1 |
280 |
jeremybenn |
/* SSA Jump Threading
|
2 |
|
|
Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
3 |
|
|
Contributed by Jeff Law <law@redhat.com>
|
4 |
|
|
|
5 |
|
|
This file is part of GCC.
|
6 |
|
|
|
7 |
|
|
GCC is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GCC is distributed in the hope that it will be useful,
|
13 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
15 |
|
|
GNU General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GCC; see the file COPYING3. If not see
|
19 |
|
|
<http://www.gnu.org/licenses/>. */
|
20 |
|
|
|
21 |
|
|
#include "config.h"
|
22 |
|
|
#include "system.h"
|
23 |
|
|
#include "coretypes.h"
|
24 |
|
|
#include "tm.h"
|
25 |
|
|
#include "tree.h"
|
26 |
|
|
#include "flags.h"
|
27 |
|
|
#include "rtl.h"
|
28 |
|
|
#include "tm_p.h"
|
29 |
|
|
#include "ggc.h"
|
30 |
|
|
#include "basic-block.h"
|
31 |
|
|
#include "cfgloop.h"
|
32 |
|
|
#include "output.h"
|
33 |
|
|
#include "expr.h"
|
34 |
|
|
#include "function.h"
|
35 |
|
|
#include "diagnostic.h"
|
36 |
|
|
#include "timevar.h"
|
37 |
|
|
#include "tree-dump.h"
|
38 |
|
|
#include "tree-flow.h"
|
39 |
|
|
#include "real.h"
|
40 |
|
|
#include "tree-pass.h"
|
41 |
|
|
#include "tree-ssa-propagate.h"
|
42 |
|
|
#include "langhooks.h"
|
43 |
|
|
#include "params.h"
|
44 |
|
|
|
45 |
|
|
/* To avoid code explosion due to jump threading, we limit the
|
46 |
|
|
number of statements we are going to copy. This variable
|
47 |
|
|
holds the number of statements currently seen that we'll have
|
48 |
|
|
to copy as part of the jump threading process. */
|
49 |
|
|
static int stmt_count;
|
50 |
|
|
|
51 |
|
|
/* Array to record value-handles per SSA_NAME. */
|
52 |
|
|
VEC(tree,heap) *ssa_name_values;
|
53 |
|
|
|
54 |
|
|
/* Set the value for the SSA name NAME to VALUE. */
|
55 |
|
|
|
56 |
|
|
void
|
57 |
|
|
set_ssa_name_value (tree name, tree value)
|
58 |
|
|
{
|
59 |
|
|
if (SSA_NAME_VERSION (name) >= VEC_length (tree, ssa_name_values))
|
60 |
|
|
VEC_safe_grow_cleared (tree, heap, ssa_name_values,
|
61 |
|
|
SSA_NAME_VERSION (name) + 1);
|
62 |
|
|
VEC_replace (tree, ssa_name_values, SSA_NAME_VERSION (name), value);
|
63 |
|
|
}
|
64 |
|
|
|
65 |
|
|
/* Initialize the per SSA_NAME value-handles array. Returns it. */
|
66 |
|
|
void
|
67 |
|
|
threadedge_initialize_values (void)
|
68 |
|
|
{
|
69 |
|
|
gcc_assert (ssa_name_values == NULL);
|
70 |
|
|
ssa_name_values = VEC_alloc(tree, heap, num_ssa_names);
|
71 |
|
|
}
|
72 |
|
|
|
73 |
|
|
/* Free the per SSA_NAME value-handle array. */
|
74 |
|
|
void
|
75 |
|
|
threadedge_finalize_values (void)
|
76 |
|
|
{
|
77 |
|
|
VEC_free(tree, heap, ssa_name_values);
|
78 |
|
|
}
|
79 |
|
|
|
80 |
|
|
/* Return TRUE if we may be able to thread an incoming edge into
|
81 |
|
|
BB to an outgoing edge from BB. Return FALSE otherwise. */
|
82 |
|
|
|
83 |
|
|
bool
|
84 |
|
|
potentially_threadable_block (basic_block bb)
|
85 |
|
|
{
|
86 |
|
|
gimple_stmt_iterator gsi;
|
87 |
|
|
|
88 |
|
|
/* If BB has a single successor or a single predecessor, then
|
89 |
|
|
there is no threading opportunity. */
|
90 |
|
|
if (single_succ_p (bb) || single_pred_p (bb))
|
91 |
|
|
return false;
|
92 |
|
|
|
93 |
|
|
/* If BB does not end with a conditional, switch or computed goto,
|
94 |
|
|
then there is no threading opportunity. */
|
95 |
|
|
gsi = gsi_last_bb (bb);
|
96 |
|
|
if (gsi_end_p (gsi)
|
97 |
|
|
|| ! gsi_stmt (gsi)
|
98 |
|
|
|| (gimple_code (gsi_stmt (gsi)) != GIMPLE_COND
|
99 |
|
|
&& gimple_code (gsi_stmt (gsi)) != GIMPLE_GOTO
|
100 |
|
|
&& gimple_code (gsi_stmt (gsi)) != GIMPLE_SWITCH))
|
101 |
|
|
return false;
|
102 |
|
|
|
103 |
|
|
return true;
|
104 |
|
|
}
|
105 |
|
|
|
106 |
|
|
/* Return the LHS of any ASSERT_EXPR where OP appears as the first
|
107 |
|
|
argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
|
108 |
|
|
BB. If no such ASSERT_EXPR is found, return OP. */
|
109 |
|
|
|
110 |
|
|
static tree
|
111 |
|
|
lhs_of_dominating_assert (tree op, basic_block bb, gimple stmt)
|
112 |
|
|
{
|
113 |
|
|
imm_use_iterator imm_iter;
|
114 |
|
|
gimple use_stmt;
|
115 |
|
|
use_operand_p use_p;
|
116 |
|
|
|
117 |
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
|
118 |
|
|
{
|
119 |
|
|
use_stmt = USE_STMT (use_p);
|
120 |
|
|
if (use_stmt != stmt
|
121 |
|
|
&& gimple_assign_single_p (use_stmt)
|
122 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
|
123 |
|
|
&& TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
|
124 |
|
|
&& dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
|
125 |
|
|
{
|
126 |
|
|
return gimple_assign_lhs (use_stmt);
|
127 |
|
|
}
|
128 |
|
|
}
|
129 |
|
|
return op;
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
/* We record temporary equivalences created by PHI nodes or
|
133 |
|
|
statements within the target block. Doing so allows us to
|
134 |
|
|
identify more jump threading opportunities, even in blocks
|
135 |
|
|
with side effects.
|
136 |
|
|
|
137 |
|
|
We keep track of those temporary equivalences in a stack
|
138 |
|
|
structure so that we can unwind them when we're done processing
|
139 |
|
|
a particular edge. This routine handles unwinding the data
|
140 |
|
|
structures. */
|
141 |
|
|
|
142 |
|
|
static void
|
143 |
|
|
remove_temporary_equivalences (VEC(tree, heap) **stack)
|
144 |
|
|
{
|
145 |
|
|
while (VEC_length (tree, *stack) > 0)
|
146 |
|
|
{
|
147 |
|
|
tree prev_value, dest;
|
148 |
|
|
|
149 |
|
|
dest = VEC_pop (tree, *stack);
|
150 |
|
|
|
151 |
|
|
/* A NULL value indicates we should stop unwinding, otherwise
|
152 |
|
|
pop off the next entry as they're recorded in pairs. */
|
153 |
|
|
if (dest == NULL)
|
154 |
|
|
break;
|
155 |
|
|
|
156 |
|
|
prev_value = VEC_pop (tree, *stack);
|
157 |
|
|
set_ssa_name_value (dest, prev_value);
|
158 |
|
|
}
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
/* Record a temporary equivalence, saving enough information so that
|
162 |
|
|
we can restore the state of recorded equivalences when we're
|
163 |
|
|
done processing the current edge. */
|
164 |
|
|
|
165 |
|
|
static void
|
166 |
|
|
record_temporary_equivalence (tree x, tree y, VEC(tree, heap) **stack)
|
167 |
|
|
{
|
168 |
|
|
tree prev_x = SSA_NAME_VALUE (x);
|
169 |
|
|
|
170 |
|
|
if (TREE_CODE (y) == SSA_NAME)
|
171 |
|
|
{
|
172 |
|
|
tree tmp = SSA_NAME_VALUE (y);
|
173 |
|
|
y = tmp ? tmp : y;
|
174 |
|
|
}
|
175 |
|
|
|
176 |
|
|
set_ssa_name_value (x, y);
|
177 |
|
|
VEC_reserve (tree, heap, *stack, 2);
|
178 |
|
|
VEC_quick_push (tree, *stack, prev_x);
|
179 |
|
|
VEC_quick_push (tree, *stack, x);
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
/* Record temporary equivalences created by PHIs at the target of the
|
183 |
|
|
edge E. Record unwind information for the equivalences onto STACK.
|
184 |
|
|
|
185 |
|
|
If a PHI which prevents threading is encountered, then return FALSE
|
186 |
|
|
indicating we should not thread this edge, else return TRUE. */
|
187 |
|
|
|
188 |
|
|
static bool
|
189 |
|
|
record_temporary_equivalences_from_phis (edge e, VEC(tree, heap) **stack)
|
190 |
|
|
{
|
191 |
|
|
gimple_stmt_iterator gsi;
|
192 |
|
|
|
193 |
|
|
/* Each PHI creates a temporary equivalence, record them.
|
194 |
|
|
These are context sensitive equivalences and will be removed
|
195 |
|
|
later. */
|
196 |
|
|
for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
197 |
|
|
{
|
198 |
|
|
gimple phi = gsi_stmt (gsi);
|
199 |
|
|
tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
|
200 |
|
|
tree dst = gimple_phi_result (phi);
|
201 |
|
|
|
202 |
|
|
/* If the desired argument is not the same as this PHI's result
|
203 |
|
|
and it is set by a PHI in E->dest, then we can not thread
|
204 |
|
|
through E->dest. */
|
205 |
|
|
if (src != dst
|
206 |
|
|
&& TREE_CODE (src) == SSA_NAME
|
207 |
|
|
&& gimple_code (SSA_NAME_DEF_STMT (src)) == GIMPLE_PHI
|
208 |
|
|
&& gimple_bb (SSA_NAME_DEF_STMT (src)) == e->dest)
|
209 |
|
|
return false;
|
210 |
|
|
|
211 |
|
|
/* We consider any non-virtual PHI as a statement since it
|
212 |
|
|
count result in a constant assignment or copy operation. */
|
213 |
|
|
if (is_gimple_reg (dst))
|
214 |
|
|
stmt_count++;
|
215 |
|
|
|
216 |
|
|
record_temporary_equivalence (dst, src, stack);
|
217 |
|
|
}
|
218 |
|
|
return true;
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
/* Fold the RHS of an assignment statement and return it as a tree.
|
222 |
|
|
May return NULL_TREE if no simplification is possible. */
|
223 |
|
|
|
224 |
|
|
static tree
|
225 |
|
|
fold_assignment_stmt (gimple stmt)
|
226 |
|
|
{
|
227 |
|
|
enum tree_code subcode = gimple_assign_rhs_code (stmt);
|
228 |
|
|
|
229 |
|
|
switch (get_gimple_rhs_class (subcode))
|
230 |
|
|
{
|
231 |
|
|
case GIMPLE_SINGLE_RHS:
|
232 |
|
|
{
|
233 |
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
234 |
|
|
|
235 |
|
|
if (TREE_CODE (rhs) == COND_EXPR)
|
236 |
|
|
{
|
237 |
|
|
/* Sadly, we have to handle conditional assignments specially
|
238 |
|
|
here, because fold expects all the operands of an expression
|
239 |
|
|
to be folded before the expression itself is folded, but we
|
240 |
|
|
can't just substitute the folded condition here. */
|
241 |
|
|
tree cond = fold (COND_EXPR_COND (rhs));
|
242 |
|
|
if (cond == boolean_true_node)
|
243 |
|
|
rhs = COND_EXPR_THEN (rhs);
|
244 |
|
|
else if (cond == boolean_false_node)
|
245 |
|
|
rhs = COND_EXPR_ELSE (rhs);
|
246 |
|
|
}
|
247 |
|
|
|
248 |
|
|
return fold (rhs);
|
249 |
|
|
}
|
250 |
|
|
break;
|
251 |
|
|
case GIMPLE_UNARY_RHS:
|
252 |
|
|
{
|
253 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
254 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
255 |
|
|
return fold_unary (subcode, TREE_TYPE (lhs), op0);
|
256 |
|
|
}
|
257 |
|
|
break;
|
258 |
|
|
case GIMPLE_BINARY_RHS:
|
259 |
|
|
{
|
260 |
|
|
tree lhs = gimple_assign_lhs (stmt);
|
261 |
|
|
tree op0 = gimple_assign_rhs1 (stmt);
|
262 |
|
|
tree op1 = gimple_assign_rhs2 (stmt);
|
263 |
|
|
return fold_binary (subcode, TREE_TYPE (lhs), op0, op1);
|
264 |
|
|
}
|
265 |
|
|
break;
|
266 |
|
|
default:
|
267 |
|
|
gcc_unreachable ();
|
268 |
|
|
}
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
/* Try to simplify each statement in E->dest, ultimately leading to
|
272 |
|
|
a simplification of the COND_EXPR at the end of E->dest.
|
273 |
|
|
|
274 |
|
|
Record unwind information for temporary equivalences onto STACK.
|
275 |
|
|
|
276 |
|
|
Use SIMPLIFY (a pointer to a callback function) to further simplify
|
277 |
|
|
statements using pass specific information.
|
278 |
|
|
|
279 |
|
|
We might consider marking just those statements which ultimately
|
280 |
|
|
feed the COND_EXPR. It's not clear if the overhead of bookkeeping
|
281 |
|
|
would be recovered by trying to simplify fewer statements.
|
282 |
|
|
|
283 |
|
|
If we are able to simplify a statement into the form
|
284 |
|
|
SSA_NAME = (SSA_NAME | gimple invariant), then we can record
|
285 |
|
|
a context sensitive equivalence which may help us simplify
|
286 |
|
|
later statements in E->dest. */
|
287 |
|
|
|
288 |
|
|
static gimple
|
289 |
|
|
record_temporary_equivalences_from_stmts_at_dest (edge e,
|
290 |
|
|
VEC(tree, heap) **stack,
|
291 |
|
|
tree (*simplify) (gimple,
|
292 |
|
|
gimple))
|
293 |
|
|
{
|
294 |
|
|
gimple stmt = NULL;
|
295 |
|
|
gimple_stmt_iterator gsi;
|
296 |
|
|
int max_stmt_count;
|
297 |
|
|
|
298 |
|
|
max_stmt_count = PARAM_VALUE (PARAM_MAX_JUMP_THREAD_DUPLICATION_STMTS);
|
299 |
|
|
|
300 |
|
|
/* Walk through each statement in the block recording equivalences
|
301 |
|
|
we discover. Note any equivalences we discover are context
|
302 |
|
|
sensitive (ie, are dependent on traversing E) and must be unwound
|
303 |
|
|
when we're finished processing E. */
|
304 |
|
|
for (gsi = gsi_start_bb (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
|
305 |
|
|
{
|
306 |
|
|
tree cached_lhs = NULL;
|
307 |
|
|
|
308 |
|
|
stmt = gsi_stmt (gsi);
|
309 |
|
|
|
310 |
|
|
/* Ignore empty statements and labels. */
|
311 |
|
|
if (gimple_code (stmt) == GIMPLE_NOP
|
312 |
|
|
|| gimple_code (stmt) == GIMPLE_LABEL
|
313 |
|
|
|| is_gimple_debug (stmt))
|
314 |
|
|
continue;
|
315 |
|
|
|
316 |
|
|
/* If the statement has volatile operands, then we assume we
|
317 |
|
|
can not thread through this block. This is overly
|
318 |
|
|
conservative in some ways. */
|
319 |
|
|
if (gimple_code (stmt) == GIMPLE_ASM && gimple_asm_volatile_p (stmt))
|
320 |
|
|
return NULL;
|
321 |
|
|
|
322 |
|
|
/* If duplicating this block is going to cause too much code
|
323 |
|
|
expansion, then do not thread through this block. */
|
324 |
|
|
stmt_count++;
|
325 |
|
|
if (stmt_count > max_stmt_count)
|
326 |
|
|
return NULL;
|
327 |
|
|
|
328 |
|
|
/* If this is not a statement that sets an SSA_NAME to a new
|
329 |
|
|
value, then do not try to simplify this statement as it will
|
330 |
|
|
not simplify in any way that is helpful for jump threading. */
|
331 |
|
|
if ((gimple_code (stmt) != GIMPLE_ASSIGN
|
332 |
|
|
|| TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
|
333 |
|
|
&& (gimple_code (stmt) != GIMPLE_CALL
|
334 |
|
|
|| gimple_call_lhs (stmt) == NULL_TREE
|
335 |
|
|
|| TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME))
|
336 |
|
|
continue;
|
337 |
|
|
|
338 |
|
|
/* The result of __builtin_object_size depends on all the arguments
|
339 |
|
|
of a phi node. Temporarily using only one edge produces invalid
|
340 |
|
|
results. For example
|
341 |
|
|
|
342 |
|
|
if (x < 6)
|
343 |
|
|
goto l;
|
344 |
|
|
else
|
345 |
|
|
goto l;
|
346 |
|
|
|
347 |
|
|
l:
|
348 |
|
|
r = PHI <&w[2].a[1](2), &a.a[6](3)>
|
349 |
|
|
__builtin_object_size (r, 0)
|
350 |
|
|
|
351 |
|
|
The result of __builtin_object_size is defined to be the maximum of
|
352 |
|
|
remaining bytes. If we use only one edge on the phi, the result will
|
353 |
|
|
change to be the remaining bytes for the corresponding phi argument.
|
354 |
|
|
|
355 |
|
|
Similarly for __builtin_constant_p:
|
356 |
|
|
|
357 |
|
|
r = PHI <1(2), 2(3)>
|
358 |
|
|
__builtin_constant_p (r)
|
359 |
|
|
|
360 |
|
|
Both PHI arguments are constant, but x ? 1 : 2 is still not
|
361 |
|
|
constant. */
|
362 |
|
|
|
363 |
|
|
if (is_gimple_call (stmt))
|
364 |
|
|
{
|
365 |
|
|
tree fndecl = gimple_call_fndecl (stmt);
|
366 |
|
|
if (fndecl
|
367 |
|
|
&& (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_OBJECT_SIZE
|
368 |
|
|
|| DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P))
|
369 |
|
|
continue;
|
370 |
|
|
}
|
371 |
|
|
|
372 |
|
|
/* At this point we have a statement which assigns an RHS to an
|
373 |
|
|
SSA_VAR on the LHS. We want to try and simplify this statement
|
374 |
|
|
to expose more context sensitive equivalences which in turn may
|
375 |
|
|
allow us to simplify the condition at the end of the loop.
|
376 |
|
|
|
377 |
|
|
Handle simple copy operations as well as implied copies from
|
378 |
|
|
ASSERT_EXPRs. */
|
379 |
|
|
if (gimple_assign_single_p (stmt)
|
380 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|
381 |
|
|
cached_lhs = gimple_assign_rhs1 (stmt);
|
382 |
|
|
else if (gimple_assign_single_p (stmt)
|
383 |
|
|
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
|
384 |
|
|
cached_lhs = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
|
385 |
|
|
else
|
386 |
|
|
{
|
387 |
|
|
/* A statement that is not a trivial copy or ASSERT_EXPR.
|
388 |
|
|
We're going to temporarily copy propagate the operands
|
389 |
|
|
and see if that allows us to simplify this statement. */
|
390 |
|
|
tree *copy;
|
391 |
|
|
ssa_op_iter iter;
|
392 |
|
|
use_operand_p use_p;
|
393 |
|
|
unsigned int num, i = 0;
|
394 |
|
|
|
395 |
|
|
num = NUM_SSA_OPERANDS (stmt, (SSA_OP_USE | SSA_OP_VUSE));
|
396 |
|
|
copy = XCNEWVEC (tree, num);
|
397 |
|
|
|
398 |
|
|
/* Make a copy of the uses & vuses into USES_COPY, then cprop into
|
399 |
|
|
the operands. */
|
400 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
|
401 |
|
|
{
|
402 |
|
|
tree tmp = NULL;
|
403 |
|
|
tree use = USE_FROM_PTR (use_p);
|
404 |
|
|
|
405 |
|
|
copy[i++] = use;
|
406 |
|
|
if (TREE_CODE (use) == SSA_NAME)
|
407 |
|
|
tmp = SSA_NAME_VALUE (use);
|
408 |
|
|
if (tmp)
|
409 |
|
|
SET_USE (use_p, tmp);
|
410 |
|
|
}
|
411 |
|
|
|
412 |
|
|
/* Try to fold/lookup the new expression. Inserting the
|
413 |
|
|
expression into the hash table is unlikely to help. */
|
414 |
|
|
if (is_gimple_call (stmt))
|
415 |
|
|
cached_lhs = fold_call_stmt (stmt, false);
|
416 |
|
|
else
|
417 |
|
|
cached_lhs = fold_assignment_stmt (stmt);
|
418 |
|
|
|
419 |
|
|
if (!cached_lhs
|
420 |
|
|
|| (TREE_CODE (cached_lhs) != SSA_NAME
|
421 |
|
|
&& !is_gimple_min_invariant (cached_lhs)))
|
422 |
|
|
cached_lhs = (*simplify) (stmt, stmt);
|
423 |
|
|
|
424 |
|
|
/* Restore the statement's original uses/defs. */
|
425 |
|
|
i = 0;
|
426 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE | SSA_OP_VUSE)
|
427 |
|
|
SET_USE (use_p, copy[i++]);
|
428 |
|
|
|
429 |
|
|
free (copy);
|
430 |
|
|
}
|
431 |
|
|
|
432 |
|
|
/* Record the context sensitive equivalence if we were able
|
433 |
|
|
to simplify this statement. */
|
434 |
|
|
if (cached_lhs
|
435 |
|
|
&& (TREE_CODE (cached_lhs) == SSA_NAME
|
436 |
|
|
|| is_gimple_min_invariant (cached_lhs)))
|
437 |
|
|
record_temporary_equivalence (gimple_get_lhs (stmt), cached_lhs, stack);
|
438 |
|
|
}
|
439 |
|
|
return stmt;
|
440 |
|
|
}
|
441 |
|
|
|
442 |
|
|
/* Simplify the control statement at the end of the block E->dest.
|
443 |
|
|
|
444 |
|
|
To avoid allocating memory unnecessarily, a scratch GIMPLE_COND
|
445 |
|
|
is available to use/clobber in DUMMY_COND.
|
446 |
|
|
|
447 |
|
|
Use SIMPLIFY (a pointer to a callback function) to further simplify
|
448 |
|
|
a condition using pass specific information.
|
449 |
|
|
|
450 |
|
|
Return the simplified condition or NULL if simplification could
|
451 |
|
|
not be performed. */
|
452 |
|
|
|
453 |
|
|
static tree
|
454 |
|
|
simplify_control_stmt_condition (edge e,
|
455 |
|
|
gimple stmt,
|
456 |
|
|
gimple dummy_cond,
|
457 |
|
|
tree (*simplify) (gimple, gimple),
|
458 |
|
|
bool handle_dominating_asserts)
|
459 |
|
|
{
|
460 |
|
|
tree cond, cached_lhs;
|
461 |
|
|
enum gimple_code code = gimple_code (stmt);
|
462 |
|
|
|
463 |
|
|
/* For comparisons, we have to update both operands, then try
|
464 |
|
|
to simplify the comparison. */
|
465 |
|
|
if (code == GIMPLE_COND)
|
466 |
|
|
{
|
467 |
|
|
tree op0, op1;
|
468 |
|
|
enum tree_code cond_code;
|
469 |
|
|
|
470 |
|
|
op0 = gimple_cond_lhs (stmt);
|
471 |
|
|
op1 = gimple_cond_rhs (stmt);
|
472 |
|
|
cond_code = gimple_cond_code (stmt);
|
473 |
|
|
|
474 |
|
|
/* Get the current value of both operands. */
|
475 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
476 |
|
|
{
|
477 |
|
|
tree tmp = SSA_NAME_VALUE (op0);
|
478 |
|
|
if (tmp)
|
479 |
|
|
op0 = tmp;
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
483 |
|
|
{
|
484 |
|
|
tree tmp = SSA_NAME_VALUE (op1);
|
485 |
|
|
if (tmp)
|
486 |
|
|
op1 = tmp;
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
if (handle_dominating_asserts)
|
490 |
|
|
{
|
491 |
|
|
/* Now see if the operand was consumed by an ASSERT_EXPR
|
492 |
|
|
which dominates E->src. If so, we want to replace the
|
493 |
|
|
operand with the LHS of the ASSERT_EXPR. */
|
494 |
|
|
if (TREE_CODE (op0) == SSA_NAME)
|
495 |
|
|
op0 = lhs_of_dominating_assert (op0, e->src, stmt);
|
496 |
|
|
|
497 |
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
498 |
|
|
op1 = lhs_of_dominating_assert (op1, e->src, stmt);
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
/* We may need to canonicalize the comparison. For
|
502 |
|
|
example, op0 might be a constant while op1 is an
|
503 |
|
|
SSA_NAME. Failure to canonicalize will cause us to
|
504 |
|
|
miss threading opportunities. */
|
505 |
|
|
if (tree_swap_operands_p (op0, op1, false))
|
506 |
|
|
{
|
507 |
|
|
tree tmp;
|
508 |
|
|
cond_code = swap_tree_comparison (cond_code);
|
509 |
|
|
tmp = op0;
|
510 |
|
|
op0 = op1;
|
511 |
|
|
op1 = tmp;
|
512 |
|
|
}
|
513 |
|
|
|
514 |
|
|
/* Stuff the operator and operands into our dummy conditional
|
515 |
|
|
expression. */
|
516 |
|
|
gimple_cond_set_code (dummy_cond, cond_code);
|
517 |
|
|
gimple_cond_set_lhs (dummy_cond, op0);
|
518 |
|
|
gimple_cond_set_rhs (dummy_cond, op1);
|
519 |
|
|
|
520 |
|
|
/* We absolutely do not care about any type conversions
|
521 |
|
|
we only care about a zero/nonzero value. */
|
522 |
|
|
fold_defer_overflow_warnings ();
|
523 |
|
|
|
524 |
|
|
cached_lhs = fold_binary (cond_code, boolean_type_node, op0, op1);
|
525 |
|
|
if (cached_lhs)
|
526 |
|
|
while (CONVERT_EXPR_P (cached_lhs))
|
527 |
|
|
cached_lhs = TREE_OPERAND (cached_lhs, 0);
|
528 |
|
|
|
529 |
|
|
fold_undefer_overflow_warnings ((cached_lhs
|
530 |
|
|
&& is_gimple_min_invariant (cached_lhs)),
|
531 |
|
|
stmt, WARN_STRICT_OVERFLOW_CONDITIONAL);
|
532 |
|
|
|
533 |
|
|
/* If we have not simplified the condition down to an invariant,
|
534 |
|
|
then use the pass specific callback to simplify the condition. */
|
535 |
|
|
if (!cached_lhs
|
536 |
|
|
|| !is_gimple_min_invariant (cached_lhs))
|
537 |
|
|
cached_lhs = (*simplify) (dummy_cond, stmt);
|
538 |
|
|
|
539 |
|
|
return cached_lhs;
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
if (code == GIMPLE_SWITCH)
|
543 |
|
|
cond = gimple_switch_index (stmt);
|
544 |
|
|
else if (code == GIMPLE_GOTO)
|
545 |
|
|
cond = gimple_goto_dest (stmt);
|
546 |
|
|
else
|
547 |
|
|
gcc_unreachable ();
|
548 |
|
|
|
549 |
|
|
/* We can have conditionals which just test the state of a variable
|
550 |
|
|
rather than use a relational operator. These are simpler to handle. */
|
551 |
|
|
if (TREE_CODE (cond) == SSA_NAME)
|
552 |
|
|
{
|
553 |
|
|
cached_lhs = cond;
|
554 |
|
|
|
555 |
|
|
/* Get the variable's current value from the equivalence chains.
|
556 |
|
|
|
557 |
|
|
It is possible to get loops in the SSA_NAME_VALUE chains
|
558 |
|
|
(consider threading the backedge of a loop where we have
|
559 |
|
|
a loop invariant SSA_NAME used in the condition. */
|
560 |
|
|
if (cached_lhs
|
561 |
|
|
&& TREE_CODE (cached_lhs) == SSA_NAME
|
562 |
|
|
&& SSA_NAME_VALUE (cached_lhs))
|
563 |
|
|
cached_lhs = SSA_NAME_VALUE (cached_lhs);
|
564 |
|
|
|
565 |
|
|
/* If we're dominated by a suitable ASSERT_EXPR, then
|
566 |
|
|
update CACHED_LHS appropriately. */
|
567 |
|
|
if (handle_dominating_asserts && TREE_CODE (cached_lhs) == SSA_NAME)
|
568 |
|
|
cached_lhs = lhs_of_dominating_assert (cached_lhs, e->src, stmt);
|
569 |
|
|
|
570 |
|
|
/* If we haven't simplified to an invariant yet, then use the
|
571 |
|
|
pass specific callback to try and simplify it further. */
|
572 |
|
|
if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
|
573 |
|
|
cached_lhs = (*simplify) (stmt, stmt);
|
574 |
|
|
}
|
575 |
|
|
else
|
576 |
|
|
cached_lhs = NULL;
|
577 |
|
|
|
578 |
|
|
return cached_lhs;
|
579 |
|
|
}
|
580 |
|
|
|
581 |
|
|
/* We are exiting E->src, see if E->dest ends with a conditional
|
582 |
|
|
jump which has a known value when reached via E.
|
583 |
|
|
|
584 |
|
|
Special care is necessary if E is a back edge in the CFG as we
|
585 |
|
|
may have already recorded equivalences for E->dest into our
|
586 |
|
|
various tables, including the result of the conditional at
|
587 |
|
|
the end of E->dest. Threading opportunities are severely
|
588 |
|
|
limited in that case to avoid short-circuiting the loop
|
589 |
|
|
incorrectly.
|
590 |
|
|
|
591 |
|
|
Note it is quite common for the first block inside a loop to
|
592 |
|
|
end with a conditional which is either always true or always
|
593 |
|
|
false when reached via the loop backedge. Thus we do not want
|
594 |
|
|
to blindly disable threading across a loop backedge.
|
595 |
|
|
|
596 |
|
|
DUMMY_COND is a shared cond_expr used by condition simplification as scratch,
|
597 |
|
|
to avoid allocating memory.
|
598 |
|
|
|
599 |
|
|
HANDLE_DOMINATING_ASSERTS is true if we should try to replace operands of
|
600 |
|
|
the simplified condition with left-hand sides of ASSERT_EXPRs they are
|
601 |
|
|
used in.
|
602 |
|
|
|
603 |
|
|
STACK is used to undo temporary equivalences created during the walk of
|
604 |
|
|
E->dest.
|
605 |
|
|
|
606 |
|
|
SIMPLIFY is a pass-specific function used to simplify statements. */
|
607 |
|
|
|
608 |
|
|
void
|
609 |
|
|
thread_across_edge (gimple dummy_cond,
|
610 |
|
|
edge e,
|
611 |
|
|
bool handle_dominating_asserts,
|
612 |
|
|
VEC(tree, heap) **stack,
|
613 |
|
|
tree (*simplify) (gimple, gimple))
|
614 |
|
|
{
|
615 |
|
|
gimple stmt;
|
616 |
|
|
|
617 |
|
|
/* If E is a backedge, then we want to verify that the COND_EXPR,
|
618 |
|
|
SWITCH_EXPR or GOTO_EXPR at the end of e->dest is not affected
|
619 |
|
|
by any statements in e->dest. If it is affected, then it is not
|
620 |
|
|
safe to thread this edge. */
|
621 |
|
|
if (e->flags & EDGE_DFS_BACK)
|
622 |
|
|
{
|
623 |
|
|
ssa_op_iter iter;
|
624 |
|
|
use_operand_p use_p;
|
625 |
|
|
gimple last = gsi_stmt (gsi_last_bb (e->dest));
|
626 |
|
|
|
627 |
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, last, iter, SSA_OP_USE | SSA_OP_VUSE)
|
628 |
|
|
{
|
629 |
|
|
tree use = USE_FROM_PTR (use_p);
|
630 |
|
|
|
631 |
|
|
if (TREE_CODE (use) == SSA_NAME
|
632 |
|
|
&& gimple_code (SSA_NAME_DEF_STMT (use)) != GIMPLE_PHI
|
633 |
|
|
&& gimple_bb (SSA_NAME_DEF_STMT (use)) == e->dest)
|
634 |
|
|
goto fail;
|
635 |
|
|
}
|
636 |
|
|
}
|
637 |
|
|
|
638 |
|
|
stmt_count = 0;
|
639 |
|
|
|
640 |
|
|
/* PHIs create temporary equivalences. */
|
641 |
|
|
if (!record_temporary_equivalences_from_phis (e, stack))
|
642 |
|
|
goto fail;
|
643 |
|
|
|
644 |
|
|
/* Now walk each statement recording any context sensitive
|
645 |
|
|
temporary equivalences we can detect. */
|
646 |
|
|
stmt = record_temporary_equivalences_from_stmts_at_dest (e, stack, simplify);
|
647 |
|
|
if (!stmt)
|
648 |
|
|
goto fail;
|
649 |
|
|
|
650 |
|
|
/* If we stopped at a COND_EXPR or SWITCH_EXPR, see if we know which arm
|
651 |
|
|
will be taken. */
|
652 |
|
|
if (gimple_code (stmt) == GIMPLE_COND
|
653 |
|
|
|| gimple_code (stmt) == GIMPLE_GOTO
|
654 |
|
|
|| gimple_code (stmt) == GIMPLE_SWITCH)
|
655 |
|
|
{
|
656 |
|
|
tree cond;
|
657 |
|
|
|
658 |
|
|
/* Extract and simplify the condition. */
|
659 |
|
|
cond = simplify_control_stmt_condition (e, stmt, dummy_cond, simplify, handle_dominating_asserts);
|
660 |
|
|
|
661 |
|
|
if (cond && is_gimple_min_invariant (cond))
|
662 |
|
|
{
|
663 |
|
|
edge taken_edge = find_taken_edge (e->dest, cond);
|
664 |
|
|
basic_block dest = (taken_edge ? taken_edge->dest : NULL);
|
665 |
|
|
|
666 |
|
|
if (dest == e->dest)
|
667 |
|
|
goto fail;
|
668 |
|
|
|
669 |
|
|
remove_temporary_equivalences (stack);
|
670 |
|
|
register_jump_thread (e, taken_edge);
|
671 |
|
|
}
|
672 |
|
|
}
|
673 |
|
|
|
674 |
|
|
fail:
|
675 |
|
|
remove_temporary_equivalences (stack);
|
676 |
|
|
}
|