| 1 |
280 |
jeremybenn |
/* Array prefetching.
|
| 2 |
|
|
Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GCC.
|
| 5 |
|
|
|
| 6 |
|
|
GCC is free software; you can redistribute it and/or modify it
|
| 7 |
|
|
under the terms of the GNU General Public License as published by the
|
| 8 |
|
|
Free Software Foundation; either version 3, or (at your option) any
|
| 9 |
|
|
later version.
|
| 10 |
|
|
|
| 11 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT
|
| 12 |
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 13 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 14 |
|
|
for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 18 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 19 |
|
|
|
| 20 |
|
|
#include "config.h"
|
| 21 |
|
|
#include "system.h"
|
| 22 |
|
|
#include "coretypes.h"
|
| 23 |
|
|
#include "tm.h"
|
| 24 |
|
|
#include "tree.h"
|
| 25 |
|
|
#include "rtl.h"
|
| 26 |
|
|
#include "tm_p.h"
|
| 27 |
|
|
#include "hard-reg-set.h"
|
| 28 |
|
|
#include "basic-block.h"
|
| 29 |
|
|
#include "output.h"
|
| 30 |
|
|
#include "diagnostic.h"
|
| 31 |
|
|
#include "tree-flow.h"
|
| 32 |
|
|
#include "tree-dump.h"
|
| 33 |
|
|
#include "timevar.h"
|
| 34 |
|
|
#include "cfgloop.h"
|
| 35 |
|
|
#include "varray.h"
|
| 36 |
|
|
#include "expr.h"
|
| 37 |
|
|
#include "tree-pass.h"
|
| 38 |
|
|
#include "ggc.h"
|
| 39 |
|
|
#include "insn-config.h"
|
| 40 |
|
|
#include "recog.h"
|
| 41 |
|
|
#include "hashtab.h"
|
| 42 |
|
|
#include "tree-chrec.h"
|
| 43 |
|
|
#include "tree-scalar-evolution.h"
|
| 44 |
|
|
#include "toplev.h"
|
| 45 |
|
|
#include "params.h"
|
| 46 |
|
|
#include "langhooks.h"
|
| 47 |
|
|
#include "tree-inline.h"
|
| 48 |
|
|
#include "tree-data-ref.h"
|
| 49 |
|
|
#include "optabs.h"
|
| 50 |
|
|
|
| 51 |
|
|
/* This pass inserts prefetch instructions to optimize cache usage during
|
| 52 |
|
|
accesses to arrays in loops. It processes loops sequentially and:
|
| 53 |
|
|
|
| 54 |
|
|
1) Gathers all memory references in the single loop.
|
| 55 |
|
|
2) For each of the references it decides when it is profitable to prefetch
|
| 56 |
|
|
it. To do it, we evaluate the reuse among the accesses, and determines
|
| 57 |
|
|
two values: PREFETCH_BEFORE (meaning that it only makes sense to do
|
| 58 |
|
|
prefetching in the first PREFETCH_BEFORE iterations of the loop) and
|
| 59 |
|
|
PREFETCH_MOD (meaning that it only makes sense to prefetch in the
|
| 60 |
|
|
iterations of the loop that are zero modulo PREFETCH_MOD). For example
|
| 61 |
|
|
(assuming cache line size is 64 bytes, char has size 1 byte and there
|
| 62 |
|
|
is no hardware sequential prefetch):
|
| 63 |
|
|
|
| 64 |
|
|
char *a;
|
| 65 |
|
|
for (i = 0; i < max; i++)
|
| 66 |
|
|
{
|
| 67 |
|
|
a[255] = ...; (0)
|
| 68 |
|
|
a[i] = ...; (1)
|
| 69 |
|
|
a[i + 64] = ...; (2)
|
| 70 |
|
|
a[16*i] = ...; (3)
|
| 71 |
|
|
a[187*i] = ...; (4)
|
| 72 |
|
|
a[187*i + 50] = ...; (5)
|
| 73 |
|
|
}
|
| 74 |
|
|
|
| 75 |
|
|
(0) obviously has PREFETCH_BEFORE 1
|
| 76 |
|
|
(1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
|
| 77 |
|
|
location 64 iterations before it, and PREFETCH_MOD 64 (since
|
| 78 |
|
|
it hits the same cache line otherwise).
|
| 79 |
|
|
(2) has PREFETCH_MOD 64
|
| 80 |
|
|
(3) has PREFETCH_MOD 4
|
| 81 |
|
|
(4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
|
| 82 |
|
|
the cache line accessed by (4) is the same with probability only
|
| 83 |
|
|
7/32.
|
| 84 |
|
|
(5) has PREFETCH_MOD 1 as well.
|
| 85 |
|
|
|
| 86 |
|
|
Additionally, we use data dependence analysis to determine for each
|
| 87 |
|
|
reference the distance till the first reuse; this information is used
|
| 88 |
|
|
to determine the temporality of the issued prefetch instruction.
|
| 89 |
|
|
|
| 90 |
|
|
3) We determine how much ahead we need to prefetch. The number of
|
| 91 |
|
|
iterations needed is time to fetch / time spent in one iteration of
|
| 92 |
|
|
the loop. The problem is that we do not know either of these values,
|
| 93 |
|
|
so we just make a heuristic guess based on a magic (possibly)
|
| 94 |
|
|
target-specific constant and size of the loop.
|
| 95 |
|
|
|
| 96 |
|
|
4) Determine which of the references we prefetch. We take into account
|
| 97 |
|
|
that there is a maximum number of simultaneous prefetches (provided
|
| 98 |
|
|
by machine description). We prefetch as many prefetches as possible
|
| 99 |
|
|
while still within this bound (starting with those with lowest
|
| 100 |
|
|
prefetch_mod, since they are responsible for most of the cache
|
| 101 |
|
|
misses).
|
| 102 |
|
|
|
| 103 |
|
|
5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
|
| 104 |
|
|
and PREFETCH_BEFORE requirements (within some bounds), and to avoid
|
| 105 |
|
|
prefetching nonaccessed memory.
|
| 106 |
|
|
TODO -- actually implement peeling.
|
| 107 |
|
|
|
| 108 |
|
|
6) We actually emit the prefetch instructions. ??? Perhaps emit the
|
| 109 |
|
|
prefetch instructions with guards in cases where 5) was not sufficient
|
| 110 |
|
|
to satisfy the constraints?
|
| 111 |
|
|
|
| 112 |
|
|
The function is_loop_prefetching_profitable() implements a cost model
|
| 113 |
|
|
to determine if prefetching is profitable for a given loop. The cost
|
| 114 |
|
|
model has two heuristcs:
|
| 115 |
|
|
1. A heuristic that determines whether the given loop has enough CPU
|
| 116 |
|
|
ops that can be overlapped with cache missing memory ops.
|
| 117 |
|
|
If not, the loop won't benefit from prefetching. This is implemented
|
| 118 |
|
|
by requirung the ratio between the instruction count and the mem ref
|
| 119 |
|
|
count to be above a certain minimum.
|
| 120 |
|
|
2. A heuristic that disables prefetching in a loop with an unknown trip
|
| 121 |
|
|
count if the prefetching cost is above a certain limit. The relative
|
| 122 |
|
|
prefetching cost is estimated by taking the ratio between the
|
| 123 |
|
|
prefetch count and the total intruction count (this models the I-cache
|
| 124 |
|
|
cost).
|
| 125 |
|
|
The limits used in these heuristics are defined as parameters with
|
| 126 |
|
|
reasonable default values. Machine-specific default values will be
|
| 127 |
|
|
added later.
|
| 128 |
|
|
|
| 129 |
|
|
Some other TODO:
|
| 130 |
|
|
-- write and use more general reuse analysis (that could be also used
|
| 131 |
|
|
in other cache aimed loop optimizations)
|
| 132 |
|
|
-- make it behave sanely together with the prefetches given by user
|
| 133 |
|
|
(now we just ignore them; at the very least we should avoid
|
| 134 |
|
|
optimizing loops in that user put his own prefetches)
|
| 135 |
|
|
-- we assume cache line size alignment of arrays; this could be
|
| 136 |
|
|
improved. */
|
| 137 |
|
|
|
| 138 |
|
|
/* Magic constants follow. These should be replaced by machine specific
|
| 139 |
|
|
numbers. */
|
| 140 |
|
|
|
| 141 |
|
|
/* True if write can be prefetched by a read prefetch. */
|
| 142 |
|
|
|
| 143 |
|
|
#ifndef WRITE_CAN_USE_READ_PREFETCH
|
| 144 |
|
|
#define WRITE_CAN_USE_READ_PREFETCH 1
|
| 145 |
|
|
#endif
|
| 146 |
|
|
|
| 147 |
|
|
/* True if read can be prefetched by a write prefetch. */
|
| 148 |
|
|
|
| 149 |
|
|
#ifndef READ_CAN_USE_WRITE_PREFETCH
|
| 150 |
|
|
#define READ_CAN_USE_WRITE_PREFETCH 0
|
| 151 |
|
|
#endif
|
| 152 |
|
|
|
| 153 |
|
|
/* The size of the block loaded by a single prefetch. Usually, this is
|
| 154 |
|
|
the same as cache line size (at the moment, we only consider one level
|
| 155 |
|
|
of cache hierarchy). */
|
| 156 |
|
|
|
| 157 |
|
|
#ifndef PREFETCH_BLOCK
|
| 158 |
|
|
#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
|
| 159 |
|
|
#endif
|
| 160 |
|
|
|
| 161 |
|
|
/* Do we have a forward hardware sequential prefetching? */
|
| 162 |
|
|
|
| 163 |
|
|
#ifndef HAVE_FORWARD_PREFETCH
|
| 164 |
|
|
#define HAVE_FORWARD_PREFETCH 0
|
| 165 |
|
|
#endif
|
| 166 |
|
|
|
| 167 |
|
|
/* Do we have a backward hardware sequential prefetching? */
|
| 168 |
|
|
|
| 169 |
|
|
#ifndef HAVE_BACKWARD_PREFETCH
|
| 170 |
|
|
#define HAVE_BACKWARD_PREFETCH 0
|
| 171 |
|
|
#endif
|
| 172 |
|
|
|
| 173 |
|
|
/* In some cases we are only able to determine that there is a certain
|
| 174 |
|
|
probability that the two accesses hit the same cache line. In this
|
| 175 |
|
|
case, we issue the prefetches for both of them if this probability
|
| 176 |
|
|
is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
|
| 177 |
|
|
|
| 178 |
|
|
#ifndef ACCEPTABLE_MISS_RATE
|
| 179 |
|
|
#define ACCEPTABLE_MISS_RATE 50
|
| 180 |
|
|
#endif
|
| 181 |
|
|
|
| 182 |
|
|
#ifndef HAVE_prefetch
|
| 183 |
|
|
#define HAVE_prefetch 0
|
| 184 |
|
|
#endif
|
| 185 |
|
|
|
| 186 |
|
|
#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
|
| 187 |
|
|
#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
|
| 188 |
|
|
|
| 189 |
|
|
/* We consider a memory access nontemporal if it is not reused sooner than
|
| 190 |
|
|
after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
|
| 191 |
|
|
accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
|
| 192 |
|
|
so that we use nontemporal prefetches e.g. if single memory location
|
| 193 |
|
|
is accessed several times in a single iteration of the loop. */
|
| 194 |
|
|
#define NONTEMPORAL_FRACTION 16
|
| 195 |
|
|
|
| 196 |
|
|
/* In case we have to emit a memory fence instruction after the loop that
|
| 197 |
|
|
uses nontemporal stores, this defines the builtin to use. */
|
| 198 |
|
|
|
| 199 |
|
|
#ifndef FENCE_FOLLOWING_MOVNT
|
| 200 |
|
|
#define FENCE_FOLLOWING_MOVNT NULL_TREE
|
| 201 |
|
|
#endif
|
| 202 |
|
|
|
| 203 |
|
|
/* The group of references between that reuse may occur. */
|
| 204 |
|
|
|
| 205 |
|
|
struct mem_ref_group
|
| 206 |
|
|
{
|
| 207 |
|
|
tree base; /* Base of the reference. */
|
| 208 |
|
|
HOST_WIDE_INT step; /* Step of the reference. */
|
| 209 |
|
|
struct mem_ref *refs; /* References in the group. */
|
| 210 |
|
|
struct mem_ref_group *next; /* Next group of references. */
|
| 211 |
|
|
};
|
| 212 |
|
|
|
| 213 |
|
|
/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
|
| 214 |
|
|
|
| 215 |
|
|
#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
|
| 216 |
|
|
|
| 217 |
|
|
/* The memory reference. */
|
| 218 |
|
|
|
| 219 |
|
|
struct mem_ref
|
| 220 |
|
|
{
|
| 221 |
|
|
gimple stmt; /* Statement in that the reference appears. */
|
| 222 |
|
|
tree mem; /* The reference. */
|
| 223 |
|
|
HOST_WIDE_INT delta; /* Constant offset of the reference. */
|
| 224 |
|
|
struct mem_ref_group *group; /* The group of references it belongs to. */
|
| 225 |
|
|
unsigned HOST_WIDE_INT prefetch_mod;
|
| 226 |
|
|
/* Prefetch only each PREFETCH_MOD-th
|
| 227 |
|
|
iteration. */
|
| 228 |
|
|
unsigned HOST_WIDE_INT prefetch_before;
|
| 229 |
|
|
/* Prefetch only first PREFETCH_BEFORE
|
| 230 |
|
|
iterations. */
|
| 231 |
|
|
unsigned reuse_distance; /* The amount of data accessed before the first
|
| 232 |
|
|
reuse of this value. */
|
| 233 |
|
|
struct mem_ref *next; /* The next reference in the group. */
|
| 234 |
|
|
unsigned write_p : 1; /* Is it a write? */
|
| 235 |
|
|
unsigned independent_p : 1; /* True if the reference is independent on
|
| 236 |
|
|
all other references inside the loop. */
|
| 237 |
|
|
unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
|
| 238 |
|
|
unsigned storent_p : 1; /* True if we changed the store to a
|
| 239 |
|
|
nontemporal one. */
|
| 240 |
|
|
};
|
| 241 |
|
|
|
| 242 |
|
|
/* Dumps information about reference REF to FILE. */
|
| 243 |
|
|
|
| 244 |
|
|
static void
|
| 245 |
|
|
dump_mem_ref (FILE *file, struct mem_ref *ref)
|
| 246 |
|
|
{
|
| 247 |
|
|
fprintf (file, "Reference %p:\n", (void *) ref);
|
| 248 |
|
|
|
| 249 |
|
|
fprintf (file, " group %p (base ", (void *) ref->group);
|
| 250 |
|
|
print_generic_expr (file, ref->group->base, TDF_SLIM);
|
| 251 |
|
|
fprintf (file, ", step ");
|
| 252 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
|
| 253 |
|
|
fprintf (file, ")\n");
|
| 254 |
|
|
|
| 255 |
|
|
fprintf (file, " delta ");
|
| 256 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
|
| 257 |
|
|
fprintf (file, "\n");
|
| 258 |
|
|
|
| 259 |
|
|
fprintf (file, " %s\n", ref->write_p ? "write" : "read");
|
| 260 |
|
|
|
| 261 |
|
|
fprintf (file, "\n");
|
| 262 |
|
|
}
|
| 263 |
|
|
|
| 264 |
|
|
/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
|
| 265 |
|
|
exist. */
|
| 266 |
|
|
|
| 267 |
|
|
static struct mem_ref_group *
|
| 268 |
|
|
find_or_create_group (struct mem_ref_group **groups, tree base,
|
| 269 |
|
|
HOST_WIDE_INT step)
|
| 270 |
|
|
{
|
| 271 |
|
|
struct mem_ref_group *group;
|
| 272 |
|
|
|
| 273 |
|
|
for (; *groups; groups = &(*groups)->next)
|
| 274 |
|
|
{
|
| 275 |
|
|
if ((*groups)->step == step
|
| 276 |
|
|
&& operand_equal_p ((*groups)->base, base, 0))
|
| 277 |
|
|
return *groups;
|
| 278 |
|
|
|
| 279 |
|
|
/* Keep the list of groups sorted by decreasing step. */
|
| 280 |
|
|
if ((*groups)->step < step)
|
| 281 |
|
|
break;
|
| 282 |
|
|
}
|
| 283 |
|
|
|
| 284 |
|
|
group = XNEW (struct mem_ref_group);
|
| 285 |
|
|
group->base = base;
|
| 286 |
|
|
group->step = step;
|
| 287 |
|
|
group->refs = NULL;
|
| 288 |
|
|
group->next = *groups;
|
| 289 |
|
|
*groups = group;
|
| 290 |
|
|
|
| 291 |
|
|
return group;
|
| 292 |
|
|
}
|
| 293 |
|
|
|
| 294 |
|
|
/* Records a memory reference MEM in GROUP with offset DELTA and write status
|
| 295 |
|
|
WRITE_P. The reference occurs in statement STMT. */
|
| 296 |
|
|
|
| 297 |
|
|
static void
|
| 298 |
|
|
record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
|
| 299 |
|
|
HOST_WIDE_INT delta, bool write_p)
|
| 300 |
|
|
{
|
| 301 |
|
|
struct mem_ref **aref;
|
| 302 |
|
|
|
| 303 |
|
|
/* Do not record the same address twice. */
|
| 304 |
|
|
for (aref = &group->refs; *aref; aref = &(*aref)->next)
|
| 305 |
|
|
{
|
| 306 |
|
|
/* It does not have to be possible for write reference to reuse the read
|
| 307 |
|
|
prefetch, or vice versa. */
|
| 308 |
|
|
if (!WRITE_CAN_USE_READ_PREFETCH
|
| 309 |
|
|
&& write_p
|
| 310 |
|
|
&& !(*aref)->write_p)
|
| 311 |
|
|
continue;
|
| 312 |
|
|
if (!READ_CAN_USE_WRITE_PREFETCH
|
| 313 |
|
|
&& !write_p
|
| 314 |
|
|
&& (*aref)->write_p)
|
| 315 |
|
|
continue;
|
| 316 |
|
|
|
| 317 |
|
|
if ((*aref)->delta == delta)
|
| 318 |
|
|
return;
|
| 319 |
|
|
}
|
| 320 |
|
|
|
| 321 |
|
|
(*aref) = XNEW (struct mem_ref);
|
| 322 |
|
|
(*aref)->stmt = stmt;
|
| 323 |
|
|
(*aref)->mem = mem;
|
| 324 |
|
|
(*aref)->delta = delta;
|
| 325 |
|
|
(*aref)->write_p = write_p;
|
| 326 |
|
|
(*aref)->prefetch_before = PREFETCH_ALL;
|
| 327 |
|
|
(*aref)->prefetch_mod = 1;
|
| 328 |
|
|
(*aref)->reuse_distance = 0;
|
| 329 |
|
|
(*aref)->issue_prefetch_p = false;
|
| 330 |
|
|
(*aref)->group = group;
|
| 331 |
|
|
(*aref)->next = NULL;
|
| 332 |
|
|
(*aref)->independent_p = false;
|
| 333 |
|
|
(*aref)->storent_p = false;
|
| 334 |
|
|
|
| 335 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 336 |
|
|
dump_mem_ref (dump_file, *aref);
|
| 337 |
|
|
}
|
| 338 |
|
|
|
| 339 |
|
|
/* Release memory references in GROUPS. */
|
| 340 |
|
|
|
| 341 |
|
|
static void
|
| 342 |
|
|
release_mem_refs (struct mem_ref_group *groups)
|
| 343 |
|
|
{
|
| 344 |
|
|
struct mem_ref_group *next_g;
|
| 345 |
|
|
struct mem_ref *ref, *next_r;
|
| 346 |
|
|
|
| 347 |
|
|
for (; groups; groups = next_g)
|
| 348 |
|
|
{
|
| 349 |
|
|
next_g = groups->next;
|
| 350 |
|
|
for (ref = groups->refs; ref; ref = next_r)
|
| 351 |
|
|
{
|
| 352 |
|
|
next_r = ref->next;
|
| 353 |
|
|
free (ref);
|
| 354 |
|
|
}
|
| 355 |
|
|
free (groups);
|
| 356 |
|
|
}
|
| 357 |
|
|
}
|
| 358 |
|
|
|
| 359 |
|
|
/* A structure used to pass arguments to idx_analyze_ref. */
|
| 360 |
|
|
|
| 361 |
|
|
struct ar_data
|
| 362 |
|
|
{
|
| 363 |
|
|
struct loop *loop; /* Loop of the reference. */
|
| 364 |
|
|
gimple stmt; /* Statement of the reference. */
|
| 365 |
|
|
HOST_WIDE_INT *step; /* Step of the memory reference. */
|
| 366 |
|
|
HOST_WIDE_INT *delta; /* Offset of the memory reference. */
|
| 367 |
|
|
};
|
| 368 |
|
|
|
| 369 |
|
|
/* Analyzes a single INDEX of a memory reference to obtain information
|
| 370 |
|
|
described at analyze_ref. Callback for for_each_index. */
|
| 371 |
|
|
|
| 372 |
|
|
static bool
|
| 373 |
|
|
idx_analyze_ref (tree base, tree *index, void *data)
|
| 374 |
|
|
{
|
| 375 |
|
|
struct ar_data *ar_data = (struct ar_data *) data;
|
| 376 |
|
|
tree ibase, step, stepsize;
|
| 377 |
|
|
HOST_WIDE_INT istep, idelta = 0, imult = 1;
|
| 378 |
|
|
affine_iv iv;
|
| 379 |
|
|
|
| 380 |
|
|
if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
|
| 381 |
|
|
|| TREE_CODE (base) == ALIGN_INDIRECT_REF)
|
| 382 |
|
|
return false;
|
| 383 |
|
|
|
| 384 |
|
|
if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
|
| 385 |
|
|
*index, &iv, false))
|
| 386 |
|
|
return false;
|
| 387 |
|
|
ibase = iv.base;
|
| 388 |
|
|
step = iv.step;
|
| 389 |
|
|
|
| 390 |
|
|
if (!cst_and_fits_in_hwi (step))
|
| 391 |
|
|
return false;
|
| 392 |
|
|
istep = int_cst_value (step);
|
| 393 |
|
|
|
| 394 |
|
|
if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
|
| 395 |
|
|
&& cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
|
| 396 |
|
|
{
|
| 397 |
|
|
idelta = int_cst_value (TREE_OPERAND (ibase, 1));
|
| 398 |
|
|
ibase = TREE_OPERAND (ibase, 0);
|
| 399 |
|
|
}
|
| 400 |
|
|
if (cst_and_fits_in_hwi (ibase))
|
| 401 |
|
|
{
|
| 402 |
|
|
idelta += int_cst_value (ibase);
|
| 403 |
|
|
ibase = build_int_cst (TREE_TYPE (ibase), 0);
|
| 404 |
|
|
}
|
| 405 |
|
|
|
| 406 |
|
|
if (TREE_CODE (base) == ARRAY_REF)
|
| 407 |
|
|
{
|
| 408 |
|
|
stepsize = array_ref_element_size (base);
|
| 409 |
|
|
if (!cst_and_fits_in_hwi (stepsize))
|
| 410 |
|
|
return false;
|
| 411 |
|
|
imult = int_cst_value (stepsize);
|
| 412 |
|
|
|
| 413 |
|
|
istep *= imult;
|
| 414 |
|
|
idelta *= imult;
|
| 415 |
|
|
}
|
| 416 |
|
|
|
| 417 |
|
|
*ar_data->step += istep;
|
| 418 |
|
|
*ar_data->delta += idelta;
|
| 419 |
|
|
*index = ibase;
|
| 420 |
|
|
|
| 421 |
|
|
return true;
|
| 422 |
|
|
}
|
| 423 |
|
|
|
| 424 |
|
|
/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
|
| 425 |
|
|
STEP are integer constants and iter is number of iterations of LOOP. The
|
| 426 |
|
|
reference occurs in statement STMT. Strips nonaddressable component
|
| 427 |
|
|
references from REF_P. */
|
| 428 |
|
|
|
| 429 |
|
|
static bool
|
| 430 |
|
|
analyze_ref (struct loop *loop, tree *ref_p, tree *base,
|
| 431 |
|
|
HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
|
| 432 |
|
|
gimple stmt)
|
| 433 |
|
|
{
|
| 434 |
|
|
struct ar_data ar_data;
|
| 435 |
|
|
tree off;
|
| 436 |
|
|
HOST_WIDE_INT bit_offset;
|
| 437 |
|
|
tree ref = *ref_p;
|
| 438 |
|
|
|
| 439 |
|
|
*step = 0;
|
| 440 |
|
|
*delta = 0;
|
| 441 |
|
|
|
| 442 |
|
|
/* First strip off the component references. Ignore bitfields. */
|
| 443 |
|
|
if (TREE_CODE (ref) == COMPONENT_REF
|
| 444 |
|
|
&& DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
|
| 445 |
|
|
ref = TREE_OPERAND (ref, 0);
|
| 446 |
|
|
|
| 447 |
|
|
*ref_p = ref;
|
| 448 |
|
|
|
| 449 |
|
|
for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
|
| 450 |
|
|
{
|
| 451 |
|
|
off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
|
| 452 |
|
|
bit_offset = TREE_INT_CST_LOW (off);
|
| 453 |
|
|
gcc_assert (bit_offset % BITS_PER_UNIT == 0);
|
| 454 |
|
|
|
| 455 |
|
|
*delta += bit_offset / BITS_PER_UNIT;
|
| 456 |
|
|
}
|
| 457 |
|
|
|
| 458 |
|
|
*base = unshare_expr (ref);
|
| 459 |
|
|
ar_data.loop = loop;
|
| 460 |
|
|
ar_data.stmt = stmt;
|
| 461 |
|
|
ar_data.step = step;
|
| 462 |
|
|
ar_data.delta = delta;
|
| 463 |
|
|
return for_each_index (base, idx_analyze_ref, &ar_data);
|
| 464 |
|
|
}
|
| 465 |
|
|
|
| 466 |
|
|
/* Record a memory reference REF to the list REFS. The reference occurs in
|
| 467 |
|
|
LOOP in statement STMT and it is write if WRITE_P. Returns true if the
|
| 468 |
|
|
reference was recorded, false otherwise. */
|
| 469 |
|
|
|
| 470 |
|
|
static bool
|
| 471 |
|
|
gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
|
| 472 |
|
|
tree ref, bool write_p, gimple stmt)
|
| 473 |
|
|
{
|
| 474 |
|
|
tree base;
|
| 475 |
|
|
HOST_WIDE_INT step, delta;
|
| 476 |
|
|
struct mem_ref_group *agrp;
|
| 477 |
|
|
|
| 478 |
|
|
if (get_base_address (ref) == NULL)
|
| 479 |
|
|
return false;
|
| 480 |
|
|
|
| 481 |
|
|
if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
|
| 482 |
|
|
return false;
|
| 483 |
|
|
|
| 484 |
|
|
/* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
|
| 485 |
|
|
are integer constants. */
|
| 486 |
|
|
agrp = find_or_create_group (refs, base, step);
|
| 487 |
|
|
record_ref (agrp, stmt, ref, delta, write_p);
|
| 488 |
|
|
|
| 489 |
|
|
return true;
|
| 490 |
|
|
}
|
| 491 |
|
|
|
| 492 |
|
|
/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
|
| 493 |
|
|
true if there are no other memory references inside the loop. */
|
| 494 |
|
|
|
| 495 |
|
|
static struct mem_ref_group *
|
| 496 |
|
|
gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
|
| 497 |
|
|
{
|
| 498 |
|
|
basic_block *body = get_loop_body_in_dom_order (loop);
|
| 499 |
|
|
basic_block bb;
|
| 500 |
|
|
unsigned i;
|
| 501 |
|
|
gimple_stmt_iterator bsi;
|
| 502 |
|
|
gimple stmt;
|
| 503 |
|
|
tree lhs, rhs;
|
| 504 |
|
|
struct mem_ref_group *refs = NULL;
|
| 505 |
|
|
|
| 506 |
|
|
*no_other_refs = true;
|
| 507 |
|
|
*ref_count = 0;
|
| 508 |
|
|
|
| 509 |
|
|
/* Scan the loop body in order, so that the former references precede the
|
| 510 |
|
|
later ones. */
|
| 511 |
|
|
for (i = 0; i < loop->num_nodes; i++)
|
| 512 |
|
|
{
|
| 513 |
|
|
bb = body[i];
|
| 514 |
|
|
if (bb->loop_father != loop)
|
| 515 |
|
|
continue;
|
| 516 |
|
|
|
| 517 |
|
|
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
| 518 |
|
|
{
|
| 519 |
|
|
stmt = gsi_stmt (bsi);
|
| 520 |
|
|
|
| 521 |
|
|
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
| 522 |
|
|
{
|
| 523 |
|
|
if (gimple_vuse (stmt)
|
| 524 |
|
|
|| (is_gimple_call (stmt)
|
| 525 |
|
|
&& !(gimple_call_flags (stmt) & ECF_CONST)))
|
| 526 |
|
|
*no_other_refs = false;
|
| 527 |
|
|
continue;
|
| 528 |
|
|
}
|
| 529 |
|
|
|
| 530 |
|
|
lhs = gimple_assign_lhs (stmt);
|
| 531 |
|
|
rhs = gimple_assign_rhs1 (stmt);
|
| 532 |
|
|
|
| 533 |
|
|
if (REFERENCE_CLASS_P (rhs))
|
| 534 |
|
|
{
|
| 535 |
|
|
*no_other_refs &= gather_memory_references_ref (loop, &refs,
|
| 536 |
|
|
rhs, false, stmt);
|
| 537 |
|
|
*ref_count += 1;
|
| 538 |
|
|
}
|
| 539 |
|
|
if (REFERENCE_CLASS_P (lhs))
|
| 540 |
|
|
{
|
| 541 |
|
|
*no_other_refs &= gather_memory_references_ref (loop, &refs,
|
| 542 |
|
|
lhs, true, stmt);
|
| 543 |
|
|
*ref_count += 1;
|
| 544 |
|
|
}
|
| 545 |
|
|
}
|
| 546 |
|
|
}
|
| 547 |
|
|
free (body);
|
| 548 |
|
|
|
| 549 |
|
|
return refs;
|
| 550 |
|
|
}
|
| 551 |
|
|
|
| 552 |
|
|
/* Prune the prefetch candidate REF using the self-reuse. */
|
| 553 |
|
|
|
| 554 |
|
|
static void
|
| 555 |
|
|
prune_ref_by_self_reuse (struct mem_ref *ref)
|
| 556 |
|
|
{
|
| 557 |
|
|
HOST_WIDE_INT step = ref->group->step;
|
| 558 |
|
|
bool backward = step < 0;
|
| 559 |
|
|
|
| 560 |
|
|
if (step == 0)
|
| 561 |
|
|
{
|
| 562 |
|
|
/* Prefetch references to invariant address just once. */
|
| 563 |
|
|
ref->prefetch_before = 1;
|
| 564 |
|
|
return;
|
| 565 |
|
|
}
|
| 566 |
|
|
|
| 567 |
|
|
if (backward)
|
| 568 |
|
|
step = -step;
|
| 569 |
|
|
|
| 570 |
|
|
if (step > PREFETCH_BLOCK)
|
| 571 |
|
|
return;
|
| 572 |
|
|
|
| 573 |
|
|
if ((backward && HAVE_BACKWARD_PREFETCH)
|
| 574 |
|
|
|| (!backward && HAVE_FORWARD_PREFETCH))
|
| 575 |
|
|
{
|
| 576 |
|
|
ref->prefetch_before = 1;
|
| 577 |
|
|
return;
|
| 578 |
|
|
}
|
| 579 |
|
|
|
| 580 |
|
|
ref->prefetch_mod = PREFETCH_BLOCK / step;
|
| 581 |
|
|
}
|
| 582 |
|
|
|
| 583 |
|
|
/* Divides X by BY, rounding down. */
|
| 584 |
|
|
|
| 585 |
|
|
static HOST_WIDE_INT
|
| 586 |
|
|
ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
|
| 587 |
|
|
{
|
| 588 |
|
|
gcc_assert (by > 0);
|
| 589 |
|
|
|
| 590 |
|
|
if (x >= 0)
|
| 591 |
|
|
return x / by;
|
| 592 |
|
|
else
|
| 593 |
|
|
return (x + by - 1) / by;
|
| 594 |
|
|
}
|
| 595 |
|
|
|
| 596 |
|
|
/* Given a CACHE_LINE_SIZE and two inductive memory references
|
| 597 |
|
|
with a common STEP greater than CACHE_LINE_SIZE and an address
|
| 598 |
|
|
difference DELTA, compute the probability that they will fall
|
| 599 |
|
|
in different cache lines. DISTINCT_ITERS is the number of
|
| 600 |
|
|
distinct iterations after which the pattern repeats itself.
|
| 601 |
|
|
ALIGN_UNIT is the unit of alignment in bytes. */
|
| 602 |
|
|
|
| 603 |
|
|
static int
|
| 604 |
|
|
compute_miss_rate (unsigned HOST_WIDE_INT cache_line_size,
|
| 605 |
|
|
HOST_WIDE_INT step, HOST_WIDE_INT delta,
|
| 606 |
|
|
unsigned HOST_WIDE_INT distinct_iters,
|
| 607 |
|
|
int align_unit)
|
| 608 |
|
|
{
|
| 609 |
|
|
unsigned align, iter;
|
| 610 |
|
|
int total_positions, miss_positions, miss_rate;
|
| 611 |
|
|
int address1, address2, cache_line1, cache_line2;
|
| 612 |
|
|
|
| 613 |
|
|
total_positions = 0;
|
| 614 |
|
|
miss_positions = 0;
|
| 615 |
|
|
|
| 616 |
|
|
/* Iterate through all possible alignments of the first
|
| 617 |
|
|
memory reference within its cache line. */
|
| 618 |
|
|
for (align = 0; align < cache_line_size; align += align_unit)
|
| 619 |
|
|
|
| 620 |
|
|
/* Iterate through all distinct iterations. */
|
| 621 |
|
|
for (iter = 0; iter < distinct_iters; iter++)
|
| 622 |
|
|
{
|
| 623 |
|
|
address1 = align + step * iter;
|
| 624 |
|
|
address2 = address1 + delta;
|
| 625 |
|
|
cache_line1 = address1 / cache_line_size;
|
| 626 |
|
|
cache_line2 = address2 / cache_line_size;
|
| 627 |
|
|
total_positions += 1;
|
| 628 |
|
|
if (cache_line1 != cache_line2)
|
| 629 |
|
|
miss_positions += 1;
|
| 630 |
|
|
}
|
| 631 |
|
|
miss_rate = 1000 * miss_positions / total_positions;
|
| 632 |
|
|
return miss_rate;
|
| 633 |
|
|
}
|
| 634 |
|
|
|
| 635 |
|
|
/* Prune the prefetch candidate REF using the reuse with BY.
|
| 636 |
|
|
If BY_IS_BEFORE is true, BY is before REF in the loop. */
|
| 637 |
|
|
|
| 638 |
|
|
static void
|
| 639 |
|
|
prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
|
| 640 |
|
|
bool by_is_before)
|
| 641 |
|
|
{
|
| 642 |
|
|
HOST_WIDE_INT step = ref->group->step;
|
| 643 |
|
|
bool backward = step < 0;
|
| 644 |
|
|
HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
|
| 645 |
|
|
HOST_WIDE_INT delta = delta_b - delta_r;
|
| 646 |
|
|
HOST_WIDE_INT hit_from;
|
| 647 |
|
|
unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
|
| 648 |
|
|
int miss_rate;
|
| 649 |
|
|
HOST_WIDE_INT reduced_step;
|
| 650 |
|
|
unsigned HOST_WIDE_INT reduced_prefetch_block;
|
| 651 |
|
|
tree ref_type;
|
| 652 |
|
|
int align_unit;
|
| 653 |
|
|
|
| 654 |
|
|
if (delta == 0)
|
| 655 |
|
|
{
|
| 656 |
|
|
/* If the references has the same address, only prefetch the
|
| 657 |
|
|
former. */
|
| 658 |
|
|
if (by_is_before)
|
| 659 |
|
|
ref->prefetch_before = 0;
|
| 660 |
|
|
|
| 661 |
|
|
return;
|
| 662 |
|
|
}
|
| 663 |
|
|
|
| 664 |
|
|
if (!step)
|
| 665 |
|
|
{
|
| 666 |
|
|
/* If the reference addresses are invariant and fall into the
|
| 667 |
|
|
same cache line, prefetch just the first one. */
|
| 668 |
|
|
if (!by_is_before)
|
| 669 |
|
|
return;
|
| 670 |
|
|
|
| 671 |
|
|
if (ddown (ref->delta, PREFETCH_BLOCK)
|
| 672 |
|
|
!= ddown (by->delta, PREFETCH_BLOCK))
|
| 673 |
|
|
return;
|
| 674 |
|
|
|
| 675 |
|
|
ref->prefetch_before = 0;
|
| 676 |
|
|
return;
|
| 677 |
|
|
}
|
| 678 |
|
|
|
| 679 |
|
|
/* Only prune the reference that is behind in the array. */
|
| 680 |
|
|
if (backward)
|
| 681 |
|
|
{
|
| 682 |
|
|
if (delta > 0)
|
| 683 |
|
|
return;
|
| 684 |
|
|
|
| 685 |
|
|
/* Transform the data so that we may assume that the accesses
|
| 686 |
|
|
are forward. */
|
| 687 |
|
|
delta = - delta;
|
| 688 |
|
|
step = -step;
|
| 689 |
|
|
delta_r = PREFETCH_BLOCK - 1 - delta_r;
|
| 690 |
|
|
delta_b = PREFETCH_BLOCK - 1 - delta_b;
|
| 691 |
|
|
}
|
| 692 |
|
|
else
|
| 693 |
|
|
{
|
| 694 |
|
|
if (delta < 0)
|
| 695 |
|
|
return;
|
| 696 |
|
|
}
|
| 697 |
|
|
|
| 698 |
|
|
/* Check whether the two references are likely to hit the same cache
|
| 699 |
|
|
line, and how distant the iterations in that it occurs are from
|
| 700 |
|
|
each other. */
|
| 701 |
|
|
|
| 702 |
|
|
if (step <= PREFETCH_BLOCK)
|
| 703 |
|
|
{
|
| 704 |
|
|
/* The accesses are sure to meet. Let us check when. */
|
| 705 |
|
|
hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
|
| 706 |
|
|
prefetch_before = (hit_from - delta_r + step - 1) / step;
|
| 707 |
|
|
|
| 708 |
|
|
if (prefetch_before < ref->prefetch_before)
|
| 709 |
|
|
ref->prefetch_before = prefetch_before;
|
| 710 |
|
|
|
| 711 |
|
|
return;
|
| 712 |
|
|
}
|
| 713 |
|
|
|
| 714 |
|
|
/* A more complicated case with step > prefetch_block. First reduce
|
| 715 |
|
|
the ratio between the step and the cache line size to its simplest
|
| 716 |
|
|
terms. The resulting denominator will then represent the number of
|
| 717 |
|
|
distinct iterations after which each address will go back to its
|
| 718 |
|
|
initial location within the cache line. This computation assumes
|
| 719 |
|
|
that PREFETCH_BLOCK is a power of two. */
|
| 720 |
|
|
prefetch_block = PREFETCH_BLOCK;
|
| 721 |
|
|
reduced_prefetch_block = prefetch_block;
|
| 722 |
|
|
reduced_step = step;
|
| 723 |
|
|
while ((reduced_step & 1) == 0
|
| 724 |
|
|
&& reduced_prefetch_block > 1)
|
| 725 |
|
|
{
|
| 726 |
|
|
reduced_step >>= 1;
|
| 727 |
|
|
reduced_prefetch_block >>= 1;
|
| 728 |
|
|
}
|
| 729 |
|
|
|
| 730 |
|
|
prefetch_before = delta / step;
|
| 731 |
|
|
delta %= step;
|
| 732 |
|
|
ref_type = TREE_TYPE (ref->mem);
|
| 733 |
|
|
align_unit = TYPE_ALIGN (ref_type) / 8;
|
| 734 |
|
|
miss_rate = compute_miss_rate(prefetch_block, step, delta,
|
| 735 |
|
|
reduced_prefetch_block, align_unit);
|
| 736 |
|
|
if (miss_rate <= ACCEPTABLE_MISS_RATE)
|
| 737 |
|
|
{
|
| 738 |
|
|
if (prefetch_before < ref->prefetch_before)
|
| 739 |
|
|
ref->prefetch_before = prefetch_before;
|
| 740 |
|
|
|
| 741 |
|
|
return;
|
| 742 |
|
|
}
|
| 743 |
|
|
|
| 744 |
|
|
/* Try also the following iteration. */
|
| 745 |
|
|
prefetch_before++;
|
| 746 |
|
|
delta = step - delta;
|
| 747 |
|
|
miss_rate = compute_miss_rate(prefetch_block, step, delta,
|
| 748 |
|
|
reduced_prefetch_block, align_unit);
|
| 749 |
|
|
if (miss_rate <= ACCEPTABLE_MISS_RATE)
|
| 750 |
|
|
{
|
| 751 |
|
|
if (prefetch_before < ref->prefetch_before)
|
| 752 |
|
|
ref->prefetch_before = prefetch_before;
|
| 753 |
|
|
|
| 754 |
|
|
return;
|
| 755 |
|
|
}
|
| 756 |
|
|
|
| 757 |
|
|
/* The ref probably does not reuse by. */
|
| 758 |
|
|
return;
|
| 759 |
|
|
}
|
| 760 |
|
|
|
| 761 |
|
|
/* Prune the prefetch candidate REF using the reuses with other references
|
| 762 |
|
|
in REFS. */
|
| 763 |
|
|
|
| 764 |
|
|
static void
|
| 765 |
|
|
prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
|
| 766 |
|
|
{
|
| 767 |
|
|
struct mem_ref *prune_by;
|
| 768 |
|
|
bool before = true;
|
| 769 |
|
|
|
| 770 |
|
|
prune_ref_by_self_reuse (ref);
|
| 771 |
|
|
|
| 772 |
|
|
for (prune_by = refs; prune_by; prune_by = prune_by->next)
|
| 773 |
|
|
{
|
| 774 |
|
|
if (prune_by == ref)
|
| 775 |
|
|
{
|
| 776 |
|
|
before = false;
|
| 777 |
|
|
continue;
|
| 778 |
|
|
}
|
| 779 |
|
|
|
| 780 |
|
|
if (!WRITE_CAN_USE_READ_PREFETCH
|
| 781 |
|
|
&& ref->write_p
|
| 782 |
|
|
&& !prune_by->write_p)
|
| 783 |
|
|
continue;
|
| 784 |
|
|
if (!READ_CAN_USE_WRITE_PREFETCH
|
| 785 |
|
|
&& !ref->write_p
|
| 786 |
|
|
&& prune_by->write_p)
|
| 787 |
|
|
continue;
|
| 788 |
|
|
|
| 789 |
|
|
prune_ref_by_group_reuse (ref, prune_by, before);
|
| 790 |
|
|
}
|
| 791 |
|
|
}
|
| 792 |
|
|
|
| 793 |
|
|
/* Prune the prefetch candidates in GROUP using the reuse analysis. */
|
| 794 |
|
|
|
| 795 |
|
|
static void
|
| 796 |
|
|
prune_group_by_reuse (struct mem_ref_group *group)
|
| 797 |
|
|
{
|
| 798 |
|
|
struct mem_ref *ref_pruned;
|
| 799 |
|
|
|
| 800 |
|
|
for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
|
| 801 |
|
|
{
|
| 802 |
|
|
prune_ref_by_reuse (ref_pruned, group->refs);
|
| 803 |
|
|
|
| 804 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 805 |
|
|
{
|
| 806 |
|
|
fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
|
| 807 |
|
|
|
| 808 |
|
|
if (ref_pruned->prefetch_before == PREFETCH_ALL
|
| 809 |
|
|
&& ref_pruned->prefetch_mod == 1)
|
| 810 |
|
|
fprintf (dump_file, " no restrictions");
|
| 811 |
|
|
else if (ref_pruned->prefetch_before == 0)
|
| 812 |
|
|
fprintf (dump_file, " do not prefetch");
|
| 813 |
|
|
else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
|
| 814 |
|
|
fprintf (dump_file, " prefetch once");
|
| 815 |
|
|
else
|
| 816 |
|
|
{
|
| 817 |
|
|
if (ref_pruned->prefetch_before != PREFETCH_ALL)
|
| 818 |
|
|
{
|
| 819 |
|
|
fprintf (dump_file, " prefetch before ");
|
| 820 |
|
|
fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
|
| 821 |
|
|
ref_pruned->prefetch_before);
|
| 822 |
|
|
}
|
| 823 |
|
|
if (ref_pruned->prefetch_mod != 1)
|
| 824 |
|
|
{
|
| 825 |
|
|
fprintf (dump_file, " prefetch mod ");
|
| 826 |
|
|
fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
|
| 827 |
|
|
ref_pruned->prefetch_mod);
|
| 828 |
|
|
}
|
| 829 |
|
|
}
|
| 830 |
|
|
fprintf (dump_file, "\n");
|
| 831 |
|
|
}
|
| 832 |
|
|
}
|
| 833 |
|
|
}
|
| 834 |
|
|
|
| 835 |
|
|
/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
|
| 836 |
|
|
|
| 837 |
|
|
static void
|
| 838 |
|
|
prune_by_reuse (struct mem_ref_group *groups)
|
| 839 |
|
|
{
|
| 840 |
|
|
for (; groups; groups = groups->next)
|
| 841 |
|
|
prune_group_by_reuse (groups);
|
| 842 |
|
|
}
|
| 843 |
|
|
|
| 844 |
|
|
/* Returns true if we should issue prefetch for REF. */
|
| 845 |
|
|
|
| 846 |
|
|
static bool
|
| 847 |
|
|
should_issue_prefetch_p (struct mem_ref *ref)
|
| 848 |
|
|
{
|
| 849 |
|
|
/* For now do not issue prefetches for only first few of the
|
| 850 |
|
|
iterations. */
|
| 851 |
|
|
if (ref->prefetch_before != PREFETCH_ALL)
|
| 852 |
|
|
return false;
|
| 853 |
|
|
|
| 854 |
|
|
/* Do not prefetch nontemporal stores. */
|
| 855 |
|
|
if (ref->storent_p)
|
| 856 |
|
|
return false;
|
| 857 |
|
|
|
| 858 |
|
|
return true;
|
| 859 |
|
|
}
|
| 860 |
|
|
|
| 861 |
|
|
/* Decide which of the prefetch candidates in GROUPS to prefetch.
|
| 862 |
|
|
AHEAD is the number of iterations to prefetch ahead (which corresponds
|
| 863 |
|
|
to the number of simultaneous instances of one prefetch running at a
|
| 864 |
|
|
time). UNROLL_FACTOR is the factor by that the loop is going to be
|
| 865 |
|
|
unrolled. Returns true if there is anything to prefetch. */
|
| 866 |
|
|
|
| 867 |
|
|
static bool
|
| 868 |
|
|
schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
|
| 869 |
|
|
unsigned ahead)
|
| 870 |
|
|
{
|
| 871 |
|
|
unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
|
| 872 |
|
|
unsigned slots_per_prefetch;
|
| 873 |
|
|
struct mem_ref *ref;
|
| 874 |
|
|
bool any = false;
|
| 875 |
|
|
|
| 876 |
|
|
/* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
|
| 877 |
|
|
remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
|
| 878 |
|
|
|
| 879 |
|
|
/* The prefetch will run for AHEAD iterations of the original loop, i.e.,
|
| 880 |
|
|
AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
|
| 881 |
|
|
it will need a prefetch slot. */
|
| 882 |
|
|
slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
|
| 883 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 884 |
|
|
fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
|
| 885 |
|
|
slots_per_prefetch);
|
| 886 |
|
|
|
| 887 |
|
|
/* For now we just take memory references one by one and issue
|
| 888 |
|
|
prefetches for as many as possible. The groups are sorted
|
| 889 |
|
|
starting with the largest step, since the references with
|
| 890 |
|
|
large step are more likely to cause many cache misses. */
|
| 891 |
|
|
|
| 892 |
|
|
for (; groups; groups = groups->next)
|
| 893 |
|
|
for (ref = groups->refs; ref; ref = ref->next)
|
| 894 |
|
|
{
|
| 895 |
|
|
if (!should_issue_prefetch_p (ref))
|
| 896 |
|
|
continue;
|
| 897 |
|
|
|
| 898 |
|
|
/* If we need to prefetch the reference each PREFETCH_MOD iterations,
|
| 899 |
|
|
and we unroll the loop UNROLL_FACTOR times, we need to insert
|
| 900 |
|
|
ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
|
| 901 |
|
|
iteration. */
|
| 902 |
|
|
n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
|
| 903 |
|
|
/ ref->prefetch_mod);
|
| 904 |
|
|
prefetch_slots = n_prefetches * slots_per_prefetch;
|
| 905 |
|
|
|
| 906 |
|
|
/* If more than half of the prefetches would be lost anyway, do not
|
| 907 |
|
|
issue the prefetch. */
|
| 908 |
|
|
if (2 * remaining_prefetch_slots < prefetch_slots)
|
| 909 |
|
|
continue;
|
| 910 |
|
|
|
| 911 |
|
|
ref->issue_prefetch_p = true;
|
| 912 |
|
|
|
| 913 |
|
|
if (remaining_prefetch_slots <= prefetch_slots)
|
| 914 |
|
|
return true;
|
| 915 |
|
|
remaining_prefetch_slots -= prefetch_slots;
|
| 916 |
|
|
any = true;
|
| 917 |
|
|
}
|
| 918 |
|
|
|
| 919 |
|
|
return any;
|
| 920 |
|
|
}
|
| 921 |
|
|
|
| 922 |
|
|
/* Estimate the number of prefetches in the given GROUPS. */
|
| 923 |
|
|
|
| 924 |
|
|
static int
|
| 925 |
|
|
estimate_prefetch_count (struct mem_ref_group *groups)
|
| 926 |
|
|
{
|
| 927 |
|
|
struct mem_ref *ref;
|
| 928 |
|
|
int prefetch_count = 0;
|
| 929 |
|
|
|
| 930 |
|
|
for (; groups; groups = groups->next)
|
| 931 |
|
|
for (ref = groups->refs; ref; ref = ref->next)
|
| 932 |
|
|
if (should_issue_prefetch_p (ref))
|
| 933 |
|
|
prefetch_count++;
|
| 934 |
|
|
|
| 935 |
|
|
return prefetch_count;
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
/* Issue prefetches for the reference REF into loop as decided before.
|
| 939 |
|
|
HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
|
| 940 |
|
|
is the factor by which LOOP was unrolled. */
|
| 941 |
|
|
|
| 942 |
|
|
static void
|
| 943 |
|
|
issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
|
| 944 |
|
|
{
|
| 945 |
|
|
HOST_WIDE_INT delta;
|
| 946 |
|
|
tree addr, addr_base, write_p, local;
|
| 947 |
|
|
gimple prefetch;
|
| 948 |
|
|
gimple_stmt_iterator bsi;
|
| 949 |
|
|
unsigned n_prefetches, ap;
|
| 950 |
|
|
bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
|
| 951 |
|
|
|
| 952 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 953 |
|
|
fprintf (dump_file, "Issued%s prefetch for %p.\n",
|
| 954 |
|
|
nontemporal ? " nontemporal" : "",
|
| 955 |
|
|
(void *) ref);
|
| 956 |
|
|
|
| 957 |
|
|
bsi = gsi_for_stmt (ref->stmt);
|
| 958 |
|
|
|
| 959 |
|
|
n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
|
| 960 |
|
|
/ ref->prefetch_mod);
|
| 961 |
|
|
addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
|
| 962 |
|
|
addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
|
| 963 |
|
|
true, NULL, true, GSI_SAME_STMT);
|
| 964 |
|
|
write_p = ref->write_p ? integer_one_node : integer_zero_node;
|
| 965 |
|
|
local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
|
| 966 |
|
|
|
| 967 |
|
|
for (ap = 0; ap < n_prefetches; ap++)
|
| 968 |
|
|
{
|
| 969 |
|
|
/* Determine the address to prefetch. */
|
| 970 |
|
|
delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
|
| 971 |
|
|
addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
|
| 972 |
|
|
addr_base, size_int (delta));
|
| 973 |
|
|
addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
|
| 974 |
|
|
true, GSI_SAME_STMT);
|
| 975 |
|
|
|
| 976 |
|
|
/* Create the prefetch instruction. */
|
| 977 |
|
|
prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
|
| 978 |
|
|
3, addr, write_p, local);
|
| 979 |
|
|
gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
|
| 980 |
|
|
}
|
| 981 |
|
|
}
|
| 982 |
|
|
|
| 983 |
|
|
/* Issue prefetches for the references in GROUPS into loop as decided before.
|
| 984 |
|
|
HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
|
| 985 |
|
|
factor by that LOOP was unrolled. */
|
| 986 |
|
|
|
| 987 |
|
|
static void
|
| 988 |
|
|
issue_prefetches (struct mem_ref_group *groups,
|
| 989 |
|
|
unsigned unroll_factor, unsigned ahead)
|
| 990 |
|
|
{
|
| 991 |
|
|
struct mem_ref *ref;
|
| 992 |
|
|
|
| 993 |
|
|
for (; groups; groups = groups->next)
|
| 994 |
|
|
for (ref = groups->refs; ref; ref = ref->next)
|
| 995 |
|
|
if (ref->issue_prefetch_p)
|
| 996 |
|
|
issue_prefetch_ref (ref, unroll_factor, ahead);
|
| 997 |
|
|
}
|
| 998 |
|
|
|
| 999 |
|
|
/* Returns true if REF is a memory write for that a nontemporal store insn
|
| 1000 |
|
|
can be used. */
|
| 1001 |
|
|
|
| 1002 |
|
|
static bool
|
| 1003 |
|
|
nontemporal_store_p (struct mem_ref *ref)
|
| 1004 |
|
|
{
|
| 1005 |
|
|
enum machine_mode mode;
|
| 1006 |
|
|
enum insn_code code;
|
| 1007 |
|
|
|
| 1008 |
|
|
/* REF must be a write that is not reused. We require it to be independent
|
| 1009 |
|
|
on all other memory references in the loop, as the nontemporal stores may
|
| 1010 |
|
|
be reordered with respect to other memory references. */
|
| 1011 |
|
|
if (!ref->write_p
|
| 1012 |
|
|
|| !ref->independent_p
|
| 1013 |
|
|
|| ref->reuse_distance < L2_CACHE_SIZE_BYTES)
|
| 1014 |
|
|
return false;
|
| 1015 |
|
|
|
| 1016 |
|
|
/* Check that we have the storent instruction for the mode. */
|
| 1017 |
|
|
mode = TYPE_MODE (TREE_TYPE (ref->mem));
|
| 1018 |
|
|
if (mode == BLKmode)
|
| 1019 |
|
|
return false;
|
| 1020 |
|
|
|
| 1021 |
|
|
code = optab_handler (storent_optab, mode)->insn_code;
|
| 1022 |
|
|
return code != CODE_FOR_nothing;
|
| 1023 |
|
|
}
|
| 1024 |
|
|
|
| 1025 |
|
|
/* If REF is a nontemporal store, we mark the corresponding modify statement
|
| 1026 |
|
|
and return true. Otherwise, we return false. */
|
| 1027 |
|
|
|
| 1028 |
|
|
static bool
|
| 1029 |
|
|
mark_nontemporal_store (struct mem_ref *ref)
|
| 1030 |
|
|
{
|
| 1031 |
|
|
if (!nontemporal_store_p (ref))
|
| 1032 |
|
|
return false;
|
| 1033 |
|
|
|
| 1034 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1035 |
|
|
fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
|
| 1036 |
|
|
(void *) ref);
|
| 1037 |
|
|
|
| 1038 |
|
|
gimple_assign_set_nontemporal_move (ref->stmt, true);
|
| 1039 |
|
|
ref->storent_p = true;
|
| 1040 |
|
|
|
| 1041 |
|
|
return true;
|
| 1042 |
|
|
}
|
| 1043 |
|
|
|
| 1044 |
|
|
/* Issue a memory fence instruction after LOOP. */
|
| 1045 |
|
|
|
| 1046 |
|
|
static void
|
| 1047 |
|
|
emit_mfence_after_loop (struct loop *loop)
|
| 1048 |
|
|
{
|
| 1049 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
| 1050 |
|
|
edge exit;
|
| 1051 |
|
|
gimple call;
|
| 1052 |
|
|
gimple_stmt_iterator bsi;
|
| 1053 |
|
|
unsigned i;
|
| 1054 |
|
|
|
| 1055 |
|
|
for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
|
| 1056 |
|
|
{
|
| 1057 |
|
|
call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
|
| 1058 |
|
|
|
| 1059 |
|
|
if (!single_pred_p (exit->dest)
|
| 1060 |
|
|
/* If possible, we prefer not to insert the fence on other paths
|
| 1061 |
|
|
in cfg. */
|
| 1062 |
|
|
&& !(exit->flags & EDGE_ABNORMAL))
|
| 1063 |
|
|
split_loop_exit_edge (exit);
|
| 1064 |
|
|
bsi = gsi_after_labels (exit->dest);
|
| 1065 |
|
|
|
| 1066 |
|
|
gsi_insert_before (&bsi, call, GSI_NEW_STMT);
|
| 1067 |
|
|
mark_virtual_ops_for_renaming (call);
|
| 1068 |
|
|
}
|
| 1069 |
|
|
|
| 1070 |
|
|
VEC_free (edge, heap, exits);
|
| 1071 |
|
|
update_ssa (TODO_update_ssa_only_virtuals);
|
| 1072 |
|
|
}
|
| 1073 |
|
|
|
| 1074 |
|
|
/* Returns true if we can use storent in loop, false otherwise. */
|
| 1075 |
|
|
|
| 1076 |
|
|
static bool
|
| 1077 |
|
|
may_use_storent_in_loop_p (struct loop *loop)
|
| 1078 |
|
|
{
|
| 1079 |
|
|
bool ret = true;
|
| 1080 |
|
|
|
| 1081 |
|
|
if (loop->inner != NULL)
|
| 1082 |
|
|
return false;
|
| 1083 |
|
|
|
| 1084 |
|
|
/* If we must issue a mfence insn after using storent, check that there
|
| 1085 |
|
|
is a suitable place for it at each of the loop exits. */
|
| 1086 |
|
|
if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
|
| 1087 |
|
|
{
|
| 1088 |
|
|
VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
| 1089 |
|
|
unsigned i;
|
| 1090 |
|
|
edge exit;
|
| 1091 |
|
|
|
| 1092 |
|
|
for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
|
| 1093 |
|
|
if ((exit->flags & EDGE_ABNORMAL)
|
| 1094 |
|
|
&& exit->dest == EXIT_BLOCK_PTR)
|
| 1095 |
|
|
ret = false;
|
| 1096 |
|
|
|
| 1097 |
|
|
VEC_free (edge, heap, exits);
|
| 1098 |
|
|
}
|
| 1099 |
|
|
|
| 1100 |
|
|
return ret;
|
| 1101 |
|
|
}
|
| 1102 |
|
|
|
| 1103 |
|
|
/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
|
| 1104 |
|
|
references in the loop. */
|
| 1105 |
|
|
|
| 1106 |
|
|
static void
|
| 1107 |
|
|
mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
|
| 1108 |
|
|
{
|
| 1109 |
|
|
struct mem_ref *ref;
|
| 1110 |
|
|
bool any = false;
|
| 1111 |
|
|
|
| 1112 |
|
|
if (!may_use_storent_in_loop_p (loop))
|
| 1113 |
|
|
return;
|
| 1114 |
|
|
|
| 1115 |
|
|
for (; groups; groups = groups->next)
|
| 1116 |
|
|
for (ref = groups->refs; ref; ref = ref->next)
|
| 1117 |
|
|
any |= mark_nontemporal_store (ref);
|
| 1118 |
|
|
|
| 1119 |
|
|
if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
|
| 1120 |
|
|
emit_mfence_after_loop (loop);
|
| 1121 |
|
|
}
|
| 1122 |
|
|
|
| 1123 |
|
|
/* Determines whether we can profitably unroll LOOP FACTOR times, and if
|
| 1124 |
|
|
this is the case, fill in DESC by the description of number of
|
| 1125 |
|
|
iterations. */
|
| 1126 |
|
|
|
| 1127 |
|
|
static bool
|
| 1128 |
|
|
should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
|
| 1129 |
|
|
unsigned factor)
|
| 1130 |
|
|
{
|
| 1131 |
|
|
if (!can_unroll_loop_p (loop, factor, desc))
|
| 1132 |
|
|
return false;
|
| 1133 |
|
|
|
| 1134 |
|
|
/* We only consider loops without control flow for unrolling. This is not
|
| 1135 |
|
|
a hard restriction -- tree_unroll_loop works with arbitrary loops
|
| 1136 |
|
|
as well; but the unrolling/prefetching is usually more profitable for
|
| 1137 |
|
|
loops consisting of a single basic block, and we want to limit the
|
| 1138 |
|
|
code growth. */
|
| 1139 |
|
|
if (loop->num_nodes > 2)
|
| 1140 |
|
|
return false;
|
| 1141 |
|
|
|
| 1142 |
|
|
return true;
|
| 1143 |
|
|
}
|
| 1144 |
|
|
|
| 1145 |
|
|
/* Determine the coefficient by that unroll LOOP, from the information
|
| 1146 |
|
|
contained in the list of memory references REFS. Description of
|
| 1147 |
|
|
umber of iterations of LOOP is stored to DESC. NINSNS is the number of
|
| 1148 |
|
|
insns of the LOOP. EST_NITER is the estimated number of iterations of
|
| 1149 |
|
|
the loop, or -1 if no estimate is available. */
|
| 1150 |
|
|
|
| 1151 |
|
|
static unsigned
|
| 1152 |
|
|
determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
|
| 1153 |
|
|
unsigned ninsns, struct tree_niter_desc *desc,
|
| 1154 |
|
|
HOST_WIDE_INT est_niter)
|
| 1155 |
|
|
{
|
| 1156 |
|
|
unsigned upper_bound;
|
| 1157 |
|
|
unsigned nfactor, factor, mod_constraint;
|
| 1158 |
|
|
struct mem_ref_group *agp;
|
| 1159 |
|
|
struct mem_ref *ref;
|
| 1160 |
|
|
|
| 1161 |
|
|
/* First check whether the loop is not too large to unroll. We ignore
|
| 1162 |
|
|
PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
|
| 1163 |
|
|
from unrolling them enough to make exactly one cache line covered by each
|
| 1164 |
|
|
iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
|
| 1165 |
|
|
us from unrolling the loops too many times in cases where we only expect
|
| 1166 |
|
|
gains from better scheduling and decreasing loop overhead, which is not
|
| 1167 |
|
|
the case here. */
|
| 1168 |
|
|
upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
|
| 1169 |
|
|
|
| 1170 |
|
|
/* If we unrolled the loop more times than it iterates, the unrolled version
|
| 1171 |
|
|
of the loop would be never entered. */
|
| 1172 |
|
|
if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
|
| 1173 |
|
|
upper_bound = est_niter;
|
| 1174 |
|
|
|
| 1175 |
|
|
if (upper_bound <= 1)
|
| 1176 |
|
|
return 1;
|
| 1177 |
|
|
|
| 1178 |
|
|
/* Choose the factor so that we may prefetch each cache just once,
|
| 1179 |
|
|
but bound the unrolling by UPPER_BOUND. */
|
| 1180 |
|
|
factor = 1;
|
| 1181 |
|
|
for (agp = refs; agp; agp = agp->next)
|
| 1182 |
|
|
for (ref = agp->refs; ref; ref = ref->next)
|
| 1183 |
|
|
if (should_issue_prefetch_p (ref))
|
| 1184 |
|
|
{
|
| 1185 |
|
|
mod_constraint = ref->prefetch_mod;
|
| 1186 |
|
|
nfactor = least_common_multiple (mod_constraint, factor);
|
| 1187 |
|
|
if (nfactor <= upper_bound)
|
| 1188 |
|
|
factor = nfactor;
|
| 1189 |
|
|
}
|
| 1190 |
|
|
|
| 1191 |
|
|
if (!should_unroll_loop_p (loop, desc, factor))
|
| 1192 |
|
|
return 1;
|
| 1193 |
|
|
|
| 1194 |
|
|
return factor;
|
| 1195 |
|
|
}
|
| 1196 |
|
|
|
| 1197 |
|
|
/* Returns the total volume of the memory references REFS, taking into account
|
| 1198 |
|
|
reuses in the innermost loop and cache line size. TODO -- we should also
|
| 1199 |
|
|
take into account reuses across the iterations of the loops in the loop
|
| 1200 |
|
|
nest. */
|
| 1201 |
|
|
|
| 1202 |
|
|
static unsigned
|
| 1203 |
|
|
volume_of_references (struct mem_ref_group *refs)
|
| 1204 |
|
|
{
|
| 1205 |
|
|
unsigned volume = 0;
|
| 1206 |
|
|
struct mem_ref_group *gr;
|
| 1207 |
|
|
struct mem_ref *ref;
|
| 1208 |
|
|
|
| 1209 |
|
|
for (gr = refs; gr; gr = gr->next)
|
| 1210 |
|
|
for (ref = gr->refs; ref; ref = ref->next)
|
| 1211 |
|
|
{
|
| 1212 |
|
|
/* Almost always reuses another value? */
|
| 1213 |
|
|
if (ref->prefetch_before != PREFETCH_ALL)
|
| 1214 |
|
|
continue;
|
| 1215 |
|
|
|
| 1216 |
|
|
/* If several iterations access the same cache line, use the size of
|
| 1217 |
|
|
the line divided by this number. Otherwise, a cache line is
|
| 1218 |
|
|
accessed in each iteration. TODO -- in the latter case, we should
|
| 1219 |
|
|
take the size of the reference into account, rounding it up on cache
|
| 1220 |
|
|
line size multiple. */
|
| 1221 |
|
|
volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
|
| 1222 |
|
|
}
|
| 1223 |
|
|
return volume;
|
| 1224 |
|
|
}
|
| 1225 |
|
|
|
| 1226 |
|
|
/* Returns the volume of memory references accessed across VEC iterations of
|
| 1227 |
|
|
loops, whose sizes are described in the LOOP_SIZES array. N is the number
|
| 1228 |
|
|
of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
|
| 1229 |
|
|
|
| 1230 |
|
|
static unsigned
|
| 1231 |
|
|
volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
|
| 1232 |
|
|
{
|
| 1233 |
|
|
unsigned i;
|
| 1234 |
|
|
|
| 1235 |
|
|
for (i = 0; i < n; i++)
|
| 1236 |
|
|
if (vec[i] != 0)
|
| 1237 |
|
|
break;
|
| 1238 |
|
|
|
| 1239 |
|
|
if (i == n)
|
| 1240 |
|
|
return 0;
|
| 1241 |
|
|
|
| 1242 |
|
|
gcc_assert (vec[i] > 0);
|
| 1243 |
|
|
|
| 1244 |
|
|
/* We ignore the parts of the distance vector in subloops, since usually
|
| 1245 |
|
|
the numbers of iterations are much smaller. */
|
| 1246 |
|
|
return loop_sizes[i] * vec[i];
|
| 1247 |
|
|
}
|
| 1248 |
|
|
|
| 1249 |
|
|
/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
|
| 1250 |
|
|
at the position corresponding to the loop of the step. N is the depth
|
| 1251 |
|
|
of the considered loop nest, and, LOOP is its innermost loop. */
|
| 1252 |
|
|
|
| 1253 |
|
|
static void
|
| 1254 |
|
|
add_subscript_strides (tree access_fn, unsigned stride,
|
| 1255 |
|
|
HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
|
| 1256 |
|
|
{
|
| 1257 |
|
|
struct loop *aloop;
|
| 1258 |
|
|
tree step;
|
| 1259 |
|
|
HOST_WIDE_INT astep;
|
| 1260 |
|
|
unsigned min_depth = loop_depth (loop) - n;
|
| 1261 |
|
|
|
| 1262 |
|
|
while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
|
| 1263 |
|
|
{
|
| 1264 |
|
|
aloop = get_chrec_loop (access_fn);
|
| 1265 |
|
|
step = CHREC_RIGHT (access_fn);
|
| 1266 |
|
|
access_fn = CHREC_LEFT (access_fn);
|
| 1267 |
|
|
|
| 1268 |
|
|
if ((unsigned) loop_depth (aloop) <= min_depth)
|
| 1269 |
|
|
continue;
|
| 1270 |
|
|
|
| 1271 |
|
|
if (host_integerp (step, 0))
|
| 1272 |
|
|
astep = tree_low_cst (step, 0);
|
| 1273 |
|
|
else
|
| 1274 |
|
|
astep = L1_CACHE_LINE_SIZE;
|
| 1275 |
|
|
|
| 1276 |
|
|
strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
|
| 1277 |
|
|
|
| 1278 |
|
|
}
|
| 1279 |
|
|
}
|
| 1280 |
|
|
|
| 1281 |
|
|
/* Returns the volume of memory references accessed between two consecutive
|
| 1282 |
|
|
self-reuses of the reference DR. We consider the subscripts of DR in N
|
| 1283 |
|
|
loops, and LOOP_SIZES contains the volumes of accesses in each of the
|
| 1284 |
|
|
loops. LOOP is the innermost loop of the current loop nest. */
|
| 1285 |
|
|
|
| 1286 |
|
|
static unsigned
|
| 1287 |
|
|
self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
|
| 1288 |
|
|
struct loop *loop)
|
| 1289 |
|
|
{
|
| 1290 |
|
|
tree stride, access_fn;
|
| 1291 |
|
|
HOST_WIDE_INT *strides, astride;
|
| 1292 |
|
|
VEC (tree, heap) *access_fns;
|
| 1293 |
|
|
tree ref = DR_REF (dr);
|
| 1294 |
|
|
unsigned i, ret = ~0u;
|
| 1295 |
|
|
|
| 1296 |
|
|
/* In the following example:
|
| 1297 |
|
|
|
| 1298 |
|
|
for (i = 0; i < N; i++)
|
| 1299 |
|
|
for (j = 0; j < N; j++)
|
| 1300 |
|
|
use (a[j][i]);
|
| 1301 |
|
|
the same cache line is accessed each N steps (except if the change from
|
| 1302 |
|
|
i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
|
| 1303 |
|
|
we cannot rely purely on the results of the data dependence analysis.
|
| 1304 |
|
|
|
| 1305 |
|
|
Instead, we compute the stride of the reference in each loop, and consider
|
| 1306 |
|
|
the innermost loop in that the stride is less than cache size. */
|
| 1307 |
|
|
|
| 1308 |
|
|
strides = XCNEWVEC (HOST_WIDE_INT, n);
|
| 1309 |
|
|
access_fns = DR_ACCESS_FNS (dr);
|
| 1310 |
|
|
|
| 1311 |
|
|
for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
|
| 1312 |
|
|
{
|
| 1313 |
|
|
/* Keep track of the reference corresponding to the subscript, so that we
|
| 1314 |
|
|
know its stride. */
|
| 1315 |
|
|
while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
|
| 1316 |
|
|
ref = TREE_OPERAND (ref, 0);
|
| 1317 |
|
|
|
| 1318 |
|
|
if (TREE_CODE (ref) == ARRAY_REF)
|
| 1319 |
|
|
{
|
| 1320 |
|
|
stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
|
| 1321 |
|
|
if (host_integerp (stride, 1))
|
| 1322 |
|
|
astride = tree_low_cst (stride, 1);
|
| 1323 |
|
|
else
|
| 1324 |
|
|
astride = L1_CACHE_LINE_SIZE;
|
| 1325 |
|
|
|
| 1326 |
|
|
ref = TREE_OPERAND (ref, 0);
|
| 1327 |
|
|
}
|
| 1328 |
|
|
else
|
| 1329 |
|
|
astride = 1;
|
| 1330 |
|
|
|
| 1331 |
|
|
add_subscript_strides (access_fn, astride, strides, n, loop);
|
| 1332 |
|
|
}
|
| 1333 |
|
|
|
| 1334 |
|
|
for (i = n; i-- > 0; )
|
| 1335 |
|
|
{
|
| 1336 |
|
|
unsigned HOST_WIDE_INT s;
|
| 1337 |
|
|
|
| 1338 |
|
|
s = strides[i] < 0 ? -strides[i] : strides[i];
|
| 1339 |
|
|
|
| 1340 |
|
|
if (s < (unsigned) L1_CACHE_LINE_SIZE
|
| 1341 |
|
|
&& (loop_sizes[i]
|
| 1342 |
|
|
> (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
|
| 1343 |
|
|
{
|
| 1344 |
|
|
ret = loop_sizes[i];
|
| 1345 |
|
|
break;
|
| 1346 |
|
|
}
|
| 1347 |
|
|
}
|
| 1348 |
|
|
|
| 1349 |
|
|
free (strides);
|
| 1350 |
|
|
return ret;
|
| 1351 |
|
|
}
|
| 1352 |
|
|
|
| 1353 |
|
|
/* Determines the distance till the first reuse of each reference in REFS
|
| 1354 |
|
|
in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
|
| 1355 |
|
|
memory references in the loop. */
|
| 1356 |
|
|
|
| 1357 |
|
|
static void
|
| 1358 |
|
|
determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
|
| 1359 |
|
|
bool no_other_refs)
|
| 1360 |
|
|
{
|
| 1361 |
|
|
struct loop *nest, *aloop;
|
| 1362 |
|
|
VEC (data_reference_p, heap) *datarefs = NULL;
|
| 1363 |
|
|
VEC (ddr_p, heap) *dependences = NULL;
|
| 1364 |
|
|
struct mem_ref_group *gr;
|
| 1365 |
|
|
struct mem_ref *ref, *refb;
|
| 1366 |
|
|
VEC (loop_p, heap) *vloops = NULL;
|
| 1367 |
|
|
unsigned *loop_data_size;
|
| 1368 |
|
|
unsigned i, j, n;
|
| 1369 |
|
|
unsigned volume, dist, adist;
|
| 1370 |
|
|
HOST_WIDE_INT vol;
|
| 1371 |
|
|
data_reference_p dr;
|
| 1372 |
|
|
ddr_p dep;
|
| 1373 |
|
|
|
| 1374 |
|
|
if (loop->inner)
|
| 1375 |
|
|
return;
|
| 1376 |
|
|
|
| 1377 |
|
|
/* Find the outermost loop of the loop nest of loop (we require that
|
| 1378 |
|
|
there are no sibling loops inside the nest). */
|
| 1379 |
|
|
nest = loop;
|
| 1380 |
|
|
while (1)
|
| 1381 |
|
|
{
|
| 1382 |
|
|
aloop = loop_outer (nest);
|
| 1383 |
|
|
|
| 1384 |
|
|
if (aloop == current_loops->tree_root
|
| 1385 |
|
|
|| aloop->inner->next)
|
| 1386 |
|
|
break;
|
| 1387 |
|
|
|
| 1388 |
|
|
nest = aloop;
|
| 1389 |
|
|
}
|
| 1390 |
|
|
|
| 1391 |
|
|
/* For each loop, determine the amount of data accessed in each iteration.
|
| 1392 |
|
|
We use this to estimate whether the reference is evicted from the
|
| 1393 |
|
|
cache before its reuse. */
|
| 1394 |
|
|
find_loop_nest (nest, &vloops);
|
| 1395 |
|
|
n = VEC_length (loop_p, vloops);
|
| 1396 |
|
|
loop_data_size = XNEWVEC (unsigned, n);
|
| 1397 |
|
|
volume = volume_of_references (refs);
|
| 1398 |
|
|
i = n;
|
| 1399 |
|
|
while (i-- != 0)
|
| 1400 |
|
|
{
|
| 1401 |
|
|
loop_data_size[i] = volume;
|
| 1402 |
|
|
/* Bound the volume by the L2 cache size, since above this bound,
|
| 1403 |
|
|
all dependence distances are equivalent. */
|
| 1404 |
|
|
if (volume > L2_CACHE_SIZE_BYTES)
|
| 1405 |
|
|
continue;
|
| 1406 |
|
|
|
| 1407 |
|
|
aloop = VEC_index (loop_p, vloops, i);
|
| 1408 |
|
|
vol = estimated_loop_iterations_int (aloop, false);
|
| 1409 |
|
|
if (vol < 0)
|
| 1410 |
|
|
vol = expected_loop_iterations (aloop);
|
| 1411 |
|
|
volume *= vol;
|
| 1412 |
|
|
}
|
| 1413 |
|
|
|
| 1414 |
|
|
/* Prepare the references in the form suitable for data dependence
|
| 1415 |
|
|
analysis. We ignore unanalyzable data references (the results
|
| 1416 |
|
|
are used just as a heuristics to estimate temporality of the
|
| 1417 |
|
|
references, hence we do not need to worry about correctness). */
|
| 1418 |
|
|
for (gr = refs; gr; gr = gr->next)
|
| 1419 |
|
|
for (ref = gr->refs; ref; ref = ref->next)
|
| 1420 |
|
|
{
|
| 1421 |
|
|
dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
|
| 1422 |
|
|
|
| 1423 |
|
|
if (dr)
|
| 1424 |
|
|
{
|
| 1425 |
|
|
ref->reuse_distance = volume;
|
| 1426 |
|
|
dr->aux = ref;
|
| 1427 |
|
|
VEC_safe_push (data_reference_p, heap, datarefs, dr);
|
| 1428 |
|
|
}
|
| 1429 |
|
|
else
|
| 1430 |
|
|
no_other_refs = false;
|
| 1431 |
|
|
}
|
| 1432 |
|
|
|
| 1433 |
|
|
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
|
| 1434 |
|
|
{
|
| 1435 |
|
|
dist = self_reuse_distance (dr, loop_data_size, n, loop);
|
| 1436 |
|
|
ref = (struct mem_ref *) dr->aux;
|
| 1437 |
|
|
if (ref->reuse_distance > dist)
|
| 1438 |
|
|
ref->reuse_distance = dist;
|
| 1439 |
|
|
|
| 1440 |
|
|
if (no_other_refs)
|
| 1441 |
|
|
ref->independent_p = true;
|
| 1442 |
|
|
}
|
| 1443 |
|
|
|
| 1444 |
|
|
compute_all_dependences (datarefs, &dependences, vloops, true);
|
| 1445 |
|
|
|
| 1446 |
|
|
for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
|
| 1447 |
|
|
{
|
| 1448 |
|
|
if (DDR_ARE_DEPENDENT (dep) == chrec_known)
|
| 1449 |
|
|
continue;
|
| 1450 |
|
|
|
| 1451 |
|
|
ref = (struct mem_ref *) DDR_A (dep)->aux;
|
| 1452 |
|
|
refb = (struct mem_ref *) DDR_B (dep)->aux;
|
| 1453 |
|
|
|
| 1454 |
|
|
if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
|
| 1455 |
|
|
|| DDR_NUM_DIST_VECTS (dep) == 0)
|
| 1456 |
|
|
{
|
| 1457 |
|
|
/* If the dependence cannot be analyzed, assume that there might be
|
| 1458 |
|
|
a reuse. */
|
| 1459 |
|
|
dist = 0;
|
| 1460 |
|
|
|
| 1461 |
|
|
ref->independent_p = false;
|
| 1462 |
|
|
refb->independent_p = false;
|
| 1463 |
|
|
}
|
| 1464 |
|
|
else
|
| 1465 |
|
|
{
|
| 1466 |
|
|
/* The distance vectors are normalized to be always lexicographically
|
| 1467 |
|
|
positive, hence we cannot tell just from them whether DDR_A comes
|
| 1468 |
|
|
before DDR_B or vice versa. However, it is not important,
|
| 1469 |
|
|
anyway -- if DDR_A is close to DDR_B, then it is either reused in
|
| 1470 |
|
|
DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
|
| 1471 |
|
|
in cache (and marking it as nontemporal would not affect
|
| 1472 |
|
|
anything). */
|
| 1473 |
|
|
|
| 1474 |
|
|
dist = volume;
|
| 1475 |
|
|
for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
|
| 1476 |
|
|
{
|
| 1477 |
|
|
adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
|
| 1478 |
|
|
loop_data_size, n);
|
| 1479 |
|
|
|
| 1480 |
|
|
/* If this is a dependence in the innermost loop (i.e., the
|
| 1481 |
|
|
distances in all superloops are zero) and it is not
|
| 1482 |
|
|
the trivial self-dependence with distance zero, record that
|
| 1483 |
|
|
the references are not completely independent. */
|
| 1484 |
|
|
if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
|
| 1485 |
|
|
&& (ref != refb
|
| 1486 |
|
|
|| DDR_DIST_VECT (dep, j)[n-1] != 0))
|
| 1487 |
|
|
{
|
| 1488 |
|
|
ref->independent_p = false;
|
| 1489 |
|
|
refb->independent_p = false;
|
| 1490 |
|
|
}
|
| 1491 |
|
|
|
| 1492 |
|
|
/* Ignore accesses closer than
|
| 1493 |
|
|
L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
|
| 1494 |
|
|
so that we use nontemporal prefetches e.g. if single memory
|
| 1495 |
|
|
location is accessed several times in a single iteration of
|
| 1496 |
|
|
the loop. */
|
| 1497 |
|
|
if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
|
| 1498 |
|
|
continue;
|
| 1499 |
|
|
|
| 1500 |
|
|
if (adist < dist)
|
| 1501 |
|
|
dist = adist;
|
| 1502 |
|
|
}
|
| 1503 |
|
|
}
|
| 1504 |
|
|
|
| 1505 |
|
|
if (ref->reuse_distance > dist)
|
| 1506 |
|
|
ref->reuse_distance = dist;
|
| 1507 |
|
|
if (refb->reuse_distance > dist)
|
| 1508 |
|
|
refb->reuse_distance = dist;
|
| 1509 |
|
|
}
|
| 1510 |
|
|
|
| 1511 |
|
|
free_dependence_relations (dependences);
|
| 1512 |
|
|
free_data_refs (datarefs);
|
| 1513 |
|
|
free (loop_data_size);
|
| 1514 |
|
|
|
| 1515 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1516 |
|
|
{
|
| 1517 |
|
|
fprintf (dump_file, "Reuse distances:\n");
|
| 1518 |
|
|
for (gr = refs; gr; gr = gr->next)
|
| 1519 |
|
|
for (ref = gr->refs; ref; ref = ref->next)
|
| 1520 |
|
|
fprintf (dump_file, " ref %p distance %u\n",
|
| 1521 |
|
|
(void *) ref, ref->reuse_distance);
|
| 1522 |
|
|
}
|
| 1523 |
|
|
}
|
| 1524 |
|
|
|
| 1525 |
|
|
/* Do a cost-benefit analysis to determine if prefetching is profitable
|
| 1526 |
|
|
for the current loop given the following parameters:
|
| 1527 |
|
|
AHEAD: the iteration ahead distance,
|
| 1528 |
|
|
EST_NITER: the estimated trip count,
|
| 1529 |
|
|
NINSNS: estimated number of instructions in the loop,
|
| 1530 |
|
|
PREFETCH_COUNT: an estimate of the number of prefetches
|
| 1531 |
|
|
MEM_REF_COUNT: total number of memory references in the loop. */
|
| 1532 |
|
|
|
| 1533 |
|
|
static bool
|
| 1534 |
|
|
is_loop_prefetching_profitable (unsigned ahead, HOST_WIDE_INT est_niter,
|
| 1535 |
|
|
unsigned ninsns, unsigned prefetch_count,
|
| 1536 |
|
|
unsigned mem_ref_count)
|
| 1537 |
|
|
{
|
| 1538 |
|
|
int insn_to_mem_ratio, insn_to_prefetch_ratio;
|
| 1539 |
|
|
|
| 1540 |
|
|
if (mem_ref_count == 0)
|
| 1541 |
|
|
return false;
|
| 1542 |
|
|
|
| 1543 |
|
|
/* Prefetching improves performance by overlapping cache missing
|
| 1544 |
|
|
memory accesses with CPU operations. If the loop does not have
|
| 1545 |
|
|
enough CPU operations to overlap with memory operations, prefetching
|
| 1546 |
|
|
won't give a significant benefit. One approximate way of checking
|
| 1547 |
|
|
this is to require the ratio of instructions to memory references to
|
| 1548 |
|
|
be above a certain limit. This approximation works well in practice.
|
| 1549 |
|
|
TODO: Implement a more precise computation by estimating the time
|
| 1550 |
|
|
for each CPU or memory op in the loop. Time estimates for memory ops
|
| 1551 |
|
|
should account for cache misses. */
|
| 1552 |
|
|
insn_to_mem_ratio = ninsns / mem_ref_count;
|
| 1553 |
|
|
|
| 1554 |
|
|
if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
|
| 1555 |
|
|
return false;
|
| 1556 |
|
|
|
| 1557 |
|
|
/* Profitability of prefetching is highly dependent on the trip count.
|
| 1558 |
|
|
For a given AHEAD distance, the first AHEAD iterations do not benefit
|
| 1559 |
|
|
from prefetching, and the last AHEAD iterations execute useless
|
| 1560 |
|
|
prefetches. So, if the trip count is not large enough relative to AHEAD,
|
| 1561 |
|
|
prefetching may cause serious performance degradation. To avoid this
|
| 1562 |
|
|
problem when the trip count is not known at compile time, we
|
| 1563 |
|
|
conservatively skip loops with high prefetching costs. For now, only
|
| 1564 |
|
|
the I-cache cost is considered. The relative I-cache cost is estimated
|
| 1565 |
|
|
by taking the ratio between the number of prefetches and the total
|
| 1566 |
|
|
number of instructions. Since we are using integer arithmetic, we
|
| 1567 |
|
|
compute the reciprocal of this ratio.
|
| 1568 |
|
|
TODO: Account for loop unrolling, which may reduce the costs of
|
| 1569 |
|
|
shorter stride prefetches. Note that not accounting for loop
|
| 1570 |
|
|
unrolling over-estimates the cost and hence gives more conservative
|
| 1571 |
|
|
results. */
|
| 1572 |
|
|
if (est_niter < 0)
|
| 1573 |
|
|
{
|
| 1574 |
|
|
insn_to_prefetch_ratio = ninsns / prefetch_count;
|
| 1575 |
|
|
return insn_to_prefetch_ratio >= MIN_INSN_TO_PREFETCH_RATIO;
|
| 1576 |
|
|
}
|
| 1577 |
|
|
|
| 1578 |
|
|
if (est_niter <= (HOST_WIDE_INT) ahead)
|
| 1579 |
|
|
{
|
| 1580 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1581 |
|
|
fprintf (dump_file,
|
| 1582 |
|
|
"Not prefetching -- loop estimated to roll only %d times\n",
|
| 1583 |
|
|
(int) est_niter);
|
| 1584 |
|
|
return false;
|
| 1585 |
|
|
}
|
| 1586 |
|
|
return true;
|
| 1587 |
|
|
}
|
| 1588 |
|
|
|
| 1589 |
|
|
|
| 1590 |
|
|
/* Issue prefetch instructions for array references in LOOP. Returns
|
| 1591 |
|
|
true if the LOOP was unrolled. */
|
| 1592 |
|
|
|
| 1593 |
|
|
static bool
|
| 1594 |
|
|
loop_prefetch_arrays (struct loop *loop)
|
| 1595 |
|
|
{
|
| 1596 |
|
|
struct mem_ref_group *refs;
|
| 1597 |
|
|
unsigned ahead, ninsns, time, unroll_factor;
|
| 1598 |
|
|
HOST_WIDE_INT est_niter;
|
| 1599 |
|
|
struct tree_niter_desc desc;
|
| 1600 |
|
|
bool unrolled = false, no_other_refs;
|
| 1601 |
|
|
unsigned prefetch_count;
|
| 1602 |
|
|
unsigned mem_ref_count;
|
| 1603 |
|
|
|
| 1604 |
|
|
if (optimize_loop_nest_for_size_p (loop))
|
| 1605 |
|
|
{
|
| 1606 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1607 |
|
|
fprintf (dump_file, " ignored (cold area)\n");
|
| 1608 |
|
|
return false;
|
| 1609 |
|
|
}
|
| 1610 |
|
|
|
| 1611 |
|
|
/* Step 1: gather the memory references. */
|
| 1612 |
|
|
refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
|
| 1613 |
|
|
|
| 1614 |
|
|
/* Step 2: estimate the reuse effects. */
|
| 1615 |
|
|
prune_by_reuse (refs);
|
| 1616 |
|
|
|
| 1617 |
|
|
prefetch_count = estimate_prefetch_count (refs);
|
| 1618 |
|
|
if (prefetch_count == 0)
|
| 1619 |
|
|
goto fail;
|
| 1620 |
|
|
|
| 1621 |
|
|
determine_loop_nest_reuse (loop, refs, no_other_refs);
|
| 1622 |
|
|
|
| 1623 |
|
|
/* Step 3: determine the ahead and unroll factor. */
|
| 1624 |
|
|
|
| 1625 |
|
|
/* FIXME: the time should be weighted by the probabilities of the blocks in
|
| 1626 |
|
|
the loop body. */
|
| 1627 |
|
|
time = tree_num_loop_insns (loop, &eni_time_weights);
|
| 1628 |
|
|
ahead = (PREFETCH_LATENCY + time - 1) / time;
|
| 1629 |
|
|
est_niter = estimated_loop_iterations_int (loop, false);
|
| 1630 |
|
|
|
| 1631 |
|
|
ninsns = tree_num_loop_insns (loop, &eni_size_weights);
|
| 1632 |
|
|
unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
|
| 1633 |
|
|
est_niter);
|
| 1634 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1635 |
|
|
fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
|
| 1636 |
|
|
HOST_WIDE_INT_PRINT_DEC "\n"
|
| 1637 |
|
|
"insn count %d, mem ref count %d, prefetch count %d\n",
|
| 1638 |
|
|
ahead, unroll_factor, est_niter,
|
| 1639 |
|
|
ninsns, mem_ref_count, prefetch_count);
|
| 1640 |
|
|
|
| 1641 |
|
|
if (!is_loop_prefetching_profitable (ahead, est_niter, ninsns,
|
| 1642 |
|
|
prefetch_count, mem_ref_count))
|
| 1643 |
|
|
goto fail;
|
| 1644 |
|
|
|
| 1645 |
|
|
mark_nontemporal_stores (loop, refs);
|
| 1646 |
|
|
|
| 1647 |
|
|
/* Step 4: what to prefetch? */
|
| 1648 |
|
|
if (!schedule_prefetches (refs, unroll_factor, ahead))
|
| 1649 |
|
|
goto fail;
|
| 1650 |
|
|
|
| 1651 |
|
|
/* Step 5: unroll the loop. TODO -- peeling of first and last few
|
| 1652 |
|
|
iterations so that we do not issue superfluous prefetches. */
|
| 1653 |
|
|
if (unroll_factor != 1)
|
| 1654 |
|
|
{
|
| 1655 |
|
|
tree_unroll_loop (loop, unroll_factor,
|
| 1656 |
|
|
single_dom_exit (loop), &desc);
|
| 1657 |
|
|
unrolled = true;
|
| 1658 |
|
|
}
|
| 1659 |
|
|
|
| 1660 |
|
|
/* Step 6: issue the prefetches. */
|
| 1661 |
|
|
issue_prefetches (refs, unroll_factor, ahead);
|
| 1662 |
|
|
|
| 1663 |
|
|
fail:
|
| 1664 |
|
|
release_mem_refs (refs);
|
| 1665 |
|
|
return unrolled;
|
| 1666 |
|
|
}
|
| 1667 |
|
|
|
| 1668 |
|
|
/* Issue prefetch instructions for array references in loops. */
|
| 1669 |
|
|
|
| 1670 |
|
|
unsigned int
|
| 1671 |
|
|
tree_ssa_prefetch_arrays (void)
|
| 1672 |
|
|
{
|
| 1673 |
|
|
loop_iterator li;
|
| 1674 |
|
|
struct loop *loop;
|
| 1675 |
|
|
bool unrolled = false;
|
| 1676 |
|
|
int todo_flags = 0;
|
| 1677 |
|
|
|
| 1678 |
|
|
if (!HAVE_prefetch
|
| 1679 |
|
|
/* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
|
| 1680 |
|
|
-mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
|
| 1681 |
|
|
of processor costs and i486 does not have prefetch, but
|
| 1682 |
|
|
-march=pentium4 causes HAVE_prefetch to be true. Ugh. */
|
| 1683 |
|
|
|| PREFETCH_BLOCK == 0)
|
| 1684 |
|
|
return 0;
|
| 1685 |
|
|
|
| 1686 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1687 |
|
|
{
|
| 1688 |
|
|
fprintf (dump_file, "Prefetching parameters:\n");
|
| 1689 |
|
|
fprintf (dump_file, " simultaneous prefetches: %d\n",
|
| 1690 |
|
|
SIMULTANEOUS_PREFETCHES);
|
| 1691 |
|
|
fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
|
| 1692 |
|
|
fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
|
| 1693 |
|
|
fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
|
| 1694 |
|
|
L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
|
| 1695 |
|
|
fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
|
| 1696 |
|
|
fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
|
| 1697 |
|
|
fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
|
| 1698 |
|
|
MIN_INSN_TO_PREFETCH_RATIO);
|
| 1699 |
|
|
fprintf (dump_file, " min insn-to-mem ratio: %d \n",
|
| 1700 |
|
|
PREFETCH_MIN_INSN_TO_MEM_RATIO);
|
| 1701 |
|
|
fprintf (dump_file, "\n");
|
| 1702 |
|
|
}
|
| 1703 |
|
|
|
| 1704 |
|
|
initialize_original_copy_tables ();
|
| 1705 |
|
|
|
| 1706 |
|
|
if (!built_in_decls[BUILT_IN_PREFETCH])
|
| 1707 |
|
|
{
|
| 1708 |
|
|
tree type = build_function_type (void_type_node,
|
| 1709 |
|
|
tree_cons (NULL_TREE,
|
| 1710 |
|
|
const_ptr_type_node,
|
| 1711 |
|
|
NULL_TREE));
|
| 1712 |
|
|
tree decl = add_builtin_function ("__builtin_prefetch", type,
|
| 1713 |
|
|
BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
|
| 1714 |
|
|
NULL, NULL_TREE);
|
| 1715 |
|
|
DECL_IS_NOVOPS (decl) = true;
|
| 1716 |
|
|
built_in_decls[BUILT_IN_PREFETCH] = decl;
|
| 1717 |
|
|
}
|
| 1718 |
|
|
|
| 1719 |
|
|
/* We assume that size of cache line is a power of two, so verify this
|
| 1720 |
|
|
here. */
|
| 1721 |
|
|
gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
|
| 1722 |
|
|
|
| 1723 |
|
|
FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
| 1724 |
|
|
{
|
| 1725 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1726 |
|
|
fprintf (dump_file, "Processing loop %d:\n", loop->num);
|
| 1727 |
|
|
|
| 1728 |
|
|
unrolled |= loop_prefetch_arrays (loop);
|
| 1729 |
|
|
|
| 1730 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
| 1731 |
|
|
fprintf (dump_file, "\n\n");
|
| 1732 |
|
|
}
|
| 1733 |
|
|
|
| 1734 |
|
|
if (unrolled)
|
| 1735 |
|
|
{
|
| 1736 |
|
|
scev_reset ();
|
| 1737 |
|
|
todo_flags |= TODO_cleanup_cfg;
|
| 1738 |
|
|
}
|
| 1739 |
|
|
|
| 1740 |
|
|
free_original_copy_tables ();
|
| 1741 |
|
|
return todo_flags;
|
| 1742 |
|
|
}
|