constants and copy operations are handled by the constant/copy propagator
|
2247 |
|
|
in optimize_stmt. */
|
2248 |
|
|
if (element.expr.kind == EXPR_SINGLE
|
2249 |
|
|
&& (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
|
2250 |
|
|
|| is_gimple_min_invariant (element.expr.ops.single.rhs)))
|
2251 |
|
|
return NULL_TREE;
|
2252 |
|
|
|
2253 |
|
|
/* Finally try to find the expression in the main expression hash table. */
|
2254 |
|
|
slot = htab_find_slot_with_hash (avail_exprs, &element, element.hash,
|
2255 |
|
|
(insert ? INSERT : NO_INSERT));
|
2256 |
|
|
if (slot == NULL)
|
2257 |
|
|
return NULL_TREE;
|
2258 |
|
|
|
2259 |
|
|
if (*slot == NULL)
|
2260 |
|
|
{
|
2261 |
|
|
struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
|
2262 |
|
|
*element2 = element;
|
2263 |
|
|
element2->stamp = element2;
|
2264 |
|
|
*slot = (void *) element2;
|
2265 |
|
|
|
2266 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2267 |
|
|
{
|
2268 |
|
|
fprintf (dump_file, "2>>> ");
|
2269 |
|
|
print_expr_hash_elt (dump_file, element2);
|
2270 |
|
|
}
|
2271 |
|
|
|
2272 |
|
|
VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element2);
|
2273 |
|
|
return NULL_TREE;
|
2274 |
|
|
}
|
2275 |
|
|
|
2276 |
|
|
/* Extract the LHS of the assignment so that it can be used as the current
|
2277 |
|
|
definition of another variable. */
|
2278 |
|
|
lhs = ((struct expr_hash_elt *)*slot)->lhs;
|
2279 |
|
|
|
2280 |
|
|
/* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
|
2281 |
|
|
use the value from the const_and_copies table. */
|
2282 |
|
|
if (TREE_CODE (lhs) == SSA_NAME)
|
2283 |
|
|
{
|
2284 |
|
|
temp = SSA_NAME_VALUE (lhs);
|
2285 |
|
|
if (temp)
|
2286 |
|
|
lhs = temp;
|
2287 |
|
|
}
|
2288 |
|
|
|
2289 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2290 |
|
|
{
|
2291 |
|
|
fprintf (dump_file, "FIND: ");
|
2292 |
|
|
print_generic_expr (dump_file, lhs, 0);
|
2293 |
|
|
fprintf (dump_file, "\n");
|
2294 |
|
|
}
|
2295 |
|
|
|
2296 |
|
|
return lhs;
|
2297 |
|
|
}
|
2298 |
|
|
|
2299 |
|
|
/* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
|
2300 |
|
|
for expressions using the code of the expression and the SSA numbers of
|
2301 |
|
|
its operands. */
|
2302 |
|
|
|
2303 |
|
|
static hashval_t
|
2304 |
|
|
avail_expr_hash (const void *p)
|
2305 |
|
|
{
|
2306 |
|
|
gimple stmt = ((const struct expr_hash_elt *)p)->stmt;
|
2307 |
|
|
const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
|
2308 |
|
|
tree vuse;
|
2309 |
|
|
hashval_t val = 0;
|
2310 |
|
|
|
2311 |
|
|
val = iterative_hash_hashable_expr (expr, val);
|
2312 |
|
|
|
2313 |
|
|
/* If the hash table entry is not associated with a statement, then we
|
2314 |
|
|
can just hash the expression and not worry about virtual operands
|
2315 |
|
|
and such. */
|
2316 |
|
|
if (!stmt)
|
2317 |
|
|
return val;
|
2318 |
|
|
|
2319 |
|
|
/* Add the SSA version numbers of the vuse operand. This is important
|
2320 |
|
|
because compound variables like arrays are not renamed in the
|
2321 |
|
|
operands. Rather, the rename is done on the virtual variable
|
2322 |
|
|
representing all the elements of the array. */
|
2323 |
|
|
if ((vuse = gimple_vuse (stmt)))
|
2324 |
|
|
val = iterative_hash_expr (vuse, val);
|
2325 |
|
|
|
2326 |
|
|
return val;
|
2327 |
|
|
}
|
2328 |
|
|
|
2329 |
|
|
static hashval_t
|
2330 |
|
|
real_avail_expr_hash (const void *p)
|
2331 |
|
|
{
|
2332 |
|
|
return ((const struct expr_hash_elt *)p)->hash;
|
2333 |
|
|
}
|
2334 |
|
|
|
2335 |
|
|
static int
|
2336 |
|
|
avail_expr_eq (const void *p1, const void *p2)
|
2337 |
|
|
{
|
2338 |
|
|
gimple stmt1 = ((const struct expr_hash_elt *)p1)->stmt;
|
2339 |
|
|
const struct hashable_expr *expr1 = &((const struct expr_hash_elt *)p1)->expr;
|
2340 |
|
|
const struct expr_hash_elt *stamp1 = ((const struct expr_hash_elt *)p1)->stamp;
|
2341 |
|
|
gimple stmt2 = ((const struct expr_hash_elt *)p2)->stmt;
|
2342 |
|
|
const struct hashable_expr *expr2 = &((const struct expr_hash_elt *)p2)->expr;
|
2343 |
|
|
const struct expr_hash_elt *stamp2 = ((const struct expr_hash_elt *)p2)->stamp;
|
2344 |
|
|
|
2345 |
|
|
/* This case should apply only when removing entries from the table. */
|
2346 |
|
|
if (stamp1 == stamp2)
|
2347 |
|
|
return true;
|
2348 |
|
|
|
2349 |
|
|
/* FIXME tuples:
|
2350 |
|
|
We add stmts to a hash table and them modify them. To detect the case
|
2351 |
|
|
that we modify a stmt and then search for it, we assume that the hash
|
2352 |
|
|
is always modified by that change.
|
2353 |
|
|
We have to fully check why this doesn't happen on trunk or rewrite
|
2354 |
|
|
this in a more reliable (and easier to understand) way. */
|
2355 |
|
|
if (((const struct expr_hash_elt *)p1)->hash
|
2356 |
|
|
!= ((const struct expr_hash_elt *)p2)->hash)
|
2357 |
|
|
return false;
|
2358 |
|
|
|
2359 |
|
|
/* In case of a collision, both RHS have to be identical and have the
|
2360 |
|
|
same VUSE operands. */
|
2361 |
|
|
if (hashable_expr_equal_p (expr1, expr2)
|
2362 |
|
|
&& types_compatible_p (expr1->type, expr2->type))
|
2363 |
|
|
{
|
2364 |
|
|
/* Note that STMT1 and/or STMT2 may be NULL. */
|
2365 |
|
|
return ((stmt1 ? gimple_vuse (stmt1) : NULL_TREE)
|
2366 |
|
|
== (stmt2 ? gimple_vuse (stmt2) : NULL_TREE));
|
2367 |
|
|
}
|
2368 |
|
|
|
2369 |
|
|
return false;
|
2370 |
|
|
}
|
2371 |
|
|
|
2372 |
|
|
/* PHI-ONLY copy and constant propagation. This pass is meant to clean
|
2373 |
|
|
up degenerate PHIs created by or exposed by jump threading. */
|
2374 |
|
|
|
2375 |
|
|
/* Given PHI, return its RHS if the PHI is a degenerate, otherwise return
|
2376 |
|
|
NULL. */
|
2377 |
|
|
|
2378 |
|
|
tree
|
2379 |
|
|
degenerate_phi_result (gimple phi)
|
2380 |
|
|
{
|
2381 |
|
|
tree lhs = gimple_phi_result (phi);
|
2382 |
|
|
tree val = NULL;
|
2383 |
|
|
size_t i;
|
2384 |
|
|
|
2385 |
|
|
/* Ignoring arguments which are the same as LHS, if all the remaining
|
2386 |
|
|
arguments are the same, then the PHI is a degenerate and has the
|
2387 |
|
|
value of that common argument. */
|
2388 |
|
|
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
2389 |
|
|
{
|
2390 |
|
|
tree arg = gimple_phi_arg_def (phi, i);
|
2391 |
|
|
|
2392 |
|
|
if (arg == lhs)
|
2393 |
|
|
continue;
|
2394 |
|
|
else if (!arg)
|
2395 |
|
|
break;
|
2396 |
|
|
else if (!val)
|
2397 |
|
|
val = arg;
|
2398 |
|
|
else if (arg == val)
|
2399 |
|
|
continue;
|
2400 |
|
|
/* We bring in some of operand_equal_p not only to speed things
|
2401 |
|
|
up, but also to avoid crashing when dereferencing the type of
|
2402 |
|
|
a released SSA name. */
|
2403 |
|
|
else if (TREE_CODE (val) != TREE_CODE (arg)
|
2404 |
|
|
|| TREE_CODE (val) == SSA_NAME
|
2405 |
|
|
|| !operand_equal_p (arg, val, 0))
|
2406 |
|
|
break;
|
2407 |
|
|
}
|
2408 |
|
|
return (i == gimple_phi_num_args (phi) ? val : NULL);
|
2409 |
|
|
}
|
2410 |
|
|
|
2411 |
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
2412 |
|
|
remove it from the IL. */
|
2413 |
|
|
|
2414 |
|
|
static void
|
2415 |
|
|
remove_stmt_or_phi (gimple stmt)
|
2416 |
|
|
{
|
2417 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
|
2418 |
|
|
|
2419 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2420 |
|
|
remove_phi_node (&gsi, true);
|
2421 |
|
|
else
|
2422 |
|
|
{
|
2423 |
|
|
gsi_remove (&gsi, true);
|
2424 |
|
|
release_defs (stmt);
|
2425 |
|
|
}
|
2426 |
|
|
}
|
2427 |
|
|
|
2428 |
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
2429 |
|
|
return the "rhs" of the node, in the case of a non-degenerate
|
2430 |
|
|
phi, NULL is returned. */
|
2431 |
|
|
|
2432 |
|
|
static tree
|
2433 |
|
|
get_rhs_or_phi_arg (gimple stmt)
|
2434 |
|
|
{
|
2435 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2436 |
|
|
return degenerate_phi_result (stmt);
|
2437 |
|
|
else if (gimple_assign_single_p (stmt))
|
2438 |
|
|
return gimple_assign_rhs1 (stmt);
|
2439 |
|
|
else
|
2440 |
|
|
gcc_unreachable ();
|
2441 |
|
|
}
|
2442 |
|
|
|
2443 |
|
|
|
2444 |
|
|
/* Given a statement STMT, which is either a PHI node or an assignment,
|
2445 |
|
|
return the "lhs" of the node. */
|
2446 |
|
|
|
2447 |
|
|
static tree
|
2448 |
|
|
get_lhs_or_phi_result (gimple stmt)
|
2449 |
|
|
{
|
2450 |
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
2451 |
|
|
return gimple_phi_result (stmt);
|
2452 |
|
|
else if (is_gimple_assign (stmt))
|
2453 |
|
|
return gimple_assign_lhs (stmt);
|
2454 |
|
|
else
|
2455 |
|
|
gcc_unreachable ();
|
2456 |
|
|
}
|
2457 |
|
|
|
2458 |
|
|
/* Propagate RHS into all uses of LHS (when possible).
|
2459 |
|
|
|
2460 |
|
|
RHS and LHS are derived from STMT, which is passed in solely so
|
2461 |
|
|
that we can remove it if propagation is successful.
|
2462 |
|
|
|
2463 |
|
|
When propagating into a PHI node or into a statement which turns
|
2464 |
|
|
into a trivial copy or constant initialization, set the
|
2465 |
|
|
appropriate bit in INTERESTING_NAMEs so that we will visit those
|
2466 |
|
|
nodes as well in an effort to pick up secondary optimization
|
2467 |
|
|
opportunities. */
|
2468 |
|
|
|
2469 |
|
|
static void
|
2470 |
|
|
propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
|
2471 |
|
|
{
|
2472 |
|
|
/* First verify that propagation is valid and isn't going to move a
|
2473 |
|
|
loop variant variable outside its loop. */
|
2474 |
|
|
if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
|
2475 |
|
|
&& (TREE_CODE (rhs) != SSA_NAME
|
2476 |
|
|
|| ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs))
|
2477 |
|
|
&& may_propagate_copy (lhs, rhs)
|
2478 |
|
|
&& loop_depth_of_name (lhs) >= loop_depth_of_name (rhs))
|
2479 |
|
|
{
|
2480 |
|
|
use_operand_p use_p;
|
2481 |
|
|
imm_use_iterator iter;
|
2482 |
|
|
gimple use_stmt;
|
2483 |
|
|
bool all = true;
|
2484 |
|
|
|
2485 |
|
|
/* Dump details. */
|
2486 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2487 |
|
|
{
|
2488 |
|
|
fprintf (dump_file, " Replacing '");
|
2489 |
|
|
print_generic_expr (dump_file, lhs, dump_flags);
|
2490 |
|
|
fprintf (dump_file, "' with %s '",
|
2491 |
|
|
(TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
|
2492 |
|
|
print_generic_expr (dump_file, rhs, dump_flags);
|
2493 |
|
|
fprintf (dump_file, "'\n");
|
2494 |
|
|
}
|
2495 |
|
|
|
2496 |
|
|
/* Walk over every use of LHS and try to replace the use with RHS.
|
2497 |
|
|
At this point the only reason why such a propagation would not
|
2498 |
|
|
be successful would be if the use occurs in an ASM_EXPR. */
|
2499 |
|
|
FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
|
2500 |
|
|
{
|
2501 |
|
|
/* Leave debug stmts alone. If we succeed in propagating
|
2502 |
|
|
all non-debug uses, we'll drop the DEF, and propagation
|
2503 |
|
|
into debug stmts will occur then. */
|
2504 |
|
|
if (gimple_debug_bind_p (use_stmt))
|
2505 |
|
|
continue;
|
2506 |
|
|
|
2507 |
|
|
/* It's not always safe to propagate into an ASM_EXPR. */
|
2508 |
|
|
if (gimple_code (use_stmt) == GIMPLE_ASM
|
2509 |
|
|
&& ! may_propagate_copy_into_asm (lhs))
|
2510 |
|
|
{
|
2511 |
|
|
all = false;
|
2512 |
|
|
continue;
|
2513 |
|
|
}
|
2514 |
|
|
|
2515 |
|
|
/* It's not ok to propagate into the definition stmt of RHS.
|
2516 |
|
|
<bb 9>:
|
2517 |
|
|
# prephitmp.12_36 = PHI <g_67.1_6(9)>
|
2518 |
|
|
g_67.1_6 = prephitmp.12_36;
|
2519 |
|
|
goto <bb 9>;
|
2520 |
|
|
While this is strictly all dead code we do not want to
|
2521 |
|
|
deal with this here. */
|
2522 |
|
|
if (TREE_CODE (rhs) == SSA_NAME
|
2523 |
|
|
&& SSA_NAME_DEF_STMT (rhs) == use_stmt)
|
2524 |
|
|
{
|
2525 |
|
|
all = false;
|
2526 |
|
|
continue;
|
2527 |
|
|
}
|
2528 |
|
|
|
2529 |
|
|
/* Dump details. */
|
2530 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2531 |
|
|
{
|
2532 |
|
|
fprintf (dump_file, " Original statement:");
|
2533 |
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
2534 |
|
|
}
|
2535 |
|
|
|
2536 |
|
|
/* Propagate the RHS into this use of the LHS. */
|
2537 |
|
|
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
|
2538 |
|
|
propagate_value (use_p, rhs);
|
2539 |
|
|
|
2540 |
|
|
/* Special cases to avoid useless calls into the folding
|
2541 |
|
|
routines, operand scanning, etc.
|
2542 |
|
|
|
2543 |
|
|
First, propagation into a PHI may cause the PHI to become
|
2544 |
|
|
a degenerate, so mark the PHI as interesting. No other
|
2545 |
|
|
actions are necessary.
|
2546 |
|
|
|
2547 |
|
|
Second, if we're propagating a virtual operand and the
|
2548 |
|
|
propagation does not change the underlying _DECL node for
|
2549 |
|
|
the virtual operand, then no further actions are necessary. */
|
2550 |
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI
|
2551 |
|
|
|| (! is_gimple_reg (lhs)
|
2552 |
|
|
&& TREE_CODE (rhs) == SSA_NAME
|
2553 |
|
|
&& SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs)))
|
2554 |
|
|
{
|
2555 |
|
|
/* Dump details. */
|
2556 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2557 |
|
|
{
|
2558 |
|
|
fprintf (dump_file, " Updated statement:");
|
2559 |
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
2560 |
|
|
}
|
2561 |
|
|
|
2562 |
|
|
/* Propagation into a PHI may expose new degenerate PHIs,
|
2563 |
|
|
so mark the result of the PHI as interesting. */
|
2564 |
|
|
if (gimple_code (use_stmt) == GIMPLE_PHI)
|
2565 |
|
|
{
|
2566 |
|
|
tree result = get_lhs_or_phi_result (use_stmt);
|
2567 |
|
|
bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
|
2568 |
|
|
}
|
2569 |
|
|
|
2570 |
|
|
continue;
|
2571 |
|
|
}
|
2572 |
|
|
|
2573 |
|
|
/* From this point onward we are propagating into a
|
2574 |
|
|
real statement. Folding may (or may not) be possible,
|
2575 |
|
|
we may expose new operands, expose dead EH edges,
|
2576 |
|
|
etc. */
|
2577 |
|
|
/* NOTE tuples. In the tuples world, fold_stmt_inplace
|
2578 |
|
|
cannot fold a call that simplifies to a constant,
|
2579 |
|
|
because the GIMPLE_CALL must be replaced by a
|
2580 |
|
|
GIMPLE_ASSIGN, and there is no way to effect such a
|
2581 |
|
|
transformation in-place. We might want to consider
|
2582 |
|
|
using the more general fold_stmt here. */
|
2583 |
|
|
fold_stmt_inplace (use_stmt);
|
2584 |
|
|
|
2585 |
|
|
/* Sometimes propagation can expose new operands to the
|
2586 |
|
|
renamer. */
|
2587 |
|
|
update_stmt (use_stmt);
|
2588 |
|
|
|
2589 |
|
|
/* Dump details. */
|
2590 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2591 |
|
|
{
|
2592 |
|
|
fprintf (dump_file, " Updated statement:");
|
2593 |
|
|
print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
|
2594 |
|
|
}
|
2595 |
|
|
|
2596 |
|
|
/* If we replaced a variable index with a constant, then
|
2597 |
|
|
we would need to update the invariant flag for ADDR_EXPRs. */
|
2598 |
|
|
if (gimple_assign_single_p (use_stmt)
|
2599 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
|
2600 |
|
|
recompute_tree_invariant_for_addr_expr
|
2601 |
|
|
(gimple_assign_rhs1 (use_stmt));
|
2602 |
|
|
|
2603 |
|
|
/* If we cleaned up EH information from the statement,
|
2604 |
|
|
mark its containing block as needing EH cleanups. */
|
2605 |
|
|
if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
|
2606 |
|
|
{
|
2607 |
|
|
bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
|
2608 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
2609 |
|
|
fprintf (dump_file, " Flagged to clear EH edges.\n");
|
2610 |
|
|
}
|
2611 |
|
|
|
2612 |
|
|
/* Propagation may expose new trivial copy/constant propagation
|
2613 |
|
|
opportunities. */
|
2614 |
|
|
if (gimple_assign_single_p (use_stmt)
|
2615 |
|
|
&& TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
|
2616 |
|
|
&& (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
|
2617 |
|
|
|| is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
|
2618 |
|
|
{
|
2619 |
|
|
tree result = get_lhs_or_phi_result (use_stmt);
|
2620 |
|
|
bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
|
2621 |
|
|
}
|
2622 |
|
|
|
2623 |
|
|
/* Propagation into these nodes may make certain edges in
|
2624 |
|
|
the CFG unexecutable. We want to identify them as PHI nodes
|
2625 |
|
|
at the destination of those unexecutable edges may become
|
2626 |
|
|
degenerates. */
|
2627 |
|
|
else if (gimple_code (use_stmt) == GIMPLE_COND
|
2628 |
|
|
|| gimple_code (use_stmt) == GIMPLE_SWITCH
|
2629 |
|
|
|| gimple_code (use_stmt) == GIMPLE_GOTO)
|
2630 |
|
|
{
|
2631 |
|
|
tree val;
|
2632 |
|
|
|
2633 |
|
|
if (gimple_code (use_stmt) == GIMPLE_COND)
|
2634 |
|
|
val = fold_binary_loc (gimple_location (use_stmt),
|
2635 |
|
|
gimple_cond_code (use_stmt),
|
2636 |
|
|
boolean_type_node,
|
2637 |
|
|
gimple_cond_lhs (use_stmt),
|
2638 |
|
|
gimple_cond_rhs (use_stmt));
|
2639 |
|
|
else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
|
2640 |
|
|
val = gimple_switch_index (use_stmt);
|
2641 |
|
|
else
|
2642 |
|
|
val = gimple_goto_dest (use_stmt);
|
2643 |
|
|
|
2644 |
|
|
if (val && is_gimple_min_invariant (val))
|
2645 |
|
|
{
|
2646 |
|
|
basic_block bb = gimple_bb (use_stmt);
|
2647 |
|
|
edge te = find_taken_edge (bb, val);
|
2648 |
|
|
edge_iterator ei;
|
2649 |
|
|
edge e;
|
2650 |
|
|
gimple_stmt_iterator gsi, psi;
|
2651 |
|
|
|
2652 |
|
|
/* Remove all outgoing edges except TE. */
|
2653 |
|
|
for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
|
2654 |
|
|
{
|
2655 |
|
|
if (e != te)
|
2656 |
|
|
{
|
2657 |
|
|
/* Mark all the PHI nodes at the destination of
|
2658 |
|
|
the unexecutable edge as interesting. */
|
2659 |
|
|
for (psi = gsi_start_phis (e->dest);
|
2660 |
|
|
!gsi_end_p (psi);
|
2661 |
|
|
gsi_next (&psi))
|
2662 |
|
|
{
|
2663 |
|
|
gimple phi = gsi_stmt (psi);
|
2664 |
|
|
|
2665 |
|
|
tree result = gimple_phi_result (phi);
|
2666 |
|
|
int version = SSA_NAME_VERSION (result);
|
2667 |
|
|
|
2668 |
|
|
bitmap_set_bit (interesting_names, version);
|
2669 |
|
|
}
|
2670 |
|
|
|
2671 |
|
|
te->probability += e->probability;
|
2672 |
|
|
|
2673 |
|
|
te->count += e->count;
|
2674 |
|
|
remove_edge (e);
|
2675 |
|
|
cfg_altered = true;
|
2676 |
|
|
}
|
2677 |
|
|
else
|
2678 |
|
|
ei_next (&ei);
|
2679 |
|
|
}
|
2680 |
|
|
|
2681 |
|
|
gsi = gsi_last_bb (gimple_bb (use_stmt));
|
2682 |
|
|
gsi_remove (&gsi, true);
|
2683 |
|
|
|
2684 |
|
|
/* And fixup the flags on the single remaining edge. */
|
2685 |
|
|
te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
|
2686 |
|
|
te->flags &= ~EDGE_ABNORMAL;
|
2687 |
|
|
te->flags |= EDGE_FALLTHRU;
|
2688 |
|
|
if (te->probability > REG_BR_PROB_BASE)
|
2689 |
|
|
te->probability = REG_BR_PROB_BASE;
|
2690 |
|
|
}
|
2691 |
|
|
}
|
2692 |
|
|
}
|
2693 |
|
|
|
2694 |
|
|
/* Ensure there is nothing else to do. */
|
2695 |
|
|
gcc_assert (!all || has_zero_uses (lhs));
|
2696 |
|
|
|
2697 |
|
|
/* If we were able to propagate away all uses of LHS, then
|
2698 |
|
|
we can remove STMT. */
|
2699 |
|
|
if (all)
|
2700 |
|
|
remove_stmt_or_phi (stmt);
|
2701 |
|
|
}
|
2702 |
|
|
}
|
2703 |
|
|
|
2704 |
|
|
/* STMT is either a PHI node (potentially a degenerate PHI node) or
|
2705 |
|
|
a statement that is a trivial copy or constant initialization.
|
2706 |
|
|
|
2707 |
|
|
Attempt to eliminate T by propagating its RHS into all uses of
|
2708 |
|
|
its LHS. This may in turn set new bits in INTERESTING_NAMES
|
2709 |
|
|
for nodes we want to revisit later.
|
2710 |
|
|
|
2711 |
|
|
All exit paths should clear INTERESTING_NAMES for the result
|
2712 |
|
|
of STMT. */
|
2713 |
|
|
|
2714 |
|
|
static void
|
2715 |
|
|
eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
|
2716 |
|
|
{
|
2717 |
|
|
tree lhs = get_lhs_or_phi_result (stmt);
|
2718 |
|
|
tree rhs;
|
2719 |
|
|
int version = SSA_NAME_VERSION (lhs);
|
2720 |
|
|
|
2721 |
|
|
/* If the LHS of this statement or PHI has no uses, then we can
|
2722 |
|
|
just eliminate it. This can occur if, for example, the PHI
|
2723 |
|
|
was created by block duplication due to threading and its only
|
2724 |
|
|
use was in the conditional at the end of the block which was
|
2725 |
|
|
deleted. */
|
2726 |
|
|
if (has_zero_uses (lhs))
|
2727 |
|
|
{
|
2728 |
|
|
bitmap_clear_bit (interesting_names, version);
|
2729 |
|
|
remove_stmt_or_phi (stmt);
|
2730 |
|
|
return;
|
2731 |
|
|
}
|
2732 |
|
|
|
2733 |
|
|
/* Get the RHS of the assignment or PHI node if the PHI is a
|
2734 |
|
|
degenerate. */
|
2735 |
|
|
rhs = get_rhs_or_phi_arg (stmt);
|
2736 |
|
|
if (!rhs)
|
2737 |
|
|
{
|
2738 |
|
|
bitmap_clear_bit (interesting_names, version);
|
2739 |
|
|
return;
|
2740 |
|
|
}
|
2741 |
|
|
|
2742 |
|
|
propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);
|
2743 |
|
|
|
2744 |
|
|
/* Note that STMT may well have been deleted by now, so do
|
2745 |
|
|
not access it, instead use the saved version # to clear
|
2746 |
|
|
T's entry in the worklist. */
|
2747 |
|
|
bitmap_clear_bit (interesting_names, version);
|
2748 |
|
|
}
|
2749 |
|
|
|
2750 |
|
|
/* The first phase in degenerate PHI elimination.
|
2751 |
|
|
|
2752 |
|
|
Eliminate the degenerate PHIs in BB, then recurse on the
|
2753 |
|
|
dominator children of BB. */
|
2754 |
|
|
|
2755 |
|
|
static void
|
2756 |
|
|
eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
|
2757 |
|
|
{
|
2758 |
|
|
gimple_stmt_iterator gsi;
|
2759 |
|
|
basic_block son;
|
2760 |
|
|
|
2761 |
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
2762 |
|
|
{
|
2763 |
|
|
gimple phi = gsi_stmt (gsi);
|
2764 |
|
|
|
2765 |
|
|
eliminate_const_or_copy (phi, interesting_names);
|
2766 |
|
|
}
|
2767 |
|
|
|
2768 |
|
|
/* Recurse into the dominator children of BB. */
|
2769 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
2770 |
|
|
son;
|
2771 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
2772 |
|
|
eliminate_degenerate_phis_1 (son, interesting_names);
|
2773 |
|
|
}
|
2774 |
|
|
|
2775 |
|
|
|
2776 |
|
|
/* A very simple pass to eliminate degenerate PHI nodes from the
|
2777 |
|
|
IL. This is meant to be fast enough to be able to be run several
|
2778 |
|
|
times in the optimization pipeline.
|
2779 |
|
|
|
2780 |
|
|
Certain optimizations, particularly those which duplicate blocks
|
2781 |
|
|
or remove edges from the CFG can create or expose PHIs which are
|
2782 |
|
|
trivial copies or constant initializations.
|
2783 |
|
|
|
2784 |
|
|
While we could pick up these optimizations in DOM or with the
|
2785 |
|
|
combination of copy-prop and CCP, those solutions are far too
|
2786 |
|
|
heavy-weight for our needs.
|
2787 |
|
|
|
2788 |
|
|
This implementation has two phases so that we can efficiently
|
2789 |
|
|
eliminate the first order degenerate PHIs and second order
|
2790 |
|
|
degenerate PHIs.
|
2791 |
|
|
|
2792 |
|
|
The first phase performs a dominator walk to identify and eliminate
|
2793 |
|
|
the vast majority of the degenerate PHIs. When a degenerate PHI
|
2794 |
|
|
is identified and eliminated any affected statements or PHIs
|
2795 |
|
|
are put on a worklist.
|
2796 |
|
|
|
2797 |
|
|
The second phase eliminates degenerate PHIs and trivial copies
|
2798 |
|
|
or constant initializations using the worklist. This is how we
|
2799 |
|
|
pick up the secondary optimization opportunities with minimal
|
2800 |
|
|
cost. */
|
2801 |
|
|
|
2802 |
|
|
static unsigned int
|
2803 |
|
|
eliminate_degenerate_phis (void)
|
2804 |
|
|
{
|
2805 |
|
|
bitmap interesting_names;
|
2806 |
|
|
bitmap interesting_names1;
|
2807 |
|
|
|
2808 |
|
|
/* Bitmap of blocks which need EH information updated. We can not
|
2809 |
|
|
update it on-the-fly as doing so invalidates the dominator tree. */
|
2810 |
|
|
need_eh_cleanup = BITMAP_ALLOC (NULL);
|
2811 |
|
|
|
2812 |
|
|
/* INTERESTING_NAMES is effectively our worklist, indexed by
|
2813 |
|
|
SSA_NAME_VERSION.
|
2814 |
|
|
|
2815 |
|
|
A set bit indicates that the statement or PHI node which
|
2816 |
|
|
defines the SSA_NAME should be (re)examined to determine if
|
2817 |
|
|
it has become a degenerate PHI or trivial const/copy propagation
|
2818 |
|
|
opportunity.
|
2819 |
|
|
|
2820 |
|
|
Experiments have show we generally get better compilation
|
2821 |
|
|
time behavior with bitmaps rather than sbitmaps. */
|
2822 |
|
|
interesting_names = BITMAP_ALLOC (NULL);
|
2823 |
|
|
interesting_names1 = BITMAP_ALLOC (NULL);
|
2824 |
|
|
|
2825 |
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
2826 |
|
|
cfg_altered = false;
|
2827 |
|
|
|
2828 |
|
|
/* First phase. Eliminate degenerate PHIs via a dominator
|
2829 |
|
|
walk of the CFG.
|
2830 |
|
|
|
2831 |
|
|
Experiments have indicated that we generally get better
|
2832 |
|
|
compile-time behavior by visiting blocks in the first
|
2833 |
|
|
phase in dominator order. Presumably this is because walking
|
2834 |
|
|
in dominator order leaves fewer PHIs for later examination
|
2835 |
|
|
by the worklist phase. */
|
2836 |
|
|
eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR, interesting_names);
|
2837 |
|
|
|
2838 |
|
|
/* Second phase. Eliminate second order degenerate PHIs as well
|
2839 |
|
|
as trivial copies or constant initializations identified by
|
2840 |
|
|
the first phase or this phase. Basically we keep iterating
|
2841 |
|
|
until our set of INTERESTING_NAMEs is empty. */
|
2842 |
|
|
while (!bitmap_empty_p (interesting_names))
|
2843 |
|
|
{
|
2844 |
|
|
unsigned int i;
|
2845 |
|
|
bitmap_iterator bi;
|
2846 |
|
|
|
2847 |
|
|
/* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
|
2848 |
|
|
changed during the loop. Copy it to another bitmap and
|
2849 |
|
|
use that. */
|
2850 |
|
|
bitmap_copy (interesting_names1, interesting_names);
|
2851 |
|
|
|
2852 |
|
|
EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
|
2853 |
|
|
{
|
2854 |
|
|
tree name = ssa_name (i);
|
2855 |
|
|
|
2856 |
|
|
/* Ignore SSA_NAMEs that have been released because
|
2857 |
|
|
their defining statement was deleted (unreachable). */
|
2858 |
|
|
if (name)
|
2859 |
|
|
eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
|
2860 |
|
|
interesting_names);
|
2861 |
|
|
}
|
2862 |
|
|
}
|
2863 |
|
|
|
2864 |
|
|
if (cfg_altered)
|
2865 |
|
|
free_dominance_info (CDI_DOMINATORS);
|
2866 |
|
|
|
2867 |
|
|
/* Propagation of const and copies may make some EH edges dead. Purge
|
2868 |
|
|
such edges from the CFG as needed. */
|
2869 |
|
|
if (!bitmap_empty_p (need_eh_cleanup))
|
2870 |
|
|
{
|
2871 |
|
|
gimple_purge_all_dead_eh_edges (need_eh_cleanup);
|
2872 |
|
|
BITMAP_FREE (need_eh_cleanup);
|
2873 |
|
|
}
|
2874 |
|
|
|
2875 |
|
|
BITMAP_FREE (interesting_names);
|
2876 |
|
|
BITMAP_FREE (interesting_names1);
|
2877 |
|
|
return 0;
|
2878 |
|
|
}
|
2879 |
|
|
|
2880 |
|
|
struct gimple_opt_pass pass_phi_only_cprop =
|
2881 |
|
|
{
|
2882 |
|
|
{
|
2883 |
|
|
GIMPLE_PASS,
|
2884 |
|
|
"phicprop", /* name */
|
2885 |
|
|
gate_dominator, /* gate */
|
2886 |
|
|
eliminate_degenerate_phis, /* execute */
|
2887 |
|
|
NULL, /* sub */
|
2888 |
|
|
NULL, /* next */
|
2889 |
|
|
0, /* static_pass_number */
|
2890 |
|
|
TV_TREE_PHI_CPROP, /* tv_id */
|
2891 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
2892 |
|
|
0, /* properties_provided */
|
2893 |
|
|
0, /* properties_destroyed */
|
2894 |
|
|
0, /* todo_flags_start */
|
2895 |
|
|
TODO_cleanup_cfg
|
2896 |
|
|
| TODO_dump_func
|
2897 |
|
|
| TODO_ggc_collect
|
2898 |
|
|
| TODO_verify_ssa
|
2899 |
|
|
| TODO_verify_stmts
|
2900 |
|
|
| TODO_update_ssa /* todo_flags_finish */
|
2901 |
|
|
}
|
2902 |
|
|
};
|