| 1 |
280 |
jeremybenn |
/* SSA Jump Threading
|
| 2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| 3 |
|
|
Contributed by Jeff Law <law@redhat.com>
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
| 8 |
|
|
it under the terms of the GNU General Public License as published by
|
| 9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
| 10 |
|
|
any later version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful,
|
| 13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 15 |
|
|
GNU General Public License for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
#include "tree.h"
|
| 26 |
|
|
#include "flags.h"
|
| 27 |
|
|
#include "rtl.h"
|
| 28 |
|
|
#include "tm_p.h"
|
| 29 |
|
|
#include "ggc.h"
|
| 30 |
|
|
#include "basic-block.h"
|
| 31 |
|
|
#include "cfgloop.h"
|
| 32 |
|
|
#include "output.h"
|
| 33 |
|
|
#include "expr.h"
|
| 34 |
|
|
#include "function.h"
|
| 35 |
|
|
#include "diagnostic.h"
|
| 36 |
|
|
#include "timevar.h"
|
| 37 |
|
|
#include "tree-dump.h"
|
| 38 |
|
|
#include "tree-flow.h"
|
| 39 |
|
|
#include "real.h"
|
| 40 |
|
|
#include "tree-pass.h"
|
| 41 |
|
|
#include "tree-ssa-propagate.h"
|
| 42 |
|
|
#include "langhooks.h"
|
| 43 |
|
|
#include "params.h"
|
| 44 |
|
|
|
| 45 |
|
|
/* To avoid code explosion due to jump threading, we limit the
|
| 46 |
|
|
number of statements we are going to copy. This variable
|
| 47 |
|
|
holds the number of statements currently seen that we'll have
|
| 48 |
|
|
to copy as part of the jump threading process. */
|
| 49 |
|
|
static int stmt_count;
|
| 50 |
|
|
|
| 51 |
|
|
/* Array to record value-handles per SSA_NAME. */
|
| 52 |
|
|
VEC(tree,heap) *ssa_name_values;
|
| 53 |
|
|
|
| 54 |
|
|
/* Set the value for the SSA name NAME to VALUE. */
|
| 55 |
|
|
|
| 56 |
|
|
void
|
| 57 |
|
|
set_ssa_name_value (tree name, tree value)
|
| 58 |
|
|
{
|
| 59 |
|
|
if (SSA_NAME_VERSION (name) >= VEC_length (tree, ssa_name_values))
|
| 60 |
|
|
VEC_safe_grow_cleared (tree, heap, ssa_name_values,
|
| 61 |
|
|
SSA_NAME_VERSION (name) + 1);
|
| 62 |
|
|
VEC_replace (tree, ssa_name_values, SSA_NAME_VERSION (name), value);
|
| 63 |
|
|
}
|
| 64 |
|
|
|
| 65 |
|
|
/* Initialize the per SSA_NAME value-handles array. Returns it. */
|
| 66 |
|
|
void
|
| 67 |
|
|
threadedge_initialize_values (void)
|
| 68 |
|
|
{
|
| 69 |
|
|
gcc_assert (ssa_name_values == NULL);
|
| 70 |
|
|
ssa_name_values = VEC_alloc(tree, heap, num_ssa_names);
|
| 71 |
|
|
}
|
| 72 |
|
|
|
| 73 |
|
|
/* Free the per SSA_NAME value-handle array. */
|
| 74 |
|
|
void
|
| 75 |
|
|
threadedge_finalize_values (void)
|
| 76 |
|
|
{
|
| 77 |
|
|
VEC_free(tree, heap, ssa_name_values);
|
| 78 |
|
|
}
|
| 79 |
|
|
|
| 80 |
|
|
/* Return TRUE if we may be able to thread an incoming edge into
|
| 81 |
|
|
BB to an outgoing edge from BB. Return FALSE otherwise. */
|
| 82 |
|
|
|
| 83 |
|
|
bool
|
| 84 |
|
|
potentially_threadable_block (basic_block bb)
|
| 85 |
|
|
{
|
| 86 |
|
|
gimple_stmt_iterator gsi;
|
| 87 |
|
|
|
| 88 |
|
|
/* If BB has a single successor or a single predecessor, then
|
| 89 |
|
|
there is no threading opportunity. */
|
| 90 |
|
|
if (single_succ_p (bb) || single_pred_p (bb))
|
| 91 |
|
|
return false;
|
| 92 |
|
|
|
| 93 |
|
|
/* If BB does not end with a conditional, switch or computed goto,
|
| 94 |
|
|
then there is no threading opportunity. */
|
| 95 |
|
|
gsi = gsi_last_bb (bb);
|
| 96 |
|
|
if (gsi_end_p (gsi)
|
| 97 |
|
|
|| ! gsi_stmt (gsi)
|
| 98 |
|
|
|| (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
|
| 99 |
|
|
&& gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
|
| 100 |
|
|
&& gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
|
| 101 |
|
|
return false;
|
| 102 |
|
|
|
| 103 |
|
|
return true;
|
| 104 |
|
|
}
|
| 105 |
|
|
|
| 106 |
|
|
/* Return the LHS of any ASSERT_EXPR where OP appears as the first
|
| 107 |
|
|
argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
|
| 108 |
|
|
BB. If no such ASSERT_EXPR is found, return OP. */
|
| 109 |
|
|
|
| 110 |
|
|
static tree
|
| 111 |
|
|
lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
|
| 112 |
|
|
{
|
| 113 |
|
|
imm_use_iterator imm_iter;
|
| 114 |
|
|
gimple use_stmt;
|
| 115 |
|
|
use_operand_p use_p;
|
| 116 |
|
|
|
| 117 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
|
| 118 |
|
|
{
|
| 119 |
|
|
use_stmt = USE_STMT (use_p);
|
| 120 |
|
|
if (use_stmt != stmt
|
| 121 |
|
|
&& gimple_assign_single_p (use_stmt)
|
| 122 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
|
| 123 |
|
|
&& TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
|
| 124 |
|
|
&& dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
|
| 125 |
|
|
{
|
| 126 |
|
|
return gimple_assign_lhs (use_stmt);
|
| 127 |
|
|
}
|
| 128 |
|
|
}
|
| 129 |
|
|
return op;
|
| 130 |
|
|
}
|
| 131 |
|
|
|
| 132 |
|
|
/* We record temporary equivalences created by PHI nodes or
|
| 133 |
|
|
statements within the target block. Doing so allows us to
|
| 134 |
|
|
identify more jump threading opportunities, even in blocks
|
| 135 |
|
|
with side effects.
|
| 136 |
|
|
|
| 137 |
|
|
We keep track of those temporary equivalences in a stack
|
| 138 |
|
|
structure so that we can unwind them when we're done processing
|
| 139 |
|
|
a particular edge. This routine handles unwinding the data
|
| 140 |
|
|
structures. */
|
| 141 |
|
|
|
| 142 |
|
|
static void
|
| 143 |
|
|
remove_temporary_equivalences (VEC(tree, heap) **stack)
|
| 144 |
|
|
{
|
| 145 |
|
|
while (VEC_length (tree, *stack) > 0)
|
| 146 |
|
|
{
|
| 147 |
|
|
tree prev_value, dest;
|
| 148 |
|
|
|
| 149 |
|
|
dest = VEC_pop (tree, *stack);
|
| 150 |
|
|
|
| 151 |
|
|
/* A NULL value indicates we should stop unwinding, otherwise
|
| 152 |
|
|
pop off the next entry as they're recorded in pairs. */
|
| 153 |
|
|
if (dest == NULL)
|
| 154 |
|
|
break;
|
| 155 |
|
|
|
| 156 |
|
|
prev_value = VEC_pop (tree, *stack);
|
| 157 |
|
|
set_ssa_name_value (dest, prev_value);
|
| 158 |
|
|
}
|
| 159 |
|
|
}
|
| 160 |
|
|
|
| 161 |
|
|
/* Record a temporary equivalence, saving enough information so that
|
| 162 |
|
|
we can restore the state of recorded equivalences when we're
|
| 163 |
|
|
done processing the current edge. */
|
| 164 |
|
|
|
| 165 |
|
|
static void
|
| 166 |
|
|
record_temporary_equivalence (tree x, tree y, VEC(tree, heap) **stack)
|
| 167 |
|
|
{
|
| 168 |
|
|
tree prev_x = SSA_NAME_VALUE (x);
|
| 169 |
|
|
|
| 170 |
|
|
if (TREE_CODE (y) == SSA_NAME)
|
| 171 |
|
|
{
|
| 172 |
|
|
tree tmp = SSA_NAME_VALUE (y);
|
| 173 |
|
|
y = tmp ? tmp : y;
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
set_ssa_name_value (x, y);
|
| 177 |
|
|
VEC_reserve (tree, heap, *stack, 2);
|
| 178 |
|
|
VEC_quick_push (tree, *stack, prev_x);
|
| 179 |
|
|
VEC_quick_push (tree, *stack, x);
|
| 180 |
|
|
}
|
| 181 |
|
|
|
| 182 |
|
|
/* Record temporary equivalences created by PHIs at the target of the
|
| 183 |
|
|
edge E. Record unwind information for the equivalences onto STACK.
|
| 184 |
|
|
|
| 185 |
|
|
If a PHI which prevents threading is encountered, then return FALSE
|
| 186 |
|
|
indicating we should not thread this edge, else return TRUE. */
|
| 187 |
|
|
|
| 188 |
|
|
static bool
|
| 189 |
|
|
record_temporary_equivalences_from_phis (edge e, VEC(tree, heap) **stack)
|
| 190 |
|
|
{
|
| 191 |
|
|
gimple_stmt_iterator gsi;
|
| 192 |
|
|
|
| 193 |
|
|
/* Each PHI creates a temporary equivalence, record them.
|
| 194 |
|
|
These are context sensitive equivalences and will be removed
|
| 195 |
|
|
later. */
|
| 196 |
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 197 |
|
|
{
|
| 198 |
|
|
gimple phi = gsi_stmt (gsi);
|
| 199 |
|
|
tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
|
| 200 |
|
|
tree dst = gimple_phi_result (phi);
|
| 201 |
|
|
|
| 202 |
|
|
/* If the desired argument is not the same as this PHI's result
|
| 203 |
|
|
and it is set by a PHI in E->dest, then we can not thread
|
| 204 |
|
|
through E->dest. */
|
| 205 |
|
|
if (src != dst
|
| 206 |
|
|
&& TREE_CODE (src) == SSA_NAME
|
| 207 |
|
|
&& gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
|
| 208 |
|
|
&& gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
|
| 209 |
|
|
return false;
|
| 210 |
|
|
|
| 211 |
|
|
/* We consider any non-virtual PHI as a statement since it
|
| 212 |
|
|
count result in a constant assignment or copy operation. */
|
| 213 |
|
|
if (is_gimple_reg (dst))
|
| 214 |
|
|
stmt_count++;
|
| 215 |
|
|
|
| 216 |
|
|
record_temporary_equivalence (dst, src, stack);
|
| 217 |
|
|
}
|
| 218 |
|
|
return true;
|
| 219 |
|
|
}
|
| 220 |
|
|
|
| 221 |
|
|
/* Fold the RHS of an assignment statement and return it as a tree.
|
| 222 |
|
|
May return NULL_TREE if no simplification is possible. */
|
| 223 |
|
|
|
| 224 |
|
|
static tree
|
| 225 |
|
|
fold_assignment_stmt (gimple stmt)
|
| 226 |
|
|
{
|
| 227 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
| 228 |
|
|
|
| 229 |
|
|
switch (get_gimple_rhs_class (subcode))
|
| 230 |
|
|
{
|
| 231 |
|
|
case GIMPLE_SINGLE_RHS:
|
| 232 |
|
|
{
|
| 233 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
| 234 |
|
|
|
| 235 |
|
|
if (TREE_CODE (rhs) == COND_EXPR)
|
| 236 |
|
|
{
|
| 237 |
|
|
/* Sadly, we have to handle conditional assignments specially
|
| 238 |
|
|
here, because fold expects all the operands of an expression
|
| 239 |
|
|
to be folded before the expression itself is folded, but we
|
| 240 |
|
|
can't just substitute the folded condition here. */
|
| 241 |
|
|
tree cond = fold (COND_EXPR_COND (rhs));
|
| 242 |
|
|
if (cond == boolean_true_node)
|
| 243 |
|
|
rhs = COND_EXPR_THEN (rhs);
|
| 244 |
|
|
else if (cond == boolean_false_node)
|
| 245 |
|
|
rhs = COND_EXPR_ELSE (rhs);
|
| 246 |
|
|
}
|
| 247 |
|
|
|
| 248 |
|
|
return fold (rhs);
|
| 249 |
|
|
}
|
| 250 |
|
|
break;
|
| 251 |
|
|
case GIMPLE_UNARY_RHS:
|
| 252 |
|
|
{
|
| 253 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 254 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
| 255 |
|
|
return fold_unary (subcode, TREE_TYPE (lhs), op0);
|
| 256 |
|
|
}
|
| 257 |
|
|
break;
|
| 258 |
|
|
case GIMPLE_BINARY_RHS:
|
| 259 |
|
|
{
|
| 260 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
| 261 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
| 262 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
| 263 |
|
|
return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
|
| 264 |
|
|
}
|
| 265 |
|
|
break;
|
| 266 |
|
|
default:
|
| 267 |
|
|
gcc_unreachable ();
|
| 268 |
|
|
}
|
| 269 |
|
|
}
|
| 270 |
|
|
|
| 271 |
|
|
/* Try to simplify each statement in E->dest, ultimately leading to
|
| 272 |
|
|
a simplification of the COND_EXPR at the end of E->dest.
|
| 273 |
|
|
|
| 274 |
|
|
Record unwind information for temporary equivalences onto STACK.
|
| 275 |
|
|
|
| 276 |
|
|
Use SIMPLIFY (a pointer to a callback function) to further simplify
|
| 277 |
|
|
statements using pass specific information.
|
| 278 |
|
|
|
| 279 |
|
|
We might consider marking just those statements which ultimately
|
| 280 |
|
|
feed the COND_EXPR. It's not clear if the overhead of bookkeeping
|
| 281 |
|
|
would be recovered by trying to simplify fewer statements.
|
| 282 |
|
|
|
| 283 |
|
|
If we are able to simplify a statement into the form
|
| 284 |
|
|
SSA_NAME = (SSA_NAME | gimple invariant), then we can record
|
| 285 |
|
|
a context sensitive equivalence which may help us simplify
|
| 286 |
|
|
later statements in E->dest. */
|
| 287 |
|
|
|
| 288 |
|
|
static gimple
|
| 289 |
|
|
record_temporary_equivalences_from_stmts_at_dest (edge e,
|
| 290 |
|
|
VEC(tree, heap) **stack,
|
| 291 |
|
|
tree (*simplify) (gimple,
|
| 292 |
|
|
gimple))
|
| 293 |
|
|
{
|
| 294 |
|
|
gimple stmt = NULL;
|
| 295 |
|
|
gimple_stmt_iterator gsi;
|
| 296 |
|
|
int max_stmt_count;
|
| 297 |
|
|
|
| 298 |
|
|
max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
|
| 299 |
|
|
|
| 300 |
|
|
/* Walk through each statement in the block recording equivalences
|
| 301 |
|
|
we discover. Note any equivalences we discover are context
|
| 302 |
|
|
sensitive (ie, are dependent on traversing E) and must be unwound
|
| 303 |
|
|
when we're finished processing E. */
|
| 304 |
|
|
for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
| 305 |
|
|
{
|
| 306 |
|
|
tree cached_lhs = NULL;
|
| 307 |
|
|
|
| 308 |
|
|
stmt = gsi_stmt (gsi);
|
| 309 |
|
|
|
| 310 |
|
|
/* Ignore empty statements and labels. */
|
| 311 |
|
|
if (gimple_code (stmt) == GIMPLE_NOP
|
| 312 |
|
|
|| gimple_code (stmt) == GIMPLE_LABEL
|
| 313 |
|
|
|| is_gimple_debug (stmt))
|
| 314 |
|
|
continue;
|
| 315 |
|
|
|
| 316 |
|
|
/* If the statement has volatile operands, then we assume we
|
| 317 |
|
|
can not thread through this block. This is overly
|
| 318 |
|
|
conservative in some ways. */
|
| 319 |
|
|
if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
|
| 320 |
|
|
return NULL;
|
| 321 |
|
|
|
| 322 |
|
|
/* If duplicating this block is going to cause too much code
|
| 323 |
|
|
expansion, then do not thread through this block. */
|
| 324 |
|
|
stmt_count++;
|
| 325 |
|
|
if (stmt_count > max_stmt_count)
|
| 326 |
|
|
return NULL;
|
| 327 |
|
|
|
| 328 |
|
|
/* If this is not a statement that sets an SSA_NAME to a new
|
| 329 |
|
|
value, then do not try to simplify this statement as it will
|
| 330 |
|
|
not simplify in any way that is helpful for jump threading. */
|
| 331 |
|
|
if ((gimple_code (stmt) != GIMPLE_ASSIGN
|
| 332 |
|
|
|| TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
| 333 |
|
|
&& (gimple_code (stmt) != GIMPLE_CALL
|
| 334 |
|
|
|| gimple_call_lhs (stmt) == NULL_TREE
|
| 335 |
|
|
|| TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
|
| 336 |
|
|
continue;
|
| 337 |
|
|
|
| 338 |
|
|
/* The result of __builtin_object_size depends on all the arguments
|
| 339 |
|
|
of a phi node. Temporarily using only one edge produces invalid
|
| 340 |
|
|
results. For example
|
| 341 |
|
|
|
| 342 |
|
|
if (x < 6)
|
| 343 |
|
|
goto l;
|
| 344 |
|
|
else
|
| 345 |
|
|
goto l;
|
| 346 |
|
|
|
| 347 |
|
|
l:
|
| 348 |
|
|
r = PHI <&w[2].a[1](2), &a.a[6](3)>
|
| 349 |
|
|
__builtin_object_size (r, 0)
|
| 350 |
|
|
|
| 351 |
|
|
The result of __builtin_object_size is defined to be the maximum of
|
| 352 |
|
|
remaining bytes. If we use only one edge on the phi, the result will
|
| 353 |
|
|
change to be the remaining bytes for the corresponding phi argument.
|
| 354 |
|
|
|
| 355 |
|
|
Similarly for __builtin_constant_p:
|
| 356 |
|
|
|
| 357 |
|
|
r = PHI <1(2), 2(3)>
|
| 358 |
|
|
__builtin_constant_p (r)
|
| 359 |
|
|
|
| 360 |
|
|
Both PHI arguments are constant, but x ? 1 : 2 is still not
|
| 361 |
|
|
constant. */
|
| 362 |
|
|
|
| 363 |
|
|
if (is_gimple_call (stmt))
|
| 364 |
|
|
{
|
| 365 |
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
| 366 |
|
|
if (fndecl
|
| 367 |
|
|
&& (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
|
| 368 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
|
| 369 |
|
|
continue;
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
/* At this point we have a statement which assigns an RHS to an
|
| 373 |
|
|
SSA_VAR on the LHS. We want to try and simplify this statement
|
| 374 |
|
|
to expose more context sensitive equivalences which in turn may
|
| 375 |
|
|
allow us to simplify the condition at the end of the loop.
|
| 376 |
|
|
|
| 377 |
|
|
Handle simple copy operations as well as implied copies from
|
| 378 |
|
|
ASSERT_EXPRs. */
|
| 379 |
|
|
if (gimple_assign_single_p (stmt)
|
| 380 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
| 381 |
|
|
cached_lhs = gimple_assign_rhs1 (stmt);
|
| 382 |
|
|
else if (gimple_assign_single_p (stmt)
|
| 383 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
|
| 384 |
|
|
cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
|
| 385 |
|
|
else
|
| 386 |
|
|
{
|
| 387 |
|
|
/* A statement that is not a trivial copy or ASSERT_EXPR.
|
| 388 |
|
|
We're going to temporarily copy propagate the operands
|
| 389 |
|
|
and see if that allows us to simplify this statement. */
|
| 390 |
|
|
tree *copy;
|
| 391 |
|
|
ssa_op_iter iter;
|
| 392 |
|
|
use_operand_p use_p;
|
| 393 |
|
|
unsigned int num, i = 0;
|
| 394 |
|
|
|
| 395 |
|
|
num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
|
| 396 |
|
|
copy = XCNEWVEC (tree, num);
|
| 397 |
|
|
|
| 398 |
|
|
/* Make a copy of the uses & vuses into USES_COPY, then cprop into
|
| 399 |
|
|
the operands. */
|
| 400 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
|
| 401 |
|
|
{
|
| 402 |
|
|
tree tmp = NULL;
|
| 403 |
|
|
tree use = USE_FROM_PTR (use_p);
|
| 404 |
|
|
|
| 405 |
|
|
copy[i++] = use;
|
| 406 |
|
|
if (TREE_CODE (use) == SSA_NAME)
|
| 407 |
|
|
tmp = SSA_NAME_VALUE (use);
|
| 408 |
|
|
if (tmp)
|
| 409 |
|
|
SET_USE (use_p, tmp);
|
| 410 |
|
|
}
|
| 411 |
|
|
|
| 412 |
|
|
/* Try to fold/lookup the new expression. Inserting the
|
| 413 |
|
|
expression into the hash table is unlikely to help. */
|
| 414 |
|
|
if (is_gimple_call (stmt))
|
| 415 |
|
|
cached_lhs = fold_call_stmt (stmt, false);
|
| 416 |
|
|
else
|
| 417 |
|
|
cached_lhs = fold_assignment_stmt (stmt);
|
| 418 |
|
|
|
| 419 |
|
|
if (!cached_lhs
|
| 420 |
|
|
|| (TREE_CODE (cached_lhs) != SSA_NAME
|
| 421 |
|
|
&& !is_gimple_min_invariant (cached_lhs)))
|
| 422 |
|
|
cached_lhs = (*simplify) (stmt, stmt);
|
| 423 |
|
|
|
| 424 |
|
|
/* Restore the statement's original uses/defs. */
|
| 425 |
|
|
i = 0;
|
| 426 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
|
| 427 |
|
|
SET_USE (use_p, copy[i++]);
|
| 428 |
|
|
|
| 429 |
|
|
free (copy);
|
| 430 |
|
|
}
|
| 431 |
|
|
|
| 432 |
|
|
/* Record the context sensitive equivalence if we were able
|
| 433 |
|
|
to simplify this statement. */
|
| 434 |
|
|
if (cached_lhs
|
| 435 |
|
|
&& (TREE_CODE (cached_lhs) == SSA_NAME
|
| 436 |
|
|
|| is_gimple_min_invariant (cached_lhs)))
|
| 437 |
|
|
record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
|
| 438 |
|
|
}
|
| 439 |
|
|
return stmt;
|
| 440 |
|
|
}
|
| 441 |
|
|
|
| 442 |
|
|
/* Simplify the control statement at the end of the block E->dest.
|
| 443 |
|
|
|
| 444 |
|
|
To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
|
| 445 |
|
|
is available to use/clobber in DUMMY_COND.
|
| 446 |
|
|
|
| 447 |
|
|
Use SIMPLIFY (a pointer to a callback function) to further simplify
|
| 448 |
|
|
a condition using pass specific information.
|
| 449 |
|
|
|
| 450 |
|
|
Return the simplified condition or NULL if simplification could
|
| 451 |
|
|
not be performed. */
|
| 452 |
|
|
|
| 453 |
|
|
static tree
|
| 454 |
|
|
simplify_control_stmt_condition (edge e,
|
| 455 |
|
|
gimple stmt,
|
| 456 |
|
|
gimple dummy_cond,
|
| 457 |
|
|
tree (*simplify) (gimple, gimple),
|
| 458 |
|
|
bool handle_dominating_asserts)
|
| 459 |
|
|
{
|
| 460 |
|
|
tree cond, cached_lhs;
|
| 461 |
|
|
enum gimple_code code = gimple_code (stmt);
|
| 462 |
|
|
|
| 463 |
|
|
/* For comparisons, we have to update both operands, then try
|
| 464 |
|
|
to simplify the comparison. */
|
| 465 |
|
|
if (code == GIMPLE_COND)
|
| 466 |
|
|
{
|
| 467 |
|
|
tree op0, op1;
|
| 468 |
|
|
enum tree_code cond_code;
|
| 469 |
|
|
|
| 470 |
|
|
op0 = gimple_cond_lhs (stmt);
|
| 471 |
|
|
op1 = gimple_cond_rhs (stmt);
|
| 472 |
|
|
cond_code = gimple_cond_code (stmt);
|
| 473 |
|
|
|
| 474 |
|
|
/* Get the current value of both operands. */
|
| 475 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
| 476 |
|
|
{
|
| 477 |
|
|
tree tmp = SSA_NAME_VALUE (op0);
|
| 478 |
|
|
if (tmp)
|
| 479 |
|
|
op0 = tmp;
|
| 480 |
|
|
}
|
| 481 |
|
|
|
| 482 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
| 483 |
|
|
{
|
| 484 |
|
|
tree tmp = SSA_NAME_VALUE (op1);
|
| 485 |
|
|
if (tmp)
|
| 486 |
|
|
op1 = tmp;
|
| 487 |
|
|
}
|
| 488 |
|
|
|
| 489 |
|
|
if (handle_dominating_asserts)
|
| 490 |
|
|
{
|
| 491 |
|
|
/* Now see if the operand was consumed by an ASSERT_EXPR
|
| 492 |
|
|
which dominates E->src. If so, we want to replace the
|
| 493 |
|
|
operand with the LHS of the ASSERT_EXPR. */
|
| 494 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
| 495 |
|
|
op0 = lhs_of_dominating_assert (op0, e->src, stmt);
|
| 496 |
|
|
|
| 497 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
| 498 |
|
|
op1 = lhs_of_dominating_assert (op1, e->src, stmt);
|
| 499 |
|
|
}
|
| 500 |
|
|
|
| 501 |
|
|
/* We may need to canonicalize the comparison. For
|
| 502 |
|
|
example, op0 might be a constant while op1 is an
|
| 503 |
|
|
SSA_NAME. Failure to canonicalize will cause us to
|
| 504 |
|
|
miss threading opportunities. */
|
| 505 |
|
|
if (tree_swap_operands_p (op0, op1, false))
|
| 506 |
|
|
{
|
| 507 |
|
|
tree tmp;
|
| 508 |
|
|
cond_code = swap_tree_comparison (cond_code);
|
| 509 |
|
|
tmp = op0;
|
| 510 |
|
|
op0 = op1;
|
| 511 |
|
|
op1 = tmp;
|
| 512 |
|
|
}
|
| 513 |
|
|
|
| 514 |
|
|
/* Stuff the operator and operands into our dummy conditional
|
| 515 |
|
|
expression. */
|
| 516 |
|
|
gimple_cond_set_code (dummy_cond, cond_code);
|
| 517 |
|
|
gimple_cond_set_lhs (dummy_cond, op0);
|
| 518 |
|
|
gimple_cond_set_rhs (dummy_cond, op1);
|
| 519 |
|
|
|
| 520 |
|
|
/* We absolutely do not care about any type conversions
|
| 521 |
|
|
we only care about a zero/nonzero value. */
|
| 522 |
|
|
fold_defer_overflow_warnings ();
|
| 523 |
|
|
|
| 524 |
|
|
cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
|
| 525 |
|
|
if (cached_lhs)
|
| 526 |
|
|
while (CONVERT_EXPR_P (cached_lhs))
|
| 527 |
|
|
cached_lhs = TREE_OPERAND (cached_lhs, 0);
|
| 528 |
|
|
|
| 529 |
|
|
fold_undefer_overflow_warnings ((cached_lhs
|
| 530 |
|
|
&& is_gimple_min_invariant (cached_lhs)),
|
| 531 |
|
|
stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
|
| 532 |
|
|
|
| 533 |
|
|
/* If we have not simplified the condition down to an invariant,
|
| 534 |
|
|
then use the pass specific callback to simplify the condition. */
|
| 535 |
|
|
if (!cached_lhs
|
| 536 |
|
|
|| !is_gimple_min_invariant (cached_lhs))
|
| 537 |
|
|
cached_lhs = (*simplify) (dummy_cond, stmt);
|
| 538 |
|
|
|
| 539 |
|
|
return cached_lhs;
|
| 540 |
|
|
}
|
| 541 |
|
|
|
| 542 |
|
|
if (code == GIMPLE_SWITCH)
|
| 543 |
|
|
cond = gimple_switch_index (stmt);
|
| 544 |
|
|
else if (code == GIMPLE_GOTO)
|
| 545 |
|
|
cond = gimple_goto_dest (stmt);
|
| 546 |
|
|
else
|
| 547 |
|
|
gcc_unreachable ();
|
| 548 |
|
|
|
| 549 |
|
|
/* We can have conditionals which just test the state of a variable
|
| 550 |
|
|
rather than use a relational operator. These are simpler to handle. */
|
| 551 |
|
|
if (TREE_CODE (cond) == SSA_NAME)
|
| 552 |
|
|
{
|
| 553 |
|
|
cached_lhs = cond;
|
| 554 |
|
|
|
| 555 |
|
|
/* Get the variable's current value from the equivalence chains.
|
| 556 |
|
|
|
| 557 |
|
|
It is possible to get loops in the SSA_NAME_VALUE chains
|
| 558 |
|
|
(consider threading the backedge of a loop where we have
|
| 559 |
|
|
a loop invariant SSA_NAME used in the condition. */
|
| 560 |
|
|
if (cached_lhs
|
| 561 |
|
|
&& TREE_CODE (cached_lhs) == SSA_NAME
|
| 562 |
|
|
&& SSA_NAME_VALUE (cached_lhs))
|
| 563 |
|
|
cached_lhs = SSA_NAME_VALUE (cached_lhs);
|
| 564 |
|
|
|
| 565 |
|
|
/* If we're dominated by a suitable ASSERT_EXPR, then
|
| 566 |
|
|
update CACHED_LHS appropriately. */
|
| 567 |
|
|
if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
|
| 568 |
|
|
cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
|
| 569 |
|
|
|
| 570 |
|
|
/* If we haven't simplified to an invariant yet, then use the
|
| 571 |
|
|
pass specific callback to try and simplify it further. */
|
| 572 |
|
|
if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
|
| 573 |
|
|
cached_lhs = (*simplify) (stmt, stmt);
|
| 574 |
|
|
}
|
| 575 |
|
|
else
|
| 576 |
|
|
cached_lhs = NULL;
|
| 577 |
|
|
|
| 578 |
|
|
return cached_lhs;
|
| 579 |
|
|
}
|
| 580 |
|
|
|
| 581 |
|
|
/* We are exiting E->src, see if E->dest ends with a conditional
|
| 582 |
|
|
jump which has a known value when reached via E.
|
| 583 |
|
|
|
| 584 |
|
|
Special care is necessary if E is a back edge in the CFG as we
|
| 585 |
|
|
may have already recorded equivalences for E->dest into our
|
| 586 |
|
|
various tables, including the result of the conditional at
|
| 587 |
|
|
the end of E->dest. Threading opportunities are severely
|
| 588 |
|
|
limited in that case to avoid short-circuiting the loop
|
| 589 |
|
|
incorrectly.
|
| 590 |
|
|
|
| 591 |
|
|
Note it is quite common for the first block inside a loop to
|
| 592 |
|
|
end with a conditional which is either always true or always
|
| 593 |
|
|
false when reached via the loop backedge. Thus we do not want
|
| 594 |
|
|
to blindly disable threading across a loop backedge.
|
| 595 |
|
|
|
| 596 |
|
|
DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
|
| 597 |
|
|
to avoid allocating memory.
|
| 598 |
|
|
|
| 599 |
|
|
HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
|
| 600 |
|
|
the simplified condition with left-hand sides of ASSERT_EXPRs they are
|
| 601 |
|
|
used in.
|
| 602 |
|
|
|
| 603 |
|
|
STACK is used to undo temporary equivalences created during the walk of
|
| 604 |
|
|
E->dest.
|
| 605 |
|
|
|
| 606 |
|
|
SIMPLIFY is a pass-specific function used to simplify statements. */
|
| 607 |
|
|
|
| 608 |
|
|
void
|
| 609 |
|
|
thread_across_edge (gimple dummy_cond,
|
| 610 |
|
|
edge e,
|
| 611 |
|
|
bool handle_dominating_asserts,
|
| 612 |
|
|
VEC(tree, heap) **stack,
|
| 613 |
|
|
tree (*simplify) (gimple, gimple))
|
| 614 |
|
|
{
|
| 615 |
|
|
gimple stmt;
|
| 616 |
|
|
|
| 617 |
|
|
/* If E is a backedge, then we want to verify that the COND_EXPR,
|
| 618 |
|
|
SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
|
| 619 |
|
|
by any statements in e->dest. If it is affected, then it is not
|
| 620 |
|
|
safe to thread this edge. */
|
| 621 |
|
|
if (e->flags & EDGE_DFS_BACK)
|
| 622 |
|
|
{
|
| 623 |
|
|
ssa_op_iter iter;
|
| 624 |
|
|
use_operand_p use_p;
|
| 625 |
|
|
gimple last = gsi_stmt (gsi_last_bb (e->dest));
|
| 626 |
|
|
|
| 627 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, last, iter, SSA_OP_USE | SSA_OP_VUSE)
|
| 628 |
|
|
{
|
| 629 |
|
|
tree use = USE_FROM_PTR (use_p);
|
| 630 |
|
|
|
| 631 |
|
|
if (TREE_CODE (use) == SSA_NAME
|
| 632 |
|
|
&& gimple_code (SSA_NAME_DEF_STMT (use)) != GIMPLE_PHI
|
| 633 |
|
|
&& gimple_bb (SSA_NAME_DEF_STMT (use)) == e->dest)
|
| 634 |
|
|
goto fail;
|
| 635 |
|
|
}
|
| 636 |
|
|
}
|
| 637 |
|
|
|
| 638 |
|
|
stmt_count = 0;
|
| 639 |
|
|
|
| 640 |
|
|
/* PHIs create temporary equivalences. */
|
| 641 |
|
|
if (!record_temporary_equivalences_from_phis (e, stack))
|
| 642 |
|
|
goto fail;
|
| 643 |
|
|
|
| 644 |
|
|
/* Now walk each statement recording any context sensitive
|
| 645 |
|
|
temporary equivalences we can detect. */
|
| 646 |
|
|
stmt = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify);
|
| 647 |
|
|
if (!stmt)
|
| 648 |
|
|
goto fail;
|
| 649 |
|
|
|
| 650 |
|
|
/* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
|
| 651 |
|
|
will be taken. */
|
| 652 |
|
|
if (gimple_code (stmt) == GIMPLE_COND
|
| 653 |
|
|
|| gimple_code (stmt) == GIMPLE_GOTO
|
| 654 |
|
|
|| gimple_code (stmt) == GIMPLE_SWITCH)
|
| 655 |
|
|
{
|
| 656 |
|
|
tree cond;
|
| 657 |
|
|
|
| 658 |
|
|
/* Extract and simplify the condition. */
|
| 659 |
|
|
cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify, handle_dominating_asserts);
|
| 660 |
|
|
|
| 661 |
|
|
if (cond && is_gimple_min_invariant (cond))
|
| 662 |
|
|
{
|
| 663 |
|
|
edge taken_edge = find_taken_edge (e->dest, cond);
|
| 664 |
|
|
basic_block dest = (taken_edge ? taken_edge->dest : NULL);
|
| 665 |
|
|
|
| 666 |
|
|
if (dest == e->dest)
|
| 667 |
|
|
goto fail;
|
| 668 |
|
|
|
| 669 |
|
|
remove_temporary_equivalences (stack);
|
| 670 |
|
|
register_jump_thread (e, taken_edge);
|
| 671 |
|
|
}
|
| 672 |
|
|
}
|
| 673 |
|
|
|
| 674 |
|
|
fail:
|
| 675 |
|
|
remove_temporary_equivalences (stack);
|
| 676 |
|
|
}
|