1 |
280 |
jeremybenn |
/* Combining of if-expressions on trees.
|
2 |
|
|
Copyright (C) 2007, 2008 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Richard Guenther <rguenther@suse.de>
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "basic-block.h"
|
27 |
|
|
#include "timevar.h"
|
28 |
|
|
#include "diagnostic.h"
|
29 |
|
|
#include "tree-flow.h"
|
30 |
|
|
#include "tree-pass.h"
|
31 |
|
|
#include "tree-dump.h"
|
32 |
|
|
|
33 |
|
|
/* This pass combines COND_EXPRs to simplify control flow. It
|
34 |
|
|
currently recognizes bit tests and comparisons in chains that
|
35 |
|
|
represent logical and or logical or of two COND_EXPRs.
|
36 |
|
|
|
37 |
|
|
It does so by walking basic blocks in a approximate reverse
|
38 |
|
|
post-dominator order and trying to match CFG patterns that
|
39 |
|
|
represent logical and or logical or of two COND_EXPRs.
|
40 |
|
|
Transformations are done if the COND_EXPR conditions match
|
41 |
|
|
either
|
42 |
|
|
|
43 |
|
|
1. two single bit tests X & (1 << Yn) (for logical and)
|
44 |
|
|
|
45 |
|
|
2. two bit tests X & Yn (for logical or)
|
46 |
|
|
|
47 |
|
|
3. two comparisons X OPn Y (for logical or)
|
48 |
|
|
|
49 |
|
|
To simplify this pass, removing basic blocks and dead code
|
50 |
|
|
is left to CFG cleanup and DCE. */
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
/* Recognize a if-then-else CFG pattern starting to match with the
|
54 |
|
|
COND_BB basic-block containing the COND_EXPR. The recognized
|
55 |
|
|
then end else blocks are stored to *THEN_BB and *ELSE_BB. If
|
56 |
|
|
*THEN_BB and/or *ELSE_BB are already set, they are required to
|
57 |
|
|
match the then and else basic-blocks to make the pattern match.
|
58 |
|
|
Returns true if the pattern matched, false otherwise. */
|
59 |
|
|
|
60 |
|
|
static bool
|
61 |
|
|
recognize_if_then_else (basic_block cond_bb,
|
62 |
|
|
basic_block *then_bb, basic_block *else_bb)
|
63 |
|
|
{
|
64 |
|
|
edge t, e;
|
65 |
|
|
|
66 |
|
|
if (EDGE_COUNT (cond_bb->succs) != 2)
|
67 |
|
|
return false;
|
68 |
|
|
|
69 |
|
|
/* Find the then/else edges. */
|
70 |
|
|
t = EDGE_SUCC (cond_bb, 0);
|
71 |
|
|
e = EDGE_SUCC (cond_bb, 1);
|
72 |
|
|
if (!(t->flags & EDGE_TRUE_VALUE))
|
73 |
|
|
{
|
74 |
|
|
edge tmp = t;
|
75 |
|
|
t = e;
|
76 |
|
|
e = tmp;
|
77 |
|
|
}
|
78 |
|
|
if (!(t->flags & EDGE_TRUE_VALUE)
|
79 |
|
|
|| !(e->flags & EDGE_FALSE_VALUE))
|
80 |
|
|
return false;
|
81 |
|
|
|
82 |
|
|
/* Check if the edge destinations point to the required block. */
|
83 |
|
|
if (*then_bb
|
84 |
|
|
&& t->dest != *then_bb)
|
85 |
|
|
return false;
|
86 |
|
|
if (*else_bb
|
87 |
|
|
&& e->dest != *else_bb)
|
88 |
|
|
return false;
|
89 |
|
|
|
90 |
|
|
if (!*then_bb)
|
91 |
|
|
*then_bb = t->dest;
|
92 |
|
|
if (!*else_bb)
|
93 |
|
|
*else_bb = e->dest;
|
94 |
|
|
|
95 |
|
|
return true;
|
96 |
|
|
}
|
97 |
|
|
|
98 |
|
|
/* Verify if the basic block BB does not have side-effects. Return
|
99 |
|
|
true in this case, else false. */
|
100 |
|
|
|
101 |
|
|
static bool
|
102 |
|
|
bb_no_side_effects_p (basic_block bb)
|
103 |
|
|
{
|
104 |
|
|
gimple_stmt_iterator gsi;
|
105 |
|
|
|
106 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
107 |
|
|
{
|
108 |
|
|
gimple stmt = gsi_stmt (gsi);
|
109 |
|
|
|
110 |
|
|
if (gimple_has_volatile_ops (stmt)
|
111 |
|
|
|| gimple_vuse (stmt))
|
112 |
|
|
return false;
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
return true;
|
116 |
|
|
}
|
117 |
|
|
|
118 |
|
|
/* Verify if all PHI node arguments in DEST for edges from BB1 or
|
119 |
|
|
BB2 to DEST are the same. This makes the CFG merge point
|
120 |
|
|
free from side-effects. Return true in this case, else false. */
|
121 |
|
|
|
122 |
|
|
static bool
|
123 |
|
|
same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
|
124 |
|
|
{
|
125 |
|
|
edge e1 = find_edge (bb1, dest);
|
126 |
|
|
edge e2 = find_edge (bb2, dest);
|
127 |
|
|
gimple_stmt_iterator gsi;
|
128 |
|
|
gimple phi;
|
129 |
|
|
|
130 |
|
|
for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
131 |
|
|
{
|
132 |
|
|
phi = gsi_stmt (gsi);
|
133 |
|
|
if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
|
134 |
|
|
PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
|
135 |
|
|
return false;
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
return true;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
/* Return the best representative SSA name for CANDIDATE which is used
|
142 |
|
|
in a bit test. */
|
143 |
|
|
|
144 |
|
|
static tree
|
145 |
|
|
get_name_for_bit_test (tree candidate)
|
146 |
|
|
{
|
147 |
|
|
/* Skip single-use names in favor of using the name from a
|
148 |
|
|
non-widening conversion definition. */
|
149 |
|
|
if (TREE_CODE (candidate) == SSA_NAME
|
150 |
|
|
&& has_single_use (candidate))
|
151 |
|
|
{
|
152 |
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (candidate);
|
153 |
|
|
if (is_gimple_assign (def_stmt)
|
154 |
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
|
155 |
|
|
{
|
156 |
|
|
if (TYPE_PRECISION (TREE_TYPE (candidate))
|
157 |
|
|
<= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
|
158 |
|
|
return gimple_assign_rhs1 (def_stmt);
|
159 |
|
|
}
|
160 |
|
|
}
|
161 |
|
|
|
162 |
|
|
return candidate;
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
/* Recognize a single bit test pattern in GIMPLE_COND and its defining
|
166 |
|
|
statements. Store the name being tested in *NAME and the bit
|
167 |
|
|
in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
|
168 |
|
|
Returns true if the pattern matched, false otherwise. */
|
169 |
|
|
|
170 |
|
|
static bool
|
171 |
|
|
recognize_single_bit_test (gimple cond, tree *name, tree *bit)
|
172 |
|
|
{
|
173 |
|
|
gimple stmt;
|
174 |
|
|
|
175 |
|
|
/* Get at the definition of the result of the bit test. */
|
176 |
|
|
if (gimple_cond_code (cond) != NE_EXPR
|
177 |
|
|
|| TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
|
178 |
|
|
|| !integer_zerop (gimple_cond_rhs (cond)))
|
179 |
|
|
return false;
|
180 |
|
|
stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
|
181 |
|
|
if (!is_gimple_assign (stmt))
|
182 |
|
|
return false;
|
183 |
|
|
|
184 |
|
|
/* Look at which bit is tested. One form to recognize is
|
185 |
|
|
D.1985_5 = state_3(D) >> control1_4(D);
|
186 |
|
|
D.1986_6 = (int) D.1985_5;
|
187 |
|
|
D.1987_7 = op0 & 1;
|
188 |
|
|
if (D.1987_7 != 0) */
|
189 |
|
|
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
|
190 |
|
|
&& integer_onep (gimple_assign_rhs2 (stmt))
|
191 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
192 |
|
|
{
|
193 |
|
|
tree orig_name = gimple_assign_rhs1 (stmt);
|
194 |
|
|
|
195 |
|
|
/* Look through copies and conversions to eventually
|
196 |
|
|
find the stmt that computes the shift. */
|
197 |
|
|
stmt = SSA_NAME_DEF_STMT (orig_name);
|
198 |
|
|
|
199 |
|
|
while (is_gimple_assign (stmt)
|
200 |
|
|
&& ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
|
201 |
|
|
&& (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)))
|
202 |
|
|
<= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))))
|
203 |
|
|
|| gimple_assign_ssa_name_copy_p (stmt)))
|
204 |
|
|
stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
|
205 |
|
|
|
206 |
|
|
/* If we found such, decompose it. */
|
207 |
|
|
if (is_gimple_assign (stmt)
|
208 |
|
|
&& gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
|
209 |
|
|
{
|
210 |
|
|
/* op0 & (1 << op1) */
|
211 |
|
|
*bit = gimple_assign_rhs2 (stmt);
|
212 |
|
|
*name = gimple_assign_rhs1 (stmt);
|
213 |
|
|
}
|
214 |
|
|
else
|
215 |
|
|
{
|
216 |
|
|
/* t & 1 */
|
217 |
|
|
*bit = integer_zero_node;
|
218 |
|
|
*name = get_name_for_bit_test (orig_name);
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
return true;
|
222 |
|
|
}
|
223 |
|
|
|
224 |
|
|
/* Another form is
|
225 |
|
|
D.1987_7 = op0 & (1 << CST)
|
226 |
|
|
if (D.1987_7 != 0) */
|
227 |
|
|
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
|
228 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
229 |
|
|
&& integer_pow2p (gimple_assign_rhs2 (stmt)))
|
230 |
|
|
{
|
231 |
|
|
*name = gimple_assign_rhs1 (stmt);
|
232 |
|
|
*bit = build_int_cst (integer_type_node,
|
233 |
|
|
tree_log2 (gimple_assign_rhs2 (stmt)));
|
234 |
|
|
return true;
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
/* Another form is
|
238 |
|
|
D.1986_6 = 1 << control1_4(D)
|
239 |
|
|
D.1987_7 = op0 & D.1986_6
|
240 |
|
|
if (D.1987_7 != 0) */
|
241 |
|
|
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
|
242 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
|
243 |
|
|
&& TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
|
244 |
|
|
{
|
245 |
|
|
gimple tmp;
|
246 |
|
|
|
247 |
|
|
/* Both arguments of the BIT_AND_EXPR can be the single-bit
|
248 |
|
|
specifying expression. */
|
249 |
|
|
tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
|
250 |
|
|
if (is_gimple_assign (tmp)
|
251 |
|
|
&& gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
|
252 |
|
|
&& integer_onep (gimple_assign_rhs1 (tmp)))
|
253 |
|
|
{
|
254 |
|
|
*name = gimple_assign_rhs2 (stmt);
|
255 |
|
|
*bit = gimple_assign_rhs2 (tmp);
|
256 |
|
|
return true;
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
|
260 |
|
|
if (is_gimple_assign (tmp)
|
261 |
|
|
&& gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
|
262 |
|
|
&& integer_onep (gimple_assign_rhs1 (tmp)))
|
263 |
|
|
{
|
264 |
|
|
*name = gimple_assign_rhs1 (stmt);
|
265 |
|
|
*bit = gimple_assign_rhs2 (tmp);
|
266 |
|
|
return true;
|
267 |
|
|
}
|
268 |
|
|
}
|
269 |
|
|
|
270 |
|
|
return false;
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
/* Recognize a bit test pattern in a GIMPLE_COND and its defining
|
274 |
|
|
statements. Store the name being tested in *NAME and the bits
|
275 |
|
|
in *BITS. The COND_EXPR computes *NAME & *BITS.
|
276 |
|
|
Returns true if the pattern matched, false otherwise. */
|
277 |
|
|
|
278 |
|
|
static bool
|
279 |
|
|
recognize_bits_test (gimple cond, tree *name, tree *bits)
|
280 |
|
|
{
|
281 |
|
|
gimple stmt;
|
282 |
|
|
|
283 |
|
|
/* Get at the definition of the result of the bit test. */
|
284 |
|
|
if (gimple_cond_code (cond) != NE_EXPR
|
285 |
|
|
|| TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
|
286 |
|
|
|| !integer_zerop (gimple_cond_rhs (cond)))
|
287 |
|
|
return false;
|
288 |
|
|
stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
|
289 |
|
|
if (!is_gimple_assign (stmt)
|
290 |
|
|
|| gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
|
291 |
|
|
return false;
|
292 |
|
|
|
293 |
|
|
*name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
|
294 |
|
|
*bits = gimple_assign_rhs2 (stmt);
|
295 |
|
|
|
296 |
|
|
return true;
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
/* If-convert on a and pattern with a common else block. The inner
|
300 |
|
|
if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
|
301 |
|
|
Returns true if the edges to the common else basic-block were merged. */
|
302 |
|
|
|
303 |
|
|
static bool
|
304 |
|
|
ifcombine_ifandif (basic_block inner_cond_bb, basic_block outer_cond_bb)
|
305 |
|
|
{
|
306 |
|
|
gimple_stmt_iterator gsi;
|
307 |
|
|
gimple inner_cond, outer_cond;
|
308 |
|
|
tree name1, name2, bit1, bit2;
|
309 |
|
|
|
310 |
|
|
inner_cond = last_stmt (inner_cond_bb);
|
311 |
|
|
if (!inner_cond
|
312 |
|
|
|| gimple_code (inner_cond) != GIMPLE_COND)
|
313 |
|
|
return false;
|
314 |
|
|
|
315 |
|
|
outer_cond = last_stmt (outer_cond_bb);
|
316 |
|
|
if (!outer_cond
|
317 |
|
|
|| gimple_code (outer_cond) != GIMPLE_COND)
|
318 |
|
|
return false;
|
319 |
|
|
|
320 |
|
|
/* See if we test a single bit of the same name in both tests. In
|
321 |
|
|
that case remove the outer test, merging both else edges,
|
322 |
|
|
and change the inner one to test for
|
323 |
|
|
name & (bit1 | bit2) == (bit1 | bit2). */
|
324 |
|
|
if (recognize_single_bit_test (inner_cond, &name1, &bit1)
|
325 |
|
|
&& recognize_single_bit_test (outer_cond, &name2, &bit2)
|
326 |
|
|
&& name1 == name2)
|
327 |
|
|
{
|
328 |
|
|
tree t, t2;
|
329 |
|
|
|
330 |
|
|
/* Do it. */
|
331 |
|
|
gsi = gsi_for_stmt (inner_cond);
|
332 |
|
|
t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
|
333 |
|
|
build_int_cst (TREE_TYPE (name1), 1), bit1);
|
334 |
|
|
t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
|
335 |
|
|
build_int_cst (TREE_TYPE (name1), 1), bit2);
|
336 |
|
|
t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
|
337 |
|
|
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
338 |
|
|
true, GSI_SAME_STMT);
|
339 |
|
|
t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
|
340 |
|
|
t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
|
341 |
|
|
true, GSI_SAME_STMT);
|
342 |
|
|
t = fold_build2 (EQ_EXPR, boolean_type_node, t2, t);
|
343 |
|
|
t = canonicalize_cond_expr_cond (t);
|
344 |
|
|
if (!t)
|
345 |
|
|
return false;
|
346 |
|
|
gimple_cond_set_condition_from_tree (inner_cond, t);
|
347 |
|
|
update_stmt (inner_cond);
|
348 |
|
|
|
349 |
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
350 |
|
|
gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
|
351 |
|
|
update_stmt (outer_cond);
|
352 |
|
|
|
353 |
|
|
if (dump_file)
|
354 |
|
|
{
|
355 |
|
|
fprintf (dump_file, "optimizing double bit test to ");
|
356 |
|
|
print_generic_expr (dump_file, name1, 0);
|
357 |
|
|
fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
|
358 |
|
|
print_generic_expr (dump_file, bit1, 0);
|
359 |
|
|
fprintf (dump_file, ") | (1 << ");
|
360 |
|
|
print_generic_expr (dump_file, bit2, 0);
|
361 |
|
|
fprintf (dump_file, ")\n");
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
return true;
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
/* See if we have two comparisons that we can merge into one. */
|
368 |
|
|
else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
|
369 |
|
|
&& TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
|
370 |
|
|
&& operand_equal_p (gimple_cond_lhs (inner_cond),
|
371 |
|
|
gimple_cond_lhs (outer_cond), 0)
|
372 |
|
|
&& operand_equal_p (gimple_cond_rhs (inner_cond),
|
373 |
|
|
gimple_cond_rhs (outer_cond), 0))
|
374 |
|
|
{
|
375 |
|
|
enum tree_code code1 = gimple_cond_code (inner_cond);
|
376 |
|
|
enum tree_code code2 = gimple_cond_code (outer_cond);
|
377 |
|
|
tree t;
|
378 |
|
|
|
379 |
|
|
if (!(t = combine_comparisons (UNKNOWN_LOCATION,
|
380 |
|
|
TRUTH_ANDIF_EXPR, code1, code2,
|
381 |
|
|
boolean_type_node,
|
382 |
|
|
gimple_cond_lhs (outer_cond),
|
383 |
|
|
gimple_cond_rhs (outer_cond))))
|
384 |
|
|
return false;
|
385 |
|
|
t = canonicalize_cond_expr_cond (t);
|
386 |
|
|
if (!t)
|
387 |
|
|
return false;
|
388 |
|
|
gimple_cond_set_condition_from_tree (inner_cond, t);
|
389 |
|
|
update_stmt (inner_cond);
|
390 |
|
|
|
391 |
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
392 |
|
|
gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
|
393 |
|
|
update_stmt (outer_cond);
|
394 |
|
|
|
395 |
|
|
if (dump_file)
|
396 |
|
|
{
|
397 |
|
|
fprintf (dump_file, "optimizing two comparisons to ");
|
398 |
|
|
print_generic_expr (dump_file, t, 0);
|
399 |
|
|
fprintf (dump_file, "\n");
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
return true;
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
return false;
|
406 |
|
|
}
|
407 |
|
|
|
408 |
|
|
/* If-convert on a or pattern with a common then block. The inner
|
409 |
|
|
if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
|
410 |
|
|
Returns true, if the edges leading to the common then basic-block
|
411 |
|
|
were merged. */
|
412 |
|
|
|
413 |
|
|
static bool
|
414 |
|
|
ifcombine_iforif (basic_block inner_cond_bb, basic_block outer_cond_bb)
|
415 |
|
|
{
|
416 |
|
|
gimple inner_cond, outer_cond;
|
417 |
|
|
tree name1, name2, bits1, bits2;
|
418 |
|
|
|
419 |
|
|
inner_cond = last_stmt (inner_cond_bb);
|
420 |
|
|
if (!inner_cond
|
421 |
|
|
|| gimple_code (inner_cond) != GIMPLE_COND)
|
422 |
|
|
return false;
|
423 |
|
|
|
424 |
|
|
outer_cond = last_stmt (outer_cond_bb);
|
425 |
|
|
if (!outer_cond
|
426 |
|
|
|| gimple_code (outer_cond) != GIMPLE_COND)
|
427 |
|
|
return false;
|
428 |
|
|
|
429 |
|
|
/* See if we have two bit tests of the same name in both tests.
|
430 |
|
|
In that case remove the outer test and change the inner one to
|
431 |
|
|
test for name & (bits1 | bits2) != 0. */
|
432 |
|
|
if (recognize_bits_test (inner_cond, &name1, &bits1)
|
433 |
|
|
&& recognize_bits_test (outer_cond, &name2, &bits2))
|
434 |
|
|
{
|
435 |
|
|
gimple_stmt_iterator gsi;
|
436 |
|
|
tree t;
|
437 |
|
|
|
438 |
|
|
/* Find the common name which is bit-tested. */
|
439 |
|
|
if (name1 == name2)
|
440 |
|
|
;
|
441 |
|
|
else if (bits1 == bits2)
|
442 |
|
|
{
|
443 |
|
|
t = name2;
|
444 |
|
|
name2 = bits2;
|
445 |
|
|
bits2 = t;
|
446 |
|
|
t = name1;
|
447 |
|
|
name1 = bits1;
|
448 |
|
|
bits1 = t;
|
449 |
|
|
}
|
450 |
|
|
else if (name1 == bits2)
|
451 |
|
|
{
|
452 |
|
|
t = name2;
|
453 |
|
|
name2 = bits2;
|
454 |
|
|
bits2 = t;
|
455 |
|
|
}
|
456 |
|
|
else if (bits1 == name2)
|
457 |
|
|
{
|
458 |
|
|
t = name1;
|
459 |
|
|
name1 = bits1;
|
460 |
|
|
bits1 = t;
|
461 |
|
|
}
|
462 |
|
|
else
|
463 |
|
|
return false;
|
464 |
|
|
|
465 |
|
|
/* As we strip non-widening conversions in finding a common
|
466 |
|
|
name that is tested make sure to end up with an integral
|
467 |
|
|
type for building the bit operations. */
|
468 |
|
|
if (TYPE_PRECISION (TREE_TYPE (bits1))
|
469 |
|
|
>= TYPE_PRECISION (TREE_TYPE (bits2)))
|
470 |
|
|
{
|
471 |
|
|
bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
|
472 |
|
|
name1 = fold_convert (TREE_TYPE (bits1), name1);
|
473 |
|
|
bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
|
474 |
|
|
bits2 = fold_convert (TREE_TYPE (bits1), bits2);
|
475 |
|
|
}
|
476 |
|
|
else
|
477 |
|
|
{
|
478 |
|
|
bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
|
479 |
|
|
name1 = fold_convert (TREE_TYPE (bits2), name1);
|
480 |
|
|
bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
|
481 |
|
|
bits1 = fold_convert (TREE_TYPE (bits2), bits1);
|
482 |
|
|
}
|
483 |
|
|
|
484 |
|
|
/* Do it. */
|
485 |
|
|
gsi = gsi_for_stmt (inner_cond);
|
486 |
|
|
t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
|
487 |
|
|
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
488 |
|
|
true, GSI_SAME_STMT);
|
489 |
|
|
t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
|
490 |
|
|
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
|
491 |
|
|
true, GSI_SAME_STMT);
|
492 |
|
|
t = fold_build2 (NE_EXPR, boolean_type_node, t,
|
493 |
|
|
build_int_cst (TREE_TYPE (t), 0));
|
494 |
|
|
t = canonicalize_cond_expr_cond (t);
|
495 |
|
|
if (!t)
|
496 |
|
|
return false;
|
497 |
|
|
gimple_cond_set_condition_from_tree (inner_cond, t);
|
498 |
|
|
update_stmt (inner_cond);
|
499 |
|
|
|
500 |
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
501 |
|
|
gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
|
502 |
|
|
update_stmt (outer_cond);
|
503 |
|
|
|
504 |
|
|
if (dump_file)
|
505 |
|
|
{
|
506 |
|
|
fprintf (dump_file, "optimizing bits or bits test to ");
|
507 |
|
|
print_generic_expr (dump_file, name1, 0);
|
508 |
|
|
fprintf (dump_file, " & T != 0\nwith temporary T = ");
|
509 |
|
|
print_generic_expr (dump_file, bits1, 0);
|
510 |
|
|
fprintf (dump_file, " | ");
|
511 |
|
|
print_generic_expr (dump_file, bits2, 0);
|
512 |
|
|
fprintf (dump_file, "\n");
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
return true;
|
516 |
|
|
}
|
517 |
|
|
|
518 |
|
|
/* See if we have two comparisons that we can merge into one.
|
519 |
|
|
This happens for C++ operator overloading where for example
|
520 |
|
|
GE_EXPR is implemented as GT_EXPR || EQ_EXPR. */
|
521 |
|
|
else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
|
522 |
|
|
&& TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
|
523 |
|
|
&& operand_equal_p (gimple_cond_lhs (inner_cond),
|
524 |
|
|
gimple_cond_lhs (outer_cond), 0)
|
525 |
|
|
&& operand_equal_p (gimple_cond_rhs (inner_cond),
|
526 |
|
|
gimple_cond_rhs (outer_cond), 0))
|
527 |
|
|
{
|
528 |
|
|
enum tree_code code1 = gimple_cond_code (inner_cond);
|
529 |
|
|
enum tree_code code2 = gimple_cond_code (outer_cond);
|
530 |
|
|
tree t;
|
531 |
|
|
|
532 |
|
|
if (!(t = combine_comparisons (UNKNOWN_LOCATION,
|
533 |
|
|
TRUTH_ORIF_EXPR, code1, code2,
|
534 |
|
|
boolean_type_node,
|
535 |
|
|
gimple_cond_lhs (outer_cond),
|
536 |
|
|
gimple_cond_rhs (outer_cond))))
|
537 |
|
|
return false;
|
538 |
|
|
t = canonicalize_cond_expr_cond (t);
|
539 |
|
|
if (!t)
|
540 |
|
|
return false;
|
541 |
|
|
gimple_cond_set_condition_from_tree (inner_cond, t);
|
542 |
|
|
update_stmt (inner_cond);
|
543 |
|
|
|
544 |
|
|
/* Leave CFG optimization to cfg_cleanup. */
|
545 |
|
|
gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
|
546 |
|
|
update_stmt (outer_cond);
|
547 |
|
|
|
548 |
|
|
if (dump_file)
|
549 |
|
|
{
|
550 |
|
|
fprintf (dump_file, "optimizing two comparisons to ");
|
551 |
|
|
print_generic_expr (dump_file, t, 0);
|
552 |
|
|
fprintf (dump_file, "\n");
|
553 |
|
|
}
|
554 |
|
|
|
555 |
|
|
return true;
|
556 |
|
|
}
|
557 |
|
|
|
558 |
|
|
return false;
|
559 |
|
|
}
|
560 |
|
|
|
561 |
|
|
/* Recognize a CFG pattern and dispatch to the appropriate
|
562 |
|
|
if-conversion helper. We start with BB as the innermost
|
563 |
|
|
worker basic-block. Returns true if a transformation was done. */
|
564 |
|
|
|
565 |
|
|
static bool
|
566 |
|
|
tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
|
567 |
|
|
{
|
568 |
|
|
basic_block then_bb = NULL, else_bb = NULL;
|
569 |
|
|
|
570 |
|
|
if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
|
571 |
|
|
return false;
|
572 |
|
|
|
573 |
|
|
/* Recognize && and || of two conditions with a common
|
574 |
|
|
then/else block which entry edges we can merge. That is:
|
575 |
|
|
if (a || b)
|
576 |
|
|
;
|
577 |
|
|
and
|
578 |
|
|
if (a && b)
|
579 |
|
|
;
|
580 |
|
|
This requires a single predecessor of the inner cond_bb. */
|
581 |
|
|
if (single_pred_p (inner_cond_bb))
|
582 |
|
|
{
|
583 |
|
|
basic_block outer_cond_bb = single_pred (inner_cond_bb);
|
584 |
|
|
|
585 |
|
|
/* The && form is characterized by a common else_bb with
|
586 |
|
|
the two edges leading to it mergable. The latter is
|
587 |
|
|
guaranteed by matching PHI arguments in the else_bb and
|
588 |
|
|
the inner cond_bb having no side-effects. */
|
589 |
|
|
if (recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
|
590 |
|
|
&& same_phi_args_p (outer_cond_bb, inner_cond_bb, else_bb)
|
591 |
|
|
&& bb_no_side_effects_p (inner_cond_bb))
|
592 |
|
|
{
|
593 |
|
|
/* We have
|
594 |
|
|
<outer_cond_bb>
|
595 |
|
|
if (q) goto inner_cond_bb; else goto else_bb;
|
596 |
|
|
<inner_cond_bb>
|
597 |
|
|
if (p) goto ...; else goto else_bb;
|
598 |
|
|
...
|
599 |
|
|
<else_bb>
|
600 |
|
|
...
|
601 |
|
|
*/
|
602 |
|
|
return ifcombine_ifandif (inner_cond_bb, outer_cond_bb);
|
603 |
|
|
}
|
604 |
|
|
|
605 |
|
|
/* The || form is characterized by a common then_bb with the
|
606 |
|
|
two edges leading to it mergable. The latter is guaranteed
|
607 |
|
|
by matching PHI arguments in the then_bb and the inner cond_bb
|
608 |
|
|
having no side-effects. */
|
609 |
|
|
if (recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
|
610 |
|
|
&& same_phi_args_p (outer_cond_bb, inner_cond_bb, then_bb)
|
611 |
|
|
&& bb_no_side_effects_p (inner_cond_bb))
|
612 |
|
|
{
|
613 |
|
|
/* We have
|
614 |
|
|
<outer_cond_bb>
|
615 |
|
|
if (q) goto then_bb; else goto inner_cond_bb;
|
616 |
|
|
<inner_cond_bb>
|
617 |
|
|
if (q) goto then_bb; else goto ...;
|
618 |
|
|
<then_bb>
|
619 |
|
|
...
|
620 |
|
|
*/
|
621 |
|
|
return ifcombine_iforif (inner_cond_bb, outer_cond_bb);
|
622 |
|
|
}
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
return false;
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
/* Main entry for the tree if-conversion pass. */
|
629 |
|
|
|
630 |
|
|
static unsigned int
|
631 |
|
|
tree_ssa_ifcombine (void)
|
632 |
|
|
{
|
633 |
|
|
basic_block *bbs;
|
634 |
|
|
bool cfg_changed = false;
|
635 |
|
|
int i;
|
636 |
|
|
|
637 |
|
|
bbs = blocks_in_phiopt_order ();
|
638 |
|
|
|
639 |
|
|
for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; ++i)
|
640 |
|
|
{
|
641 |
|
|
basic_block bb = bbs[i];
|
642 |
|
|
gimple stmt = last_stmt (bb);
|
643 |
|
|
|
644 |
|
|
if (stmt
|
645 |
|
|
&& gimple_code (stmt) == GIMPLE_COND)
|
646 |
|
|
cfg_changed |= tree_ssa_ifcombine_bb (bb);
|
647 |
|
|
}
|
648 |
|
|
|
649 |
|
|
free (bbs);
|
650 |
|
|
|
651 |
|
|
return cfg_changed ? TODO_cleanup_cfg : 0;
|
652 |
|
|
}
|
653 |
|
|
|
654 |
|
|
static bool
|
655 |
|
|
gate_ifcombine (void)
|
656 |
|
|
{
|
657 |
|
|
return 1;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
struct gimple_opt_pass pass_tree_ifcombine =
|
661 |
|
|
{
|
662 |
|
|
{
|
663 |
|
|
GIMPLE_PASS,
|
664 |
|
|
"ifcombine", /* name */
|
665 |
|
|
gate_ifcombine, /* gate */
|
666 |
|
|
tree_ssa_ifcombine, /* execute */
|
667 |
|
|
NULL, /* sub */
|
668 |
|
|
NULL, /* next */
|
669 |
|
|
0, /* static_pass_number */
|
670 |
|
|
TV_TREE_IFCOMBINE, /* tv_id */
|
671 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
672 |
|
|
0, /* properties_provided */
|
673 |
|
|
0, /* properties_destroyed */
|
674 |
|
|
0, /* todo_flags_start */
|
675 |
|
|
TODO_dump_func
|
676 |
|
|
| TODO_ggc_collect
|
677 |
|
|
| TODO_update_ssa
|
678 |
|
|
| TODO_verify_ssa /* todo_flags_finish */
|
679 |
|
|
}
|
680 |
|
|
};
|