1 |
280 |
jeremybenn |
/* Reassociation for trees.
|
2 |
|
|
Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Daniel Berlin <dan@dberlin.org>
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "ggc.h"
|
26 |
|
|
#include "tree.h"
|
27 |
|
|
#include "basic-block.h"
|
28 |
|
|
#include "diagnostic.h"
|
29 |
|
|
#include "tree-inline.h"
|
30 |
|
|
#include "tree-flow.h"
|
31 |
|
|
#include "gimple.h"
|
32 |
|
|
#include "tree-dump.h"
|
33 |
|
|
#include "timevar.h"
|
34 |
|
|
#include "tree-iterator.h"
|
35 |
|
|
#include "real.h"
|
36 |
|
|
#include "tree-pass.h"
|
37 |
|
|
#include "alloc-pool.h"
|
38 |
|
|
#include "vec.h"
|
39 |
|
|
#include "langhooks.h"
|
40 |
|
|
#include "pointer-set.h"
|
41 |
|
|
#include "cfgloop.h"
|
42 |
|
|
#include "flags.h"
|
43 |
|
|
|
44 |
|
|
/* This is a simple global reassociation pass. It is, in part, based
|
45 |
|
|
on the LLVM pass of the same name (They do some things more/less
|
46 |
|
|
than we do, in different orders, etc).
|
47 |
|
|
|
48 |
|
|
It consists of five steps:
|
49 |
|
|
|
50 |
|
|
1. Breaking up subtract operations into addition + negate, where
|
51 |
|
|
it would promote the reassociation of adds.
|
52 |
|
|
|
53 |
|
|
2. Left linearization of the expression trees, so that (A+B)+(C+D)
|
54 |
|
|
becomes (((A+B)+C)+D), which is easier for us to rewrite later.
|
55 |
|
|
During linearization, we place the operands of the binary
|
56 |
|
|
expressions into a vector of operand_entry_t
|
57 |
|
|
|
58 |
|
|
3. Optimization of the operand lists, eliminating things like a +
|
59 |
|
|
-a, a & a, etc.
|
60 |
|
|
|
61 |
|
|
4. Rewrite the expression trees we linearized and optimized so
|
62 |
|
|
they are in proper rank order.
|
63 |
|
|
|
64 |
|
|
5. Repropagate negates, as nothing else will clean it up ATM.
|
65 |
|
|
|
66 |
|
|
A bit of theory on #4, since nobody seems to write anything down
|
67 |
|
|
about why it makes sense to do it the way they do it:
|
68 |
|
|
|
69 |
|
|
We could do this much nicer theoretically, but don't (for reasons
|
70 |
|
|
explained after how to do it theoretically nice :P).
|
71 |
|
|
|
72 |
|
|
In order to promote the most redundancy elimination, you want
|
73 |
|
|
binary expressions whose operands are the same rank (or
|
74 |
|
|
preferably, the same value) exposed to the redundancy eliminator,
|
75 |
|
|
for possible elimination.
|
76 |
|
|
|
77 |
|
|
So the way to do this if we really cared, is to build the new op
|
78 |
|
|
tree from the leaves to the roots, merging as you go, and putting the
|
79 |
|
|
new op on the end of the worklist, until you are left with one
|
80 |
|
|
thing on the worklist.
|
81 |
|
|
|
82 |
|
|
IE if you have to rewrite the following set of operands (listed with
|
83 |
|
|
rank in parentheses), with opcode PLUS_EXPR:
|
84 |
|
|
|
85 |
|
|
a (1), b (1), c (1), d (2), e (2)
|
86 |
|
|
|
87 |
|
|
|
88 |
|
|
We start with our merge worklist empty, and the ops list with all of
|
89 |
|
|
those on it.
|
90 |
|
|
|
91 |
|
|
You want to first merge all leaves of the same rank, as much as
|
92 |
|
|
possible.
|
93 |
|
|
|
94 |
|
|
So first build a binary op of
|
95 |
|
|
|
96 |
|
|
mergetmp = a + b, and put "mergetmp" on the merge worklist.
|
97 |
|
|
|
98 |
|
|
Because there is no three operand form of PLUS_EXPR, c is not going to
|
99 |
|
|
be exposed to redundancy elimination as a rank 1 operand.
|
100 |
|
|
|
101 |
|
|
So you might as well throw it on the merge worklist (you could also
|
102 |
|
|
consider it to now be a rank two operand, and merge it with d and e,
|
103 |
|
|
but in this case, you then have evicted e from a binary op. So at
|
104 |
|
|
least in this situation, you can't win.)
|
105 |
|
|
|
106 |
|
|
Then build a binary op of d + e
|
107 |
|
|
mergetmp2 = d + e
|
108 |
|
|
|
109 |
|
|
and put mergetmp2 on the merge worklist.
|
110 |
|
|
|
111 |
|
|
so merge worklist = {mergetmp, c, mergetmp2}
|
112 |
|
|
|
113 |
|
|
Continue building binary ops of these operations until you have only
|
114 |
|
|
one operation left on the worklist.
|
115 |
|
|
|
116 |
|
|
So we have
|
117 |
|
|
|
118 |
|
|
build binary op
|
119 |
|
|
mergetmp3 = mergetmp + c
|
120 |
|
|
|
121 |
|
|
worklist = {mergetmp2, mergetmp3}
|
122 |
|
|
|
123 |
|
|
mergetmp4 = mergetmp2 + mergetmp3
|
124 |
|
|
|
125 |
|
|
worklist = {mergetmp4}
|
126 |
|
|
|
127 |
|
|
because we have one operation left, we can now just set the original
|
128 |
|
|
statement equal to the result of that operation.
|
129 |
|
|
|
130 |
|
|
This will at least expose a + b and d + e to redundancy elimination
|
131 |
|
|
as binary operations.
|
132 |
|
|
|
133 |
|
|
For extra points, you can reuse the old statements to build the
|
134 |
|
|
mergetmps, since you shouldn't run out.
|
135 |
|
|
|
136 |
|
|
So why don't we do this?
|
137 |
|
|
|
138 |
|
|
Because it's expensive, and rarely will help. Most trees we are
|
139 |
|
|
reassociating have 3 or less ops. If they have 2 ops, they already
|
140 |
|
|
will be written into a nice single binary op. If you have 3 ops, a
|
141 |
|
|
single simple check suffices to tell you whether the first two are of the
|
142 |
|
|
same rank. If so, you know to order it
|
143 |
|
|
|
144 |
|
|
mergetmp = op1 + op2
|
145 |
|
|
newstmt = mergetmp + op3
|
146 |
|
|
|
147 |
|
|
instead of
|
148 |
|
|
mergetmp = op2 + op3
|
149 |
|
|
newstmt = mergetmp + op1
|
150 |
|
|
|
151 |
|
|
If all three are of the same rank, you can't expose them all in a
|
152 |
|
|
single binary operator anyway, so the above is *still* the best you
|
153 |
|
|
can do.
|
154 |
|
|
|
155 |
|
|
Thus, this is what we do. When we have three ops left, we check to see
|
156 |
|
|
what order to put them in, and call it a day. As a nod to vector sum
|
157 |
|
|
reduction, we check if any of the ops are really a phi node that is a
|
158 |
|
|
destructive update for the associating op, and keep the destructive
|
159 |
|
|
update together for vector sum reduction recognition. */
|
160 |
|
|
|
161 |
|
|
|
162 |
|
|
/* Statistics */
|
163 |
|
|
static struct
|
164 |
|
|
{
|
165 |
|
|
int linearized;
|
166 |
|
|
int constants_eliminated;
|
167 |
|
|
int ops_eliminated;
|
168 |
|
|
int rewritten;
|
169 |
|
|
} reassociate_stats;
|
170 |
|
|
|
171 |
|
|
/* Operator, rank pair. */
|
172 |
|
|
typedef struct operand_entry
|
173 |
|
|
{
|
174 |
|
|
unsigned int rank;
|
175 |
|
|
tree op;
|
176 |
|
|
} *operand_entry_t;
|
177 |
|
|
|
178 |
|
|
static alloc_pool operand_entry_pool;
|
179 |
|
|
|
180 |
|
|
|
181 |
|
|
/* Starting rank number for a given basic block, so that we can rank
|
182 |
|
|
operations using unmovable instructions in that BB based on the bb
|
183 |
|
|
depth. */
|
184 |
|
|
static long *bb_rank;
|
185 |
|
|
|
186 |
|
|
/* Operand->rank hashtable. */
|
187 |
|
|
static struct pointer_map_t *operand_rank;
|
188 |
|
|
|
189 |
|
|
|
190 |
|
|
/* Look up the operand rank structure for expression E. */
|
191 |
|
|
|
192 |
|
|
static inline long
|
193 |
|
|
find_operand_rank (tree e)
|
194 |
|
|
{
|
195 |
|
|
void **slot = pointer_map_contains (operand_rank, e);
|
196 |
|
|
return slot ? (long) (intptr_t) *slot : -1;
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
/* Insert {E,RANK} into the operand rank hashtable. */
|
200 |
|
|
|
201 |
|
|
static inline void
|
202 |
|
|
insert_operand_rank (tree e, long rank)
|
203 |
|
|
{
|
204 |
|
|
void **slot;
|
205 |
|
|
gcc_assert (rank > 0);
|
206 |
|
|
slot = pointer_map_insert (operand_rank, e);
|
207 |
|
|
gcc_assert (!*slot);
|
208 |
|
|
*slot = (void *) (intptr_t) rank;
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
/* Given an expression E, return the rank of the expression. */
|
212 |
|
|
|
213 |
|
|
static long
|
214 |
|
|
get_rank (tree e)
|
215 |
|
|
{
|
216 |
|
|
/* Constants have rank 0. */
|
217 |
|
|
if (is_gimple_min_invariant (e))
|
218 |
|
|
return 0;
|
219 |
|
|
|
220 |
|
|
/* SSA_NAME's have the rank of the expression they are the result
|
221 |
|
|
of.
|
222 |
|
|
For globals and uninitialized values, the rank is 0.
|
223 |
|
|
For function arguments, use the pre-setup rank.
|
224 |
|
|
For PHI nodes, stores, asm statements, etc, we use the rank of
|
225 |
|
|
the BB.
|
226 |
|
|
For simple operations, the rank is the maximum rank of any of
|
227 |
|
|
its operands, or the bb_rank, whichever is less.
|
228 |
|
|
I make no claims that this is optimal, however, it gives good
|
229 |
|
|
results. */
|
230 |
|
|
|
231 |
|
|
if (TREE_CODE (e) == SSA_NAME)
|
232 |
|
|
{
|
233 |
|
|
gimple stmt;
|
234 |
|
|
long rank, maxrank;
|
235 |
|
|
int i, n;
|
236 |
|
|
|
237 |
|
|
if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
|
238 |
|
|
&& SSA_NAME_IS_DEFAULT_DEF (e))
|
239 |
|
|
return find_operand_rank (e);
|
240 |
|
|
|
241 |
|
|
stmt = SSA_NAME_DEF_STMT (e);
|
242 |
|
|
if (gimple_bb (stmt) == NULL)
|
243 |
|
|
return 0;
|
244 |
|
|
|
245 |
|
|
if (!is_gimple_assign (stmt)
|
246 |
|
|
|| gimple_vdef (stmt))
|
247 |
|
|
return bb_rank[gimple_bb (stmt)->index];
|
248 |
|
|
|
249 |
|
|
/* If we already have a rank for this expression, use that. */
|
250 |
|
|
rank = find_operand_rank (e);
|
251 |
|
|
if (rank != -1)
|
252 |
|
|
return rank;
|
253 |
|
|
|
254 |
|
|
/* Otherwise, find the maximum rank for the operands, or the bb
|
255 |
|
|
rank, whichever is less. */
|
256 |
|
|
rank = 0;
|
257 |
|
|
maxrank = bb_rank[gimple_bb(stmt)->index];
|
258 |
|
|
if (gimple_assign_single_p (stmt))
|
259 |
|
|
{
|
260 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
261 |
|
|
n = TREE_OPERAND_LENGTH (rhs);
|
262 |
|
|
if (n == 0)
|
263 |
|
|
rank = MAX (rank, get_rank (rhs));
|
264 |
|
|
else
|
265 |
|
|
{
|
266 |
|
|
for (i = 0;
|
267 |
|
|
i < n && TREE_OPERAND (rhs, i) && rank != maxrank; i++)
|
268 |
|
|
rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i)));
|
269 |
|
|
}
|
270 |
|
|
}
|
271 |
|
|
else
|
272 |
|
|
{
|
273 |
|
|
n = gimple_num_ops (stmt);
|
274 |
|
|
for (i = 1; i < n && rank != maxrank; i++)
|
275 |
|
|
{
|
276 |
|
|
gcc_assert (gimple_op (stmt, i));
|
277 |
|
|
rank = MAX(rank, get_rank (gimple_op (stmt, i)));
|
278 |
|
|
}
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
282 |
|
|
{
|
283 |
|
|
fprintf (dump_file, "Rank for ");
|
284 |
|
|
print_generic_expr (dump_file, e, 0);
|
285 |
|
|
fprintf (dump_file, " is %ld\n", (rank + 1));
|
286 |
|
|
}
|
287 |
|
|
|
288 |
|
|
/* Note the rank in the hashtable so we don't recompute it. */
|
289 |
|
|
insert_operand_rank (e, (rank + 1));
|
290 |
|
|
return (rank + 1);
|
291 |
|
|
}
|
292 |
|
|
|
293 |
|
|
/* Globals, etc, are rank 0 */
|
294 |
|
|
return 0;
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
DEF_VEC_P(operand_entry_t);
|
298 |
|
|
DEF_VEC_ALLOC_P(operand_entry_t, heap);
|
299 |
|
|
|
300 |
|
|
/* We want integer ones to end up last no matter what, since they are
|
301 |
|
|
the ones we can do the most with. */
|
302 |
|
|
#define INTEGER_CONST_TYPE 1 << 3
|
303 |
|
|
#define FLOAT_CONST_TYPE 1 << 2
|
304 |
|
|
#define OTHER_CONST_TYPE 1 << 1
|
305 |
|
|
|
306 |
|
|
/* Classify an invariant tree into integer, float, or other, so that
|
307 |
|
|
we can sort them to be near other constants of the same type. */
|
308 |
|
|
static inline int
|
309 |
|
|
constant_type (tree t)
|
310 |
|
|
{
|
311 |
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
|
312 |
|
|
return INTEGER_CONST_TYPE;
|
313 |
|
|
else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
|
314 |
|
|
return FLOAT_CONST_TYPE;
|
315 |
|
|
else
|
316 |
|
|
return OTHER_CONST_TYPE;
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
/* qsort comparison function to sort operand entries PA and PB by rank
|
320 |
|
|
so that the sorted array is ordered by rank in decreasing order. */
|
321 |
|
|
static int
|
322 |
|
|
sort_by_operand_rank (const void *pa, const void *pb)
|
323 |
|
|
{
|
324 |
|
|
const operand_entry_t oea = *(const operand_entry_t *)pa;
|
325 |
|
|
const operand_entry_t oeb = *(const operand_entry_t *)pb;
|
326 |
|
|
|
327 |
|
|
/* It's nicer for optimize_expression if constants that are likely
|
328 |
|
|
to fold when added/multiplied//whatever are put next to each
|
329 |
|
|
other. Since all constants have rank 0, order them by type. */
|
330 |
|
|
if (oeb->rank == 0 && oea->rank == 0)
|
331 |
|
|
return constant_type (oeb->op) - constant_type (oea->op);
|
332 |
|
|
|
333 |
|
|
/* Lastly, make sure the versions that are the same go next to each
|
334 |
|
|
other. We use SSA_NAME_VERSION because it's stable. */
|
335 |
|
|
if ((oeb->rank - oea->rank == 0)
|
336 |
|
|
&& TREE_CODE (oea->op) == SSA_NAME
|
337 |
|
|
&& TREE_CODE (oeb->op) == SSA_NAME)
|
338 |
|
|
return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
|
339 |
|
|
|
340 |
|
|
return oeb->rank - oea->rank;
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
/* Add an operand entry to *OPS for the tree operand OP. */
|
344 |
|
|
|
345 |
|
|
static void
|
346 |
|
|
add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
|
347 |
|
|
{
|
348 |
|
|
operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
|
349 |
|
|
|
350 |
|
|
oe->op = op;
|
351 |
|
|
oe->rank = get_rank (op);
|
352 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oe);
|
353 |
|
|
}
|
354 |
|
|
|
355 |
|
|
/* Return true if STMT is reassociable operation containing a binary
|
356 |
|
|
operation with tree code CODE, and is inside LOOP. */
|
357 |
|
|
|
358 |
|
|
static bool
|
359 |
|
|
is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
|
360 |
|
|
{
|
361 |
|
|
basic_block bb = gimple_bb (stmt);
|
362 |
|
|
|
363 |
|
|
if (gimple_bb (stmt) == NULL)
|
364 |
|
|
return false;
|
365 |
|
|
|
366 |
|
|
if (!flow_bb_inside_loop_p (loop, bb))
|
367 |
|
|
return false;
|
368 |
|
|
|
369 |
|
|
if (is_gimple_assign (stmt)
|
370 |
|
|
&& gimple_assign_rhs_code (stmt) == code
|
371 |
|
|
&& has_single_use (gimple_assign_lhs (stmt)))
|
372 |
|
|
return true;
|
373 |
|
|
|
374 |
|
|
return false;
|
375 |
|
|
}
|
376 |
|
|
|
377 |
|
|
|
378 |
|
|
/* Given NAME, if NAME is defined by a unary operation OPCODE, return the
|
379 |
|
|
operand of the negate operation. Otherwise, return NULL. */
|
380 |
|
|
|
381 |
|
|
static tree
|
382 |
|
|
get_unary_op (tree name, enum tree_code opcode)
|
383 |
|
|
{
|
384 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (name);
|
385 |
|
|
|
386 |
|
|
if (!is_gimple_assign (stmt))
|
387 |
|
|
return NULL_TREE;
|
388 |
|
|
|
389 |
|
|
if (gimple_assign_rhs_code (stmt) == opcode)
|
390 |
|
|
return gimple_assign_rhs1 (stmt);
|
391 |
|
|
return NULL_TREE;
|
392 |
|
|
}
|
393 |
|
|
|
394 |
|
|
/* If CURR and LAST are a pair of ops that OPCODE allows us to
|
395 |
|
|
eliminate through equivalences, do so, remove them from OPS, and
|
396 |
|
|
return true. Otherwise, return false. */
|
397 |
|
|
|
398 |
|
|
static bool
|
399 |
|
|
eliminate_duplicate_pair (enum tree_code opcode,
|
400 |
|
|
VEC (operand_entry_t, heap) **ops,
|
401 |
|
|
bool *all_done,
|
402 |
|
|
unsigned int i,
|
403 |
|
|
operand_entry_t curr,
|
404 |
|
|
operand_entry_t last)
|
405 |
|
|
{
|
406 |
|
|
|
407 |
|
|
/* If we have two of the same op, and the opcode is & |, min, or max,
|
408 |
|
|
we can eliminate one of them.
|
409 |
|
|
If we have two of the same op, and the opcode is ^, we can
|
410 |
|
|
eliminate both of them. */
|
411 |
|
|
|
412 |
|
|
if (last && last->op == curr->op)
|
413 |
|
|
{
|
414 |
|
|
switch (opcode)
|
415 |
|
|
{
|
416 |
|
|
case MAX_EXPR:
|
417 |
|
|
case MIN_EXPR:
|
418 |
|
|
case BIT_IOR_EXPR:
|
419 |
|
|
case BIT_AND_EXPR:
|
420 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
421 |
|
|
{
|
422 |
|
|
fprintf (dump_file, "Equivalence: ");
|
423 |
|
|
print_generic_expr (dump_file, curr->op, 0);
|
424 |
|
|
fprintf (dump_file, " [&|minmax] ");
|
425 |
|
|
print_generic_expr (dump_file, last->op, 0);
|
426 |
|
|
fprintf (dump_file, " -> ");
|
427 |
|
|
print_generic_stmt (dump_file, last->op, 0);
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
431 |
|
|
reassociate_stats.ops_eliminated ++;
|
432 |
|
|
|
433 |
|
|
return true;
|
434 |
|
|
|
435 |
|
|
case BIT_XOR_EXPR:
|
436 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
437 |
|
|
{
|
438 |
|
|
fprintf (dump_file, "Equivalence: ");
|
439 |
|
|
print_generic_expr (dump_file, curr->op, 0);
|
440 |
|
|
fprintf (dump_file, " ^ ");
|
441 |
|
|
print_generic_expr (dump_file, last->op, 0);
|
442 |
|
|
fprintf (dump_file, " -> nothing\n");
|
443 |
|
|
}
|
444 |
|
|
|
445 |
|
|
reassociate_stats.ops_eliminated += 2;
|
446 |
|
|
|
447 |
|
|
if (VEC_length (operand_entry_t, *ops) == 2)
|
448 |
|
|
{
|
449 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
450 |
|
|
*ops = NULL;
|
451 |
|
|
add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op),
|
452 |
|
|
integer_zero_node));
|
453 |
|
|
*all_done = true;
|
454 |
|
|
}
|
455 |
|
|
else
|
456 |
|
|
{
|
457 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i-1);
|
458 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i-1);
|
459 |
|
|
}
|
460 |
|
|
|
461 |
|
|
return true;
|
462 |
|
|
|
463 |
|
|
default:
|
464 |
|
|
break;
|
465 |
|
|
}
|
466 |
|
|
}
|
467 |
|
|
return false;
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
/* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression,
|
471 |
|
|
look in OPS for a corresponding positive operation to cancel it
|
472 |
|
|
out. If we find one, remove the other from OPS, replace
|
473 |
|
|
OPS[CURRINDEX] with 0, and return true. Otherwise, return
|
474 |
|
|
false. */
|
475 |
|
|
|
476 |
|
|
static bool
|
477 |
|
|
eliminate_plus_minus_pair (enum tree_code opcode,
|
478 |
|
|
VEC (operand_entry_t, heap) **ops,
|
479 |
|
|
unsigned int currindex,
|
480 |
|
|
operand_entry_t curr)
|
481 |
|
|
{
|
482 |
|
|
tree negateop;
|
483 |
|
|
unsigned int i;
|
484 |
|
|
operand_entry_t oe;
|
485 |
|
|
|
486 |
|
|
if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
|
487 |
|
|
return false;
|
488 |
|
|
|
489 |
|
|
negateop = get_unary_op (curr->op, NEGATE_EXPR);
|
490 |
|
|
if (negateop == NULL_TREE)
|
491 |
|
|
return false;
|
492 |
|
|
|
493 |
|
|
/* Any non-negated version will have a rank that is one less than
|
494 |
|
|
the current rank. So once we hit those ranks, if we don't find
|
495 |
|
|
one, we can stop. */
|
496 |
|
|
|
497 |
|
|
for (i = currindex + 1;
|
498 |
|
|
VEC_iterate (operand_entry_t, *ops, i, oe)
|
499 |
|
|
&& oe->rank >= curr->rank - 1 ;
|
500 |
|
|
i++)
|
501 |
|
|
{
|
502 |
|
|
if (oe->op == negateop)
|
503 |
|
|
{
|
504 |
|
|
|
505 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
506 |
|
|
{
|
507 |
|
|
fprintf (dump_file, "Equivalence: ");
|
508 |
|
|
print_generic_expr (dump_file, negateop, 0);
|
509 |
|
|
fprintf (dump_file, " + -");
|
510 |
|
|
print_generic_expr (dump_file, oe->op, 0);
|
511 |
|
|
fprintf (dump_file, " -> 0\n");
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, i);
|
515 |
|
|
add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op),
|
516 |
|
|
integer_zero_node));
|
517 |
|
|
VEC_ordered_remove (operand_entry_t, *ops, currindex);
|
518 |
|
|
reassociate_stats.ops_eliminated ++;
|
519 |
|
|
|
520 |
|
|
return true;
|
521 |
|
|
}
|
522 |
|
|
}
|
523 |
|
|
|
524 |
|
|
return false;
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
/* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
|
528 |
|
|
bitwise not expression, look in OPS for a corresponding operand to
|
529 |
|
|
cancel it out. If we find one, remove the other from OPS, replace
|
530 |
|
|
OPS[CURRINDEX] with 0, and return true. Otherwise, return
|
531 |
|
|
false. */
|
532 |
|
|
|
533 |
|
|
static bool
|
534 |
|
|
eliminate_not_pairs (enum tree_code opcode,
|
535 |
|
|
VEC (operand_entry_t, heap) **ops,
|
536 |
|
|
unsigned int currindex,
|
537 |
|
|
operand_entry_t curr)
|
538 |
|
|
{
|
539 |
|
|
tree notop;
|
540 |
|
|
unsigned int i;
|
541 |
|
|
operand_entry_t oe;
|
542 |
|
|
|
543 |
|
|
if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
|
544 |
|
|
|| TREE_CODE (curr->op) != SSA_NAME)
|
545 |
|
|
return false;
|
546 |
|
|
|
547 |
|
|
notop = get_unary_op (curr->op, BIT_NOT_EXPR);
|
548 |
|
|
if (notop == NULL_TREE)
|
549 |
|
|
return false;
|
550 |
|
|
|
551 |
|
|
/* Any non-not version will have a rank that is one less than
|
552 |
|
|
the current rank. So once we hit those ranks, if we don't find
|
553 |
|
|
one, we can stop. */
|
554 |
|
|
|
555 |
|
|
for (i = currindex + 1;
|
556 |
|
|
VEC_iterate (operand_entry_t, *ops, i, oe)
|
557 |
|
|
&& oe->rank >= curr->rank - 1;
|
558 |
|
|
i++)
|
559 |
|
|
{
|
560 |
|
|
if (oe->op == notop)
|
561 |
|
|
{
|
562 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
563 |
|
|
{
|
564 |
|
|
fprintf (dump_file, "Equivalence: ");
|
565 |
|
|
print_generic_expr (dump_file, notop, 0);
|
566 |
|
|
if (opcode == BIT_AND_EXPR)
|
567 |
|
|
fprintf (dump_file, " & ~");
|
568 |
|
|
else if (opcode == BIT_IOR_EXPR)
|
569 |
|
|
fprintf (dump_file, " | ~");
|
570 |
|
|
print_generic_expr (dump_file, oe->op, 0);
|
571 |
|
|
if (opcode == BIT_AND_EXPR)
|
572 |
|
|
fprintf (dump_file, " -> 0\n");
|
573 |
|
|
else if (opcode == BIT_IOR_EXPR)
|
574 |
|
|
fprintf (dump_file, " -> -1\n");
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
if (opcode == BIT_AND_EXPR)
|
578 |
|
|
oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node);
|
579 |
|
|
else if (opcode == BIT_IOR_EXPR)
|
580 |
|
|
oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
|
581 |
|
|
TYPE_PRECISION (TREE_TYPE (oe->op)));
|
582 |
|
|
|
583 |
|
|
reassociate_stats.ops_eliminated
|
584 |
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
585 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
586 |
|
|
*ops = NULL;
|
587 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oe);
|
588 |
|
|
return true;
|
589 |
|
|
}
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
return false;
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
/* Use constant value that may be present in OPS to try to eliminate
|
596 |
|
|
operands. Note that this function is only really used when we've
|
597 |
|
|
eliminated ops for other reasons, or merged constants. Across
|
598 |
|
|
single statements, fold already does all of this, plus more. There
|
599 |
|
|
is little point in duplicating logic, so I've only included the
|
600 |
|
|
identities that I could ever construct testcases to trigger. */
|
601 |
|
|
|
602 |
|
|
static void
|
603 |
|
|
eliminate_using_constants (enum tree_code opcode,
|
604 |
|
|
VEC(operand_entry_t, heap) **ops)
|
605 |
|
|
{
|
606 |
|
|
operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
|
607 |
|
|
tree type = TREE_TYPE (oelast->op);
|
608 |
|
|
|
609 |
|
|
if (oelast->rank == 0
|
610 |
|
|
&& (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
|
611 |
|
|
{
|
612 |
|
|
switch (opcode)
|
613 |
|
|
{
|
614 |
|
|
case BIT_AND_EXPR:
|
615 |
|
|
if (integer_zerop (oelast->op))
|
616 |
|
|
{
|
617 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
618 |
|
|
{
|
619 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
620 |
|
|
fprintf (dump_file, "Found & 0, removing all other ops\n");
|
621 |
|
|
|
622 |
|
|
reassociate_stats.ops_eliminated
|
623 |
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
624 |
|
|
|
625 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
626 |
|
|
*ops = NULL;
|
627 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
628 |
|
|
return;
|
629 |
|
|
}
|
630 |
|
|
}
|
631 |
|
|
else if (integer_all_onesp (oelast->op))
|
632 |
|
|
{
|
633 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
634 |
|
|
{
|
635 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
636 |
|
|
fprintf (dump_file, "Found & -1, removing\n");
|
637 |
|
|
VEC_pop (operand_entry_t, *ops);
|
638 |
|
|
reassociate_stats.ops_eliminated++;
|
639 |
|
|
}
|
640 |
|
|
}
|
641 |
|
|
break;
|
642 |
|
|
case BIT_IOR_EXPR:
|
643 |
|
|
if (integer_all_onesp (oelast->op))
|
644 |
|
|
{
|
645 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
646 |
|
|
{
|
647 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
648 |
|
|
fprintf (dump_file, "Found | -1, removing all other ops\n");
|
649 |
|
|
|
650 |
|
|
reassociate_stats.ops_eliminated
|
651 |
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
652 |
|
|
|
653 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
654 |
|
|
*ops = NULL;
|
655 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
656 |
|
|
return;
|
657 |
|
|
}
|
658 |
|
|
}
|
659 |
|
|
else if (integer_zerop (oelast->op))
|
660 |
|
|
{
|
661 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
662 |
|
|
{
|
663 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
664 |
|
|
fprintf (dump_file, "Found | 0, removing\n");
|
665 |
|
|
VEC_pop (operand_entry_t, *ops);
|
666 |
|
|
reassociate_stats.ops_eliminated++;
|
667 |
|
|
}
|
668 |
|
|
}
|
669 |
|
|
break;
|
670 |
|
|
case MULT_EXPR:
|
671 |
|
|
if (integer_zerop (oelast->op)
|
672 |
|
|
|| (FLOAT_TYPE_P (type)
|
673 |
|
|
&& !HONOR_NANS (TYPE_MODE (type))
|
674 |
|
|
&& !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
|
675 |
|
|
&& real_zerop (oelast->op)))
|
676 |
|
|
{
|
677 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
678 |
|
|
{
|
679 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
680 |
|
|
fprintf (dump_file, "Found * 0, removing all other ops\n");
|
681 |
|
|
|
682 |
|
|
reassociate_stats.ops_eliminated
|
683 |
|
|
+= VEC_length (operand_entry_t, *ops) - 1;
|
684 |
|
|
VEC_free (operand_entry_t, heap, *ops);
|
685 |
|
|
*ops = NULL;
|
686 |
|
|
VEC_safe_push (operand_entry_t, heap, *ops, oelast);
|
687 |
|
|
return;
|
688 |
|
|
}
|
689 |
|
|
}
|
690 |
|
|
else if (integer_onep (oelast->op)
|
691 |
|
|
|| (FLOAT_TYPE_P (type)
|
692 |
|
|
&& !HONOR_SNANS (TYPE_MODE (type))
|
693 |
|
|
&& real_onep (oelast->op)))
|
694 |
|
|
{
|
695 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
696 |
|
|
{
|
697 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
698 |
|
|
fprintf (dump_file, "Found * 1, removing\n");
|
699 |
|
|
VEC_pop (operand_entry_t, *ops);
|
700 |
|
|
reassociate_stats.ops_eliminated++;
|
701 |
|
|
return;
|
702 |
|
|
}
|
703 |
|
|
}
|
704 |
|
|
break;
|
705 |
|
|
case BIT_XOR_EXPR:
|
706 |
|
|
case PLUS_EXPR:
|
707 |
|
|
case MINUS_EXPR:
|
708 |
|
|
if (integer_zerop (oelast->op)
|
709 |
|
|
|| (FLOAT_TYPE_P (type)
|
710 |
|
|
&& (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
|
711 |
|
|
&& fold_real_zero_addition_p (type, oelast->op,
|
712 |
|
|
opcode == MINUS_EXPR)))
|
713 |
|
|
{
|
714 |
|
|
if (VEC_length (operand_entry_t, *ops) != 1)
|
715 |
|
|
{
|
716 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
717 |
|
|
fprintf (dump_file, "Found [|^+] 0, removing\n");
|
718 |
|
|
VEC_pop (operand_entry_t, *ops);
|
719 |
|
|
reassociate_stats.ops_eliminated++;
|
720 |
|
|
return;
|
721 |
|
|
}
|
722 |
|
|
}
|
723 |
|
|
break;
|
724 |
|
|
default:
|
725 |
|
|
break;
|
726 |
|
|
}
|
727 |
|
|
}
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
|
731 |
|
|
static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
|
732 |
|
|
bool, bool);
|
733 |
|
|
|
734 |
|
|
/* Structure for tracking and counting operands. */
|
735 |
|
|
typedef struct oecount_s {
|
736 |
|
|
int cnt;
|
737 |
|
|
enum tree_code oecode;
|
738 |
|
|
tree op;
|
739 |
|
|
} oecount;
|
740 |
|
|
|
741 |
|
|
DEF_VEC_O(oecount);
|
742 |
|
|
DEF_VEC_ALLOC_O(oecount,heap);
|
743 |
|
|
|
744 |
|
|
/* The heap for the oecount hashtable and the sorted list of operands. */
|
745 |
|
|
static VEC (oecount, heap) *cvec;
|
746 |
|
|
|
747 |
|
|
/* Hash function for oecount. */
|
748 |
|
|
|
749 |
|
|
static hashval_t
|
750 |
|
|
oecount_hash (const void *p)
|
751 |
|
|
{
|
752 |
|
|
const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
|
753 |
|
|
return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
|
754 |
|
|
}
|
755 |
|
|
|
756 |
|
|
/* Comparison function for oecount. */
|
757 |
|
|
|
758 |
|
|
static int
|
759 |
|
|
oecount_eq (const void *p1, const void *p2)
|
760 |
|
|
{
|
761 |
|
|
const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
|
762 |
|
|
const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
|
763 |
|
|
return (c1->oecode == c2->oecode
|
764 |
|
|
&& c1->op == c2->op);
|
765 |
|
|
}
|
766 |
|
|
|
767 |
|
|
/* Comparison function for qsort sorting oecount elements by count. */
|
768 |
|
|
|
769 |
|
|
static int
|
770 |
|
|
oecount_cmp (const void *p1, const void *p2)
|
771 |
|
|
{
|
772 |
|
|
const oecount *c1 = (const oecount *)p1;
|
773 |
|
|
const oecount *c2 = (const oecount *)p2;
|
774 |
|
|
return c1->cnt - c2->cnt;
|
775 |
|
|
}
|
776 |
|
|
|
777 |
|
|
/* Walks the linear chain with result *DEF searching for an operation
|
778 |
|
|
with operand OP and code OPCODE removing that from the chain. *DEF
|
779 |
|
|
is updated if there is only one operand but no operation left. */
|
780 |
|
|
|
781 |
|
|
static void
|
782 |
|
|
zero_one_operation (tree *def, enum tree_code opcode, tree op)
|
783 |
|
|
{
|
784 |
|
|
gimple stmt = SSA_NAME_DEF_STMT (*def);
|
785 |
|
|
|
786 |
|
|
do
|
787 |
|
|
{
|
788 |
|
|
tree name = gimple_assign_rhs1 (stmt);
|
789 |
|
|
|
790 |
|
|
/* If this is the operation we look for and one of the operands
|
791 |
|
|
is ours simply propagate the other operand into the stmts
|
792 |
|
|
single use. */
|
793 |
|
|
if (gimple_assign_rhs_code (stmt) == opcode
|
794 |
|
|
&& (name == op
|
795 |
|
|
|| gimple_assign_rhs2 (stmt) == op))
|
796 |
|
|
{
|
797 |
|
|
gimple use_stmt;
|
798 |
|
|
use_operand_p use;
|
799 |
|
|
gimple_stmt_iterator gsi;
|
800 |
|
|
if (name == op)
|
801 |
|
|
name = gimple_assign_rhs2 (stmt);
|
802 |
|
|
gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
|
803 |
|
|
single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
|
804 |
|
|
if (gimple_assign_lhs (stmt) == *def)
|
805 |
|
|
*def = name;
|
806 |
|
|
SET_USE (use, name);
|
807 |
|
|
if (TREE_CODE (name) != SSA_NAME)
|
808 |
|
|
update_stmt (use_stmt);
|
809 |
|
|
gsi = gsi_for_stmt (stmt);
|
810 |
|
|
gsi_remove (&gsi, true);
|
811 |
|
|
release_defs (stmt);
|
812 |
|
|
return;
|
813 |
|
|
}
|
814 |
|
|
|
815 |
|
|
/* Continue walking the chain. */
|
816 |
|
|
gcc_assert (name != op
|
817 |
|
|
&& TREE_CODE (name) == SSA_NAME);
|
818 |
|
|
stmt = SSA_NAME_DEF_STMT (name);
|
819 |
|
|
}
|
820 |
|
|
while (1);
|
821 |
|
|
}
|
822 |
|
|
|
823 |
|
|
/* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
|
824 |
|
|
the result. Places the statement after the definition of either
|
825 |
|
|
OP1 or OP2. Returns the new statement. */
|
826 |
|
|
|
827 |
|
|
static gimple
|
828 |
|
|
build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
|
829 |
|
|
{
|
830 |
|
|
gimple op1def = NULL, op2def = NULL;
|
831 |
|
|
gimple_stmt_iterator gsi;
|
832 |
|
|
tree op;
|
833 |
|
|
gimple sum;
|
834 |
|
|
|
835 |
|
|
/* Create the addition statement. */
|
836 |
|
|
sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
|
837 |
|
|
op = make_ssa_name (tmpvar, sum);
|
838 |
|
|
gimple_assign_set_lhs (sum, op);
|
839 |
|
|
|
840 |
|
|
/* Find an insertion place and insert. */
|
841 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
842 |
|
|
op1def = SSA_NAME_DEF_STMT (op1);
|
843 |
|
|
if (TREE_CODE (op2) == SSA_NAME)
|
844 |
|
|
op2def = SSA_NAME_DEF_STMT (op2);
|
845 |
|
|
if ((!op1def || gimple_nop_p (op1def))
|
846 |
|
|
&& (!op2def || gimple_nop_p (op2def)))
|
847 |
|
|
{
|
848 |
|
|
gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
|
849 |
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
850 |
|
|
}
|
851 |
|
|
else if ((!op1def || gimple_nop_p (op1def))
|
852 |
|
|
|| (op2def && !gimple_nop_p (op2def)
|
853 |
|
|
&& stmt_dominates_stmt_p (op1def, op2def)))
|
854 |
|
|
{
|
855 |
|
|
if (gimple_code (op2def) == GIMPLE_PHI)
|
856 |
|
|
{
|
857 |
|
|
gsi = gsi_after_labels (gimple_bb (op2def));
|
858 |
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
859 |
|
|
}
|
860 |
|
|
else
|
861 |
|
|
{
|
862 |
|
|
if (!stmt_ends_bb_p (op2def))
|
863 |
|
|
{
|
864 |
|
|
gsi = gsi_for_stmt (op2def);
|
865 |
|
|
gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
|
866 |
|
|
}
|
867 |
|
|
else
|
868 |
|
|
{
|
869 |
|
|
edge e;
|
870 |
|
|
edge_iterator ei;
|
871 |
|
|
|
872 |
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
|
873 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
874 |
|
|
gsi_insert_on_edge_immediate (e, sum);
|
875 |
|
|
}
|
876 |
|
|
}
|
877 |
|
|
}
|
878 |
|
|
else
|
879 |
|
|
{
|
880 |
|
|
if (gimple_code (op1def) == GIMPLE_PHI)
|
881 |
|
|
{
|
882 |
|
|
gsi = gsi_after_labels (gimple_bb (op1def));
|
883 |
|
|
gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
|
884 |
|
|
}
|
885 |
|
|
else
|
886 |
|
|
{
|
887 |
|
|
if (!stmt_ends_bb_p (op1def))
|
888 |
|
|
{
|
889 |
|
|
gsi = gsi_for_stmt (op1def);
|
890 |
|
|
gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
|
891 |
|
|
}
|
892 |
|
|
else
|
893 |
|
|
{
|
894 |
|
|
edge e;
|
895 |
|
|
edge_iterator ei;
|
896 |
|
|
|
897 |
|
|
FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
|
898 |
|
|
if (e->flags & EDGE_FALLTHRU)
|
899 |
|
|
gsi_insert_on_edge_immediate (e, sum);
|
900 |
|
|
}
|
901 |
|
|
}
|
902 |
|
|
}
|
903 |
|
|
update_stmt (sum);
|
904 |
|
|
|
905 |
|
|
return sum;
|
906 |
|
|
}
|
907 |
|
|
|
908 |
|
|
/* Perform un-distribution of divisions and multiplications.
|
909 |
|
|
A * X + B * X is transformed into (A + B) * X and A / X + B / X
|
910 |
|
|
to (A + B) / X for real X.
|
911 |
|
|
|
912 |
|
|
The algorithm is organized as follows.
|
913 |
|
|
|
914 |
|
|
- First we walk the addition chain *OPS looking for summands that
|
915 |
|
|
are defined by a multiplication or a real division. This results
|
916 |
|
|
in the candidates bitmap with relevant indices into *OPS.
|
917 |
|
|
|
918 |
|
|
- Second we build the chains of multiplications or divisions for
|
919 |
|
|
these candidates, counting the number of occurences of (operand, code)
|
920 |
|
|
pairs in all of the candidates chains.
|
921 |
|
|
|
922 |
|
|
- Third we sort the (operand, code) pairs by number of occurence and
|
923 |
|
|
process them starting with the pair with the most uses.
|
924 |
|
|
|
925 |
|
|
* For each such pair we walk the candidates again to build a
|
926 |
|
|
second candidate bitmap noting all multiplication/division chains
|
927 |
|
|
that have at least one occurence of (operand, code).
|
928 |
|
|
|
929 |
|
|
* We build an alternate addition chain only covering these
|
930 |
|
|
candidates with one (operand, code) operation removed from their
|
931 |
|
|
multiplication/division chain.
|
932 |
|
|
|
933 |
|
|
* The first candidate gets replaced by the alternate addition chain
|
934 |
|
|
multiplied/divided by the operand.
|
935 |
|
|
|
936 |
|
|
* All candidate chains get disabled for further processing and
|
937 |
|
|
processing of (operand, code) pairs continues.
|
938 |
|
|
|
939 |
|
|
The alternate addition chains built are re-processed by the main
|
940 |
|
|
reassociation algorithm which allows optimizing a * x * y + b * y * x
|
941 |
|
|
to (a + b ) * x * y in one invocation of the reassociation pass. */
|
942 |
|
|
|
943 |
|
|
static bool
|
944 |
|
|
undistribute_ops_list (enum tree_code opcode,
|
945 |
|
|
VEC (operand_entry_t, heap) **ops, struct loop *loop)
|
946 |
|
|
{
|
947 |
|
|
unsigned int length = VEC_length (operand_entry_t, *ops);
|
948 |
|
|
operand_entry_t oe1;
|
949 |
|
|
unsigned i, j;
|
950 |
|
|
sbitmap candidates, candidates2;
|
951 |
|
|
unsigned nr_candidates, nr_candidates2;
|
952 |
|
|
sbitmap_iterator sbi0;
|
953 |
|
|
VEC (operand_entry_t, heap) **subops;
|
954 |
|
|
htab_t ctable;
|
955 |
|
|
bool changed = false;
|
956 |
|
|
|
957 |
|
|
if (length <= 1
|
958 |
|
|
|| opcode != PLUS_EXPR)
|
959 |
|
|
return false;
|
960 |
|
|
|
961 |
|
|
/* Build a list of candidates to process. */
|
962 |
|
|
candidates = sbitmap_alloc (length);
|
963 |
|
|
sbitmap_zero (candidates);
|
964 |
|
|
nr_candidates = 0;
|
965 |
|
|
for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe1); ++i)
|
966 |
|
|
{
|
967 |
|
|
enum tree_code dcode;
|
968 |
|
|
gimple oe1def;
|
969 |
|
|
|
970 |
|
|
if (TREE_CODE (oe1->op) != SSA_NAME)
|
971 |
|
|
continue;
|
972 |
|
|
oe1def = SSA_NAME_DEF_STMT (oe1->op);
|
973 |
|
|
if (!is_gimple_assign (oe1def))
|
974 |
|
|
continue;
|
975 |
|
|
dcode = gimple_assign_rhs_code (oe1def);
|
976 |
|
|
if ((dcode != MULT_EXPR
|
977 |
|
|
&& dcode != RDIV_EXPR)
|
978 |
|
|
|| !is_reassociable_op (oe1def, dcode, loop))
|
979 |
|
|
continue;
|
980 |
|
|
|
981 |
|
|
SET_BIT (candidates, i);
|
982 |
|
|
nr_candidates++;
|
983 |
|
|
}
|
984 |
|
|
|
985 |
|
|
if (nr_candidates < 2)
|
986 |
|
|
{
|
987 |
|
|
sbitmap_free (candidates);
|
988 |
|
|
return false;
|
989 |
|
|
}
|
990 |
|
|
|
991 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
992 |
|
|
{
|
993 |
|
|
fprintf (dump_file, "searching for un-distribute opportunities ");
|
994 |
|
|
print_generic_expr (dump_file,
|
995 |
|
|
VEC_index (operand_entry_t, *ops,
|
996 |
|
|
sbitmap_first_set_bit (candidates))->op, 0);
|
997 |
|
|
fprintf (dump_file, " %d\n", nr_candidates);
|
998 |
|
|
}
|
999 |
|
|
|
1000 |
|
|
/* Build linearized sub-operand lists and the counting table. */
|
1001 |
|
|
cvec = NULL;
|
1002 |
|
|
ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
|
1003 |
|
|
subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
|
1004 |
|
|
VEC_length (operand_entry_t, *ops));
|
1005 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
|
1006 |
|
|
{
|
1007 |
|
|
gimple oedef;
|
1008 |
|
|
enum tree_code oecode;
|
1009 |
|
|
unsigned j;
|
1010 |
|
|
|
1011 |
|
|
oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
|
1012 |
|
|
oecode = gimple_assign_rhs_code (oedef);
|
1013 |
|
|
linearize_expr_tree (&subops[i], oedef,
|
1014 |
|
|
associative_tree_code (oecode), false);
|
1015 |
|
|
|
1016 |
|
|
for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
|
1017 |
|
|
{
|
1018 |
|
|
oecount c;
|
1019 |
|
|
void **slot;
|
1020 |
|
|
size_t idx;
|
1021 |
|
|
c.oecode = oecode;
|
1022 |
|
|
c.cnt = 1;
|
1023 |
|
|
c.op = oe1->op;
|
1024 |
|
|
VEC_safe_push (oecount, heap, cvec, &c);
|
1025 |
|
|
idx = VEC_length (oecount, cvec) + 41;
|
1026 |
|
|
slot = htab_find_slot (ctable, (void *)idx, INSERT);
|
1027 |
|
|
if (!*slot)
|
1028 |
|
|
{
|
1029 |
|
|
*slot = (void *)idx;
|
1030 |
|
|
}
|
1031 |
|
|
else
|
1032 |
|
|
{
|
1033 |
|
|
VEC_pop (oecount, cvec);
|
1034 |
|
|
VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
|
1035 |
|
|
}
|
1036 |
|
|
}
|
1037 |
|
|
}
|
1038 |
|
|
htab_delete (ctable);
|
1039 |
|
|
|
1040 |
|
|
/* Sort the counting table. */
|
1041 |
|
|
qsort (VEC_address (oecount, cvec), VEC_length (oecount, cvec),
|
1042 |
|
|
sizeof (oecount), oecount_cmp);
|
1043 |
|
|
|
1044 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1045 |
|
|
{
|
1046 |
|
|
oecount *c;
|
1047 |
|
|
fprintf (dump_file, "Candidates:\n");
|
1048 |
|
|
for (j = 0; VEC_iterate (oecount, cvec, j, c); ++j)
|
1049 |
|
|
{
|
1050 |
|
|
fprintf (dump_file, " %u %s: ", c->cnt,
|
1051 |
|
|
c->oecode == MULT_EXPR
|
1052 |
|
|
? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
|
1053 |
|
|
print_generic_expr (dump_file, c->op, 0);
|
1054 |
|
|
fprintf (dump_file, "\n");
|
1055 |
|
|
}
|
1056 |
|
|
}
|
1057 |
|
|
|
1058 |
|
|
/* Process the (operand, code) pairs in order of most occurence. */
|
1059 |
|
|
candidates2 = sbitmap_alloc (length);
|
1060 |
|
|
while (!VEC_empty (oecount, cvec))
|
1061 |
|
|
{
|
1062 |
|
|
oecount *c = VEC_last (oecount, cvec);
|
1063 |
|
|
if (c->cnt < 2)
|
1064 |
|
|
break;
|
1065 |
|
|
|
1066 |
|
|
/* Now collect the operands in the outer chain that contain
|
1067 |
|
|
the common operand in their inner chain. */
|
1068 |
|
|
sbitmap_zero (candidates2);
|
1069 |
|
|
nr_candidates2 = 0;
|
1070 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
|
1071 |
|
|
{
|
1072 |
|
|
gimple oedef;
|
1073 |
|
|
enum tree_code oecode;
|
1074 |
|
|
unsigned j;
|
1075 |
|
|
tree op = VEC_index (operand_entry_t, *ops, i)->op;
|
1076 |
|
|
|
1077 |
|
|
/* If we undistributed in this chain already this may be
|
1078 |
|
|
a constant. */
|
1079 |
|
|
if (TREE_CODE (op) != SSA_NAME)
|
1080 |
|
|
continue;
|
1081 |
|
|
|
1082 |
|
|
oedef = SSA_NAME_DEF_STMT (op);
|
1083 |
|
|
oecode = gimple_assign_rhs_code (oedef);
|
1084 |
|
|
if (oecode != c->oecode)
|
1085 |
|
|
continue;
|
1086 |
|
|
|
1087 |
|
|
for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
|
1088 |
|
|
{
|
1089 |
|
|
if (oe1->op == c->op)
|
1090 |
|
|
{
|
1091 |
|
|
SET_BIT (candidates2, i);
|
1092 |
|
|
++nr_candidates2;
|
1093 |
|
|
break;
|
1094 |
|
|
}
|
1095 |
|
|
}
|
1096 |
|
|
}
|
1097 |
|
|
|
1098 |
|
|
if (nr_candidates2 >= 2)
|
1099 |
|
|
{
|
1100 |
|
|
operand_entry_t oe1, oe2;
|
1101 |
|
|
tree tmpvar;
|
1102 |
|
|
gimple prod;
|
1103 |
|
|
int first = sbitmap_first_set_bit (candidates2);
|
1104 |
|
|
|
1105 |
|
|
/* Build the new addition chain. */
|
1106 |
|
|
oe1 = VEC_index (operand_entry_t, *ops, first);
|
1107 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1108 |
|
|
{
|
1109 |
|
|
fprintf (dump_file, "Building (");
|
1110 |
|
|
print_generic_expr (dump_file, oe1->op, 0);
|
1111 |
|
|
}
|
1112 |
|
|
tmpvar = create_tmp_var (TREE_TYPE (oe1->op), NULL);
|
1113 |
|
|
add_referenced_var (tmpvar);
|
1114 |
|
|
zero_one_operation (&oe1->op, c->oecode, c->op);
|
1115 |
|
|
EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
|
1116 |
|
|
{
|
1117 |
|
|
gimple sum;
|
1118 |
|
|
oe2 = VEC_index (operand_entry_t, *ops, i);
|
1119 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1120 |
|
|
{
|
1121 |
|
|
fprintf (dump_file, " + ");
|
1122 |
|
|
print_generic_expr (dump_file, oe2->op, 0);
|
1123 |
|
|
}
|
1124 |
|
|
zero_one_operation (&oe2->op, c->oecode, c->op);
|
1125 |
|
|
sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
|
1126 |
|
|
oe2->op = fold_convert (TREE_TYPE (oe2->op), integer_zero_node);
|
1127 |
|
|
oe2->rank = 0;
|
1128 |
|
|
oe1->op = gimple_get_lhs (sum);
|
1129 |
|
|
}
|
1130 |
|
|
|
1131 |
|
|
/* Apply the multiplication/division. */
|
1132 |
|
|
prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
|
1133 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1134 |
|
|
{
|
1135 |
|
|
fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
|
1136 |
|
|
print_generic_expr (dump_file, c->op, 0);
|
1137 |
|
|
fprintf (dump_file, "\n");
|
1138 |
|
|
}
|
1139 |
|
|
|
1140 |
|
|
/* Record it in the addition chain and disable further
|
1141 |
|
|
undistribution with this op. */
|
1142 |
|
|
oe1->op = gimple_assign_lhs (prod);
|
1143 |
|
|
oe1->rank = get_rank (oe1->op);
|
1144 |
|
|
VEC_free (operand_entry_t, heap, subops[first]);
|
1145 |
|
|
|
1146 |
|
|
changed = true;
|
1147 |
|
|
}
|
1148 |
|
|
|
1149 |
|
|
VEC_pop (oecount, cvec);
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
|
1153 |
|
|
VEC_free (operand_entry_t, heap, subops[i]);
|
1154 |
|
|
free (subops);
|
1155 |
|
|
VEC_free (oecount, heap, cvec);
|
1156 |
|
|
sbitmap_free (candidates);
|
1157 |
|
|
sbitmap_free (candidates2);
|
1158 |
|
|
|
1159 |
|
|
return changed;
|
1160 |
|
|
}
|
1161 |
|
|
|
1162 |
|
|
|
1163 |
|
|
/* Perform various identities and other optimizations on the list of
|
1164 |
|
|
operand entries, stored in OPS. The tree code for the binary
|
1165 |
|
|
operation between all the operands is OPCODE. */
|
1166 |
|
|
|
1167 |
|
|
static void
|
1168 |
|
|
optimize_ops_list (enum tree_code opcode,
|
1169 |
|
|
VEC (operand_entry_t, heap) **ops)
|
1170 |
|
|
{
|
1171 |
|
|
unsigned int length = VEC_length (operand_entry_t, *ops);
|
1172 |
|
|
unsigned int i;
|
1173 |
|
|
operand_entry_t oe;
|
1174 |
|
|
operand_entry_t oelast = NULL;
|
1175 |
|
|
bool iterate = false;
|
1176 |
|
|
|
1177 |
|
|
if (length == 1)
|
1178 |
|
|
return;
|
1179 |
|
|
|
1180 |
|
|
oelast = VEC_last (operand_entry_t, *ops);
|
1181 |
|
|
|
1182 |
|
|
/* If the last two are constants, pop the constants off, merge them
|
1183 |
|
|
and try the next two. */
|
1184 |
|
|
if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
|
1185 |
|
|
{
|
1186 |
|
|
operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
|
1187 |
|
|
|
1188 |
|
|
if (oelm1->rank == 0
|
1189 |
|
|
&& is_gimple_min_invariant (oelm1->op)
|
1190 |
|
|
&& useless_type_conversion_p (TREE_TYPE (oelm1->op),
|
1191 |
|
|
TREE_TYPE (oelast->op)))
|
1192 |
|
|
{
|
1193 |
|
|
tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
|
1194 |
|
|
oelm1->op, oelast->op);
|
1195 |
|
|
|
1196 |
|
|
if (folded && is_gimple_min_invariant (folded))
|
1197 |
|
|
{
|
1198 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1199 |
|
|
fprintf (dump_file, "Merging constants\n");
|
1200 |
|
|
|
1201 |
|
|
VEC_pop (operand_entry_t, *ops);
|
1202 |
|
|
VEC_pop (operand_entry_t, *ops);
|
1203 |
|
|
|
1204 |
|
|
add_to_ops_vec (ops, folded);
|
1205 |
|
|
reassociate_stats.constants_eliminated++;
|
1206 |
|
|
|
1207 |
|
|
optimize_ops_list (opcode, ops);
|
1208 |
|
|
return;
|
1209 |
|
|
}
|
1210 |
|
|
}
|
1211 |
|
|
}
|
1212 |
|
|
|
1213 |
|
|
eliminate_using_constants (opcode, ops);
|
1214 |
|
|
oelast = NULL;
|
1215 |
|
|
|
1216 |
|
|
for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
|
1217 |
|
|
{
|
1218 |
|
|
bool done = false;
|
1219 |
|
|
|
1220 |
|
|
if (eliminate_not_pairs (opcode, ops, i, oe))
|
1221 |
|
|
return;
|
1222 |
|
|
if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
|
1223 |
|
|
|| (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
|
1224 |
|
|
{
|
1225 |
|
|
if (done)
|
1226 |
|
|
return;
|
1227 |
|
|
iterate = true;
|
1228 |
|
|
oelast = NULL;
|
1229 |
|
|
continue;
|
1230 |
|
|
}
|
1231 |
|
|
oelast = oe;
|
1232 |
|
|
i++;
|
1233 |
|
|
}
|
1234 |
|
|
|
1235 |
|
|
length = VEC_length (operand_entry_t, *ops);
|
1236 |
|
|
oelast = VEC_last (operand_entry_t, *ops);
|
1237 |
|
|
|
1238 |
|
|
if (iterate)
|
1239 |
|
|
optimize_ops_list (opcode, ops);
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
/* Return true if OPERAND is defined by a PHI node which uses the LHS
|
1243 |
|
|
of STMT in it's operands. This is also known as a "destructive
|
1244 |
|
|
update" operation. */
|
1245 |
|
|
|
1246 |
|
|
static bool
|
1247 |
|
|
is_phi_for_stmt (gimple stmt, tree operand)
|
1248 |
|
|
{
|
1249 |
|
|
gimple def_stmt;
|
1250 |
|
|
tree lhs;
|
1251 |
|
|
use_operand_p arg_p;
|
1252 |
|
|
ssa_op_iter i;
|
1253 |
|
|
|
1254 |
|
|
if (TREE_CODE (operand) != SSA_NAME)
|
1255 |
|
|
return false;
|
1256 |
|
|
|
1257 |
|
|
lhs = gimple_assign_lhs (stmt);
|
1258 |
|
|
|
1259 |
|
|
def_stmt = SSA_NAME_DEF_STMT (operand);
|
1260 |
|
|
if (gimple_code (def_stmt) != GIMPLE_PHI)
|
1261 |
|
|
return false;
|
1262 |
|
|
|
1263 |
|
|
FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
|
1264 |
|
|
if (lhs == USE_FROM_PTR (arg_p))
|
1265 |
|
|
return true;
|
1266 |
|
|
return false;
|
1267 |
|
|
}
|
1268 |
|
|
|
1269 |
|
|
/* Remove def stmt of VAR if VAR has zero uses and recurse
|
1270 |
|
|
on rhs1 operand if so. */
|
1271 |
|
|
|
1272 |
|
|
static void
|
1273 |
|
|
remove_visited_stmt_chain (tree var)
|
1274 |
|
|
{
|
1275 |
|
|
gimple stmt;
|
1276 |
|
|
gimple_stmt_iterator gsi;
|
1277 |
|
|
|
1278 |
|
|
while (1)
|
1279 |
|
|
{
|
1280 |
|
|
if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
|
1281 |
|
|
return;
|
1282 |
|
|
stmt = SSA_NAME_DEF_STMT (var);
|
1283 |
|
|
if (!is_gimple_assign (stmt)
|
1284 |
|
|
|| !gimple_visited_p (stmt))
|
1285 |
|
|
return;
|
1286 |
|
|
var = gimple_assign_rhs1 (stmt);
|
1287 |
|
|
gsi = gsi_for_stmt (stmt);
|
1288 |
|
|
gsi_remove (&gsi, true);
|
1289 |
|
|
release_defs (stmt);
|
1290 |
|
|
}
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
/* Recursively rewrite our linearized statements so that the operators
|
1294 |
|
|
match those in OPS[OPINDEX], putting the computation in rank
|
1295 |
|
|
order. */
|
1296 |
|
|
|
1297 |
|
|
static void
|
1298 |
|
|
rewrite_expr_tree (gimple stmt, unsigned int opindex,
|
1299 |
|
|
VEC(operand_entry_t, heap) * ops, bool moved)
|
1300 |
|
|
{
|
1301 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
1302 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
1303 |
|
|
operand_entry_t oe;
|
1304 |
|
|
|
1305 |
|
|
/* If we have three operands left, then we want to make sure the one
|
1306 |
|
|
that gets the double binary op are the ones with the same rank.
|
1307 |
|
|
|
1308 |
|
|
The alternative we try is to see if this is a destructive
|
1309 |
|
|
update style statement, which is like:
|
1310 |
|
|
b = phi (a, ...)
|
1311 |
|
|
a = c + b;
|
1312 |
|
|
In that case, we want to use the destructive update form to
|
1313 |
|
|
expose the possible vectorizer sum reduction opportunity.
|
1314 |
|
|
In that case, the third operand will be the phi node.
|
1315 |
|
|
|
1316 |
|
|
We could, of course, try to be better as noted above, and do a
|
1317 |
|
|
lot of work to try to find these opportunities in >3 operand
|
1318 |
|
|
cases, but it is unlikely to be worth it. */
|
1319 |
|
|
if (opindex + 3 == VEC_length (operand_entry_t, ops))
|
1320 |
|
|
{
|
1321 |
|
|
operand_entry_t oe1, oe2, oe3;
|
1322 |
|
|
|
1323 |
|
|
oe1 = VEC_index (operand_entry_t, ops, opindex);
|
1324 |
|
|
oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
|
1325 |
|
|
oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
|
1326 |
|
|
|
1327 |
|
|
if ((oe1->rank == oe2->rank
|
1328 |
|
|
&& oe2->rank != oe3->rank)
|
1329 |
|
|
|| (is_phi_for_stmt (stmt, oe3->op)
|
1330 |
|
|
&& !is_phi_for_stmt (stmt, oe1->op)
|
1331 |
|
|
&& !is_phi_for_stmt (stmt, oe2->op)))
|
1332 |
|
|
{
|
1333 |
|
|
struct operand_entry temp = *oe3;
|
1334 |
|
|
oe3->op = oe1->op;
|
1335 |
|
|
oe3->rank = oe1->rank;
|
1336 |
|
|
oe1->op = temp.op;
|
1337 |
|
|
oe1->rank= temp.rank;
|
1338 |
|
|
}
|
1339 |
|
|
else if ((oe1->rank == oe3->rank
|
1340 |
|
|
&& oe2->rank != oe3->rank)
|
1341 |
|
|
|| (is_phi_for_stmt (stmt, oe2->op)
|
1342 |
|
|
&& !is_phi_for_stmt (stmt, oe1->op)
|
1343 |
|
|
&& !is_phi_for_stmt (stmt, oe3->op)))
|
1344 |
|
|
{
|
1345 |
|
|
struct operand_entry temp = *oe2;
|
1346 |
|
|
oe2->op = oe1->op;
|
1347 |
|
|
oe2->rank = oe1->rank;
|
1348 |
|
|
oe1->op = temp.op;
|
1349 |
|
|
oe1->rank= temp.rank;
|
1350 |
|
|
}
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
/* The final recursion case for this function is that you have
|
1354 |
|
|
exactly two operations left.
|
1355 |
|
|
If we had one exactly one op in the entire list to start with, we
|
1356 |
|
|
would have never called this function, and the tail recursion
|
1357 |
|
|
rewrites them one at a time. */
|
1358 |
|
|
if (opindex + 2 == VEC_length (operand_entry_t, ops))
|
1359 |
|
|
{
|
1360 |
|
|
operand_entry_t oe1, oe2;
|
1361 |
|
|
|
1362 |
|
|
oe1 = VEC_index (operand_entry_t, ops, opindex);
|
1363 |
|
|
oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
|
1364 |
|
|
|
1365 |
|
|
if (rhs1 != oe1->op || rhs2 != oe2->op)
|
1366 |
|
|
{
|
1367 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1368 |
|
|
{
|
1369 |
|
|
fprintf (dump_file, "Transforming ");
|
1370 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1371 |
|
|
}
|
1372 |
|
|
|
1373 |
|
|
gimple_assign_set_rhs1 (stmt, oe1->op);
|
1374 |
|
|
gimple_assign_set_rhs2 (stmt, oe2->op);
|
1375 |
|
|
update_stmt (stmt);
|
1376 |
|
|
if (rhs1 != oe1->op && rhs1 != oe2->op)
|
1377 |
|
|
remove_visited_stmt_chain (rhs1);
|
1378 |
|
|
|
1379 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1380 |
|
|
{
|
1381 |
|
|
fprintf (dump_file, " into ");
|
1382 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1383 |
|
|
}
|
1384 |
|
|
|
1385 |
|
|
}
|
1386 |
|
|
return;
|
1387 |
|
|
}
|
1388 |
|
|
|
1389 |
|
|
/* If we hit here, we should have 3 or more ops left. */
|
1390 |
|
|
gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
|
1391 |
|
|
|
1392 |
|
|
/* Rewrite the next operator. */
|
1393 |
|
|
oe = VEC_index (operand_entry_t, ops, opindex);
|
1394 |
|
|
|
1395 |
|
|
if (oe->op != rhs2)
|
1396 |
|
|
{
|
1397 |
|
|
if (!moved)
|
1398 |
|
|
{
|
1399 |
|
|
gimple_stmt_iterator gsinow, gsirhs1;
|
1400 |
|
|
gimple stmt1 = stmt, stmt2;
|
1401 |
|
|
unsigned int count;
|
1402 |
|
|
|
1403 |
|
|
gsinow = gsi_for_stmt (stmt);
|
1404 |
|
|
count = VEC_length (operand_entry_t, ops) - opindex - 2;
|
1405 |
|
|
while (count-- != 0)
|
1406 |
|
|
{
|
1407 |
|
|
stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
|
1408 |
|
|
gsirhs1 = gsi_for_stmt (stmt2);
|
1409 |
|
|
gsi_move_before (&gsirhs1, &gsinow);
|
1410 |
|
|
gsi_prev (&gsinow);
|
1411 |
|
|
stmt1 = stmt2;
|
1412 |
|
|
}
|
1413 |
|
|
moved = true;
|
1414 |
|
|
}
|
1415 |
|
|
|
1416 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1417 |
|
|
{
|
1418 |
|
|
fprintf (dump_file, "Transforming ");
|
1419 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1420 |
|
|
}
|
1421 |
|
|
|
1422 |
|
|
gimple_assign_set_rhs2 (stmt, oe->op);
|
1423 |
|
|
update_stmt (stmt);
|
1424 |
|
|
|
1425 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1426 |
|
|
{
|
1427 |
|
|
fprintf (dump_file, " into ");
|
1428 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1429 |
|
|
}
|
1430 |
|
|
}
|
1431 |
|
|
/* Recurse on the LHS of the binary operator, which is guaranteed to
|
1432 |
|
|
be the non-leaf side. */
|
1433 |
|
|
rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
|
1434 |
|
|
}
|
1435 |
|
|
|
1436 |
|
|
/* Transform STMT, which is really (A +B) + (C + D) into the left
|
1437 |
|
|
linear form, ((A+B)+C)+D.
|
1438 |
|
|
Recurse on D if necessary. */
|
1439 |
|
|
|
1440 |
|
|
static void
|
1441 |
|
|
linearize_expr (gimple stmt)
|
1442 |
|
|
{
|
1443 |
|
|
gimple_stmt_iterator gsinow, gsirhs;
|
1444 |
|
|
gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
|
1445 |
|
|
gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
|
1446 |
|
|
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
|
1447 |
|
|
gimple newbinrhs = NULL;
|
1448 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
1449 |
|
|
|
1450 |
|
|
gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
|
1451 |
|
|
&& is_reassociable_op (binrhs, rhscode, loop));
|
1452 |
|
|
|
1453 |
|
|
gsinow = gsi_for_stmt (stmt);
|
1454 |
|
|
gsirhs = gsi_for_stmt (binrhs);
|
1455 |
|
|
gsi_move_before (&gsirhs, &gsinow);
|
1456 |
|
|
|
1457 |
|
|
gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
|
1458 |
|
|
gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
|
1459 |
|
|
gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
|
1460 |
|
|
|
1461 |
|
|
if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
|
1462 |
|
|
newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
|
1463 |
|
|
|
1464 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1465 |
|
|
{
|
1466 |
|
|
fprintf (dump_file, "Linearized: ");
|
1467 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1468 |
|
|
}
|
1469 |
|
|
|
1470 |
|
|
reassociate_stats.linearized++;
|
1471 |
|
|
update_stmt (binrhs);
|
1472 |
|
|
update_stmt (binlhs);
|
1473 |
|
|
update_stmt (stmt);
|
1474 |
|
|
|
1475 |
|
|
gimple_set_visited (stmt, true);
|
1476 |
|
|
gimple_set_visited (binlhs, true);
|
1477 |
|
|
gimple_set_visited (binrhs, true);
|
1478 |
|
|
|
1479 |
|
|
/* Tail recurse on the new rhs if it still needs reassociation. */
|
1480 |
|
|
if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
|
1481 |
|
|
/* ??? This should probably be linearize_expr (newbinrhs) but I don't
|
1482 |
|
|
want to change the algorithm while converting to tuples. */
|
1483 |
|
|
linearize_expr (stmt);
|
1484 |
|
|
}
|
1485 |
|
|
|
1486 |
|
|
/* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
|
1487 |
|
|
it. Otherwise, return NULL. */
|
1488 |
|
|
|
1489 |
|
|
static gimple
|
1490 |
|
|
get_single_immediate_use (tree lhs)
|
1491 |
|
|
{
|
1492 |
|
|
use_operand_p immuse;
|
1493 |
|
|
gimple immusestmt;
|
1494 |
|
|
|
1495 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
1496 |
|
|
&& single_imm_use (lhs, &immuse, &immusestmt)
|
1497 |
|
|
&& is_gimple_assign (immusestmt))
|
1498 |
|
|
return immusestmt;
|
1499 |
|
|
|
1500 |
|
|
return NULL;
|
1501 |
|
|
}
|
1502 |
|
|
|
1503 |
|
|
static VEC(tree, heap) *broken_up_subtracts;
|
1504 |
|
|
|
1505 |
|
|
/* Recursively negate the value of TONEGATE, and return the SSA_NAME
|
1506 |
|
|
representing the negated value. Insertions of any necessary
|
1507 |
|
|
instructions go before GSI.
|
1508 |
|
|
This function is recursive in that, if you hand it "a_5" as the
|
1509 |
|
|
value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
|
1510 |
|
|
transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
|
1511 |
|
|
|
1512 |
|
|
static tree
|
1513 |
|
|
negate_value (tree tonegate, gimple_stmt_iterator *gsi)
|
1514 |
|
|
{
|
1515 |
|
|
gimple negatedefstmt= NULL;
|
1516 |
|
|
tree resultofnegate;
|
1517 |
|
|
|
1518 |
|
|
/* If we are trying to negate a name, defined by an add, negate the
|
1519 |
|
|
add operands instead. */
|
1520 |
|
|
if (TREE_CODE (tonegate) == SSA_NAME)
|
1521 |
|
|
negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
|
1522 |
|
|
if (TREE_CODE (tonegate) == SSA_NAME
|
1523 |
|
|
&& is_gimple_assign (negatedefstmt)
|
1524 |
|
|
&& TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
|
1525 |
|
|
&& has_single_use (gimple_assign_lhs (negatedefstmt))
|
1526 |
|
|
&& gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
|
1527 |
|
|
{
|
1528 |
|
|
gimple_stmt_iterator gsi;
|
1529 |
|
|
tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
|
1530 |
|
|
tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
|
1531 |
|
|
|
1532 |
|
|
gsi = gsi_for_stmt (negatedefstmt);
|
1533 |
|
|
rhs1 = negate_value (rhs1, &gsi);
|
1534 |
|
|
gimple_assign_set_rhs1 (negatedefstmt, rhs1);
|
1535 |
|
|
|
1536 |
|
|
gsi = gsi_for_stmt (negatedefstmt);
|
1537 |
|
|
rhs2 = negate_value (rhs2, &gsi);
|
1538 |
|
|
gimple_assign_set_rhs2 (negatedefstmt, rhs2);
|
1539 |
|
|
|
1540 |
|
|
update_stmt (negatedefstmt);
|
1541 |
|
|
return gimple_assign_lhs (negatedefstmt);
|
1542 |
|
|
}
|
1543 |
|
|
|
1544 |
|
|
tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
|
1545 |
|
|
resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
|
1546 |
|
|
NULL_TREE, true, GSI_SAME_STMT);
|
1547 |
|
|
VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate);
|
1548 |
|
|
return resultofnegate;
|
1549 |
|
|
}
|
1550 |
|
|
|
1551 |
|
|
/* Return true if we should break up the subtract in STMT into an add
|
1552 |
|
|
with negate. This is true when we the subtract operands are really
|
1553 |
|
|
adds, or the subtract itself is used in an add expression. In
|
1554 |
|
|
either case, breaking up the subtract into an add with negate
|
1555 |
|
|
exposes the adds to reassociation. */
|
1556 |
|
|
|
1557 |
|
|
static bool
|
1558 |
|
|
should_break_up_subtract (gimple stmt)
|
1559 |
|
|
{
|
1560 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
1561 |
|
|
tree binlhs = gimple_assign_rhs1 (stmt);
|
1562 |
|
|
tree binrhs = gimple_assign_rhs2 (stmt);
|
1563 |
|
|
gimple immusestmt;
|
1564 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
1565 |
|
|
|
1566 |
|
|
if (TREE_CODE (binlhs) == SSA_NAME
|
1567 |
|
|
&& is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
|
1568 |
|
|
return true;
|
1569 |
|
|
|
1570 |
|
|
if (TREE_CODE (binrhs) == SSA_NAME
|
1571 |
|
|
&& is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
|
1572 |
|
|
return true;
|
1573 |
|
|
|
1574 |
|
|
if (TREE_CODE (lhs) == SSA_NAME
|
1575 |
|
|
&& (immusestmt = get_single_immediate_use (lhs))
|
1576 |
|
|
&& is_gimple_assign (immusestmt)
|
1577 |
|
|
&& (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
|
1578 |
|
|
|| gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
|
1579 |
|
|
return true;
|
1580 |
|
|
return false;
|
1581 |
|
|
}
|
1582 |
|
|
|
1583 |
|
|
/* Transform STMT from A - B into A + -B. */
|
1584 |
|
|
|
1585 |
|
|
static void
|
1586 |
|
|
break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
|
1587 |
|
|
{
|
1588 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
1589 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
1590 |
|
|
|
1591 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1592 |
|
|
{
|
1593 |
|
|
fprintf (dump_file, "Breaking up subtract ");
|
1594 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1595 |
|
|
}
|
1596 |
|
|
|
1597 |
|
|
rhs2 = negate_value (rhs2, gsip);
|
1598 |
|
|
gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
|
1599 |
|
|
update_stmt (stmt);
|
1600 |
|
|
}
|
1601 |
|
|
|
1602 |
|
|
/* Recursively linearize a binary expression that is the RHS of STMT.
|
1603 |
|
|
Place the operands of the expression tree in the vector named OPS. */
|
1604 |
|
|
|
1605 |
|
|
static void
|
1606 |
|
|
linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
|
1607 |
|
|
bool is_associative, bool set_visited)
|
1608 |
|
|
{
|
1609 |
|
|
tree binlhs = gimple_assign_rhs1 (stmt);
|
1610 |
|
|
tree binrhs = gimple_assign_rhs2 (stmt);
|
1611 |
|
|
gimple binlhsdef, binrhsdef;
|
1612 |
|
|
bool binlhsisreassoc = false;
|
1613 |
|
|
bool binrhsisreassoc = false;
|
1614 |
|
|
enum tree_code rhscode = gimple_assign_rhs_code (stmt);
|
1615 |
|
|
struct loop *loop = loop_containing_stmt (stmt);
|
1616 |
|
|
|
1617 |
|
|
if (set_visited)
|
1618 |
|
|
gimple_set_visited (stmt, true);
|
1619 |
|
|
|
1620 |
|
|
if (TREE_CODE (binlhs) == SSA_NAME)
|
1621 |
|
|
{
|
1622 |
|
|
binlhsdef = SSA_NAME_DEF_STMT (binlhs);
|
1623 |
|
|
binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode, loop);
|
1624 |
|
|
}
|
1625 |
|
|
|
1626 |
|
|
if (TREE_CODE (binrhs) == SSA_NAME)
|
1627 |
|
|
{
|
1628 |
|
|
binrhsdef = SSA_NAME_DEF_STMT (binrhs);
|
1629 |
|
|
binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode, loop);
|
1630 |
|
|
}
|
1631 |
|
|
|
1632 |
|
|
/* If the LHS is not reassociable, but the RHS is, we need to swap
|
1633 |
|
|
them. If neither is reassociable, there is nothing we can do, so
|
1634 |
|
|
just put them in the ops vector. If the LHS is reassociable,
|
1635 |
|
|
linearize it. If both are reassociable, then linearize the RHS
|
1636 |
|
|
and the LHS. */
|
1637 |
|
|
|
1638 |
|
|
if (!binlhsisreassoc)
|
1639 |
|
|
{
|
1640 |
|
|
tree temp;
|
1641 |
|
|
|
1642 |
|
|
/* If this is not a associative operation like division, give up. */
|
1643 |
|
|
if (!is_associative)
|
1644 |
|
|
{
|
1645 |
|
|
add_to_ops_vec (ops, binrhs);
|
1646 |
|
|
return;
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
if (!binrhsisreassoc)
|
1650 |
|
|
{
|
1651 |
|
|
add_to_ops_vec (ops, binrhs);
|
1652 |
|
|
add_to_ops_vec (ops, binlhs);
|
1653 |
|
|
return;
|
1654 |
|
|
}
|
1655 |
|
|
|
1656 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1657 |
|
|
{
|
1658 |
|
|
fprintf (dump_file, "swapping operands of ");
|
1659 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1660 |
|
|
}
|
1661 |
|
|
|
1662 |
|
|
swap_tree_operands (stmt,
|
1663 |
|
|
gimple_assign_rhs1_ptr (stmt),
|
1664 |
|
|
gimple_assign_rhs2_ptr (stmt));
|
1665 |
|
|
update_stmt (stmt);
|
1666 |
|
|
|
1667 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1668 |
|
|
{
|
1669 |
|
|
fprintf (dump_file, " is now ");
|
1670 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1671 |
|
|
}
|
1672 |
|
|
|
1673 |
|
|
/* We want to make it so the lhs is always the reassociative op,
|
1674 |
|
|
so swap. */
|
1675 |
|
|
temp = binlhs;
|
1676 |
|
|
binlhs = binrhs;
|
1677 |
|
|
binrhs = temp;
|
1678 |
|
|
}
|
1679 |
|
|
else if (binrhsisreassoc)
|
1680 |
|
|
{
|
1681 |
|
|
linearize_expr (stmt);
|
1682 |
|
|
binlhs = gimple_assign_rhs1 (stmt);
|
1683 |
|
|
binrhs = gimple_assign_rhs2 (stmt);
|
1684 |
|
|
}
|
1685 |
|
|
|
1686 |
|
|
gcc_assert (TREE_CODE (binrhs) != SSA_NAME
|
1687 |
|
|
|| !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
|
1688 |
|
|
rhscode, loop));
|
1689 |
|
|
linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
|
1690 |
|
|
is_associative, set_visited);
|
1691 |
|
|
add_to_ops_vec (ops, binrhs);
|
1692 |
|
|
}
|
1693 |
|
|
|
1694 |
|
|
/* Repropagate the negates back into subtracts, since no other pass
|
1695 |
|
|
currently does it. */
|
1696 |
|
|
|
1697 |
|
|
static void
|
1698 |
|
|
repropagate_negates (void)
|
1699 |
|
|
{
|
1700 |
|
|
unsigned int i = 0;
|
1701 |
|
|
tree negate;
|
1702 |
|
|
|
1703 |
|
|
for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++)
|
1704 |
|
|
{
|
1705 |
|
|
gimple user = get_single_immediate_use (negate);
|
1706 |
|
|
|
1707 |
|
|
/* The negate operand can be either operand of a PLUS_EXPR
|
1708 |
|
|
(it can be the LHS if the RHS is a constant for example).
|
1709 |
|
|
|
1710 |
|
|
Force the negate operand to the RHS of the PLUS_EXPR, then
|
1711 |
|
|
transform the PLUS_EXPR into a MINUS_EXPR. */
|
1712 |
|
|
if (user
|
1713 |
|
|
&& is_gimple_assign (user)
|
1714 |
|
|
&& gimple_assign_rhs_code (user) == PLUS_EXPR)
|
1715 |
|
|
{
|
1716 |
|
|
/* If the negated operand appears on the LHS of the
|
1717 |
|
|
PLUS_EXPR, exchange the operands of the PLUS_EXPR
|
1718 |
|
|
to force the negated operand to the RHS of the PLUS_EXPR. */
|
1719 |
|
|
if (gimple_assign_rhs1 (user) == negate)
|
1720 |
|
|
{
|
1721 |
|
|
swap_tree_operands (user,
|
1722 |
|
|
gimple_assign_rhs1_ptr (user),
|
1723 |
|
|
gimple_assign_rhs2_ptr (user));
|
1724 |
|
|
}
|
1725 |
|
|
|
1726 |
|
|
/* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
|
1727 |
|
|
the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
|
1728 |
|
|
if (gimple_assign_rhs2 (user) == negate)
|
1729 |
|
|
{
|
1730 |
|
|
tree rhs1 = gimple_assign_rhs1 (user);
|
1731 |
|
|
tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
|
1732 |
|
|
gimple_stmt_iterator gsi = gsi_for_stmt (user);
|
1733 |
|
|
gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
|
1734 |
|
|
update_stmt (user);
|
1735 |
|
|
}
|
1736 |
|
|
}
|
1737 |
|
|
}
|
1738 |
|
|
}
|
1739 |
|
|
|
1740 |
|
|
/* Break up subtract operations in block BB.
|
1741 |
|
|
|
1742 |
|
|
We do this top down because we don't know whether the subtract is
|
1743 |
|
|
part of a possible chain of reassociation except at the top.
|
1744 |
|
|
|
1745 |
|
|
IE given
|
1746 |
|
|
d = f + g
|
1747 |
|
|
c = a + e
|
1748 |
|
|
b = c - d
|
1749 |
|
|
q = b - r
|
1750 |
|
|
k = t - q
|
1751 |
|
|
|
1752 |
|
|
we want to break up k = t - q, but we won't until we've transformed q
|
1753 |
|
|
= b - r, which won't be broken up until we transform b = c - d.
|
1754 |
|
|
|
1755 |
|
|
En passant, clear the GIMPLE visited flag on every statement. */
|
1756 |
|
|
|
1757 |
|
|
static void
|
1758 |
|
|
break_up_subtract_bb (basic_block bb)
|
1759 |
|
|
{
|
1760 |
|
|
gimple_stmt_iterator gsi;
|
1761 |
|
|
basic_block son;
|
1762 |
|
|
|
1763 |
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
1764 |
|
|
{
|
1765 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1766 |
|
|
gimple_set_visited (stmt, false);
|
1767 |
|
|
|
1768 |
|
|
/* Look for simple gimple subtract operations. */
|
1769 |
|
|
if (is_gimple_assign (stmt)
|
1770 |
|
|
&& gimple_assign_rhs_code (stmt) == MINUS_EXPR)
|
1771 |
|
|
{
|
1772 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
1773 |
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
1774 |
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
1775 |
|
|
|
1776 |
|
|
/* If associative-math we can do reassociation for
|
1777 |
|
|
non-integral types. Or, we can do reassociation for
|
1778 |
|
|
non-saturating fixed-point types. */
|
1779 |
|
|
if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
1780 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
1781 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
|
1782 |
|
|
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
|
1783 |
|
|
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
|
1784 |
|
|
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
|
1785 |
|
|
|| !flag_associative_math)
|
1786 |
|
|
&& (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
|
1787 |
|
|
|| !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
|
1788 |
|
|
|| !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
|
1789 |
|
|
continue;
|
1790 |
|
|
|
1791 |
|
|
/* Check for a subtract used only in an addition. If this
|
1792 |
|
|
is the case, transform it into add of a negate for better
|
1793 |
|
|
reassociation. IE transform C = A-B into C = A + -B if C
|
1794 |
|
|
is only used in an addition. */
|
1795 |
|
|
if (should_break_up_subtract (stmt))
|
1796 |
|
|
break_up_subtract (stmt, &gsi);
|
1797 |
|
|
}
|
1798 |
|
|
}
|
1799 |
|
|
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
1800 |
|
|
son;
|
1801 |
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
1802 |
|
|
break_up_subtract_bb (son);
|
1803 |
|
|
}
|
1804 |
|
|
|
1805 |
|
|
/* Reassociate expressions in basic block BB and its post-dominator as
|
1806 |
|
|
children. */
|
1807 |
|
|
|
1808 |
|
|
static void
|
1809 |
|
|
reassociate_bb (basic_block bb)
|
1810 |
|
|
{
|
1811 |
|
|
gimple_stmt_iterator gsi;
|
1812 |
|
|
basic_block son;
|
1813 |
|
|
|
1814 |
|
|
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
|
1815 |
|
|
{
|
1816 |
|
|
gimple stmt = gsi_stmt (gsi);
|
1817 |
|
|
|
1818 |
|
|
if (is_gimple_assign (stmt))
|
1819 |
|
|
{
|
1820 |
|
|
tree lhs, rhs1, rhs2;
|
1821 |
|
|
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
|
1822 |
|
|
|
1823 |
|
|
/* If this is not a gimple binary expression, there is
|
1824 |
|
|
nothing for us to do with it. */
|
1825 |
|
|
if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
|
1826 |
|
|
continue;
|
1827 |
|
|
|
1828 |
|
|
/* If this was part of an already processed statement,
|
1829 |
|
|
we don't need to touch it again. */
|
1830 |
|
|
if (gimple_visited_p (stmt))
|
1831 |
|
|
{
|
1832 |
|
|
/* This statement might have become dead because of previous
|
1833 |
|
|
reassociations. */
|
1834 |
|
|
if (has_zero_uses (gimple_get_lhs (stmt)))
|
1835 |
|
|
{
|
1836 |
|
|
gsi_remove (&gsi, true);
|
1837 |
|
|
release_defs (stmt);
|
1838 |
|
|
/* We might end up removing the last stmt above which
|
1839 |
|
|
places the iterator to the end of the sequence.
|
1840 |
|
|
Reset it to the last stmt in this case which might
|
1841 |
|
|
be the end of the sequence as well if we removed
|
1842 |
|
|
the last statement of the sequence. In which case
|
1843 |
|
|
we need to bail out. */
|
1844 |
|
|
if (gsi_end_p (gsi))
|
1845 |
|
|
{
|
1846 |
|
|
gsi = gsi_last_bb (bb);
|
1847 |
|
|
if (gsi_end_p (gsi))
|
1848 |
|
|
break;
|
1849 |
|
|
}
|
1850 |
|
|
}
|
1851 |
|
|
continue;
|
1852 |
|
|
}
|
1853 |
|
|
|
1854 |
|
|
lhs = gimple_assign_lhs (stmt);
|
1855 |
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
1856 |
|
|
rhs2 = gimple_assign_rhs2 (stmt);
|
1857 |
|
|
|
1858 |
|
|
/* If associative-math we can do reassociation for
|
1859 |
|
|
non-integral types. Or, we can do reassociation for
|
1860 |
|
|
non-saturating fixed-point types. */
|
1861 |
|
|
if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
|
1862 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
|
1863 |
|
|
|| !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
|
1864 |
|
|
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
|
1865 |
|
|
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
|
1866 |
|
|
|| !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
|
1867 |
|
|
|| !flag_associative_math)
|
1868 |
|
|
&& (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
|
1869 |
|
|
|| !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
|
1870 |
|
|
|| !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
|
1871 |
|
|
continue;
|
1872 |
|
|
|
1873 |
|
|
if (associative_tree_code (rhs_code))
|
1874 |
|
|
{
|
1875 |
|
|
VEC(operand_entry_t, heap) *ops = NULL;
|
1876 |
|
|
|
1877 |
|
|
/* There may be no immediate uses left by the time we
|
1878 |
|
|
get here because we may have eliminated them all. */
|
1879 |
|
|
if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
|
1880 |
|
|
continue;
|
1881 |
|
|
|
1882 |
|
|
gimple_set_visited (stmt, true);
|
1883 |
|
|
linearize_expr_tree (&ops, stmt, true, true);
|
1884 |
|
|
qsort (VEC_address (operand_entry_t, ops),
|
1885 |
|
|
VEC_length (operand_entry_t, ops),
|
1886 |
|
|
sizeof (operand_entry_t),
|
1887 |
|
|
sort_by_operand_rank);
|
1888 |
|
|
optimize_ops_list (rhs_code, &ops);
|
1889 |
|
|
if (undistribute_ops_list (rhs_code, &ops,
|
1890 |
|
|
loop_containing_stmt (stmt)))
|
1891 |
|
|
{
|
1892 |
|
|
qsort (VEC_address (operand_entry_t, ops),
|
1893 |
|
|
VEC_length (operand_entry_t, ops),
|
1894 |
|
|
sizeof (operand_entry_t),
|
1895 |
|
|
sort_by_operand_rank);
|
1896 |
|
|
optimize_ops_list (rhs_code, &ops);
|
1897 |
|
|
}
|
1898 |
|
|
|
1899 |
|
|
if (VEC_length (operand_entry_t, ops) == 1)
|
1900 |
|
|
{
|
1901 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1902 |
|
|
{
|
1903 |
|
|
fprintf (dump_file, "Transforming ");
|
1904 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1905 |
|
|
}
|
1906 |
|
|
|
1907 |
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
1908 |
|
|
gimple_assign_set_rhs_from_tree (&gsi,
|
1909 |
|
|
VEC_last (operand_entry_t,
|
1910 |
|
|
ops)->op);
|
1911 |
|
|
update_stmt (stmt);
|
1912 |
|
|
remove_visited_stmt_chain (rhs1);
|
1913 |
|
|
|
1914 |
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
1915 |
|
|
{
|
1916 |
|
|
fprintf (dump_file, " into ");
|
1917 |
|
|
print_gimple_stmt (dump_file, stmt, 0, 0);
|
1918 |
|
|
}
|
1919 |
|
|
}
|
1920 |
|
|
else
|
1921 |
|
|
rewrite_expr_tree (stmt, 0, ops, false);
|
1922 |
|
|
|
1923 |
|
|
VEC_free (operand_entry_t, heap, ops);
|
1924 |
|
|
}
|
1925 |
|
|
}
|
1926 |
|
|
}
|
1927 |
|
|
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
|
1928 |
|
|
son;
|
1929 |
|
|
son = next_dom_son (CDI_POST_DOMINATORS, son))
|
1930 |
|
|
reassociate_bb (son);
|
1931 |
|
|
}
|
1932 |
|
|
|
1933 |
|
|
void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
|
1934 |
|
|
void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
|
1935 |
|
|
|
1936 |
|
|
/* Dump the operand entry vector OPS to FILE. */
|
1937 |
|
|
|
1938 |
|
|
void
|
1939 |
|
|
dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
|
1940 |
|
|
{
|
1941 |
|
|
operand_entry_t oe;
|
1942 |
|
|
unsigned int i;
|
1943 |
|
|
|
1944 |
|
|
for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++)
|
1945 |
|
|
{
|
1946 |
|
|
fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
|
1947 |
|
|
print_generic_expr (file, oe->op, 0);
|
1948 |
|
|
}
|
1949 |
|
|
}
|
1950 |
|
|
|
1951 |
|
|
/* Dump the operand entry vector OPS to STDERR. */
|
1952 |
|
|
|
1953 |
|
|
void
|
1954 |
|
|
debug_ops_vector (VEC (operand_entry_t, heap) *ops)
|
1955 |
|
|
{
|
1956 |
|
|
dump_ops_vector (stderr, ops);
|
1957 |
|
|
}
|
1958 |
|
|
|
1959 |
|
|
static void
|
1960 |
|
|
do_reassoc (void)
|
1961 |
|
|
{
|
1962 |
|
|
break_up_subtract_bb (ENTRY_BLOCK_PTR);
|
1963 |
|
|
reassociate_bb (EXIT_BLOCK_PTR);
|
1964 |
|
|
}
|
1965 |
|
|
|
1966 |
|
|
/* Initialize the reassociation pass. */
|
1967 |
|
|
|
1968 |
|
|
static void
|
1969 |
|
|
init_reassoc (void)
|
1970 |
|
|
{
|
1971 |
|
|
int i;
|
1972 |
|
|
long rank = 2;
|
1973 |
|
|
tree param;
|
1974 |
|
|
int *bbs = XNEWVEC (int, last_basic_block + 1);
|
1975 |
|
|
|
1976 |
|
|
/* Find the loops, so that we can prevent moving calculations in
|
1977 |
|
|
them. */
|
1978 |
|
|
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
|
1979 |
|
|
|
1980 |
|
|
memset (&reassociate_stats, 0, sizeof (reassociate_stats));
|
1981 |
|
|
|
1982 |
|
|
operand_entry_pool = create_alloc_pool ("operand entry pool",
|
1983 |
|
|
sizeof (struct operand_entry), 30);
|
1984 |
|
|
|
1985 |
|
|
/* Reverse RPO (Reverse Post Order) will give us something where
|
1986 |
|
|
deeper loops come later. */
|
1987 |
|
|
pre_and_rev_post_order_compute (NULL, bbs, false);
|
1988 |
|
|
bb_rank = XCNEWVEC (long, last_basic_block + 1);
|
1989 |
|
|
operand_rank = pointer_map_create ();
|
1990 |
|
|
|
1991 |
|
|
/* Give each argument a distinct rank. */
|
1992 |
|
|
for (param = DECL_ARGUMENTS (current_function_decl);
|
1993 |
|
|
param;
|
1994 |
|
|
param = TREE_CHAIN (param))
|
1995 |
|
|
{
|
1996 |
|
|
if (gimple_default_def (cfun, param) != NULL)
|
1997 |
|
|
{
|
1998 |
|
|
tree def = gimple_default_def (cfun, param);
|
1999 |
|
|
insert_operand_rank (def, ++rank);
|
2000 |
|
|
}
|
2001 |
|
|
}
|
2002 |
|
|
|
2003 |
|
|
/* Give the chain decl a distinct rank. */
|
2004 |
|
|
if (cfun->static_chain_decl != NULL)
|
2005 |
|
|
{
|
2006 |
|
|
tree def = gimple_default_def (cfun, cfun->static_chain_decl);
|
2007 |
|
|
if (def != NULL)
|
2008 |
|
|
insert_operand_rank (def, ++rank);
|
2009 |
|
|
}
|
2010 |
|
|
|
2011 |
|
|
/* Set up rank for each BB */
|
2012 |
|
|
for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
|
2013 |
|
|
bb_rank[bbs[i]] = ++rank << 16;
|
2014 |
|
|
|
2015 |
|
|
free (bbs);
|
2016 |
|
|
calculate_dominance_info (CDI_POST_DOMINATORS);
|
2017 |
|
|
broken_up_subtracts = NULL;
|
2018 |
|
|
}
|
2019 |
|
|
|
2020 |
|
|
/* Cleanup after the reassociation pass, and print stats if
|
2021 |
|
|
requested. */
|
2022 |
|
|
|
2023 |
|
|
static void
|
2024 |
|
|
fini_reassoc (void)
|
2025 |
|
|
{
|
2026 |
|
|
statistics_counter_event (cfun, "Linearized",
|
2027 |
|
|
reassociate_stats.linearized);
|
2028 |
|
|
statistics_counter_event (cfun, "Constants eliminated",
|
2029 |
|
|
reassociate_stats.constants_eliminated);
|
2030 |
|
|
statistics_counter_event (cfun, "Ops eliminated",
|
2031 |
|
|
reassociate_stats.ops_eliminated);
|
2032 |
|
|
statistics_counter_event (cfun, "Statements rewritten",
|
2033 |
|
|
reassociate_stats.rewritten);
|
2034 |
|
|
|
2035 |
|
|
pointer_map_destroy (operand_rank);
|
2036 |
|
|
free_alloc_pool (operand_entry_pool);
|
2037 |
|
|
free (bb_rank);
|
2038 |
|
|
VEC_free (tree, heap, broken_up_subtracts);
|
2039 |
|
|
free_dominance_info (CDI_POST_DOMINATORS);
|
2040 |
|
|
loop_optimizer_finalize ();
|
2041 |
|
|
}
|
2042 |
|
|
|
2043 |
|
|
/* Gate and execute functions for Reassociation. */
|
2044 |
|
|
|
2045 |
|
|
static unsigned int
|
2046 |
|
|
execute_reassoc (void)
|
2047 |
|
|
{
|
2048 |
|
|
init_reassoc ();
|
2049 |
|
|
|
2050 |
|
|
do_reassoc ();
|
2051 |
|
|
repropagate_negates ();
|
2052 |
|
|
|
2053 |
|
|
fini_reassoc ();
|
2054 |
|
|
return 0;
|
2055 |
|
|
}
|
2056 |
|
|
|
2057 |
|
|
static bool
|
2058 |
|
|
gate_tree_ssa_reassoc (void)
|
2059 |
|
|
{
|
2060 |
|
|
return flag_tree_reassoc != 0;
|
2061 |
|
|
}
|
2062 |
|
|
|
2063 |
|
|
struct gimple_opt_pass pass_reassoc =
|
2064 |
|
|
{
|
2065 |
|
|
{
|
2066 |
|
|
GIMPLE_PASS,
|
2067 |
|
|
"reassoc", /* name */
|
2068 |
|
|
gate_tree_ssa_reassoc, /* gate */
|
2069 |
|
|
execute_reassoc, /* execute */
|
2070 |
|
|
NULL, /* sub */
|
2071 |
|
|
NULL, /* next */
|
2072 |
|
|
0, /* static_pass_number */
|
2073 |
|
|
TV_TREE_REASSOC, /* tv_id */
|
2074 |
|
|
PROP_cfg | PROP_ssa, /* properties_required */
|
2075 |
|
|
0, /* properties_provided */
|
2076 |
|
|
0, /* properties_destroyed */
|
2077 |
|
|
0, /* todo_flags_start */
|
2078 |
|
|
TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
|
2079 |
|
|
}
|
2080 |
|
|
};
|
2081 |
|
|
|