| 1 | 280 | jeremybenn | /* Reassociation for trees.
 | 
      
         | 2 |  |  |    Copyright (C) 2005, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
 | 
      
         | 3 |  |  |    Contributed by Daniel Berlin <dan@dberlin.org>
 | 
      
         | 4 |  |  |  
 | 
      
         | 5 |  |  | This file is part of GCC.
 | 
      
         | 6 |  |  |  
 | 
      
         | 7 |  |  | GCC is free software; you can redistribute it and/or modify
 | 
      
         | 8 |  |  | it under the terms of the GNU General Public License as published by
 | 
      
         | 9 |  |  | the Free Software Foundation; either version 3, or (at your option)
 | 
      
         | 10 |  |  | any later version.
 | 
      
         | 11 |  |  |  
 | 
      
         | 12 |  |  | GCC is distributed in the hope that it will be useful,
 | 
      
         | 13 |  |  | but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
      
         | 14 |  |  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
      
         | 15 |  |  | GNU General Public License for more details.
 | 
      
         | 16 |  |  |  
 | 
      
         | 17 |  |  | You should have received a copy of the GNU General Public License
 | 
      
         | 18 |  |  | along with GCC; see the file COPYING3.  If not see
 | 
      
         | 19 |  |  | <http://www.gnu.org/licenses/>.  */
 | 
      
         | 20 |  |  |  
 | 
      
         | 21 |  |  | #include "config.h"
 | 
      
         | 22 |  |  | #include "system.h"
 | 
      
         | 23 |  |  | #include "coretypes.h"
 | 
      
         | 24 |  |  | #include "tm.h"
 | 
      
         | 25 |  |  | #include "ggc.h"
 | 
      
         | 26 |  |  | #include "tree.h"
 | 
      
         | 27 |  |  | #include "basic-block.h"
 | 
      
         | 28 |  |  | #include "diagnostic.h"
 | 
      
         | 29 |  |  | #include "tree-inline.h"
 | 
      
         | 30 |  |  | #include "tree-flow.h"
 | 
      
         | 31 |  |  | #include "gimple.h"
 | 
      
         | 32 |  |  | #include "tree-dump.h"
 | 
      
         | 33 |  |  | #include "timevar.h"
 | 
      
         | 34 |  |  | #include "tree-iterator.h"
 | 
      
         | 35 |  |  | #include "real.h"
 | 
      
         | 36 |  |  | #include "tree-pass.h"
 | 
      
         | 37 |  |  | #include "alloc-pool.h"
 | 
      
         | 38 |  |  | #include "vec.h"
 | 
      
         | 39 |  |  | #include "langhooks.h"
 | 
      
         | 40 |  |  | #include "pointer-set.h"
 | 
      
         | 41 |  |  | #include "cfgloop.h"
 | 
      
         | 42 |  |  | #include "flags.h"
 | 
      
         | 43 |  |  |  
 | 
      
         | 44 |  |  | /*  This is a simple global reassociation pass.  It is, in part, based
 | 
      
         | 45 |  |  |     on the LLVM pass of the same name (They do some things more/less
 | 
      
         | 46 |  |  |     than we do, in different orders, etc).
 | 
      
         | 47 |  |  |  
 | 
      
         | 48 |  |  |     It consists of five steps:
 | 
      
         | 49 |  |  |  
 | 
      
         | 50 |  |  |     1. Breaking up subtract operations into addition + negate, where
 | 
      
         | 51 |  |  |     it would promote the reassociation of adds.
 | 
      
         | 52 |  |  |  
 | 
      
         | 53 |  |  |     2. Left linearization of the expression trees, so that (A+B)+(C+D)
 | 
      
         | 54 |  |  |     becomes (((A+B)+C)+D), which is easier for us to rewrite later.
 | 
      
         | 55 |  |  |     During linearization, we place the operands of the binary
 | 
      
         | 56 |  |  |     expressions into a vector of operand_entry_t
 | 
      
         | 57 |  |  |  
 | 
      
         | 58 |  |  |     3. Optimization of the operand lists, eliminating things like a +
 | 
      
         | 59 |  |  |     -a, a & a, etc.
 | 
      
         | 60 |  |  |  
 | 
      
         | 61 |  |  |     4. Rewrite the expression trees we linearized and optimized so
 | 
      
         | 62 |  |  |     they are in proper rank order.
 | 
      
         | 63 |  |  |  
 | 
      
         | 64 |  |  |     5. Repropagate negates, as nothing else will clean it up ATM.
 | 
      
         | 65 |  |  |  
 | 
      
         | 66 |  |  |     A bit of theory on #4, since nobody seems to write anything down
 | 
      
         | 67 |  |  |     about why it makes sense to do it the way they do it:
 | 
      
         | 68 |  |  |  
 | 
      
         | 69 |  |  |     We could do this much nicer theoretically, but don't (for reasons
 | 
      
         | 70 |  |  |     explained after how to do it theoretically nice :P).
 | 
      
         | 71 |  |  |  
 | 
      
         | 72 |  |  |     In order to promote the most redundancy elimination, you want
 | 
      
         | 73 |  |  |     binary expressions whose operands are the same rank (or
 | 
      
         | 74 |  |  |     preferably, the same value) exposed to the redundancy eliminator,
 | 
      
         | 75 |  |  |     for possible elimination.
 | 
      
         | 76 |  |  |  
 | 
      
         | 77 |  |  |     So the way to do this if we really cared, is to build the new op
 | 
      
         | 78 |  |  |     tree from the leaves to the roots, merging as you go, and putting the
 | 
      
         | 79 |  |  |     new op on the end of the worklist, until you are left with one
 | 
      
         | 80 |  |  |     thing on the worklist.
 | 
      
         | 81 |  |  |  
 | 
      
         | 82 |  |  |     IE if you have to rewrite the following set of operands (listed with
 | 
      
         | 83 |  |  |     rank in parentheses), with opcode PLUS_EXPR:
 | 
      
         | 84 |  |  |  
 | 
      
         | 85 |  |  |     a (1),  b (1),  c (1),  d (2), e (2)
 | 
      
         | 86 |  |  |  
 | 
      
         | 87 |  |  |  
 | 
      
         | 88 |  |  |     We start with our merge worklist empty, and the ops list with all of
 | 
      
         | 89 |  |  |     those on it.
 | 
      
         | 90 |  |  |  
 | 
      
         | 91 |  |  |     You want to first merge all leaves of the same rank, as much as
 | 
      
         | 92 |  |  |     possible.
 | 
      
         | 93 |  |  |  
 | 
      
         | 94 |  |  |     So first build a binary op of
 | 
      
         | 95 |  |  |  
 | 
      
         | 96 |  |  |     mergetmp = a + b, and put "mergetmp" on the merge worklist.
 | 
      
         | 97 |  |  |  
 | 
      
         | 98 |  |  |     Because there is no three operand form of PLUS_EXPR, c is not going to
 | 
      
         | 99 |  |  |     be exposed to redundancy elimination as a rank 1 operand.
 | 
      
         | 100 |  |  |  
 | 
      
         | 101 |  |  |     So you might as well throw it on the merge worklist (you could also
 | 
      
         | 102 |  |  |     consider it to now be a rank two operand, and merge it with d and e,
 | 
      
         | 103 |  |  |     but in this case, you then have evicted e from a binary op. So at
 | 
      
         | 104 |  |  |     least in this situation, you can't win.)
 | 
      
         | 105 |  |  |  
 | 
      
         | 106 |  |  |     Then build a binary op of d + e
 | 
      
         | 107 |  |  |     mergetmp2 = d + e
 | 
      
         | 108 |  |  |  
 | 
      
         | 109 |  |  |     and put mergetmp2 on the merge worklist.
 | 
      
         | 110 |  |  |  
 | 
      
         | 111 |  |  |     so merge worklist = {mergetmp, c, mergetmp2}
 | 
      
         | 112 |  |  |  
 | 
      
         | 113 |  |  |     Continue building binary ops of these operations until you have only
 | 
      
         | 114 |  |  |     one operation left on the worklist.
 | 
      
         | 115 |  |  |  
 | 
      
         | 116 |  |  |     So we have
 | 
      
         | 117 |  |  |  
 | 
      
         | 118 |  |  |     build binary op
 | 
      
         | 119 |  |  |     mergetmp3 = mergetmp + c
 | 
      
         | 120 |  |  |  
 | 
      
         | 121 |  |  |     worklist = {mergetmp2, mergetmp3}
 | 
      
         | 122 |  |  |  
 | 
      
         | 123 |  |  |     mergetmp4 = mergetmp2 + mergetmp3
 | 
      
         | 124 |  |  |  
 | 
      
         | 125 |  |  |     worklist = {mergetmp4}
 | 
      
         | 126 |  |  |  
 | 
      
         | 127 |  |  |     because we have one operation left, we can now just set the original
 | 
      
         | 128 |  |  |     statement equal to the result of that operation.
 | 
      
         | 129 |  |  |  
 | 
      
         | 130 |  |  |     This will at least expose a + b  and d + e to redundancy elimination
 | 
      
         | 131 |  |  |     as binary operations.
 | 
      
         | 132 |  |  |  
 | 
      
         | 133 |  |  |     For extra points, you can reuse the old statements to build the
 | 
      
         | 134 |  |  |     mergetmps, since you shouldn't run out.
 | 
      
         | 135 |  |  |  
 | 
      
         | 136 |  |  |     So why don't we do this?
 | 
      
         | 137 |  |  |  
 | 
      
         | 138 |  |  |     Because it's expensive, and rarely will help.  Most trees we are
 | 
      
         | 139 |  |  |     reassociating have 3 or less ops.  If they have 2 ops, they already
 | 
      
         | 140 |  |  |     will be written into a nice single binary op.  If you have 3 ops, a
 | 
      
         | 141 |  |  |     single simple check suffices to tell you whether the first two are of the
 | 
      
         | 142 |  |  |     same rank.  If so, you know to order it
 | 
      
         | 143 |  |  |  
 | 
      
         | 144 |  |  |     mergetmp = op1 + op2
 | 
      
         | 145 |  |  |     newstmt = mergetmp + op3
 | 
      
         | 146 |  |  |  
 | 
      
         | 147 |  |  |     instead of
 | 
      
         | 148 |  |  |     mergetmp = op2 + op3
 | 
      
         | 149 |  |  |     newstmt = mergetmp + op1
 | 
      
         | 150 |  |  |  
 | 
      
         | 151 |  |  |     If all three are of the same rank, you can't expose them all in a
 | 
      
         | 152 |  |  |     single binary operator anyway, so the above is *still* the best you
 | 
      
         | 153 |  |  |     can do.
 | 
      
         | 154 |  |  |  
 | 
      
         | 155 |  |  |     Thus, this is what we do.  When we have three ops left, we check to see
 | 
      
         | 156 |  |  |     what order to put them in, and call it a day.  As a nod to vector sum
 | 
      
         | 157 |  |  |     reduction, we check if any of the ops are really a phi node that is a
 | 
      
         | 158 |  |  |     destructive update for the associating op, and keep the destructive
 | 
      
         | 159 |  |  |     update together for vector sum reduction recognition.  */
 | 
      
         | 160 |  |  |  
 | 
      
         | 161 |  |  |  
 | 
      
         | 162 |  |  | /* Statistics */
 | 
      
         | 163 |  |  | static struct
 | 
      
         | 164 |  |  | {
 | 
      
         | 165 |  |  |   int linearized;
 | 
      
         | 166 |  |  |   int constants_eliminated;
 | 
      
         | 167 |  |  |   int ops_eliminated;
 | 
      
         | 168 |  |  |   int rewritten;
 | 
      
         | 169 |  |  | } reassociate_stats;
 | 
      
         | 170 |  |  |  
 | 
      
         | 171 |  |  | /* Operator, rank pair.  */
 | 
      
         | 172 |  |  | typedef struct operand_entry
 | 
      
         | 173 |  |  | {
 | 
      
         | 174 |  |  |   unsigned int rank;
 | 
      
         | 175 |  |  |   tree op;
 | 
      
         | 176 |  |  | } *operand_entry_t;
 | 
      
         | 177 |  |  |  
 | 
      
         | 178 |  |  | static alloc_pool operand_entry_pool;
 | 
      
         | 179 |  |  |  
 | 
      
         | 180 |  |  |  
 | 
      
         | 181 |  |  | /* Starting rank number for a given basic block, so that we can rank
 | 
      
         | 182 |  |  |    operations using unmovable instructions in that BB based on the bb
 | 
      
         | 183 |  |  |    depth.  */
 | 
      
         | 184 |  |  | static long *bb_rank;
 | 
      
         | 185 |  |  |  
 | 
      
         | 186 |  |  | /* Operand->rank hashtable.  */
 | 
      
         | 187 |  |  | static struct pointer_map_t *operand_rank;
 | 
      
         | 188 |  |  |  
 | 
      
         | 189 |  |  |  
 | 
      
         | 190 |  |  | /* Look up the operand rank structure for expression E.  */
 | 
      
         | 191 |  |  |  
 | 
      
         | 192 |  |  | static inline long
 | 
      
         | 193 |  |  | find_operand_rank (tree e)
 | 
      
         | 194 |  |  | {
 | 
      
         | 195 |  |  |   void **slot = pointer_map_contains (operand_rank, e);
 | 
      
         | 196 |  |  |   return slot ? (long) (intptr_t) *slot : -1;
 | 
      
         | 197 |  |  | }
 | 
      
         | 198 |  |  |  
 | 
      
         | 199 |  |  | /* Insert {E,RANK} into the operand rank hashtable.  */
 | 
      
         | 200 |  |  |  
 | 
      
         | 201 |  |  | static inline void
 | 
      
         | 202 |  |  | insert_operand_rank (tree e, long rank)
 | 
      
         | 203 |  |  | {
 | 
      
         | 204 |  |  |   void **slot;
 | 
      
         | 205 |  |  |   gcc_assert (rank > 0);
 | 
      
         | 206 |  |  |   slot = pointer_map_insert (operand_rank, e);
 | 
      
         | 207 |  |  |   gcc_assert (!*slot);
 | 
      
         | 208 |  |  |   *slot = (void *) (intptr_t) rank;
 | 
      
         | 209 |  |  | }
 | 
      
         | 210 |  |  |  
 | 
      
         | 211 |  |  | /* Given an expression E, return the rank of the expression.  */
 | 
      
         | 212 |  |  |  
 | 
      
         | 213 |  |  | static long
 | 
      
         | 214 |  |  | get_rank (tree e)
 | 
      
         | 215 |  |  | {
 | 
      
         | 216 |  |  |   /* Constants have rank 0.  */
 | 
      
         | 217 |  |  |   if (is_gimple_min_invariant (e))
 | 
      
         | 218 |  |  |     return 0;
 | 
      
         | 219 |  |  |  
 | 
      
         | 220 |  |  |   /* SSA_NAME's have the rank of the expression they are the result
 | 
      
         | 221 |  |  |      of.
 | 
      
         | 222 |  |  |      For globals and uninitialized values, the rank is 0.
 | 
      
         | 223 |  |  |      For function arguments, use the pre-setup rank.
 | 
      
         | 224 |  |  |      For PHI nodes, stores, asm statements, etc, we use the rank of
 | 
      
         | 225 |  |  |      the BB.
 | 
      
         | 226 |  |  |      For simple operations, the rank is the maximum rank of any of
 | 
      
         | 227 |  |  |      its operands, or the bb_rank, whichever is less.
 | 
      
         | 228 |  |  |      I make no claims that this is optimal, however, it gives good
 | 
      
         | 229 |  |  |      results.  */
 | 
      
         | 230 |  |  |  
 | 
      
         | 231 |  |  |   if (TREE_CODE (e) == SSA_NAME)
 | 
      
         | 232 |  |  |     {
 | 
      
         | 233 |  |  |       gimple stmt;
 | 
      
         | 234 |  |  |       long rank, maxrank;
 | 
      
         | 235 |  |  |       int i, n;
 | 
      
         | 236 |  |  |  
 | 
      
         | 237 |  |  |       if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
 | 
      
         | 238 |  |  |           && SSA_NAME_IS_DEFAULT_DEF (e))
 | 
      
         | 239 |  |  |         return find_operand_rank (e);
 | 
      
         | 240 |  |  |  
 | 
      
         | 241 |  |  |       stmt = SSA_NAME_DEF_STMT (e);
 | 
      
         | 242 |  |  |       if (gimple_bb (stmt) == NULL)
 | 
      
         | 243 |  |  |         return 0;
 | 
      
         | 244 |  |  |  
 | 
      
         | 245 |  |  |       if (!is_gimple_assign (stmt)
 | 
      
         | 246 |  |  |           || gimple_vdef (stmt))
 | 
      
         | 247 |  |  |         return bb_rank[gimple_bb (stmt)->index];
 | 
      
         | 248 |  |  |  
 | 
      
         | 249 |  |  |       /* If we already have a rank for this expression, use that.  */
 | 
      
         | 250 |  |  |       rank = find_operand_rank (e);
 | 
      
         | 251 |  |  |       if (rank != -1)
 | 
      
         | 252 |  |  |         return rank;
 | 
      
         | 253 |  |  |  
 | 
      
         | 254 |  |  |       /* Otherwise, find the maximum rank for the operands, or the bb
 | 
      
         | 255 |  |  |          rank, whichever is less.   */
 | 
      
         | 256 |  |  |       rank = 0;
 | 
      
         | 257 |  |  |       maxrank = bb_rank[gimple_bb(stmt)->index];
 | 
      
         | 258 |  |  |       if (gimple_assign_single_p (stmt))
 | 
      
         | 259 |  |  |         {
 | 
      
         | 260 |  |  |           tree rhs = gimple_assign_rhs1 (stmt);
 | 
      
         | 261 |  |  |           n = TREE_OPERAND_LENGTH (rhs);
 | 
      
         | 262 |  |  |           if (n == 0)
 | 
      
         | 263 |  |  |             rank = MAX (rank, get_rank (rhs));
 | 
      
         | 264 |  |  |           else
 | 
      
         | 265 |  |  |             {
 | 
      
         | 266 |  |  |               for (i = 0;
 | 
      
         | 267 |  |  |                    i < n && TREE_OPERAND (rhs, i) && rank != maxrank; i++)
 | 
      
         | 268 |  |  |                 rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i)));
 | 
      
         | 269 |  |  |             }
 | 
      
         | 270 |  |  |         }
 | 
      
         | 271 |  |  |       else
 | 
      
         | 272 |  |  |         {
 | 
      
         | 273 |  |  |           n = gimple_num_ops (stmt);
 | 
      
         | 274 |  |  |           for (i = 1; i < n && rank != maxrank; i++)
 | 
      
         | 275 |  |  |             {
 | 
      
         | 276 |  |  |               gcc_assert (gimple_op (stmt, i));
 | 
      
         | 277 |  |  |               rank = MAX(rank, get_rank (gimple_op (stmt, i)));
 | 
      
         | 278 |  |  |             }
 | 
      
         | 279 |  |  |         }
 | 
      
         | 280 |  |  |  
 | 
      
         | 281 |  |  |       if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 282 |  |  |         {
 | 
      
         | 283 |  |  |           fprintf (dump_file, "Rank for ");
 | 
      
         | 284 |  |  |           print_generic_expr (dump_file, e, 0);
 | 
      
         | 285 |  |  |           fprintf (dump_file, " is %ld\n", (rank + 1));
 | 
      
         | 286 |  |  |         }
 | 
      
         | 287 |  |  |  
 | 
      
         | 288 |  |  |       /* Note the rank in the hashtable so we don't recompute it.  */
 | 
      
         | 289 |  |  |       insert_operand_rank (e, (rank + 1));
 | 
      
         | 290 |  |  |       return (rank + 1);
 | 
      
         | 291 |  |  |     }
 | 
      
         | 292 |  |  |  
 | 
      
         | 293 |  |  |   /* Globals, etc,  are rank 0 */
 | 
      
         | 294 |  |  |   return 0;
 | 
      
         | 295 |  |  | }
 | 
      
         | 296 |  |  |  
 | 
      
         | 297 |  |  | DEF_VEC_P(operand_entry_t);
 | 
      
         | 298 |  |  | DEF_VEC_ALLOC_P(operand_entry_t, heap);
 | 
      
         | 299 |  |  |  
 | 
      
         | 300 |  |  | /* We want integer ones to end up last no matter what, since they are
 | 
      
         | 301 |  |  |    the ones we can do the most with.  */
 | 
      
         | 302 |  |  | #define INTEGER_CONST_TYPE 1 << 3
 | 
      
         | 303 |  |  | #define FLOAT_CONST_TYPE 1 << 2
 | 
      
         | 304 |  |  | #define OTHER_CONST_TYPE 1 << 1
 | 
      
         | 305 |  |  |  
 | 
      
         | 306 |  |  | /* Classify an invariant tree into integer, float, or other, so that
 | 
      
         | 307 |  |  |    we can sort them to be near other constants of the same type.  */
 | 
      
         | 308 |  |  | static inline int
 | 
      
         | 309 |  |  | constant_type (tree t)
 | 
      
         | 310 |  |  | {
 | 
      
         | 311 |  |  |   if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
 | 
      
         | 312 |  |  |     return INTEGER_CONST_TYPE;
 | 
      
         | 313 |  |  |   else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
 | 
      
         | 314 |  |  |     return FLOAT_CONST_TYPE;
 | 
      
         | 315 |  |  |   else
 | 
      
         | 316 |  |  |     return OTHER_CONST_TYPE;
 | 
      
         | 317 |  |  | }
 | 
      
         | 318 |  |  |  
 | 
      
         | 319 |  |  | /* qsort comparison function to sort operand entries PA and PB by rank
 | 
      
         | 320 |  |  |    so that the sorted array is ordered by rank in decreasing order.  */
 | 
      
         | 321 |  |  | static int
 | 
      
         | 322 |  |  | sort_by_operand_rank (const void *pa, const void *pb)
 | 
      
         | 323 |  |  | {
 | 
      
         | 324 |  |  |   const operand_entry_t oea = *(const operand_entry_t *)pa;
 | 
      
         | 325 |  |  |   const operand_entry_t oeb = *(const operand_entry_t *)pb;
 | 
      
         | 326 |  |  |  
 | 
      
         | 327 |  |  |   /* It's nicer for optimize_expression if constants that are likely
 | 
      
         | 328 |  |  |      to fold when added/multiplied//whatever are put next to each
 | 
      
         | 329 |  |  |      other.  Since all constants have rank 0, order them by type.  */
 | 
      
         | 330 |  |  |   if (oeb->rank == 0 &&  oea->rank == 0)
 | 
      
         | 331 |  |  |     return constant_type (oeb->op) - constant_type (oea->op);
 | 
      
         | 332 |  |  |  
 | 
      
         | 333 |  |  |   /* Lastly, make sure the versions that are the same go next to each
 | 
      
         | 334 |  |  |      other.  We use SSA_NAME_VERSION because it's stable.  */
 | 
      
         | 335 |  |  |   if ((oeb->rank - oea->rank == 0)
 | 
      
         | 336 |  |  |       && TREE_CODE (oea->op) == SSA_NAME
 | 
      
         | 337 |  |  |       && TREE_CODE (oeb->op) == SSA_NAME)
 | 
      
         | 338 |  |  |     return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
 | 
      
         | 339 |  |  |  
 | 
      
         | 340 |  |  |   return oeb->rank - oea->rank;
 | 
      
         | 341 |  |  | }
 | 
      
         | 342 |  |  |  
 | 
      
         | 343 |  |  | /* Add an operand entry to *OPS for the tree operand OP.  */
 | 
      
         | 344 |  |  |  
 | 
      
         | 345 |  |  | static void
 | 
      
         | 346 |  |  | add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
 | 
      
         | 347 |  |  | {
 | 
      
         | 348 |  |  |   operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
 | 
      
         | 349 |  |  |  
 | 
      
         | 350 |  |  |   oe->op = op;
 | 
      
         | 351 |  |  |   oe->rank = get_rank (op);
 | 
      
         | 352 |  |  |   VEC_safe_push (operand_entry_t, heap, *ops, oe);
 | 
      
         | 353 |  |  | }
 | 
      
         | 354 |  |  |  
 | 
      
         | 355 |  |  | /* Return true if STMT is reassociable operation containing a binary
 | 
      
         | 356 |  |  |    operation with tree code CODE, and is inside LOOP.  */
 | 
      
         | 357 |  |  |  
 | 
      
         | 358 |  |  | static bool
 | 
      
         | 359 |  |  | is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
 | 
      
         | 360 |  |  | {
 | 
      
         | 361 |  |  |   basic_block bb = gimple_bb (stmt);
 | 
      
         | 362 |  |  |  
 | 
      
         | 363 |  |  |   if (gimple_bb (stmt) == NULL)
 | 
      
         | 364 |  |  |     return false;
 | 
      
         | 365 |  |  |  
 | 
      
         | 366 |  |  |   if (!flow_bb_inside_loop_p (loop, bb))
 | 
      
         | 367 |  |  |     return false;
 | 
      
         | 368 |  |  |  
 | 
      
         | 369 |  |  |   if (is_gimple_assign (stmt)
 | 
      
         | 370 |  |  |       && gimple_assign_rhs_code (stmt) == code
 | 
      
         | 371 |  |  |       && has_single_use (gimple_assign_lhs (stmt)))
 | 
      
         | 372 |  |  |     return true;
 | 
      
         | 373 |  |  |  
 | 
      
         | 374 |  |  |   return false;
 | 
      
         | 375 |  |  | }
 | 
      
         | 376 |  |  |  
 | 
      
         | 377 |  |  |  
 | 
      
         | 378 |  |  | /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
 | 
      
         | 379 |  |  |    operand of the negate operation.  Otherwise, return NULL.  */
 | 
      
         | 380 |  |  |  
 | 
      
         | 381 |  |  | static tree
 | 
      
         | 382 |  |  | get_unary_op (tree name, enum tree_code opcode)
 | 
      
         | 383 |  |  | {
 | 
      
         | 384 |  |  |   gimple stmt = SSA_NAME_DEF_STMT (name);
 | 
      
         | 385 |  |  |  
 | 
      
         | 386 |  |  |   if (!is_gimple_assign (stmt))
 | 
      
         | 387 |  |  |     return NULL_TREE;
 | 
      
         | 388 |  |  |  
 | 
      
         | 389 |  |  |   if (gimple_assign_rhs_code (stmt) == opcode)
 | 
      
         | 390 |  |  |     return gimple_assign_rhs1 (stmt);
 | 
      
         | 391 |  |  |   return NULL_TREE;
 | 
      
         | 392 |  |  | }
 | 
      
         | 393 |  |  |  
 | 
      
         | 394 |  |  | /* If CURR and LAST are a pair of ops that OPCODE allows us to
 | 
      
         | 395 |  |  |    eliminate through equivalences, do so, remove them from OPS, and
 | 
      
         | 396 |  |  |    return true.  Otherwise, return false.  */
 | 
      
         | 397 |  |  |  
 | 
      
         | 398 |  |  | static bool
 | 
      
         | 399 |  |  | eliminate_duplicate_pair (enum tree_code opcode,
 | 
      
         | 400 |  |  |                           VEC (operand_entry_t, heap) **ops,
 | 
      
         | 401 |  |  |                           bool *all_done,
 | 
      
         | 402 |  |  |                           unsigned int i,
 | 
      
         | 403 |  |  |                           operand_entry_t curr,
 | 
      
         | 404 |  |  |                           operand_entry_t last)
 | 
      
         | 405 |  |  | {
 | 
      
         | 406 |  |  |  
 | 
      
         | 407 |  |  |   /* If we have two of the same op, and the opcode is & |, min, or max,
 | 
      
         | 408 |  |  |      we can eliminate one of them.
 | 
      
         | 409 |  |  |      If we have two of the same op, and the opcode is ^, we can
 | 
      
         | 410 |  |  |      eliminate both of them.  */
 | 
      
         | 411 |  |  |  
 | 
      
         | 412 |  |  |   if (last && last->op == curr->op)
 | 
      
         | 413 |  |  |     {
 | 
      
         | 414 |  |  |       switch (opcode)
 | 
      
         | 415 |  |  |         {
 | 
      
         | 416 |  |  |         case MAX_EXPR:
 | 
      
         | 417 |  |  |         case MIN_EXPR:
 | 
      
         | 418 |  |  |         case BIT_IOR_EXPR:
 | 
      
         | 419 |  |  |         case BIT_AND_EXPR:
 | 
      
         | 420 |  |  |           if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 421 |  |  |             {
 | 
      
         | 422 |  |  |               fprintf (dump_file, "Equivalence: ");
 | 
      
         | 423 |  |  |               print_generic_expr (dump_file, curr->op, 0);
 | 
      
         | 424 |  |  |               fprintf (dump_file, " [&|minmax] ");
 | 
      
         | 425 |  |  |               print_generic_expr (dump_file, last->op, 0);
 | 
      
         | 426 |  |  |               fprintf (dump_file, " -> ");
 | 
      
         | 427 |  |  |               print_generic_stmt (dump_file, last->op, 0);
 | 
      
         | 428 |  |  |             }
 | 
      
         | 429 |  |  |  
 | 
      
         | 430 |  |  |           VEC_ordered_remove (operand_entry_t, *ops, i);
 | 
      
         | 431 |  |  |           reassociate_stats.ops_eliminated ++;
 | 
      
         | 432 |  |  |  
 | 
      
         | 433 |  |  |           return true;
 | 
      
         | 434 |  |  |  
 | 
      
         | 435 |  |  |         case BIT_XOR_EXPR:
 | 
      
         | 436 |  |  |           if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 437 |  |  |             {
 | 
      
         | 438 |  |  |               fprintf (dump_file, "Equivalence: ");
 | 
      
         | 439 |  |  |               print_generic_expr (dump_file, curr->op, 0);
 | 
      
         | 440 |  |  |               fprintf (dump_file, " ^ ");
 | 
      
         | 441 |  |  |               print_generic_expr (dump_file, last->op, 0);
 | 
      
         | 442 |  |  |               fprintf (dump_file, " -> nothing\n");
 | 
      
         | 443 |  |  |             }
 | 
      
         | 444 |  |  |  
 | 
      
         | 445 |  |  |           reassociate_stats.ops_eliminated += 2;
 | 
      
         | 446 |  |  |  
 | 
      
         | 447 |  |  |           if (VEC_length (operand_entry_t, *ops) == 2)
 | 
      
         | 448 |  |  |             {
 | 
      
         | 449 |  |  |               VEC_free (operand_entry_t, heap, *ops);
 | 
      
         | 450 |  |  |               *ops = NULL;
 | 
      
         | 451 |  |  |               add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op),
 | 
      
         | 452 |  |  |                                                  integer_zero_node));
 | 
      
         | 453 |  |  |               *all_done = true;
 | 
      
         | 454 |  |  |             }
 | 
      
         | 455 |  |  |           else
 | 
      
         | 456 |  |  |             {
 | 
      
         | 457 |  |  |               VEC_ordered_remove (operand_entry_t, *ops, i-1);
 | 
      
         | 458 |  |  |               VEC_ordered_remove (operand_entry_t, *ops, i-1);
 | 
      
         | 459 |  |  |             }
 | 
      
         | 460 |  |  |  
 | 
      
         | 461 |  |  |           return true;
 | 
      
         | 462 |  |  |  
 | 
      
         | 463 |  |  |         default:
 | 
      
         | 464 |  |  |           break;
 | 
      
         | 465 |  |  |         }
 | 
      
         | 466 |  |  |     }
 | 
      
         | 467 |  |  |   return false;
 | 
      
         | 468 |  |  | }
 | 
      
         | 469 |  |  |  
 | 
      
         | 470 |  |  | /* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression,
 | 
      
         | 471 |  |  |    look in OPS for a corresponding positive operation to cancel it
 | 
      
         | 472 |  |  |    out.  If we find one, remove the other from OPS, replace
 | 
      
         | 473 |  |  |    OPS[CURRINDEX] with 0, and return true.  Otherwise, return
 | 
      
         | 474 |  |  |    false. */
 | 
      
         | 475 |  |  |  
 | 
      
         | 476 |  |  | static bool
 | 
      
         | 477 |  |  | eliminate_plus_minus_pair (enum tree_code opcode,
 | 
      
         | 478 |  |  |                            VEC (operand_entry_t, heap) **ops,
 | 
      
         | 479 |  |  |                            unsigned int currindex,
 | 
      
         | 480 |  |  |                            operand_entry_t curr)
 | 
      
         | 481 |  |  | {
 | 
      
         | 482 |  |  |   tree negateop;
 | 
      
         | 483 |  |  |   unsigned int i;
 | 
      
         | 484 |  |  |   operand_entry_t oe;
 | 
      
         | 485 |  |  |  
 | 
      
         | 486 |  |  |   if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
 | 
      
         | 487 |  |  |     return false;
 | 
      
         | 488 |  |  |  
 | 
      
         | 489 |  |  |   negateop = get_unary_op (curr->op, NEGATE_EXPR);
 | 
      
         | 490 |  |  |   if (negateop == NULL_TREE)
 | 
      
         | 491 |  |  |     return false;
 | 
      
         | 492 |  |  |  
 | 
      
         | 493 |  |  |   /* Any non-negated version will have a rank that is one less than
 | 
      
         | 494 |  |  |      the current rank.  So once we hit those ranks, if we don't find
 | 
      
         | 495 |  |  |      one, we can stop.  */
 | 
      
         | 496 |  |  |  
 | 
      
         | 497 |  |  |   for (i = currindex + 1;
 | 
      
         | 498 |  |  |        VEC_iterate (operand_entry_t, *ops, i, oe)
 | 
      
         | 499 |  |  |        && oe->rank >= curr->rank - 1 ;
 | 
      
         | 500 |  |  |        i++)
 | 
      
         | 501 |  |  |     {
 | 
      
         | 502 |  |  |       if (oe->op == negateop)
 | 
      
         | 503 |  |  |         {
 | 
      
         | 504 |  |  |  
 | 
      
         | 505 |  |  |           if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 506 |  |  |             {
 | 
      
         | 507 |  |  |               fprintf (dump_file, "Equivalence: ");
 | 
      
         | 508 |  |  |               print_generic_expr (dump_file, negateop, 0);
 | 
      
         | 509 |  |  |               fprintf (dump_file, " + -");
 | 
      
         | 510 |  |  |               print_generic_expr (dump_file, oe->op, 0);
 | 
      
         | 511 |  |  |               fprintf (dump_file, " -> 0\n");
 | 
      
         | 512 |  |  |             }
 | 
      
         | 513 |  |  |  
 | 
      
         | 514 |  |  |           VEC_ordered_remove (operand_entry_t, *ops, i);
 | 
      
         | 515 |  |  |           add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op),
 | 
      
         | 516 |  |  |                                             integer_zero_node));
 | 
      
         | 517 |  |  |           VEC_ordered_remove (operand_entry_t, *ops, currindex);
 | 
      
         | 518 |  |  |           reassociate_stats.ops_eliminated ++;
 | 
      
         | 519 |  |  |  
 | 
      
         | 520 |  |  |           return true;
 | 
      
         | 521 |  |  |         }
 | 
      
         | 522 |  |  |     }
 | 
      
         | 523 |  |  |  
 | 
      
         | 524 |  |  |   return false;
 | 
      
         | 525 |  |  | }
 | 
      
         | 526 |  |  |  
 | 
      
         | 527 |  |  | /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
 | 
      
         | 528 |  |  |    bitwise not expression, look in OPS for a corresponding operand to
 | 
      
         | 529 |  |  |    cancel it out.  If we find one, remove the other from OPS, replace
 | 
      
         | 530 |  |  |    OPS[CURRINDEX] with 0, and return true.  Otherwise, return
 | 
      
         | 531 |  |  |    false. */
 | 
      
         | 532 |  |  |  
 | 
      
         | 533 |  |  | static bool
 | 
      
         | 534 |  |  | eliminate_not_pairs (enum tree_code opcode,
 | 
      
         | 535 |  |  |                      VEC (operand_entry_t, heap) **ops,
 | 
      
         | 536 |  |  |                      unsigned int currindex,
 | 
      
         | 537 |  |  |                      operand_entry_t curr)
 | 
      
         | 538 |  |  | {
 | 
      
         | 539 |  |  |   tree notop;
 | 
      
         | 540 |  |  |   unsigned int i;
 | 
      
         | 541 |  |  |   operand_entry_t oe;
 | 
      
         | 542 |  |  |  
 | 
      
         | 543 |  |  |   if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
 | 
      
         | 544 |  |  |       || TREE_CODE (curr->op) != SSA_NAME)
 | 
      
         | 545 |  |  |     return false;
 | 
      
         | 546 |  |  |  
 | 
      
         | 547 |  |  |   notop = get_unary_op (curr->op, BIT_NOT_EXPR);
 | 
      
         | 548 |  |  |   if (notop == NULL_TREE)
 | 
      
         | 549 |  |  |     return false;
 | 
      
         | 550 |  |  |  
 | 
      
         | 551 |  |  |   /* Any non-not version will have a rank that is one less than
 | 
      
         | 552 |  |  |      the current rank.  So once we hit those ranks, if we don't find
 | 
      
         | 553 |  |  |      one, we can stop.  */
 | 
      
         | 554 |  |  |  
 | 
      
         | 555 |  |  |   for (i = currindex + 1;
 | 
      
         | 556 |  |  |        VEC_iterate (operand_entry_t, *ops, i, oe)
 | 
      
         | 557 |  |  |        && oe->rank >= curr->rank - 1;
 | 
      
         | 558 |  |  |        i++)
 | 
      
         | 559 |  |  |     {
 | 
      
         | 560 |  |  |       if (oe->op == notop)
 | 
      
         | 561 |  |  |         {
 | 
      
         | 562 |  |  |           if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 563 |  |  |             {
 | 
      
         | 564 |  |  |               fprintf (dump_file, "Equivalence: ");
 | 
      
         | 565 |  |  |               print_generic_expr (dump_file, notop, 0);
 | 
      
         | 566 |  |  |               if (opcode == BIT_AND_EXPR)
 | 
      
         | 567 |  |  |                 fprintf (dump_file, " & ~");
 | 
      
         | 568 |  |  |               else if (opcode == BIT_IOR_EXPR)
 | 
      
         | 569 |  |  |                 fprintf (dump_file, " | ~");
 | 
      
         | 570 |  |  |               print_generic_expr (dump_file, oe->op, 0);
 | 
      
         | 571 |  |  |               if (opcode == BIT_AND_EXPR)
 | 
      
         | 572 |  |  |                 fprintf (dump_file, " -> 0\n");
 | 
      
         | 573 |  |  |               else if (opcode == BIT_IOR_EXPR)
 | 
      
         | 574 |  |  |                 fprintf (dump_file, " -> -1\n");
 | 
      
         | 575 |  |  |             }
 | 
      
         | 576 |  |  |  
 | 
      
         | 577 |  |  |           if (opcode == BIT_AND_EXPR)
 | 
      
         | 578 |  |  |             oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node);
 | 
      
         | 579 |  |  |           else if (opcode == BIT_IOR_EXPR)
 | 
      
         | 580 |  |  |             oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
 | 
      
         | 581 |  |  |                                           TYPE_PRECISION (TREE_TYPE (oe->op)));
 | 
      
         | 582 |  |  |  
 | 
      
         | 583 |  |  |           reassociate_stats.ops_eliminated
 | 
      
         | 584 |  |  |             += VEC_length (operand_entry_t, *ops) - 1;
 | 
      
         | 585 |  |  |           VEC_free (operand_entry_t, heap, *ops);
 | 
      
         | 586 |  |  |           *ops = NULL;
 | 
      
         | 587 |  |  |           VEC_safe_push (operand_entry_t, heap, *ops, oe);
 | 
      
         | 588 |  |  |           return true;
 | 
      
         | 589 |  |  |         }
 | 
      
         | 590 |  |  |     }
 | 
      
         | 591 |  |  |  
 | 
      
         | 592 |  |  |   return false;
 | 
      
         | 593 |  |  | }
 | 
      
         | 594 |  |  |  
 | 
      
         | 595 |  |  | /* Use constant value that may be present in OPS to try to eliminate
 | 
      
         | 596 |  |  |    operands.  Note that this function is only really used when we've
 | 
      
         | 597 |  |  |    eliminated ops for other reasons, or merged constants.  Across
 | 
      
         | 598 |  |  |    single statements, fold already does all of this, plus more.  There
 | 
      
         | 599 |  |  |    is little point in duplicating logic, so I've only included the
 | 
      
         | 600 |  |  |    identities that I could ever construct testcases to trigger.  */
 | 
      
         | 601 |  |  |  
 | 
      
         | 602 |  |  | static void
 | 
      
         | 603 |  |  | eliminate_using_constants (enum tree_code opcode,
 | 
      
         | 604 |  |  |                            VEC(operand_entry_t, heap) **ops)
 | 
      
         | 605 |  |  | {
 | 
      
         | 606 |  |  |   operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
 | 
      
         | 607 |  |  |   tree type = TREE_TYPE (oelast->op);
 | 
      
         | 608 |  |  |  
 | 
      
         | 609 |  |  |   if (oelast->rank == 0
 | 
      
         | 610 |  |  |       && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
 | 
      
         | 611 |  |  |     {
 | 
      
         | 612 |  |  |       switch (opcode)
 | 
      
         | 613 |  |  |         {
 | 
      
         | 614 |  |  |         case BIT_AND_EXPR:
 | 
      
         | 615 |  |  |           if (integer_zerop (oelast->op))
 | 
      
         | 616 |  |  |             {
 | 
      
         | 617 |  |  |               if (VEC_length (operand_entry_t, *ops) != 1)
 | 
      
         | 618 |  |  |                 {
 | 
      
         | 619 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 620 |  |  |                     fprintf (dump_file, "Found & 0, removing all other ops\n");
 | 
      
         | 621 |  |  |  
 | 
      
         | 622 |  |  |                   reassociate_stats.ops_eliminated
 | 
      
         | 623 |  |  |                     += VEC_length (operand_entry_t, *ops) - 1;
 | 
      
         | 624 |  |  |  
 | 
      
         | 625 |  |  |                   VEC_free (operand_entry_t, heap, *ops);
 | 
      
         | 626 |  |  |                   *ops = NULL;
 | 
      
         | 627 |  |  |                   VEC_safe_push (operand_entry_t, heap, *ops, oelast);
 | 
      
         | 628 |  |  |                   return;
 | 
      
         | 629 |  |  |                 }
 | 
      
         | 630 |  |  |             }
 | 
      
         | 631 |  |  |           else if (integer_all_onesp (oelast->op))
 | 
      
         | 632 |  |  |             {
 | 
      
         | 633 |  |  |               if (VEC_length (operand_entry_t, *ops) != 1)
 | 
      
         | 634 |  |  |                 {
 | 
      
         | 635 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 636 |  |  |                     fprintf (dump_file, "Found & -1, removing\n");
 | 
      
         | 637 |  |  |                   VEC_pop (operand_entry_t, *ops);
 | 
      
         | 638 |  |  |                   reassociate_stats.ops_eliminated++;
 | 
      
         | 639 |  |  |                 }
 | 
      
         | 640 |  |  |             }
 | 
      
         | 641 |  |  |           break;
 | 
      
         | 642 |  |  |         case BIT_IOR_EXPR:
 | 
      
         | 643 |  |  |           if (integer_all_onesp (oelast->op))
 | 
      
         | 644 |  |  |             {
 | 
      
         | 645 |  |  |               if (VEC_length (operand_entry_t, *ops) != 1)
 | 
      
         | 646 |  |  |                 {
 | 
      
         | 647 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 648 |  |  |                     fprintf (dump_file, "Found | -1, removing all other ops\n");
 | 
      
         | 649 |  |  |  
 | 
      
         | 650 |  |  |                   reassociate_stats.ops_eliminated
 | 
      
         | 651 |  |  |                     += VEC_length (operand_entry_t, *ops) - 1;
 | 
      
         | 652 |  |  |  
 | 
      
         | 653 |  |  |                   VEC_free (operand_entry_t, heap, *ops);
 | 
      
         | 654 |  |  |                   *ops = NULL;
 | 
      
         | 655 |  |  |                   VEC_safe_push (operand_entry_t, heap, *ops, oelast);
 | 
      
         | 656 |  |  |                   return;
 | 
      
         | 657 |  |  |                 }
 | 
      
         | 658 |  |  |             }
 | 
      
         | 659 |  |  |           else if (integer_zerop (oelast->op))
 | 
      
         | 660 |  |  |             {
 | 
      
         | 661 |  |  |               if (VEC_length (operand_entry_t, *ops) != 1)
 | 
      
         | 662 |  |  |                 {
 | 
      
         | 663 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 664 |  |  |                     fprintf (dump_file, "Found | 0, removing\n");
 | 
      
         | 665 |  |  |                   VEC_pop (operand_entry_t, *ops);
 | 
      
         | 666 |  |  |                   reassociate_stats.ops_eliminated++;
 | 
      
         | 667 |  |  |                 }
 | 
      
         | 668 |  |  |             }
 | 
      
         | 669 |  |  |           break;
 | 
      
         | 670 |  |  |         case MULT_EXPR:
 | 
      
         | 671 |  |  |           if (integer_zerop (oelast->op)
 | 
      
         | 672 |  |  |               || (FLOAT_TYPE_P (type)
 | 
      
         | 673 |  |  |                   && !HONOR_NANS (TYPE_MODE (type))
 | 
      
         | 674 |  |  |                   && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
 | 
      
         | 675 |  |  |                   && real_zerop (oelast->op)))
 | 
      
         | 676 |  |  |             {
 | 
      
         | 677 |  |  |               if (VEC_length (operand_entry_t, *ops) != 1)
 | 
      
         | 678 |  |  |                 {
 | 
      
         | 679 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 680 |  |  |                     fprintf (dump_file, "Found * 0, removing all other ops\n");
 | 
      
         | 681 |  |  |  
 | 
      
         | 682 |  |  |                   reassociate_stats.ops_eliminated
 | 
      
         | 683 |  |  |                     += VEC_length (operand_entry_t, *ops) - 1;
 | 
      
         | 684 |  |  |                   VEC_free (operand_entry_t, heap, *ops);
 | 
      
         | 685 |  |  |                   *ops = NULL;
 | 
      
         | 686 |  |  |                   VEC_safe_push (operand_entry_t, heap, *ops, oelast);
 | 
      
         | 687 |  |  |                   return;
 | 
      
         | 688 |  |  |                 }
 | 
      
         | 689 |  |  |             }
 | 
      
         | 690 |  |  |           else if (integer_onep (oelast->op)
 | 
      
         | 691 |  |  |                    || (FLOAT_TYPE_P (type)
 | 
      
         | 692 |  |  |                        && !HONOR_SNANS (TYPE_MODE (type))
 | 
      
         | 693 |  |  |                        && real_onep (oelast->op)))
 | 
      
         | 694 |  |  |             {
 | 
      
         | 695 |  |  |               if (VEC_length (operand_entry_t, *ops) != 1)
 | 
      
         | 696 |  |  |                 {
 | 
      
         | 697 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 698 |  |  |                     fprintf (dump_file, "Found * 1, removing\n");
 | 
      
         | 699 |  |  |                   VEC_pop (operand_entry_t, *ops);
 | 
      
         | 700 |  |  |                   reassociate_stats.ops_eliminated++;
 | 
      
         | 701 |  |  |                   return;
 | 
      
         | 702 |  |  |                 }
 | 
      
         | 703 |  |  |             }
 | 
      
         | 704 |  |  |           break;
 | 
      
         | 705 |  |  |         case BIT_XOR_EXPR:
 | 
      
         | 706 |  |  |         case PLUS_EXPR:
 | 
      
         | 707 |  |  |         case MINUS_EXPR:
 | 
      
         | 708 |  |  |           if (integer_zerop (oelast->op)
 | 
      
         | 709 |  |  |               || (FLOAT_TYPE_P (type)
 | 
      
         | 710 |  |  |                   && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
 | 
      
         | 711 |  |  |                   && fold_real_zero_addition_p (type, oelast->op,
 | 
      
         | 712 |  |  |                                                 opcode == MINUS_EXPR)))
 | 
      
         | 713 |  |  |             {
 | 
      
         | 714 |  |  |               if (VEC_length (operand_entry_t, *ops) != 1)
 | 
      
         | 715 |  |  |                 {
 | 
      
         | 716 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 717 |  |  |                     fprintf (dump_file, "Found [|^+] 0, removing\n");
 | 
      
         | 718 |  |  |                   VEC_pop (operand_entry_t, *ops);
 | 
      
         | 719 |  |  |                   reassociate_stats.ops_eliminated++;
 | 
      
         | 720 |  |  |                   return;
 | 
      
         | 721 |  |  |                 }
 | 
      
         | 722 |  |  |             }
 | 
      
         | 723 |  |  |           break;
 | 
      
         | 724 |  |  |         default:
 | 
      
         | 725 |  |  |           break;
 | 
      
         | 726 |  |  |         }
 | 
      
         | 727 |  |  |     }
 | 
      
         | 728 |  |  | }
 | 
      
         | 729 |  |  |  
 | 
      
         | 730 |  |  |  
 | 
      
         | 731 |  |  | static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
 | 
      
         | 732 |  |  |                                  bool, bool);
 | 
      
         | 733 |  |  |  
 | 
      
         | 734 |  |  | /* Structure for tracking and counting operands.  */
 | 
      
         | 735 |  |  | typedef struct oecount_s {
 | 
      
         | 736 |  |  |   int cnt;
 | 
      
         | 737 |  |  |   enum tree_code oecode;
 | 
      
         | 738 |  |  |   tree op;
 | 
      
         | 739 |  |  | } oecount;
 | 
      
         | 740 |  |  |  
 | 
      
         | 741 |  |  | DEF_VEC_O(oecount);
 | 
      
         | 742 |  |  | DEF_VEC_ALLOC_O(oecount,heap);
 | 
      
         | 743 |  |  |  
 | 
      
         | 744 |  |  | /* The heap for the oecount hashtable and the sorted list of operands.  */
 | 
      
         | 745 |  |  | static VEC (oecount, heap) *cvec;
 | 
      
         | 746 |  |  |  
 | 
      
         | 747 |  |  | /* Hash function for oecount.  */
 | 
      
         | 748 |  |  |  
 | 
      
         | 749 |  |  | static hashval_t
 | 
      
         | 750 |  |  | oecount_hash (const void *p)
 | 
      
         | 751 |  |  | {
 | 
      
         | 752 |  |  |   const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
 | 
      
         | 753 |  |  |   return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
 | 
      
         | 754 |  |  | }
 | 
      
         | 755 |  |  |  
 | 
      
         | 756 |  |  | /* Comparison function for oecount.  */
 | 
      
         | 757 |  |  |  
 | 
      
         | 758 |  |  | static int
 | 
      
         | 759 |  |  | oecount_eq (const void *p1, const void *p2)
 | 
      
         | 760 |  |  | {
 | 
      
         | 761 |  |  |   const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
 | 
      
         | 762 |  |  |   const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
 | 
      
         | 763 |  |  |   return (c1->oecode == c2->oecode
 | 
      
         | 764 |  |  |           && c1->op == c2->op);
 | 
      
         | 765 |  |  | }
 | 
      
         | 766 |  |  |  
 | 
      
         | 767 |  |  | /* Comparison function for qsort sorting oecount elements by count.  */
 | 
      
         | 768 |  |  |  
 | 
      
         | 769 |  |  | static int
 | 
      
         | 770 |  |  | oecount_cmp (const void *p1, const void *p2)
 | 
      
         | 771 |  |  | {
 | 
      
         | 772 |  |  |   const oecount *c1 = (const oecount *)p1;
 | 
      
         | 773 |  |  |   const oecount *c2 = (const oecount *)p2;
 | 
      
         | 774 |  |  |   return c1->cnt - c2->cnt;
 | 
      
         | 775 |  |  | }
 | 
      
         | 776 |  |  |  
 | 
      
         | 777 |  |  | /* Walks the linear chain with result *DEF searching for an operation
 | 
      
         | 778 |  |  |    with operand OP and code OPCODE removing that from the chain.  *DEF
 | 
      
         | 779 |  |  |    is updated if there is only one operand but no operation left.  */
 | 
      
         | 780 |  |  |  
 | 
      
         | 781 |  |  | static void
 | 
      
         | 782 |  |  | zero_one_operation (tree *def, enum tree_code opcode, tree op)
 | 
      
         | 783 |  |  | {
 | 
      
         | 784 |  |  |   gimple stmt = SSA_NAME_DEF_STMT (*def);
 | 
      
         | 785 |  |  |  
 | 
      
         | 786 |  |  |   do
 | 
      
         | 787 |  |  |     {
 | 
      
         | 788 |  |  |       tree name = gimple_assign_rhs1 (stmt);
 | 
      
         | 789 |  |  |  
 | 
      
         | 790 |  |  |       /* If this is the operation we look for and one of the operands
 | 
      
         | 791 |  |  |          is ours simply propagate the other operand into the stmts
 | 
      
         | 792 |  |  |          single use.  */
 | 
      
         | 793 |  |  |       if (gimple_assign_rhs_code (stmt) == opcode
 | 
      
         | 794 |  |  |           && (name == op
 | 
      
         | 795 |  |  |               || gimple_assign_rhs2 (stmt) == op))
 | 
      
         | 796 |  |  |         {
 | 
      
         | 797 |  |  |           gimple use_stmt;
 | 
      
         | 798 |  |  |           use_operand_p use;
 | 
      
         | 799 |  |  |           gimple_stmt_iterator gsi;
 | 
      
         | 800 |  |  |           if (name == op)
 | 
      
         | 801 |  |  |             name = gimple_assign_rhs2 (stmt);
 | 
      
         | 802 |  |  |           gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
 | 
      
         | 803 |  |  |           single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
 | 
      
         | 804 |  |  |           if (gimple_assign_lhs (stmt) == *def)
 | 
      
         | 805 |  |  |             *def = name;
 | 
      
         | 806 |  |  |           SET_USE (use, name);
 | 
      
         | 807 |  |  |           if (TREE_CODE (name) != SSA_NAME)
 | 
      
         | 808 |  |  |             update_stmt (use_stmt);
 | 
      
         | 809 |  |  |           gsi = gsi_for_stmt (stmt);
 | 
      
         | 810 |  |  |           gsi_remove (&gsi, true);
 | 
      
         | 811 |  |  |           release_defs (stmt);
 | 
      
         | 812 |  |  |           return;
 | 
      
         | 813 |  |  |         }
 | 
      
         | 814 |  |  |  
 | 
      
         | 815 |  |  |       /* Continue walking the chain.  */
 | 
      
         | 816 |  |  |       gcc_assert (name != op
 | 
      
         | 817 |  |  |                   && TREE_CODE (name) == SSA_NAME);
 | 
      
         | 818 |  |  |       stmt = SSA_NAME_DEF_STMT (name);
 | 
      
         | 819 |  |  |     }
 | 
      
         | 820 |  |  |   while (1);
 | 
      
         | 821 |  |  | }
 | 
      
         | 822 |  |  |  
 | 
      
         | 823 |  |  | /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
 | 
      
         | 824 |  |  |    the result.  Places the statement after the definition of either
 | 
      
         | 825 |  |  |    OP1 or OP2.  Returns the new statement.  */
 | 
      
         | 826 |  |  |  
 | 
      
         | 827 |  |  | static gimple
 | 
      
         | 828 |  |  | build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
 | 
      
         | 829 |  |  | {
 | 
      
         | 830 |  |  |   gimple op1def = NULL, op2def = NULL;
 | 
      
         | 831 |  |  |   gimple_stmt_iterator gsi;
 | 
      
         | 832 |  |  |   tree op;
 | 
      
         | 833 |  |  |   gimple sum;
 | 
      
         | 834 |  |  |  
 | 
      
         | 835 |  |  |   /* Create the addition statement.  */
 | 
      
         | 836 |  |  |   sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
 | 
      
         | 837 |  |  |   op = make_ssa_name (tmpvar, sum);
 | 
      
         | 838 |  |  |   gimple_assign_set_lhs (sum, op);
 | 
      
         | 839 |  |  |  
 | 
      
         | 840 |  |  |   /* Find an insertion place and insert.  */
 | 
      
         | 841 |  |  |   if (TREE_CODE (op1) == SSA_NAME)
 | 
      
         | 842 |  |  |     op1def = SSA_NAME_DEF_STMT (op1);
 | 
      
         | 843 |  |  |   if (TREE_CODE (op2) == SSA_NAME)
 | 
      
         | 844 |  |  |     op2def = SSA_NAME_DEF_STMT (op2);
 | 
      
         | 845 |  |  |   if ((!op1def || gimple_nop_p (op1def))
 | 
      
         | 846 |  |  |       && (!op2def || gimple_nop_p (op2def)))
 | 
      
         | 847 |  |  |     {
 | 
      
         | 848 |  |  |       gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
 | 
      
         | 849 |  |  |       gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
 | 
      
         | 850 |  |  |     }
 | 
      
         | 851 |  |  |   else if ((!op1def || gimple_nop_p (op1def))
 | 
      
         | 852 |  |  |            || (op2def && !gimple_nop_p (op2def)
 | 
      
         | 853 |  |  |                && stmt_dominates_stmt_p (op1def, op2def)))
 | 
      
         | 854 |  |  |     {
 | 
      
         | 855 |  |  |       if (gimple_code (op2def) == GIMPLE_PHI)
 | 
      
         | 856 |  |  |         {
 | 
      
         | 857 |  |  |           gsi = gsi_after_labels (gimple_bb (op2def));
 | 
      
         | 858 |  |  |           gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
 | 
      
         | 859 |  |  |         }
 | 
      
         | 860 |  |  |       else
 | 
      
         | 861 |  |  |         {
 | 
      
         | 862 |  |  |           if (!stmt_ends_bb_p (op2def))
 | 
      
         | 863 |  |  |             {
 | 
      
         | 864 |  |  |               gsi = gsi_for_stmt (op2def);
 | 
      
         | 865 |  |  |               gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
 | 
      
         | 866 |  |  |             }
 | 
      
         | 867 |  |  |           else
 | 
      
         | 868 |  |  |             {
 | 
      
         | 869 |  |  |               edge e;
 | 
      
         | 870 |  |  |               edge_iterator ei;
 | 
      
         | 871 |  |  |  
 | 
      
         | 872 |  |  |               FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
 | 
      
         | 873 |  |  |                 if (e->flags & EDGE_FALLTHRU)
 | 
      
         | 874 |  |  |                   gsi_insert_on_edge_immediate (e, sum);
 | 
      
         | 875 |  |  |             }
 | 
      
         | 876 |  |  |         }
 | 
      
         | 877 |  |  |     }
 | 
      
         | 878 |  |  |   else
 | 
      
         | 879 |  |  |     {
 | 
      
         | 880 |  |  |       if (gimple_code (op1def) == GIMPLE_PHI)
 | 
      
         | 881 |  |  |         {
 | 
      
         | 882 |  |  |           gsi = gsi_after_labels (gimple_bb (op1def));
 | 
      
         | 883 |  |  |           gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
 | 
      
         | 884 |  |  |         }
 | 
      
         | 885 |  |  |       else
 | 
      
         | 886 |  |  |         {
 | 
      
         | 887 |  |  |           if (!stmt_ends_bb_p (op1def))
 | 
      
         | 888 |  |  |             {
 | 
      
         | 889 |  |  |               gsi = gsi_for_stmt (op1def);
 | 
      
         | 890 |  |  |               gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
 | 
      
         | 891 |  |  |             }
 | 
      
         | 892 |  |  |           else
 | 
      
         | 893 |  |  |             {
 | 
      
         | 894 |  |  |               edge e;
 | 
      
         | 895 |  |  |               edge_iterator ei;
 | 
      
         | 896 |  |  |  
 | 
      
         | 897 |  |  |               FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
 | 
      
         | 898 |  |  |                 if (e->flags & EDGE_FALLTHRU)
 | 
      
         | 899 |  |  |                   gsi_insert_on_edge_immediate (e, sum);
 | 
      
         | 900 |  |  |             }
 | 
      
         | 901 |  |  |         }
 | 
      
         | 902 |  |  |     }
 | 
      
         | 903 |  |  |   update_stmt (sum);
 | 
      
         | 904 |  |  |  
 | 
      
         | 905 |  |  |   return sum;
 | 
      
         | 906 |  |  | }
 | 
      
         | 907 |  |  |  
 | 
      
         | 908 |  |  | /* Perform un-distribution of divisions and multiplications.
 | 
      
         | 909 |  |  |    A * X + B * X is transformed into (A + B) * X and A / X + B / X
 | 
      
         | 910 |  |  |    to (A + B) / X for real X.
 | 
      
         | 911 |  |  |  
 | 
      
         | 912 |  |  |    The algorithm is organized as follows.
 | 
      
         | 913 |  |  |  
 | 
      
         | 914 |  |  |     - First we walk the addition chain *OPS looking for summands that
 | 
      
         | 915 |  |  |       are defined by a multiplication or a real division.  This results
 | 
      
         | 916 |  |  |       in the candidates bitmap with relevant indices into *OPS.
 | 
      
         | 917 |  |  |  
 | 
      
         | 918 |  |  |     - Second we build the chains of multiplications or divisions for
 | 
      
         | 919 |  |  |       these candidates, counting the number of occurences of (operand, code)
 | 
      
         | 920 |  |  |       pairs in all of the candidates chains.
 | 
      
         | 921 |  |  |  
 | 
      
         | 922 |  |  |     - Third we sort the (operand, code) pairs by number of occurence and
 | 
      
         | 923 |  |  |       process them starting with the pair with the most uses.
 | 
      
         | 924 |  |  |  
 | 
      
         | 925 |  |  |       * For each such pair we walk the candidates again to build a
 | 
      
         | 926 |  |  |         second candidate bitmap noting all multiplication/division chains
 | 
      
         | 927 |  |  |         that have at least one occurence of (operand, code).
 | 
      
         | 928 |  |  |  
 | 
      
         | 929 |  |  |       * We build an alternate addition chain only covering these
 | 
      
         | 930 |  |  |         candidates with one (operand, code) operation removed from their
 | 
      
         | 931 |  |  |         multiplication/division chain.
 | 
      
         | 932 |  |  |  
 | 
      
         | 933 |  |  |       * The first candidate gets replaced by the alternate addition chain
 | 
      
         | 934 |  |  |         multiplied/divided by the operand.
 | 
      
         | 935 |  |  |  
 | 
      
         | 936 |  |  |       * All candidate chains get disabled for further processing and
 | 
      
         | 937 |  |  |         processing of (operand, code) pairs continues.
 | 
      
         | 938 |  |  |  
 | 
      
         | 939 |  |  |   The alternate addition chains built are re-processed by the main
 | 
      
         | 940 |  |  |   reassociation algorithm which allows optimizing a * x * y + b * y * x
 | 
      
         | 941 |  |  |   to (a + b ) * x * y in one invocation of the reassociation pass.  */
 | 
      
         | 942 |  |  |  
 | 
      
         | 943 |  |  | static bool
 | 
      
         | 944 |  |  | undistribute_ops_list (enum tree_code opcode,
 | 
      
         | 945 |  |  |                        VEC (operand_entry_t, heap) **ops, struct loop *loop)
 | 
      
         | 946 |  |  | {
 | 
      
         | 947 |  |  |   unsigned int length = VEC_length (operand_entry_t, *ops);
 | 
      
         | 948 |  |  |   operand_entry_t oe1;
 | 
      
         | 949 |  |  |   unsigned i, j;
 | 
      
         | 950 |  |  |   sbitmap candidates, candidates2;
 | 
      
         | 951 |  |  |   unsigned nr_candidates, nr_candidates2;
 | 
      
         | 952 |  |  |   sbitmap_iterator sbi0;
 | 
      
         | 953 |  |  |   VEC (operand_entry_t, heap) **subops;
 | 
      
         | 954 |  |  |   htab_t ctable;
 | 
      
         | 955 |  |  |   bool changed = false;
 | 
      
         | 956 |  |  |  
 | 
      
         | 957 |  |  |   if (length <= 1
 | 
      
         | 958 |  |  |       || opcode != PLUS_EXPR)
 | 
      
         | 959 |  |  |     return false;
 | 
      
         | 960 |  |  |  
 | 
      
         | 961 |  |  |   /* Build a list of candidates to process.  */
 | 
      
         | 962 |  |  |   candidates = sbitmap_alloc (length);
 | 
      
         | 963 |  |  |   sbitmap_zero (candidates);
 | 
      
         | 964 |  |  |   nr_candidates = 0;
 | 
      
         | 965 |  |  |   for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe1); ++i)
 | 
      
         | 966 |  |  |     {
 | 
      
         | 967 |  |  |       enum tree_code dcode;
 | 
      
         | 968 |  |  |       gimple oe1def;
 | 
      
         | 969 |  |  |  
 | 
      
         | 970 |  |  |       if (TREE_CODE (oe1->op) != SSA_NAME)
 | 
      
         | 971 |  |  |         continue;
 | 
      
         | 972 |  |  |       oe1def = SSA_NAME_DEF_STMT (oe1->op);
 | 
      
         | 973 |  |  |       if (!is_gimple_assign (oe1def))
 | 
      
         | 974 |  |  |         continue;
 | 
      
         | 975 |  |  |       dcode = gimple_assign_rhs_code (oe1def);
 | 
      
         | 976 |  |  |       if ((dcode != MULT_EXPR
 | 
      
         | 977 |  |  |            && dcode != RDIV_EXPR)
 | 
      
         | 978 |  |  |           || !is_reassociable_op (oe1def, dcode, loop))
 | 
      
         | 979 |  |  |         continue;
 | 
      
         | 980 |  |  |  
 | 
      
         | 981 |  |  |       SET_BIT (candidates, i);
 | 
      
         | 982 |  |  |       nr_candidates++;
 | 
      
         | 983 |  |  |     }
 | 
      
         | 984 |  |  |  
 | 
      
         | 985 |  |  |   if (nr_candidates < 2)
 | 
      
         | 986 |  |  |     {
 | 
      
         | 987 |  |  |       sbitmap_free (candidates);
 | 
      
         | 988 |  |  |       return false;
 | 
      
         | 989 |  |  |     }
 | 
      
         | 990 |  |  |  
 | 
      
         | 991 |  |  |   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 992 |  |  |     {
 | 
      
         | 993 |  |  |       fprintf (dump_file, "searching for un-distribute opportunities ");
 | 
      
         | 994 |  |  |       print_generic_expr (dump_file,
 | 
      
         | 995 |  |  |         VEC_index (operand_entry_t, *ops,
 | 
      
         | 996 |  |  |                    sbitmap_first_set_bit (candidates))->op, 0);
 | 
      
         | 997 |  |  |       fprintf (dump_file, " %d\n", nr_candidates);
 | 
      
         | 998 |  |  |     }
 | 
      
         | 999 |  |  |  
 | 
      
         | 1000 |  |  |   /* Build linearized sub-operand lists and the counting table.  */
 | 
      
         | 1001 |  |  |   cvec = NULL;
 | 
      
         | 1002 |  |  |   ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
 | 
      
         | 1003 |  |  |   subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
 | 
      
         | 1004 |  |  |                      VEC_length (operand_entry_t, *ops));
 | 
      
         | 1005 |  |  |   EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
 | 
      
         | 1006 |  |  |     {
 | 
      
         | 1007 |  |  |       gimple oedef;
 | 
      
         | 1008 |  |  |       enum tree_code oecode;
 | 
      
         | 1009 |  |  |       unsigned j;
 | 
      
         | 1010 |  |  |  
 | 
      
         | 1011 |  |  |       oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
 | 
      
         | 1012 |  |  |       oecode = gimple_assign_rhs_code (oedef);
 | 
      
         | 1013 |  |  |       linearize_expr_tree (&subops[i], oedef,
 | 
      
         | 1014 |  |  |                            associative_tree_code (oecode), false);
 | 
      
         | 1015 |  |  |  
 | 
      
         | 1016 |  |  |       for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
 | 
      
         | 1017 |  |  |         {
 | 
      
         | 1018 |  |  |           oecount c;
 | 
      
         | 1019 |  |  |           void **slot;
 | 
      
         | 1020 |  |  |           size_t idx;
 | 
      
         | 1021 |  |  |           c.oecode = oecode;
 | 
      
         | 1022 |  |  |           c.cnt = 1;
 | 
      
         | 1023 |  |  |           c.op = oe1->op;
 | 
      
         | 1024 |  |  |           VEC_safe_push (oecount, heap, cvec, &c);
 | 
      
         | 1025 |  |  |           idx = VEC_length (oecount, cvec) + 41;
 | 
      
         | 1026 |  |  |           slot = htab_find_slot (ctable, (void *)idx, INSERT);
 | 
      
         | 1027 |  |  |           if (!*slot)
 | 
      
         | 1028 |  |  |             {
 | 
      
         | 1029 |  |  |               *slot = (void *)idx;
 | 
      
         | 1030 |  |  |             }
 | 
      
         | 1031 |  |  |           else
 | 
      
         | 1032 |  |  |             {
 | 
      
         | 1033 |  |  |               VEC_pop (oecount, cvec);
 | 
      
         | 1034 |  |  |               VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
 | 
      
         | 1035 |  |  |             }
 | 
      
         | 1036 |  |  |         }
 | 
      
         | 1037 |  |  |     }
 | 
      
         | 1038 |  |  |   htab_delete (ctable);
 | 
      
         | 1039 |  |  |  
 | 
      
         | 1040 |  |  |   /* Sort the counting table.  */
 | 
      
         | 1041 |  |  |   qsort (VEC_address (oecount, cvec), VEC_length (oecount, cvec),
 | 
      
         | 1042 |  |  |          sizeof (oecount), oecount_cmp);
 | 
      
         | 1043 |  |  |  
 | 
      
         | 1044 |  |  |   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1045 |  |  |     {
 | 
      
         | 1046 |  |  |       oecount *c;
 | 
      
         | 1047 |  |  |       fprintf (dump_file, "Candidates:\n");
 | 
      
         | 1048 |  |  |       for (j = 0; VEC_iterate (oecount, cvec, j, c); ++j)
 | 
      
         | 1049 |  |  |         {
 | 
      
         | 1050 |  |  |           fprintf (dump_file, "  %u %s: ", c->cnt,
 | 
      
         | 1051 |  |  |                    c->oecode == MULT_EXPR
 | 
      
         | 1052 |  |  |                    ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
 | 
      
         | 1053 |  |  |           print_generic_expr (dump_file, c->op, 0);
 | 
      
         | 1054 |  |  |           fprintf (dump_file, "\n");
 | 
      
         | 1055 |  |  |         }
 | 
      
         | 1056 |  |  |     }
 | 
      
         | 1057 |  |  |  
 | 
      
         | 1058 |  |  |   /* Process the (operand, code) pairs in order of most occurence.  */
 | 
      
         | 1059 |  |  |   candidates2 = sbitmap_alloc (length);
 | 
      
         | 1060 |  |  |   while (!VEC_empty (oecount, cvec))
 | 
      
         | 1061 |  |  |     {
 | 
      
         | 1062 |  |  |       oecount *c = VEC_last (oecount, cvec);
 | 
      
         | 1063 |  |  |       if (c->cnt < 2)
 | 
      
         | 1064 |  |  |         break;
 | 
      
         | 1065 |  |  |  
 | 
      
         | 1066 |  |  |       /* Now collect the operands in the outer chain that contain
 | 
      
         | 1067 |  |  |          the common operand in their inner chain.  */
 | 
      
         | 1068 |  |  |       sbitmap_zero (candidates2);
 | 
      
         | 1069 |  |  |       nr_candidates2 = 0;
 | 
      
         | 1070 |  |  |       EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
 | 
      
         | 1071 |  |  |         {
 | 
      
         | 1072 |  |  |           gimple oedef;
 | 
      
         | 1073 |  |  |           enum tree_code oecode;
 | 
      
         | 1074 |  |  |           unsigned j;
 | 
      
         | 1075 |  |  |           tree op = VEC_index (operand_entry_t, *ops, i)->op;
 | 
      
         | 1076 |  |  |  
 | 
      
         | 1077 |  |  |           /* If we undistributed in this chain already this may be
 | 
      
         | 1078 |  |  |              a constant.  */
 | 
      
         | 1079 |  |  |           if (TREE_CODE (op) != SSA_NAME)
 | 
      
         | 1080 |  |  |             continue;
 | 
      
         | 1081 |  |  |  
 | 
      
         | 1082 |  |  |           oedef = SSA_NAME_DEF_STMT (op);
 | 
      
         | 1083 |  |  |           oecode = gimple_assign_rhs_code (oedef);
 | 
      
         | 1084 |  |  |           if (oecode != c->oecode)
 | 
      
         | 1085 |  |  |             continue;
 | 
      
         | 1086 |  |  |  
 | 
      
         | 1087 |  |  |           for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
 | 
      
         | 1088 |  |  |             {
 | 
      
         | 1089 |  |  |               if (oe1->op == c->op)
 | 
      
         | 1090 |  |  |                 {
 | 
      
         | 1091 |  |  |                   SET_BIT (candidates2, i);
 | 
      
         | 1092 |  |  |                   ++nr_candidates2;
 | 
      
         | 1093 |  |  |                   break;
 | 
      
         | 1094 |  |  |                 }
 | 
      
         | 1095 |  |  |             }
 | 
      
         | 1096 |  |  |         }
 | 
      
         | 1097 |  |  |  
 | 
      
         | 1098 |  |  |       if (nr_candidates2 >= 2)
 | 
      
         | 1099 |  |  |         {
 | 
      
         | 1100 |  |  |           operand_entry_t oe1, oe2;
 | 
      
         | 1101 |  |  |           tree tmpvar;
 | 
      
         | 1102 |  |  |           gimple prod;
 | 
      
         | 1103 |  |  |           int first = sbitmap_first_set_bit (candidates2);
 | 
      
         | 1104 |  |  |  
 | 
      
         | 1105 |  |  |           /* Build the new addition chain.  */
 | 
      
         | 1106 |  |  |           oe1 = VEC_index (operand_entry_t, *ops, first);
 | 
      
         | 1107 |  |  |           if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1108 |  |  |             {
 | 
      
         | 1109 |  |  |               fprintf (dump_file, "Building (");
 | 
      
         | 1110 |  |  |               print_generic_expr (dump_file, oe1->op, 0);
 | 
      
         | 1111 |  |  |             }
 | 
      
         | 1112 |  |  |           tmpvar = create_tmp_var (TREE_TYPE (oe1->op), NULL);
 | 
      
         | 1113 |  |  |           add_referenced_var (tmpvar);
 | 
      
         | 1114 |  |  |           zero_one_operation (&oe1->op, c->oecode, c->op);
 | 
      
         | 1115 |  |  |           EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
 | 
      
         | 1116 |  |  |             {
 | 
      
         | 1117 |  |  |               gimple sum;
 | 
      
         | 1118 |  |  |               oe2 = VEC_index (operand_entry_t, *ops, i);
 | 
      
         | 1119 |  |  |               if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1120 |  |  |                 {
 | 
      
         | 1121 |  |  |                   fprintf (dump_file, " + ");
 | 
      
         | 1122 |  |  |                   print_generic_expr (dump_file, oe2->op, 0);
 | 
      
         | 1123 |  |  |                 }
 | 
      
         | 1124 |  |  |               zero_one_operation (&oe2->op, c->oecode, c->op);
 | 
      
         | 1125 |  |  |               sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
 | 
      
         | 1126 |  |  |               oe2->op = fold_convert (TREE_TYPE (oe2->op), integer_zero_node);
 | 
      
         | 1127 |  |  |               oe2->rank = 0;
 | 
      
         | 1128 |  |  |               oe1->op = gimple_get_lhs (sum);
 | 
      
         | 1129 |  |  |             }
 | 
      
         | 1130 |  |  |  
 | 
      
         | 1131 |  |  |           /* Apply the multiplication/division.  */
 | 
      
         | 1132 |  |  |           prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
 | 
      
         | 1133 |  |  |           if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1134 |  |  |             {
 | 
      
         | 1135 |  |  |               fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
 | 
      
         | 1136 |  |  |               print_generic_expr (dump_file, c->op, 0);
 | 
      
         | 1137 |  |  |               fprintf (dump_file, "\n");
 | 
      
         | 1138 |  |  |             }
 | 
      
         | 1139 |  |  |  
 | 
      
         | 1140 |  |  |           /* Record it in the addition chain and disable further
 | 
      
         | 1141 |  |  |              undistribution with this op.  */
 | 
      
         | 1142 |  |  |           oe1->op = gimple_assign_lhs (prod);
 | 
      
         | 1143 |  |  |           oe1->rank = get_rank (oe1->op);
 | 
      
         | 1144 |  |  |           VEC_free (operand_entry_t, heap, subops[first]);
 | 
      
         | 1145 |  |  |  
 | 
      
         | 1146 |  |  |           changed = true;
 | 
      
         | 1147 |  |  |         }
 | 
      
         | 1148 |  |  |  
 | 
      
         | 1149 |  |  |       VEC_pop (oecount, cvec);
 | 
      
         | 1150 |  |  |     }
 | 
      
         | 1151 |  |  |  
 | 
      
         | 1152 |  |  |   for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
 | 
      
         | 1153 |  |  |     VEC_free (operand_entry_t, heap, subops[i]);
 | 
      
         | 1154 |  |  |   free (subops);
 | 
      
         | 1155 |  |  |   VEC_free (oecount, heap, cvec);
 | 
      
         | 1156 |  |  |   sbitmap_free (candidates);
 | 
      
         | 1157 |  |  |   sbitmap_free (candidates2);
 | 
      
         | 1158 |  |  |  
 | 
      
         | 1159 |  |  |   return changed;
 | 
      
         | 1160 |  |  | }
 | 
      
         | 1161 |  |  |  
 | 
      
         | 1162 |  |  |  
 | 
      
         | 1163 |  |  | /* Perform various identities and other optimizations on the list of
 | 
      
         | 1164 |  |  |    operand entries, stored in OPS.  The tree code for the binary
 | 
      
         | 1165 |  |  |    operation between all the operands is OPCODE.  */
 | 
      
         | 1166 |  |  |  
 | 
      
         | 1167 |  |  | static void
 | 
      
         | 1168 |  |  | optimize_ops_list (enum tree_code opcode,
 | 
      
         | 1169 |  |  |                    VEC (operand_entry_t, heap) **ops)
 | 
      
         | 1170 |  |  | {
 | 
      
         | 1171 |  |  |   unsigned int length = VEC_length (operand_entry_t, *ops);
 | 
      
         | 1172 |  |  |   unsigned int i;
 | 
      
         | 1173 |  |  |   operand_entry_t oe;
 | 
      
         | 1174 |  |  |   operand_entry_t oelast = NULL;
 | 
      
         | 1175 |  |  |   bool iterate = false;
 | 
      
         | 1176 |  |  |  
 | 
      
         | 1177 |  |  |   if (length == 1)
 | 
      
         | 1178 |  |  |     return;
 | 
      
         | 1179 |  |  |  
 | 
      
         | 1180 |  |  |   oelast = VEC_last (operand_entry_t, *ops);
 | 
      
         | 1181 |  |  |  
 | 
      
         | 1182 |  |  |   /* If the last two are constants, pop the constants off, merge them
 | 
      
         | 1183 |  |  |      and try the next two.  */
 | 
      
         | 1184 |  |  |   if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
 | 
      
         | 1185 |  |  |     {
 | 
      
         | 1186 |  |  |       operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
 | 
      
         | 1187 |  |  |  
 | 
      
         | 1188 |  |  |       if (oelm1->rank == 0
 | 
      
         | 1189 |  |  |           && is_gimple_min_invariant (oelm1->op)
 | 
      
         | 1190 |  |  |           && useless_type_conversion_p (TREE_TYPE (oelm1->op),
 | 
      
         | 1191 |  |  |                                        TREE_TYPE (oelast->op)))
 | 
      
         | 1192 |  |  |         {
 | 
      
         | 1193 |  |  |           tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
 | 
      
         | 1194 |  |  |                                      oelm1->op, oelast->op);
 | 
      
         | 1195 |  |  |  
 | 
      
         | 1196 |  |  |           if (folded && is_gimple_min_invariant (folded))
 | 
      
         | 1197 |  |  |             {
 | 
      
         | 1198 |  |  |               if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1199 |  |  |                 fprintf (dump_file, "Merging constants\n");
 | 
      
         | 1200 |  |  |  
 | 
      
         | 1201 |  |  |               VEC_pop (operand_entry_t, *ops);
 | 
      
         | 1202 |  |  |               VEC_pop (operand_entry_t, *ops);
 | 
      
         | 1203 |  |  |  
 | 
      
         | 1204 |  |  |               add_to_ops_vec (ops, folded);
 | 
      
         | 1205 |  |  |               reassociate_stats.constants_eliminated++;
 | 
      
         | 1206 |  |  |  
 | 
      
         | 1207 |  |  |               optimize_ops_list (opcode, ops);
 | 
      
         | 1208 |  |  |               return;
 | 
      
         | 1209 |  |  |             }
 | 
      
         | 1210 |  |  |         }
 | 
      
         | 1211 |  |  |     }
 | 
      
         | 1212 |  |  |  
 | 
      
         | 1213 |  |  |   eliminate_using_constants (opcode, ops);
 | 
      
         | 1214 |  |  |   oelast = NULL;
 | 
      
         | 1215 |  |  |  
 | 
      
         | 1216 |  |  |   for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
 | 
      
         | 1217 |  |  |     {
 | 
      
         | 1218 |  |  |       bool done = false;
 | 
      
         | 1219 |  |  |  
 | 
      
         | 1220 |  |  |       if (eliminate_not_pairs (opcode, ops, i, oe))
 | 
      
         | 1221 |  |  |         return;
 | 
      
         | 1222 |  |  |       if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
 | 
      
         | 1223 |  |  |           || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
 | 
      
         | 1224 |  |  |         {
 | 
      
         | 1225 |  |  |           if (done)
 | 
      
         | 1226 |  |  |             return;
 | 
      
         | 1227 |  |  |           iterate = true;
 | 
      
         | 1228 |  |  |           oelast = NULL;
 | 
      
         | 1229 |  |  |           continue;
 | 
      
         | 1230 |  |  |         }
 | 
      
         | 1231 |  |  |       oelast = oe;
 | 
      
         | 1232 |  |  |       i++;
 | 
      
         | 1233 |  |  |     }
 | 
      
         | 1234 |  |  |  
 | 
      
         | 1235 |  |  |   length  = VEC_length (operand_entry_t, *ops);
 | 
      
         | 1236 |  |  |   oelast = VEC_last (operand_entry_t, *ops);
 | 
      
         | 1237 |  |  |  
 | 
      
         | 1238 |  |  |   if (iterate)
 | 
      
         | 1239 |  |  |     optimize_ops_list (opcode, ops);
 | 
      
         | 1240 |  |  | }
 | 
      
         | 1241 |  |  |  
 | 
      
         | 1242 |  |  | /* Return true if OPERAND is defined by a PHI node which uses the LHS
 | 
      
         | 1243 |  |  |    of STMT in it's operands.  This is also known as a "destructive
 | 
      
         | 1244 |  |  |    update" operation.  */
 | 
      
         | 1245 |  |  |  
 | 
      
         | 1246 |  |  | static bool
 | 
      
         | 1247 |  |  | is_phi_for_stmt (gimple stmt, tree operand)
 | 
      
         | 1248 |  |  | {
 | 
      
         | 1249 |  |  |   gimple def_stmt;
 | 
      
         | 1250 |  |  |   tree lhs;
 | 
      
         | 1251 |  |  |   use_operand_p arg_p;
 | 
      
         | 1252 |  |  |   ssa_op_iter i;
 | 
      
         | 1253 |  |  |  
 | 
      
         | 1254 |  |  |   if (TREE_CODE (operand) != SSA_NAME)
 | 
      
         | 1255 |  |  |     return false;
 | 
      
         | 1256 |  |  |  
 | 
      
         | 1257 |  |  |   lhs = gimple_assign_lhs (stmt);
 | 
      
         | 1258 |  |  |  
 | 
      
         | 1259 |  |  |   def_stmt = SSA_NAME_DEF_STMT (operand);
 | 
      
         | 1260 |  |  |   if (gimple_code (def_stmt) != GIMPLE_PHI)
 | 
      
         | 1261 |  |  |     return false;
 | 
      
         | 1262 |  |  |  
 | 
      
         | 1263 |  |  |   FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
 | 
      
         | 1264 |  |  |     if (lhs == USE_FROM_PTR (arg_p))
 | 
      
         | 1265 |  |  |       return true;
 | 
      
         | 1266 |  |  |   return false;
 | 
      
         | 1267 |  |  | }
 | 
      
         | 1268 |  |  |  
 | 
      
         | 1269 |  |  | /* Remove def stmt of VAR if VAR has zero uses and recurse
 | 
      
         | 1270 |  |  |    on rhs1 operand if so.  */
 | 
      
         | 1271 |  |  |  
 | 
      
         | 1272 |  |  | static void
 | 
      
         | 1273 |  |  | remove_visited_stmt_chain (tree var)
 | 
      
         | 1274 |  |  | {
 | 
      
         | 1275 |  |  |   gimple stmt;
 | 
      
         | 1276 |  |  |   gimple_stmt_iterator gsi;
 | 
      
         | 1277 |  |  |  
 | 
      
         | 1278 |  |  |   while (1)
 | 
      
         | 1279 |  |  |     {
 | 
      
         | 1280 |  |  |       if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
 | 
      
         | 1281 |  |  |         return;
 | 
      
         | 1282 |  |  |       stmt = SSA_NAME_DEF_STMT (var);
 | 
      
         | 1283 |  |  |       if (!is_gimple_assign (stmt)
 | 
      
         | 1284 |  |  |           || !gimple_visited_p (stmt))
 | 
      
         | 1285 |  |  |         return;
 | 
      
         | 1286 |  |  |       var = gimple_assign_rhs1 (stmt);
 | 
      
         | 1287 |  |  |       gsi = gsi_for_stmt (stmt);
 | 
      
         | 1288 |  |  |       gsi_remove (&gsi, true);
 | 
      
         | 1289 |  |  |       release_defs (stmt);
 | 
      
         | 1290 |  |  |     }
 | 
      
         | 1291 |  |  | }
 | 
      
         | 1292 |  |  |  
 | 
      
         | 1293 |  |  | /* Recursively rewrite our linearized statements so that the operators
 | 
      
         | 1294 |  |  |    match those in OPS[OPINDEX], putting the computation in rank
 | 
      
         | 1295 |  |  |    order.  */
 | 
      
         | 1296 |  |  |  
 | 
      
         | 1297 |  |  | static void
 | 
      
         | 1298 |  |  | rewrite_expr_tree (gimple stmt, unsigned int opindex,
 | 
      
         | 1299 |  |  |                    VEC(operand_entry_t, heap) * ops, bool moved)
 | 
      
         | 1300 |  |  | {
 | 
      
         | 1301 |  |  |   tree rhs1 = gimple_assign_rhs1 (stmt);
 | 
      
         | 1302 |  |  |   tree rhs2 = gimple_assign_rhs2 (stmt);
 | 
      
         | 1303 |  |  |   operand_entry_t oe;
 | 
      
         | 1304 |  |  |  
 | 
      
         | 1305 |  |  |   /* If we have three operands left, then we want to make sure the one
 | 
      
         | 1306 |  |  |      that gets the double binary op are the ones with the same rank.
 | 
      
         | 1307 |  |  |  
 | 
      
         | 1308 |  |  |      The alternative we try is to see if this is a destructive
 | 
      
         | 1309 |  |  |      update style statement, which is like:
 | 
      
         | 1310 |  |  |      b = phi (a, ...)
 | 
      
         | 1311 |  |  |      a = c + b;
 | 
      
         | 1312 |  |  |      In that case, we want to use the destructive update form to
 | 
      
         | 1313 |  |  |      expose the possible vectorizer sum reduction opportunity.
 | 
      
         | 1314 |  |  |      In that case, the third operand will be the phi node.
 | 
      
         | 1315 |  |  |  
 | 
      
         | 1316 |  |  |      We could, of course, try to be better as noted above, and do a
 | 
      
         | 1317 |  |  |      lot of work to try to find these opportunities in >3 operand
 | 
      
         | 1318 |  |  |      cases, but it is unlikely to be worth it.  */
 | 
      
         | 1319 |  |  |   if (opindex + 3 == VEC_length (operand_entry_t, ops))
 | 
      
         | 1320 |  |  |     {
 | 
      
         | 1321 |  |  |       operand_entry_t oe1, oe2, oe3;
 | 
      
         | 1322 |  |  |  
 | 
      
         | 1323 |  |  |       oe1 = VEC_index (operand_entry_t, ops, opindex);
 | 
      
         | 1324 |  |  |       oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
 | 
      
         | 1325 |  |  |       oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
 | 
      
         | 1326 |  |  |  
 | 
      
         | 1327 |  |  |       if ((oe1->rank == oe2->rank
 | 
      
         | 1328 |  |  |            && oe2->rank != oe3->rank)
 | 
      
         | 1329 |  |  |           || (is_phi_for_stmt (stmt, oe3->op)
 | 
      
         | 1330 |  |  |               && !is_phi_for_stmt (stmt, oe1->op)
 | 
      
         | 1331 |  |  |               && !is_phi_for_stmt (stmt, oe2->op)))
 | 
      
         | 1332 |  |  |         {
 | 
      
         | 1333 |  |  |           struct operand_entry temp = *oe3;
 | 
      
         | 1334 |  |  |           oe3->op = oe1->op;
 | 
      
         | 1335 |  |  |           oe3->rank = oe1->rank;
 | 
      
         | 1336 |  |  |           oe1->op = temp.op;
 | 
      
         | 1337 |  |  |           oe1->rank= temp.rank;
 | 
      
         | 1338 |  |  |         }
 | 
      
         | 1339 |  |  |       else if ((oe1->rank == oe3->rank
 | 
      
         | 1340 |  |  |                 && oe2->rank != oe3->rank)
 | 
      
         | 1341 |  |  |                || (is_phi_for_stmt (stmt, oe2->op)
 | 
      
         | 1342 |  |  |                    && !is_phi_for_stmt (stmt, oe1->op)
 | 
      
         | 1343 |  |  |                    && !is_phi_for_stmt (stmt, oe3->op)))
 | 
      
         | 1344 |  |  |         {
 | 
      
         | 1345 |  |  |           struct operand_entry temp = *oe2;
 | 
      
         | 1346 |  |  |           oe2->op = oe1->op;
 | 
      
         | 1347 |  |  |           oe2->rank = oe1->rank;
 | 
      
         | 1348 |  |  |           oe1->op = temp.op;
 | 
      
         | 1349 |  |  |           oe1->rank= temp.rank;
 | 
      
         | 1350 |  |  |         }
 | 
      
         | 1351 |  |  |     }
 | 
      
         | 1352 |  |  |  
 | 
      
         | 1353 |  |  |   /* The final recursion case for this function is that you have
 | 
      
         | 1354 |  |  |      exactly two operations left.
 | 
      
         | 1355 |  |  |      If we had one exactly one op in the entire list to start with, we
 | 
      
         | 1356 |  |  |      would have never called this function, and the tail recursion
 | 
      
         | 1357 |  |  |      rewrites them one at a time.  */
 | 
      
         | 1358 |  |  |   if (opindex + 2 == VEC_length (operand_entry_t, ops))
 | 
      
         | 1359 |  |  |     {
 | 
      
         | 1360 |  |  |       operand_entry_t oe1, oe2;
 | 
      
         | 1361 |  |  |  
 | 
      
         | 1362 |  |  |       oe1 = VEC_index (operand_entry_t, ops, opindex);
 | 
      
         | 1363 |  |  |       oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
 | 
      
         | 1364 |  |  |  
 | 
      
         | 1365 |  |  |       if (rhs1 != oe1->op || rhs2 != oe2->op)
 | 
      
         | 1366 |  |  |         {
 | 
      
         | 1367 |  |  |           if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1368 |  |  |             {
 | 
      
         | 1369 |  |  |               fprintf (dump_file, "Transforming ");
 | 
      
         | 1370 |  |  |               print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1371 |  |  |             }
 | 
      
         | 1372 |  |  |  
 | 
      
         | 1373 |  |  |           gimple_assign_set_rhs1 (stmt, oe1->op);
 | 
      
         | 1374 |  |  |           gimple_assign_set_rhs2 (stmt, oe2->op);
 | 
      
         | 1375 |  |  |           update_stmt (stmt);
 | 
      
         | 1376 |  |  |           if (rhs1 != oe1->op && rhs1 != oe2->op)
 | 
      
         | 1377 |  |  |             remove_visited_stmt_chain (rhs1);
 | 
      
         | 1378 |  |  |  
 | 
      
         | 1379 |  |  |           if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1380 |  |  |             {
 | 
      
         | 1381 |  |  |               fprintf (dump_file, " into ");
 | 
      
         | 1382 |  |  |               print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1383 |  |  |             }
 | 
      
         | 1384 |  |  |  
 | 
      
         | 1385 |  |  |         }
 | 
      
         | 1386 |  |  |       return;
 | 
      
         | 1387 |  |  |     }
 | 
      
         | 1388 |  |  |  
 | 
      
         | 1389 |  |  |   /* If we hit here, we should have 3 or more ops left.  */
 | 
      
         | 1390 |  |  |   gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
 | 
      
         | 1391 |  |  |  
 | 
      
         | 1392 |  |  |   /* Rewrite the next operator.  */
 | 
      
         | 1393 |  |  |   oe = VEC_index (operand_entry_t, ops, opindex);
 | 
      
         | 1394 |  |  |  
 | 
      
         | 1395 |  |  |   if (oe->op != rhs2)
 | 
      
         | 1396 |  |  |     {
 | 
      
         | 1397 |  |  |       if (!moved)
 | 
      
         | 1398 |  |  |         {
 | 
      
         | 1399 |  |  |           gimple_stmt_iterator gsinow, gsirhs1;
 | 
      
         | 1400 |  |  |           gimple stmt1 = stmt, stmt2;
 | 
      
         | 1401 |  |  |           unsigned int count;
 | 
      
         | 1402 |  |  |  
 | 
      
         | 1403 |  |  |           gsinow = gsi_for_stmt (stmt);
 | 
      
         | 1404 |  |  |           count = VEC_length (operand_entry_t, ops) - opindex - 2;
 | 
      
         | 1405 |  |  |           while (count-- != 0)
 | 
      
         | 1406 |  |  |             {
 | 
      
         | 1407 |  |  |               stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
 | 
      
         | 1408 |  |  |               gsirhs1 = gsi_for_stmt (stmt2);
 | 
      
         | 1409 |  |  |               gsi_move_before (&gsirhs1, &gsinow);
 | 
      
         | 1410 |  |  |               gsi_prev (&gsinow);
 | 
      
         | 1411 |  |  |               stmt1 = stmt2;
 | 
      
         | 1412 |  |  |             }
 | 
      
         | 1413 |  |  |           moved = true;
 | 
      
         | 1414 |  |  |         }
 | 
      
         | 1415 |  |  |  
 | 
      
         | 1416 |  |  |       if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1417 |  |  |         {
 | 
      
         | 1418 |  |  |           fprintf (dump_file, "Transforming ");
 | 
      
         | 1419 |  |  |           print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1420 |  |  |         }
 | 
      
         | 1421 |  |  |  
 | 
      
         | 1422 |  |  |       gimple_assign_set_rhs2 (stmt, oe->op);
 | 
      
         | 1423 |  |  |       update_stmt (stmt);
 | 
      
         | 1424 |  |  |  
 | 
      
         | 1425 |  |  |       if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1426 |  |  |         {
 | 
      
         | 1427 |  |  |           fprintf (dump_file, " into ");
 | 
      
         | 1428 |  |  |           print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1429 |  |  |         }
 | 
      
         | 1430 |  |  |     }
 | 
      
         | 1431 |  |  |   /* Recurse on the LHS of the binary operator, which is guaranteed to
 | 
      
         | 1432 |  |  |      be the non-leaf side.  */
 | 
      
         | 1433 |  |  |   rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
 | 
      
         | 1434 |  |  | }
 | 
      
         | 1435 |  |  |  
 | 
      
         | 1436 |  |  | /* Transform STMT, which is really (A +B) + (C + D) into the left
 | 
      
         | 1437 |  |  |    linear form, ((A+B)+C)+D.
 | 
      
         | 1438 |  |  |    Recurse on D if necessary.  */
 | 
      
         | 1439 |  |  |  
 | 
      
         | 1440 |  |  | static void
 | 
      
         | 1441 |  |  | linearize_expr (gimple stmt)
 | 
      
         | 1442 |  |  | {
 | 
      
         | 1443 |  |  |   gimple_stmt_iterator gsinow, gsirhs;
 | 
      
         | 1444 |  |  |   gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
 | 
      
         | 1445 |  |  |   gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
 | 
      
         | 1446 |  |  |   enum tree_code rhscode = gimple_assign_rhs_code (stmt);
 | 
      
         | 1447 |  |  |   gimple newbinrhs = NULL;
 | 
      
         | 1448 |  |  |   struct loop *loop = loop_containing_stmt (stmt);
 | 
      
         | 1449 |  |  |  
 | 
      
         | 1450 |  |  |   gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
 | 
      
         | 1451 |  |  |               && is_reassociable_op (binrhs, rhscode, loop));
 | 
      
         | 1452 |  |  |  
 | 
      
         | 1453 |  |  |   gsinow = gsi_for_stmt (stmt);
 | 
      
         | 1454 |  |  |   gsirhs = gsi_for_stmt (binrhs);
 | 
      
         | 1455 |  |  |   gsi_move_before (&gsirhs, &gsinow);
 | 
      
         | 1456 |  |  |  
 | 
      
         | 1457 |  |  |   gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
 | 
      
         | 1458 |  |  |   gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
 | 
      
         | 1459 |  |  |   gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
 | 
      
         | 1460 |  |  |  
 | 
      
         | 1461 |  |  |   if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
 | 
      
         | 1462 |  |  |     newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
 | 
      
         | 1463 |  |  |  
 | 
      
         | 1464 |  |  |   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1465 |  |  |     {
 | 
      
         | 1466 |  |  |       fprintf (dump_file, "Linearized: ");
 | 
      
         | 1467 |  |  |       print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1468 |  |  |     }
 | 
      
         | 1469 |  |  |  
 | 
      
         | 1470 |  |  |   reassociate_stats.linearized++;
 | 
      
         | 1471 |  |  |   update_stmt (binrhs);
 | 
      
         | 1472 |  |  |   update_stmt (binlhs);
 | 
      
         | 1473 |  |  |   update_stmt (stmt);
 | 
      
         | 1474 |  |  |  
 | 
      
         | 1475 |  |  |   gimple_set_visited (stmt, true);
 | 
      
         | 1476 |  |  |   gimple_set_visited (binlhs, true);
 | 
      
         | 1477 |  |  |   gimple_set_visited (binrhs, true);
 | 
      
         | 1478 |  |  |  
 | 
      
         | 1479 |  |  |   /* Tail recurse on the new rhs if it still needs reassociation.  */
 | 
      
         | 1480 |  |  |   if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
 | 
      
         | 1481 |  |  |     /* ??? This should probably be linearize_expr (newbinrhs) but I don't
 | 
      
         | 1482 |  |  |            want to change the algorithm while converting to tuples.  */
 | 
      
         | 1483 |  |  |     linearize_expr (stmt);
 | 
      
         | 1484 |  |  | }
 | 
      
         | 1485 |  |  |  
 | 
      
         | 1486 |  |  | /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
 | 
      
         | 1487 |  |  |    it.  Otherwise, return NULL.  */
 | 
      
         | 1488 |  |  |  
 | 
      
         | 1489 |  |  | static gimple
 | 
      
         | 1490 |  |  | get_single_immediate_use (tree lhs)
 | 
      
         | 1491 |  |  | {
 | 
      
         | 1492 |  |  |   use_operand_p immuse;
 | 
      
         | 1493 |  |  |   gimple immusestmt;
 | 
      
         | 1494 |  |  |  
 | 
      
         | 1495 |  |  |   if (TREE_CODE (lhs) == SSA_NAME
 | 
      
         | 1496 |  |  |       && single_imm_use (lhs, &immuse, &immusestmt)
 | 
      
         | 1497 |  |  |       && is_gimple_assign (immusestmt))
 | 
      
         | 1498 |  |  |     return immusestmt;
 | 
      
         | 1499 |  |  |  
 | 
      
         | 1500 |  |  |   return NULL;
 | 
      
         | 1501 |  |  | }
 | 
      
         | 1502 |  |  |  
 | 
      
         | 1503 |  |  | static VEC(tree, heap) *broken_up_subtracts;
 | 
      
         | 1504 |  |  |  
 | 
      
         | 1505 |  |  | /* Recursively negate the value of TONEGATE, and return the SSA_NAME
 | 
      
         | 1506 |  |  |    representing the negated value.  Insertions of any necessary
 | 
      
         | 1507 |  |  |    instructions go before GSI.
 | 
      
         | 1508 |  |  |    This function is recursive in that, if you hand it "a_5" as the
 | 
      
         | 1509 |  |  |    value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
 | 
      
         | 1510 |  |  |    transform b_3 + b_4 into a_5 = -b_3 + -b_4.  */
 | 
      
         | 1511 |  |  |  
 | 
      
         | 1512 |  |  | static tree
 | 
      
         | 1513 |  |  | negate_value (tree tonegate, gimple_stmt_iterator *gsi)
 | 
      
         | 1514 |  |  | {
 | 
      
         | 1515 |  |  |   gimple negatedefstmt= NULL;
 | 
      
         | 1516 |  |  |   tree resultofnegate;
 | 
      
         | 1517 |  |  |  
 | 
      
         | 1518 |  |  |   /* If we are trying to negate a name, defined by an add, negate the
 | 
      
         | 1519 |  |  |      add operands instead.  */
 | 
      
         | 1520 |  |  |   if (TREE_CODE (tonegate) == SSA_NAME)
 | 
      
         | 1521 |  |  |     negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
 | 
      
         | 1522 |  |  |   if (TREE_CODE (tonegate) == SSA_NAME
 | 
      
         | 1523 |  |  |       && is_gimple_assign (negatedefstmt)
 | 
      
         | 1524 |  |  |       && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
 | 
      
         | 1525 |  |  |       && has_single_use (gimple_assign_lhs (negatedefstmt))
 | 
      
         | 1526 |  |  |       && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
 | 
      
         | 1527 |  |  |     {
 | 
      
         | 1528 |  |  |       gimple_stmt_iterator gsi;
 | 
      
         | 1529 |  |  |       tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
 | 
      
         | 1530 |  |  |       tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
 | 
      
         | 1531 |  |  |  
 | 
      
         | 1532 |  |  |       gsi = gsi_for_stmt (negatedefstmt);
 | 
      
         | 1533 |  |  |       rhs1 = negate_value (rhs1, &gsi);
 | 
      
         | 1534 |  |  |       gimple_assign_set_rhs1 (negatedefstmt, rhs1);
 | 
      
         | 1535 |  |  |  
 | 
      
         | 1536 |  |  |       gsi = gsi_for_stmt (negatedefstmt);
 | 
      
         | 1537 |  |  |       rhs2 = negate_value (rhs2, &gsi);
 | 
      
         | 1538 |  |  |       gimple_assign_set_rhs2 (negatedefstmt, rhs2);
 | 
      
         | 1539 |  |  |  
 | 
      
         | 1540 |  |  |       update_stmt (negatedefstmt);
 | 
      
         | 1541 |  |  |       return gimple_assign_lhs (negatedefstmt);
 | 
      
         | 1542 |  |  |     }
 | 
      
         | 1543 |  |  |  
 | 
      
         | 1544 |  |  |   tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
 | 
      
         | 1545 |  |  |   resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
 | 
      
         | 1546 |  |  |                                              NULL_TREE, true, GSI_SAME_STMT);
 | 
      
         | 1547 |  |  |   VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate);
 | 
      
         | 1548 |  |  |   return resultofnegate;
 | 
      
         | 1549 |  |  | }
 | 
      
         | 1550 |  |  |  
 | 
      
         | 1551 |  |  | /* Return true if we should break up the subtract in STMT into an add
 | 
      
         | 1552 |  |  |    with negate.  This is true when we the subtract operands are really
 | 
      
         | 1553 |  |  |    adds, or the subtract itself is used in an add expression.  In
 | 
      
         | 1554 |  |  |    either case, breaking up the subtract into an add with negate
 | 
      
         | 1555 |  |  |    exposes the adds to reassociation.  */
 | 
      
         | 1556 |  |  |  
 | 
      
         | 1557 |  |  | static bool
 | 
      
         | 1558 |  |  | should_break_up_subtract (gimple stmt)
 | 
      
         | 1559 |  |  | {
 | 
      
         | 1560 |  |  |   tree lhs = gimple_assign_lhs (stmt);
 | 
      
         | 1561 |  |  |   tree binlhs = gimple_assign_rhs1 (stmt);
 | 
      
         | 1562 |  |  |   tree binrhs = gimple_assign_rhs2 (stmt);
 | 
      
         | 1563 |  |  |   gimple immusestmt;
 | 
      
         | 1564 |  |  |   struct loop *loop = loop_containing_stmt (stmt);
 | 
      
         | 1565 |  |  |  
 | 
      
         | 1566 |  |  |   if (TREE_CODE (binlhs) == SSA_NAME
 | 
      
         | 1567 |  |  |       && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
 | 
      
         | 1568 |  |  |     return true;
 | 
      
         | 1569 |  |  |  
 | 
      
         | 1570 |  |  |   if (TREE_CODE (binrhs) == SSA_NAME
 | 
      
         | 1571 |  |  |       && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
 | 
      
         | 1572 |  |  |     return true;
 | 
      
         | 1573 |  |  |  
 | 
      
         | 1574 |  |  |   if (TREE_CODE (lhs) == SSA_NAME
 | 
      
         | 1575 |  |  |       && (immusestmt = get_single_immediate_use (lhs))
 | 
      
         | 1576 |  |  |       && is_gimple_assign (immusestmt)
 | 
      
         | 1577 |  |  |       && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
 | 
      
         | 1578 |  |  |           ||  gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
 | 
      
         | 1579 |  |  |     return true;
 | 
      
         | 1580 |  |  |   return false;
 | 
      
         | 1581 |  |  | }
 | 
      
         | 1582 |  |  |  
 | 
      
         | 1583 |  |  | /* Transform STMT from A - B into A + -B.  */
 | 
      
         | 1584 |  |  |  
 | 
      
         | 1585 |  |  | static void
 | 
      
         | 1586 |  |  | break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
 | 
      
         | 1587 |  |  | {
 | 
      
         | 1588 |  |  |   tree rhs1 = gimple_assign_rhs1 (stmt);
 | 
      
         | 1589 |  |  |   tree rhs2 = gimple_assign_rhs2 (stmt);
 | 
      
         | 1590 |  |  |  
 | 
      
         | 1591 |  |  |   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1592 |  |  |     {
 | 
      
         | 1593 |  |  |       fprintf (dump_file, "Breaking up subtract ");
 | 
      
         | 1594 |  |  |       print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1595 |  |  |     }
 | 
      
         | 1596 |  |  |  
 | 
      
         | 1597 |  |  |   rhs2 = negate_value (rhs2, gsip);
 | 
      
         | 1598 |  |  |   gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
 | 
      
         | 1599 |  |  |   update_stmt (stmt);
 | 
      
         | 1600 |  |  | }
 | 
      
         | 1601 |  |  |  
 | 
      
         | 1602 |  |  | /* Recursively linearize a binary expression that is the RHS of STMT.
 | 
      
         | 1603 |  |  |    Place the operands of the expression tree in the vector named OPS.  */
 | 
      
         | 1604 |  |  |  
 | 
      
         | 1605 |  |  | static void
 | 
      
         | 1606 |  |  | linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
 | 
      
         | 1607 |  |  |                      bool is_associative, bool set_visited)
 | 
      
         | 1608 |  |  | {
 | 
      
         | 1609 |  |  |   tree binlhs = gimple_assign_rhs1 (stmt);
 | 
      
         | 1610 |  |  |   tree binrhs = gimple_assign_rhs2 (stmt);
 | 
      
         | 1611 |  |  |   gimple binlhsdef, binrhsdef;
 | 
      
         | 1612 |  |  |   bool binlhsisreassoc = false;
 | 
      
         | 1613 |  |  |   bool binrhsisreassoc = false;
 | 
      
         | 1614 |  |  |   enum tree_code rhscode = gimple_assign_rhs_code (stmt);
 | 
      
         | 1615 |  |  |   struct loop *loop = loop_containing_stmt (stmt);
 | 
      
         | 1616 |  |  |  
 | 
      
         | 1617 |  |  |   if (set_visited)
 | 
      
         | 1618 |  |  |     gimple_set_visited (stmt, true);
 | 
      
         | 1619 |  |  |  
 | 
      
         | 1620 |  |  |   if (TREE_CODE (binlhs) == SSA_NAME)
 | 
      
         | 1621 |  |  |     {
 | 
      
         | 1622 |  |  |       binlhsdef = SSA_NAME_DEF_STMT (binlhs);
 | 
      
         | 1623 |  |  |       binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode, loop);
 | 
      
         | 1624 |  |  |     }
 | 
      
         | 1625 |  |  |  
 | 
      
         | 1626 |  |  |   if (TREE_CODE (binrhs) == SSA_NAME)
 | 
      
         | 1627 |  |  |     {
 | 
      
         | 1628 |  |  |       binrhsdef = SSA_NAME_DEF_STMT (binrhs);
 | 
      
         | 1629 |  |  |       binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode, loop);
 | 
      
         | 1630 |  |  |     }
 | 
      
         | 1631 |  |  |  
 | 
      
         | 1632 |  |  |   /* If the LHS is not reassociable, but the RHS is, we need to swap
 | 
      
         | 1633 |  |  |      them.  If neither is reassociable, there is nothing we can do, so
 | 
      
         | 1634 |  |  |      just put them in the ops vector.  If the LHS is reassociable,
 | 
      
         | 1635 |  |  |      linearize it.  If both are reassociable, then linearize the RHS
 | 
      
         | 1636 |  |  |      and the LHS.  */
 | 
      
         | 1637 |  |  |  
 | 
      
         | 1638 |  |  |   if (!binlhsisreassoc)
 | 
      
         | 1639 |  |  |     {
 | 
      
         | 1640 |  |  |       tree temp;
 | 
      
         | 1641 |  |  |  
 | 
      
         | 1642 |  |  |       /* If this is not a associative operation like division, give up.  */
 | 
      
         | 1643 |  |  |       if (!is_associative)
 | 
      
         | 1644 |  |  |         {
 | 
      
         | 1645 |  |  |           add_to_ops_vec (ops, binrhs);
 | 
      
         | 1646 |  |  |           return;
 | 
      
         | 1647 |  |  |         }
 | 
      
         | 1648 |  |  |  
 | 
      
         | 1649 |  |  |       if (!binrhsisreassoc)
 | 
      
         | 1650 |  |  |         {
 | 
      
         | 1651 |  |  |           add_to_ops_vec (ops, binrhs);
 | 
      
         | 1652 |  |  |           add_to_ops_vec (ops, binlhs);
 | 
      
         | 1653 |  |  |           return;
 | 
      
         | 1654 |  |  |         }
 | 
      
         | 1655 |  |  |  
 | 
      
         | 1656 |  |  |       if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1657 |  |  |         {
 | 
      
         | 1658 |  |  |           fprintf (dump_file, "swapping operands of ");
 | 
      
         | 1659 |  |  |           print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1660 |  |  |         }
 | 
      
         | 1661 |  |  |  
 | 
      
         | 1662 |  |  |       swap_tree_operands (stmt,
 | 
      
         | 1663 |  |  |                           gimple_assign_rhs1_ptr (stmt),
 | 
      
         | 1664 |  |  |                           gimple_assign_rhs2_ptr (stmt));
 | 
      
         | 1665 |  |  |       update_stmt (stmt);
 | 
      
         | 1666 |  |  |  
 | 
      
         | 1667 |  |  |       if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1668 |  |  |         {
 | 
      
         | 1669 |  |  |           fprintf (dump_file, " is now ");
 | 
      
         | 1670 |  |  |           print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1671 |  |  |         }
 | 
      
         | 1672 |  |  |  
 | 
      
         | 1673 |  |  |       /* We want to make it so the lhs is always the reassociative op,
 | 
      
         | 1674 |  |  |          so swap.  */
 | 
      
         | 1675 |  |  |       temp = binlhs;
 | 
      
         | 1676 |  |  |       binlhs = binrhs;
 | 
      
         | 1677 |  |  |       binrhs = temp;
 | 
      
         | 1678 |  |  |     }
 | 
      
         | 1679 |  |  |   else if (binrhsisreassoc)
 | 
      
         | 1680 |  |  |     {
 | 
      
         | 1681 |  |  |       linearize_expr (stmt);
 | 
      
         | 1682 |  |  |       binlhs = gimple_assign_rhs1 (stmt);
 | 
      
         | 1683 |  |  |       binrhs = gimple_assign_rhs2 (stmt);
 | 
      
         | 1684 |  |  |     }
 | 
      
         | 1685 |  |  |  
 | 
      
         | 1686 |  |  |   gcc_assert (TREE_CODE (binrhs) != SSA_NAME
 | 
      
         | 1687 |  |  |               || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
 | 
      
         | 1688 |  |  |                                       rhscode, loop));
 | 
      
         | 1689 |  |  |   linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
 | 
      
         | 1690 |  |  |                        is_associative, set_visited);
 | 
      
         | 1691 |  |  |   add_to_ops_vec (ops, binrhs);
 | 
      
         | 1692 |  |  | }
 | 
      
         | 1693 |  |  |  
 | 
      
         | 1694 |  |  | /* Repropagate the negates back into subtracts, since no other pass
 | 
      
         | 1695 |  |  |    currently does it.  */
 | 
      
         | 1696 |  |  |  
 | 
      
         | 1697 |  |  | static void
 | 
      
         | 1698 |  |  | repropagate_negates (void)
 | 
      
         | 1699 |  |  | {
 | 
      
         | 1700 |  |  |   unsigned int i = 0;
 | 
      
         | 1701 |  |  |   tree negate;
 | 
      
         | 1702 |  |  |  
 | 
      
         | 1703 |  |  |   for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++)
 | 
      
         | 1704 |  |  |     {
 | 
      
         | 1705 |  |  |       gimple user = get_single_immediate_use (negate);
 | 
      
         | 1706 |  |  |  
 | 
      
         | 1707 |  |  |       /* The negate operand can be either operand of a PLUS_EXPR
 | 
      
         | 1708 |  |  |          (it can be the LHS if the RHS is a constant for example).
 | 
      
         | 1709 |  |  |  
 | 
      
         | 1710 |  |  |          Force the negate operand to the RHS of the PLUS_EXPR, then
 | 
      
         | 1711 |  |  |          transform the PLUS_EXPR into a MINUS_EXPR.  */
 | 
      
         | 1712 |  |  |       if (user
 | 
      
         | 1713 |  |  |           && is_gimple_assign (user)
 | 
      
         | 1714 |  |  |           && gimple_assign_rhs_code (user) == PLUS_EXPR)
 | 
      
         | 1715 |  |  |         {
 | 
      
         | 1716 |  |  |           /* If the negated operand appears on the LHS of the
 | 
      
         | 1717 |  |  |              PLUS_EXPR, exchange the operands of the PLUS_EXPR
 | 
      
         | 1718 |  |  |              to force the negated operand to the RHS of the PLUS_EXPR.  */
 | 
      
         | 1719 |  |  |           if (gimple_assign_rhs1 (user) == negate)
 | 
      
         | 1720 |  |  |             {
 | 
      
         | 1721 |  |  |               swap_tree_operands (user,
 | 
      
         | 1722 |  |  |                                   gimple_assign_rhs1_ptr (user),
 | 
      
         | 1723 |  |  |                                   gimple_assign_rhs2_ptr (user));
 | 
      
         | 1724 |  |  |             }
 | 
      
         | 1725 |  |  |  
 | 
      
         | 1726 |  |  |           /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
 | 
      
         | 1727 |  |  |              the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR.  */
 | 
      
         | 1728 |  |  |           if (gimple_assign_rhs2 (user) == negate)
 | 
      
         | 1729 |  |  |             {
 | 
      
         | 1730 |  |  |               tree rhs1 = gimple_assign_rhs1 (user);
 | 
      
         | 1731 |  |  |               tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
 | 
      
         | 1732 |  |  |               gimple_stmt_iterator gsi = gsi_for_stmt (user);
 | 
      
         | 1733 |  |  |               gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
 | 
      
         | 1734 |  |  |               update_stmt (user);
 | 
      
         | 1735 |  |  |             }
 | 
      
         | 1736 |  |  |         }
 | 
      
         | 1737 |  |  |     }
 | 
      
         | 1738 |  |  | }
 | 
      
         | 1739 |  |  |  
 | 
      
         | 1740 |  |  | /* Break up subtract operations in block BB.
 | 
      
         | 1741 |  |  |  
 | 
      
         | 1742 |  |  |    We do this top down because we don't know whether the subtract is
 | 
      
         | 1743 |  |  |    part of a possible chain of reassociation except at the top.
 | 
      
         | 1744 |  |  |  
 | 
      
         | 1745 |  |  |    IE given
 | 
      
         | 1746 |  |  |    d = f + g
 | 
      
         | 1747 |  |  |    c = a + e
 | 
      
         | 1748 |  |  |    b = c - d
 | 
      
         | 1749 |  |  |    q = b - r
 | 
      
         | 1750 |  |  |    k = t - q
 | 
      
         | 1751 |  |  |  
 | 
      
         | 1752 |  |  |    we want to break up k = t - q, but we won't until we've transformed q
 | 
      
         | 1753 |  |  |    = b - r, which won't be broken up until we transform b = c - d.
 | 
      
         | 1754 |  |  |  
 | 
      
         | 1755 |  |  |    En passant, clear the GIMPLE visited flag on every statement.  */
 | 
      
         | 1756 |  |  |  
 | 
      
         | 1757 |  |  | static void
 | 
      
         | 1758 |  |  | break_up_subtract_bb (basic_block bb)
 | 
      
         | 1759 |  |  | {
 | 
      
         | 1760 |  |  |   gimple_stmt_iterator gsi;
 | 
      
         | 1761 |  |  |   basic_block son;
 | 
      
         | 1762 |  |  |  
 | 
      
         | 1763 |  |  |   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
 | 
      
         | 1764 |  |  |     {
 | 
      
         | 1765 |  |  |       gimple stmt = gsi_stmt (gsi);
 | 
      
         | 1766 |  |  |       gimple_set_visited (stmt, false);
 | 
      
         | 1767 |  |  |  
 | 
      
         | 1768 |  |  |       /* Look for simple gimple subtract operations.  */
 | 
      
         | 1769 |  |  |       if (is_gimple_assign (stmt)
 | 
      
         | 1770 |  |  |           && gimple_assign_rhs_code (stmt) == MINUS_EXPR)
 | 
      
         | 1771 |  |  |         {
 | 
      
         | 1772 |  |  |           tree lhs = gimple_assign_lhs (stmt);
 | 
      
         | 1773 |  |  |           tree rhs1 = gimple_assign_rhs1 (stmt);
 | 
      
         | 1774 |  |  |           tree rhs2 = gimple_assign_rhs2 (stmt);
 | 
      
         | 1775 |  |  |  
 | 
      
         | 1776 |  |  |           /* If associative-math we can do reassociation for
 | 
      
         | 1777 |  |  |              non-integral types.  Or, we can do reassociation for
 | 
      
         | 1778 |  |  |              non-saturating fixed-point types.  */
 | 
      
         | 1779 |  |  |           if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
 | 
      
         | 1780 |  |  |                || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
 | 
      
         | 1781 |  |  |                || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
 | 
      
         | 1782 |  |  |               && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
 | 
      
         | 1783 |  |  |                   || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
 | 
      
         | 1784 |  |  |                   || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
 | 
      
         | 1785 |  |  |                   || !flag_associative_math)
 | 
      
         | 1786 |  |  |               && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
 | 
      
         | 1787 |  |  |                   || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
 | 
      
         | 1788 |  |  |                   || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
 | 
      
         | 1789 |  |  |             continue;
 | 
      
         | 1790 |  |  |  
 | 
      
         | 1791 |  |  |           /* Check for a subtract used only in an addition.  If this
 | 
      
         | 1792 |  |  |              is the case, transform it into add of a negate for better
 | 
      
         | 1793 |  |  |              reassociation.  IE transform C = A-B into C = A + -B if C
 | 
      
         | 1794 |  |  |              is only used in an addition.  */
 | 
      
         | 1795 |  |  |           if (should_break_up_subtract (stmt))
 | 
      
         | 1796 |  |  |             break_up_subtract (stmt, &gsi);
 | 
      
         | 1797 |  |  |         }
 | 
      
         | 1798 |  |  |     }
 | 
      
         | 1799 |  |  |   for (son = first_dom_son (CDI_DOMINATORS, bb);
 | 
      
         | 1800 |  |  |        son;
 | 
      
         | 1801 |  |  |        son = next_dom_son (CDI_DOMINATORS, son))
 | 
      
         | 1802 |  |  |     break_up_subtract_bb (son);
 | 
      
         | 1803 |  |  | }
 | 
      
         | 1804 |  |  |  
 | 
      
         | 1805 |  |  | /* Reassociate expressions in basic block BB and its post-dominator as
 | 
      
         | 1806 |  |  |    children.  */
 | 
      
         | 1807 |  |  |  
 | 
      
         | 1808 |  |  | static void
 | 
      
         | 1809 |  |  | reassociate_bb (basic_block bb)
 | 
      
         | 1810 |  |  | {
 | 
      
         | 1811 |  |  |   gimple_stmt_iterator gsi;
 | 
      
         | 1812 |  |  |   basic_block son;
 | 
      
         | 1813 |  |  |  
 | 
      
         | 1814 |  |  |   for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
 | 
      
         | 1815 |  |  |     {
 | 
      
         | 1816 |  |  |       gimple stmt = gsi_stmt (gsi);
 | 
      
         | 1817 |  |  |  
 | 
      
         | 1818 |  |  |       if (is_gimple_assign (stmt))
 | 
      
         | 1819 |  |  |         {
 | 
      
         | 1820 |  |  |           tree lhs, rhs1, rhs2;
 | 
      
         | 1821 |  |  |           enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
 | 
      
         | 1822 |  |  |  
 | 
      
         | 1823 |  |  |           /* If this is not a gimple binary expression, there is
 | 
      
         | 1824 |  |  |              nothing for us to do with it.  */
 | 
      
         | 1825 |  |  |           if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
 | 
      
         | 1826 |  |  |             continue;
 | 
      
         | 1827 |  |  |  
 | 
      
         | 1828 |  |  |           /* If this was part of an already processed statement,
 | 
      
         | 1829 |  |  |              we don't need to touch it again. */
 | 
      
         | 1830 |  |  |           if (gimple_visited_p (stmt))
 | 
      
         | 1831 |  |  |             {
 | 
      
         | 1832 |  |  |               /* This statement might have become dead because of previous
 | 
      
         | 1833 |  |  |                  reassociations.  */
 | 
      
         | 1834 |  |  |               if (has_zero_uses (gimple_get_lhs (stmt)))
 | 
      
         | 1835 |  |  |                 {
 | 
      
         | 1836 |  |  |                   gsi_remove (&gsi, true);
 | 
      
         | 1837 |  |  |                   release_defs (stmt);
 | 
      
         | 1838 |  |  |                   /* We might end up removing the last stmt above which
 | 
      
         | 1839 |  |  |                      places the iterator to the end of the sequence.
 | 
      
         | 1840 |  |  |                      Reset it to the last stmt in this case which might
 | 
      
         | 1841 |  |  |                      be the end of the sequence as well if we removed
 | 
      
         | 1842 |  |  |                      the last statement of the sequence.  In which case
 | 
      
         | 1843 |  |  |                      we need to bail out.  */
 | 
      
         | 1844 |  |  |                   if (gsi_end_p (gsi))
 | 
      
         | 1845 |  |  |                     {
 | 
      
         | 1846 |  |  |                       gsi = gsi_last_bb (bb);
 | 
      
         | 1847 |  |  |                       if (gsi_end_p (gsi))
 | 
      
         | 1848 |  |  |                         break;
 | 
      
         | 1849 |  |  |                     }
 | 
      
         | 1850 |  |  |                 }
 | 
      
         | 1851 |  |  |               continue;
 | 
      
         | 1852 |  |  |             }
 | 
      
         | 1853 |  |  |  
 | 
      
         | 1854 |  |  |           lhs = gimple_assign_lhs (stmt);
 | 
      
         | 1855 |  |  |           rhs1 = gimple_assign_rhs1 (stmt);
 | 
      
         | 1856 |  |  |           rhs2 = gimple_assign_rhs2 (stmt);
 | 
      
         | 1857 |  |  |  
 | 
      
         | 1858 |  |  |           /* If associative-math we can do reassociation for
 | 
      
         | 1859 |  |  |              non-integral types.  Or, we can do reassociation for
 | 
      
         | 1860 |  |  |              non-saturating fixed-point types.  */
 | 
      
         | 1861 |  |  |           if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
 | 
      
         | 1862 |  |  |                || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
 | 
      
         | 1863 |  |  |                || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
 | 
      
         | 1864 |  |  |               && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
 | 
      
         | 1865 |  |  |                   || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
 | 
      
         | 1866 |  |  |                   || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
 | 
      
         | 1867 |  |  |                   || !flag_associative_math)
 | 
      
         | 1868 |  |  |               && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
 | 
      
         | 1869 |  |  |                   || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
 | 
      
         | 1870 |  |  |                   || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
 | 
      
         | 1871 |  |  |             continue;
 | 
      
         | 1872 |  |  |  
 | 
      
         | 1873 |  |  |           if (associative_tree_code (rhs_code))
 | 
      
         | 1874 |  |  |             {
 | 
      
         | 1875 |  |  |               VEC(operand_entry_t, heap) *ops = NULL;
 | 
      
         | 1876 |  |  |  
 | 
      
         | 1877 |  |  |               /* There may be no immediate uses left by the time we
 | 
      
         | 1878 |  |  |                  get here because we may have eliminated them all.  */
 | 
      
         | 1879 |  |  |               if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
 | 
      
         | 1880 |  |  |                 continue;
 | 
      
         | 1881 |  |  |  
 | 
      
         | 1882 |  |  |               gimple_set_visited (stmt, true);
 | 
      
         | 1883 |  |  |               linearize_expr_tree (&ops, stmt, true, true);
 | 
      
         | 1884 |  |  |               qsort (VEC_address (operand_entry_t, ops),
 | 
      
         | 1885 |  |  |                      VEC_length (operand_entry_t, ops),
 | 
      
         | 1886 |  |  |                      sizeof (operand_entry_t),
 | 
      
         | 1887 |  |  |                      sort_by_operand_rank);
 | 
      
         | 1888 |  |  |               optimize_ops_list (rhs_code, &ops);
 | 
      
         | 1889 |  |  |               if (undistribute_ops_list (rhs_code, &ops,
 | 
      
         | 1890 |  |  |                                          loop_containing_stmt (stmt)))
 | 
      
         | 1891 |  |  |                 {
 | 
      
         | 1892 |  |  |                   qsort (VEC_address (operand_entry_t, ops),
 | 
      
         | 1893 |  |  |                          VEC_length (operand_entry_t, ops),
 | 
      
         | 1894 |  |  |                          sizeof (operand_entry_t),
 | 
      
         | 1895 |  |  |                          sort_by_operand_rank);
 | 
      
         | 1896 |  |  |                   optimize_ops_list (rhs_code, &ops);
 | 
      
         | 1897 |  |  |                 }
 | 
      
         | 1898 |  |  |  
 | 
      
         | 1899 |  |  |               if (VEC_length (operand_entry_t, ops) == 1)
 | 
      
         | 1900 |  |  |                 {
 | 
      
         | 1901 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1902 |  |  |                     {
 | 
      
         | 1903 |  |  |                       fprintf (dump_file, "Transforming ");
 | 
      
         | 1904 |  |  |                       print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1905 |  |  |                     }
 | 
      
         | 1906 |  |  |  
 | 
      
         | 1907 |  |  |                   rhs1 = gimple_assign_rhs1 (stmt);
 | 
      
         | 1908 |  |  |                   gimple_assign_set_rhs_from_tree (&gsi,
 | 
      
         | 1909 |  |  |                                                    VEC_last (operand_entry_t,
 | 
      
         | 1910 |  |  |                                                              ops)->op);
 | 
      
         | 1911 |  |  |                   update_stmt (stmt);
 | 
      
         | 1912 |  |  |                   remove_visited_stmt_chain (rhs1);
 | 
      
         | 1913 |  |  |  
 | 
      
         | 1914 |  |  |                   if (dump_file && (dump_flags & TDF_DETAILS))
 | 
      
         | 1915 |  |  |                     {
 | 
      
         | 1916 |  |  |                       fprintf (dump_file, " into ");
 | 
      
         | 1917 |  |  |                       print_gimple_stmt (dump_file, stmt, 0, 0);
 | 
      
         | 1918 |  |  |                     }
 | 
      
         | 1919 |  |  |                 }
 | 
      
         | 1920 |  |  |               else
 | 
      
         | 1921 |  |  |                 rewrite_expr_tree (stmt, 0, ops, false);
 | 
      
         | 1922 |  |  |  
 | 
      
         | 1923 |  |  |               VEC_free (operand_entry_t, heap, ops);
 | 
      
         | 1924 |  |  |             }
 | 
      
         | 1925 |  |  |         }
 | 
      
         | 1926 |  |  |     }
 | 
      
         | 1927 |  |  |   for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
 | 
      
         | 1928 |  |  |        son;
 | 
      
         | 1929 |  |  |        son = next_dom_son (CDI_POST_DOMINATORS, son))
 | 
      
         | 1930 |  |  |     reassociate_bb (son);
 | 
      
         | 1931 |  |  | }
 | 
      
         | 1932 |  |  |  
 | 
      
         | 1933 |  |  | void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
 | 
      
         | 1934 |  |  | void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
 | 
      
         | 1935 |  |  |  
 | 
      
         | 1936 |  |  | /* Dump the operand entry vector OPS to FILE.  */
 | 
      
         | 1937 |  |  |  
 | 
      
         | 1938 |  |  | void
 | 
      
         | 1939 |  |  | dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
 | 
      
         | 1940 |  |  | {
 | 
      
         | 1941 |  |  |   operand_entry_t oe;
 | 
      
         | 1942 |  |  |   unsigned int i;
 | 
      
         | 1943 |  |  |  
 | 
      
         | 1944 |  |  |   for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++)
 | 
      
         | 1945 |  |  |     {
 | 
      
         | 1946 |  |  |       fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
 | 
      
         | 1947 |  |  |       print_generic_expr (file, oe->op, 0);
 | 
      
         | 1948 |  |  |     }
 | 
      
         | 1949 |  |  | }
 | 
      
         | 1950 |  |  |  
 | 
      
         | 1951 |  |  | /* Dump the operand entry vector OPS to STDERR.  */
 | 
      
         | 1952 |  |  |  
 | 
      
         | 1953 |  |  | void
 | 
      
         | 1954 |  |  | debug_ops_vector (VEC (operand_entry_t, heap) *ops)
 | 
      
         | 1955 |  |  | {
 | 
      
         | 1956 |  |  |   dump_ops_vector (stderr, ops);
 | 
      
         | 1957 |  |  | }
 | 
      
         | 1958 |  |  |  
 | 
      
         | 1959 |  |  | static void
 | 
      
         | 1960 |  |  | do_reassoc (void)
 | 
      
         | 1961 |  |  | {
 | 
      
         | 1962 |  |  |   break_up_subtract_bb (ENTRY_BLOCK_PTR);
 | 
      
         | 1963 |  |  |   reassociate_bb (EXIT_BLOCK_PTR);
 | 
      
         | 1964 |  |  | }
 | 
      
         | 1965 |  |  |  
 | 
      
         | 1966 |  |  | /* Initialize the reassociation pass.  */
 | 
      
         | 1967 |  |  |  
 | 
      
         | 1968 |  |  | static void
 | 
      
         | 1969 |  |  | init_reassoc (void)
 | 
      
         | 1970 |  |  | {
 | 
      
         | 1971 |  |  |   int i;
 | 
      
         | 1972 |  |  |   long rank = 2;
 | 
      
         | 1973 |  |  |   tree param;
 | 
      
         | 1974 |  |  |   int *bbs = XNEWVEC (int, last_basic_block + 1);
 | 
      
         | 1975 |  |  |  
 | 
      
         | 1976 |  |  |   /* Find the loops, so that we can prevent moving calculations in
 | 
      
         | 1977 |  |  |      them.  */
 | 
      
         | 1978 |  |  |   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
 | 
      
         | 1979 |  |  |  
 | 
      
         | 1980 |  |  |   memset (&reassociate_stats, 0, sizeof (reassociate_stats));
 | 
      
         | 1981 |  |  |  
 | 
      
         | 1982 |  |  |   operand_entry_pool = create_alloc_pool ("operand entry pool",
 | 
      
         | 1983 |  |  |                                           sizeof (struct operand_entry), 30);
 | 
      
         | 1984 |  |  |  
 | 
      
         | 1985 |  |  |   /* Reverse RPO (Reverse Post Order) will give us something where
 | 
      
         | 1986 |  |  |      deeper loops come later.  */
 | 
      
         | 1987 |  |  |   pre_and_rev_post_order_compute (NULL, bbs, false);
 | 
      
         | 1988 |  |  |   bb_rank = XCNEWVEC (long, last_basic_block + 1);
 | 
      
         | 1989 |  |  |   operand_rank = pointer_map_create ();
 | 
      
         | 1990 |  |  |  
 | 
      
         | 1991 |  |  |   /* Give each argument a distinct rank.   */
 | 
      
         | 1992 |  |  |   for (param = DECL_ARGUMENTS (current_function_decl);
 | 
      
         | 1993 |  |  |        param;
 | 
      
         | 1994 |  |  |        param = TREE_CHAIN (param))
 | 
      
         | 1995 |  |  |     {
 | 
      
         | 1996 |  |  |       if (gimple_default_def (cfun, param) != NULL)
 | 
      
         | 1997 |  |  |         {
 | 
      
         | 1998 |  |  |           tree def = gimple_default_def (cfun, param);
 | 
      
         | 1999 |  |  |           insert_operand_rank (def, ++rank);
 | 
      
         | 2000 |  |  |         }
 | 
      
         | 2001 |  |  |     }
 | 
      
         | 2002 |  |  |  
 | 
      
         | 2003 |  |  |   /* Give the chain decl a distinct rank. */
 | 
      
         | 2004 |  |  |   if (cfun->static_chain_decl != NULL)
 | 
      
         | 2005 |  |  |     {
 | 
      
         | 2006 |  |  |       tree def = gimple_default_def (cfun, cfun->static_chain_decl);
 | 
      
         | 2007 |  |  |       if (def != NULL)
 | 
      
         | 2008 |  |  |         insert_operand_rank (def, ++rank);
 | 
      
         | 2009 |  |  |     }
 | 
      
         | 2010 |  |  |  
 | 
      
         | 2011 |  |  |   /* Set up rank for each BB  */
 | 
      
         | 2012 |  |  |   for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
 | 
      
         | 2013 |  |  |     bb_rank[bbs[i]] = ++rank  << 16;
 | 
      
         | 2014 |  |  |  
 | 
      
         | 2015 |  |  |   free (bbs);
 | 
      
         | 2016 |  |  |   calculate_dominance_info (CDI_POST_DOMINATORS);
 | 
      
         | 2017 |  |  |   broken_up_subtracts = NULL;
 | 
      
         | 2018 |  |  | }
 | 
      
         | 2019 |  |  |  
 | 
      
         | 2020 |  |  | /* Cleanup after the reassociation pass, and print stats if
 | 
      
         | 2021 |  |  |    requested.  */
 | 
      
         | 2022 |  |  |  
 | 
      
         | 2023 |  |  | static void
 | 
      
         | 2024 |  |  | fini_reassoc (void)
 | 
      
         | 2025 |  |  | {
 | 
      
         | 2026 |  |  |   statistics_counter_event (cfun, "Linearized",
 | 
      
         | 2027 |  |  |                             reassociate_stats.linearized);
 | 
      
         | 2028 |  |  |   statistics_counter_event (cfun, "Constants eliminated",
 | 
      
         | 2029 |  |  |                             reassociate_stats.constants_eliminated);
 | 
      
         | 2030 |  |  |   statistics_counter_event (cfun, "Ops eliminated",
 | 
      
         | 2031 |  |  |                             reassociate_stats.ops_eliminated);
 | 
      
         | 2032 |  |  |   statistics_counter_event (cfun, "Statements rewritten",
 | 
      
         | 2033 |  |  |                             reassociate_stats.rewritten);
 | 
      
         | 2034 |  |  |  
 | 
      
         | 2035 |  |  |   pointer_map_destroy (operand_rank);
 | 
      
         | 2036 |  |  |   free_alloc_pool (operand_entry_pool);
 | 
      
         | 2037 |  |  |   free (bb_rank);
 | 
      
         | 2038 |  |  |   VEC_free (tree, heap, broken_up_subtracts);
 | 
      
         | 2039 |  |  |   free_dominance_info (CDI_POST_DOMINATORS);
 | 
      
         | 2040 |  |  |   loop_optimizer_finalize ();
 | 
      
         | 2041 |  |  | }
 | 
      
         | 2042 |  |  |  
 | 
      
         | 2043 |  |  | /* Gate and execute functions for Reassociation.  */
 | 
      
         | 2044 |  |  |  
 | 
      
         | 2045 |  |  | static unsigned int
 | 
      
         | 2046 |  |  | execute_reassoc (void)
 | 
      
         | 2047 |  |  | {
 | 
      
         | 2048 |  |  |   init_reassoc ();
 | 
      
         | 2049 |  |  |  
 | 
      
         | 2050 |  |  |   do_reassoc ();
 | 
      
         | 2051 |  |  |   repropagate_negates ();
 | 
      
         | 2052 |  |  |  
 | 
      
         | 2053 |  |  |   fini_reassoc ();
 | 
      
         | 2054 |  |  |   return 0;
 | 
      
         | 2055 |  |  | }
 | 
      
         | 2056 |  |  |  
 | 
      
         | 2057 |  |  | static bool
 | 
      
         | 2058 |  |  | gate_tree_ssa_reassoc (void)
 | 
      
         | 2059 |  |  | {
 | 
      
         | 2060 |  |  |   return flag_tree_reassoc != 0;
 | 
      
         | 2061 |  |  | }
 | 
      
         | 2062 |  |  |  
 | 
      
         | 2063 |  |  | struct gimple_opt_pass pass_reassoc =
 | 
      
         | 2064 |  |  | {
 | 
      
         | 2065 |  |  |  {
 | 
      
         | 2066 |  |  |   GIMPLE_PASS,
 | 
      
         | 2067 |  |  |   "reassoc",                            /* name */
 | 
      
         | 2068 |  |  |   gate_tree_ssa_reassoc,                /* gate */
 | 
      
         | 2069 |  |  |   execute_reassoc,                      /* execute */
 | 
      
         | 2070 |  |  |   NULL,                                 /* sub */
 | 
      
         | 2071 |  |  |   NULL,                                 /* next */
 | 
      
         | 2072 |  |  |   0,                                     /* static_pass_number */
 | 
      
         | 2073 |  |  |   TV_TREE_REASSOC,                      /* tv_id */
 | 
      
         | 2074 |  |  |   PROP_cfg | PROP_ssa,                  /* properties_required */
 | 
      
         | 2075 |  |  |   0,                                     /* properties_provided */
 | 
      
         | 2076 |  |  |   0,                                     /* properties_destroyed */
 | 
      
         | 2077 |  |  |   0,                                     /* todo_flags_start */
 | 
      
         | 2078 |  |  |   TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
 | 
      
         | 2079 |  |  |  }
 | 
      
         | 2080 |  |  | };
 | 
      
         | 2081 |  |  |  
 |